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Abstract
Software verification aims to prove that a program satisfies some given properties for all its possible executions. Software
evolved incredibly fast during the last century, exposing several challenges to this scientific discipline. The goal of the
“Challenges of Software Verification Symposium” is to monitor the state-of-the-art in this field. In this article, we will
present the evolution of software from its inception in the 1940s to today’s applications, how this exposed new challenges
to software verification, and what this discipline achieved. We will then discuss how this chapter covers most of the current
open challenges, the possible future software developments, and what challenges this will raise in software verification.
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1 Introduction

The advent of computers in the 20th century revolutionized
the world. Computers allowed to automatize, speed up, and
improve most of the tasks of everyday life. A computer is
a piece of hardware that automatically executes a series of
computations. Humans define these computations through
software. Through the scientific and technological advances
of the last centuries, we have nowadays a well-defined defi-
nition of software. It consists of programs written in source
code (an intermediate structured language staying in the mid-
dle between the code executed by a machine and the human
language) that are Turing complete [52]. Hardware instead
is abstracted by the von Neumann architecture [55], that is, a
central processing unit performing mathematical operations,
a control unit that allows to check conditions and iterate
operations, a memory where data is stored, input and output.

Software verification is a scientific field whose ultimate
goal is to verify that a given software satisfies a given prop-
erty. The theory of computer science proved that it is not

possible to prove a nontrivial property of software by run-
ning it. Therefore, an approximation of what the program
computes is needed, and several different approaches have
been developed. These approaches led to various prototy-
pal, scientific, or industrial tools. Following the classifica-
tion proposed by Cousot [11], software verifiers are the ones
that “are semantics-based, sound, and precise”. Developing a
tool that satisfies these constraints requires a relevant formal-
ization effort (often leading to new scientific advancements)
and a massive implementation effort.

Software verification is tightly coupled with software: the
analyzed programs and proven properties depend on the de-
veloped software type. Therefore, it is only possible to outline
the history of software verification by carefully analyzing
how software evolved. In particular, different software appli-
cations led to different needs regarding the quality, efficiency,
safety, and security of the software itself, leading to different
software verification challenges over the decades.

The main goal of the “Challenges of Software Verification
Symposium” (CSV) is to discuss both solutions and upcom-
ing challenges in this field of research. The symposium is
organized annually in Venice by the Software and System
Verification laboratory of Ca’ Foscari University [57]. In
this introduction to the special chapter about CSV 2023, we
outline the evolution of software verification since the be-
ginning. In particular, we identified several different phases.
For each phase, we discuss (i) the technologies and program-
ming languages that appeared in that phase, (ii) what types of
software were developed, (iii) what challenges this raised to
software verification, and (iv) what scientific advancements
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were achieved. We then outline what trends we observe to-
day in software development and what this might imply for
software verification.

Our survey aims to minimize and simplify how software
and software verification evolved during the last century.

Sections 2–6 discuss different stages in software evolution
and verification. Section 7 will introduce the “Challenges
of Software Verification Symposium” and how the different
contributions of this chapter are. Section 8 will present what,
in our opinion, might be the disruptive trends of the next few
years in this field. Finally, Sect. 9 will conclude.

2 The early era of software

The first question we must pose to ourselves is: When exactly
did software appear? To answer such a question, we must
precisely define what software means. Two milestones in the
theory of Computer Science are the Turing machine [52]
and the von Neumann architecture [55]. Software requires
(i) a general purpose processor (that is, a Turing machine),
and (ii) a memory to store data and programs (that is, a von
Neumann architecture) [73].

While the idea of computer algorithms was introduced
already in the 19th century by Alda Lovelace, only in 1945
did the first software, as we understand it nowadays, ap-
pear. ENIAC (Electronic Numerical Integrator and Com-
puter) [70] is considered the first programmable computer.
A few years later, Tom Kilburn wrote what is considered the
first program to calculate the highest factor of 218. From then
on, software took off.

