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1 Introduction

In many real-world applications, time series of counts are commonly observed given
the discrete nature of the variables of interest. Integer-valued variables appear
very frequently in many fields, such as medicine (see Cardinal et al. (1999)),
epidemiology (see Zeger (1988) and Davis et al. (1999)), finance (see Liesenfeld
et al. (2006) and Rydberg and Shephard (2003)), economics (see Freeland (1998)
and Freeland and McCabe (2004)), in social sciences (see Pedeli and Karlis (2011)),
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sports (see Shahtahmassebi and Moyeed (2016)) and oceanography (see Cunha et al.
(2018)). In this paper, we build on Poisson models, which is one of the most used
model for counts data and propose a new model for integer-valued data with sign
based on the generalized Poisson difference (GPD) distribution. An advantage in
using this distribution relies on the possibility to account for overdispersed data
with more flexibility, with respect to the standard Poisson difference distribution,
a.k.a. Skellam distribution. Despite of its flexibility, GPD models have not been
investigated and applied to many fields, yet. Shahtahmassebi and Moyeed (2014)
proposed a GPD distribution obtained as the difference of two underling generalized
Poisson (GP) distributions with different intensity parameters. They showed that
this distribution is a special case of the GPD by Consul (1986) and studied its
properties. They provided a Bayesian framework for inference on GPD and a zero-
inflated version of the distribution to deal with the excess of zeros in the data.
Shahtahmassebi and Moyeed (2016) showed empirically that GPD can perform
better than the Skellam model.

As regards to the construction method, two main classes of models can be
identified in the literature: parameter driven and observation driven. In parameter-
driven models the parameters are functions of an unobserved stochastic process,
and the observations are independent conditionally on the latent variable. In
the observation-driven models the parameter dynamics is a function of the past
observations. Since this paper focuses on the observation-driven approach, we refer
the reader to MacDonald and Zucchini (1997) for a review of parameter-driven
models.

Thinning operators are a key ingridient for the analysis of observation-driven
models. The mostly used thinning operator is the binomial thinning, introduced
by Steutel and van Harn (1979) for the definition of self-decomposable distribution
for positive integer-valued random variables. In mathematical biology, the binomial
thinning can be interpreted as natural selection or reproduction, and in probability it
is widely applied to study integer-valued processes. The binomial thinning has been
generalized along different directions. Latour (1998) proposed a generalized binomial
thinning where individuals can reproduce more than once. Kim and Park (2008)
introduced the signed binomial thinning, in order to allows for negative values. Joe
(1996) and Zheng et al. (2007) introduced the random coefficient thinning to account
for external factors that may affect the coefficient of the thinning operation, such as
unobservable environmental factors or states of the economy. When the coefficient
follows a beta distribution one obtain the beta-binomial thinning (McKenzie (1985),
McKenzie (1986) and Joe (1996)). Al-Osh and Aly (1992), proposed the iterated
thinning, which can be used when the process has negative-binomial marginals.
Alzaid and Al-Osh (1993) introduced the quasi-binomial thinning, that is more
suitable for generalized Poisson processes. Zhang et al. (2010) introduced the signed
generalized power series thinning operator, as a generalization of Kim and Park
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(2008) signed binomial thinning. Thinning operation can be combined linearly to
define new operations such as the binomial thinning difference (Freeland (2010)) and
the quasi-binomial thinning difference (Cunha et al. (2018)). For a detailed review
of the thinning operations and their properties different surveys can be consulted:
MacDonald and Zucchini (1997), Kedem and Fokianos (2005), McKenzie (2003),
Weiß (2008), Scotto et al. (2015). In this paper, we apply the quasi-binomial
thinning difference.

In the integer-valued autoregressive process literature, thinning operations have
been used either to define a process, such as in the literature on integer-valued
autoregressive-moving average models (INARMA), or to study the properties of a
process, such as in the literature on integer-valued GARCH (INGARCH). INARMA
have been firstly introduced by McKenzie (1986) and Al-Osh and Alzaid (1987)
by using the binomial thinning operator. Jin-Guan and Yuan (1991) extended
to the higher order p the first-order INAR model of Al-Osh and Alzaid (1987).
Kim and Park (2008) introduced an integer-valued autoregressive process with
signed binomial thinning operator, INARS(p), able for time series defined on Z.
Andersson and Karlis (2014)introduced SINARS, that is a special case of INARS
model with Skellam innovations. In order to allow for negative integers, Freeland
(2010) proposed a true integer-valued autoregressive model (TINAR(1)), that can
be seen as the difference between two independent Poisson INAR(1) process. Alzaid
and Al-Osh (1993) have studied an integer-valued ARMA process with Generalized
Poisson marginals while Alzaid and Omair (2014) proposed a Poisson difference
INAR(1) model. Cunha et al. (2018) firstly applied the GPD distribution to
build a stochastic process. The authors proposed an INAR with GPD marginals
and provided the properties of the process, such as mean, variance, kurtosis and
conditional properties.

Rydberg and Shephard (2000) introduced heteroskedastic integer-valued
processes with Poisson marginals. Later on, Heinen (2003) introduced an
autoregressive conditional Poisson model and Ferland et al. (2006) proposed the
INGARCH process. Both models have Poisson margins. Zhu (2012) defined a
INGARCH process to model overdispersed and underdispersed count data with GP
margins and Alomani et al. (2018) proposed a Skellam model with GARCH dynamics
for the variance of the process. Koopman et al. (2014) proposed a Generalized
Autoregressive Score (GAS) Skellam model. In this paper, we extend Ferland et al.
(2006) and Zhu (2012) by assuming GPD marginals for the INGARCH model, and
use the quasi-binomial thinning difference to study the properties of the new process.

Another contribution of the paper regards the inference approach. In the
literature, maximum likelihood estimation has been widely investigated for integer-
valued processes, whereas a very few papers discuss Bayesian inference procedures.
Chen and Lee (2016) introduced Bayesian zero-inflated GP-INGARCH, with
structural breaks. Zhu and Li (2009) proposed a Bayesian Poisson INGARCH(1,1)
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and Chen et al. (2016) a Bayesian Autoregressive Conditional Negative Binomial
model. In this paper, we develop a Bayesian inference procedure for the proposed
GPD-INGARCH process and a Markov chain Monte Carlo (MCMC) procedure for
posterior approximation. One of the advantages of the Bayesian approach is that
extra-sample information on the parameters value can be included in the estimation
process through the prior distributions. Moreover, it can be easily combined with a
data augmentation strategy to make the likelihood function more tractable.

We apply our model to a cyber-threat dataset and contribute to cyber-risk
literature providing evidence of temporal patterns in the mean and variance of the
threats, which can be used to predict threat arrivals. Cyber threats are increasingly
considered as a top global risk for the financial and insurance sectors and for the
economy as a whole (e.g. EIOPA, 2019). As pointed out in Hassanien et al. (2016),
the frequency of cyber events substantially increased in the past few years and cyber-
attacks occur on a daily basis. Understanding cyber-threats dynamics and their
impact is critical to ensure effective controls and risk mitigation tools. Despite these
evidences and the relevance of the topic, the research on the analysis of cyber threats
is scarce and scattered in different research areas such as cyber security (Agrafiotis
et al., 2018), criminology Brenner (2004), economics Anderson and Moore (2006)
and sociology. In statistics there are a few works on modelling and forecasting
cyber-attacks. Xu et al. (2017) introduced a copula model to predict effectiveness
of cyber-security. Werner et al. (2017) used an autoregressive integrated moving
average model to forecast the number of daily cyber-attacks. Edwards et al. (2015)
apply Bayesian Poisson and negative binomial models to analyse data breaches
and find evidence of over-dispersion and absence of time trends in the number of
breaches. See Husák et al. (2018) for a review on modelling cyber threats.

The paper is organized as follows. In Section 2 we introduce the parametrization
used for the GPD and define the GPD-INGARCH process. Section 3 aims at
studying the properties of the process. Section 4 presents a Bayesian inference
procedure. Section 5 and 6 provide some illustration on simulated and real data,
respectively. Section 7 concludes.

2 Generalized Poisson Difference INGARCH

A random variable X follows a Generalized Poisson (GP) distribution if and only if
its probability mass function (pmf) is

Px(θ, λ) =
θ(θ + xλ)x−1

x!
e−θ−xλ x = 0, 1, 2, . . . (1)

with parameters θ > 0 and 0 ≤ λ < 1 (see Consul, 1986). We denote this distribution
with GP (θ, λ). Let X ∼ GP (θ1, λ) and Y ∼ GP (θ2, λ) be two independent
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GP random variables, Consul (1986) showed that the probability distribution of
Z = (X − Y ) follows a Generalized Poisson Difference distribution (GDP) with
pmf:

Pz(θ1, θ2, λ) = e−θ1−θ2−zλ
∞∑
y=0

θ2(θ2 + yλ)y−1

y!

θ1(θ1 + (y + z)λ)y+z−1

(y + z)!
e−2yλ (2)

where z takes integer values in the interval (−∞,+∞) and 0 < λ < 1 and θ1, θ2 > 0
are the parameters of the distribution. See Appendix A.3 for a more general
definition of the GPD with possibly negative λ.

In the following Lemma we state the convolution property of the GPD
distribution since which will be used in this paper. Appendix B.1 provides an
original proof of this result.

Lemma 1 (Convolution Property). The sum of two independent random GPD
variates, X + Y , with parameters (θ1, θ2, λ) and (θ3, θ4, λ) is a GPD variate with
parameters (θ1 + θ3, θ2 + θ4, λ). The difference of two independent random GPD
variates, X − Y , with parameters (θ1, θ2, λ) and (θ3, θ4, λ) is a GPD variate with
parameters (θ1 + θ4, θ2 + θ3, λ).

We use an equivalent pmf and a re-parametrization of the GPD, which are better
suited for the definition of a INGARCH model. A random variable Z follows a GPD
if and only if its probability distribution is

Pz(µ, σ
2, λ) = e−σ

2−zλ
+∞∑

s=max(0,−z)

1

4

σ4 + µ2

s!(s+ z)!

[
σ2 + µ

2
+ (s+ z)λ

]s+z−1[
σ2 − µ

2
+ sλ

]s−1

e−2λs

(3)

We denote this distribution with GPD(µ, σ2, λ).

Remark 1. The probability distribution in Eq. 3 is equivalent to the one in Eq. 2
up to the reparametrization µ = θ1 − θ2 and σ2 = θ1 + θ2. See Appendix B for a
proof.

The mean, variance, skewness and kurtosis of a GDP random variable can be
obtained in close form by exploiting the representation of the GDP as difference
between independent GP random variables.

Remark 2. Let Z ∼ GPD(µ, σ2, λ), then mean and variance are:

E(Z) =
µ

1− λ
, V (Z) =

σ2

(1− λ)3
(4)

and the Pearson skewness and kurtosis are:

S(Z) =
µ

σ3

(1 + 2λ)√
1− λ

, K(Z) = 3 +
1 + 8λ+ 6λ2

σ2(1− λ)
(5)
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(a) GPD(µ, σ2, λ) distribution for σ2 = 10 (b) GPD(µ, σ2, λ) distribution for µ = 2
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Figure 1: Generalized Poisson difference distribution GPD(µ, σ2, λ) for some values
of λ, µ and σ2. The distribution with λ = 0.2, µ = 2 and σ2 = 10 (solid line) is
taken as baseline in both panels.

