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Abstract: In this study, an ensemble of numerical simulations with a state-of-the-art hydrodynamic
model for coastal applications is used to characterize, for the first time, the expected mid-21st-
century changes in circulation and associated sea-level height inside the Venice lagoon induced by
projected Mediterranean sea level rise and atmospheric circulation changes over the Adriatic Sea
under the RCP8.5 emission scenario. Our results show that water transports through the three inlets
connecting the Venice lagoon to the open sea are expected to change significantly, with consequent
significant persistent alterations of the circulation and sea-level height inside the lagoon. The projected
water mass redistributions motivate further studies on the implications of climate change for the
lagoon environment.
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1. Introduction

Venice is one of the most famous cities in the world, included in the UNESCO World
Heritage list since 1987. It is built on piles in the middle of a large lagoon along the Adriatic
Sea’s northern coast. Hazardous climate and weather events cause wide-ranging impacts
across the lagoonal ecosystem and landscapes [1]. Venice’s historical center constitutes
a unique cultural heritage, which is particularly exposed to changes in the local relative
sea level. In fact, its lowest parts (e.g., the famous St. Mark Square) lie about a few tens
of centimeters above the sea surface; consequently, flooding episodes in these areas are
extremely frequent during the year. Moreover, when adverse meteorological conditions
combine with the tidal flood, a wider portion of the city center is flooded, especially
during the fall season [2–4]. To prevent extreme flooding in that area, mobile barriers (the
Modulo Sperimentale Elettromeccanico, MoSE, system) have been built at the lagoon’s
three inlets [5,6]. In this way, seawater inflows into the lagoon are limited during extreme
surge events [2–4].

A significant increase in the frequency and severity of floods has been recorded in the
course of the past 150 years, driven mainly by subsidence and mean sea-level rise [2,3].
Current projections of relative sea-level rise are expected to cause a further worsening
of flooding statistics in the course of the 21st century [2,7] requiring longer closures of
the inlets [6]. However, such projections do not explicitly consider projected changes in
atmospheric forcing, which is just accounted for in terms of uncertainty affecting projected
relative sea-level changes [7].
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Moreover, sea level rise alters the water transport through the lagoon’s inlets, thereby
affecting circulation inside the lagoon and generating spatial heterogeneity in sea-surface
height (SSH) as well as inducing modifications in biogeochemical and sedimentary pro-
cesses [8–10]. However, these critical aspects of the lagoon ecosystem functioning have
not been addressed in the context of projected changes within a comprehensive modeling
framework including projected atmospheric and hydrodynamical variations. For this type
of study, numerical models specifically designed to solve the dynamic processes in coastal
areas, like tides and wetting-drying mechanisms, fueled by well-constrained atmospheric
and oceanic boundary forcing are required.

Research in this regard is motivated by the fact that whereas the historical mean
sea-level rise is rather homogeneous in the Adriatic Sea, smaller values are observed
in its northern portion [11] and a strong variability in sea circulation is observed in the
proximity of the Venice lagoon [12]. In addition, projections indicate, for the next decades,
a weakening of dominant winds over the Adriatic Sea, especially those associated with
intense storm surges and flooding in Venice [13]. The impacts on lagoonal hydrodynamics
of this expected future dampening of atmospheric forcing concurrently with a rise in
the Mediterranean mean sea level remains unexplored. Here, we use for the first time
an ensemble of numerical simulations with the state-of-the-art FESOM-C hydrodynamic
model for coastal applications to explore the impacts on the Venice Lagoon circulation of
mid-21st-century projected Mediterranean mean sea-level rise and regional atmospheric
circulation changes.

The paper is organized as follows: In Section 2, the study site is described. In Section 3,
the numerical experiments and the model setup, including the surface and open boundary
conditions applied, are described. The results are reported and discussed in Section 4, and
summarised in Section 5.