2.1 Technologies and programming languages

In the early stages of software, computers were programmed
at a very low level. The first programs in the 1950s were
developed directly in binary code. The first compilers were
developed in the 1950s, and several programming languages
(PL) appeared in the following decade:1

• Fortran [71], a PL specifically targeting numerical and
scientific computations, was invented in 1954 at IBM by
John Backus, and its first compiler was released in 1957,

• LISP [76] was conceived at MIT by John McCarthy in
1958 and released in 1960, and

• COBOL [69], another PL that became mainstream and is
still widely used today, was released in 1959.

The components common to most proposed approaches
were nested blocks (and procedures in particular) and the
lexical scoping of each block’s component.

1 While the history of PLs is out of the scope of this paper, we
recall just the main milestones to analyze what challenges the different
programming patterns present to the software verification discipline.

2.2 Type of software

The existing technologies allowed the development of mostly
small programs compared to the size of software we are used
to nowadays, and where it was hard to reason modularly. In
addition, deploying such programs was extremely hard and
time-consuming. While the first computers, such as ENIAC,
needed the programs to be physically developed and deployed
through wiring, during the second half of the 1950s, software,
as we understand it today, made its appearance. In particular,
such software was (i) written in a programming language
(like those mentioned above) that was humanly readable and
(ii) compiled into executable binaries. The code was usu-
ally stored in punch cards, and then loaded into mainframe
computers to execute it.

2.3 Challenges

In such a context, program robustness was essential: redevel-
opment, redeployment, and execution of the software were
quite time-consuming, and computational resources were ex-
tremely expensive and inefficient. The computational model
of the programming languages mentioned above was quite
simple, but already Turing complete: reasoning about loops
and nested blocks exposed several relevant challenges. On
the other hand, these programs were extremely small, and
the pace of development was extremely low.

2.4 Scientific advancements

In 1949, Alan Turing introduced the idea of proving the
correctness of (a part of) a program [51]. While still quite
preliminary, this work showed the need to reason about a
computer program to prove some properties mathematically.
In the following decade, a more rigorous and systematic
approach about formal reasoning on computation was de-
veloped in the community. The most notable results in this
context were produced by John McCarthy [35, 36], who de-
veloped a mathematical theory of computation between the
end of the 1950s and the beginning of the 1960s.

3 The revolution of embedded software

The Apollo program is widely known as the program that
brought humanity to the moon in 1969. However, it repre-
sented a turnaround in the field of software development.
In particular, the landing modules contained software that
managed the modules and their interaction with the physical
environment. This software had considerable size, and this
experience led to the birth of the term “software engineer-
ing”. The development and deployment of this software was
as previously described, that is, it was concretely wired and
required several weeks to be deployed.
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3.1 Technologies and programming languages

The C programming language [27] was introduced in
1972 [66], and it is still the most popular programming
language for embedded software nowadays. C is a general-
purpose programming language applied to almost all com-
puter systems. From an embedded system point of view, the
main advantage of C is that it provides a low-level view of the
computer architecture, allowing direct access to the memory
through free pointers. Overall, C programs are quite efficient
and are well-suited for embedded systems where resources
are typically quite constrained.

3.2 Type of software

The software of the Apollo program was just the first dis-
ruptive application of what is now embedded software. This
type of software has been around for over half a century, and
its technologies evolved. By embedded software, we mean
software that (i) is embedded inside a physical device, (ii) in-
teracts with the physical environment through sensors (read-
ing data from the environment) and actuators (modifying the
device or the physical environment in some ways), and (iii)
is safety critical. Since the 1980s, embedded software has
become pervasive in everyday life, and nowadays, almost all
devices contain some embedded software. In addition, they
are usually connected to the Internet, leading to the so-called
Internet-of-Things (IoT).

3.3 Challenges

The growing size of software, coupled with the fact that
safety-critical software might cause huge damages and
deaths, raised severe challenges regarding the reliability of
software. Since an error (also known as a bug) might lead
to a disaster, it became hard to reason deeply about software
because of its dimensions, which challenged the scientific
communities towards developing formal techniques that help
prove software’s safety. The computational model provided
by popular programming languages (and C in particular)
made it hard to precisely reason about how the memory is
managed: since a program can freely access it, ensuring that
a memory access is well formed (e.g., it accesses an area of
memory previously allocated and belonging to the program)
became hard.

