
Masaryk University
and

Ca’ Foscari University of Venice

On cryptographic weaknesses
related to elliptic curves

Doctoral Thesis

Vladimír Sedláček

Advisor (Masaryk University) Advisor (Ca’ Foscari University)
Prof. Vashek Matyáš Prof. Riccardo Focardi
Consultant Doctorate Coordinator
Dr. Marek Sýs Prof. Riccardo Focardi
Semester: Fall 2021 Cycle: 33
UČO: 408178 Matricola: 956406

SSD: INF/01 Informatica

Declaration

Hereby I declare that this thesis is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Vladimír Sedláček

Advisor (Masaryk University): Prof. Vashek Matyáš
Consultant (Masaryk University): Dr. Marek Sýs
Advisor (Ca’ Foscari University of Venice): Prof. Riccardo Focardi

i

Acknowledgements

I would like to thank VashekMatyáš for guidance, freedom, and teach-
ing me some realism, and Riccardo Focardi for the opportunity to
learn new topics and appreciate a different culture.

I am also grateful to all my CRoCS colleagues, especially:
Marek for challenging my views on the interplay of math, formalism
and intuition,
Petr for countless profound, inspiring and amusing discussions,
Jano for showing me how to push one’s limits via an amazing passion
and drive,
Dušan for impressive computing and meme-generating skills,
Martin for questioning and improving the environment, and exempli-
fied teaching,
Vojta for sharing the joy and burden that comes with pure math,
Tonda for pragmatically approaching abstract ideas,
Lukáš for helping me explore the concept of practicality,
Matúš for pioneering the double PhD path,
Adam for lightening the mood and offering alternative viewpoints,
Agi for her take on empathy and listening.

My deep thanks also belongs to my family, friends, and Minh,
who stood by me during the rough times and helped me preserve my
sanity during the long journey. The list of all people who positively
influenced my PhD is too long to fit this margin, but you will not be
forgotten.

Last but not least, I would also like to thank organizations and
projects who supported me in my research - namely, the Ph.D. Talent
Scholarship funded by the Brno City Municipality, the Czech Science
Foundation project GA20-03426S, the grant from the Cisco University
Research Program Fund of Silicon Valley Community Foundation,
and “e-Infrastruktura CZ” (e-INFRA LM2018140) provided within
the programProjects of Large Research, Development and Innovations
Infrastructures.

iii

Abstract

It is possible to write endlessly on elliptic curves. (This is not a threat.)

Serge Lang – Elliptic curves: Diophantine analysis

This thesis1 explores the security of cryptographic systems related
to elliptic curves from various angles. We discuss a way of leverag-
ing a special factorization method based on elliptic curves to insert a
backdoor into RSA implementations. We try to fool the primality tests
applied to elliptic curve parameters that are present on smartcards.
We study a flaw in scalar multiplication that allowed us to recover the
private key in many real-world signature scheme implementations.
We unify several approaches to detecting problems in elliptic curve
addition formulas in the side-channel context and come upwith a new
attack.We propose a new scheme for elliptic curve Schnorr multisigna-
tures, focusing on efficiency and interoperability. Finally, we design a
framework that allows for a systematic analysis of standardized curves
by comparing them to simulated ones in many different aspects.

We conclude that while elliptic curve cryptography is very useful,
one must be very careful to correctly tame its complexity and avoid
devastating pitfalls at many levels.

1. The thesis builds upon the author’s previous PhD research proposal thesis
[Sed20].

iv

Keywords

cryptography, ECC, ECDH, ECDSA, elliptic curve, factorization, for-
mulas, implementations, primality testing, standards

v

Contents

Mathematical notation 1

Used abbreviations 3

1 Introduction 5
1.1 Problem statement . 5
1.2 Thesis structure . 5
1.3 Contributions . 6

2 Elliptic curve cryptography in practice 9
2.1 Theoretical background . 10
2.2 ECC vulnerabilities: state of the art 11

3 On 4p− 1 factorization 17
3.1 Previous work . 18
3.2 A simpler version of Cheng’s 4p− 1 method 20
3.3 Analysis of the method . 22

3.3.1 Correctness of the algorithm 22
3.3.2 Both twists work 23
3.3.3 Expected number of iterations 24

3.4 Time analysis and practical limits of the method 25
3.4.1 The expected occurrence of factorable numbers 26
3.4.2 Run-time statistics 27

3.5 The 4p− 1 method as a backdoor 32
3.5.1 The backdoor construction 33
3.5.2 Inquirer detection strategies 35
3.5.3 Audit of real-world keys 37

3.6 Conclusions . 40

4 Fooling primality tests on smartcards 41
4.1 Previous work . 43
4.2 Attack scenarios . 43

4.2.1 Rationale for the attack scenarios 44
4.2.2 Attacks overview 46

4.3 Methodology for assessing primality tests 47
4.3.1 Domain parameters 49

vii

4.3.2 Generating pseudoprimes 51
4.3.3 Generating special composites 51
4.3.4 Generating complete domain parameters 52

4.4 Practical results . 55
4.5 The attacks in detail . 58
4.6 Proposed defences . 59
4.7 Conclusions . 61

5 Minerva: The curse of ECDSA nonces 63
5.1 Related work . 64
5.2 The vulnerability . 65

5.2.1 ECDSA . 66
5.2.2 Leakage . 66
5.2.3 Causes . 68
5.2.4 Mitigations . 71
5.2.5 Responsible disclosure 73

5.3 The attack . 73
5.3.1 Constructing the HNP 75
5.3.2 Solving the HNP 76
5.3.3 Baseline attack 77

5.4 Attack variants and new improvements 78
5.5 Systematic comparison of attack variants 83
5.6 Conclusions . 90

6 A unified approach to special-point-based curve attacks 93
6.1 Background . 95

6.1.1 Curve models and their zero-coordinate points . 95
6.1.2 Point coordinates and addition formulas 96
6.1.3 Explicit-Formulas Database 97
6.1.4 Scalar multiplication algorithms 98
6.1.5 Side-channel attack countermeasures 99
6.1.6 TheRefinedpower analysis andZero-value point

attacks . 100
6.1.7 Exceptional procedure attacks 101

6.2 A unified approach to the attacks 102
6.2.1 Attack setting . 102
6.2.2 The dependent coordinates problem 103
6.2.3 Solving the xDCP 106

viii

6.2.4 The full attack . 107
6.2.5 Window method attack 109

6.3 Classifying the exceptional points 110
6.3.1 Exceptional points for addition 111
6.3.2 Exceptional points for differential addition and

ladders . 115
6.4 Practical implications . 117

6.4.1 Impact on cryptographic libraries 117
6.4.2 Attack improvements 120
6.4.3 Tooling . 122
6.4.4 Reverse engineering 122

6.5 Conclusions . 123

7 Interoperable Schnorr multisignatures 125
7.1 Related work . 127
7.2 Notation and background 128

7.2.1 Schnorr signatures 129
7.3 Interoperability of Schnorr schemes 130

7.3.1 Nonce exchange 132
7.3.2 Nonce commitment 132
7.3.3 Nonce delinearization 133
7.3.4 Deterministic nonce derivation 135
7.3.5 Summary . 136

7.4 Multiparty scheme SHINE 137
7.4.1 Attacker Model 138
7.4.2 Group establishment 138
7.4.3 Nonce caching with encryption 139
7.4.4 Signing protocol 142
7.4.5 Implementation and evaluation 144

7.5 Conclusions . 146

8 DiSSECT: Distinguisher of Standard & Simulated Elliptic
Curves via Traits 149
8.1 Introduction . 149
8.2 Overview of standard curve generation 150
8.3 Methodology . 154

8.3.1 Standard curve database 155
8.3.2 Simulations . 157

ix

8.3.3 Outlier detection 162
8.4 Traits . 163

8.4.1 Notable findings 165
8.5 Our tool DiSSECT . 169
8.6 Conclusions . 170

Conclusions 171

Bibliography 173

Appendices 199
A Author’s publications . 199
B Fooling primality tests on smartcards 201

B.1 The Miller-Rabin primality test 201
B.2 Constructing pseudoprimes 202
B.3 Generated domain parameters 203
B.4 Examples of attacks 203

C Minerva: The curse of ECDSA nonces 206
C.1 Additional figures 206
C.2 Impact of recentering with biased bounds 206

D A unified approach to curve special-point-based curve attacks 209
D.1 Example: ZVP attack on window NAF scalar

multiplication . 209
D.2 Example: unrolled formula 210
D.3 Example: output expressions 210

E Interoperable Schnorr multisignatures 212
E.1 Multi-signature distributed key generation . . . 212

F DiSSECT: Distinguisher of Standard & Simulated Elliptic
Curves via Traits . 213
F.1 List of traits . 213
F.2 List of standard curves 218

x

Mathematical notation

E(Fp) the group of an elliptic curve E over Fp

Fp the field with p elements
gcd greatest common divisor
[k] scalar multiplication by k
O the neutral element of an elliptic curve
Q(α) the extension of Q generated by α

R/(α1, . . . ,αr) the ring R modulo the ideal generated by α1, . . . ,αr

#S the cardinality of set S
S/ ∼ the set of equivalence classes of S under ∼
(x : y : z) a projective space element representation
Zm,Z∗m the ring of (invertible) integers modulo m
:= defining equality
∼= is isomorphic to
⊕,× the direct sum, product

1

Used abbreviations

ANSI American National Standards Institute
API application programming interface
BIP Bitcoin improvement proposal
BKZ block Korkine-Zolotarev
CM complex multiplication
CRT Chinese remainder theorem
CVE common vulnerabilities and exposures
CVP closest vector problem
DCP dependent coordinates problem
ECDAA elliptic curve direct anonymous atestation
(EC)DH (elliptic curve) Diffie-Hellman
(EC)DLP (elliptic curve) discrete logarithm problem
(EC)DSA (elliptic curve) digital signature algorithm
ECC elliptic curve cryptography
EFD Efficient Formula Database
eID electronic identification
EPA exceptional procedure attack
EPID enhanced privacy identity
FIPS Federal Information Processing Standards
FROST Flexible Round-Optimized Schnorr Threshold

Signatures
GOST Gosudarstvenny Standart
HNP hidden number problem
HP the Hilbert polynomial
HSM hardware secure module
HTTPS Hypertext Transfer Protocol Secure
IEEE Institute of Electrical and Electronics Engineers
IPSec Internet Protocol Security
KDF key derivation function

3

LLL the Lenstra-Lenstra-Lovász algorithm
MIRACL Multiprecision Integer and Rational Arithmetic

C/C++ Library
MOV Menezes-Okamato-Vanstone
MR Miller-Rabin
MSMB most significant modular bits
NAF non-adjacent form
NIST National Institute of Standards and Technology
NSA National Security Agency
NUMS nothing up my sleeve
OSCCA Office of State Commercial Cryptography

Administration
PC/SC Personal computer / smartcard
PRF pseudorandom function
RFC Request for comments
RNG random number generator
RPA refined power analysis
RSA Rivest-Shamir-Adleman
SEA Schoof-Elkies-Atkin
SECG Standards for Efficient Cryptography Group
SHINE smartcard highly-interoperable nonce encryption

scheme
SSH Secure Shell
SSL Secure Sockets Layer
SVP shortest vector problem
TLS Transport Layer Security
TPM trusted platform module
ZVP zero-value point

4

1 Introduction

1.1 Problem statement

The central question of this thesis is: What are the undiscovered weak-
nesses of cryptographic systems related to elliptic curves, and how can we
defend against them?We tackle this question from various viewpoints,
ranging from implementation choices through protocols to parameters
of standardized curves. Another underlying leitmotiv is: When is it
possible to hide a weakness or even a backdoor in asymmetric cryptography
primitives?

1.2 Thesis structure

The rest of this chapter summarizes the contributions, while Chapter 2
provides some basic background on elliptic curves. The following six
chapters each correspond to different projects:

• Chapter 3 describes the author’s initial work on a very efficient
factorization algorithm (using elliptic curves) for integers of a
special form, possibly leading to RSA backdoors;

• Chapter 4 shows how the known methods for fooling primal-
ity tests can be adapted and used in the context of ECC and
smartcards;

• Chapter 5 presents a key-recovery attack on real-world ECDSA
implementations, using side channels and lattice reduction;

• Chapter 6 systematically studies many ECC formulas with re-
spect to side channel attacks and introduces a unified attack
framework;

• Chapter 7 proposes a new efficient and interoperable scheme
for ECC Schnorr multisignatures;

• Chapter 8 aspires to provide an analytical framework to survey
all standard curves and the standards according to which they
were generated, in order to find potential hidden weaknesses.

5

1. Introduction

1.3 Contributions

The most important contributions of this thesis follow, in order corre-
sponding to the thesis structure.
On 4p − 1 factorization. We address Cheng’s 4p − 1 factorization
method [Che02] based on complex multiplication on elliptic curves
and propose an improved, simplified and asymptotically determinis-
tic version. We further study the viability of the 4p− 1 factorization
method as the means of a potential backdoor for the RSA primes gen-
erated on black-box devices like cryptographic smartcards. We devise
three detection methods for such a backdoor and audit 44 millions of
RSA keypairs generated by 18 different types of cryptographic devices.

The results were published at Secrypt 2019 [Sed+19].
Fooling primality tests of smartcards.We analyze whether the smart-
cards of the JavaCard platform correctly validate primality of domain
parameters. The work is inspired by Albrecht et al. [Alb+18], where
the authors studied many open-source libraries and fooled them with
specially crafted pseudoprimes. However, in the case of smartcards,
often there is no way to invoke the primality test directly, so we trigger
it by replacing (EC)DSA and (EC)DH prime domain parameters by
adversarial composites. Such a replacement results in vulnerability to
Pohlig-Hellman [PH78] style attacks, leading to private key recovery.

Out of nine smartcards (produced by five major manufacturers)
we tested, all but one have no primality test in parameter validation.
As the JavaCard platform provides no public primality testing API,
the problem cannot be fixed by an extra parameter check, making it
difficult to mitigate in already deployed smartcards.

The results were published at European Symposium on Research
in Computer Security (ESORICS) 2020 [SJS20].
Minerva: The curse of ECDSA nonces. We present our discovery
of a group of side-channel vulnerabilities in implementations of the
ECDSA signature algorithm in a widely used Atmel AT90SC FIPS 140-
2 certified smartcard chip and five cryptographic libraries (libgcrypt,
wolfSSL, MatrixSSL, Crypto++, SunEC/OpenJDK/Oracle JDK).

Vulnerable implementations leak the bit-length of the scalar used
in scalar multiplication via timing. Using leaked bit-length, we mount
a lattice attack on a 256-bit curve, after observing enough signing

6

1. Introduction
operations. We propose two new methods to recover the full private
key requiring just 500 signatures for simulated leakage data, 1200 for
real cryptographic library data, and 2100 for smartcard data.

The number of signatures needed for a successful attack depends
on the chosenmethod and its parameters aswell as on the noise profile,
influenced by the type of leakage and used computation platform. We
use the set of vulnerabilities reported in this work, together with the
recently published TPM-FAIL vulnerability [Mog+20], as a basis for
real-world benchmark datasets to systematically compare our newly
proposed methods and all previously published applicable lattice-
based key recovery methods. The resulting exhaustive comparison
highlights the methods’ sensitivity to its proper parametrization and
demonstrates that ourmethods aremore efficient inmost cases. For the
TPM-FAIL dataset, we decreased the number of required signatures
from approximately 40 000 to a mere 900.

Because of the impact, the work received a lot of media coverage
[ZDN19; Ber19; Fei19; Tra19]. The results were published in [Jan+20],
winning the Best Paper Award at Cryptographic Hardware and Em-
bedded Systems (CHES) 2020.

A unified approach to special-point-based curve attacks. The Re-
fined Power Analysis, Zero-Value Point, and Exceptional Procedure
attacks [Gou03;AT03; IT03] introduced side-channel attack techniques
against specific cases of elliptic curve cryptography. The three attacks
recover bits of a static ECDH key adaptively, collecting information
if a certain multiple of the input point was computed. We unify and
generalize these attacks in a common framework, and solve the cor-
responding problem for a new class of inputs. We also introduce a
version of the attack against windowed scalar multiplication meth-
ods, recovering the full scalar instead of just a part of it. Finally, we
systematically analyze elliptic curve point addition formulas from
the Explicit-Formulas Database [BL07a], classify all non-trivial excep-
tional points, and find them in new formulas. These results indicate
the usefulness of our tooling for unrolling formulas and finding special
points, potentially of independent research interest.

The results were published at Asiacrypt 2021 as “A formula for dis-
aster: a unified approach to elliptic curve special-point-based attacks”
with coauthors J.-J. Chi-Dominguez, J. Jancar and B. B. Brumley.

7

1. Introduction
Interoperable Schnorr multisignatures.

We study the possibility of interoperability of different multiparty
Schnorr signature schemes and classify them based on their approach
to the nonce agreement. We identify issues that could hinder in-class
interoperability and propose a construction of a trustlessmediator that
can facilitate interoperability among different classes in certain cases.
Besides the risk mitigation, interoperability provides usability and per-
formance benefits, as protocols better suited for special devices can be
used in conjunction with more general protocols. Finally, we propose
a new multiparty signature scheme SHINE, which is efficiently com-
putable on resource-limited devices like cryptographic smartcards.
SHINE is compatible withmost existing unmodified Schnorr protocols
like MSDL, MuSig2, or FROST thanks to the proposed interoperability
construction.

The results were submitted to Applied Cryptography andNetwork
Security 2022 as “Resilience via Practical Interoperability ofMultiparty
Schnorr Signature Schemes”with coauthors A. Dufka and P. Svenda.
DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves
via Traits. It is hard to trust elliptic curves standardized in a non-
transparent way. To rectify this, we present a systematic methodology
for analyzing properties of standard curves and statistically comparing
them to the expected results with respect to their generation process.
Based on this idea, we develop a large-scale computational framework,
which thoroughly analyzes the curves and visualizes the results.

We put together the largest publicly available database of standard
curves. Using our framework, we simulate over 200 000 curves to
mimic the generation process of three major standards. Using three
distinct distinguishing strategies for our 22 custom functions, we try
to find any deviations pointing to possible weaknesses of standard
curves. In this way, we discover properties of GOST curves inconsistent
with claims about their origin, as well as an undocumented behavior
of the BLS12-381 curve.

The results were submitted to Public Key Cryptography 2022 as
“DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves via
Traits” with coauthors V. Suchanek and A. Dufka.

8

2 Elliptic curve cryptography in practice

Elliptic curves have been studied by mathematicians for a very long
time and provide a very rich interplay between many areas, such as
algebra, geometry, number theory and analysis. With the advent of
computers, they became an important tool feasible for tasks such as
integer factorization and primality proving. Crucially, they also play a
fundamental role in modern cryptography because of the presumed
hardness of the elliptic curve discrete logarithm problem (ECDLP).

First proposed by Koblitz [Kob87] and Miller [Mil85], widespread
usage of elliptic curve cryptography (ECC) started in 2006 when the
NIST standardized EC Digital Signature Algorithm (ECDSA). Besides
ECDSA and its mature version EdDSA, elliptic curve Diffie-Hellman
(ECDH) is also widely used – nowadays, all of these are deployed in
protocols like TLS [Bla+06b] or SSH [SG09] that form the backbone of
a secure Internet. Practical ECC benefits include smaller key sizes and
more efficient implementations at the same security level compared
to other public-key schemes like RSA or ElGamal [KMV00]. Hence
it is no wonder that ECC’s popularity grows, especially for security
applications where computational power and integrated circuit space
are limited, such as Internet of Things devices or smartcards.

ECC is also deployed in many modern systems [IANa; IANb] and
even government-issued documents (such as eIDs) of many countries
like Austria [Hol+08], Germany [Loc+15], Estonia, or United Arab
Emirates [Qui+20], where ECDSA is used as an equivalent to hand-
written signatures. Elliptic curves are also at the core of cryptocurren-
cies like Bitcoin [Nak08], Ethereum [Woo+14], Monero [Noe] or even
Zcash [Sas+14]; the last one utilizes pairing-based cryptography.

Even though ECDLP falls prey to Shor’s quantum factorization
algorithm [Roe+17], the proposed post-quantum schemes include
ones based on isogenies of elliptic curves [Aza+17; Cas+18], so they
will probably still play an important role in the future.

9

2. Elliptic curve cryptography in practice

2.1 Theoretical background

We define an elliptic curve E in the short Weierstrass model1 over a
prime2 field Fp, p ≥ 3 by the following equation:

E/Fp : y2 = x3 + ax + b, a,b ∈ Fp, 4a3 + 27b2 6= 0. (2.1)
The group E(Fp) consists of affine points (x,y) ∈ Fp × Fp satisfy-
ing (2.1), togetherwith the neutral elementO – the point at infinity. For
any positive integer k, we define the scalar multiplication [k]P as the
sum of k copies of P and also define [−k]P :=−[k]P. The ECDLP is the
task of finding k when given G and [k]G. The order of a point P ∈ E(Fp)
is defined as the smallest positive integer k such that [k]P = O. By
k-torsion points, we mean points of order that divides k. We denote
the cardinality of E(Fp) by n := #E(Fp) and call t := p + 1− n the
trace of Frobenius of E. For typical cryptographic applications, n = h · q,
where q is prime and h ∈ {1,2,4,8}; h is called the cofactor.

The scalar multiplication map P 7→ [k]P can also be computed
using the division polynomial ψk [Was08]: that is,

[k](x,y) =

(
φk(x)
ψ2

k(x)
,
ωk(x,y)
ψ3

k(x,y)

)
,

where
ψ0 = 0,
ψ1 = x,
ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2k+1 = ψk+2ψ3
k − ψk−1ψ3

k+1 for k ≥ 2,

ψ2k = (2y)−1ψk(ψk+2ψ2
k−1 − ψk−2ψ2

k+1) for k ≥ 3,

φk = xψ2
k − ψk+1ψk−1,

ωk = (4y)−1(ψk+2ψ2
k−1 − ψk−2ψ2

k+1).

1. We will introduce other forms in Section 6.1.
2. Prime power fields are also possible, but very rare in cryptography; the only
relevant case F2m would require special care and will not be important for us.

10

2. Elliptic curve cryptography in practice
These polynomials are considered modulo the curve equation (2.1);
in particular, φk and ψ2

k do not depend on y for any k. We will use
these polynomials in Chapter 3 and Chapter 6.
Curves over more general rings. In Chapter 3 and Chapter 4, we will
work with elliptic curves over E(Zm), where m is composite and odd3.
We will follow the exposition by Washington [Was08].

The projective plane over Zm is defined as

P2(Zm) := {(x,y,z) ∈ (Zm)
3 | gcd(m, x,y,z) = 1}/ ∼,

where (x,y,z)∼ (x′,y′,z′) iff x = ux′,y = uy′,z = uz′ for some u ∈Z∗m.
An elliptic curve over Zm is then given by

E(Zm) = {(x : y : z) ∈ P2(Zm) | y2z = x3 + Axz2 + Bz3},

where A, B ∈Zm and 4A3 + 27B2 ∈Z∗m. This generalizes the classical
notion of an elliptic curve over a field, and indeed, with some caveats,
the standard group addition law applies. Moreover, for odd coprime
integers m1,m2, the natural projections Zm1m2 →Zmi (i ∈ {1,2}) give
rise to an isomorphism

E(Zm1m2)
∼= E(Zm1)⊕ E(Zm2), (2.2)

which we will use heavily.

2.2 ECC vulnerabilities: state of the art

The complexity of ECC opens up many possible attack vectors. We
will first describe generic attacks on the discrete logarithm problem
(DLP), which serve as a basic guideline for selecting secure group
sizes. Next, we will discuss implementation vulnerabilities, which
are the most common source of problems in practice, and end with
possible problems of selected standard curves.

3. More generally, we can define elliptic curves over any ring R such that 2 ∈ R∗

and any projective R-module of rank 1 is free [Was08]; in particular, this includes
all finite and local rings.