2. Study Site

The city of Venice is situated inside the homonymous lagoon on the northwestern
edge of the Adriatic Sea, a semi-enclosed basin in the Eastern Mediterranean Sea, about
780 km long and 120–200 km wide [14] (Figure 1a). The water depth is shallow in the
Northern Adriatic, while it reaches 1200 m in the southern portion of the basin.
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Figure 1. (a) Domain of FESOM-C model covering the Adriatic Sea and part of the Ionian Sea with
the position of the Venice lagoon inside the red rectangle. Colormap represents bathymetry. Labeled
red dots indicate the sites reported in Table 1. (b) Zoom over the Venice lagoon with the details of
the bathymetry in the area. Red dots labeled with capital letters indicate the points used for the
model validation. (c) Details of the variable space resolution in the northern portions of the domain,
including the Venice lagoon. Colored rectangles highlight the three inlets that connect the lagoon
with the open sea, namely Lido (red), Malamocco (blue) and Chioggia (green).
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The lagoon exchanges sea water with the Adriatic Sea through three inlets: Lido,
Malamocco, and Chioggia. They are 500 to 1000 m wide and up to 25 m deep. The average
depth in the lagoon is about 1.5 m, but in some areas, it can be lower than 0.8 m; deep
tidal channels cross the shallow regions (Figure 1b). Marshes cover about 15% of the total
area. The historical city center is formed by more than 100 small islands with an average
elevation of less than 1 m above the mean sea level and about 160 channels with depths of
about 1–5 m. The Grand Canal is the main watercourse.

The tidal regime is coherent with tidal fluctuations in the Mediterranean Sea, forced
through the Strait of Otranto and amplified along the longitudinal direction of the Adriatic
Sea. The length of the basin and the average speed of barotropic shallow-water waves
combine so that the periods of free oscillations are close to those of the diurnal and semidi-
urnal tides. As a consequence, the basin is close to resonant conditions which cause the
astronomical tidal range in the Northern Adriatic to be about 1 m at its coast, which is
relevant for Venice flooding [14–16].

Table 1. Simulated amplitudes and phases for each considered site along the Adriatic coast (see
Figure 1a) and vectorial difference d between them and the corresponding observed values reported
by Tsimplis et al. [17]. In the last row, the RMS values are reported. S.A.I. is the acronym for
Sant’Andrea Island.

Site LAT LON

M2 S2 K1 O1

Ao
(cm)

As
(cm)

θo
(◦)

θs
(◦)

d
(cm)

Ao
(cm)

As
(cm)

θo
(◦)

θs
(◦)

d
(cm)

Ao
(cm)

As
(cm)

θo
(◦)

θs
(◦)

d
(cm)

Ao
(cm)

As
(cm)

θo
(◦)

θs
(◦)

d
(cm)

Venice 45◦25′ 12◦20′ 23.4 21.1 259 264 3.0 14.1 14.4 265 268 0.8 17.9 17.8 61 41 6.2 5.6 4.4 50 22 2.7

Bakar 45◦18′ 14◦32′ 10.6 9.4 208 207 1.2 5.5 6.1 2.2 205 0.9 13.8 14.9 48 22 6.5 4.1 3.8 38 4 2.3

Ancona 43◦37′ 13◦30′ 6.6 5.0 302 292 1.9 3.6 2.7 315 308 1.0 13 12.8 72 42 6.7 4.2 3.3 61 22 2.6

Split 43◦30′ 16◦26′ 8 8.0 100 80 2.8 5.6 6.1 100 78 2.3 8.8 8.9 41 12 4.4 2.7 2.5 34 356 1.7

S.A.I. 43◦02′ 15◦46′ 6.8 6.5 93 73 2.3 4.4 5.0 95 72 1.9 6.8 8.4 54 22 4.5 2.5 2.3 42 4 1.6

Ortona 42◦21′ 14◦24′ 6.4 6.1 64 55 1.0 4.5 4.7 76 58 1.5 9.7 8.9 73 39 5.5 3.4 2.5 53 18 2.0

Vieste 41◦53′ 16◦11′ 7.9 8.1 61 59 0.2 5.1 5.8 83 62 2.1 4.2 5.0 65 46 1.7 1.5 1.7 52 25 0.7

Bar 42◦04′ 19◦06′ 9.2 8.6 76 61 2.4 5.6 5.9 80 61 1.9 4.8 5.3 42 16 2.3 1.4 1.7 19 359 0.6

Brindisi 40◦38′ 17◦56′ 8.7 7.9 73 65 1.4 5.2 5.3 81 67 1.3 4.6 5.0 54 34 1.7 1.5 1.6 43 12 0.8

Otranto 40◦09′ 18◦30′ 7 6.4 74 65 1.2 4 3.9 82 66 1.1 2.3 3.1 64 36 1.5 1.0 1.2 44 13 0.6

Lefkas 38◦50′ 20◦42′ 4 4.6 79 54 2.0 2.2 2.7 85 52 1.5 1.4 2.1 19 6 0.8 0.6 0.9 5 254 0.3

Katakolo 37◦38′ 21◦19′ 3.3 3.4 62 53 0.5 1.6 2.0 65 48 0.6 1.3 1.7 6 1 0.4 0.5 0.7 353 347 0.2