3.4 Scientific advancements

In parallel with the Apollo mission, the scientific community
invested relevant efforts in the formalization of novel math-
ematical approaches to formally reason on the program. At
the end of the 1960s, Floyd introduced assertional reason-
ing on programs [18], while Hoare proposed the axiomatic

semantics [21] (also known as Floyd–Hoare logic). These ap-
proaches still require some forms of manual annotation/proof
about the program, but they are quite more automatized than
approaches proposed in the previous decades. In addition,
they allow expressing and proving any property expressed in
the logic adopted to specify assertions about the program.

Data [28] and control [1] flow analyses made an analogous
step in a similar direction. These approaches to software ver-
ification focus on very specific properties, and apply some
forms of approximation when reasoning about the programs.
Since the 1970s, they have been widely applied by all com-
pilers [30, 31].

4 The rise of micro and personal computers

The first microcomputers, as opposed to mainframes, ap-
peared in 1975, and they allowed having a computer on a
common desk. This opened the door to computers for indi-
viduals, which in later years were called personal comput-
ers (PCs). This revolution moved computational capabilities
from research laboratories to everyday life, opening the door
to endless new opportunities.

4.1 Type of software

First, the appearance of operating systems, and Unix in par-
ticular in 1971, allowed individuals to use computers. This
step was needed to allow the development of desktop appli-
cations that provided some functionalities to common users,
such as word processors and spreadsheets. Generally speak-
ing, PCs allow installing different types of software that in-
teract with the hardware and, therefore, the user through the
operating system. Therefore, PCs brought, as a logical con-
sequence, packaged software, that is, generic software that
was not targeting a specific customer or hardware. Before
the advent of the Internet, PCs were standalone and did not
communicate with each other.

4.2 Technologies and programming languages

In this period, object-oriented programming languages ap-
peared. The main novelty of this approach was that it pro-
vided various primitives to encapsulate the code and allow for
the polymorphic behavior of the code. The main goal was to
expose only a minimal interface of the program, abstracting
away implementation details to structure the software and
allow its proper reuse. Smalltalk [79] was the first object-
oriented programming language proposed in 1972, while a
decade later C++ [67] appeared. C++ is still one of the most
popular programming languages today. Moreover, the rise
of expert systems generated the request to separate the con-
cepts of logic and control in programming, giving rise to
declarative programming languages [54].
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4.3 Challenges

The size of software increased over time. This led to the
problem of modular reasoning: since it was no longer possi-
ble to reason about the program as a whole, dividing it into
distinct capsules was needed. This challenge was the main
reason for the introduction and adoption of object-oriented
programming languages, but it later raised further challenges
regarding how to automatically reason about such programs.

On the other hand, an error in desktop applications was not
as relevant as in embedded software. In fact, while a failure
in safety-critical embedded software might have catastrophic
consequences, a crash in a desktop application might lead,
at most, to the loss of some data. Therefore, the robustness
of PC software was considered less relevant than that of
embedded software.

4.4 Scientific advancements

The foundations of automatic software verification were laid
during these decades. In particular, the formal approaches
previously introduced were further developed and general-
ized.

In particular, Edsger Dijkstra reformulated the Floyd–
Hoare logic in the predicate transformer semantics [15]. This
gave the basis for developing software verification through
theorem proving in the following decades.

At the end of the 1970s, the theory of abstract inter-
pretation [12, 13] was introduced by Patrick and Radhia
Cousot. This theory generalized existing program analyses
(like the control mentioned above and data flow analyses)
into a generic mathematical framework that allows (i) defin-
ing the concrete semantics of a programming language, (ii)
defining different types of abstractions, and (iii) proving the
soundness of the abstractions with respect to the concrete
semantics.

A few years later, model checking [8, 9, 16, 39] was intro-
duced. This approach checks if a finite-state model of a given
(usually physical) system satisfies a given specification. Such
an approach was also widely applied to software [26, 45, 47].

Even if the logic and constraint languages, which had
generated great expectations for their mathematical cleanli-
ness, have not had the desired success, they have provided a
generous workbench for the design of mathematically well-
founded static software analysis techniques [42].

5 Moving into the new millennium: Internet
and web applications

The advent of the Internet opened the door to the devel-
opment of software in distributed systems on a large scale.