11

2. Elliptic curve cryptography in practice
Generic attacks. While the DLP can be defined in any finite cyclic
group, its difficulty might drastically differ for varying groups. In the
multiplicative group Z∗p (or its subgroup), where p is a prime, there is
the subexponential index calculus algorithm [Pol93], which results in
long keys for the DH and DSA schemes that operate in these groups.
In contrast, despite several attempts, there does not exist an efficient
analog of this algorithm for elliptic curves over prime fields, which
is the reason ECC keys might be much shorter while still providing
the same level of security. Thus it seems so far that besides certain
weak classes of curves, the only efficient attacks against the ECDLP
are those that could be applied to any finite cyclic group.

One such important attack is the one introduced by Pohlig and
Hellman [PH78], which makes use of the Chinese remainder theorem
(CRT) group decomposition: when p1, . . . , pr are distinct primes, we
have Zp

e1
1 ...per

r
∼=
⊕r

i=1 Zp
ei
i
. Since the DLP in Zp

ei
i
can be solved by

computing the corresponding DLP in Zpi and lifting it to Zp
ei
i
, the

algorithm essentially reduces the DLP in a group to DLPs in its prime
order subgroups.

Given a DLP in a prime order group, the best general attack in
practice is Pollard’s ρ method [Pol78], asymptotically running in time
polynomial in the square root of the group order. Furthermore, the
attack can be slightly optimized by using efficient arithmetic and the
negation map [BL].
Implementation vulnerabilities. There are many different kinds of
implementation-specific vulnerabilities; the following list is by no
means exhaustive:

• Twist attacks [Fou+08] – these apply when the attacker is al-
lowed to compute on the quadratic twist instead of the original
one; can be mitigated by point validation at the implementation
level or by using twist-secure curves at the curve design level.

• Invalid curve attacks [BMM00; JSS15] – these apply when an
attacker is allowed to compute on another curve (usually shar-
ing the linear coefficient in Weierstrass form) instead of the
original curve. It can be mitigated by point validation at the
implementation level or by specifying point compression at the
protocol design level.

12

2. Elliptic curve cryptography in practice
• Small subgroup attacks [LL97] – these apply when the attacker

is allowed tomake queries for multiplication by the secret scalar
with points of small order, which can become powerful when
combined with the above attacks. The basic form can be miti-
gated by a simple point check at the implementation level or by
choosing curves with trivial (or small) cofactor (i.e., the ratio
of the order of the full group and the subgroup generated by
the public generator).

• Problems with random number generation (RNG), leading for
example to trivial breaks of ECDSA if the nonce is repeated, as
happened in 2010 with many Sony PlayStation 3 devices [Sch15;
Ber+12].

• Side-channel attacks [Fan+10;ACL] – these consist of extracting
and utilizing sensitive data from the implementation, usually
from the scalar multiplication algorithms or sometimes even
the field arithmetic itself; can be mitigated by using constant-
time algorithms (which is not as easy to achieve as it might
seem). This is a vast category of attacks [Gou03; AT03; IT03;
BH09; BT11;Mur+12; Ben+14; PSY15; FWC16; Bel+16; Gen+16;
GVY17; Dal+18; Ald+19; Rya19a; Rya19b; Gar+20; Ara+20;
Mog+20; Wei+20]; we discuss the cases relevant to nonce leak-
age in Chapter 5 and curve formulas in Chapter 6 in more detail.

Even if the first three types of attacks are quite easy to defend
against, Valenta, Sullivan, Sanso, and Heninger [Val+18] analyzed the
security of ECDHkey exchange implementations in commonprotocols
TLS, SSH, and IPSec and estimated that a small proportion of hosts
(<1% of HTTPS and SSH, and 4% of IKEv2) that support ECC do not
perform required curve validity checks. Faulty RNG and side channels
are generallymuch harder to avoid. Also, new implementation-specific
attacks appear quite regularly [Age20].
Curve vulnerabilities. When using ECC in the real world, both sides
of the scheme must agree on the choice of a particular curve, avoiding
curves where the ECDLP is easier than it should be. The SafeCurves
website [BL] presents a good overview of known curve vulnerabilities
(and discusses implementation-specific vulnerabilities as well).

13

2. Elliptic curve cryptography in practice
In short, to avoid the known mathematical attacks, the curve E

defined over a prime fields Fp with a public generator G of order l
should satisfy the following criteria:

• p should be large enough, e.g., over 256 bits if we aim for 128-bit
security;

• l should have a large prime factor, as this determines the com-
plexity of the Pohlig-Hellman attack; [PH78])

• the curve should not be anomalous (i.e., l 6= p), otherwise the
Semaev-Satoh-Araki-Smart attack based on the additive transfer
applies [Sma99; Sem98; SA+98];

• the embedding degree of E (i.e., the order of p inF∗l if l is prime)
should be large enough (e.g., at least 20 for the current param-
eter sizes), otherwise the MOV attack based on multiplicative
transfer using the Weil and Tate pairings applies [Sem96; FR94;
MOV93] – in particular, this rules out all supersingular curves;

• the absolute value of the CM field discriminant (i.e., the dis-
criminant of the field Q(

√
t2 − 4p)) should not be too low

([BL] suggests at least 2100), otherwise Pollard’s ρ attack can be
speeded up due to the presence of efficiently computable endo-
morphisms of the curve [GLV01]; this does not pose a serious
threat for the moment though, as the limits of the speedup are
reasonably well understood.

Curve standardization. Curves suitable for wide use have been stan-
dardized by many organizations [ANSI98; Cer10; ANS14; PLK06;
SSL14] and are not susceptible to any of the public mathematical at-
tacks, but some of them fail to satisfy some SafeCurves criteria (such
as twist security). Perhaps more worrisome is the fact that the choice
of the constants is often not satisfiably explained, and thus we have no
guarantee that these curves do not have a hidden weakness, deliberate
or not. We explore this topic in much more depth in Chapter 8.

While mathematical weaknesses have a very large impact when
they occur, buggy or vulnerable implementations are much more
common in practice. The developers are often confronted with choices
they might not be qualified to decide and the standards are usually

14

2. Elliptic curve cryptography in practice
not explicit enough to help them. There are many potential pitfalls,
and history and statistics show us that problems will inevitably occur
under these circumstances. Instead of blaming the developers, it seems
to be more constructive to try to improve the standards, which are
often at fault.

Indeed, widely used standards are often unnecessarily compli-
cated, hard to implement correctly, do not explicitly protect against
certain attacks (e.g., the invalid-curve attack on TLS-ECDH imple-
mentations [JSS15]), create tensions between simplicity and security
(so that producing correct and secure implementations becomes very
hard) and are suboptimal in terms of performance [BL16; Ber14; BL].
As a result, many ECC-based systems could be potentially vulnerable.

Bernstein suggested many improvements, e.g., the use of twisted
Edwards curves (which also have a Montgomery form). He also de-
signed Curve25519 [Ber06], specifically created to address many of
the issues described above (for example, it has a very transparent gen-
eration, lifts the burden of responsible choices from the implementors
and enables a very fast and constant-time scalar multiplication). Note
that the curve is used under the name X25519 in the Montgomery
form for ECDH, while the birationally equivalent curve Ed25519 in
the twisted Edwards form used for EdDSA, a digital signature scheme
improving on ECDSA [Ber+12; Ber+]. These curves are rising in pop-
ularity [IANa; IANb] and have also inspired the creation of several
curves of the same type, notably Ed448-Goldilocks [Hamb]. The new
TLS v1.3 standard from 2018 [Res18] requires support for Ed25519
and Ed448.

This does not mean, however, that these curves will automatically
solve all problems. Certain libraries still only support the Weierstrass
form, so when using these curves, they must perform certain transfor-
mations, thus opening themselves to potential problems again.

15

3 On 4p− 1 factorization1

Factorization of composite integers is an old and important problem
and cryptographic schemes such as RSA are based on its intractability.
RSA is one of the most frequently deployed public key cryptosystems,
and a possible factorization of RSAmoduli could have a serious impact
on the security of real-world applications. This was demonstrated in
past incidents such as finding weak RSA keys used for TLS [Hen+12],
LogJam [Adr+15] or factorable RSA keys from cryptographic smart-
cards known as the ROCA attack [Nem+17] with at least hundreds of
millions affected devices. The performance of already known factoriza-
tion methods, together with the required security margin, determine
the necessary security parameters, such as the length of the prime
factors p,q of the RSAmodulus N = pq. Relevant standards (e.g., NIST
FIPS 140-2 [NIST07], BSI TR-02102-1 [Bun18], keylength.com [Gir19])
then define the minimal required parameters.

We divide factorization algorithms into two categories:
1. General-purpose – applicable to all integers N (and thus influ-

encing the minimal secure length of the RSA moduli); these
include Pollard ρ [Pol75], Quadratic Sieve [Pom85] and asymp-
totically fastest Number Field Sieve [Pol93].

2. Special-purpose – very efficient when a factor p|N or N itself is
of a special form:
(a) A number related to the prime factor p is smooth (has only

small prime divisors) – Pollard’s p− 1 [Pol74], Williams’s
p + 1 [Wil82], Bach-Shallit [BS85] and Lenstra’s Elliptic
Curve (ECM) [Len87]methods assume smoothness of the
integers p− 1, p + 1, φk(p) (k-th cyclotomic polynomial)
and #E(p), respectively.

(b) Assumptions on p or N: there are fast methods for N of the
form N = prq [BDH99] or N = prqs [Cor+16]. Cheng’s
4p− 1 [Che] method is effective whenever the square-free
part of 4p− 1 is small.

1. The results in this chapter were published in [Sed+19]. See https://crocs.fi.
muni.cz/public/papers/Secrypt2019 for additional materials.

17

https://crocs.fi.muni.cz/public/papers/Secrypt2019
https://crocs.fi.muni.cz/public/papers/Secrypt2019

3. On 4p− 1 factorization

All of the mentioned methods look for a multiple kp of some prime
divisor p|N. In the last step, the methods compute gcd(N,kp) = d. If
1 < d < N, then a factor is found and the factorization can continue
recursively. The methods are probabilistic since the factorization fails
when d = N.

We focus on the relatively new and unexplored (there are only
three related publications) 4p− 1 method in this chapter. Our contri-
butions are the following:

• we simplify the method and analyze it in greater detail, show-
ing that the number of expected iterations is 2-4 times lower
than stated in [Che02] and the algorithm is asymptotically de-
terministic;

• we offer a compact public implementation of the method in
Sage, together with an extensive run-time analysis;

• we discuss the viability of the method as a potential backdoor
from different perspectives;

• we perform an audit of a large collection of RSA keypairs gener-
ated by 18 different types of cryptographic devices with respect
to the potential backdoor;

• we discover and explain a discrepancy (that governs the possi-
bility of modulus factorization) between random primes and
primes generated by certain smartcards.

This chapter is organized as follows: In Section 3.1, we give a brief
overview of the method, together with the related work. We simplify
the method in Section 3.2 and analyze it in more depth in Section 3.3.
Section 3.4 discusses the practical limits of the method and the time
analysis of the Sage implementation. Section 3.5 is concerned with
the real-world impact of the algorithm and covers both the backdoor
discussion and our audit. We draw conclusions in Section 3.6.

3.1 Previous work

Chengs’s 4p− 1 method is similar to Lenstra’s ECM [Len87]. To find
a prime factor p of an integer N, both methods use an elliptic curve

18

3. On 4p− 1 factorization

E(ZN) ∼= E(Fp)⊕ E(Fq) (see Section 2.1). If m ∈ Z is a multiple of
#E(Fp) and P ∈ E(ZN), then the computation of [m]P often fails (as
it requires an inversion of a multiple of p modulo N), which reveals
p. The methods differ in the choice of E and P as well as in the com-
putation of [m]P. In ECM, we choose random curves E in the hope
that #E(Fp) is smooth, so we take m as product of small primes (e.g.,
m = B! for some small B). It is hard to find a point on the curve E(ZN)
for composite N in general, so we choose P first and pick the curve
coefficients accordingly.

In Cheng’s 4p− 1 method, we hope that a given D is a square-free
part of 4p− 1.Themethod constructs E(ZN) so that the corresponding
E(Fp) is anomalous (#E(Fp) = p), so we take m = N. Since we cannot
choose P before E here, it is important that Cheng found a way how to
avoid working with points explicitly. Instead of a direct computation
of the scalar multiple [N]P, he used the N-th division polynomial ψN
to compute the required ψN(P) = ψN(x) for a randomly chosen x ∈Z,
which he hopes to be an x-coordinate of some point on E(Fp). Cheng’s
method uses the complex multiplication (CM) method [Bro06; BS07]
to construct an anomalous curve. CM computes the j-invariant of
the curve as a root of the Hilbert polynomial (HP) H−D(x) in Fp
corresponding to D. There are two different yet related curves (twists)
E and Ec with the given j-invariant having exactly p− 2 and p points,
respectively. The curve E is defined by the constants a,b, which can be
computed as rational functions of the j-invariant, i.e., a = a(j),b = b(j)
defines E. The curve Ec is defined by the j-invariant and somequadratic
non-residue c in Fp, i.e., a = a(j, c),b = b(j, c). Since the method cannot
distinguish between a curve with p points and a curve with p + 2
points over Fp, Cheng’s method computes [N]P (more precisely ψN)
for both curves. The method iterates through various values of x (to
guess the x-coordinate of some point) and various values of c (to
guess the quadratic non-residue), hence two for-loops are used in
the method. Cheng stated that the probability of a successful guess
of x or a correct twist is 1

2 . Later research [RS07] showed that it is
possible to choose the correct twist (having p elements) with some
small additional effort (at least with the knowledge of p). However,
we will show later that Cheng’s method works for both twists without
influencing the probability of success.

19

3. On 4p− 1 factorization

Cheng introduced hismethod in 2002 in [Che]. The originalmethod
computes the j-invariant as the root of the HP H−D(X) of degree one.
Thus in this case we have a concrete value of the j-invariant and are
able to construct a concrete curve E over ZN (up to a twist). There
are only six HPs of degree one that can occur (we are not counting
the cases −D ∈ {−4,−7,−8} which are excluded by a congruence
condition on D) so the method can be used for a prime divisor p of N
of six different forms. In the same year, Cheng generalized his method
in [Che02] for HPs of an arbitrary degree. In the generalized version, a
concrete j-invariant is not computed (as finding roots of polynomials
modulo N is very hard in general), but the method works with j sym-
bolically. In 2017, Shirase published the paper [Shi], where he followed
up on Cheng’s older publication [Che] (he clearly missed the newer
one). Although Shirase “reinvented” Cheng’s method only for HPs of
degree at most two, the contribution of his work is not negligible. Shi-
rase improved Cheng’s unclear description of his method (especially
the equation g(X) = PN(x) ∈ Z/(N)[X] on page 6 of [Che02] is not
clear enough). On the other hand, his description is quite complex
and can be simplified.

3.2 A simpler version of Cheng’s 4p− 1 method

In our simplifiedmethod,we assume that N, the number to be factored,
has a prime divisor p satisfying

4p− 1 = Ds2,

where D is square-free (note that this immediately implies D ≡ 3
(mod 8). We will also assume D 6= 3 (the case D = 3 is much eas-
ier and is handled separately in [Shi]). For simplicity, we will only
deal with the case N = pq, where q is also a prime, although this is
not a necessary condition. The most important ideas involved in the
algorithm are the following:

1. we can control the number of points on a curve E(Fp) through
the CMmethod – in our case, finding a root j of the HP modulo
p and constructing a curve E with j as its j-invariant ensures
that E(Fp) is either p or p + 2;

20

3. On 4p− 1 factorization

2. instead of working with unknown roots j ∈ Fp of the HP H−D,
we compute symbolically in the ring Q := ZN[X]/(H−D(X));

3. division polynomials ψN can be used to compute the desired
non-invertible denominators (ψN(P) ≡ 0 (mod p)):

O = [N]P =

(
ϕN(P)

ψN(P)2 ,
ωN(P)
ψ3

N(P)

)
. (3.1)

Algorithm 1: Cheng’s 4p− 1 factorization [Che], simplified.
Input :N (the integer to be factored);

D (the square-free part of 4p− 1 for p|N)
Output : p (or failure)
compute H−D,N(X) (the −D-th HP modulo N);
Q←ZN[X]/(H−D,N(X));
j← [X] ∈ Q;
k← j · (1728− j)−1 ∈ Q (*);
a,b← 3k,2k ∈ Q ;
choose bound B appropriately (for example B = 10);
forall i ∈ {1,2, · · · , B} do

generate random xi ∈ZN ⊆ Q;
z← ψN(a,b, xi) ∈ Q ;
d = gcd(z̄(X), H−D,N(X)) ∈ZN[X] (*);
r← gcd(d,n);
if 1 < r < N then

return r;
return failure ;

In Algorithm 1, two operations are marked by (*), since these
operations may fail. Both of these operations (the computation of d or
the inverse (1728− j)−1 in Q) can be performed using the extended
version of Euclid’s algorithmwith polynomials overZN[X] as an input.
The problematic step in the Euclid’s algorithm is to compute qk,rk−1
such that rk−2 = qkrk−1 + rk, when the leading coefficient lc of rk−1
polynomial is not coprime to N. However, this means that we can
directly return gcd(lc, N) > 1.

21

3. On 4p− 1 factorization

3.3 Analysis of the method

This section focuses on a clear description and explanation of the
method (Section 3.3.1) and its analysis (subsections 3.3.2, 3.3.3). The
original Cheng’s method computes within two curves – curve defined
by the a,b and its twist defined by same a,b and some quadratic non-
residue c (mod p). Since p is unknown, Cheng’s algorithm iterates
through various c, though in Section 3.3.2, we show that this c-loop
can be omitted, yielding Algorithm 1. Moreover, in Section 3.3.3, we
show that the average number of iterations (the x-loop) of the method
depends on the class number h(−D) (the degree of the HP H−D(X))
and is close to 1 for a large D.

3.3.1 Correctness of the algorithm

Many computations in the algorithm are performed over the quotient
ring Q = ZN[X]/(H−D,N(X)). It’s easy to see that the substitution
X 7→ j induces a ring homomorphism hj : Q→ Fp. In other words, any
computation in Q corresponds to a symbolic computation with a root
j ∈ZN of the HP (i.e., H−D,N(j)≡ 0 (mod p)). Hence X 7→ j induces
a homomorphism Q 7→ZN, which can be composed with the natural
projection ZN 7→ Fp to obtain the homomorphism hj. Figure 3.1 de-
picts the relation of computation in Fp and Q through the hj. It should
be noted that in Q, we are working symbolically with all roots of the
HP modulo p at once.

The key and most time consuming part of the algorithm is the
evaluation of the division polynomial ψN at P = (x,y) ∈ E(ZN). When
N is odd, ψN contains y only in even powers [Was08]. Thus we can
eliminate y using the definingWeierstrass equation andwrite ψN(P) =
ψN(a,b, x). The homomorphism hj maps ψN(a,b, x) ∈ Q computed in
the method to 0 ∈ Fp, as Figure 3.1 illustrates.

In Algorithm 1, we compute gcd(z̄(X), H−D,N(X)) = d for the lift
z̄ of z ∈ Q to ZN[x]. Lemma 4 in [Che02] says that d is a constant from
ZN. Since hj(H−D,N(X)) = 0 and hj(ψN(a,b, x)) = 0, we must have
d ≡ 0 (mod p).

For a further analysis, we will need to understand the structure
of Q. Since the −D-th HP splits completely modulo p [BS07], we
have H−D(X) ≡∏

h(−D)
i=1 (X− ji) (mod p) for some pairwise distinct

22

3. On 4p− 1 factorization

Fp :H−D(j) = 0 →(a,b) =
(

3j
1728− j

,
2j

1728− j

)
→ψN(a,b, xi) = 0

↑ hj : X 7→ j ↑ hj : X 7→ j ↑ hj : X 7→ j

Q :H−D,N(X) = 0 →(a,b) =
(

3X
1728− X

,
2X

1728− X

)
→ψN(a,b, xi).

Figure 3.1: A diagrammatic overview of arithmetic in Fp and Q.

j1, . . . , jh(−D) ∈Z (hence the ideals (X − ji) ⊆ Fp[X] are pairwise co-
maximal). Now let H−D,p(X), H−D,q(X) be the projections of H−D(X)
to Fp and Zq, respectively. Applying the generalized CRT several
times, we obtain the isomorphisms:

Q = ZN[X]/(H−D,N(X))
∼=
(
Zq[X]/(H−D,q(X))

)
×Fp[X]/(H−D,p(X))

∼=
(
Zq[X]/(H−D,q(X))

)
×

h(−D)

∏
i=1

Fp[X]/(X− ji)

∼=
(
Zq[X]/(H−D,q(X))

)
×

h(−D)

∏
i=1

Fp.

In particular, we have h(−D) different projections from Q to Fp,
and these are essentially given by lifting an element from Q to ZN[X],
substituting some ji into the obtained polynomial and reducing the
result modulo p.

3.3.2 Both twists work

If the constructed curve E : y2 = f (x) (where f (x) = x3 + 3kx + 2k)
has p points over Fp, it is clear that for x such that (f (x)

p) = 1, the value
ψN(x)will be zero modulo p (since this x then represents a coordinate
of a point on E(Fp)). However, if E has p + 2 points over Fp, it must
be a quadratic twist of some curve E′ : y2 = x3 + 3kc2x + 2kc3 for some
c ∈ Fp,

(c
p
)
= −1, such that E′ has p points over Fp. Then there is an

isomorphism E→ E′ over Fp(
√

c) given by (x,y) 7→ (cx, c3/2y). Since

23

3. On 4p− 1 factorization

c is invertible, this implies that the division polynomials of the curves
must also be related by an invertible transformation. More specifi-
cally, if we let ψn,E(x),ψ′n,E′(x) be the division polynomials associated
to E and E′, respectively, then we have ψn,E′(x) = ψn,E(cx). Thus if(f (c−1x)

p
)
= 1, the value ψN(x) will be zero modulo p as well. Since for

fixed c the values c−1x have the same distribution as x, we do not have
to iterate over the twists and can fix any of them instead.

Moreover, the probability that value ψN(x) will be zero modulo p
for a fixed curve and a randomly chosen x ∈ Fp (more precisely, the
projection of a randomly chosen x ∈ZN) is pt px + (1− pt)(1− px),
where pt is the probability of choosing the right twist and px is the
probability of the event (f (x)

p
)
= 1.

Thus under the classical heuristical assumption that pt =
1
2 (or

alternatively, after calculating that px is very close to 1
2), the above

probability is 1
2 .

3.3.3 Expected number of iterations

Nowwe can estimate the probability that the core part of the algorithm
will work. During scalar multiplication on a curve over a product
of rings, the rational functions in Equation (3.1) can be computed
coordinate-wise. This might be problematic when the result is a “point
in semi-infinity” (i.e., infinite in only some coordinates)2, but that is
exactly what we want, as one of the denominators will then reveal a
factor of N.

Thus when we have an elliptic curve over

Q ∼=
(
Zq[X]/(H−D,q(X))

)
×

h(−D)

∏
i=1

Fp,

the algorithm will succeed for a fixed x ∈ ZN whenever there is at
least one copy of Fp over which the x corresponds to the right twist
(unless this happens over all of the copies at the same time and simul-
taneously over Zq[X]/(H−D,q(X)), which is extremely unlikely, as q

2. This issue can be fixed by a more general definition of a projective space over
satisfying the assumptions in Section 2.1.

24

3. On 4p− 1 factorization

has no relation to H−D(X)). Heuristically, these copies of Fp behave
independently, so by the argumentation in Section 3.3.2, the estimated
probability that one iteration of the loop over xi’s in Algorithm 1 reveal
p is 1− 2−h(−D). Therefore the expected number of the times the loop
will have to be executed is close to

1
1− 2−h(−D)

=
2h(−D)

2h(−D) − 1
.

Thus when h(−D) = 1, one iteration of the loop will work with proba-
bility around 1

2 , but for a large h(−D), the probability is almost 1 and
the algorithm becomes almost deterministic. These claims are also
supported by an empirical evidence in Section 3.4.2.

Note that this is a better result than in both [Che] and [Shi], where
both twists are non-deterministically tested and the expected number
of execution times of the innermost loop is claimed to be around 4.

3.4 Time analysis and practical limits of the method

When we do not know D in advance, we could try to loop through
all possible values of D up to some bound. This yields the complexity
(D logn)O(1) [Che02], as the computation of the −D-th HP is expo-
nential in D, while all other parts of Algorithm 1 can be performed
in a time polynomial in log N and D. Compare this to Pollard’s p− 1
methodwith complexity (B logn)O(1), where B is the largest prime fac-
tor of p− 1). When D is small (or known), this is polynomial in log N,
which is asymptotically much better than for any general classical
non-quantum algorithm.