See Appendix B for a proof.

Figure 1 shows the sensitivity of the probability distribution with respect to the
location parameter µ (panel a), the scale parameter σ2 (panel b) and the skewness
parameter λ (different lines in each plot). For given values of λ and µ, when σ2

decreases the dispersion of the GPD increases (dotted and dashed lines in the right
plot). For given values of λ and σ2, the distribution is right-skewed for µ = 8, which
corresponds to S(Z) = 0.7155, and left-skewed for µ = −4, which corresponds to
S(Z) = −0.3578, (dotted and dashed lines in the left plot). See Appendix A.3 for
further numerical illustrations.

Differently from the usual GARCH(p, q) process (e.g., see Francq and Zakoian
(2019)), the INGARCH(p, q) is defined as an integer-valued process {Zt}t∈Z, where
Zt is a series of counts. Let Ft−1 be the σ-field generated by {Zt−j}j≥1, then the
GPD-INGARCH(p, q) is defined as

Zt|Ft−1 ∼ GPD(µ̃t, σ̃
2
t , λ)

with
µ̃t

1− λ
= µt = α0 +

p∑
i=1

αiZt−i +

q∑
j=1

βjµt−j (6)

where µ̃t−j = µt−j(1− λ), α0 ∈ R, αi ≥ 0, βj ≥ 0, i = 1, . . . , p, p ≥ 1, j = 1, . . . , q,
q ≥ 0. For q = 0 the model reduces to a GPD-INARCH(p) and for λ = 0 one
obtains a Skellam INGARCH(p, q) which extends to Poisson differences the Poisson
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INGARCH(p, q) of Ferland et al. (2006). From the properties of the GPD, the
conditional mean µt = E(Zt|Ft−1) and variance σ2

t = V (Zt|Ft−1) of the process are:

µt =
µ̃t

1− λ
, σ2

t =
σ̃2
t

(1− λ)3
(7)

respectively. In the application, we assume σ2
t = |µt|φ. Following the

parametrization defined in Remark 1, we need to impose the constrain φ > (1−λ)−2,
in order to have a well-defined GPD distribution. In Fig. 2, we provide some
simulated examples of the GPD-INGARCH(1, 1) process for different values of the
parameters α0, α1 and β1.

Simulations from a GPD-INGARCH are obtained as differences of GP sequences

Zt = Xt − Yt, Xt ∼ GP (θ1t, λ), Yt ∼ GP (θ2t, λ)

where

θ1t =
σ2
t + µt

2
, θ2t =

σ2
t − µt

2
. (8)

Each random sequence is generated by the branching method in Famoye (1997),
which performs faster than the inversion method for large values of θ1t and θ2t. We
considered two parameter settings: low persistence, that is α1 + β1 much less than
1 (first column in Fig. 2) and high persistence, that is α1 + β1 close to 1 (second
column in Fig. 2). The first and second line show paths for positive and negative
value of the intercept α0, respectively. The last line illustrates the effect of λ on the
trajectories with respect to the baselines in Panels (a) and (b). Comparing (I.a)
and (I.b) in Fig. 3 one can see that increasing β1 increases serial correlation and
the kurtosis level (compare (II.a) and (II.b)).

We provide a necessary condition on the parameters αi and βj that will
ensure that a second-order stationary process has an INGARCH representation.
First define the two following polynomials: D(B) = 1 − β1B − . . . − βqB

q and
G(B) = α1B + . . . + αpB

p, where B is the backshift operator. Assume the roots
of D(z) lie outside the unit circle. For non-negative βj this is equivalent to assume
D(1) =

∑q
j=1 βj < 1. Then, the operator D(B) has inverse D−1(B) and it is possible

to write
µt = D−1(B)(α0 +G(B)Zt) = α0D

−1(1) +H(B)Zt (9)

where H(B) = G(B)D−1(B) =
∑∞

j=1 ψjB
j and ψj are given by the power expansion

of the rational function G(z)/D(z) in the neighbourhood of zero. If we denote
K(B) = D(B) − G(B) we can write the necessary condition as in the following
proposition.

Proposition 1. A necessary condition for a second-order stationary process {Zt}t∈Z
to satisfy Eq. 6 is that K(1) = D(1)−G(1) > 0 or equivalently

∑p
i=1 αi+

∑q
j=1 βj <

1.

Proof. See Appendix B
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Low persistence High persistence
(α1 = 0.23, β1 = 0.25) (α1 = 0.32, β1 = 0.59)

(a) α0 = 1.55, λ = 0.4, φ = 3 (b) α0 = 1.55, λ = 0.4, φ = 3

(c) α0 = −1.55, λ = 0.4, φ = 3 (d) α0 = −1.55, λ = 0.4, φ = 3

(e) α0 = 1.55, λ = 0.1, φ = 3 (f) α0 = 1.55, λ = 0.7, φ = 3

Figure 2: Simulated INGARCH(1, 1) paths for different values of the parameters
α0, α1 and β1. In Panels from (a) to (d) the effect of α0 (α0 > 0 in the first line and
α0 < 0 in the second line) with λ = 0.4 and φ = 3. In Panels (e) and (f) the effect
of lambda (λ = 0.1 left and λ = 0.7 right) in the two settings.

3 Properties of the GPD-INGARCH

We study the properties of the process by exploiting a suitable thinning
representation following the strategy in Ferland et al. (2006) and Zhu (2012) for
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(I) Autocorrelation function (II) Unconditional histograms
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Figure 3: Autocorrelation functions (Panel I) and unconditional distributions (Panel
II) of {Zt}t∈Z for the different cases presented in Fig. 2 (different columns in each
panel).

Poisson and Generalized Poisson INGARCH, respectively. We use the quasi-
binomial thinning as defined in Weiß (2008) and the thinning difference (Cunha
et al. (2018)) operators.

3.1 Thinning representation

We show that the INGARCH process can be obtained as a limit of successive
approximations. Let us define:

X
(n)
t =


0, n < 0

(1− λ)U1t, n = 0

(1− λ)U1t + (1− λ)
∑n

i=1

∑X
(n−i)
t−i
(1−λ)
j=1 V1t−i,i,j, n > 0

(10)
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and

Y
(n)
t =


0, n < 0

(1− λ)U2t, n = 0

(1− λ)U2t + (1− λ)
∑n

i=1

∑Y
(n−i)
t−i
(1−λ)
j=1 V2t−i,i,j, n > 0

(11)

where {U1t}t∈Z and {U2t}t∈Z are sequences of independent GP random variables
and for each t ∈ Z and i ∈ N, {V1t,i,j}j∈N and {V2t,i,j}j∈N represent two sequences of
independent integer random variables. Moreover, assume that all the variables Us,
Vt,i,j, with s ∈ Z, t ∈ Z, i ∈ N and j ∈ N, are mutually independent.

It is possible to show that X
(n)
t and Y

(n)
t have a thinning representation. We

define a suitable thinning operation, first used by Alzaid and Al-Osh (1993) and
follow the notation in Weiß (2008), let ρθ,λ◦ be the quasi-binomial thinning operator,
such that it follows a QB(ρ,θ/λ,x).

Proposition 2. If X follows a GP(λ,θ) distribution and the quasi-binomial thinning
is performed independently on X, then ρθ,λ ◦X has a GP(ρλ,θ) distribution.

Proof. See Alzaid and Al-Osh (1993).

Both X
(n)
t and Y

(n)
t in Eq. 10 and 11 admit the representation

X
(n)
t = (1− λ)U1t + (1− λ)

n∑
i=1

ϕ
(t−i)
1i ◦

(
X

(n−i)
t−i

1− λ

)
, n > 0 (12)

and

Y
(n)
t = (1− λ)U2t + (1− λ)

n∑
i=1

ϕ
(t−i)
2i ◦

(
Y

(n−i)
t−i

1− λ

)
, n > 0 (13)

where ϕ ◦ X is the quasi-binomial thinning operation. See Appendix A for a
definition.

In the following we introduce the thinning difference operator and show that
Z

(n)
t = X

(n)
t − Y

(n)
t has a thinning representation.

Definition 1. Let X ∼ GP (θ1, λ) and Y ∼ GP (θ2, λ) be two independent random
variables and Z = X−Y , then Z ∼ GPD(µ, σ2, λ), with µ = θ1−θ2 and σ2 = θ1+θ2.
We define the new operator � as:

ρ � Z|Z d
= (ρθ1,λ ◦X)− (ρθ2,λ ◦ Y )|(X − Y ) (14)

where (ρθ1,λ ◦ X) and (ρθ2,λ ◦ Y ) are the quasi-binomial thinning operations such
that (ρθ1,λ ◦ X)|X = x ∼ QB(p, λ/θ1, x) and (ρθ2,λ ◦ Y )|Y = y ∼ QB(p, λ/θ2, y).

The symbol “A
d
= B” means that the random variables A and B have the same

distribution.
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See Cunha et al. (2018) for an application of the thinning operation to GPD-
INAR processes and Appendix A.4 for further details. Using the new operator as
defined in Eq. 14, we can represent Z

(n)
t as follows.

Proposition 3. The process Z
(n)
t = X

(n)
t − Y

(n)
t has the representation:

Z
(n)
t = (1− λ)Ut + (1− λ)2

n∑
i=1

ϕ
(t−i)
i �

(
Z

(n−i)
t−i

1− λ

)
, n > 0 (15)

where ϕ
(τ)
i � indicates the sequence of random variables with mean ψi/(1−λ), involved

in the thinning operator at time τ and {Ut}t∈Z is a sequence of independent GPD
random variables with mean ψ0/(1− λ) with ψ0 = α0/D(1).

Proof. See Appendix B

The proposition above shows that Z
(n)
t is obtained through a cascade of thinning

operations along the sequence {Ut}t∈Z. For example:

Z
(0)
t = (1− λ)Ut

Z
(1)
t = (1− λ)Ut + (1− λ)2

[
ϕ

(t−1)
1 � (Z

(1−1)
t−1 /(1− λ))

]
= (1− λ)Ut + (1− λ)2(ϕ

(t−1)
1 � Ut−1)

Z
(2)
t = (1− λ)Ut + (1− λ)2

[
ϕ

(t−1)
1 � (Z

(2−1)
t−1 /(1− λ)) + ϕ

(t−2)
2 � (Z

(2−2)
t−2 /(1− λ))

]
= (1− λ)Ut + (1− λ)2

[
ϕ

(t−1)
1 � Ut−1 + ϕ

(t−1)
1 � (ϕ

(t−2)
1 � Ut−2) + ϕ

(t−2)
2 � Ut−2

]
Z

(3)
t = (1− λ)Ut + (1− λ)2[ϕ

(t−1)
1 � (Z

(3−1)
t−1 /(1− λ)) + ϕ

(t−2)
2 � (Z

(3−2)
t−2 /(1− λ))+

+ ϕ
(t−3)
3 � (Z

(3−3)
t−3 /(1− λ))]

= (1− λ)Ut + (1− λ)2[ϕ
(t−1)
1 � Ut−1 + ϕ

(t−1)
1 � (ϕ

(t−2)
1 � Ut−2)+

+ ϕ
(t−2)
2 � Ut−2 + ϕ

(t−1)
1 � (ϕ

(t−2)
1 � (ϕ

(t−3)
1 � Ut−3))+

+ ϕ
(t−1)
1 � (ϕ

(t−3)
2 � Ut−3) + ϕ

(t−2)
2 � (ϕ

(t−3)
1 � Ut−3) + ϕ

(t−3)
3 � Ut−3].