While previously PCs were disconnected nodes, each run-
ning some locally installed software, PCs connected to the
Internet exchanged data with remote machines, with software
running on both sides.

5.1 Type of software

The Internet led to the development of the so-called Web
applications. The main idea is that most of the software runs
on a machine (the server) while another machine (the client)
accesses the application through some specific software (the
browser). Usually, both software comprise more and more
code written by third parties (libraries) that implement some
standard generic functionalities.

5.2 Technologies and programming languages

During the 1990s, all the currently most popular program-
ming languages were introduced. In particular, Java [74] and
C# [68] appeared in the second half of the 1990s (1996 and
2000, respectively). While providing different technologi-
cal stacks, both these approaches developed several tools for
Web applications, such as servlets and applets in Java and
ASP.NET in C#. These programming languages were mostly
used on the server side since this software implements the ap-
plication’s business logic, and therefore, it requires advanced
constructs to encapsulate implementation details.

Another programming language that gained popularity
in this context is PHP [77], a scripting language target-
ing explicitly Web development server-side. JavaScript [75]
adopted a similar approach client-side. These technologies
usually combine the implementation of the Web application’s
business logic with its graphical user interface.

5.3 Challenges

While until desktop applications most of the verification
challenges were focused on finding runtime errors that might
lead to software failures, computer systems that comprised
different machines communicating with each other opened
the door to new scenarios. In particular, one of the main
concerns was the presence of vulnerabilities, that is, logic
weaknesses that might be exploited by an attacker for various
purposes.

In this context, a full ecosystem of professionals and in-
stitutions aimed at classifying vulnerabilities appeared. The
main vulnerabilities involved some injections (e.g., the at-
tacker’s input might flow into SQL queries without being
properly escaped, thus allowing the attacker to modify the
data freely), cross-site scripting, and data leakages.

The field of embedded software experienced an evolution
towards more secure and reliable solutions in this period.
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In particular, certification authorities enforced various reg-
ulations about adopting safety-critical embedded software.
This process started a couple of decades after embedded
software appeared, and different certifications targeted dif-
ferent industrial sectors. For instance, ISO/DIS 26262 [59]
regards the functional safety of road vehicles, and the sixth
part regards how automotive software should be developed.
In this context, the standard recommends the adoption of
software verification techniques. Similar guidelines exist in
RTCA DO-178C for embedded software in airborne systems
and in IEC 62304:2006 [60] about medical device software.

5.4 Scientific advancements

First, the practical applications of the theories developed
in the previous decades led to several industrial applica-
tions of software verification techniques. In particular, the
safety-critical embedded software field experienced a prolif-
eration of tools based on formal methods. Tools like Gram-
matech [72] CodeSonar, Polyspace [78], and ASTREE [14]
(mostly based on abstract interpretation techniques) were
widely applied to prove that safety critical software was run-
time error-free. Other tools, like BLAST [20], applied model
checking to software verification instead. In contrast, other
relevant efforts led to different program verifiers and pro-
gramming languages (such as Spec# [5]) based on SMT
solvers.

A major result in 2005 was the development of a for-
mally verified optimizing compiler called CompCert [33].
Software verification guarantees that such a compiler will
produce executable code that respects the semantics of the
source code while applying several optimizations on the pro-
duced binary code.

Another relevant effort was focused on the formalization
and development of different types of generic analyses that
might be interesting in different contexts for software verifi-
cation [2, 24, 29, 32, 43, 46, 48]. In parallel, several libraries
and tools [53, 64] provided an implementation of the most
popular software verification frameworks through static anal-
ysis.

Last but not least, Tony Hoare launched the Software Ver-
ification grand challenge in 2003 [22]. The main idea of this
challenge is to focus long-term research efforts in the field
of software verification towards “the construction and appli-
cation of a verifying compiler that guarantees correctness of
a program before running it”. This led to a community ef-
fort targeting the application of various software verification
techniques to mainstream programming languages to build
up verifiers that could be used in industrial contexts.