Taranto 40◦28′ 17◦13′ 6.5 5.2 71 59 1.8 3.7 3.0 73 59 1.1 1.8 2.3 42 22 0.9 0.8 1.0 34 5 0.5

RMS (cm) 1.3 1.0 2.8 1.1

Within the lagoon of Venice, the tidal wave propagates mainly along the deep channels
(with an average depth of about 10 m) with a speed of about 10 m/s and expands into
the shallower areas. The current speed is in general moderate, with average maximum
values of up to 25 cm/s through the tidal cycle [14]. The city center elevation is very low
with respect to the mean sea level. This fact has become more dramatic in the course of
the past decades, due to the superposing effects of subsidence phenomena and global
mean sea-level rise determining a rise in the local relative sea level (about 35 cm since
1872 [2–4]). This is why the lowest parts of the city center (e.g., St. Mark Square) are often
flooded during the spring tide even without any noticeable meteorological contribution to
the sea-surface height.

It is known that only seven tidal constituents, four semidiurnal (M2, S2, N2 and K2)
and three diurnal (K1, O1 and P1), contribute significantly to the evolution of the sea
surface elevation in the Northern Adriatic Sea [14]. The fact that the incoming tidal wave
is amplified in the lagoon indicates that the driving and reflecting tides are close to the
resonance condition [12].



Water 2023, 15, 3221 4 of 12

3. Numerical Experiments and Model Setup

This study aims to picture changes in the sea circulation in the Venice lagoon under
a future climate change scenario and account for both, sea-level rise and atmospheric
circulation changes. We implemented a setup specifically designed to focus on the dynamics
in the Venice lagoon area. The model we used is FESOM-C: it is the coastal sub-unit of
the global Finite-volumE Sea ice Ocean Model [18]. It solves three-dimensional primitive
equations in the Boussinesq, hydrostatic and traditional approximations for the momentum,
continuity and density constituents. FESOM-C has already been applied in numerous
idealized and realistic experiments. It is known to reliably simulate dynamics in coastal
areas where the complex topology originates non-linear processes driven by the strong tidal
forcing, with applications in various settings including, e.g., the North Sea [19,20], Indiga
Bay [21] and Antarctic fjords [22]. The hybrid mesh capability, the terrain following vertical
coordinates, the time splitting for internal/external modes and the modules specifically
designed to resolve coastal processes, like the wetting-drying mechanism, make this coastal
model suitable for our research.

In this study, we run the model in barotropic mode. We limited the domain to the
Adriatic Sea basin to provide scenarios of sea-level rise in the Venice area by prescribing
SSH changes at the open boundary located south of the Otranto Strait (see Figure 1a) and
exploiting available atmospheric forcing data over the domain from historical and scenario
simulations with regional downscaling.

3.1. Mesh and Bathymetry

We construct an unstructured hybrid mesh encompassing the whole Adriatic Sea and
part of the Ionian Sea (Figure 1c), using the Blossom–Quad method [23] and the Gmsh mesh
generator [24]. The mesh spatial resolution varies between 4 and 50 m within the Venice
lagoon and around the lagoon inlets and 2000–3500 m in the open Adriatic. The mesh
consists of 106,067 vertices and 103,052 elements. Bathymetry data have been retrieved
from the EMODnet Bathymetry portal [25], with a resolution of about 230 m and combined
with local data for the Venice lagoon [26]. Coastline data were derived from the GSHHG
dataset [27].

We ran the simulations in the 2D mode. A constant coefficient of Cd = 0.003 was used
for the bottom friction parameterization [18].

3.2. Experimental Design

Two ensembles with tidal, lateral-ocean and atmospheric forcing have been performed
to assess the impact of Mediterranean Sea level rise combined with the modified wind field
according to the RCP8.5 scenario. The simulations cover the autumn season to describe the
changes in the sea circulation in the lagoon in the most dynamic period of the year.

The first ensemble (hereafter HI) includes historical simulations covering the October-
December trimester for 11 years, from 2000 to 2010. The second one (SC) consists of
11 scenario simulations for the October–December period of years between 2040 and
2050. SC simulations use atmospheric forcing and ocean boundary conditions accounting
for projected climate changes under the RCP8.5 emission scenario corresponding to a
“business as usual” socio-economic future development. Since projections of relevant
boundary conditions under different emission scenarios only start to significantly diverge
in the second half of the 21st century [2,7], additional scenarios are not considered.