Since Z
(n)
t is a finite weighted sum of independent GPD random variables, the

expected value and the variance of Z
(n)
t are well defined. Moreover, it can be seen

that E[Z
(n)
t ] does not depend on t but only on n, hence it can be denoted as µn.

Using Proposition 3 and µk = 0 if k < 0, it is possible to write µn as follows

µn = (1− λ)E[Ut] + (1− λ)2

n∑
i=1

E

[
ϕ

(t−i)
i �

(
Z

(n−i)
t−i

1− λ

)]

= ψ0 +
∞∑
j=1

ψjµn−j = D−1(B)α0 +H(B)µn

(16)
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from which it follows D(B)µn = G(B)µn + α0 ⇔ K(B)µn = α0, where K(B) =
D(B)−G(B). From the last equation it can be seen that the sequence {µn} satisfies
a finite difference equation with constant coefficients. The characteristic polynomial
is K(z) and all its roots lie outside the unit circle if K(1) > 0. Under the assumption
K(1) > 0, the following holds true.

Proposition 4. If K(1) > 0 then the sequence {Z(n)
t }n∈N has an almost sure limit.

Proof. See Appendix B.

Proposition 5. If K(1) > 0 then the sequence {Z(n)
t } has a mean-square limit.

Proof. See Appendix B.

3.2 Stationarity

Given Proposition 4, if we can show that {Z(n)
t } is a strictly stationary process,

for any given n, then also its almost sure limit {Zt}t∈Z will be a strictly stationary

process. In order to show stationarity for {Z(n)
t }, we follow a procedure similar to

the one in Ferland et al. (2006). Let us define the probability generating function
(pgf) gW(t) of the random vector W = (W1, . . . ,Wk)

gW(t) = E

[
k∏
i=1

tWi
i

]
=
∑

W∈Nk
p(w)

k∏
i=1

tWi
i (17)

where p(W) = Pr(W = (W1, . . . ,Wk)
′) and t = (t1, . . . , tk)

′ ∈ Ck. The probability
generating function has the following properties.

Proposition 6. Let Z
(n)
1...k = (Z

(n)
1 , . . . , Z

(n)
k ) be a subsequence of {Z(n)

t }t∈Z where,

without loss of generality, we choose the first k periods. Let X
(n)
1...k = (X

(n)
1 , . . . , X

(n)
k )

and Y
(n)
1...k = (Y

(n)
1 , . . . , Y

(n)
k ) be such that Z

(n)
1...k = (X

(n)
1...k −Y

(n)
1...k)

′ then

gZ1...k
(t) = gX1...k

(t)gY1...k
(t−1) (18)

Proof. See Appendix B

Using the probability generating function, in the following we know the
stationarity of the process.

Proposition 7. {Z(n)
t }t∈Z is a strictly stationary process, for any fixed value of n.

12



Proof. Let k and h be two positive integers. As pointed out by Ferland et al. (2006),
Brockwell et al. (1991) show that to prove strictly stationarity we only need to show
that

Z
(n)
1+h...k+h = (Z

(n)
1+h, . . . , Z

(n)
k+h)

′ and Z
(n)
1...k = (Z

(n)
1 , . . . , Z

(n)
k )′ (19)

have the same joint distribution, where we can rewrite both vectors in Eq. 19 as

Z
(n)
1+h...k+h = (X

(n)
1+h...k+h −Y

(n)
1+h...k+h)

′

= ((X
(n)
1+h − Y

(n)
1+h), . . . , (X

(n)
k+h − Y

(n)
k+h))

′
(20)

and

Z
(n)
1...k = (X

(n)
1...k −Y

(n)
1...k)

′

= ((X
(n)
1 − Y (n)

1 ), . . . , (X
(n)
k − Y

(n)
k ))′

(21)

To show that the two vectors have the same probability generating function, we first
write the pgfs of X, Y and Z as shown above.

g
X

(n)
1...k

(t) = E

[
k∏
j=1

t
X

(n)
j

j

]
= E

[
E

X
(n)
1...k|U1,1−n...k

[
k∏
j=1

t
X

(n)
j

j

]]

=
∑

v1∈N(k+n)

E
X

(n)
1...k|U1,1−n...k=v1

[
k∏
j=1

t
X

(n)
j

j

]
Pr (U1,1−n...k = v1)

(22)

g
Y

(n)
1...k

(t) =
∑

v2∈N(k+n)

E
Y

(n)
1...k|U2,1−n...k=v2

[
k∏
j=1

t
Y

(n)
j

j

]
Pr (U2,1−n...k = v2) (23)

G
Z
(n)
1...k

(t) =
∑

v∈N(k+n)

E
Z
(n)
1...k|U1−n...k=v

[
k∏
j=1

t
(X

(n)
j −Y

(n)
j )

j

]
Pr (U1−n...k = v) (24)

By the thinning representation, for a any given value u1,t−n...t+k =
(u1,t−n, . . . , u1,t+k)

′ of the vector U1,t−n...t+k = (U1,t−n, . . . , U1,t+k)
′ and u2,t−n...t+k =

(u2,t−n, . . . , u2,t+k)
′ of the vector U2,t−n...t+k = (U2,t−n, . . . , U2,t+k)

′, the components

of the vectors (X
(n)
1 , . . . , X

(n)
k )′ and (Y

(n)
1 , . . . , Y

(n)
k )′ are computed using a set of well-

determined variables from the sequences V1,τ,η and V2,τ,η, where τ = t−n, . . . , t+k−1
and η = 1, . . . , n. Therefore, if U1,t−n...t+k and U1,t−n+h...t+k+h are both fixed to the
same value v1 and U2,t−n...t+k and U2,t−n+h...t+k+h are both fixed to the same value
v2, it follows that the conditional distribution of

Z
(n)
1+h...k+h = ((X

(n)
1+h − Y

(n)
1+h), . . . , (X

(n)
k+h − Y

(n)
k+h))

′

13



and
Z

(n)
1...k = ((X

(n)
1 − Y (n)

1 ), . . . , (X
(n)
k − Y

(n)
k ))′

given Ut−n...t+k and Ut−n+h...t+k+h, are the same. Accordingly,

E
Z
(n)
1+h...k+h|U1−n+h...k+h=v

[
k∏
j=1

t
Z

(n)
j+h

j

]
= E

Z
(n)
1...k|U1−n...k=v

[
k∏
j=1

t
Z

(n)
j

j

]
and, since

Pr (U1−n+h...k+h = v) = Pr (U1−n...k = v) ,

it is possible to write

g
Z
(n)
1...k

(t) =
∑

v∈Z(k+n)

E
Z
(n)
1+h...k+h|U1−n+h...k+h=v

[
k∏
j=1

t
Z

(n)
j+h

j

]
Pr (U1−n+h...k+h = v)

= g
Z
(n)
1+h...k+h

(t)

and claim that Z
(n)
1+h...k+h and Z

(n)
1...k have the same joint distribution.

Proposition 8. The process {Zt}t∈Z is a strictly stationary process.

Proposition 9. The first two moments of {Zt}t∈Z are finite.

Proof. See Appendix B.

3.3 Conditional law of {Z(n)
t }t∈Z given Ft−1

To verify that the distributional properties of the sequence are satisfied, we will
follow the same arguments in Ferland et al. (2006) adjusted for our sequence. Given
Ft−1 = σ({Zu}u≤t−1), for t ∈ Z, let

µt = α0D
−1(1) +

n∑
j=1

ψjZt−j.

The sequence {µt} satisfies

µt = α0 +

p∑
i=1

αiZt−i +

q∑
j=1

bjµt−j. (25)

Moreover, recalling that Zt = Xt−Yt, for a fixed t, we can consider three sequences,
{r(n)

1t }n∈N, {r(n)
2t }n∈N and {r(n)

t }n∈N, defined by

r
(n)
1t = (1− λ)U1t + (1− λ)

n∑
i=1

Xt−i∑
j=1

V1t−i,i,k (26)
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r
(n)
2t = (1− λ)U2t + (1− λ)

n∑
i=1

Yt−i∑
j=1

V2t−i,i,k. (27)

and
r

(n)
t = r

(n)
1t − r

(n)
2t . (28)

As claimed by Ferland et al. (2006), there is a subsequence {nk} such that r
(nk)
t

converges almost surely to Zt. We know that

Xt − r(n)
1t = (Xt −X(n)

t ) + (X
(n)
t − r

(n)
1t ) (29)

and
Yt − r(n)

2t = (Yt − Y (n)
t ) + (Y

(n)
t − r(n)

2t ). (30)

Since X
(n)
t

a.s.−→ Xt and Y
(n)
t

a.s.−→ Yt, we know that the first term in both Eq. 29 and
30 goes to zero. Therefore, we can write

Zt − r(n)
t = (Xt − Yt)− (r

(n)
1t − r

(n)
2t )

=
[
(Xt −X(n)

t )− (Yt − Y (n)
t )

]
+
[
(X

(n)
t − r

(n)
1t )− (Y

(n)
t − r(n)

2t )
]

= (Zt − Z(n)
t ) +

[
(X

(n)
t − Y

(n)
t )− (r

(n)
1t − r

(n)
2t )
]

= (Zt − Z(n)
t ) +

[
Z

(n)
t − (r

(n)
1t − r

(n)
2t )
]
,

(31)

and, as before, (Zt−Z(n)
t ) goes to zero since we have proven almost sure convergence.

We have now to show that the second term in the last line of Eq. 31 goes to zero,
for this purpose we need to find a sequence

W
(n)
t = (r

(n)
1t − r

(n)
2t )− Z(n)

t

that converges almost surely to zero. For this reason it is more suitable to rewrite
the previous sequence as follows

W
(n)
t = (r

(n)
1t − r

(n)
2t )− (Xt − Yt)

= (r
(n)
1t −Xt)− (r

(n)
2t − Yt)

(32)

Ferland et al. (2006) show that

lim
n→∞

E
[
(r

(n)
1t −Xt)

]
= 0

lim
n→∞

E
[
(r

(n)
2t − Yt)

]
= 0 (33)
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therefore, we can conclude that also

lim
n→∞

E
[
(r

(n)
t − Zt)

]
= 0. (34)

Equation 34 implies that W
(n)
t converges to zero in L1, therefore there exist a

subsequence W
(nk)
t converging almost surely to the same limit. From this it follows

directly that the distributional properties of Xt are satisfied.
Since r

(nk)
1t

a.s.−→ Xt and r
(nk)
2t

a.s.−→ Yt, it is also true r
(nk)
t

a.s.−→ Zt. Hence,

r
(n)
t |Ft−1

a.s.−→ Zt|Ft−1.

However,
r

(n)
t |Ft−1 = (r

(n)
1t − r

(n)
2t )|Ft−1

and from Zhu (2012) we know that both r
(n)
1t and r

(n)
2t have a Generalized Poisson

distribution. Since the difference of two GP distributed random variables is GPD
distributed, we can write

r
(n)
t |Ft−1 ∼ GPD

(
α0D

−1(1) +
n∑
j=1

ψjZt−j

)
(35)

and conclude that
Zt|Ft−1 ∼ GPD(µ̃t, σ̃

2
t , λ). (36)

3.4 Moments of the GPD-INGARCH

The conditional mean and variance of the process Zt are

E(Zt|Ft−1) =
µ̃t

1− λ
= µt

V (Zt|Ft−1) =
σ̃2
t

1− λ
= φ3σ̃2

t (37)

where φ = 1
1−λ .