6 The present: distributed applications

During the 2010s and 2020s, software became more and
more pervasive. Smartphones and other mobile personal de-
vices have become part of everyday life. Web applications
were adopted to perform several business-critical activities,
such as online banking, and privacy-sensitive functionalities,
such as geographical tracking. Embedded software evolved
into IoT by connecting physical devices to the Internet and
allowing them to communicate with each other, with other
mobile devices, and with back-end services. Last but not
least, starting in the early 2000s, various types of social net-
works appeared. Nowadays, almost anyone worldwide reg-
ularly uses these Web platforms, mostly for entertainment
purposes.

6.1 Type of software

Various software architectures appeared, from service-
oriented architectures to microservices and serverless ap-
plications [40]. The main goal of these distributed systems
is to provide services that are (i) scalable (they can respond
to an increasing number of requests over time), (ii) elastic
(they can support sudden peaks of requests), and (iii) robust
(if a node fails, the system is resilient). These architectures
require to couple code with its deployment, since different
software units are deployed into independent components
that collaborate to offer users different services.

Blockchain introduced a different type of distributed ar-
chitecture. While the first idea of blockchain was designed
in the 1980s and 1990s [19], the applications and popularity
of this technology rose after 2008 when Bitcoin, the first
cryptocurrency, was invented based on such a technology.
However, the first generation of blockchain did not contain
any software. Instead, smart contracts were introduced by the
Ethereum blockchain in 2015. The main goal of this type of
software is to “automatically execute, control, or document
events and actions according to the terms of a contract or an
agreement” [80].

6.2 Technologies and programming languages

Most of the technologies that appeared recently evolved from
previous programming languages into technologies coupled
with a deployment system. For instance, Java Enterprise Edi-
tion, and later Jakarta and Java Spring, coupled the Java pro-
gramming language with servers (e.g., Tomcat) to deploy
a software system that executes the code to answer HTTP
requests.

Scripting languages like Python and JavaScript became
mainstream in this context. In particular, technologies like
Node.js and Angular are nowadays probably the most popular
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solutions for developing back- and front-end Web applica-
tions, respectively. For similar purposes, the Python ecosys-
tem was enriched with various libraries (such as FastAPI and
Django). While it is impossible for now to depict a definitive
scenario of these technologies, most of them enrich the origi-
nal programming language with various types of annotations
to specify service-oriented functionalities of the software.

Several programming languages (such as Solidity [81])
were introduced in the context of smart contracts. Tightly
bound with libraries to manage blockchain transactions,
these programming languages were usually quite limited to
prevent behaviors not allowed in a blockchain context, like
nondeterminism. Another approach was to use mainstream
programming languages (like the Go programming language
in Hyperledger Fabric) with some restrictions and checks
about what they could do.

6.3 Challenges

The splitting of applications into many [micro] deployable
units led to further complexity from a software verification
point of view.

First of all, each unit might be developed in a different
programming language and rely on different technologi-
cal stacks. For instance, the Sock Shop [65] represented a
demo application well underlying the intrinsic technologi-
cal variety in microservices’ applications. It mixes Java, Go,
JavaScript code, and Spring, Go kit, and Node.js technolo-
gies. Rigorous software verification requires relevant efforts
to define the semantics of a single programming language
and technology. Such a variety, therefore, represents a huge
challenge to this scientific field.

In addition, since each unit is deployed independently, a
global view of the software system’s status might be missing.
Different versions of different software system services might
coexist and interact. On the one hand, focusing on a unique
version of the whole system would not allow one to verify the
different possible deployments. On the other hand, assuming
nothing about what other microservices do would be too
conservative in practice.

The law advancements pose the last challenge that might
be an opportunity for software verification. For instance, the
European General Data Protection Regulation [23] imposes
various measures in order to protect sensitive data in infor-
mation systems. While the legal approach is more focused
on the process than on the technical tools applicable in such
a context, it usually suggests the adoption of technologies
that help improve software quality from different points of
view. This context is quite similar to what happened to the
certification of safety-critical embedded systems in different
markets a few decades ago, as explained in Sect. 5.3.

Smart contracts usually deal with business-sensitive op-
erations since a relevant part of this technology has been

applied to develop and maintain cryptocurrency. In addi-
tion, once released, they usually persist in the blockchain
and cannot be modified. Therefore, verifying that this soft-
ware is correct and does not contain security vulnerabilities
is of primary interest to avoid potential disasters, such as the
Ethereum DAO attack [82].