This quickly becomes inefficient for larger values of D, for several
reasons. The degree of the HPs grows quite fast, which complicates
both the computations in the ring Q and the computation of the HPs
themselves, and their coefficients grow even faster, which might even-
tually become a memory problem.

It is possible to compute the H−D,N (H−D modulo N) directly
[Sut11] without computing H−D, which significantly decreases the
memory cost. For instance, H−D takes about 93 GB to store for D =
2093236031 while H−D,N takes only 24 MB for 4096-bit N as the de-
gree of the H−D is 100000.

25

3. On 4p− 1 factorization

The main practical limit is still the fact that the method is only
applicable to numbers of a special form. For expected density results
about these numbers, see Section 3.4.1.

3.4.1 The expected occurrence of factorable numbers

Wewill limit ourselves to the RSA case here, because it is probably the
most important application of integer factorization in the real-world.
Let us take a look at the expected frequency of factorable numbers.
First, let us assume that D is fixed and that p is a random 2b-bit integer,
so that 22b−1 < p < 22b. The condition 4p− 1 = Ds2 is equivalent to
4p−1

D being a square of an odd integer. Since
22b+1

D
<

4p− 1
D

<
22b+2

D

and the number of odd integer squares in the interval [22b+1

D , 22b+2

D
] is

roughly

1
2

(√
22b+2

D
−
√

22b+1

D

)
≈ 2b−2
√

D
, (3.2)

the number of possible 2b-bit primes such that the square-free part
of 4p− 1 equals D can be roughly estimated as 2b−2

√
D
. Since the total

number of 2b-bit primes is around

22b

ln(22b)
− 22b−1

ln(22b−1)
≤ 22b

b
(3.3)

by the Prime number theorem [Gol73], we can roughly estimate that
the probability that a random 2b-bit prime is vulnerable to factor-
ization with respect to a given D is around b√

D·2b+2 (for D = 11 and
2b = 1024, this is around 2−507).

Not let us consider all D’s up to some bound B instead of a fixed D.
Summing up the easy inequalities 1√

k
< 2
√

k− 2
√

k− 1 for k = 1, . . . , B

and adding 1√
1
+ 1√

2
to both sides yields

B

∑
k=1

1√
k
< 1 +

1√
2
− 2
√

2 + 2
√

B < 2
√

B.

26

3. On 4p− 1 factorization

Now (3.2) implies that the number of possible 2b-bit primes such that
the square-free part of 4p− 1 equals D < B can be bounded by

B

∑
D=3

D≡3 (mod 8)
D is square-free

2b−2
√

D
≤ 2b−2

B

∑
D=1

1√
D

< 2b−1 ·
√

B,

which together with (3.3) gives an estimate that the probability that
a random 2b-bit prime is vulnerable to factorization with respect to
some D < B is at most

√
Bb

2b+1 (for B = 254 and 2b = 1024, this is 2−477).

3.4.2 Run-time statistics

Implementation details. We implemented3 the algorithm in Sage, an
open-source computer algebra system. We note that to the best of
our knowledge there is no other implementation available for the
vulnerable primes based on the same principle at the time of writing
the article.

Since most of the mathematical utilities needed are already imple-
mented in Sage, the code is compact and easy to use (although it could
probably be optimized even more). The only subtlety was the need
to set the internal recursion limit to 20 000 in order to compute the
N-th division polynomial (for N much larger than 22048, this should
probably be increased even more).
Experiment. The factorization algorithm complexity is mainly de-
termined by the class number h(−D) – degree of the HP H−D. We
sampled the function h(−D) over the square-free discriminants −D
(D ≡ 3 (mod 8)), so that we could measure the running time of the
algorithm with the smallest discriminant per given class number. To
practically measure the running time of the factorization algorithm,
we performed the following experiment. For each h(−D) ∈ [1,1000],
we took the smallest absolute value of the discriminant −D found,
obtained by sampling as described above. For each discriminant, we
randomly generated three composites pq with both the vulnerable
prime p and a random prime q of bit-size b ∈ {256,512,1024,2048}.

3. Our implementation is available at https://crocs.fi.muni.cz/public/
papers/Secrypt2019.

27

https://crocs.fi.muni.cz/public/papers/Secrypt2019
https://crocs.fi.muni.cz/public/papers/Secrypt2019

3. On 4p− 1 factorization

Figure 3.2: Observed running times of the factorization algorithm for
composite bit-sizes b ∈ {256,512,1024,2048} bits for the smallest
discriminant found per class number. Three composites with the
vulnerable prime of the given bit-size were randomly generated per
discriminant.

Figure 3.2 depicts the results of the experiment, i.e., the overall
running time of the factorization algorithm for composite N with
respect to the given class number. Also, the relation between D’s and
their corresponding class numbers is depicted in Figure 3.3, where
we can see that the degree h(−D) of the HP oscillates even for close
values D.

Figure 3.3: Log-scale of D sampled from the interval [0,232 + 3] and
corresponding h(−D).

28

3. On 4p− 1 factorization

In comparison, Boudot et al. [Bou+20] hold the current factoriza-
tion record – they factored a 795-bit RSA modulus in about 1000 core
years.
Run-time independence on D. The parameter D affects the coeffi-
cient sizes and computation time of the HP H−D. Besides that, the
D does not affect the rest of the algorithm. The computation of H−D
is also easily parallelizable. As we compute H−D modulo N, from a
certain class number, e.g., class number 110 for 4096-bit modulus, the
coefficients of the H−D become larger than N, thus the complexity
depends only on h(−D).

Figure 3.4: Bit-sizes of all HP coefficients for the smallest D corresponding to
the given class number. The figure illustrates run-time
independence on D as coefficients quickly grow over N.

Figure 3.4 demonstrates the growth of the coefficients of H−D(X).
In comparison, Figure 3.5 shows how the computation time is affected
by D although the class number is the same (in the case where reduc-
tion modulo N is only done afterwards).
Modulus bit-size complexity.As seen from the experiment, the mod-
ulus bit-size contributes to the overall complexity of the factorization
algorithm by a linear factor O(log(b)) with respect to the class num-
ber as the modulus size mainly affects the division polynomial. This
enables us to empirically study the factorization algorithm mainly
with respect to the class number with the lowest such D and with
the lowest bit-size to reduce computation time without affecting the
results validity. Figure 3.6 depicts the linear model curve fitting over

29

3. On 4p− 1 factorization

Figure 3.5: The time computation of the HP and minimal/maximal sampled D
values for class numbers h(−D) in [1,5000].

Figure 3.6: Running time for the factorization algorithm w.r.t. h(−D) and
fitted linear function for 2048 bit prime size.

2048 prime based moduli and Table 3.1 shows the linear models fitted
for all tested bit-sizes.
Component timing. The computation of the division polynomial is
by far the most expensive operation for class numbers under 1000
(and even for higher ones if the HP is computed modulo N directly).
As class numbers grow over 1000, the H−D(X) computation becomes
more significant. Figure 3.7 illustrates the factorization algorithm tim-
ing by two components, the evaluation of the division polynomial and
HP computation for b = 256. Around the class number 2000, the com-
ponent timing becomes equal. For higher class numbers, the H−D(X)
computation asymptotically dominates the overall computation time.

30

3. On 4p− 1 factorization

p bit-size Fitted model
256 0.33887x − 1.17973
512 1.23834x + 81.44157

1024 6.57677x + 519.07422
2048 32.7223x + 4614.71032

Table 3.1: Runtime linear model fit with respect to the class number.

Figure 3.7: Algorithm log run-time breakdown to two major components:
the evaluation of the division polynomial and the computation
of H−D(X) for b = 256.

Inner loop iterations. Observe the number of inner loop iterations in
the depicted dataset. From the total number of experiments 12 000
(1000 · 4 · 3), only 12 experiments needed more than one iteration. In
total, the average number of iterations is 1.001834. The class number for
all experiments requiring more than one iteration was in the interval
[1,4], which supports our claim that the number of expected iterations
quickly converges to 1 with higher class numbers.
Computation resources. Due to the heterogeneous nature of the clus-
ter and the job scheduling system, the jobs were allocated different
processors types, namely Intel Xeon Gold 5120 2.20GHz, Gold 6130
2.10GHz, E5-2630 v3 2.40GHz, E5-2650 v2 2.60GHz. The worker nodes
are shared among other users, which affects caches of the processor
and thus the overall system performance. Due to the mentioned ir-
regularities, the timing measurements are approximate. However, the
jobs were allocated across all CPU types randomly.

31

3. On 4p− 1 factorization

Running time step-changes. There are noticeable changes in the run-
ning time of the factorization algorithm for some class number ranges.
Even though the experiment jobs ran on a cluster with varying load
and processor types, we conclude these regions are not a result of a
systematic error as for each discriminant there were three random
composites generated, this was performed for all four bit-sizes, thus it
gives 12 different experiment jobs per single D. The effect is observable
in all bit-sizes in all experiments. The regions are present even after
the re-computation of the region in further validation experiments.
As the division polynomial computation is the main running time
component, we conclude the regions are a result of the particular Sage
implementation, depending on the class number. Currently, we have
no detailed explanation of the phenomena, and it remains an open
problem.

3.5 The 4p− 1 method as a backdoor

The analysis from the previous section shows that if the RSA primes
are sufficiently long and generated randomly, it is almost impossible
for the resulting public key to be 4p− 1 factorable in practice. Taking
the contrapositive, if a public RSA key is 4p− 1 factorable, there is an
overwhelming probability that at least one of the primeswas generated
in this way on purpose, instead of being vulnerable by chance.

This could be interesting from the viewpoint of kleptography
[YY97]. It would be possible to backdoor the prime number generation
methods in black-box devices (such as smartcards or Hardware Secu-
rity Modules (HSMs) to generate prime(s) p such that the square-free
part of 4p− 1 is relatively small (as generating such primes is very
easy). We first describe the backdoor construction process and later
elaborate on the prospective detection methods, showing that the ex-
istence of the backdoor cannot be ruled out for the longer key lengths
like 2048 bits, if only keys (including private primes) are available for
the analysis.

In contrast, the RSA prime number generation in a wide range of
open-source cryptographic libraries was already analyzed with no
such backdoor found [Sve+16].

32

3. On 4p− 1 factorization

3.5.1 The backdoor construction

In this section, we investigate the properties of Cheng’s 4p− 1 method
when used as a cryptographic backdoor intentionally producing mod-
uli that are factorable. Namely, we analyze the possibility that the
backdoor with a particular choice of D will be both reasonably effi-
cient to exploit for an attacker with the knowledge of chosen D (so he
can compute the factorization), yet very hard to detect by an Inquirer.
We define the Inquirer according to [YY97] as a person examining the
(large number of) generated keys from a potentially backdoored im-
plementation for the statistical presence of any characteristics hinting
at the existence of the backdoor. The Inquirer wins if the backdoor is
detected with non-negligible probability. The attacker wins if the pres-
ence of the backdoor is not detected, yet the attacker can still factorize
the resulting keys in a reasonable time frame.

The use of the method as a backdoor has three phases: 1) selec-
tion of suitable backdoor parameters, 2) generation of backdoored
prime(s), and 3) factorization of a given (backdoored) public key:

1. An attacker selects a value D with a suitably small class num-
ber h(−D). An attacker can use either a single fixed D (or a
small number of them) for all backdoored primes or generate
a separate D for every backdoored key.

2. During the RSA keypair generation, the first prime is gener-
ated at random (non-backdoored), while the second one is
constructed as follows:

(a) Generate randomly an odd number s with the length cor-
responding to the required length of prime.

(b) Compute candidate prime p as p = Ds2+1
4 .

(c) Check if candidate p is probable prime using, e.g., the
Miller-Rabin primality test.

(d) Output p if probable prime, or repeat the construction
with a different value of s if not.

3. The given public key is factorized using Algorithm 1 as de-
scribed in Section 3.2.

33

3. On 4p− 1 factorization

Method advantages for use as a backdoor.

• All standard RSA key lengths now assumed secure can be back-
doored (including 2048, 4096 and 8192-bit lengths).

• No observable bias present in the public keys (if the second
prime is chosen at random and the proper distribution of s is
chosen).

• A favorable ratio between the factorization time with the knowl-
edge of D (an attacker) and the time required by Inquirer to
detect the existence of such a D (see Figure 3.8).

• The adjustable factorization difficulty using value D with suit-
able class number h(−D).

• The good parallelizability for the HP computation part of the
factorization [Sut11] which dominates for the sufficiently large
class number – see Figure 3.7.

• The expected number of invocations of the Miller-Rabin primal-
ity test during the keypair generation is heuristically same as
for the situation with truly random (non-backdoored) primes.

Method disadvantages for use as a backdoor.

• Easy detection of the backdoor presence if private keys are
available for inspection and the D is reused (two methods are
discussed in Section 3.5.2).

• Since D needs to be unique for every keypair, it has also to be
established quickly.

• The backdooring of keys with short lengths (1280 bits and
below) is detectable even when unique D is used (Method 1).

• If D is leaked, the backdoored keys with this specific D become
exploitable by anyone (not “only us”).

34

3. On 4p− 1 factorization

3.5.2 Inquirer detection strategies

We propose three principally different methods to detect the presence
of backdoor for the different scenarios concerning the availability of
private keys for inspection and the length of the inspected keys.
Method 1: Inquirer with access to the public keys only. An Inquirer
picks a candidate Di value, assumes the key being backdoored with
this Di attempts to perform the factorization using 4p− 1 method. If
successful, both the presence as well as the actual parameter Di used
is revealed. The naïve method would be to examine all possible values
Di, starting from 11 until the allowed examination period is exhausted
(e.g., at least 1000 virtual CPU years worth of computation). Note
that an attacker aims to use such a D that has the corresponding class
number h(−D) as small as possible to achieve as fast factorization as
possible. Figure 3.3 shows the relation between the value D and its
h(−D).

Even if unsuccessful, this examination establishes a lower limit on
the computational time that an actual attacker needs for the factoriza-
tion of a key as seen from Figure 3.3.

Figure 3.2 shows the running time to factor a composite N with
a particular choice of D, which is only known to the attacker who
generated N in this way, i.e., using it as a potential backdoor. The
experiment illustrates the growth of the factorization complexity for
an attacker knowing the D. On the other hand, an Inquirer trying to
detect such a backdoor and without the knowledge of particular D
has to try all possible D’s up to the Dmax. The detection complexity
is thus the sum of all factorization times up to the Dmax (or surface
under the curve up to the Dmax). For an illustration of such case, see
Figure 3.8.
Method 2: Inquirer with access to the private key(s) with shorter
primes (up to ∼ 768 bits). An Inquirer performs the direct factoriza-
tion of 4p − 1 value by generic-purpose factorization method. The
resulting factors are then checked for the existence of unexpectedly
small D (or its multiplies), which would implicate the possibility to
use 4p− 1 method for factorization and thus a presence of the back-
door. The remaining part must be also eligible for square root compu-
tation. The expected size of D for a truly random (non-backdoored)

35

3. On 4p− 1 factorization

Figure 3.8: Estimated factorization times for an Inquirer (without knowing
D) and an attacker (knowing D) up to the lowest D for class
number 5000 and bit-size 1024. The inquirer tries all D’s up to
the actual D.

prime is large (around the bit-length of the tested prime, see Figure 3.9
for the experimental results from 10000 random primes), so a small D
is unexpected from non-backdoored keys.
Method 3: Inquirer with access to a large number of private keys.
An Inquirer collects large number of private keys generated by in-
spected black-box implementations and computes the batch-GCD
algorithm [Hen+12] over all 4p− 1 values constructed from the cor-
responding primes. Would the same D be used for any two primes,
batch-GCD will succeed in factorization, revealing the presence of the
backdoor as well as D used. This method is usable also for larger key
lengths than would be Method 2, efficiently analyzing 2048-bits keys
and longer.

Here we describe the batch-GCD method. For all i, let

gi = gcd
(

4pi − 1,∏
i 6=j

(
4pj − 1

))
.

If 4pi − 1 = Dis2
i and 4pj − 1 = Djs2

j , we can see that Di = Dj im-
plies Di|gi. Thus we factor each gi = ∏ qek

k , compute a candidate D′i =

∏ qhk
k , 0≤ hk ≤ ek, i.e., a divisor of gi, such that D′i ≡ 3 (mod 8)) and

D′i is square-free. If
4pi−1

D′i
is a perfect square for some D′i , we found Di,

a square-free part of the 4pi − 1.

36

3. On 4p− 1 factorization

As an Inquirer can collect and investigate a large number of private
keys during batch-GCD, the probability of not investigating at least
one pair of two primes with the same D quickly decreases due to the
Birthday paradox. This motivates any sensible backdooring attacker
to use different D for every new prime generated. Having a unique D
generated in turn creates the need for efficient reconstruction of the D’s
value on an attacker’s side, e.g., leaking it in additional information
like padding or maintaining the large database of all the Ds used.

3.5.3 Audit of real-world keys

We collected a large dataset of 512, 1024 and 2048-bit RSA keypairs
generated by fifteen different cryptographic smartcards and three
HSMs with both public and private keys stored (44.7 million keypairs
in total). As we knew the keypair primes, we direcly use Inquirer
methods 2 and 3 to search for a D and attempt to detect a potential
backdoor.
Application of Method 2: Factorization of 4p − 1. We used a ran-
domly selected subset from all keys collected with 5 000 512-bit RSA
keypairs and 100 public 1024-bit RSA keys for every inspected device.
Each prime is analyzed for vulnerability to the 4p− 1 factorization
method, using Algorithm 1 implemented by the Sage computer alge-
bra system for the actual computation.

We factored 4p− 1 (and 4q− 1) and computed their square-free
parts. In the majority of cases, the square-free parts were the numbers
themselves, and the smallest square-free part found having 490 bits in
the 1024-bit case and 229 bits in the 512-bit case. Thus these public keys
are far from being 4p− 1 factorable, and it would be impractical to
use the 4p− 1 factorization method on these keys. In fact, if these keys
could be factored with the method, then so would be any randomly
generated keys of the same bit-size. Section 3.5.3 further discusses
the observed results. Note, that we were not able to completely factor
a small portion of these numbers in the given time frame (2 hours
for one number), but since the Sage factorization algorithm contains
a square test and revealed prime factors as large as 110 bits in other
cases, we can be reasonably sure that the square-free parts of these
unfactored numbers are much larger than 254 as well.

37

3. On 4p− 1 factorization

Application of Method 3: Batch-GCD. We used all 44.7M collected
private keys, including the 2048-bit keys (which are unsuitable for
Method 2 due to their length) to look for the shared value of D with the
batch-GCD algorithm [Hen+12]. We also added #D = ∏D≤50868011 D,
i.e., the product of all square-free D’s congruent to 3 modulo 8 up to
the minimal D with h(−D) = 5000 to a batch-GCD dataset.

We found that no two primes share a common square-free part D
in 4p− 1 and due to #D all Ds used have to be greater than 50868011.
Therefore, we can conclude that if the the backdoor is present, each
prime has to have its own unique D (as reusing any D is very unlikely
to be missed as it would have to be drawn from a set of (44.7M)2

possible Ds due to the Birthday paradox to evade detection on our
dataset). Note that a unique D also means, that an attacker must be
able to 1) infer the D used for the given public key and 2) compute
the HP for this specific D, slowing down the subsequent factorization.

Figure 3.9: Histogram of bit-lengths of square-free parts obtained from the
factorization of 4p− 1 values constructed from 10000 primes
found in 512-bit RSA keys. All other devices than explicitly
listed produced a distribution undistinguishable from the one of
the random primes generated by Sage (Sage RNG). The reason
for the observed differences are explained in Section 3.5.3.

38

3. On 4p− 1 factorization

Distribution of square-free parts.
We took the distribution of the square-free parts of 4p − 1 and

4q− 1 obtained by applying Method 2 to every analyzed device and
compared it to the reference distribution for p and q generated ran-
domly by Sage. No significant differences were found, with two excep-
tions – G&D SmartCafe 6.0 andNXP J2E145G smartcards, as shown on
Figure 3.9. Here, we explain the reason for the observed differences.

The expected probability that 4p− 1 is square-free for large p is

1− ∑
r an odd prime

1
r(r− 1)

≈ 0.748

(established experimentally from 106 random primes generated by
Sage), as for any odd prime r, 4p≡ 1 (mod r2) iff p≡ 1

4 (mod r2) and
there are exactly r(r− 1) residue classes modulo r2 that can contain p.
This is consistent with the experimental results obtained from both
Sage and most cards. However, we observed from [Sve+16] that G&D
SmartCafe 6.0 avoids primes p such that p− 1 is divisible by 3 or 5,
while NXP J2E145G avoids primes p such that p− 1 is divisible by any
number between 3 and 251 inclusive. If p 6≡ 1 (mod 3), then

4p− 1≡ p− 1 6≡ 0 (mod 3)

(so that 4p− 1 cannot be divisible by 9, whichwould otherwise happen
with probability 1

2·3). However, we did not account for the effect of
this condition on other primes r, so the probability that 4p − 1 is
square-free will not increase by 1

6 in this case, but only by 0.148 (for
convenience again found experimentally). Yet still, forbidding the case
p ≡ 1 (mod 3) increases the resistance to the factorization (even if
only very slightly). This case is special because

4p− 1− (p− 1) = 3p ≡ 0 (mod 3).

Conversely, forbidding the case p≡ 1 (mod r) for r 6= 3 decreases this
resistance (although evenmoremarginally), as this leads to forbidding
r “good" possible residue classes of 4p− 1 modulo r2 (note that 1 6≡ 1

4
(mod r2)), so that the probability that 4p− 1 will be divisible by r2

will be 1
r(r−1)−r =

1
r(r−2) instead of 1

r(r−1) in the case that the condition
p 6≡ 1 (mod r) would not be imposed.

39

3. On 4p− 1 factorization

For sufficiently large primes, we experimentally found that if p− 1
is not divisible by 3 nor 5, the probability that 4p− 1 is square-free is
rougly 0.88. If p− 1 has no factor between 3 and 251, the probability is
roughly 0.875, which closely matches the results obtained from G&D
SmartCafe 6.0 and NXP J2E145G smartcards, respectively.

3.6 Conclusions

We proposed an improved version of Cheng’s 4p− 1 method and thor-
oughly analyzed it, both theoretically and empirically. We conclude
that even though the 4p− 1 factorizationmethod is powerful in theory,
it does not seem to have any impact on real-world applications due to
a very limited set of numbers on which it can be applied, occurring
extremely rarely if the primes are randomly generated.

However, an attackermay intentionally generate the primes to result
in the factorable keys to form so-called kleptographic attack, especially
in the black-box devices like cryptographic smartcards. We therefore
analyzedmore than 44millions of keypairs generated by 15 smartcards
and 3 HSMs and found no indication of the backdoor. We were able to
rule out the existence of this backdoor for the key lengths of 512 and
1024 bits, where the detection method based on the full factorization
(Method 2) is applicable as no small D was found.

Unfortunately, we cannot rule out the presence of the backdoor
in keys with longer lengths, like 2048 bits, despite of the availability
and inspection of the private keys. An attacker may use a unique D
for every prime generated, thus evading the detection by batch-GCD
based method (Method 3). The complete backdoor detection (or its
exclusion) is still an open question.

As already mentioned in [Che02], there are several other possi-
bilities for future work on the topic of 4p− 1 factorization, including
the exploration of the possibility of using Weber polynomials instead
of Hilbert polynomials (whose coefficients do not grow as quickly),
using curves of a higher genus or studying the discrete logarithm
problem for primes of the same structure. Moreover, the inherent
asymmetry of the factorization with and without the knowledge of D
could prove useful in the construction of some cryptosystems.

40

4 Fooling primality tests on smartcards1

Many public key cryptosystems crucially rely on prime numbers for
their security. Yet for performance reasons (especially on constrained
devices such as smartcards), most widely used primality tests, such
as the Miller-Rabin (MR) test [Mil75; Rab80], are only probabilistic
[Ble05; Alb+18]. Thus there exist pseudoprimes, i.e., composite numbers
passing these tests. When implemented correctly, probabilistic tests
still provide a sufficient assurance of primality. However, carefully
crafted pseudoprimes [Arn95b] can fool an implementation that is not
utilizing enough randomness [Alb+18]. In (EC)DH and (EC)DSA,
this can lead to private key recovery, using Pohlig-Hellman [PH78]
style attacks.