The unconditional mean and variance of the process are

E(Zt) = µt =
α0

1−
∑p

i=1 αi −
∑q

j=1 βj

V (Zt) = E [V (Zt|Ft−1)] + V [E (Zt|Ft−1)]

= E(φ3σ̃2
t ) + V (µt)

= φ3E(σ̃2
t ) + V (µt)

(38)
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From Th. 1 in Weiß (2009) we know a set of equations from which the variance
and autocorrelation function of the process can be obtained. Suppose Zt follows the
INGARCH(p,q) model in Eq. 6 with

∑p
i=1 αi+

∑q
j=1 βj < 0. From Th. 1 part (iii) in

Weiß (2009), the autocovariances γZ(k) = Cov[Zt, Zt−k] and γµ(k) = Cov[µt, µt−k]
satisfy the linear equations

γZ(k) =

p∑
i=1

αiγZ(|k − i|) +

min(k−1,q)∑
j=1

βjγZ(k − j) +

q∑
j=k

βjγµ(j − k), k ≥ 1;

γµ(k) =

min(k,p)∑
i=1

αiγµ(|k − i|) +

p∑
i=k+1

αiγZ(i− k) +

q∑
j=1

βjγµ(|k − j|), k ≥ 0. (39)

In order to have an explicit expression for the variance of µt and Zt and for the
autocorrelations, we consider two special cases as in Zhu (2012) and Weiß (2009).
For a proof of the results in these examples, see Section B.3.

Example 1 (INARCH(1)). Consider the INARCH(1) model

µt = α0 + α1Zt−1 (40)

then the linear equations in Eq. 39, becomes

γZ(k) =

p∑
i=1

αiγZ(|k − i|) + δk0 · µ, k ≥ 0

γµ(k) =

min(k,p)∑
i=1

αiγµ(|k − i|) +

p∑
i=k+1

αiγZ(i− k), k ≥ 0.

Where the second equation comes from Example 2 in Weiß (2009). We derive the
following autocovariances

γZ(k) =

{
αk−1

1 γZ(1), for k ≥ 2

α1[φ3E(σ̃2
t )] + α1V (µt), for k = 1

(41)

γµ(k) =

{
αk1V (µt), for k ≥ 1

α2
1[φ3E(σ̃2

t )] + α2
1V (µt), for k = 0

(42)

Therefore, the variance of µt is

V (µt) =
α2

1[φ3E(σ̃2
t )]

1− α2
1

(43)
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and the variance of Zt is

V (Zt) =
φ3E(σ̃2

t )

1− α2
1

(44)

where φ = 1
1−λ .

Lastly, the autocorrelations are
ρµ(k) = αk1 (45)

ρZ(k) = αk1 (46)

Example 2 (INGARCH(1,1)). Consider the INGARCH(1,1) model

µt = α0 + α1Zt−1 + β1µt−1 (47)

From Eq. 39,

γZ(k) =

{
(α1 + β1)k−1γZ(1), for k ≥ 2

α1[φ3E(σ̃2
t )] + (α1 + β1)V (µt), for k = 1

(48)

We can now determine V (µt). First note that we have

γµ(k) =

{
(α1 + β1)kV (µt), for k ≥ 1

α2
1[φ3E(σ̃2

t )] + (α1 + β1)2V (µt), for k = 0
(49)

where the second equation in Eq. 49 is equal to V (µt). From this latter equation,
we can derive the expression for V (µt)

V (µt) =
α2

1[φ3E(σ̃2
t )]

1− (α1 + β1)2
(50)

Combining Eq. 38 and 50, we can derive a close expression for the variance of Zt:

V (Zt) =
φ3E(σ̃2

t )[1− (α1 + β1)2 + α2
1]

1− (α1 + β1)2
(51)

where φ = 1
1−λ .

The autocorrelations are given by

ρµ(k) = (α1 + β1)k (52)

ρZ(k) = (α1 + β1)k−1 α1[1− β1(α1 + β1)]

1− (α1 + β1)2 + α2
1

(53)
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4 Bayesian Inference

We propose a Bayesian approach to inference for GPD-INGARCH, which allows the
researcher to include extra-sample information through the prior choice and allows
us to exploit the stochastic representation of the GPD and the use of latent variables
to make more tractable the likelihood function.

4.1 Prior assumption

We assume the following prior distributions. A Dirichlet prior distribution for
ϕ = (α1, . . . , αp, β1, . . . , βq), ϕ ∼ Dird+1(c), with density:

π(ϕ) =
Γ
(∑d

i=0 ci

)
∏d

i=0 Γ(ci)

d∏
i=1

ϕci−1
i

(
1−

d∑
i=1

ϕi

)(c0−1)

(54)

where ϕi ≥ 0 and
∑d

i=1 ϕi ≤ 1. Panel (a) in Fig. 4 provides the level sets of the joint
density function of α1 and β1 with hyper-parameters c0 = 3, c1 = 4 and c2 = 3. We
assume a flat prior for α0, i.e. π(α0) ∝ IR(α0). For λ and φ we assume a joint prior
distribution with uniform marginal prior λ ∼ U[0,1] and shifted gamma conditional
prior φ ∼ Ga∗(a, b, c), with density function:

π(φ) =
ba

Γ(a)
(φ− c)(a−1)e−b(φ−c) for φ > c (55)

where c = (1− λ)−2. Panel (b) provides the level sets of the joint density function
of φ and λ, with hyper-parameters a = b = 5. The joint prior distribution of the
parameters will be denoted by π(θ) = π(ϕ)π(α0)π(λ)π(φ).

4.2 Data augmentation

Denote the probability distribution of Zt with

ft(Zt = z|θ) = e−σ
2
t−zλ

+∞∑
s=s

1

4

σ4
t + µ2

t

s!(s+ z)!

[
σ2
t + µt

2
+ (s+ z)λ

]s+z−1[
σ2
t − µt

2
+ sλ

]s−1

e−2λs

(56)
with s = max(0,−z). Since the posterior distribution

π(θ|Z1:T ) ∝
T∏
t=1

ft(Zt|θ)π(θ) (57)

is not analytically tractable we apply Markov Chain Monte Carlo (MCMC)
for posterior approximation in combination with a data-augmentation approach
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Figure 4: Contour lines of the log-prior density function for α1 and β1 (left) and φ
and λ (right).

(Tanner and Wong, 1987). See Robert and Casella (2013) for an introduction to
MCMC. As in Karlis and Ntzoufras (2006), we exploit the stochastic representation
in Eq. 8 and introduce two GPD latent variables Xt and Yt with pmfs

ft(Xt = x|θ1t, λ) =
θ1t(θ1t + λx)x−1

x!
e(−θ1t−λx) (58)

ft(Yt = y|θ2t, λ)) =
θ2t(θ2t + λy)y−1

y!
e(−θ2t−λy) (59)

Let Z1:T = (Z1, . . . , ZT ), X1:T = (X1, . . . , XT ) and Y1:T = (Y1, . . . , YT ). The
complete-data likelihood becomes

f(Z1:T , X1:TY1:T |θ) =
T∏
t=1

f(Zt|Xt, Yt,θ)ft(Xt, Yt|θ)

=
T∏
t=1

δ(Zt −Xt + Yt)ft(Xt|θ)ft(Xt − Zt|θ).

(60)

where δ(z − c) is the Dirac function which takes value 1 if z = c and 0 otherwise.
The joint posterior distribution of the parameters θ and the two collections of latent
variables X1:T and Y1:T is

π(X1:T , Y1:T ,θ|Z1:T ) ∝ f(Z1:T , X1:TY1:T |θ)π(θ) (61)

4.3 Posterior approximation

We apply a Gibbs algorithm (Robert and Casella, 2013, Ch. 10) with a Metropolis-
Hastings (MH) steps. In the sampler, we draw the latent variables and the
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parameters of the model by iterating the following steps:

1. draw (Xt, Yt) from f(Xt, Yt|Z1:T ,θ);

2. draw ϕ from π(ϕ|Z1:T , Y1:T , X1:T ,θ−ϕ);

3. draw φ from π(φ|Z1:T , Y1:T , X1:T ,θ−φ);

4. draw λ from π(λ|Z1:T , Y1:T , X1:T ,θ−λ),

where θ−η indicates the collection of parameters excluding the element η.
The full conditional for the latent variables is

(Xt, Yt) ∼ f(Zt|Xt, Yt,θ)f(Xt, Yt|Z1:T ,θ). (62)

We draw from the full conditional distribution by MH. Differently from Karlis and
Ntzoufras (2006), we use a mixture proposal distribution which allows for a better
mixing of the MCMC chain. At the j-th iteration, we generate a candidate X∗t from
GP (θ1t, λ) with probability ν and (X∗t −Zt) from GP (θ2t, λ) with probability 1− ν,
and accept with probability

% = min

{
1,

ft(X
∗
t |θ1t, λ)ft(X

∗
t − Zt|θ2t, λ)

ft(X
(j−1)
t |θ1t, λ)ft(X

(j−1)
t − Zt|θ2t, λ)

q(X
(j−1)
t )

q(X∗t )

}
(63)

where q(Xt) = νf(Xt|θ1t, λ) + (1 − ν)f(Xt − Zt|θ2t, λ) and X
(j−1)
t is the (j − 1)-

th iteration value of the latent variable Xt. The method extends to the GPD the
technique proposed in Karlis and Ntzoufras (2006) for the Poisson differences.

As regards to the parameter ϕ, its full conditional distribution is

ϕ ∼ π(ϕ|Z1:T , Y1:T , X1:T ,θ−ϕ) ∝ π(ϕ)
T∏
t=1

ft(Xt, Yt|θ). (64)

We consider a MH with Dirichlet independent proposal distribution

ϕ∗ ∼ Dir(c∗) (65)

where c∗ = (c∗0, c
∗
1, c
∗
2) and acceptance probability

% = 1 ∧ π(ϕ∗|Z1:T , Y1:T , X1:T ,θ−ϕ)

π(ϕj−1|Z1:T , Y1:T , X1:T ,θ−ϕ)
. (66)

The full conditional distribution of φ is

π(φ|Z1:T , Y1:T , X1:T ,θ−φ) ∝ π(φ)
T∏
t=1

ft(Xt, Yt|θ). (67)
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We consider the change of variable ζ = log(φ− c) with Jacobian exp(ζ) and a MH
step with a random walk proposal

ζ∗ ∼ N(ζj−1, γ
2) (68)

where ζj−1 = log(φj−1−c), φj−1 is the previous iteration value of the parameter and
c = 1

(1−λ)2
. The acceptance probability is

% = min

{
1,

π(φ∗|Z1:T , Y1:T , X1:T ,θ−φ) exp(ζ∗)

π(φj−1)|Z1:T , Y1:T , X1:T ,θ−φ) exp(ζj−1)

}
(69)

where φ∗ = c+ exp(ζ∗).
The full conditional distribution of λ is

π(λ|Z1:T , Y1:T , X1:T ,θ−λ) ∝ π(λ)
T∏
t=1

ft(Xt, Yt|θ). (70)

We consider a MH step with Beta random walk proposal

λ∗ ∼ Be(sλ(j−1), s(1− λ(j−1))) (71)

where s is a precision parameter. The acceptance probability is:

% = min

{
1,

π(λ∗|Z1:T , Y1:T , X1:T ,θ−λ)Be(sλ
∗, s(1− λ∗))

π(λ(j−1)|Z1:T , Y1:T , X1:T ,θ−λ)Be(sλ(j−1), s(1− λ(j−1)))

}
. (72)

5 Simulation study

The purpose of our simulation exercises is to study the efficiency of the MCMC
algorithm presented in Section 4. We evaluated the Geweke (1992) convergence
diagnostic measure (CD), the inefficiency factor (INEFF)1 and the Effective Sample
Size (ESS).