6.4 Scientific advancements

The challenges previously raised by Web applications pushed
for the formalization and development of novel analyses start-
ing from information flow [41]. In particular, taint analy-
sis [50] (roughly, a relaxation of information flow analysis
that omits implicit flow) was widely applied to detect secu-
rity vulnerabilities. While not all approaches in this field can
be interpreted as software verification (since most of them
are unsound or based on catching some of the vulnerabilities
instead of proving the correctness of the software [10]), this
was probably the most relevant attempt of the software ver-
ification community in this field. Using similar approaches,
software verification later focused on mobile applications [4]
and different types of programs written in JavaScript [25],
Python, and other programming languages. In addition, some
tools [56, 61] provided implementation of core algorithms of
static analysis that could be applied to different programming
languages, with the final goal of developing a multi-language
software verifier.

A clearly perceived trend by the software verification com-
munity is that modern programming languages comprise
more and more dynamic features to allow the development
of complex programs in the distributed system environment.
For this reason, features like multithreading, reflections, and
annotations are usually ignored by sound static analysis since
their rigorous treatment would lead to too complex formal-
ization and implementation or too imprecise analyses. The
concept of soundiness [34] was then introduced to allow the
scientific community to state the exact boundaries of soft-
ware verifiers clearly.

A proliferation of results was also experienced in verifying
smart contracts [49]. While several different approaches to
software verification have already been applied to all the most
popular blockchain platforms, this effort is still ongoing and
evolving quickly.

7 Challenges of software verification
symposium 2023

A first edition of the “Challenges of Software Verification
Symposium” was held on May 20, 2022 [62]. In the morning,
Ca’ Foscari University awarded Prof. Patrick Cousot a PhD in
Computer Science Honoris Causa. Instead, the symposium
took place in the afternoon with 15 invited talks. An extended
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version of some of the talks was later published in Springer-
Nature [3].

Following the great success of this event, the “2nd Chal-
lenges of Software Verification Symposium” was organized
on May 25–26, 2023 [63]. The scope of the symposium cov-
ered theoretical results in the field of software verification,
their practical applications, novel and innovative tools, and
their impact of software verification in software engineer-
ing and DevOps practices. The symposium comprised 18
half-an-hour-long invited talks with speakers from various
countries (Italy, France, Germany, the United States, Israel,
Norway, and Belgium). These talks covered all the main
topics of software verification and its open challenges. The
sessions comprised theoretical and practical aspects of static
analysis, abstract interpretation, software engineering, and
security. About 50 scientists participated to the event.

This chapter contains the scientific contribution of six
invited papers that formalize and extend the results presented
during some of the CSV 23 talks. These articles cover all the
main recent challenges of software verification, and some of
them pose the basis for future ones.

In particular, Olivieri and Spoto [38] tackle smart con-
tracts (as discussed at the end of Sect. 6.3) in the context of
software verification. In particular, it clarifies the notion of
blockchain-oriented software, and it provides an overview of
the verification challenges it raises.

Jensen et al. [17] advances the state-of-the-art of infor-
mation flow analyses (that we introduced in Sect. 6.4) by
extending Hoare logic (mentioned in Sect. 3.4) to binary
PER-based predicates for relating observationally equivalent
states.

Monniaux [37] presents several solutions and still open
challenges in verified static analysis. This represents a further
application of the concept of the formally verified compiler
(discussed in Sect. 5.4): like a compiler, the implementation
of a sound static analyzer needs to be formally verified in
order to ensure that the properties it verifies are effectively
satisfied by the analyzed software.

Since the invention of the abstract interpretation theory
(recalled in Sect. 4.4), various abstract domains have been
formalized, mostly to approximate numerical information
computed by programs. In this context, relational and nonre-
lational domains appeared for different reasons. A third level
(weakly relation domains) was invented to obtain efficient
and precise abstractions. Seidl et al. [44] explores how this
idea can be generalized to other types of (not necessarily
numerical) information.