JavaCard [Ora19] is a popular platform for building systems based
on programmable smart cards. It offers a Java-like environment on
which multiple applications, applets, can be installed. Thanks to Java-
card’s rich cryptographic API (supporting (EC)DSA, (EC)DH and
much more [Sve19]), these applets include electronic passports and
IDs, EMV applets for credit-cards, key managers, cryptocurrency wal-
lets or applets for two-factor authentication. While the API is defined
by an open standard, the implementation of the platform itself is
almost always proprietary, with manufacturers releasing very little
information about the code used in a particular family of cards. This
black-box nature makes the public assessment of implementation se-
curity more difficult, but nevertheless, security problems have been
discovered in the past [Nem+17].

In this work, we test the robustness of present primality tests in
JavaCards by replacing (EC)DSA and (EC)DHprime parameters with
MR pseudoprimes and other composites. In contrast to [Alb+18], we
do not have access to the code inside the smartcard and are not able
to call a primality testing function on its own. Instead, we resort to
performing standard operations (such as signature generation) using
modified parameters (which still need to have specific properties), and
observe any deviations from the expected behaviour. This is further

1. The results in this chapter were published at European Symposium on Research
in Computer Security (ESORICS) 2020 [SJS20]. See https://crocs.fi.muni.cz/
papers/primality_esorics20 for additional materials.

41

https://crocs.fi.muni.cz/papers/primality_esorics20
https://crocs.fi.muni.cz/papers/primality_esorics20

4. Fooling primality tests on smartcards

complicated by the fact that the smartcards do not act deterministically,
do not have debugging functionality, and are prone to many errors.

The main contributions of this research are:

• We open the topic of fooling primality tests on black-box devices
and propose a method for a systematic review of primality tests
(and the relevant domain parameter validation) in black-box
devices that use (EC)DSA/(EC)DH.

• We develop new ways in which parameters can be replaced
with pseudoprimes in (EC)DH and (EC)DSA, along with prac-
tical attacks against these parameters. In particular, the attack
against composite p in ECDSA is new to the best of our knowl-
edge.

• We examine the implementation security of ECDH and ECDSA
in nine smartcards fromfivemajormanufacturers, showing that
all cards but one are vulnerable due to insufficient primality
testing of domain parameters. Issues found were responsibly
disclosed to affected vendors.

• We systematically survey the relevant attacker scenarios and
types of attacks with possible real-world impact and propose
defence mechanisms.

We review the previous work on attacking primality tests in Sec-
tion 4.1. Section 4.2 analyzes the attack scenarios and briefly presents
possible attacks. The methodology for testing the cards is given in
Section 4.3, along with a basic explanation of the used domain pa-
rameters. Readers interested only in practical security should feel free
to skip this section, while still grasping most of the contents of Sec-
tion 4.4 that analyzes the testing results, and Section 4.6 that follows
up with a discussion of proposed defences. Section 4.5 provides tech-
nical details about the full parameter generation and possible attacks
and Section 4.7 concludes this chapter. Finally, the appendices contain
an overview of the MR test (Appendix B.1), the pseudoprime con-
struction (Appendix B.2), datasets of generated domain parameters
(Appendix B.3) and example implementations of concrete attacks
(Appendix B.4).

42

4. Fooling primality tests on smartcards

4.1 Previous work

The idea of breaking a cryptographic protocol by fooling primality
tests was first mentioned in [Ble05]. Albrecht et al. [Alb+18] analyzed
primality tests in open-source libraries, and fooled many of them with
carefully crafted pseudoprimes. Their construction (extending the
one in [Arn95b] and briefly described in Appendix B.2) relies on the
assumption that the implementation of the MR test uses only a small
number of bases that are either fixed or chosen from a relatively small
set. This was indeed the case for many libraries.

Note that all the libraries inspected in [Alb+18] had a dedicated
function for primality testing whose source code was accessible. In
contrast, the situation for black-box devices where the code is not
known, and the primality test (if present) cannot be separated from
the rest of the program, has not been studied before to the best of our
knowledge.

Furthermore, somewhat practical examples of attacks against var-
ious (EC)DH implementations with insufficient primality tests, in-
cluding the case when pseudoprimes are included in elliptic curve
domain parameters, were described in [GMP19].

4.2 Attack scenarios

As in [Alb+18], we assume a setting where the attacker can control or
affect the cryptosystemdomain parameters used by the applet – so that
primes can be replaced by composites – and wants to break the confi-
dentiality of (EC)DH or unforgeability in (EC)DSA. We also assume
that the attacker knows the factorization of the injected parameters,
as he most likely crafted them himself.

However, with the exception of primality testing, we still expect
that all of parameter validation is implemented properly (with the
exception of a cofactor check of an elliptic curve, as the cards lack the
performance to do it).

In our scenario an applet developed by an applet developer uses the
functions of the JavaCard API on a card supplied by a manufacturer
to perform some cryptographic operations while allowing untrusted
parameters provided by the attacker to be used.

43

4. Fooling primality tests on smartcards

4.2.1 Rationale for the attack scenarios

To explain the rationale behind such a scenario, we consider the
specifics of the JavaCard environment aswell as existing cryptographic
protocols and standards. Note that physical access (as is commonly
relevant for the smartcard usage domain) is often not required.

A JavaCard applet developer might use untrusted domain param-
eters, because:

• The provided API functions that set parameter values, such as
ECPrivateKey.setFieldFP(), place no limitation (except bit-
sizes) on the parameters, which are provided as sequences of
bytes and are interpreted as unsigned integers.

• The API documentation contains no security notice that the
set parameters should be trusted or a warning of what are the
consequences of setting domain parameters that are untrusted
or otherwise invalid [Ora19].

• The API contains no functionality for direct primality testing
or domain parameter validation for (EC)DSA or (EC)DH and
no way to implement it efficiently. Thus the developer might
(understandably) assume that the validation is performed im-
plicitly.

Multiple protocols allow to transmit the domain parameters and
thus force a party to either authenticate or validate them:

• TLS, up to version 1.2 [Bla+06a] and prior to RFC8422 [NJP18],
allowed explicit (EC)DH parameters to be sent from the server
to the client, although authenticated by the server public key.

• The certificate format specified in the X.509 standard allows
public keys to hold full domain parameters for (EC)DH or
(EC)DSA [PHB02]. Using this format in a JavaCard applet
(e.g., for interoperability reasons) might lead to untrusted pa-
rameters being used.

• The ICAO document 9303 [ICAO15] specifying the security
requirements for machine-readable travel documents allows

44

4. Fooling primality tests on smartcards

transmitting the (EC)DH domain parameters in the Chip Au-
thentication and PACE protocols. The specification warns that
insecure domain parameters will cause leaks of secret data and
that parameters should not be used unless explicitly known to
be secure (without further elaboration). As the card transmits
the parameters to the reader, it is the one responsible for the
validation.

All relevant (EC)DH and (EC)DSA standards specify procedures
for validating the domain parameters and allow the use of untrusted
domain parameters provided the validation succeeds. For (EC)DSA,
two standards specify the validation requirements:

• FIPS 186-4 [NIST13] refers to the NIST Special publication 800-
89 [NIST06] that in turn requires the primes used in the domain
parameters to be accompanied by a seed and verifies they were
generated using the specified verifiably random method.

• ANSI X9.62 [ANSI98] requires a primality test of the prime
domain parameters, using the MR test with the number of
rounds equal or larger than 50, using random bases. The IEEE
P1363 [IEEE00] standard for (EC)DH has exactly the same
requirement.

The strong requirements for primality testing and domain parame-
ter validation in the above standards might lead the applet developer
to believe that an appropriate validation is performed by the card
and that the use of given parameters is secure. As the detailed imple-
mentation guidance is not provided by JavaCard specifications and
recommendations from standards like IEEE P1363 and X9.62 are not
explicitly mentioned, the platform vendor is left with decision what
level of checks to implement.

We also consider another scenario where primality testing and
domain parameter validation make a significant difference in security.
TLS is an open systemwhere communicating parties are likely to be re-
alised by different software vendors. In the case of closed systems like
dedicated network line encryption boxes, the same entity configures
both communicating endpoints, which may be based on the commod-
ity cards. A platform integrator (not the same as the card manufacturer)

45

4. Fooling primality tests on smartcards

supplies the software responsible for setting the domain parameters
on both ends. These two endpoints are designed to communicate
with each other and to establish a secure channel using (EC)DH (and
potentially (EC)DSA for authentication). Without robust primality
testing and domain parameter validation on the card, the domain
parameters supplied to cards at both ends can contain pseudoprimes
or composites and be weak to a passive eavesdropping attacker. These
parameters can even be authenticated by the platform integrator, yet
without proper validation and primality testing, the card will accept
them. The platform integrator could then also claim some plausible de-
niability, by blaming the weak parameters on a bug in the customised
curve generation codebase or arguing the pseudoprime in the pa-
rameters passed their primality tests. A similar case happened in the
Juniper Dual EC incident [Che+16], where the exploitable weakness
was a result of a series of small coding errors, seemingly unintentional.

One example of a vulnerability, where attacker-controlled domain
parameters were used, was the Microsoft CryptoAPI ECDSA verifi-
cation vulnerability (CVE-2020-0601) [Age20]. It was due to a faulty
certificate verification mechanism, which matched certificates pro-
vided to the trusted ones by comparing the public key. This allowed
an attacker to supply a certificate with modified domain parameters,
which would be trusted.

Even when not directly using untrusted parameters, the adversar-
ial setting makes sense when we account for the physical nature of
cards and, thus, for fault injection attacks. These could be mounted to
manipulate any trusted parameters [BMM00; TT19] that the applet
will use (e.g., in (EC)DH).

4.2.2 Attacks overview

We focus on attacks theoretically applicable to all implementations
accepting composite parameters, instead of those stemming from spe-
cific behaviour of any one implementation. We present four different
attacks, based on the cryptosystem and the injected parameter. In
all four cases, it is possible to efficiently recover the private key for
suitable injected parameters. The details will be given in Section 4.5.

For a composite group order n in ECDSA/ECDH or DSA/DH, it is
well known that the discrete logarithm problem (DLP) in the group

46

4. Fooling primality tests on smartcards

can be decomposed into DLPs in its quotient groups of prime-power
order, which are much easier [PH78]. Thus for sufficiently smooth
injected group orders, the discrete logarithm can be computed.

A similar decomposition andDLP difficulty reduction occurswhen
injecting a composite in place of the prime defining the full multiplica-
tive group in DH/DSA [DCE].

We use yet another decomposition when injecting a composite in
place of the prime defining the finite field for ECDSA/ECDH. As far
as we know, this is a new result.

4.3 Methodology for assessing primality tests

In this section, we describe the method we used to analyze primality
testing in cards of the JavaCard platform. Throughout the remaining
text, the term pseudoprime will always mean a composite number that
passes theMR test with respect to several small bases (the first t primes
in our case).

In [Alb+18], the library functions for testing primality are ready
to be called directly, and the source code can be analyzed to see for
what purpose and with what parameters they are invoked. In contrast,
we cannot even be sure if such functions exist in the closed-source
implementation of the JavaCard platform. Hence we need to guess
where they could be likely present and invoked (e.g., during domain
parameter validation or key generation) and what parts of the algo-
rithm could behave problematically if a prime input was replaced
with a composite one. Also, unlike in [Alb+18], we only have a very
limited amount of pseudoprime bit lengths to choose from.

JavaCard specifies five main cryptographic algorithms involving
prime numbers or domain parameters: RSA, DSA, ECDSA, DH and
ECDH (though not all cards support all of them). We analyzed all
the relevant functions from the JavaCard specification and found no
way to invoke primality testing in the RSA API with user-provided
inputs. Also, the primes used there constitute the private key, and
a scenario with them being replaced with pseudoprimes does not
trigger a primality test. As a result, only the methods of the (EC)DH
and (EC)DSA algorithms are applicable. Additionally, we restricted
the testing focus on the ECDSA and ECDH algorithms only, as none

47

4. Fooling primality tests on smartcards

of the tested cards support DH and only one supports DSA. However,
we still study the theoretical aspects of using DSA/DH parameters.

The practical analysis of primality testing consists of three steps:
1. Constructing pseudoprimes and other composites (Section 4.3.2

and Section 4.3.3).
2. Generating (EC)DSA and (EC)DH parameters with primes

replaced with the numbers crafted in the previous step (Sec-
tion 4.5).

3. Triggering the card’s primality test with the modified parame-
ters as input, e.g., key generation, signing, verification in case
of (EC)DSA or key agreement in case of (EC)DH (the rest of
this section.)

In the last step, for any operation we perform on the card, the card
only returns a response (output or error value) and the duration of
the computation, which is often insufficient to understand exactly
what happened due to implementations being closed-source. By the
behaviour of the card under test, we mean such a response to our calls
of API functions. To gain more information, we could also observe the
card’s power consumption or EM emissions during computation, but
we do not consider these here. We use three types of basic operations
in sequence to observe the behaviour:

3a) Parameter setting. Individual (EC)DSA or (EC)DH parameters
are set on a Key object as byte arrays, interpreted as unsigned
integers.

3b) Key generation. After setting all parameters, a Keypair can be
generated. Note that the JavaCard does not differentiate be-
tween an ECDSA and ECDH keypair. In our tests, we skip this
operation if it fails and continue with a manually generated
private key, to also test the scenario where a keypair to be used
is imported to the card.

3c) Signing and verification orKey agreement.After a Keypair object is
successfully generated, it can be used to initialise a Signature or
a KeyAgreement object and perform the operation. We supplied

48

4. Fooling primality tests on smartcards

random data for signing and performed the key agreement
between two keypairs generated on the card if possible. If the
key generation failed, we instead substituted the private key
and performed key agreement between it and the generator
point on the curve.

To perform these operations, we developed and released our tool
ECTester [JS19],which accesses the public JavaCardAPI and is generic
to all cards.

4.3.1 Domain parameters

In this section, we examine the requirements on domain parameters
used in (EC)DSA and (EC)DH, specifically primality requirements
and show what requirements need to be fulfilled while replacing a
prime with a composite. Since the parameters and the corresponding
implementation checks for the finite field case and for the elliptic curve
case differ significantly, we study them separately.
The DSA/DH case.

In DSA/DH, there are three domain parameters [NIST13]:

• p is the prime defining the multiplicative group Z∗p in which
we compute;

• g is an element of Z∗p;

• q is the order of g in Z∗p.

Note that the above already implies gq ≡ 1 (mod p), q | p− 1 and
g 6= 1 (unless q = 1) and we can expect that these conditions could be
checked by the implementation.

The supported sizes include {(1024,160), (2048,224), (2048,256)}
bits for p,q respectively. Classically, q is required to be prime, as the
running time of the Pohlig-Hellman algorithm [PH78] depends on
the size of the largest factor of q. Also, the random nonce k, which
is generated during signing, needs to be invertible mod q. Thus for
testing, we could replace either p or q with a pseudoprime. However,
this replacement is non-trivial, as the conditions above are quite easy
to satisfy when computing p and g from q, but somewhat hard if given

49

4. Fooling primality tests on smartcards

p, as one needs to factor p− 1 and hope it has a prime factor q of the
correct size. We discuss this in Section 4.3.4.

In the DH protocol on the JavaCard platform, the domain parame-
ters are the same as in DSA, but the q parameter is optional [Ora19].
This means that either no checks related to q are performed, or that p
is assumed to be a safe-prime, i.e. p = 2q + 1. We do not consider the
case when the safe prime condition is assumed in the remainder of
this chapter and instead refer the reader to [GMP19]. Similarly, we do
not consider the case where there are no checks related to q present,
as it is straightforward to subvert the parameters in such a system (for
example, q can be very small).

Note that we did not test actual DSA/DH parameter sets, as men-
tioned earlier in Section 4.3, due to lack of support in the tested cards.
The ECDSA/ECDH case. This case is a little more complicated. The
JavaCard API supports curves in the short Weierstrass form either
over prime fields Fp or binary fields F2m . We do not work with the
binary field case, as most cards at our disposal do not support it. The
prime field case then requires the inputs p, a,b, Gx, Gy,q, h, where:

• p is the prime defining the field Fp over which we will work;

• a, b are the coefficients of the elliptic curve E in shortWeierstrass
form over Fp;

• Gx, Gy are the affine coordinates of the generator G ∈ E(Fp);

• q is the order of G;

• h = n/q is the cofactor, where n = #E(Fp).

As for supported sizes, p should have either 160,192,224,256,384,
512 or 521 bits. Computing q or n is prohibitively expensive for the
card, so it is reasonable to assume that only the condition [q]G =Owill
be checked, possibly together with the size of q (by Hasse’s theorem,
n = qh should be roughly the same size as p). In ECDSA/ECDH, q
should be prime for the same reasons as in DSA/DH. Thus for testing,
we can replace either p or q by a pseudoprime (for q, this is discussed
in [GMP19]). To do that, we need to either construct an elliptic curve
with a prescribed number of points (we used our tool ecgen [Jan19]

50

4. Fooling primality tests on smartcards

that supports the complexmultiplicationmethod [Bro06; BS07])when
q is replaced, or to construct an elliptic curve over Zp (with composite
p) and correctly compute its order.

For each card and each bit-size in {160,192,224,256,384,512,521},
we test the card’s behaviour for ECDSA and ECDH with parameter
sets described in Table 4.2. The rest of this section shows how we
generated p and n, while Section 4.5 explains how we constructed the
malicious parameters from them. The full parameters used for testing
in this chapter are included in Appendix B.3.

4.3.2 Generating pseudoprimes bit-size t k2 k3

160 11 73 101
192 13 61 101
224 14 197 257
256 16 233 101
384 23 137 157
512 30 137 157
521 30 137 157
1024 52 241 281

Table 4.1: Parameters to construct
pseudoprimes by
tweaked Arnault’s
method [Arn95a;
Alb+18].

As we are considering only the MR
primality test, we use a slightly
tweaked version ofArnault’smethod
with three pseudoprime factors, de-
scribed in Appendix B.2. We con-
struct numbers that are pseudo-
prime to t smallest primes taken as
bases, assuming the resource con-
strained smartcard will choose its
bases from a set of small primes. The
only limitation is that the bit-size of
the pseudoprime must be one of the
supported ones, as discussed in Sec-
tion 4.3. To achieve this, we must try
many combinations of t,k2,k3 to arrive precisely at the supported bit-
sizes, while also trying to maximise t (Table 4.1). For each bit-size, the
pseudoprime generation process took at most a few minutes on an
ordinary laptop (using the precomputed values of t, k2 and k3).

4.3.3 Generating special composites

To systematically compare the card behaviour, we also used random
composites with controlled numbers of factors or varying levels of
smoothness, to get finer granularity. In this way, we can detect if the
primality test is present at all (though possibly faulty).

51

4. Fooling primality tests on smartcards

Composites with a given number of factors. To generate a composite
number of a given bit-size with a given number of factors, we use a
greedy approach. In each step, we generate a randomprime number of
size b/r, where b is the number of remaining bits, and r is the number
of remaining factors to be generated. We chose 3-factor and 10-factor
numbers for comparison, as more factors would already lead to too
smooth numbers.
Composites with a given smoothness level. For the smooth case, we
employ a similar greedy algorithm that randomly chooses prime fac-
tors up to the smoothness bound and retries until a number with the
right bit-size is constructed.

4.3.4 Generating complete domain parameters

In this section, we explain how to generate complete parameters for
ECDSA/ECDH and DSA/DH, based on the pseudoprime and other
composite inputs generated in Section 4.3.2 and Section 4.3.3. We use
these parameters to test ECDSA/ECDH on the cards.

The challenge in embedding composites into the domain parame-
ters lies in the fact that the card might check many properties of the
parameters, while the only thing we are currently interested in is the
compositeness of some of them. Thus the parameters should be as
close to the correct ones as possible. Section 4.3.1 lists the properties
that the card might verify in the domain parameter validation algo-
rithms [ANSI98; IEEE00]. For each scenario, we also described the
corresponding attack.
ECDSA/ECDH: prime p, composite q. The approach, in this case,
is almost the same as the one described in [GMP19]. We use the
complex multiplication method [Bro06; BS07], realised by our tool
ecgen [Jan19], which is able to construct a curve over a prime field in
short Weierstrass formwith a given number of points. We need to take
into account that the structure of E(Fp) is either cyclic or a product of
two cyclic groups. This poses an issue because the JavaCard platform
limits the size of the cofactor to an unsigned short integer, so just 16
bits. In the curves generated by two points, often the cofactor does not
fit into 16 bits, even if we pick a large subgroup. Thankfully, the cards
do not perform validation of the cofactor, as it is an optional input, so

52

4. Fooling primality tests on smartcards

we just pick the generator with the largest order and set the cofactor
to 1. Given a composite q, generating a suitable 256-bit curve took just
a few minutes on an ordinary laptop.

One of the forms of composite q we tried to generate was that of
an appropriately sized primorial (i.e., the product of all the primes
up to some bound). However, the complex multiplication method, as
implemented in the ecgen tool, was unable to generate them, even after
a significant time spent on the task (e.g., a week on a single curve).
The method searches for the curves by enumerating values of their
complex multiplication discriminant, starting from 1, until a suitable
curve and prime field is found. This points to an absence of prime
field curves with primorial order and a small complex multiplication
discriminant, which is an interesting observation.
ECDSA/ECDH: composite p, arbitrary q. Here we assume for sim-
plicity that p is square-free and has no small factors (up to some
bound, we chose 50). We want to find a curve whose order has no
small divisors; otherwise, the card might reject the curve for a wrong
reason, as we have observed in practice.

For each prime factor pi of p, we iterate over all possible curves
over Zpi until we find one whose order is prime (this will minimise
the number of prime factors of the resulting curve over Zp). We also
prefer if the order of the curve is never repeated for different pi’s, but
this is easily satisfied in practice. When such a curve is found for each
pi, we create the desired curve modulo p just by using the CRT on the
Weierstrass coefficients a,b of the individual curves (see Section 2.1.
Since p has no small prime divisors, we can expect the same to be true
for the order of the final curve as well, thanks to the construction, as
the resulting order is the product of the individual orders.

To obtain a generator point of the resulting curve, we simply pick
a generator point of each curve, and we use the CRT again on their
coordinates. Since each curve over Zpi was cyclic and their orders
were distinct, the final curve is cyclic as well, so we can set the cofactor
to be 1. This whole process takes just seconds for the 3- and 10-factor
256-bit composites used in this chapter.
DSA/DH: prime p, composite q. This is the easiest scenario, as it
almost completely follows the way ordinary DSA parameters are gen-
erated. We first pick a composite or pseudoprime q, then choose ran-

53

4. Fooling primality tests on smartcards

dom properly sized integers k until p = kq + 1 becomes a prime. Then
we repeatedly pick a random r ∈ Z∗p until we get a generator of Z∗p
and compute g = r(p−1)/q. In this way, we ensure that g has order q
modulo p. This generation process is very fast, and takes just seconds
to generate 1024-bit parameters.
DSA/DH: composite p, prime q. This case is more problematic to
construct than the above one. First, let us assume that p is a Carmichael
number (as is the case for the pseudoprimes we are constructing
(Appendix B.2). We assume that either of the conditions

q | p− 1, gq ≡ 1 (mod p), and g 6= 1

could be checked, so we will want to satisfy all of them.
These conditions imply that gq ≡ 1 (mod pi) for all prime factors

pi of p, hence ggcd(q,pi−1) ≡ 1 (mod pi). As q is a prime and g 6= 1
(mod pi) for some i (otherwise g = 1), this implies q | pi − 1 for some
i.

Thus we need p− 1 to have a prime factor q of a size corresponding
to the size of p (e.g., if p has 1024 bits, then we need q to have 160 bits).
Given a specially constructed p, this means factoring p− 1 and hoping
for a factor of the correct size. This is exactlywhatwe did for generating
the DSA parameters, even though it was only practical for the 1024-bit
parameters, given that factoring larger than 1024-bit random integers
and hoping for a factor of a correct bit-size is computationally hard for
our computation cluster. Finding an appropriate 1024-bit pseudoprime
p such that p− 1 has a 160-bit factor took a few days on an equivalent
of an ordinary laptop.