We simulated 50 independent data-series of 400 observations each. We run the
Gibbs sampler for 1,010,000 iterations on each dataset, discard the first 10,000 draws

1The inefficiency factor is defined as

INEFF = 1 + 2

∞∑
k=1

ρ(k)

where ρ(k) is the sample autocorrelation at lag k for the parameter of interest and are computed
to measure how well the MCMC chain mixes. An INEFF equal to n tells us that we need to draw
MCMC samples n times as many as uncorrelated samples.
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Low persistence High persistence
(α = 0.25, β = 0.23, λ = 0.4) (α = 0.53, β = 0.25, λ = 0.6)

α β λ α β λ

ACF (1)BT 0.96 0.97 0.97 0.91 0.88 0.98
ACF (10)BT 0.86 0.83 0.81 0.70 0.52 0.83
ACF (30)BT 0.75 0.69 0.63 0.52 0.37 0.60
ACF (1)AT 0.43 0.39 0.27 0.21 0.13 0.16
ACF (10)AT 0.25 0.18 0.12 0.20 0.06 0.11
ACF (30)AT 0.18 0.15 0.07 0.15 0.06 0.09

ESSBT 0.02 0.02 0.02 0.02 0.03 0.02
ESSAT 0.07 0.07 0.09 0.09 0.12 0.11

INEFFBT 50.53 51.07 43.88 48.39 43.35 49.25
INEFFAT 26.36 27.29 13.99 17.21 16.84 12.59

CDBT 11.81 -28.69 0.78 0.93 -6.27 2.40
(0.11) (0.14) (0.10) (0.04) (0.06) (0.05)

CDAT 5.72 -13.18 0.2 0.74 -3.84 1.17
(0.23) (0.23) (0.23) (0.13) (0.15) (0.11)

Table 1: Autocorrelation function (ACF), effective sample size (ESS) and inefficiency
factor (INEFF) of the posterior MCMC samples for the two settings: low persistence
and high persistence. The results are averages over a set of 50 independent MCMC
experiments on 50 independent datasets of 400 observations each. We ran the
proposed MCMC algorithm for 1,010,000 iterations and evaluate the statistics before
(subscript BT) and after (subscript AT) removing the first 10,000 burn-in samples,
and applying a thinning procedure with a factor of 250. In parenthesis the p-values
of the Geweke’s convergence diagnostic.

to remove dependence on initial conditions, and finally apply a thinning procedure
with a factor of 250, to reduce the dependence between consecutive draws.

As commonly used in the GARCH and stochastic volatility literature (e.g., see
Chib et al., 2002; Casarin et al., 2009; Billio et al., 2016; Bormetti et al., 2019,
and references therein), we test the efficiency of the algorithm in two different
settings: low persistence and high persistence. The true values of the parameters
are: α = 0.25, β = 0.23, λ = 0.4 in the low persistence setting and α = 0.53,
β = 0.25, λ = 0.6 in the high persistence setting. Table 1 shows, for the parameters
α, β and λ, the INEFF, ESS and ACF averaged over the 50 replications before (BT
subscript) and after thinning (AT subscript).

The thinning procedure is effective in reducing the autocorrelation levels and in
increasing the ESS, especially in the high persistence setting. The p-values of the
CD statistics indicate that the null hypothesis that two sub-samples of the MCMC
draws have the same distribution is accepted. The efficiency of the MCMC after
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Parameters Mean Std CI

Model M1: GPD-INGARCH(1,1)

α 0.3920 0.0246 (0.3347, 0.4297)
β 0.4753 0.0096 (0.4582, 0.4999)
λ 0.5892 0.0246 (0.53833, 0.6349)
φ 179.7905 22.8040 (138.2406, 226.99)

Model M2: PD-INGARCH(1,1) and λ = 0

α 0.1121 0.0095 (0.1004, 0.1340)
β 0.1798 0.0101 (0.1549, 0.1989)
λ - - -
φ 94.9340 8.6488 (77.0653, 110.6276)

Model M3: GPD-INARCH(1,0)

α 0.2286 0.0485 (0.1407, 0.3287)
β - - -
λ 0.5682 0.0243 (0.5195, 0.6166)
φ 218.6333 36.2307 (155.7151, 297.2252)

Model M4: PD-INARCH(1,0) and λ = 0

α 0.1013 0.0013 (0.1000, 0.1050)
β - - -
λ - - -
φ 104.4131 7.4362 (86.4588, 115.8723)

Table 2: Posterior mean (Mean), 95% credible intervals (CI), and standard deviation
(Std) for different specifications (different panels) of the GPD-INGARCH.

thinning generally improved. On average, the inefficiency measures (19.05), the p-
values of the CD statistics (0.18) and the acceptance rates (0.35) achieved the values
recommended in the literature (e.g., see Roberts et al., 1997).

6 Real data examples

6.1 Accident data

Data in this application are the number of accidents near Schiphol airport in The
Netherlands during 2001 (Fig. 5). They have been previously considered in Brijs
et al. (2008) and Andersson and Karlis (2014). The time series of accident counts is
non-stationary and should be differentiated (Kim and Park, 2008). We applied our
Bayesian estimation procedure, as described in Section 4.

In Fig. 6 are presented the histograms for the Gibbs draws for each parameters.
Table 2 presents the parameter posterior mean and standard error and the 95%
credible interval for the unrestricted INGARCH(1,1) model (model M1). In the
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Figure 5: Frequency (top) and month-on-month changes (bottom) of the accidents
at the Schiphol airport in The Netherlands in 2001.
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λ φ

Figure 6: Histograms of the MCMC draws for the parameters of the Schipol’s
accident data of Fig. 5.
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data, we found evidence of high persistence in the expected accident arrivals, i.e.
α̂+β̂ = 0.8673 and heteroskedastic effects, i.e. β̂ = 0.4753. Also, there is evidence in
favour of overdispersion, λ̂ = 0.5892 and overdispersion persistsence φ̂ = 179.7905.
We study the contribution of the heteroskedasticy and persistence by testing some
restrictions of the INGARCH(1,1) (models from M2 to M4 in Tab. 2).

Bayesian inference compares models via the so-called Bayes factor, which is the
ratio of normalizing constants of the posterior distributions of two different models
(see Cameron et al. (2014) for a review). MCMC methods allows for generating
samples from the posterior distributions which can be used to estimate the ratio of
normalizing constants.

In this paper we use the method proposed by Geyer (1994). The method consists
in deriving the normalizing constants by reverse logistic regression. The idea behind
this method is to consider the different estimates as if they were sampled from a
mixture of two distributions with probability

pj(x, η) =
hj(x) exp(ηj)

h1(x) exp(η1) + h2(x) exp(η2)
, j = 1, 2 (73)

to be generated from the j-th distribution of the mixture. Geyer (1994) proposed
to estimate the log-Bayes factor κ = η2 − η1 by maximizing the quasi-likelihood
function

`n(κ) =
n∑
i=1

log p1(Xi1, η1) +
n∑
i=1

log p2(Xi2, η2) (74)

where n is the number of MCMC draws for each model and Xij =

log f(Z1:T , X
(i)
1:T , Y

(i)
1:T |θ(i)) is the log-likelihood evaluated at the i-th MCMC sample

for each model of Tab. 2.
We performed six reverse logistic regressions, in which we compare pairwise our

models. The approximated logarithmic Bayes factors BF (Mi,Mj) are given in Tab.
3. It is possible to see that our GPD-INGARCH(1, 1),M1, is preferable with respect
to the other models. Notice that M2 corresponds to an INGARCH(1, 1) where
the observations are form a standard Poisson-difference model PD-INGARCH(1, 1),
M3 corresponds to an autoregressive model, GPD-INARCH(1, 0), whereasM4 is a
standard Poisson difference augoregressive model, PD-INARCH(1, 0).

6.2 Cyber threats data

According to the Financial Stability Board (FSB, 2018, pp. 8-9), a cyber incident
is any observable occurrence in an information system that jeopardizes the cyber
security of the system, or violates the security policies and procedures or the use
policies. Over the past years there have been several discussions on the taxonomy of
incidents classification (see, e.g. ENISA, 2018), in this paper we use the classification
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BF(Mi,Mj) M2 M3 M4

M1
333.45 25.19 121.44
(5.818) (0.253) (0.521)

M2
-226.86 -300.96
(2.024) (2.522)

M3
-73.25
(0.358)

Table 3: Logarithmic Bayes Factor, BF(Mi,Mj), of the model Mi (rows) against
model Mj (columns), with i < j. Where M1 is the GPD-INGARCH(1,1), M2 is
the PD-INGARCH(1,1) with λ = 0, M3 is the GPD-INARCH(1,0) and M4 is the
PD-INARCH(1,0) with λ = 0. Number in parenthesis are standard deviations of
the estimated Bayes factors.

provided in the Hackmageddon dataset. Hackmageddon is a well-known cyber-
incident website that collects public reports and provides the number of cyber
incidents for different categories of threats: crimes, espionage and warfare.

Figure 7 shows the total and category-specific number of cyber attacks at a
daily frequency from January 2017 to December 2018. Albeit limited in the variety
of cyber attacks the dataset covers some relevant cyber events and is one of the few
publicly available datasets (Agrafiotis et al., 2018). The daily threats frequencies
are between 0 and 12 which motivates the use of a discrete distribution. We remove
the upward trend by considering the first difference and fit the GPD-INGARCH
model proposed in Section 2.

We applied our estimation procedure, as described in Section 4. As in the
previous application, we fix α0 = 1.05 that is coherent with the conditional mean of
the time series. We ran the Gibbs sampler for 110000 iterations, where we discarded
the first 10000 iterations as burn-in sample. In Fig. 8 are presented the histograms
for the Gibbs draws for each parameters.

Figure 8 shows that, as before, it is reasonable to fit a GPD-INGARCH process
to the difference of cyber attacks since both the autoregressive parameter α and
β, that represent the heteroskedastic feature of the data, are different from zero.
Additionally, the value of λ suggest the presence of over-dispersion in the data.

Given the importance of forecasting cyber-attacks, in this section we present
the results of one-step-ahead forecasting exercise over a period of 120. We follow
an approach based on predictive distributions which quantifies all uncertainty
associated with the future number of attacks and is used in a wide range of
applications (see, e.g. McCabe and Martin, 2005; McCabe et al., 2011, and
references therein). We account for parameter uncertainty and approximate the

predictive distribution by MCMC. At tht j-th MCMC iteration we draw Z
(j)
T+h from

the conditional distribution given past observations and the parameter draw θ(j)
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Figure 7: Daily cyber-threats counts between 1st January 2017 and 31st December
2018.
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Figure 8: Histograms of the MCMC draws for the parameters.
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Figure 9: Changes in the number of cyber threats and their sequential one-step-
ahead forecast (red line) and 95% HPD region (gray area) between 1st November
2018 (vertical dashed line) and 31st December 2018.