Bodei et al. [6] present the result of the formal analysis
of an automotive software module designed to ensure confi-
dentiality, integrity, and authentication at the same time for
traffic exchanged over CAN protocol (that is, among differ-
ent physical components of a car). Such effort represents the
follow-up of the results obtained a couple of decades ago

on safety-critical embedded software discussed in Sect. 5.4.
Nowadays, vehicles are usually connected to the Internet
through the infotainment system. Therefore, the CAN proto-
col might cause unsafe and insecure traffic. Nowadays, ap-
plying software verification to such protocols is of primary
relevance to ensure the physical safety of modern vehicles.

Brodo et al. [7] apply formal methods to reaction systems,
a qualitative computational formalism inspired by biochem-
ical reactions in living cells. This work shows that formal
methods initially developed purely for software verification
can be far beyond this field, finding interesting and practical
applications in other scientific disciplines.

8 The future: what is next?

While knowing what will happen in the future is impossi-
ble, and even guessing it might be very dangerous, we believe
some trends that will revolutionize the software development
world are already established. The software verification com-
munity already started to focus its efforts on these topics.

The first disruptive trend is the adoption of generative
artificial intelligence techniques during software develop-
ment. This led to AI-based code assistants suggesting code to
professional developers and guessing their needed features.
Gartner predicts that “by 2027, 50% of enterprise software
engineers will use ML-powered coding tools, up from fewer
than 5% today” [58]. While the adoption of these techniques
appeared only recently, we believe this is just the next step
in a trend we have observed in software development during
the last decade. Before the advent of ChatGPT and similar
tools, it was common for developers to google for a solution,
usually landing in a Stackoverflow discussion providing the
answer. At the end of this process, some potentially unsafe
and unreliable code was copied and pasted into the software
project. From a high-level software verification point of view,
the two approaches do not differ much: some code produced
from unreliable sources is almost mindlessly inserted into
a software project. If, on the one hand, this opens the door
to even more insecure and unsafe software, it represents an
opportunity for software verification.

However, the artificial intelligence revolution we are expe-
riencing these years goes far beyond code generation. Nowa-
days, all the top-tier conferences in software engineering
(such as ICSE, ASE, and FSE) and programming languages
(such as PLDI, POPL, and OOPSLA) contain contributions
adopting some form of machine learning or artificial intelli-
gence. While such effort rarely falls into the field of software
verification as defined in Sect. 1, its fast development might
lead to novel insights and contributions that will have an
impact in such a context.

Other emerging trends in technology involve quantum
computing, various aspects of cybersecurity, novel ap-
proaches to software development and deployment, etc.
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Fig. 1 Timeline of software
verification challenges

While all these topics are interesting regarding software ver-
ification, it is still hard to predict which ones will experience
broad adoption in the future and become relevant and the
main trend topic for software verification.

9 Summary and conclusion

Figure 1 summarizes the content of this paper into a timeline.
At a very high level, the idea of software, as we intend it to-
day, appeared during the 1950s, when the first programmable
mainframes appeared. The limited resources and difficulties
in deploying a program emphasized efficiency and correct-
ness. In parallel, the first attempts to mathematically formal-
ize what software is and can do appeared.

The following decades experienced the appearance of
safety-critical embedded software, where the complete ab-
sence of runtime errors is crucial. However, it took quite
some time to find complete, practical solutions to this need
in the scientific field of software verification. First, different
formal approaches were introduced. Then, several attempts
were made to make them useful in practice. Only after about
three decades, software verifiers were able to prove the ab-
sence of runtime error on industrial software. In particular,
this required first defining the bases of computation, then
developing approaches able to soundly prove properties on
software, and finally, properly implementing it.

From the 1980s onward, software became more and more
pervasive. Desktop, Web, mobile, cloud, and distributed ap-
plications today allow performing a variety of tasks in ev-
erybody’s life every day. While the quality of such software

is crucial only sometimes, its security becomes increasingly
important, and different approaches to verify the absence of
the main application vulnerabilities have been developed.

Finally, during the last months we experienced the revolu-
tion of AI-generated code. While it is still hard to predict how
pervasive this will be, there is no doubt that using third-party
code in software projects is a common practice today. Veri-
fying this software by focusing on the external code is still
an open challenge. Last but not least, quantum computing is
becoming more and more visible and hopefully useful. This
might be yet another software revolution that would push
software verification to deal with this innovative model of
computation.
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