Once we have p and q, we can again loop through random r from
Z∗p and compute g as g = r(p−1)/q until g 6= 1. This will imply that
g 6≡ 1 (mod pi) for at least one i, so that the primality of q together
with the congruence gq ≡ rp−1 ≡ 1 (mod p) (as p is a Carmichael
number) will imply that the order of g modulo pi is q, hence q | pi − 1.

Note that it is possible that no such g exists, even if p is a pseu-
doprime - for example for the Carmichael number p = 7 · 19 · 67 and
q = 5, we have that q | p − 1, but q - pi − 1 for any i, so there is no
element of order q modulo p. However, it can be empirically seen that
is unlikely to happen when p and q are large enough.

54

4. Fooling primality tests on smartcards

It seems hard to adapt this strategy of generating parameters for a
fixed composite non-Carmichael p (which instead has a given number
of factors or is smooth). One would have to simultaneously force
q | p− 1 and q | pi− 1 for some prime factor pi of p, which is equivalent
to q | gcd(p − 1, pi − 1). But unlike in the Carmichael case (where
gcd(p − 1, pi − 1) = pi − 1), heuristics show that we cannot expect
gcd(p− 1, pi− 1) to have a large prime factor for most composite p, let
alone a factor of an exactly given size. Thuswe do not consider this case
further, but we stress that its significance is mostly limited to testing of
black-box devices. A motivated attacker would use pseudoprime (or
just Carmichael) p, as it has a much better chance to bypass potential
primality tests, while making the generation of the other parameters
easier.

4.4 Practical results

The analysis was performed on cards with ECC support that we were
able to obtain in small quantities and covers most major vendors (ex-
cept for Gemalto and Idemia). The cards were fabricated in the period
between 2012 and 2018. Note that due to lengthily and costly cer-
tification processes, the pace of software changes in the smartcard
environment is significantly slower than for standard software devel-
opment. As a result, the products by the same vendor tend to reuse
the same existing codebase (as visible from results for the NXP cards),
and our findings are likely valid for the newer product versions as
well. The results are summarized in Tables 4.2a and 4.2b.

The main result of our testing is that most manufacturers, apart
from Athena and Infineon, seem to lack primality tests of the p and
n parameters for ECDSA and ECDH. This follows from the same
observed card behaviour for the tests with pseudoprime parameters
(Section 4.3.2) as for the tests with general composite parameters
(Section 4.3.3). Missing primality testing invites Pohlig-Hellman style
attacks mentioned in Section 4.2. Due to the non-deterministic nature
of smartcard computations, we had to run the tests many times to
get representative results. The different bit-sizes of the curves used,
ranging from 160 bits to 521, do not impact the results in an unexpected
way.

55

4. Fooling primality tests on smartcards

Card p q

prime pseudo 3f pseudo 3f 10f 11s odd 11s even
Athena IDProtect OK IL IL IL IL IL CYC EXC
G&D SmartCafe 6.0 OK OK OK OK OK OK CYC EXC
G&D SmartCafe 7.0 OK OK/MUT OK/MUT OK OK OK MUT EXC
Infineon CJTOP 80k OK IL IL IL/OK IL IL EXC EXC
NXP JCOP v2.4.1 OK OK/VRF OK/VRF OK OK OK IL IL
NXP JCOP CJ2A081 OK OK OK OK OK OK IL IL
NXP JCOP v2.4.2 J2E145G OK OK/VRF OK/VRF OK OK OK IL IL
NXP JCOP J3H145 OK OK/MUT OK/VRF/MUT OK OK OK EXC EXC
TaiSYS SIMoME VAULT OK OK/MUT IL/MUT* OK OK OK EXC EXC

(a) ECDSA results.
Card p q

prime pseudo 3f pseudo 3f 10f 11s odd 11s even
Athena IDProtect OK IL IL IL IL IL CYC EXC
G&D SmartCafe 6.0 OK MUT MUT MUT MUT MUT CYC EXC
G&D SmartCafe 7.0 OK OK OK OK OK OK MUT EXC
Infineon CJTOP 80k OK IL IL IL IL IL EXC EXC
NXP JCOP v2.4.1 OK OK OK OK OK OK IL IL
NXP JCOP CJ2A081 OK OK OK OK OK OK IL IL
NXP JCOP v2.4.2 J2E145G OK OK OK OK OK OK IL IL
NXP JCOP J3H145 OK OK/MUT OK/MUT OK OK OK EXC EXC
TaiSYS SIMoME VAULT OK OK OK OK OK OK EXC EXC

(b) ECDH results.

Table 4.2: Results of domain parameters validation using on-card primality testing
by nine different cards from five major manufacturers. Multiple values
separated with a slash indicate that multiple results are present with
decreasing occurrence from left to right. *IL (see below) happens on
verification, key generation and signing works.

Result types Parameter names

OK Operation without error
IL ILLEGAL_VALUE exception
VRF Failed to verify signature
EXC Unexpected exception
CYC Card cycles indefinitely
MUT Card does not respond

prime standard parameters
pseudo p pseudoprime p

3f p 3-factor composite p
pseudo q pseudoprime q

3f q 3-factor composite q
10f q 10-factor composite q

11s odd q 11-smooth odd q
11s even q 11-smooth even q

Green background signifies tests with the expected result, i.e. the card correctly
computed with the parameters or the card correctly rejected them.
Yellow background marks tests where the card exhibits unexpected behaviour,
but are not vulnerabilities, and are not exploitable by the attacks from Section 4.2.
Red background marks tests where the card accepted parameters it should have
rejected, and is thus vulnerable to attacks from Section 4.2.

56

4. Fooling primality tests on smartcards

We may have passed the primality test using a pseudoprime curve
order in the case of the Infineon CJTOP 80k card, as the key generation
and ECDSA signing and verification worked in a few rare cases, even
though the card rejected the parameters most of the time.We observed
this in roughly 3 out of 1000 tries on a 192-bit pseudoprime order curve.
Our hypothesis is that the implementation is choosing small MR bases,
which occasionally lie in the set of liars for our provided pseudoprime.

We were not able to pass the primality test present on the Athena
IDProtect card, perhaps because it uses random MR bases or some
other primality test.

We also observed that cards occasionally went mute and did not
respond to the command, often upon invoking key generation. This
behaviour is outside of the PC/SC specification2 and results in a PC/SC
error being raised by the reader’s driver. It could also mean that the
cards perform some kind of a self-test during the operation and stop
responding as a security measure if the test fails. The presence of such
self-tests is well documented in cards. In ECDSA, this error might
stem from the card generating a nonce k that is non-invertible modulo
q, which the system might not expect.

In the ECDSA case, several cards occasionally produced invalid
signatures. This is possibly due to the modular inversion algorithm
assuming a prime modulus. We did not investigate this matter further,
but these invalid signatures might leak information about the private
key or the used nonce, which might be abused by a lattice attack.

The behaviour of the cards also differs for smooth q and for 10-
factor q. We think this is due to some unknown checks failing when
such a smooth order is given, not due to a primality test. Furthermore,
two cards (Athena IDProtect, G&D SmartCafe 6.0) cycle indefinitely on
key generation on a curve with smooth odd order, we do not have any
explanation for this behaviour.

Algorithms used during the operations, such as the modular mul-
tiplicative inverse or the modular square root, may be implemented
to rely on the modulus being prime. Thus we were surprised to see
the cards mostly working for composite p.

2. The PC/SC specification specifies the general communication protocol between
the card and the reader device.

57

4. Fooling primality tests on smartcards

4.5 The attacks in detail

In this section,we discuss the attack details in each of the four scenarios
we consider.
Attack on ECDSA/ECDHwith prime p and composite q. Using the
classical Pohlig-Hellman algorithm [PH78], the DLP asymptotically
becomes only as hard as the DLP in a subgroup of order l, where l is
the largest prime factor of the group order q. There it can be solved
by the Pollard ρ algorithm, which costs roughly

√
π
4 l ≈ 0.886

√
l point

additions [BL]. Thus for example, when using a 256-bit curve and n
has three factors of roughly the same size, the total computation cost
of the DLP is approximately 3× 0.886×

√
286 ≈ 244, which is already

practical (and can be much cheaper for a larger number of factors).
Compare this with a case of using the Pollard ρ algorithm to solve DLP
on a standard 256-bit curve, where one gets the cost of 0.886×

√
2256≈

2128. An example of this attack is given in Appendix B.4.
Attack on ECDSA/ECDH with composite p and arbitrary q. When
a composite p is a product of distinct primes p1, . . . , pe in ECDSA or
ECDH, we have E(Zp) ∼=

⊕e
i=1 E(Zpi) (see Section 2.1), with the iso-

morphism essentially realised by the CRT applied to point coordinates.
Thus the DLP on E(Zp) again asymptotically becomes only as hard
as the hardest DLP on some E(Zpi) (since after solving the DLP in all
individual groups, we can use the CRT to obtain the desired discrete
logarithm). Since the order of E(Zpi) is roughly pi, the situation is
very similar to the one for composite q in ECDSA/ECDH. An example
of this attack is given in Appendix B.4.
Attack on DSA/DH with prime p and composite q. The Pohlig-
Hellman algorithm is applicable in an exact analogy to the composite
n case in ECDSA/ECDH. Note that the sub-exponential index calculus
algorithm could also be used to solve the individual DLPs, but we
expect it to performworse than Pollard ρ (whose cost is asymptotically
the same as for ECDSA/ECDH), as it cannot efficiently use the extra
information about the factorisation of q.
Attack on DSA/DH with composite p and prime q. In this case, we
know gx modulo p, where 0< x < q and q | pi− 1 for some prime factor
pi of p (this follows from the construction described in Section 4.3.4).

58

4. Fooling primality tests on smartcards

Thus we also know the value gx modulo pi and finding x modulo pi
gives us x directly, since x < q ≤ pi − 1. Therefore it is sufficient to
solve the DLP modulo pi. Note that on one hand, Pollard ρ does not
have an advantage compared with the case with a real prime p, as the
group order is still q. On the other hand, the complexity of an index
calculus algorithm only depends on pi, which can be much lower than
p. Hence the security level will be lower than it should be and might
lead to a private key recovery for small enough pi. We demonstrated
the practicality of this approach in Appendix B.4.

4.6 Proposed defences

Without a robust primality test, a card cannot properly validate do-
main parameters. As the public JavaCard API lacks primality testing
functionality, we cannot expect the developers to perform the valida-
tion either. Thus applications that allow the setting of custom domain
parameters may result in a vulnerable applet.

Furthermore, the absence of primality testing functionality hinders
the development of more complex cryptographic applications. For
example, the vulnerability in the RSA key generation presented in
the ROCA attack [Nem+17] could have been mitigated by applets
generating the primes for their RSAkeypairs themselves, thus avoiding
full firmware fixes of the affected devices (which are often impossible
in the case of cards). The lack of solid number-theoretic functionality
in the JavaCard API prevented this though.

Fortunately, most of the protocols and implementations use stan-
dard named curves such as NIST P-256 or Curve25519. This seems to
limit the current real-world impact of the aforementioned absence of
primality testing in domain parameter validation.

We analyzed an extensive list of open-source implementations of
JavaCard applets [Eni19] and found none that would use unauthenti-
cated domain parameters in (EC)DSA or (EC)DH. Most used a fixed
standard curve, with a few using domain parameters supplied in a
command, but those were either authenticated or it was apparent from
the context that they were provided by a trusted party, for example
during the setup of the applet. However, one should keep in mind the
possibilities of an untrusted setup described in Section 4.2, as well as

59

4. Fooling primality tests on smartcards

the possibility of fault injection attacks. We also note that open-source
JavaCard development comprises only a very small part of deployed
JavaCards and that most applets are closed-source.

The recent trends in cryptography head towards misuse-resistance,
the property of protocols and APIs that makes it hard for the develop-
ers to use and implement them incorrectly. Protocols and cryptosys-
tems should allow simple and secure implementations. Examples
of this include the nonce-misuse resistant authenticated encryption
modes such as the SIV [Har08] or libraries with a very simple API
such as libsodium or NaCl [BLS12]. With this direction in mind, the
missing domain parameter validation steers the developers to misuse
the API and undermine the security of their applets.

We thus propose several changes to the JavaCard specification:

• Require full domain parameter validation, for example as spec-
ified in ANSI X9.62 [ANSI98] and IEEE P1363 [IEEE00], which
includes primality tests of prime parameters.

• Add anAPI that supports a set of named curves; allowmanufac-
turers to only support this API. Consider perhaps deprecating
or discouraging explicit domain parameter setting.

• Add a primality test to the public API.

Validating elliptic curve domain parameters consists of more than
primality testing and general sanity checks on the parameters. Luckily,
the necessary checks are specified in the aforementioned standards.

The modification of JavaCard API to accept only named curves
instead of the full specification of curve parameters limits flexibility
for the future inclusion of new curves as it might not be possible to
update the list after card deployment. On the other hand, strict usage
of only named curves prevents attacks similar to the recent attack on
the Microsoft CryptoAPI library (CVE-2020-0601) [Age20], which
cannot be prevented only by domain parameter validation.

The Miller-Rabin with random bases or Baillie-PSW primality tests
should allow a robust and reasonably efficient (even on limited smart-
card chips) implementation of primality testing. For an example of
a performant and misuse-resistant primality test, see Massimo and
Paterson [MP20].

60

4. Fooling primality tests on smartcards

4.7 Conclusions

We have explored the robustness of primality testing in domain pa-
rameter validation by smartcards of the JavaCard platform. Due to
unavailability of primality testing functionality in the public JavaCard
API, we tried to trigger the tests indirectly by using specially crafted
composite domain parameters for ECDSA and ECDH operations.

We analyzed nine different smartcards from five major manufac-
turers and found that all but one failed to properly verify the primality
of the provided ECDSA and ECDH domain parameters, not even re-
quiring pseudoprimes to fool them, just composites. This results in
a vulnerability to Pohlig-Hellman [PH78] style attacks, allowing the
extraction of the private key. Our approach is generic to all black-box
devices performing ECDSA and ECDH and the tooling can be reused.

Furthermore, the vulnerability is not easily mitigated for already
deployed smartcards. The code responsible for the domain parameter
validation is often stored in a read-only memory, which cannot be
updated. In addition, the on-card verification of the provided domain
parameters by the developer cannot be efficiently performed due to a
lack of a primality testing functionality in the public JavaCard API.

61

5 Minerva: The curse of ECDSA nonces1

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a very
popular digital signature algorithm, used among others in the TLS
protocol [Res18], document signing and in blockchain applications.
One of its main pitfalls is that it requires a unique nonce per signed
message. Its fragility with regards to these nonces is well known. Any
reuse of the nonce for a differentmessage trivially leads to key recovery,
as was the case in the PlayStation 3 game console [FAIL10], which
utilized a fixed value for signing its binaries.

While nonce reuse problems are to a large extent mitigated by
using deterministic generation of nonces as specified in RFC 6979
[Por13] or used in EdDSA [Ber+12], other potential issues can prove
fatal. Knowing the nonce used for a single known message – or being
able to brute-force it, as was the case for the Chromebook H1 chip
[Chro19] used for U2F authentication – leads to private key recovery
as well. Even worse, ECDSA is one of the Schnorr-like [Sch89] signa-
ture schemes, featuring a linear relation between the nonce and the
private key. Thus even partial information about the random nonces
(such as knowledge of certain bits) can be sufficient to recover the
private key, often via the use of lattice reduction techniques. The par-
tial information can originate from implementation issues (such as a
faulty random number generator or a biased sampling method), or it
might be observed via side-channel attacks or even forced via fault
injection.

The already large, yet still incomplete list of past ECDSA-related
vulnerabilities indicates a systemic difficulty in the implementation of
secure, leakage-resistant ECDSA code. We developed a new leakage-
testing tool, analyzed a variety of cryptographic libraries and devices,
and found several with timing leakage during the ECDSA signing. In
contrast to the more commonly used proof-based approach intrinsic to
lattices, we focused on extensive heuristic comparison of existing and
newly proposed methods on the benchmark data as collected from
several real-world vulnerabilities and having different noise profiles.

1. The results in this chapter were published in [Jan+20], winning the Best Paper
Award at Cryptographic Hardware and Embedded Systems (CHES) 2020. See
https://minerva.crocs.fi.muni.cz/ for additional materials.

63

https://minerva.crocs.fi.muni.cz/

5. Minerva: The curse of ECDSA nonces

This work brings the following contributions in the area of lattice-
based attack methods against real implementations of ECDSA:

• Discovery and responsible disclosure of a set of vulnerabilities
in the implementation of ECDSA in a certified cryptographic
chip and five cryptographic libraries that allow to extract the
private key used (Section 5.2 and Section 5.3).

• Propositions of two new distinct methods for private key re-
covery, which can tolerate a certain number of errors in the
estimation of nonce’s known bits (Section 5.4).

• A systematic and extensive comparison of the newly proposed
and all previously published methods and their parameteriza-
tion on the benchmark created using noise profiles observed in
the real-world vulnerable implementations (Section 5.5). No-
tably, we show that newly proposed methods require an order
of magnitude fewer signatures for a successful attack on the
TPM-FAIL dataset [Mog+20].

• Release of an open-source tool2 for extensive analysis of ECC
implementations for software cryptographic libraries and Java-
Card smartcards.

5.1 Related work

The task of recovering the ECDSA private key given enough infor-
mation about signature nonces can be seen as an instance of the Hid-
den number problem (HNP). The HNP was originally introduced by
Boneh and Venkatesan [BV96] to prove the hardness of computing
Diffie-Hellman secrets. They showed a way to solve it by transforming
it into a Closest Vector Problem (CVP) instance, solvable via lattice
reduction and Babai’s nearest plane algorithm [Bab86]. Howgrave-
Graham and Smart [HS01] andNguyen and Shparlinski [NS02; NS03]
used the HNP to show that the (EC)DSA schemes are insecure if the
attacker can obtain information about the most significant bits of the
nonces used. Since then, the HNPwas used in many attacks against bi-
ased or leaked nonces in (EC)DSA, often utilizing side channels such

2. ECTester: https://github.com/crocs-muni/ECTester.

64

https://github.com/crocs-muni/ECTester

5. Minerva: The curse of ECDSA nonces

as timing [Ald+19; BT11; Mog+20], cache attacks [BH09; Ben+14;
PSY15; FWC16; Rya19a; Dal+18; Rya19b; Wei+20], electromagnetic
measurements and other side channels [Gar+20; Gen+16; Bel+16].

Other attacks utilizing the HNP include using information about
nonce distribution [BH19] or fault injection in the case of the SM2
signature algorithm [LCL13]. There have also been some theoretical
extensions [FGR12; GRV16; HR06]. Finally, a very different approach
was taken by Mulder et al. [Mul+13], where lattice reduction is used
just as a processing step, and the core of the method lies in the Fast
Fourier Transform. The method, also known as Bleichenbacher’s ap-
proach, allows more input errors in exchange for much more signa-
tures than the lattice-based approach.

The real device leakage and measurement noise profiles largely
influence the input information and can cause errors, to which lattice-
based methods are susceptible. Furthermore, the parameter space
for these methods is extensive. Thus so far, there is only a limited
systematic comparison of the efficiency of existing methods, evaluated
based on the number of required input signatures (the fewer, the
better). We addressed the situation and created such a comparison
based on real-world noise profiles.

5.2 The vulnerability

The vulnerable devices and libraries (see Table 5.1 for a list) leak the
effective bit-length of the scalar used in scalar multiplication on an
elliptic curve through timing. The leakage is insignificant for many
applications of scalar multiplication such as ECDH or key generation
as only the bit-length of the private key is leaked, which represents a
small amount of information about the private key, which is always
the same.

However, in ECDSA [NIST13], the bit-length of the random nonce
is leaked. Such leakage is much more significant as each signature
represents new and usable information about the private key. When
enough leaked information is accumulated, the private key can be
completely recovered using lattice reduction techniques.

65

5. Minerva: The curse of ECDSA nonces

Table 5.1: Libraries and devices we analyzed with respect to their leakage.

Type Name Version/Model Scalar multiplier Leakage

Li
br
ar
y

OpenSSL 1.1.1d Montgomery ladder1 no
BouncyCasle 1.58 Comb method2 no
SunEC JDK 7 - JDK 12 Window-NAF no

Lopez-Dahab ladder yes
WolfSSL 4.0.0 Sliding window yes3
BoringSSL 974f4dddf Window method no
libtomcrypt v1.18.2 Sliding window no
libgcrypt 1.8.4 Double-and-add yes
Botan 2.11.0 Window method4 no
Microsoft CNG 10.0.17134.0 Window method no
mbedTLS 2.16.0 Comb method no
MatrixSSL 4.2.1 Sliding window yes
Intel PP Crypto 2020 Window-NAF no
Crypto++ 8.2 unknown yes

Ca
rd

Athena IDProtect 010b.0352.0005 unknown yes
NXP JCOP3 J2A081, J2D081, J3H145 unknown no
Infineon JTOP 52GLA080AL, SLE78 unknown no
G+D SmartCafe v6, v7 unknown no

1 Applies the fixed bit-length mitigation.
2 Uses many scalar multiplication algorithms.
3 Likely not exploitable, due to a small amount of leakage.
4 Uses additive scalar blinding.

5.2.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

The public domain parameters of the ECDSA consist of a standardized
elliptic curve E over a finite field and a generator point G on E of prime
order n. To sign a hashed message H(m) with a private key x ∈Z∗n,
the signer:

1. generates a uniformly random value (“nonce”) k ∈Z∗n,
2. computes r = ([k]G)x (mod n), the x-coordinate of [k]G 3,
3. computes s = k−1(H(m) + xr) (mod n) 3,
4. outputs (r, s) as the signature of H(m).

5.2.2 Leakage

For three out of five affected libraries in Table 5.1 (libgcrypt,MatrixSSL,
SunEC) and the affected smartcard (Athena), the signing runtime di-
rectly depends on the bit-length of the nonce linearly: each additional

3. And returns to step 1. if the value equals 0.

66

5. Minerva: The curse of ECDSA nonces

248 249 250 251 252 253 254 255 256
nonce bit-length

148500

149000

149500

150000

150500

151000

151500

152000
sig

na
tu

re
 ti

m
e

(
s)

0

20

40

60

80

Figure 5.1: Heatmap of the signing duration and the bit-length of ECDSA
nonces for 500 000 signatures using secp256r1 curve on the
Athena IDProtect card.

bit represents one more iteration of a loop in scalar multiplication,
which increases the runtime. The leakage can be seen in the heatmap
in Figure 5.1 and more clearly in powertraces of the card performing
ECDSA signing in Figure 5.2.

For implementations leaking just the noisy bit-length (libgcrypt,
SunEC, Athena) the leakage can be modeled using three parameters:
duration of constant time processing in signing (e.g., hashing) (base),
duration of one iteration of the scalar multiplication loop (iter_time)
and the standard deviation of the noise (sdev). On the secp256r1
curve, this leakage L can be modelled as a random variable:

L = base + iter_time · B + N
B ∼Geom(p = 1/2, (256,255, . . . ,0))

N ∼Norm(0, sdev2)

(5.1)

where B represents the bit-length with a truncated geometric dis-
tribution and N the noise. Only two of the above parameters, iter_time
and sdev, affect howmuch the implementation leaks; we will use them
to assess how easy it is to mount an attack.

In the case of wolfSSL and its sliding window scalar multiplication
implementation, the dependency is more complex, and the leakage
much smaller. Thus we consider it to be leaking, yet not likely ex-
ploitable. The MatrixSSL implementation also leaks the Hamming
weight of a scalar: each non-zero bit increases the computation run-

67

5. Minerva: The curse of ECDSA nonces

time. The Crypto++ library leaks the bit-length and other unidentified
information.