Z
(j)
T+h|FT ,θ

(j) ∼ GPD
(
µ
∗(j)
T+h, σ

2∗(j)
T+h , λ

(j)
)

(75)

where j = 1, . . . , J , denotes the MCMC draw, h = 1, . . . , H the forecasting horizon
and

µ
(j)
T+h =

{
α

(j)
0 + α

(j)
1 ZT + β

(j)
1 µ

(j)
T , for h = 1

α
(j)
0 + α

(j)
1 Z

(j)
T+h−1 + β

(j)
1 µ

(j)
T+h−1, for h = 2, . . . , H

(76)

σ
2 (j)
T+h = |µ(j)

T+h|φ
(j) (77)

7 Conclusions

We introduce a new family of stochastic processes with values in the set of integers
with sign. The increments of the process follow a generalized Poisson difference
distribution with time-varying parameters. We assume a GARCH-type dynamics,
provide a thinning representation and study the properties of the process. We
provide a Bayesian inference procedure and an efficient Monte Carlo Markov
Chain sampler for posterior approximation. Inference and forecasting exercises on
accidents and cyber-threats data show that the proposed GPD-INGARCH model
is well suited for capturing persistence in the conditional moments and in the over-
dispersion feature of the data.
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A Distributions used in this paper

A.1 Poisson Difference distribution

The Poisson difference distribution, a.k.a. as Skellam distribution, is a discrete
distribution defined as the difference of two independent Poisson random variables
N1 − N2, with parameters λ1 and λ2. It has been introduced by Irwin (1937) and
Skellam (1946).

The probability mass function of the Skellam distribution for the difference
X = N1 −N2 is

P (X = x) = e−(λ1+λ2)

(
λ1

λ2

)x/2
I|x|(2

√
λ1λ2), with X ∈ Z (A.1)

where Z = . . . ,−1, 0, 1, . . . is the set of positive and negative integer numbers, and
Ik(z) is the modified Bessel function of the first kind, defined as (Abramowitz and
Stegun, 1965)

Iv(z) =
(z

2

)2
∞∑
k=0

(
z2

4

)k
k!Γ(v + k + 1)

(A.2)

It can be used, for example, to model the difference in number of events, like
accidents, between two different cities or years. Moreover, can be used to model
the point spread between different teams in sports, where all scored points are
independent and equal, meaning they are single units. Another applications can be
found in graphics since it can be used for describing the statistics of the difference
between two images with a simple Shot noise, usually modelled as a Poisson process.

The distribution has the following properties:

• Parameters: λ1 ≥ 0, λ2 ≥ 0

• Support: {−∞,+∞}

• Moment-generating function: e−(λ1+λ2)+λ1et+λ2e−t

• Probability generating function: e−(λ1+λ2)+λ1t+λ2/t

• Characteristic function: e−(λ1+λ2)+λ1eit+λ2e−it

• Moments

1. Mean: λ1 − λ2

2. Variance: λ1 + λ2

3. Skewness: λ1−λ2
(λ1+λ2)3/2
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4. Excess Kurtosis: 1
λ1+λ2

• The Skellam probability mass function is normalized:
∑+∞

k=−∞ p(k;λ1, λ2) = 1

A.2 Generalized Poisson distribution

The Generalized Poisson distribution (GP) has been introduced by Consul and Jain
(1973) in order to overcome the equality of mean and variance that characterizes the
Poisson distribution. In some cases the occurrence of an event, in a population that
should be Poissonian, changes with time or dependently on previous occurrences.
Therefore, mean and variances are unequal in the data. In different fields a vastness
of mixture and compound distribution have been considered, Consul and Jain
introduced the GP distribution in order to obtain a unique distribution to be used
in the cases said above, by allowing the introduction of an additional parameter.

See Consul and Famoye (2006) for some applications of the Generalized Poisson
distribution. Application of the GP distribution can be find as well in economics
and finance. Consul (1989) showed that the number of unit of different commodities
purchased by consumers in a fixed period of time follows a Generalized Poisson
distribution. He gave interpretation of both parameters of the distribution: θ denote
the basic sales potential for the commodity, while λ the average rates of liking
generated by the product between consumers. Tripathi et al. (1986) provide an
application of the GP distribution in textile manufacturing industry. In particular,
given the established use of the Poisson distribution in the field, they compare the
Poisson and the GP distributions when firms want to increase their profit. They
found that the Generalized Poisson, considering different values of the parameters,
always yield larger profits. Moreover, the Generalized Poisson distribution, as
studied by Consul (1989), can be used to describe accidents of various kinds, such as:
shunting accidents, home injuries and strikes in industries. Another application to
accidents has been carried out by Famoye and Consul (1995), where they introduced
a bivariate extension to the GP distribution and studied two different estimation
methods, i.e. method of moments and MLE, and the goodness of fit of the
distribution in accidents statistics. Hubert Jr et al. (2009) test for the value of the
GP distribution extra parameter by means of a Bayesian hypotheses test procedure,
namely the Full Bayesian Significance Test. Famoye (1997) and Demirtas (2017)
provided different methods of sampling from the Generalized Poisson distribution
and algorithms for sampling. As regard processes, the GP distribution has been
used in different models. For example, Consul and Famoye (1992) introduced
the GP regression model, while Famoye (1993) studied the restricted generalized
Poisson regression. Wang and Famoye (1997) applied the GP regression model to
households’ fertility decisions and Famoye et al. (2004) carried out an application
of the GP regression model to accident data. Zamani and Ismail (2012) develop a
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functional form of the GP regression model, Zamani et al. (2016) introduced a few
forms of bivariate GP regression model and different applications using dataset on
healthcare, in particular the Australian health survey and the US National Medical
Expenditure survey. Famoye (2015) provide a multivariate GP regression model,
based on a multivariate version of the GP distribution, and two applications: to the
healthcare utilizations and to the number of sexual partners.

The Generalized Poisson distribution of a random variable X with parameters θ
and λ is given by

Px(θ, λ) =

{
θ(θ+λx)x−1

x!
e(−θ−λx), x = 0, 1, 2, . . .

0, for x > m if λ < 0.
(A.3)

The GP is part of the class of general Lagrangian distributions. The GP has
Generating functions and moments

• Parameters:

1. θ > 0

2. max(−1,−θ/m) ≤ λ ≤ 1

3. m(≥ 4) is the largest positive integer for which θ +mλ > 0 when λ < 0

• Moment generating function (mgf): Mx(β) = eθ(e
s−1), where z = es and u = eβ

• Probability generating function (pgf): G(u) = eθ(z−1), where z = ueλ(z−1)

• Moments:

1. Mean: µ = θ(1− λ)−1

2. Variance: σ2 = θ(1− λ)−3

3. Skewness: β1 = 1+2λ√
θ(1−λ)

4. Kurtosis: β2 = 3 + 1+8λ+6λ2

θ(1−λ)

The pgf of the GP is derived by Consul and Jain (1973) by means of the Lagrange
expansion, namely:

z =
∞∑
x=1

ux

x!
{Dx−1(g(z))x}z=0 (A.4)

f(z) =
∞∑
x=0

ux

x!
Dx−1{(g(z))xf ′(z)}|z=0

= f(0) +
∞∑
x=1

ux

x!
Dx−1{(g(z))xf ′(z)}|z=0

(A.5)
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where Dx−1 = dx−1

dzx−1 . In particular, for the GP distribution we have (Consul and
Famoye, 2006) :

f(z) = eθ(z−1) and g(z) = eλ(z−1) (A.6)

Now, by setting G(u) = f(z) we have the expression above for the pgf. (see proof
in

Properties Consul and Jain (1973), Consul (1989), Consul and Famoye (1986)
and Consul and Famoye (2006) derived some interesting properties of the
Generalized Poisson distribution.

Theorem 1 (Convolution Property). The sum of two independent random
Generalized Poisson variates, X + Y , with parameters (θ1, λ) and (θ2, λ) is a
Generalized Poisson variate with parameters (θ1 + θ2, λ).

For a proof of Th. 1 see Consul and Jain (1973).

Theorem 2 (Unimodality). The GP distribution models are unimodal for all
values of θ and λ and the mode is at x = 0 if θe−λ < 1 and at the dual points x = 0
and x = 1 when θe−λ = 1 and for θe−λ > 1 the mode is at some point x = M such
that:

(θ − e−λ)(eλ − 2λ)−1 < M < a (A.7)

where a is the smallest value of M satisfying the inequality

λ2M2 +M [2λθ − (θ + 2λ)eλ] > 0 (A.8)

For a proof of Th. 2 see Consul and Famoye (1986).
Consul and Shenton (1975) and Consul (1989) derived some recurrence relations

between noncentral moments µ′k and the cumulants Kk:

(1− λ)µ′k+1 = θµ′k + θ
∂µ′k
∂θ

+ λ
∂µ′k
∂λ

, k = 0, 1, 2, . . . (A.9)

(1− λ)Kk+1 = λ
∂Kk

∂λ
+ θ

∂Kk

∂θ
+, k = 1, 2, 3, . . . . (A.10)

Moreover, a recurrence relation between the central moments of the GP
distribution has been derived:

µk+1 =
θk

(1− λ)3
µk−1 +

1

1− λ

{
d µk(t)

dt

}
t=1

, k = 1, 2, 3, . . . (A.11)

where µk(t) is the central moment µk with θt and λt in place of θ and λ.
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A.3 Generalized Poisson Difference distribution

The random variable X follows a Generalized Poisson distribution (GP) Px(θ, λ) if
and only if

Px(θ, λ) =
θ(θ + xλ)x−1

x!
e−θ−xλ x = 0, 1, 2, . . . (A.12)

with θ > 0 and 0 ≤ λ < 1.
Let X ∼ Px(θ1, λ) and Y ∼ Py(θ2, λ) be two independent random variables,

Consul (1986) showed that the probability distribution of D, D = X − Y , is:

P (D = d) = e−θ1−θ2−dλ
∞∑
y=0

θ2(θ2 + yλ)y−1

y!

θ1(θ1 + (y + d)λ)y+d−1

(y + d)!
e−2yλ (A.13)

where d takes all integer values in the interval (−∞,+∞). As for the GP
distribution, we need to set lower limits for λ in order to ensure that there are
at least five classes with non-zero probability when λ is negative. Hence, we set

max(−1,−θ1/m1) < λ < 1

max(−1,−θ2/m2) < λ < 1

where, m1,m2 ≥ 4 are the largest positive integers such that θ1 + m1λ > 0 and
θ2 +m2λ > 0.

Proposition 10. The probability distribution in (A.13) can be written as

P (D = d) = e−(θ1+θ2)·e−dλ
∞∑
y=0

θ1θ2

y!(y + d)!
(θ2+yλ)y−1(θ1+(y+d)λ)y+d−1·e−2yλ = Cd(θ1, θ2, λ).