The experiments apply the same astronomical forcing in paired HI and SC simulations.
For both atmospheric and oceanic forcing, input data for the historical simulations are
used as a baseline to generate forcing input data for the scenario simulations. Hence, the
same meteorological events are included in the HI and SC simulations, but they have
different intensities.
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3.3. Boundary Forcing
3.3.1. Atmospheric Forcing

In the HIsimulations, 10 m zonal and meridional wind components at hourly temporal
resolution are obtained from hourly ERA5 reanalysis data [28,29], corrected to match in-situ
measurements (hereafter, ERA5-corrected; [13]). Sea-level pressure data from the ERA5
reanalysis dataset were adapted to the post-processed winds by considering geostrophic
balance. Atmospheric forcing data have the same resolution as the ERA5 original dataset,
i.e., 0.25◦ lon × 0.25◦ lat.

Atmospheric forcing was scaled in the SC simulations with respect to the HI ones
according to distributional changes in the wind velocity simulated by the regional climate
model COSMO-CLM [30] under the IPCC RCP8.5 concentration scenario [13].

3.3.2. Open Ocean Boundary

Tidal elevation at the open boundary referring to the seven main constituents (M2, S2,
N2, K2, K1, O1 and P1) were obtained from the TPXO 9 atlas [31–33]. TPXO 9 is a fully
global model of ocean tides that best fits, in a least-squares sense, the Laplace tidal equations
and altimetry data. It combines the 1/6◦ base global solution and the 1/30◦ resolution local
solutions for all coastal areas, including our domain of interest. The Doodson correction of
the obtained amplitudes and phases is based on the T_TIDE package [34].

In both HI and SC simulations, besides the tidal contribution, SSH at the open bound-
ary includes storm-surge residuals obtained from the Copernicus water level change time
series for the European coast dataset [35] interpolated on the grid points of the open bound-
ary. SSH at the open boundary thus considers the contribution of atmospheric forcing
outside the considered domain, which plays a crucial role during storm surge events [36].
In addition, to parametrize the inverse barometer effect (IBE) contribution, SSH changes
due to the pressure systems over the domain were added at the open boundary using
the expression SSHIBE = ∆P/ρg, where the ∆P is the pressure anomaly (in mbar) with
respect to the reference atmospheric pressure, ρ is a reference seawater density and g is the
gravitational acceleration.

In the SC simulations, the historical oceanic lateral boundary conditions were modified
to include a constant average sea-level rise of +17 cm in the 2040–2050 run with respect to
the 1981–2010 climatology. The sea-level rise estimate is based on the projected sea level for
the Northern Adriatic coast provided by Zanchettin et al. [2]. To avoid generating spurious
effects like shockwaves, a progressive sea level rise was imposed at the open boundary
at the beginning of each simulation at a 3 cm/day rate until the desired level of +17 cm
was reached.

4. Results and Discussion
4.1. Model Performance and Biases

The model was validated by comparing the amplitude and phase of the four major tidal
components derived from the simulation with the values retrieved from observations and
reported in the literature [17]. For this purpose, a 6-month run (October 2009–March 2010)
with tidal forcing alone at the open boundary was performed. The agreement between the
observed and simulated values is given by the vectorial difference [37]:

d =
√
(As · cosθs − Ao · cosθo )2 + (As · sinθs − Ao · sinθo )2

where the subscripts s and o refer to simulated and observed values, respectively, A is the
amplitude and θ the phase of the tidal components. The simulated values of amplitude and
phase of the four major tidal components are reported in Table 1, together with the resulting
values of the difference d. The observed values derive from tide gauge measurements
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and are provided by Tsimplis et al. [17]. For each tidal constituent j (j = 1,. . .,4), the
root-mean-square deviation of amplitude (RMS) is defined as follows:

RMSj =

√√√√ 1
2N

N

∑
i=1

d2
i,j

where the subscript i identifies each considered site reported in the table.
As can be observed in Table 1, the mean error associated with the tide components

is about 1 cm for the semidiurnal M2 and S2 and the diurnal O1. On the contrary, larger
differences are obtained for the diurnal K1, especially in the northern part of the basin: This
bias derives mostly from the phase estimate and it could also be due to the uncertainties
associated with the phase estimate in measured time series [17]. In this analysis, the Trieste
datum has not been considered because of the low spatial resolution of the mesh in the
proximity of its tide gauge.