Figure 5.2: The visible leakage of nonce’s bit-length on a power consumption
trace of the Athena IDProtect smartcard as captured by an
ordinary oscilloscope at 40 MHz sampling frequency for three
signatures (aligned) with nonces having 0, 1 and 5 leading zero
bits. The zoomed region of the whole ECDSA operation displays
the difference at the end of the multiplication operation. The
pattern corresponding to a single iteration of the scalar
multiplication algorithm is clearly discernible, allowing an attacker
with physical access to a card to establish the bit-length of the
nonces precisely and with no error. Note that captured powertrace
is presented only to highlight the root cause of vulnerability – the
oscilloscope is not required for the successful attack.

5.2.3 Causes

We identified twomain categories of root causes for the reported group
of vulnerabilities. While the first one stems from an intricate relation
between the ECDSAnonce, the private key, and the resulting signature,
the second one relates to the general difficulty of implementing non-
leaking scalar multiplication.
Nonce issues. The susceptibility of (EC)DSA nonces to lattice attacks
does not seem to be widely known amongst developers of crypto-
graphic software. There are four main issues regarding nonce use in
(EC)DSA: nonce reuse, the bias in nonce randomness, nonce bit-length
leaks, and other leaks of partial information about nonces. Due to the

68

5. Minerva: The curse of ECDSA nonces

aforementioned lattice attacks and their variants, all of these issues
might lead to a private key recovery attack.

Deterministic generation of nonces, as done in EdDSA3 [Ber+12]
or RFC6979 [Por13] mitigates the issues of nonce reuse and nonce
bias. However, it does not address the latter two in any significant way.
Deterministic generation of nonces might help the attacker in case the
attacker has a noisy side channel leaking information about the nonce.
If the attacker can observe the signing of the same message multiple
times, they might use the fact that the same nonce was used to reduce
the noise in the side channel significantly.
Leaky scalar multiplication.Not leaking the bit-length of the scalar
used in scalar multiplication is surprisingly hard. Take almost any
algorithm that processes the scalar in a left to right fashion – e.g., the
Montgomery ladder [Mon87] – and instantiate it with incomplete
addition formulas (that cannot correctly compute O + Q or 2O in a
side-channel indistinguishable way from P + Q and [2]P). The result
introduces a side channel leaking the bit-length. At the start of the
ladder that computes a multiple of a point G, the two ladder vari-
ables are initialised either as R0 =O, R1 = G or as R0 = G, R1 = [2]G,
depending on the used algorithm.

In the first case, the computation might start at a position with an
unset bit in the scalar, i.e., the loop bound can be fixed in advance,
as Algorithm 2 shows. However, until the first set bit is encountered,
all of the additions and doublings will involve the point at infinity,
and because of our assumption that the used formulas are incomplete,
they will leak this information through some side channel. The leak
might have the formof short-circuiting addition formulas, which check
whether the point at infinity was input and short circuit accordingly
to satisfy O + P = P and 2O = O. Such was the case for vulnerable
versions of libgcrypt and was the reason why merely fixing a loop
bound in scalar multiplication was not enough to fix the issue. The
formulasmight leak the fact that the point at infinity is present through
different channels than timing: power or electromagnetic side channels
come to mind, as the point at infinity is often represented using only 0

3. We remark that EdDSA is not vulnerable to our attack, as it uses a mitigation
described in Section 5.2.4.

69

5. Minerva: The curse of ECDSA nonces

or 1 values, which can often be distinguishable in multiplication and
addition on a powertrace.
Algorithm 2:Montgomery ladder (complete)
Input :G (the base point);

k = (kl, . . . ,k0)2 (the scalar in binary representation)
Output : [k]G

R0←O

R1← G

forall i ∈ [l, . . . ,0] do
R¬ki ← R0 + R1

Rki ← [2]Rki

return R0

In the second case, the most significant bit of the scalar must be
explicitly found [BT11], as Algorithm 3 shows. The ladder must start
at that bit, as the variables are initialized into a state such that the
point at infinity will not appear (so that incomplete formulas can be
used).

Such an implementation clearly leaks the bit-length through timing
alone, because of the loop bound on the bit-length of the scalar.
Algorithm 3:Montgomery ladder (incomplete)
Input :G (the base point);

k = (kl, . . . ,k0)2 (the scalar in binary representation)
Output : [k]G

R0← G

R1← [2]G

forall i ∈ [|k| − 1, . . . ,0] do
R¬ki ← R0 + R1

Rki ← [2]Rki

return R0

70

5. Minerva: The curse of ECDSA nonces

The use of incomplete formulas or the direct computation of the
bit-length of the scalar for use as a loop bound in scalar multiplication
was the source of leakage in all of the vulnerable software crypto-
graphic libraries. As the implementation on the vulnerable card is
closed source, we were not able to analyze it directly; however, a simi-
lar cause is likely, given the nature of the leakage on the powertraces
in Figure 5.2.

Both the vulnerable Athena IDProtect card and the used Atmel
AT90SC chip with its cryptographic library, respectively, are FIPS 140-
2 [Ath12a] and Common Criteria (CC) [Ath12b; Atm09] certified
devices, respectively. The presence of such a vulnerability in certified
devices can be explained by noting that the CC security target of
the AT90SC chip [Atm09] contains mention of two versions of ECC
functionality, fast and secure variants. It further goes to mention that
the fast variants are not protected against side-channel attacks and
should not be used on secure data. We hypothesize that these fast and
insecure functions were erroneously used by the Athena IDProtect
card and resulted in the vulnerability.

5.2.4 Mitigations

Below, we discuss several mitigations that can be applied to a leaking
implementation to fix the vulnerability. The mitigations either stop the
leak or mask it with additional randomness to prevent reconstruction
of the private key.
Complete formulas. As described in Section 5.2.3, one of the root
causes of the vulnerability was the usage of incomplete addition for-
mulas, which introduced a measurable time difference between the
case where one of the points being added is the point at infinity and
the case where both points are affine. This ultimately led to a leak
of the nonce length. The use of complete formulas [RCB16; SM16],
which behave in the same way for all possible inputs, would prevent
such leak. Besides being constant-time, these formulas also make the
addition algorithm less complex. However, these formulas are slower
than incomplete formulas, by a factor of around 1.4 as reported by
Renes, Costello, and Batina [RCB16], and until late, they were not
even available for all short Weierstrass curves.

71

5. Minerva: The curse of ECDSA nonces

Using complete formulas is likely the most systematic mitigation,
so we recommend to the developers of the affected systems to switch
to complete formulas whenever possible. The mitigation also requires
that the scalar multiplication loop starts at a fixed bit and that the
bit-length of the scalar is not explicitly computed to shorten the loop.

Fixing the bit-length. Even if incomplete addition formulas are used,
the vulnerability can still be removed by making all the nonces the
same bit-length. One option is to add a suitable multiple of the group
order to the nonce so that the result of multiplying a point by the nonce
will not be affected. For example, following the recommendation by
Brumley and Tuveri [BT11], we could compute the modified nonce as

k̂ =

{
k + 2n if dlog2(k + n)e = dlog2 ne
k + n otherwise.

This fixes the bit-length of k̂, ensuring that dlog2 k̂e = dlog2 ne+ 1.
Subsequently, the scalar multiplication loop will always run the same
number of times (as both points being added are already affine during
the first addition), and the nonce length will not be leaked through
timing. As the computational cost of using k̂ over k is negligible, we
recommend the affected systems to do so as a second line of defense.

Scalar randomisation. Alternatively, there are various side-channel
countermeasures utilizing scalar randomization (i.e., performing the
scalar multiplication without directly multiplying by the scalar). A ba-
sic overview of thesemethods can be found inDanger et al. [Dan+13a].
While introducing some overhead, they also effectively protect against
some power analysis attacks.

Long nonces. Finally, multiplication by much longer nonces (without
prior reduction modulo the group order n) should thwart these types
of attacks, as learning the most significant bits of the scalar seems
to provide almost no information about the most significant bits of
the scalar modulo n. Such an approach is taken by EdDSA [Ber+12]:
for example, when using Ed25519, the nonce is deterministically cre-
ated as a 512-bit hash, whereas n has only 255 bits. In principle, the
countermeasure could be adapted for ECDSA as well.

72

5. Minerva: The curse of ECDSA nonces

5.2.5 Responsible disclosure

Wedisclosed the vulnerabilities to the affected vendors upondiscovery;
we also provided assistance and patches fixing the vulnerability to
several of them. Currently, all of the vulnerabilities in the software
products are fixed in their newer versions. The state of the vulnerable
chip AT90SC is unknown, as it is currently offered by the WiseKey
company [Wis], which did not confirm or deny our findings regarding
the chip. The Athena IDProtect card is no longer in production, as
Athena was acquired by NXP Semiconductors, which confirmed to
us that no new products are based on the vulnerable code. However,
existing cards remain vulnerable as updates to JavaCards are often
almost impossible to deploy.

We then disclosed the vulnerability publicly, together with a proof
of concept and a testing tool that can be used to verify that other
implementations are not vulnerable.

5.3 The attack

In the case of (EC)DSA and even attestation systems such as EPID
[Dal+18] or ECDAA [FIDO18; Mog+20], the knowledge of the most
significant bits of nonces (with the goal of computing the private key)
can be turned into aHNP instance [BV96], which can be turned into an
instance of the Closest Vector Problem and solved using the methods
of lattice reduction. We will introduce the HNP and show how the
knowledge of the most significant bits of nonces translates into a HNP
instance for the aforementioned systems.
Notation. We use bycq to denote the reduction of y ∈Z modulo q (so
the result lies in [0,q− 1]) and |y|q := mina∈Z|y− aq| to denote the
distance of y ∈R to the closest integer multiple of q.

It is easy to see the following (in)equalities:

|y|q = |y| for all y ∈ [−q/2,q/2],
|y|q = |y− aq|q for all a ∈Z,

|y− z/2| < z/2 for all z ∈R,0 < y < z
(5.2)

73

5. Minerva: The curse of ECDSA nonces

Definition 5.3.1 (Approximations). By APPl,q(y), we will denote any
u ∈Q satisfying

|y− u|q ≤ q/2l.

The most significant modular bits [BV96; NS03] are defined in the
following way:
Definition 5.3.2 (Most significant modular bits). The l > 0 most sig-
nificant modular bits of an element y ∈Zq (regarded as an integer in
[0,q− 1]) are the unique integer MSMBl,q(y) such that

0≤ y−MSMBl,q(y) · q/2l < q/2l.

(Thus for l = 1, the most significant bit of y is 0 or 1 depending on
whether y < q/2.)

As noted in [NS03], this definition is in contrast with the usual
definition of themost significant bits of an integer. In the lattice context,
the modular bits are more convenient to work with, but see Remark 1
in Section 5.3.1.

It is worth observing that the most significant modular bits give
rise to a specific approximation of y: the inequality

|y−MSMBl,q(y) · q/2l|q < q/2l

is equivalent to the in Definition 5.3.2, since y−MSMBl,q(y) · q/2l ∈
[−q/2,q/2].

Thus we can takeMSMBl,q(y) · q/2l as APPl,q(y) and after recenter-
ing the bits, we can takeMSMBl,q(y) · q/2l− q/2l+1 asAPPl+1,q(y) giv-
ing the exact approximation used in Nguyen and Shparlinski [NS03].
The Hidden number problem. Following [NS03], we state the HNP
in the following way:
Definition 5.3.3 (Hidden number problem). Given approximations
ai = APPli,q(ki), where ki = bαti − uicq, for many known ti that are
uniformly and independently distributed in Z∗q , known ui and a fixed
secret α ∈Zq, find α.

In the text, we will use the more common definition where the
problem is, given many HNP inequalities |ki − ai|q < q/2li , find α.

74

5. Minerva: The curse of ECDSA nonces

For (EC)DSA, α is the fixed secret key, ti and ui are values con-
structed from the signatures such that ki = bαti−uicq, and ai =APPl,q(ki)
is the information leaked. In our case, ai = 0, as the l most-significant
modular bits are zero4. This simplifies the above inequality to:

|αti − ui|q < q/2li . (5.3)

5.3.1 Constructing the HNP

Assume that we are given d (EC)DSA signatures (ri, si) of message
hashes H(mi) such that for each respective nonce ki > 0, we know that
the most significant li > 0 bits of ki are zero. Denoting the curve order
by n and the private key by x, we have

bkicn < n/2li

|s−1
i (xri + H(mi))|n < n/2li

|xbs−1
i ricn + bs−1

i H(mi)cn|n < n/2li

(5.4)

By setting q = n,α = x, ti = bs−1
i ricn, ui = b−s−1

i H(mi)cn, we have
a HNP instance.
Remark 1. The fact that the most significant li bits (in the classical
sense) of ki are zero translates into the inequality

bkicn < 2dlog2(n)e/2li ,

which is weaker than the used bkicn < n/2li . This means that the in-
equalities above might not be true for all ki. However, as the ratio
n/2dlog2(n)e is around 10−9 for the curve secp256r1 that we are work-
ing with, we will use the more convenient stronger inequality which
will still be true with overwhelming probability. It is worth having this
distinction in mind though, as it would cause problems for example
for the curve sect571k1, where the ratio n/2dlog2(n)e is almost 2.

In our setup, the values li are estimated from timing only, so it may
well happen that the actual number of most significant zero bits is

4. We do not use the knowledge of the most-significant set bit, as it allows us to
tolerate one-sided errors.

75

5. Minerva: The curse of ECDSA nonces

either higher or lower than li. The former case is not a significant issue,
as the attack will still work (although we are using less information
than available, so we need to balance this by a higher number of
signatures). However, the latter case is quite problematic, as we are
utilizing false information in the attack, and the lattice approach will
very likely fail to compute the correct result.Wewill refer to the second
case as to “input errors” in the remainder of the text and discuss some
options of dealing with them in Section 5.4. For now, just note that
there are two basic ways of removing the errors: either lowering the li
(which is a standard technique) or subtracting a certain multiple of
n/2li from ki, so that the first inequality in (5.4) will hold. The latter
option amounts to adding a certainmultiple of n/2li to ui, which clears
the high bits of ki.

5.3.2 Solving the HNP

Given d HNP inequalities of the form

|αti − ui|n < n/2li ,

we can construct a lattice spanned by the rows of the (d + 1)× (d + 1)
matrix B [NS02; Ben+14]:

B =


2l1n 0 0 . . . 0 0

0 2l2n 0 . . . 0 0
... ...

0 0 0 . . . 2ld n 0
2l1t1 2l2t2 2l3t3 . . . 2ld td 1


Then, by the HNP inequalities above, the vector

u = (2l1u1, . . . ,2ld ud,0)

is a vector unusually close to a lattice point. The closest lattice point
often has a form

v = (2l1t1α, . . . ,2ld tdα,α),

in which case finding such lattice point reveals the private key α. To
do so, one needs to solve the Closest Vector Problem (CVP). There
are several algorithms for solving the CVP, the original paper [BV96]

76

5. Minerva: The curse of ECDSA nonces

used Babai’s nearest plane algorithm [Bab86] with LLL [LLL+82].
One could also use BKZ for lattice reduction or solve the CVP by
enumeration. There is also a technique of transforming an instance
of CVP to a Shortest Vector Problem (SVP) by embedding the target
vector into a larger lattice:

C =

(
B 0
u n

)
Then, one can solve the SVP by lattice reduction and either looking

directly at basis vectors or by further enumeration to find the shortest
vector. As we used several heuristic arguments, the solution is not
guaranteed to be found.

Generally, each inequality adds li bits of information and the prob-
lem starts to be solvable (theoretically) as soon as the lattice contains
more information than the unknown information in the private key.
The expected amount of information in N signatures can be computed
as N ·∑dlog2(n)e

i=2 2−li−1 · li ≈ 3
4 N assuming only signatures with li ≥ 2

are used. Adding inequalities with li < 2 generally does not help, as
those will not lead to the desired vector being unusually close to a
lattice point [Ara+14].

Using the above formula, we obtain the expected minimum of
around N = 342 signatures for a 256-bit private key. Since the amount
of information is linear in N it can be computed as N ≈ 4

3 · |K| for size
|K| of the private key. Adding dimensions is also not for free, as the
runtime of lattice algorithms grows significantly with an increase in
the number of dimensions. However, adding some overhead of infor-
mation, such that the lattice contains around 1.3 times the information
of the private key, was shown to improve the success rate [Rya19b].

5.3.3 Baseline attack

The baseline version of the attack, against which we will compare
the variants, is an application of the attack from Brumley and Tuveri
[BT11]. We collect N signatures from the library or card while mea-
suring the duration of signing precisely. Then, we sort the signatures
by their duration and take d of the fastest. For the basic attack, we then
assume these all have at least li = 3 most-significant bits of the nonce
zero, we construct the HNP and transform it into a CVP and then

77

5. Minerva: The curse of ECDSA nonces

an SVP matrix. Given no noise (perfect dependency of the signing
duration on the bit-length), the assumption of li = 3 makes sense if
the collected number of signatures N is larger than d · 2li = 8d, as then
the d fastest signatures will likely have at least the required number
of most-significant zero bits.

We use fplll [FPL16], an open-source implementation of the LLL
and BKZ lattice reduction algorithms, to perform LLL and progressive
BKZ [Aon+16] reduction of the SVP matrix with block sizes β ∈
{15,20,30,40,45,48,51,53,55}. After each reduction step, we check if
the second to last column of the matrix contains the private key by
multiplying the base-point by the column entries and testing equality
to the public key.

5.4 Attack variants and new improvements

The main limitation of the attack described in Section 5.3.3 is the
required number of signatures and its sensitivity to input errors (as
the time measurements are noisy). This section offers a remedy: we
present and discuss in detail the following methods, the last two of
which are new to the best of our knowledge:

• Measurement improvements (known);
• Random subsets (known) [BT11];
• Recentering (known) [BH19; Mog+20];
• The CVP/SVP methods (known);
• Nonce differences (partially discussed in [FGR12] and [BH19]);
• Geometric bounds (new in this work);
• CVP + changes in u (new in this work).
In Section 5.5, we will systematically compare these to each other

as well as to the baseline attack on both simulated and real data.
As the listed methods are mostly independent of each other5, their

combinations could possibly provide improvement in the decreased

5. There are two notable exceptions: CVP + changes in u requires the use of the
CVP method and the recentering approach cannot be used in nonce differences.

78

5. Minerva: The curse of ECDSA nonces

number of necessary signatures. However, the high number of compu-
tational experiments for all possible combinationsmakes an exhaustive
analysis prohibitively expensive.
Improving the input data. One straightforward way of improving
a noise-sensitive method success rate is to lower the noise via better
measurements. In our context, this means either mounting a micro-
architectural side-channel attack on a vulnerable library or performing
power/electromagnetic side-channel attack on a vulnerable card.

In the former case, the attackerwould use, for example, a cache side
channel as done by Ryan [Rya19b], to count the number of calls to the
point addition and doubling functions. This would give him a much
more precise measurement of bit-length than simply timing the full
ECDSA signing operation, which contains hashing, data processing,
and other library functions.

In the latter case, the attacker with physical access to a vulnerable
card would obtain power or electromagnetic traces as those shown in
Figure 5.2 and use pattern matching to count the number of addition
and doubling operations in the trace. This will again give the attacker
a much more precise measurement of bit-length.

We expect both of the above approaches to lead to noise-free in-
formation about the bit-length of the nonce and thus a much easier
application of the HNP to obtain the private key, leading to a similar
success rate as in Figure C.13.
Random subsets. The errors in the input can be mitigated by ran-
domly selecting subsets of signatures from the set of all signatures
with relatively short duration as proposed by Brumley and Tuveri
[BT11]. If the number of errors is not too large, we can expect to find a
subset without any error after a reasonable number of tries. Note that
this strategy is also trivially parallelizable, unlike most of the other
methods.

In practice, we can take a medium-sized subset of the fastest signa-
tures (for example, 3

2 d, where d is the dimension of the matrix we are
aiming for) and repeatedly run the attack with randomly selected d
of these signatures. However, since the strategy does not always use
the d fastest signatures, it does not use the information in an optimal
way. On average less information is present in the randomly selected
signatures, with the hope that the increased number of tries will lead

79

5. Minerva: The curse of ECDSA nonces

to both enough information and few errors being present in at least
one of them.
Recentering.

To increase the the amount of information in each HNP inequality,
one can use the fact that the nonce is non-negative and that to gain a
HNP inequality we only need to upper-bound the absolute value, as
only it affects the norm of the vector. Instead of using the inequality
(5.4), one can apply (5.2) to get:

|xbs−1
i ricn + bs−1

i H(mi)cn − n/2li+1|n < n/2li+1.

CVP/SVP approach. Even though the HNP naturally translates into
a CVP instance, such an approach is usually believed to not be very
suitable [Ben+14; BH19; PSY15]. Instead, the standard approach is to
further convert the CVP instance into an SVP instance by including the
rows of ui’s in the matrix and checking for a short vector after lattice
reduction (as described in Section 5.3.2). However, for reasons that
we explain later, we also evaluate the CVP approach (using Babai’s
nearest plane algorithm) and measure how it compares to the SVP
approach, even though we expect it to perform worse.
Differences of nonces. Instead of using information about the nonces
ki themselves, we could instead use information about their differences
ki − k j, hoping that the most significant bits of ki and k j might cancel
out.

Assuming that li ≤ lj, we can make a similar computation as in
(5.4). From the inequality:

|bkicn − bk jcn|n < n/2min(li,lj) (5.5)

we get:

|bs−1
i (H(mi) + rix)cn − bs−1

j (H(mj) + rjx)cn|n < n/2min(li,lj)

|x(bs−1
i ri − s−1

j rjcn) + bs−1
i H(mi)− s−1

j H(mj)cn|n < n/2min(li,lj).

Thus by setting ti = bs−1
i ri− s−1

j rjcn, ui =−bs−1
i H(mi)− s−1

j H(mj)cn
we again obtain a HNP instance.

80

5. Minerva: The curse of ECDSA nonces

When utilizing nonce differences in practice, we aim to create the
pairs (i, j) in a way that li = lj whenever possible to minimize infor-
mation loss due to the bound being the minimum. For the geometric
bounds, it corresponds to taking differences of neighbouring signa-
tures. Note that if the number of bits li = lj was chosen erroneously
too high in both cases, the error is nullified in the difference.

We note that when using differences of nonces, recentering is not
possible, as the differences might be negative. This fact is, to some
extent,mitigated by the aforementioned effect of subtraction correcting
some errors.

Bounds li. The bounds li state the minimal number of leading zero
bits of nonces ki (ki = |αti − ui|n < n/2li), representing the amount
of information we gain from the nonces. They play a crucial role in
our attacks since the lattice-based methods used to solve the HNP are
quite sensitive to errors in li when the amount of information in the
lattice is close to the size of the private key.

We are facing the problem of how to assign the bounds li to a given
set of unknown nonces ki based only on the times of corresponding
signatures. The goal is to assign maximal values li to ki such that the
number of errors (false inequalities) is small. The values li should
reflect the distribution of log2(ki) for a selected set of signatures (only
a subset of signatures is used in the attack). The selection of the signa-
tures is natural – only signatures with the shortest times are used in
the attack, as corresponding to the shortest ki and largest li.

The nonces ki are generated uniformly at random; we can thus
expect that the number ofmost significant zero bits follows a truncated
geometric distribution when n is close to a power of two. Thus roughly
for one-half of the nonces li = 0, for one-quarter of nonces li = 1, and so
on. Assuming a one-to-one linear dependency between the bit-length
of ki and the duration of signing, we would obtain a clear method of
assigning bounds to the signatures, sort them by duration and apply
the above distribution. However, the real timing leakage is noisy and
the distributions of duration for signatures with different bit-lengths
overlap (see Figure 5.1 and Figure C.12).

In the experiments, when assigning bounds to the fastest d sig-
natures out of N signatures collected, we used two strategies for the
bound assignment:

81

5. Minerva: The curse of ECDSA nonces

• constant bounds – a fixed c ∈ {1,2,3,4} is used for all bounds li;

• geometric bounds (new in this work) – bounds are calculated
according to the above truncated geometric distribution based
on N, the number of signatures collected. One half of signatures
has li = 0, one quarter has li = 1, etc. Then simply the fastest d
signatures are taken with their calculated bounds.

Figure 5.3 shows that on simulated data with no noise, the geomet-
ric bounds constitute the mean of the distribution of true leading zero
bits, as the difference of the simulated data and the bounds has zero
mean.