(A.14)

Therefore, equation (A.14) is the pgf of the difference of two GP variates, from
which is possible to obtain the following particular cases:

Cd(θ1, 0, λ) = θ1(θ1+dλ)d−1

d!
e−θ1−dλ, for d = 0, 1, 2, . . .

Cd(0, θ2, λ) = θ2(θ2−dλ)−d−1

(−d)!
e−θ2+dλ, for d = 0,−1,−2, . . .

Cd(θ1, θ2, 0) = e−θ1−θ2(θ1)d/2(θ2)−d/2Id(2
√
θ1θ2),

(A.15)

where d is any integer (positive, 0 or negative) and Id(z) is the modified Bessel
function of the first kind, of order d and argument z.

The last result in equation (A.15) is the Skellam distribution (Skellam, 1946).
Therefore, the Skellam distribution is a particular case of the difference of two GP
variates.
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By Consul and Shenton (1973):

G1(u) = eθ1(t1−1) , where t1 = ueλ(t1−1)

and
G2(u) = eθ2(t2−1 , where t2 = u−1eλ(t2−1).

Therefore, given that G(u) = G1(u)G2(u), the probability generating function (pgf)
of the random variable D = X − Y is

G(u) = exp[(θ1(t1 − 1) + (θ2(t2 − 1)]. (A.16)

From the cumulant generating function

ψ(β) =
(T1 − β)θ1

λ
+

(T2 + β)θ2

λ

where T1 = β + λ(eT1 − 1) and T2 = −β + λ(eT2 − 1), it is possible to define the
mean,variance, skewness and kurtosis of the distribution.

L1 =
(θ1 − θ2)

1− λ
is the first cumulant and the mean. (A.17)

L2 =
(θ1 + θ2)

(1− λ)3
is the second cumulant and the variance. (A.18)

β1 =
(θ1 − θ2)2

(θ1 + θ2)3

(1 + 2λ)2

1− λ
is the skewness. (A.19)

β2 = 3 +
1 + 8λ+ 6λ2

(θ1 + θ2)(1− λ)
is the kurtosis. (A.20)

In Fig. A.1-A.2, we show the GPD for various setting of λ, σ2 and µ.
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(a) GPD for µ = −4 and σ2 = 8 (b) GPD for µ = 4 and σ2 = 8
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(c) GPD for µ = 2 and σ2 = 5 (d) GPD for µ = 2 and σ2 = 15
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Figure A.1: Generalized Poisson difference distribution for different values of λ.
Panels (a) and (b) show the GPD when λ varies, for a fixed value of σ2 = 8 and two
different values of µ. Panels (c) and (d) show the GPD when λ varies, for a fixed
value of µ = 2 and two different value of σ2.
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(a) GPD for different values of µ (b) GPD for different values of σ2
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Figure A.2: Generalized poisson difference distribution for different values of µ and
σ and fixed λ. In panel (a) µ varies, while σ2 = 15 and λ = 0.1 are fixed. In panel
(b) σ2 varies and µ = 1 and λ = 0.1 are fixed.

Figure A.1 shows how the GPD distribution varies when λ varies. Given the
constraints imposed to the parameters (see section 2) here λ = (0, 0.1, 0.2, 0.3, 0.4)
since smaller values and, possibly, negative values do not met the conditions for the
selected values of θ1 and θ2. From panel (a) and especially in panel (b) can be seen
that when λ increases the distribution becomes longer tailed. From panel (c) and
(d) we can see that for fixed values µ, when λ decreases, the GPD is more skewed
respectively to the right for µ > 0 (θ1 > θ2) and to the left for µ < 0 (θ1 < θ2).
Therefore, the sign of µ determines the skewness of the GPD.

From figure A.2 we can see again, that for positive values of µ the distribution
becomes more right-skewed, panels (a) and (b), and more left-skewed for negative
values of µ in panels (c) and (d). Moreover, here can be seen better that has θ1

increases the distribution has longer tails.

A.4 Quasi-Binomial distribution

A first version of the Quasi-Binomial distribution, defined as QB-I by Consul and
Famoye (2006), was investigated by Consul (1990) as an urn model. In their
definition of the QB thinning, however, Alzaid and Al-Osh (1993) used the QB
distribution introduced in the literature by Consul and Mittal (1975) and defined
byConsul and Famoye (2006) as QB-II.

P (X = x) =

(
n

x

)
ab

a+ b

(a+ xθ)x−1(b+ nθ − xθ)n−x−1

(a+ b+ nθ)n−1
(A.21)
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for x = 0, 1, 2, . . . , n and zero otherwise. where a > 0, b > 0 and θ > −a/n.
However, Alzaid and Al-Osh (1993), when defining the QB thinning operator, used
a particular case of the QB-II distribution:

P (X = x) = pq

(
n

x

)
(p+ xθ)x−1(q + (n− x)θ)n−x−1

(1 + nθ)n−1
(A.22)

where a = p, q = b, 0 < q = 1− p < 1 and θ is such that nθ < min(p, q). We denote
the QB-II with QB(p,θ,n). For large n, such that np → λ, the QB distribution
tends to the Generalized Poisson distribution.

The quasi-binomial (QB) thinning has been introduced by Alzaid and Al-Osh
(1993) as a generalization of the binomial thinning to model processes with GP
distribution marginals. Unlike the binomial thinning, the QB thinning is able to
obtain the distribution of the corresponding innovation. In particular, the authors
argued in many counting process is more suitable to consider that the probability of
retaining an element may depend on the time and/or the number of already retained
elements. They assumed that, at time t, the number of retained elements follows a
QB distribution. Using the notation in Weiß (2008), the QB thinning is defined as
follows:

Proposition 11 (Quasi-Binomial Thinning). Let ρθ,λ◦ be the quasi-binomial
thinning operator such that ρθ,λ◦ follows a QB(ρ,θ/λ,x). If X follows a GP(λ,θ)
distribution and the quasi-binomial thinning is performed independently on X, then
ρθ,λ ◦X has a GP(ρλ,θ) distribution.

The thinned variable, ρθ,λ ◦ X, can be interpreted as the number of survivors
from a population described by X.

Properties

• Expected value: E[ρθ,λ ◦X] = ρ · µX

• Covariance: E[ρθ,λ ◦X,X] = ρ · σ2
X

B Proofs of the results of the paper

B.1 Convolution property of the Generalized Poisson
distribution in Section A

Proof of Lemma 1. Let X ∼ GPD(θ1, θ2, λ) and Y ∼ GPD(θ3, θ4, λ). We can write
each r.v. as

X = X1 −X2 and Y = Y1 − Y2 (B.1)
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where X1 ∼ GP (θ1, λ), X2 ∼ GP (θ2, λ), Y1 ∼ GP (θ3, λ) and Y2 ∼ GP (θ4, λ).
Therefore we can write

X + Y = X1 −X2 + Y1 − Y2

= (X1 + Y1)− (X2 + Y2)

= GP (θ1 + θ3, λ)−GP (θ2 + θ4, λ) ∼ GPD(θ1 + θ3, θ2 + θ4, λ).

(B.2)

We can generalized the result as follows. Let Zi
i.i.d∼ GPD(θ1, θ2, λ). Then we have

n∑
i=1

Zi ∼ GPD(
n∑
i=1

θ1i,

n∑
i=1

θ2i, λ). (B.3)

In the same way we can prove that the difference of two r.v. GPD distributed,
is again a GPD.

Let X ∼ GPD(θ1, θ2, λ) and Y ∼ GPD(θ3, θ4, λ). We can write each r.v. as

X = X1 −X2 and Y = Y1 − Y2 (B.4)

where X1 ∼ GP (θ1, λ), X2 ∼ GP (θ2, λ), Y1 ∼ GP (θ3, λ) and Y2 ∼ GP (θ4, λ).
Therefore we can write

X − Y = X1 −X2 − Y1 + Y2

= (X1 + Y2)− (X2 + Y1)

= GP (θ1 + θ4, λ)−GP (θ2 + θ3, λ) ∼ GPD(θ1 + θ4, θ2 + θ3, λ).

(B.5)

B.2 Proofs of the results in Section 2

Proof of Remark 1. Let X ∼ GP (θ1, λ) and Y ∼ GP (θ2, λ), then Z = (X − Y )
follows a GPD(θ1, θ2, λ). We know that P (Z = z) = P (X = x)·P (Y = y), therefore
we can name S = Y and we substitute S in Z = X−Y , obtaining X = S+Z. Now
we can write:

P (Z = z) = e−(θ1+θ2) ·e−zλ
+∞∑

s=max(0,−z)

θ1θ2

s!(s+ z)!
(θ2 +λs)s−1(θ1 +λ(s+z))s+z−1 ·e−2λs

(B.6)
which is the probability of a GPD(θ1, θ2, λ). We can now introduce the new
parametrization of the probability density function of the GPD. Define{

µ = θ1 − θ2

σ2 = θ1 + θ2

, (B.7)
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thus, we can rewrite both parameters θi, i = 1, 2, with respect to µ and σ2:{
θ1 = σ2+µ

2

θ2 = σ2−µ
2

(B.8)

By substituting B.8 into equation B.6 we have

P (Z = z) = e(σ
2+µ
2

+σ2−µ
2

)e−zλ
+∞∑

s=max(0,−z)

(
σ2+µ

2

)(
σ2−µ

2

)
s!(s+ z)!

[
σ2 + µ

2
+ (s+ z)λ

]s+z−1

[
σ2 − µ

2
+ sλ

]s−1

e−2λs (B.9)

Carrying out the operations in Eq. B.9 we obtain Eq. B.7.

Proof of Remark 2. If Z ∼ GPD(θ1, θ2, λ) in the parametrization of Consul (1986),
the moments are given in equations A.17-A.20. By using our reparametrization of
the GDP

θ1 =
σ2 + µ

2
, θ2 =

σ2 − µ
2

(B.10)

in equations A.17-A.20, we obtain

E(Z) =
θ1 − θ2

1− λ
=

µ

1− λ
(B.11)

V (Z) =
θ1 + θ2

(1− λ)3
=

σ2

(1− λ)3
= κ2 (B.12)

S(Z) =
µ(3)

σ3
=

κ3

κ
3/2
2

=
µ(1 + 2λ)

(1− λ)5

(
(1− λ)3

σ2

)3/2

=
µ

σ3

(1 + 2λ)√
1− λ

(B.13)

K(Z) =
κ4 + 3κ2

2

σ4

=

(
σ2(1 + 8λ+ 6λ2)

(1− λ)7
+

3σ4

(1− λ)6

)(
(1− λ)6

σ4

)
= 3 +

1 + 8λ+ 6λ2

σ2(1− λ)

(B.14)

where κi, i = 2, 3, 4 are respectively the second, third and fourth cumulants.
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Proof of Proposition 1. Let ψj be the coefficient of zj in the Taylor expansion of
G(z)D(z)−1. We have

µ = E[Zt]

= E[E[Zt|Ft−1]]

= E

[
α0D

−1(1) +
∞∑
j=1

ψjZt−j

]
= α0D

−1(1) + µD−1(1)G(1)

(B.15)

⇒ µ =
α0

D(1)−G(1)
= α0

(
1−

p∑
i=1

αi −
q∑
j=1

βj

)−1

= α0K
−1(1). (B.16)

Where we go from line two to line three of eq B.15 as follows

E[Zt|Ft−1] = E[α0D
−1(1) +H(B)Zt|Ft−1]

= E[α0D
−1(1)] + E[H(B)Zt|Ft−1]

= α0D
−1(1) +

∞∑
j=1

ψjZt−j.