The setup is specifically designed to simulate, as realistically as possible, the sea-
level variability in the proximity and inside the Venice lagoon. The Centro Previsioni
e Segnalazioni Maree of the city of Venice [38] provides SSH measurements for the last
decades at six sites in the Venice area (Figure 1b). Among them, the Punta della Salute
site in the city center (point A in Figure 1b) is well known for the historical tidal time
series collected there covering the last 150 years, the longest of the entire Mediterranean
Sea. The site in the open sea (point B) corresponds to the Piattaforma Acqua Alta (CNR-
ISMAR), which provides meteorological and oceanographic measurements outside the
Venice lagoon. The other points are located in the proximity of Burano Island (point C),
the Chioggia (D) and Lido (E) inlets and Chioggia city (F). Even if data are available from
further sites in the lagoon, they were not included in this study because of the large amount
of missing data during the analyzed periods.

Unavoidably, the simulations are affected by biases (Figure 2), which are revealed by
root-mean-square errors (RMSE) between observed and simulated sea level values, up to
about 20 cm for all the cases (Table 2). The primary source of bias is the limitations of the
available wind-forcing data. As mentioned in the literature, a significant underestimation
of the wind over the Adriatic basin is always encountered [13,39] and, unavoidably, it
characterizes the reanalysis dataset used in this study. Nevertheless, it must be taken into
account that the meteorological events accounted for in both the HI and SC simulations are
the same and, therefore, they are affected by the same biases.
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Table 2. RMSE values (in cm) between simulated sea level and those observed at the six sites shown
in Figure 1b. Measurements at the Burano site (point C) for 2000–2002 are missing.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

A 17.6 22.7 18.4 20.6 17.8 17.8 17.1 18.9 18.8 18.5 19.3

B 16.9 22.5 17.9 20.0 17.3 17.3 16.3 18.8 17.5 17.4 17.9

C - - - 19.4 19.9 17.7 16.4 19.2 18.4 18.0 18.7

D 16.5 22.5 17.9 20.0 17.3 17.1 16.2 18.2 18.0 17.1 17.8

E 17.2 21.9 18.2 20.1 17.3 17.3 16.3 18.5 18.1 17.6 18.3

F 17.3 19.9 18.2 20.5 17.5 17.6 17.0 19.2 18.1 17.9 18.0

4.2. Sea Level Rise in the Adriatic Sea and inside the Venice Lagoon

As expected for a system in a near-geostrophic equilibrium, the imposed constant
sea level rise (+17 cm) at the open boundary causes an increase in the average SSH over
the entire domain, which is minimal in the coastal areas of the North-Western Adriatic
Sea (Figure 3a). Focusing on the Venice area (Figure 3b), the imposed changes in the SSH
cause an average difference of about 1 cm between its northern and southern parts. The
sea-level increase would directly imply changes in the operability of the MoSE system. As
already analyzed in detail by Umgiesser et al. [6], a higher mean sea level would return
more frequent and longer closures of the mobile barriers, depending on the considered
scenario. They obtained that with an increase of 30 cm with respect to the reference period
(2000–2002), the number of hours with SSH higher than 110 cm (which is the threshold
level for critical floods in the city center, it is referred to the local zero of the SSH used
in the city of Venice [6]) would be between 3 and 30 (while a maximum of 6 h over
the threshold is recorded in the reference period). According to our result, using the
2000–2010 reference period, 35 h with SSH over the threshold is expected per year (limited
to the October–December trimester) compared to the 4 h on average which are obtained
from the HI ensemble.

Figure 3c,d illustrates distributional differences of lagoonal SSH in the HI and SC
simulations: more specifically, the differences between the edges (95th and 5th percentiles,
respectively) of the SSH distributions are shown. Results indicate that within the lagoon,
the low waters will rise more compared to high waters, resulting in a narrowing of the
5–95 percentile range of about 1 cm. So, beyond the effect of the shift in the average, SSH
extreme events are less intense in the scenario compared to the historical conditions and
this result could be partly attributed to a weakening of the wind in future projections [13].

4.3. Water Mass Exchanges between the Lagoon and the Open Sea

The Venice lagoon exchanges water with the open sea through three inlets, namely,
from North to South, Lido, Malamocco, and Chioggia. Tides primarily dominate the flow
regime, but also the atmosphere plays a crucial role, especially during surge events. The
average difference between SSH anomalies (Figure 3b) demonstrates that changes in the
sea circulation inside the lagoon could be one of the consequences of sea level rise.