0 10 20 30 40 50 60 70 80 90 100
index

2

0

2

4

6

8

10

bo
un

d

sim (sample)
sim - geom
geom

Figure 5.3: Plot of the geometric bounds (geom) with N = 2000 for d = 100
fastest signatures, along with a random sample of the true leading
zero bits from simulated data (sim) and boxplots of the
distribution of the difference of the simulated data and the bounds
(sim - geom). Negative values imply an error; positive implies
some available information is unused.

CVP + changes in u. When using the SVP approach, the ui’s are
incorporated into the matrix, and it is not possible to change them
without affecting the final result of lattice reduction. Thus any error
in the ui’s propagates to the reduced lattice. In contrast, taking the
CVP approach, the lattice can be reduced independently of the ui’s
(which form the target). Such reduction is beneficial as we can re-
duce the lattice just once (and potentially with better quality) and
subsequently try to solve the CVP with many possible choices of ui’s
(making changes at the li-th positions where the errors are most likely
to occur). Since the reduction is the most computationally expensive

82

5. Minerva: The curse of ECDSA nonces

part, if we are solving CVP via Babai’s nearest plane algorithm, we
can efficiently try many different changes and fix the input errors.

For each e-tuple, we could try flipping one bit of ui at the li-th
position simultaneously, which should be feasible at least for e ≤ 3.
Since the runtime of the method should not depend on small changes
in the ui’s, we expect that the total runtime for the strategy will be one
reduction of the matrix and (d

e) times the runtime of the CVP solving,
for example via Babai’s nearest plane algorithm, which is very fast.
The advantage of the strategy is that it is trivially parallelizable.

5.5 Systematic comparison of attack variants

We compare existing methods for private key recovery with our newly
proposed ones for the range of possible parameterizations. We run
the methods while varying the number of signatures collected (N)
and varying the dimension of the matrix (d) for four datasets with dif-
ferent noise profiles collected from the real-world leakages. For most
experiments, the number of signatures N covered the range [500,7000]
with a step size of 100 and three additional steps at 8000,9000,10000.
The dimension of the matrix and the number of signatures used in
the matrix d ranged from 50 to 140 with a step size of 2. Such enumer-
ation of the parameter space allowed us to evaluate the performance
of the methods with a significantly wider range of parameters than
presented in the introductory papers. Thus each variant of the attack
goes through 3174 = 69 · 46 combinations of N and d with a typical
runtime in seconds to minutes. Because of the size of the parameter
space, we repeated each variant five times with random samples of N
signatures from each of the four datasets described in Section 5.5. In
total, the presented results took over 18 core-years to compute on our
university cluster.

We evaluate the success rate of the attack improvements with
respect to the number N of signatures available, which is frequently
the biggest limitation for an attacker, influencing the attack practicality
and runtime. Another interesting point of evaluation is the minimal
number of signatures collected (min(N)), where a given attack variant
succeeds for the first time. When not explicitly specified, we use the
base parameters and method, as described in Section 5.3.3.

83

5. Minerva: The curse of ECDSA nonces

Dataset base (µs) iter_time (µs) sdev (µs)
sim 0 1 0
sw 453.4 12.7 17.2
tpm 27047.3 236.1 211.3
card 43578.4 371.5 451.3

Table 5.2: Estimated Equation (5.1) parameters in our datasets.

Test data. The attack variants are evaluated using four separate data
sets (denoted as sim, sw, card, tpm) with varying levels of noise. All
the datasets used consist of at least 50 000 ECDSA signatures over the
secp256r1 curve from which we randomly sample N signatures for
the evaluation of our attacks.

• The sim dataset contains simulated data for which there is an
exact one-to-one correspondence between the signing duration
and the bit-length of the random nonce with no systematic
noise. However, these simulated signatures were still generated
by uniformly randomly selecting the random nonce and com-
puting the number of most-signifcant zero bits. A given sample
is thus a result of a random process and varies naturally.

• The sw dataset contains data from a vulnerable version of the
software cryptographic library libgcrypt collected from a simple
C program on an ordinary Linux laptop.

• The tpmdataset contains data from the recentwork ofMoghimi
et al. [Mog+20] collected from a vulnerable STMicroelectronics
TPM (Trusted Platform Module). The data was collected via a
custom Linux kernel module and contained a relatively small
amount of noise.

• The card dataset contains data from the vulnerable Athena
IDProtect smartcard, collected by a Python script running on
an ordinary Linux laptopwith a standard standalone smartcard
reader connected. Such measurements are particularly noisy
due to the complex software stack and hardware components
between the script and a card.

84

5. Minerva: The curse of ECDSA nonces

Bounds li. Our first experiment compared the constant bounds with
c ∈ {1,2,3,4} to the geometric ones. As the heatmaps in Figures 5.4
and 5.5 and the plot in Figure 5.6 show, geometric bounds perform
better than constant bounds for the baseline attack (see Section 5.3.3)
on all datasets. They utilize the leaked available information much
better, following the mean distribution of the actual leading zero bits.

Figure C.13 shows the limits of advances through changing the
bounds assignment – the bounds were picked optimally here, using
the prior knowledge of the actual nonces and the private key. Such a
success rate can also be achieved by improving of the signal-to-noise
ratio in input measurements as described in Section 5.4.

The limits of improvement through changing the assignment of
the bounds can be seen on Figure C.13, where bounds were assigned
optimally, using the prior knowledge of the actual nonces and the
private key. Such a success rate can also be achieved by improvement
of the signal-to-noise ratio in input measurements as described in
Section 5.4.

The best results formin(N) thatwe obtainedwith geometric bounds
were 1000, 1800, 1500 and 2600, respectively, for the sim, sw, tpm and
card datasets, respectively.

500 2000 4000 6000 8000 10000

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

0

1

2

3

4

5

Figure 5.4: Success rate heatmap (out of 5 tries) for constant bounds (c = 3).

85

5. Minerva: The curse of ECDSA nonces

500 2000 4000 6000 8000 10000

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

0

1

2

3

4

5

Figure 5.5: Success rate heatmap (out of 5 tries) for geometric bounds.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y card const3
card geom
sim const3
sim geom
sw const3
sw geom
tpm const3
tpm geom

Figure 5.6: Success rate (averaged over all analyzed dimensions) of geometric
bounds and constant bounds (c = 3) on the various datasets. Note
that better results would be obtained if considering only dimensions
above 70 according to Figure 5.4 and 5.5.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y

card const1
card const2
card const3
card const4
sim const1
sim const2
sim const3
sim const4
sw const1
sw const2
sw const3
sw const4

Figure 5.7: Success rate (averaged over all analyzed dimensions) of constant
bounds with c ∈ {1,2,3,4} on the various datasets.

86

5. Minerva: The curse of ECDSA nonces

CVP/SVP approach. In this experiment, we combined the geomet-
ric bounds with either solving the HNP via SVP and examining the
reduced basis, or with CVP via Babai’s nearest plane algorithm.

As expected (e.g., from [Ben+14]), Babai’s nearest plane algorithm
always performed worse than solving the HNP via SVP and direct
search through the short basis vectors. The negative shift in success
rate can be seen in Figure 5.8. We note that there are more methods
of solving the SVP or CVP problems, such as enumeration [GNR10]
or sieving [Alb+19], that we did not use in this work, mainly due
to their runtime requirements. We expect these methods to provide
better results than the simple Babai’s nearest plane algorithm for CVP
or the simple search through reduced lattice basis vectors for SVP.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y

card np
card svp
sim np
sim svp
sw np
sw svp
tpm np
tpm svp

Figure 5.8: Success rate (averaged over all analyzed dimensions) of SVP
(dashed line) and Babai’s nearest plane (NP, solid line) algorithm,
using geometric bounds.

Recentering. The application of recentering, along with geometric
bounds and SVP solving, presented significant improvements to suc-
cess rate for all but the card dataset (see Figure 5.9). The improved
min(N) values are 500, 1200, 900 and 2100, respectively, for the sim, sw,
tpm and card datasets, respectively. Using recentering on the noisiest
card dataset increased the success rate only slightly, if at all.

Using the true number of leading zero bits as the bounds, to-
gether with recentering, shows that with ideal input, the lattice attack
achieves the theoretically expected minimum amount of signatures as
computed in Section 5.3.2. The attack first succeeds at 400 signatures
(see Figure C.13), while the theoretical expected minimum is 342.

In our early experiments, we noted a strange behavior of recenter-
ing with biased bounds, which we summarise in Appendix C.2.

87

5. Minerva: The curse of ECDSA nonces

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y

card no recentering
card recentering
sim no recentering
sim recentering
sw no recentering
sw recentering
tpm no recentering
tpm recentering

Figure 5.9: Success rate (averaged over all analyzed dimensions) of SVP with
and without recentering, using geometric bounds.

Random subsets. To evaluate the random subsets method, as intro-
duced by Brumley and Tuveri [BT11], we performed the attacks for
each of the points (N,d) up to 5 times, taking the 1.5d fastest signa-
tures and using 100 random subsets of size d to construct the HNP,
with geometric bounds, SVP solving and recentering. Due to the high
runtime requirements of this attack, we chose to evaluate it only on
dimensions D between 90 and 102. The comparison is made to the
same attack without taking the random subsets.

Taking random subsets decreased the success rate for all but the
card datasets (see Figure 5.10), where it produces quite better results,
achieving a success probability close to 1 for N = 10000. The worse
behavior for less noisy datasets can be explained by noting that taking
the d fastest signatures is optimal for the amount of information in
them, and taking a random subset of 1.5d fastest signatures decreases
this amount of information.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y

card 1
card 1.5
sim 1
sim 1.5
sw 1
sw 1.5
tpm 1
tpm 1.5

Figure 5.10: Success rate (averaged over all analyzed dimensions) of
performing 100 random subsets from c · d fastest signatures, with
c ∈ {1,1.5}. The more visible noise in the plot is caused by the
smaller range of dimensions analyzed.

88

5. Minerva: The curse of ECDSA nonces

Differences. In this experiment, we evaluate the effect of using nonce
differences on the attack when using geometric bounds and SVP solv-
ing but without recentering, as it is incompatible with taking nonce
differences. Performing nonce differences surprisingly resulted in per-
formance comparable to applying recentering to the baseline attack
(see Figures 5.9 and 5.11). This might be explained by the fact that
taking nonce differences might correct errors if the two nonces share
the sequence of erroneous bits. These kinds of errors appear to be
quite likely, with most of them being just one bit past the bound, as
shown on Figure C.14. However, the success rate for the noisiest card
dataset decreased.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
se

s

card no differences
card differences
sim no differences
sim differences
sw no differences
sw differences
tpm no differences
tpm differences

Figure 5.11: Success rate (averaged over the dimensions) of performing the
attack using nonce differences on the various datasets.

CVP + changes in u. In this experiment, we extended the block
sizes of the progressive BKZ reduction with 57,60, and 64 (to get
more thoroughly reduced lattice than in the base approach) and also
applied recentering using geometric bounds. Subsequently, we tested
all possibilities of correcting errors occurring at exactly 0, 1, 2 or 3
positions (thus running Babai’s nearest plane algorithm up to 1 +

(140
1) + (140

2) + (140
3) = 457451 times).

The results show that even though the average number of errors
is much higher than three (see Figure C.15), successfully correcting
three errors often makes the difference between the successful or
failed attack (see Figure 5.12). However, the method also increased
runtime significantly, with both the stronger BKZ reduction and the
brute-forcing of changes taking extra time. One attack run thus got
prolonged from a few minutes to a maximum of four hours. Still,
due to its parallelizable nature, this method is a strong candidate for
improving the attack through more computation power.

89

5. Minerva: The curse of ECDSA nonces

500 2000 4000 6000 8000 10000

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5.12: Heatmap of average minimal amount of fixed errors required for
attack success. Babai’s nearest plane algorithm with recentering
and geometric bounds was used. Gray color marks areas where
none of the attack tries succeeded.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of signatures (N)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s p

ro
ba

bi
lit

y card 0
card 3
sim 0
sim 3
sw 0
sw 3
tpm 0
tpm 3

Figure 5.13: Success rate (averaged over the dimensions) of performing the
attack using the Babai’s nearest plane algorithm, recentering and
either with up to 3 errors fixed (3), or with no error fixed (0).

5.6 Conclusions

Our work identified a set of practically exploitable vulnerabilities
in ECDSA implementations in certified security chips, cryptographic
libraries, and open-source security projects, allowing for the extraction
of the full private key using time observation of only several thousands

90

5. Minerva: The curse of ECDSA nonces

of signatures. We further significantly reduced the required number
of signatures in situations with noisy measurements by two newHNP-
solving methods – using a geometric assignment of bounds instead of
a constant one and an exhaustive correction of possible errors before
the application of the HNP solver.

The existence of the real-world vulnerable implementations pro-
vided the opportunity to create benchmark datasets with realistic
noise profiles, used for a systematic comparison of the existing and
newly proposed HNP-solving methods. Using simulated and three
real-world datasets, we provide the most extensive comparison of var-
iously parametrized methods available so far in the research literature
for this specific domain. The results show that:

• Newly proposed geometric assignment of bounds better ap-
proximates the real distribution of bit-lengths in the fastest
signatures and leads to a decrease in the required number of
signatures for successful key recovery.

• HNP solving via SVP always outperforms CVP with Babai’s
nearest plane algorithm.

• Using random subsets noticeably increases the success rate on
noisy datasets.

• Recentering decreases the required number of signatures for
the success of the attack by 30% in some datasets.

• Using differences of nonces with the same estimated bit-length
instead of original nonces value works surprisingly well, as
(potential) errors likely cancel out.

• Exhaustive correction (up to some bound limited only by avail-
able computational resources) of potential errors after the CVP
lattice reduction significantly decreases the required number
of signatures for a successful attack.

Compared to the very recent work of Moghimi et al. [Mog+20] on
a similar vulnerability found in STMicroelectronics TPM chips, the
new methods achieve key extraction with a much smaller number
of signatures required when compared using their original dataset.

91

5. Minerva: The curse of ECDSA nonces

Only 900 signatures (see Figure 5.9) are sufficient, though the success
rate with such amount of signatures is low. The success rate improves
significantly at 2000 signatures, which is still an order of magnitude
lower than 40 000 signatures, as reported by [Mog+20].

While the actual private key extraction demands non-trivial meth-
ods, the leakage itself is relatively easy to detect, showing surprising
deficiencies in the testing of security devices and cryptographic li-
braries – we release an open-source tester to support such assessment.

92

6 A unified approach to special-point-based
curve attacks1

Since the initial proposal of elliptic curve cryptography (ECC) by
Koblitz [Kob87] andMiller [Mil85], themain building block ofmost el-
liptic curve cryptosystems has been scalar point multiplication, which
involves a plethora of different formulas. There are several side-channel
attacks targeting the formulas, either via forcing an intermediate value
to be zero or by causing the computation to fail. However, these at-
tacks are only described in special cases, specific to a small number of
formulas. In this chapter, we unify and generalize the attacks, and sys-
tematically classify exceptional points in most widely used formulas.
Relatedwork. In 2003, Goubin [Gou03] presented a new side-channel
attack on implementations of elliptic curve cryptography. Titled Re-
fined power analysis (RPA), it uses a power side channel and the
existence of points with a zero coordinate to mount an adaptive at-
tack on static elliptic curve Diffie-Hellman (ECDH). Smart [Sma03]
described effective countermeasures against RPA. Subsequently, Ak-
ishita and Takagi [AT03] proposed a slightly different method named
the Zero-value point (ZVP) attack. It focuses on forcing zeros into
intermediate values inside a given point addition formula, and not
only in the point coordinate. Several extensions followed: Zhang, Lin,
and Liu [ZLL12] modified the ZVP attack to target genus 2 curves,
and Crepeau and Kazmi [CK] proposed ZVP for elliptic curves over
binary extension fields. Danger, Guilley, Hoogvorst, Murdica, and
Naccache [Dan+13a] gave new countermeasures against ZVP and
RPA, while Martinez, Sadornil, Tena, Tomas, and Valls [Mar+13] ana-
lyzed Edwards curves with regards to ZVP attacks, showing that some
addition formulas on Edwards curves are resistant to ZVP attacks. Fi-
nally, Murdica, Guilley, Danger, Hoogvorst, and Naccache [Mur+12]
proposed the Same Value Analysis (SVA) attack, which tries to detect
the repeated use of some finite field value via a side channel.

1. The results in this chapter will be published at Asiacrypt 2021 as “A formula
for disaster: a unified approach to elliptic curve special-point-based attacks” with
coauthors Jesus-Javier Chi-Dominguez, Jan Jancar and Billy Bob Brumley.

93

6. A unified approach to special-point-based curve attacks

Izu and Takagi [IT03] analyzed the Brier and Joye [BJ02] addition
formulas and presented an Exceptional procedure attack (EPA). It
uses a similar adaptive mechanism as the aforementioned attacks, but
relies on an error side channel by inducing incorrect computations. To
avoid EPAs, it is best to use complete addition formulas that always
compute the sum of two points correctly for all inputs. Renes, Costello,
and Batina [RCB16] credit Bosma and Lenstra [BL95] for the only
known complete formulas for prime order short Weierstrass curves,
while Bernstein, Birkner, Joye, Lange, and Peters [Ber+08] and Hisil,
Wong, Carter, and Dawson [His+08] proposed complete formulas for
Twisted Edwards curves. The Explicit-Formulas Database (EFD) by
Bernstein and Lange [BL07a] contains formulas for many different
curve models and coordinate systems.
What could possibly go wrong? Most of the current public EC li-
braries do not use complete formulas for short Weierstrass curves,
with the exception of ECCKiila [Bel+20]. This includes production
libraries:

• Mozilla issued two security advisories for unimplemented ex-
ceptions in NSS’s projective addition, leading to incorrect (de-
generate) multiplication results;

• OpenSSL had unimplemented exceptions during its projective
ladder step addition, leading to incorrect (degenerate) results;

• BoringSSL’s check for exceptional projective inputs was not
constant time, leaking critical algorithm state;

• Python’s fastecdsa module had an unimplemented exception
during affine point doubling, leading to incorrect (degenerate)
results.

Section 6.4 examines these cases in more detail, in the context of our
framework.
Contributions and outline. In this chapter, we present a novel formal
framework to unify the ZVP, RPA, and EPA attacks as instances of a
more general problem, which we solve for some cases (Section 6.2).
Our approach leads to a new attack on windowed scalar multiplica-
tion algorithms (Section 6.2.5). Next, we develop a semi-automated

94

6. A unified approach to special-point-based curve attacks

methodology to discover non-trivial exceptional points, applying it
to systematically analyze EFD formulas, completely classifying all
such points (Section 6.3). We then survey widely deployed software
libraries, gaining insight into the practical implications of our analysis
(Section 6.4) Finally, we draw our concluding remarks in Section 6.5.

6.1 Background

Let p ≥ 3, EW/Fp : y2 = x3 + ax + b be a short Weierstrass curve
with n := #E(Fp), ψk be its k-th division polynomial, and φk := xψ2

k −
ψk+1ψk−1. For any k ∈Z, we write mk(x0) :=

φ|k|(x)
ψ2
|k|(x)

as a rational rep-
resentation of x-only scalar multiplication. Then for all k1,k2, i ∈ Z,
we have (mk1 ◦mk2

)
(x) = mk1k2(x), mk1(x) = m−k1(x) and mk1(x) =

m±k1+in(x).

6.1.1 Curve models and their zero-coordinate points

For a short Weierstrass curve EW , the points with zero y-coordinate
are exactly the points of order 2. Points with zero x-coordinate exist iff
b is a square in Fp, in which case (0,±

√
b) ∈ EW(Fp) [HMV04]. Any

elliptic curve can be converted to the short Weierstrass model.
Montgmomery. The Montgomery model of an elliptic curve [Mon87;
CS18] is

EM/Fp : By2 = x3 + Ax2 + x A, B ∈ Fp, B(A2 − 4) 6= 0.

Similar to the short Weierstrass model, the neutral elementO does not
have an affine representation. Points of order 2 are (0,0) and (1

2(−A±√
A2 − 4),0), though the latter two might not be defined over Fp. All

the other affine points have non-zero coordinates.
Twisted Edwards. The twisted Edwards model of an elliptic curve
[Ber+08] is

ET/Fp : aTx2 + y2 = 1 + dTx2y2 aT,dT ∈ Fp, aTdT(aT − dT) 6= 0.

Typically, we also require aT to be a square in Fp and dT a non-square
in Fp. The neutral element is the affine point (0,1), the point (0,−1)

95

6. A unified approach to special-point-based curve attacks

has order 2, and the points (± 1/
√

a,0
) have order 4. All the other

affine points have non-zero coordinates.
Edwards. The Edwards model of an elliptic curve [Edw07; BL07b] is

EE/Fp : x2 + y2 = c2(1 + dx2y2) c,d ∈ Fp, cd(1− dc4) 6= 0.

When using yz or yz-squared coordinates, we also require d to be
a square in Fp, though in other cases, we may require it to be non-
square. The neutral element is the affine point (0, c), the point (0,−c)
has order 2, and the points (±c,0) have order 4. All the other affine
points have non-zero coordinates.

For any Edwards curve EE/Fp, we can rescale c 7→ 1 by taking
d 7→ dc4, x 7→ cx, y 7→ cy (thus also obtaining a twisted Edwards curve
with aT = 1).

6.1.2 Point coordinates and addition formulas

In practice, we mostly work with non-affine coordinates2, as they
delay the costly field inversion required in affine computations. For
example, (x,y) can be represented with standard projective coordi-
nates as (x : y : 1), from the set of points {(λx,λy,λ)|λ ∈ F∗p} (that
is, projective points are lines in F3

p, without the zero vector). Some
curve models allow performing point additions with either x-only
(short Weierstrass and Montgomery models [Mon87]) or y-only (Ed-
wards models [CGF]) coordinates, assuming the difference of the
input points is known. Table 6.1 lists the non-affine coordinates used
in EFD.

A point addition formula (w.r.t. a given curve model and coordi-
nate system) is an explicit way of computing the sum of two points on
an elliptic curve. It takes the coordinates of the two points as inputs
and returns the coordinates of their sum, depending on the used rep-
resentation. There are also formulas for doubling or tripling a point, or
for computing the simultaneous doubling of a point and an addition
of a different point, known as ladder formulas.

An addition formula is called unified if it correctly computes P + P
and complete if it correctly computes P + Q for any P and Q on any

2. We use the name non-affine for coordinate systems other than affine coordinates
and projective to denote the standard projective coordinates.

96

6. A unified approach to special-point-based curve attacks
Model Coordinates (x,y) representation O representation #

EW

projective [CMO98; BJ02; BL07a; RCB16] (xZ : yZ : Z) (0 : 1 : 0) 21
jacobian [CC86; CMO98; HNM98; HMV04; Mel07] (

xZ2 : yZ3 : Z
)

(1 : 1 : 0) 36
modified [CMO98; BL07a] (

xZ2 : yZ3 : Z : aZ4) (1 : 1 : 0 : 0) 4
w12 with b = 0 [CLN10] (

xZ : yZ2 : Z
)

(1 : 0 : 0) 2
xyzz (

xZ2 : yZ3 : Z2 : Z3) (1 : 1 : 0 : 0) 6
xz [BJ02; IT02] (xZ : Z) (1 : 0) 22

EM xz [Mon87] (xZ : Z) (1 : 0) 8

ET

projective [Ber+08] (xZ : yZ : Z) (0 : 1 : 1) 3
extended [HCD07] (xZ : yZ : xyZ : Z) (0 : 1 : 0 : 1) 18
inverted [Ber+08; His+08]

(
Z
x : Z

y : Z
)

none 3

EE

projective [BL07b; HCD07; His+08] (xZ : yZ : Z) (0 : c : 1) 12
inverted [BL07c; His+08]

(
Z
x : Z

y : Z
)

none 6
yz [Gau06]

(
yZ
√

d : Z
) (√

d : 1
)

6
yz-squared [Gau06]

(
y2Z
√

d : Z
) (√

d : 1
)

6

Table 6.1: Non-affine coordinates analyzed in this chapter, and the number of
respective EFD formulas. Note that the conversion from xz, yz, and
yz-squared coordinates to affine is not unique, and that both yz
and yz-squared assume c = 1.

curve satisfying the assumptions of the formula. Certainly, unified
formulas are important as they do not require exceptions and encour-
age secure constant-time implementations, where point doubling is
indistinguishable from point addition. Any complete formula is also
unified, but the converse is not true. For prime order short Weierstrass
curves, only a single complete formula is known [RCB16].