(B.17)

Following Ferland et al. (2006), to go from line three to line four of B.15:

E[α0D
−1(1) +

∞∑
j=1

ψjZt−j] = E[α0D
−1(1)] + E[

∞∑
j=1

ψjZt−j]

= α0D
−1(1) +

∞∑
j=1

ψjE[Zt−j]

= α0D
−1(1) + µH(1)

= α0D
−1(1) + µD−1(1)G(1).

(B.18)

From B.16, a necessary condition for the second-order stationarity of the integer-

valued process {Zt} is:
(

1−
∑p

i=1 αi −
∑q

j=1 βj

)
> 0.
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B.3 Proof of the results in Section 3

Proof of Proposition 3.

Z
(n)
t = X

(n)
t − Y

(n)
t

= (1− λ)U1t + (1− λ)
n∑
i=1

ϕ
(t−i)
1i ◦X(n−i)

t−i − (1− λ)U2t − (1− λ)
n∑
i=1

ϕ
(t−i)
2i ◦ Y (n−i)

t−i

= (1− λ)(U1t − U2t) + (1− λ)
n∑
i=1

[
(ϕ

(t−i)
1i ◦X(n−i)

t−i )− (ϕ
(t−i)
2i ◦ Y (n−i)

t−i )
]

= (1− λ)Ut + (1− λ)
n∑
i=1

ϕ
(t−i)
i � Z(n−i)

t−i .

Proof of Proposition 4. In order to prove the almost sure convergence of {Z(n)
t } we

will prove that the difference of two sequences {X(n)
t } and {Y (n)

t } that have an
almost sure convergence, will have an almost sure convergence.
We know that Z

(n)
t = X

(n)
t − Y

(n)
t , where X

(n)
t and Y

(n)
t are two sequences of GP

random variable. From Zhu (2012) we have

Xn(ω)
a.s.−→ X(ω) =⇒ P({ω : lim

n→∞
Xn(ω) = X(ω)}) = 1

and
Yn(ω)

a.s.−→ Y (ω) =⇒ P({ω : lim
n→∞

Yn(ω) = Y (ω)}) = 1.

Let
A = {ω : lim

n→∞
Xn(ω) = X(ω)}

and

B = {ω ∈ Ω× Ω : lim
n→∞

(aXn(ω) + bYn(ω)) = aX(ω) + bY (ω)}, ∀a, b ∈ R.

Now we show the almost sure convergence of the sum (aXn(ω) + bYn(ω)).
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∫
Ω

IB(ω)dP(ω) =

∫
(Ω∩A)∪(Ω∩AC)

IB(ω)dP(ω)

=

∫
Ω

IB(ω)IA(ω)dP(ω) +

∫
Ω

IB(ω)IAC (ω)dP(ω)

=

∫
Ω

IB(ω)IA(ω)dP(ω) +

∫
Ω

IAC (ω)

(∫
Ω

IB∩AC (ω)dP(ω|ω′)
)
dP(ω′)

= P(B|A)P(A) + P(B|AC)P(AC)︸ ︷︷ ︸
=0

= P({ω : lim
n→∞

(aXn(ω) + bYn(ω)) = aX(ω) + bY (ω)}|A)P(A)︸ ︷︷ ︸
=1

= P({ω : a lim
n→∞

Xn(ω) = aX(ω)− bY (ω) + bY (ω)}) = 1

(B.19)

Therefore, if X
(ω)
n

a.s.−→ X(ω) and Y
(ω)
n

a.s.−→ Y (ω)

⇒ aXn(ω) + bYn(ω)
a.s.−→ aX(ω) + bY (ω), ∀a, b ∈ R.

∀a, b ∈ R. Hence, for a = 1 and b = −1, this is true for the difference
Z

(n)
t = X

(n)
t − Y

(n)
t .

Proof of Proposition 5. We use again the fact that Z
(n)
t = X

(n)
t − Y

(n)
t and the

following lemma.

Lemma 2. If Xn(ω) and Yn(ω) have a mean-square limit

Xn(ω)
L2

−→ X(ω)

Yn(ω)
L2

−→ Y (ω) (B.20)

also their sum will have a mean-square limit.

aXn(ω) + bYn(ω)
L2

−→ aX(ω) + bY (ω), ∀a, b ∈ R (B.21)

Hence, by setting a = 1 and b = −1 we will obtain that Lemma 2 will be valid
also for the difference of two sequences

Xn(ω)− Yn(ω)
L2

−→ X(ω)− Y (ω) (B.22)

and we can say that Z
(n)
t converges to Zt in L2(Ω,F ,P).
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Proof of Proposition 6.

gZ(t) = E

[
k∏
i=1

tZii

]
= E

[
k∏
i=1

tXii

]
E

[
k∏
i=1

1

tYii

]
= gX(t)gY(t−1) (B.23)

Proof of Proposition 9. As said before, Z
(n)
t = X

(n)
t − Y

(n)
t . Where X

(n)
t and Y

(n)
t

are finite sums of independent Generalized Poisson variables and it follows that Z
(n)
t

is a finite sum of Generelized Poisson difference variables. As shown by Zhu (2012),
the first two moments of Xt and Yt are finite: E[Xt] = µX ≤ C1, E[Yt] = µY ≤ C ′1,
V [Xt] = σ2

X ≤ C2, V [Yt] = σ2
Y ≤ C ′2, therefore,

E[Zt] = E[Xt]− E[Yt] = µX − µY ≤ µX + µY ≤ C1 + C ′1 (B.24)

is finite and

V [Xt − Yt] = V [Xt] + V [Xt] = σ2
X + σ2

Y ≤ C2 + C ′2 (B.25)

is also finite, where Cov(Xt, Yt) = 0 given that Xt and Yt are independent and where
Ci and C ′i, with i = 1, 2 are constants.

Proof of the results in Example 1. For k ≥ 2:

γZ(k) = α1γZ(k − 1) = αk−1
1 γZ(1) (B.26)

For k = 1:

γZ(1) = Cov(Zt, Zt−1 = α1γZ(0) = α1V (Zt = α1[φ3E(σ2∗

t )] + α1V (µt). (B.27)

For k ≥ 1 we have
γµ(k) = α1γµ(k − 1) = αk1V (µt). (B.28)

For k = 0:

γµ(k) = V (µt) = α1γZ(1)

= α1

{
α1[φ3E(σ2∗

t ) + V (µt)]
}

= α2
1[φ3E(σ2∗

t )] + α2
1V (µt)

(B.29)

Therefore,

V (µt) =
α2

1[φ3E(σ2∗
t )]

1− α2
1

(B.30)

and

V (Zt) = φ3E(σ2∗

t ) + V (µt)

= φ3E(σ2∗

t ) +
α2

1[φ3E(σ2∗
t )]

1− α2
1

=
φ3E(σ2∗

t )

1− α2
1

(B.31)
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where φ = 1
1−λ . Finally, the autocorrelations are derived as follows:

ρµ(k) =
γµ(k)

V (µt)
=
αk1 V (µt)

V (µt)
= αk1 (B.32)

ρZ(k) =
γZ(k)

V (Zt)
= αk−1

1 γZ (1)
1− α2

1

φ3E(σ2∗
t )

= αk−1
1

α1(1− α2
1)φ3E(σ2∗

t ) + α3
1φ

3E(σ2∗
t )

1− α2
1

1− α2
1

φ3E(σ2∗
t )

= αk1

(B.33)

Proof of the results in Example 2. For k ≥ 2:

γZ(k) = α1γZ(k − 1) + β1γZ(k − 1) = (α1 + β1)k−1γZ(1) (B.34)

For k = 1:

γZ(1) = Cov(Zt, Zt−1) = α1γZ(0) + β1γµ(0)

= α1V (Zt) + β1V (µt) = α1[φ3E(σ2∗

t )] + (α1 + β1)V (µt).
(B.35)

For k ≥ 1 we have

γµ(k) = α1γµ(k − 1) + β1γµ(k − 1) = (α1 + β1)kV (µt). (B.36)

For k = 0:

γµ(k) = V (µt) = α1γZ(1) + β1γµ(1)

= α1

{
α1[φ3E(σ2∗

t )] + (α1 + β1)V (µt)
}

+ β1 [(α1 + β1)V (µt)]

= α2
1[φ3E(σ2∗

t )] + (α1 + β1)2V (µt)

(B.37)

Therefore,

V (µt) =
α2

1[φ3E(σ2∗
t )]

1− (α1 + β1)2
(B.38)

and

V (Zt) = φ3E(σ2∗

t ) + V (µt) = φ3E(σ2∗

t ) +
α2

1[φ3E(σ2∗
t )]

1− (α1 + β1)2

=
φ3E(σ2∗

t )[1− (α1 + β1)2 + α2
1]

1− (α1 + β1)2

(B.39)

where φ = 1
1−λ . The autocorrelations are derived as follows:

ρµ(k) =
γµ(k)

V (µt)
=

(α1 + β1)k V (µt)

V (µt)
= (α1 + β1)k (B.40)
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ρZ(k) =
γZ(k)

V (Zt)
= (α1 + β1)k−1 γZ (1)

1− (α1 + β1)2

φ3E(σ2∗
t )[1− (α1 + β1)2 + α2

1]

= (α1 + β1)k−1 α1[1− β1(α1 + β1)]

1− (α1 + β1)2 + α2
1

(B.41)

C Numerical Illustration

We consider 400 samples from a two GPD-INGARCH(1,1) and two simulation
settings: one with low persistence and the other with high persistence. The first
setting has parameters λ = 0.4, α1 = 0.25, β1 = 0.23, α0 = −0.2 and φ = 22.78,
while the second setting with parameters λ = 0.6,α1 = 0.53, β1 = 0.25, α0 = −0.2
and φ = 26.25. We run the Gibbs sampler for 1,010,000 iterations, discard the
first 10,000 draws to avoid dependence from initial conditions, and finally apply
a thinning procedure with a factor of 100 to reduce the dependence between
consecutive draws.

The following figures show the posterior approximation of α1,β1 and λ. For
illustrative purposes we report in Fig. C.1-C.3 the MCMC output for one MCMC
draw before removing the burn-in sample and thinning, while in Fig.C.4-C.6 the
MCMC output after removing the burn-in sample and thinning.
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C.1 Before thinning

(a) Low persistence (b) High persistence
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Figure C.1: MCMC plot for the parameters in the two setting: low persistence and
high persistence.
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(a) Low persistence (b) High persistence

Figure C.2: Histograms of the MCMC draws for the parameters in both settings:
low persistence and high persistence.
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(a) Low persistence (b) High persistence
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Figure C.3: Autocorrelation function for the parameters in both low persistence and
high persistence settings.
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C.2 After thinning

(a) Low persistence (b) High persistence
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Figure C.4: MCMC plot for the parameters in the two setting: low persistence and
high persistence, after removing the burn-in sample and thinning.
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(a) Low persistence (b) High persistence

Figure C.5: Histograms of the MCMC draws for the parameters in both settings: low
persistence and high persistence, after removing the burn-in sample and thinning.
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(a) Low persistence (b) High persistence
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Figure C.6: Autocorrelation function for the parameters in both low persistence and
high persistence settings, after removing the burn-in sample and thinning.
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