To highlight the changes occurring in the water flows through the inlets, we compute
the volume transports across the three inlets using the expression:

Q(t) = Dt ·
n

∑
i=1

UT(n) · dxn

where Q(t) is the volume transport at the time t, Dt is the total height of the water column
(depth + SSH), UT is the normal component of the water velocity through the cell n of
the transect and dxn the cell size of the n-element of the transect, respectively. The results
are shown for the 2010 case in Figure 4. The three panels show the water flow through
the inlets (positive flux inside the lagoon) over the entire period of the simulation. The
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total volume transport across all the inlets averaged over the period is around 9000 m3/s,
compatible with previous measurements over shorter periods [40].
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Figure 4. Water flow time series across the three inlets, namely Lido (panel (a)), Malamocco
(panel (b)) and Chioggia (panel (c)). The results refer to the 2010 case study (HI run).

Sea-level rise prescribed at the open boundary and local wind changes result in changes
in the flux through the inlets both in terms of volume, and consequently of water speed,
and circulation patterns. The changes in the inflow and outflow across the three inlets
are shown in Figure 5. On average, the most important changes in the circulation involve
the water exchanges at the Lido inlet, with a strengthening of the inflow and consequent
positive difference between the mean transport between the SC and HI ensembles; this
enhanced inflow results also in an average sea level increase in the northernmost part of
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the lagoon (Figure 3b). On the contrary, a larger amount of water is expected to leave the
basin through the Malamocco inlet (Figure 5). The southern inlet close to Chioggia city
is expected to be the least affected by future changes, and, hence, plays a minor role in
maintaining the balance between incoming and outgoing flow across all inlets.
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Figure 5. Boxplot of the distribution of differences between the mean transport in SC and HI
simulations. Each boxplot represents the statistics of an ensemble of 11 simulations where the
transports through the three inlets have been averaged over the entire period of the simulations.

This water mass balance is the result of changes in the circulation through the inlets.
Figure 6 shows the difference between the average water speed for the SC and HI sim-
ulations. While in the open Adriatic Sea changes in the circulation patterns are almost
negligible since the water speed anomaly is close to zero, a significant increase in the
water velocity across the Lido inlet is obtained of about 10 cm/s. This results in a residual
northward flux causing the average increase of the water level in the northernmost part of
the lagoon (Figure 4b) and, also an enhancement of the southward currents which transport
the water outside the area through the other two inlets.
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the SC ensemble and in the HI one. For both scenarios, 11 water velocity maps have been computed
by averaging over the 3-month periods of the simulations. Then, the mean values from the two
ensembles have been computed and the anomaly is their difference. The shading represents the
module of the water velocity, while the streamlines illustrate the residual circulation pattern.
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5. Conclusions

In this study, an ensemble of numerical simulations with a state-of-the-art hydro-
dynamic model for coastal applications was used to provide, for the first time, a picture
of the changes in the sea circulation induced in the Venice lagoon by projected changes
in boundary forcing, including Mediterranean sea-level rise and atmospheric circulation
changes over the Adriatic Sea. By our approach, the same meteorological events are
considered in the historical and scenario simulations, with different intensities reflecting
probabilistic changes in projected atmospheric forcing; therefore, changes in the frequency
of extreme events are neglected. Still, our results provide the currently most comprehensive
assessment of mid-21st-century projected climate change impacts on hydrodynamics in the
Venice Lagoon under a “business as usual” scenario.

Our results indicate that, in contrast to negligible circulation changes in the Adriatic
Sea, dynamics in the proximity and inside the Venice lagoon significantly change under the
scenario with respect to historical conditions. Our results confirm the current understanding
that sea level rise will be the dominant driver of the expected worsening statistics of Venice
flooding. However, our simulations also add details on projected sea-level rise in the
Venice lagoon and reveal previously unknown variability in lagoonal hydrodynamics.
In particular, stronger water transport entering the lagoon is expected through the Lido
inlet leading to an accumulation of water masses in the northeastern part of the Venetian
lagoon. Mass continuity is achieved by a stronger expected outflow through the Malamocco
inlet, while, on average, the total flux across the Chioggia inlet is not expected to change
significantly. These transport changes through the inlets will force the establishment of a
~1 cm mean sea-level gradient between the northern and southern portions of the lagoon
and complex persistent anomalous circulation patterns around the historical center of
Venice as well as throughout the lagoon.

Further factors may contribute to shaping the future circulation in the area: for instance,
subsidence and sedimentary processes could play a major role in sea level changes inside
the lagoon, and better constraints to their future evolution could greatly improve projections
of climate change impacts on the Venice lagoon.
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