6.1.3 Explicit-Formulas Database

The EFD by Bernstein and Lange [BL07a] is the largest publicly avail-
able database of formulas for different coordinate systems and curve
models. It provides the formulas in a 3-operand notation, breaking
down the computation into individual binary and unary operations
on intermediate values. This machine readable formatmimics the com-
putations in real software and hardware. We exported the EFD data
and provide it in a repository 3 with some cleanups and added miss-
ing information. The EFD contains addition formulas (i.e., P + Q =
add(P, Q)), doubling formulas (i.e., [2]P = dbl(P)), tripling formulas,

3. https://github.com/J08nY/efd

97

https://github.com/J08nY/efd

6. A unified approach to special-point-based curve attacks

differential addition formulas (i.e., P + Q = dadd(P−Q, P, Q)) and
ladder formulas (i.e., ([2P], P + Q) = ladd(P−Q, P, Q)).

The EFD also includes automated formula verification in Sage,
though it only compares the expressions as rational functions. This
means the results are correct globally, but not necessarily locally – there
might be exceptions for points where the denominators equal zero and
the quotient is undefined. We investigate these cases in Section 6.3.

6.1.4 Scalar multiplication algorithms

During ECDH key exchange, all scalar multiplications use a single
scalar. The multiplied point is a public key of the other party, which is
unknown before the computation. This excludes the use of any heavy
precomputations like comb-based methods. Following Jancar [Jan20],
we divide the applicable scalar multiplication algorithms into three
rough categories:

• Basic ones (often called double-and-add) that scan the scalar bit
by bit, and perform either doubling or addition based on the
bit value [HMV04]. During the scalar multiplication, a basic
multiplier executes the formulas:

[2k]P = dbl([k]P) or
[k + 1]P = add(P, [k]P),

depending on the iteration; k is equal to some part of the scalar.
• Ladder ones that resemble the basic ones, but use a ladder for-

mula [Mon87] with two temporary variables maintaining a
constant difference. This ensures the computations are uniform
and take the same time, regardless of the scalar. The formula
executions in this scalar multiplier are:

([2(k + 1)]P, [2k + 1]P) = ladd(P, [k + 1]P, [k]P) or
([2k]P, [2k + 1]P) = ladd(P, [k]P, [k + 1]P),

depending on the iteration.
• Window ones that divide the scalar into blocks of digits (called

windows) of a given width and precompute the corresponding

98

6. A unified approach to special-point-based curve attacks

multiples of the point. The precomputation is cheap enough to
be possible even for variable points. If zero digits are skipped,
we call the window sliding [HMV04]. The formula executions
in this scalar multiplier are:

[2k]P = dbl([k]P) or
[k + e]P = add([e]P, [k]P),

depending on the iteration; [e]P is a precomputed point.
Scalar multiplication algorithms can also use signed digit representa-
tions of the scalar, most often the binary Non-Adjacent Form (NAF),
or in the window case windowNAF. In the rest of this chapter, we refer
to the accumulator point that represents the point variable to which
points are added in scalar multiplication, and which stores the current
multiple of the input point through the iterations of the algorithm.
Note that a ladder-based scalar multiplier has two accumulator points
which have a constant difference.

6.1.5 Side-channel attack countermeasures

To mitigate side-channel attacks on ECC, including those discussed in
this chapter, several countermeasures were developed over the years.
Here we show those important in the context of our attacks, which
are based on randomization and target the scalar multiplication with
a secret scalar.
Scalar randomization.The first possibility of randomization lies in the
secret scalar itself. There are several techniques which randomize the
scalar and compute either one scalar multiplication (group scalar ran-
domization) or several (additive, multiplicative, or Euclidean scalar
splitting) [Dan+13a]. For us, it is important that this countermeasure
leads to randomized multiples of the input point, stored in the accu-
mulator point, as the algorithm proceeds. Thus, if the attacker learns
that a particular multiple of the input point was computed during
some scalar multiplication, they learn almost nothing about the secret
scalar used.
Point randomization. Another possibility of randomizing values in-
side the scalar multiplication lies in the use of non-affine point repre-
sentations and their scaling property. As one affine point corresponds

99

6. A unified approach to special-point-based curve attacks

to an entire class of non-affine points, one can pick a random repre-
sentative out of the class when converting the affine input point for
scalar multiplication. This randomizes almost all intermediate values
in the scalar multiplication [Dan+13a]. It does not randomize zero
values in one of the coordinates of the affine point like (x,0) or (0,y),
as their projective representatives are (xZ : 0 : Z) or (0 : yZ : Z) for
some Z ∈ F∗p.
Curve randomization. Finally, it is possible to randomize the curve
over which the computations are performed. This also randomizes al-
most all intermediate values in the scalar multiplication. One example
of such randomization is using an isomorphic or an isogenous curve
[Dan+13a; Sma03].

6.1.6 The Refined power analysis and Zero-value point attacks

Goubin’s RPA [Gou03] is a side-channel attack against ECC imple-
mentations using a static secret, such as ECDH or X25519, together
with basic or ladder scalar multiplication. It is based on the assump-
tion that adding4 a point P0 with a zero x- or y-coordinate to another
can be distinguished from adding a general point, at least over sev-
eral measured traces. We discussed the existence of zero coordinate
points in Section 6.1.1. The side channel is usually based on power or
electromagnetic emanation, where one can distinguish the multiplica-
tion with a zero field element from the general case (see e.g. Fig. 1 in
[Dan+13b]) due to the dependency of power consumption of a device
on the data and instructions that are being executed. The attacker
measures the power consumption of a device using an oscilloscope
and a current probe.

In each iteration, the attacker makes a guess k′ ∈Z∗n for the partial
secret key k, and then checks the guess by querying the implementa-
tion using the public key P1 = [k′−1 mod n]P0. The guess was correct
iff the implementation computes [k′]P1 = P0, detectable using a side
channel. Since the scalar multiplication is iterative in nature, the at-
tacker adaptively guesses the bits of the key one by one, building
upon the previous guesses. All scalar randomization countermea-

4. The attack also applies to doubling. For simplicity, we only consider addition in
this paper, but our results easily extend to doubling.

100

6. A unified approach to special-point-based curve attacks

sures successfully thwart the RPA attack, as well as Smart’s curve
randomization via isogenies [Sma03], while point randomization or
curve randomization via isomorphisms do not, since the zero point
coordinate does not get randomized. Unlike [FGV11], the attack does
not require fault injection.

More generally, Akishita’s and Takagi’s ZVP attack [AT03] con-
siders intermediate scalar values computed during point addition
(as a subroutine of scalar multiplication). The intermediate values
can be expressed as a polynomial expression in the input coordinates
(see Algorithm 4 for an example of the intermediate values and Fig-
ure D.20 for the unrolled version). If the attacker can select a point P
such that P + [k′]P produces a zero scalar intermediate value during
the formula’s execution (not necessarily at the end), the attacker can
detect the zero using a side channel. Then they can deduce which mul-
tiples of the input were computed during the scalar multiplication,
and thus recover the secret scalar. Unlike RPA, ZVP does not assume
the existence of points with a zero coordinate; in particular, it applies
to prime-order curves.

The value of the input point P depends on k′, the used formulas,
the particular intermediate value that is being zeroed out, as well as
the curve. It seems that finding these points for even a mildly large k′

is an open problem, claimed to be as difficult as computing the k′-th
division polynomial. Themaximal k′ required for key recovery is in the
same range as the secret scalar, approaching n. For some coordinate
systems and formulas for (twisted) Edwards curves, the intermediate
expressions can be classified [Mar+13], but the general case is not
settled. The ZVP attack can be thought of as a generalization of the
RPA attack, and the same countermeasures prevent it.

6.1.7 Exceptional procedure attacks

In practice, scalar multiplications use non-affine point representations
(shown in Table 6.1), onlymapping the non-affine result into its unique
affine representation at the end. This final conversion is the only part of
the computation requiring field inversions, usually of the Z-coordinate.
EPA are based on finding a pair of points P and Q such that the final
conversion of P + Q = add(P, Q) fails, because the expression being
inverted is zero. The implementation then either throws an error, or

101

6. A unified approach to special-point-based curve attacks

produces an obviously detectable output [IT03]. Such points are called
exceptional w.r.t. a given formula; see Section 6.3 for a more precise
definition and classification of all non-trivial exceptional points for
EFD formulas.

6.2 A unified approach to the attacks

The attacks introduced in Section 6.1.6 and Section 6.1.7 have a lot in
common. In this section, we build a common framework that captures
them as special cases.

6.2.1 Attack setting

Let S : (k, P) 7→ [k]P be a scalar point multiplication algorithm on a
curve. Assume k is a fixed secret input, and P is an arbitrary affinepoint.
This scalar multiplication with a fixed secret scalar and chosen input
point is the target in our setting. The evaluation of S(k, P) consists of
a sequence of formula executions. As described in Section 6.1.4 and
displayed in Figure 6.1, the formulas take as input some multiples of
P, which depend on k and S.

add(P, [2]P) [k]Pdbl(P) dbl([3]P) dbl([6]P)
...add(P, [6]P)

a. c. e.

b. d.

k
P

OB
add(I)

1. Create P.
2. Give P to implementation.
3. Receive [k]P and observe side-channel.
4. Repeat a constant amount of times.
5. Evaluate and return.

side-channel leakage

Target

Figure 6.1: An example of the Boolean special point oracle, with a target
performing the S(k, P) scalar multiplication execution using a basic
double-and-add-always algorithm. The scalar k has MSBs 110.

102

6. A unified approach to special-point-based curve attacks

Let us define OFB,U : Im → {0,1,⊥}, the Boolean special point oracle for
formula F :

OFB,U(I) :=


1 if I was input into F during S(k, P) computation;
0 if I was not input into F ;
⊥ if the oracle could not determine the result,

where OFB,U(I) ∈ {0,1} for I ∈U, and I = {[i]|i ∈Z} ∪ {_} is the set
of symbolic multiples of the input point P, (with [i] representing the
point [i]P and _ representing any multiple of the point P). When
U = Im, we omit the subscript, and we simply write I instead of {I}.
The arity m of the oracle is the same as the arity of F , e.g., 2 for add.

We define the temporal special point oracle OFT,U : Im→ {0,1,⊥} ×
P(N) as OFT,U(I) = (OFB,U(I),T), where T is a set of iteration indices
when F took I as an input. If the oracle cannot distinguish between a
multiple [i] and its negative [−i], we add ± to its notation and obtain
OF±B,U and OF±T,U.

An example instance of the Boolean oracle is Oadd
B , which given

I = (_, [3]) returns 1 iff the formula add ever received as its second
input [3]P during the S(k, P) computation. A different example of
an oracle, useful in the case of a windowed S, is Oadd

T with input
I = ([5],_). It returns all of the iterations in which the add formula
took [5]P as its first input. We assume an instance of the oracle makes
a constant amount of queries to the implementation performing the
scalar multiplication, with chosen input points.

Section 6.2.4 shows how to construct instances of the Boolean and
temporal special point oracles using the techniques of RPA, ZVP, and
EPA attacks, as well as how to use these oracles in an attack.

6.2.2 The dependent coordinates problem

To unify the attacks, we introduce an abstract problem and analyze it.
According to the Section 6.1 definition, for the rest of this section

we fix a prime p≥ 3 and an elliptic curve E/Fp given5 by Y2 = fE(X),
where fE(X) = X3 + aX + b and a,b ∈ Fp. Let G be a subgroup of

5. In principle, our techniques apply to other curves models as well, but we use
the short Weierstrass model for simplicity, as it represents all curves.

103

6. A unified approach to special-point-based curve attacks

E/Fp with prime order q. Recall that mk is the x-coordinate of the
rational multiplication-by-k function on E. Furthermore, let

RE := Fp[X1, X2,Y1,Y2]/(Y2
1 − fE(X1),Y2

2 − fE(X2))

be the coordinate ring of E, and for a multivariate polynomial g, let
deg g denote its multi-degree, given as the sum of its degrees with
respect to all individual variables. Finally, note that lower case letters
denote scalar values, whereas upper case letters denote either free
variables or curve points.

Definition 6.2.1 (DCP: dependent coordinates problem.). Given a
polynomial f ∈ Fp[X1, X2,Y1,Y2] and an integer k, find a pair of points
(if they exist) P, Q ∈ G such that Q = [k]P and f (X1, X2,Y1,Y2) = 0,
where P = (X1,Y1), Q = (X2,Y2). If f ∈Fp[X1, X2], we call the problem
the x-only dependent coordinates problem, or xDCP.

Without loss of generality, we can also consider k ∈Zq instead of
k ∈Z, and replace f by any of its representatives from RE.

Solving the DCP via the xDCP. The following lemma utilizes the
curve equation and successive squaring to eliminate potential occur-
rences of Y1 and Y2.

Lemma 1. Let f ∈ Fp[X1, X2,Y1,Y2], k ∈Z and let (P, Q) be a solution
to the DCP determined by f and c. Then there exists a polynomial f ′ ∈
Fp[X1, X2] such that (P, Q) is also a solution to the xDCP determined
by f ′ and k and deg f ′ ≤ 6 · deg f + 12.

Proof. Working in RE, we replace all even powers of Y1 and Y2 by pow-
ers of fE(X1) and fE(X2), respectively; representing f as f0 + f1Y1 +
f2Y2 + f12Y1Y2 for some f0, f1, f2, f12 ∈ Fp[X1, X2]. Next, we eliminate

104

6. A unified approach to special-point-based curve attacks

Y1 and Y2:
f0 + f1Y1 + f2Y2 + f12Y1Y2 = 0

Y1(f1 + f12Y2) = −(f0 + f2Y2)

fE(X1)(f1 + f12Y2)
2 = (f0 + f2Y2)

2

fE(X1)(f 2
1 + f 2

12 fE(X2) + 2 f1 f12Y2) = f 2
0 + f 2

2 fE(X2) + 2 f0 f2Y2

Y2(fE(X1) · 2 f1 f12 − 2 f0 f2) = f 2
0 + f 2

2 fE(X2)

− fE(X1)(f 2
1 + f 2

12 fE(X2)

fE(X2)(fE(X1) · 2 f1 f12 − 2 f0 f2)
2 = (f 2

0 + f 2
2 fE(X2)

− fE(X1)(f 2
1 + f 2

12 fE(X2))
2.

Thus, instead of finding the roots of f , we find the roots of f ′, where
f ′ = fE(X2)(fE(X1) · 2 f1 f12 − 2 f0 f2)

2

−
(

f 2
0 + f 2

2 fE(X2)− fE(X1)(f 2
1 + f 2

12 fE(X2))
)2

.

To conclude the proof, it suffices to estimate
deg f ′ =max{2 ·max{deg f1 f12 + 3,deg f0 f2}+ 3,

2 ·max{2 · deg f0,2 · deg f2 + 3,
max{2 · deg f1,2 · deg f12 + 3}+ 3}}

≤4 ·max{deg f0,deg f1,deg f2,deg f12}+ 12
≤4 · deg(f0 + f1Y1 + f2Y2 + f12Y1Y2) + 12

≤4 · 3
2
· deg f + 12.

Lemma 1 effectively allows us to only consider xDCP instead of
DCP for the remainder of this chapter. Yet with care: we lost the infor-
mation about the signs of Y1 and Y2 during the squaring procedure
in the proof, so the resulting xDCP also has solutions with incorrect
signs (note that xDCP is always sign-agnostic).

The multi-degree bound is loose and might be much lower in
many instances. When solving ZVP or EPA, the multi-degree of f is
typically between 1 and 8, so the reduction to xDCP is still practical
(see Appendix D.3 for a few examples). Furthermore, we can often
factor the expressions and take only a single factor as f .

105

6. A unified approach to special-point-based curve attacks

An easy case. If f ∈ Fp[X2,Y2], then the DCP becomes easy when-
ever a solution exists. Using Lemma 1, we instead solve xDCP with
f ′ ∈ Fp[X2], finding the roots algorithmically. If there is a root corre-
sponding to the x-coordinate of some point Q, we simply compute
P = [k−1 mod q]Q and we are done. Note that this approach relies
heavily on ignoring the relationship between P and Q until the very
end. In particular, the solvability of DCP does not depend on the size of
k in this case. This contrasts the claims of Akishita and Takagi [AT03],
who found constructing ZVP points for addition (which amounts to
solving an instance of the DCP) as hard as computing the k-th division
polynomial.
The number of solutions. We now estimate the number of k’s such
that the xDCP has a solution. If f is linear in one of its variables, say
X1, then for any x2 ∈ Fp, there is exactly one x1 such that f (x1, x2) = 0
(except for rare cases when F(X1, x2) is a constant polynomial). The
probability that both x1 and x2 are the x-coordinates of P, Q ∈ G is
roughly 1

4 ·
q
n . For any such point pairs, there is exactly one k ∈ Zq

such that Q = [k]P, corresponding to the two possible solutions k,
q− k. Even though such k’s can overlap, we estimate the number of
k’s for which xDCP has a solution as 2 · p · 1

4 ·
q
n ≈

p
2 when G is a large

subgroup. The same heuristic applies when the degree D of at least
one variable in f is coprime to ϕ(p) = p − 1, since taking the D-th
power is an invertible operation in Fp. In general, the correspondence
between the roots of f is more problematic, but based on our empirical
results, the above heuristic still seems to be reasonably accurate.

6.2.3 Solving the xDCP

The basic strategy to solve the xDCP described in [AT03] is setting
X2 = mk(X1) and then finding the roots of f (X1, X2)∈Fp[X1]. If any of
the roots is an x-coordinate of a point P′ ∈G, we take P = P′, Q = [k]P.
The main limitation is that mk is very hard to compute for large k ≥ B.
In practice, B ≈ 220, mainly due to memory requirements.
Shifting the scalar. Suppose that both l and kl are small modulo q
for some l ∈ Z. Then we set X1 = ml(X), X2 = mkl(X), and find the
roots of f (X1, X2) ∈Fp[X1]. If any of them is an x-coordinate of a point
P′ ∈G, we take P = [l]P′, Q = [k]P.

106

6. A unified approach to special-point-based curve attacks

In practice, we find the shortest vector in the lattice generated
by
(

1 k
0 q

)
using the Lagrange-Gauss algorithm, and take l as its first

coordinate. Effectively, this increases the size of the set of all k’s for
which we can solve the xDCP to almost B2, compared to B for the basic
approach.
Using the greatest common divisor. To avoid expensive root-finding
of a large polynomial, we suggest to construct another polynomial
with the same roots, and compute the greatest common divisor (gcd).
Replacing mkl with m|q−kl| in the above method offers such a polyno-
mial. Since m|q−kl| might not be directly computable, we reduce both
its numerator and its denominator modulo the first polynomial at
every step. This does not influence the gcd. Finally, we perform a final
reduction after substituting it into f .

More precisely, let num(g) denote the numerator of a rational func-
tion g. Let X1 = ml(X), X2 = mkl(X), and define F1 = num(f (X1, X2)).
Furthermore, let X′2 ≡ m|q−kl|(X) mod F1 and F2 = num(f (X1, X′2)).
Then we efficiently compute F = gcd(F1, F2) using Euclid’s algorithm.
If any of the roots of F is an x-coordinate of a point P′ ∈ G, we take
P = [l]P′, Q = [k]P. Heuristically, it seems that F is always linear.
Minor scalar optimizations. The symmetry between P and Q, and
the fact that mk(x) = m−k(x) for all x ∈ Fp, allows us to replace k with
±k±1 mod q. This saves up to two bits.

6.2.4 The full attack

We now show that RPA, ZVP, and EPA are all special cases of the same
attack, utilizing different side channels and the dependent coordinates
problem to build an instance of the special point oracle.
The adaptive approach. As mentioned in Section 6.2.1, the multiples
which are input into the formulas during a scalar multiplication oper-
ation depend on the scalar. These multiples allow us to reconstruct
the scalar, as they determine the corresponding addition chain. For
example, step e) in Figure 6.1 computes either dbl([6]P) or dbl([7]P),
depending on the third most significant bit of the scalar.

During the attack, we have a known part of the scalar. It starts
empty, and we recover it in the same way the scalar multiplication

107

6. A unified approach to special-point-based curve attacks

algorithm processes it. Given a known part, we make a guess on
the next subpart, either a single bit or a window of bits, then use
some special point oracle to determine whether the guess was true.
This implies some multiples derived from the known part and next
subpart were input into a formula. This way, we recover the scalar in
logarithmically many queries to the oracle.

The type of oracle we have access to, and the scalar multiplication
algorithm used, both affect the attack. For example, if a fixed window
scalarmultiplication algorithm is used andwe have access to aOadd

T,([e],_)
for e ranging over all of the precomputed multiples of the input point,
we can recover the window digits directly and assemble the scalar
afterwards. If on the other hand a basic scalar multiplication algorithm
is used and we have an Odbl

B,([e]) for e ranging over all possible scalars,
we recover the scalar adaptively. Given a known part of the scalar k′,
we can gain the next bit based on the output of Odbl

B,([k′]) or Odbl
B,([k′+1]).

All of the RPA, ZVP, and EPA attacks utilize this adaptive approach,
differing only in how they construct a special point oracle (i.e. which
side channel and property of the curve, formula, or implementation
they use).
Constructing oracles from ZVP. Given a point addition formula, we
consider the intermediate polynomials, and pick any one of them
as f . A solution to the dependent coordinates problem for some k
then allows us to construct a point P such that f will evaluate to
zero during the computation of P + [k]P. Now using a suitable side
channel, we can detect whether this zero appears during the scalar
multiplication, and potentially localize it into an iteration of the scalar
multiplication algorithm [AT03]. Thus we can construct an instance
of the Oadd

T,([1],[k]) oracle for all k for which we can solve the (x)DCP6.
Similarly, considering the intermediate polynomials in a doubling
formula and zeroing out some of them for an input of [k]P allows us to
construct an instance of the Odbl

T,([k]) oracle. Note that in the case of the
addition formula, if the chosen intermediate polynomial f depends
only on one of the input points, it is possible to construct the Oadd

T,(_,[k])

and Oadd
T,([1],_) oracles.

6. We cannot always consider affine representations as f might not be homoge-
neous, but in practice this is not a problem, as we have freedom in choosing f .

108

6. A unified approach to special-point-based curve attacks

Constructing oracles fromRPA. This is a special case of ZVP inwhich
the intermediate value to zero out is a coordinate of an input point
[Gou03]. This leads to an easy case of the (x)DCP, discussed in Sec-
tion 6.2.2, as f = X2 or f = Y2. Because this oracle construction ap-
proach leads to an easy case of the (x)DCP, there is no bound on the
multiple k in the constructed oracle instances Oadd

T,(_,[k]). One can also
construct oracle instances such asOadd

T,([1],_) orOdbl
T,([k]), but notOadd

T,([1],[k])
as the appearance of a zero in one of the input points necessarily does
not depend on the other point.

Whether these RPA oracles can be constructed depends on the
properties of the curve, i.e. whether it has the points (x,0) or (0,y).
Note that if both a point and its negative have a zero-coordinate (as is
the case of the (0,y) point on short Weierstrass curves), one can only
use it to construct OF±T and OF±B oracles.
Constructing oracles from EPA. In this case, the side channel used
to construct the oracle is an error one. The oracle detects whether a
computation fails because of an undefined inversion. As explained
in Section 6.1.7, this can only happen at the very end of the scalar
multiplication, when mapping the result back to affine coordinates, so
we can take f to be the expression by which we divide. If we can solve
the (x)DCP for this f and some k, we can input this point7 into the
scalar multiplication, which will fail if it computes P + [k]P, enabling
us to construct a Oadd

B,([1],[k]). Note that this is a Boolean oracle: with
the error side channel we can only detect that the map back to affine
coordinates failed, and not during which iteration the zero occured.

6.2.5 Window method attack

The main limitation of the ZVP-based attacks compared to RPA-like
attacks is that they allow the attacker to recover only a limited number
of secret scalar bits. This is due to the need for solving a hard case of
the (x)DCPwith large k. We show that these attacks can extract the full
scalar when the target algorithm is window-based, or more generally
adds points to the accumulator point from a set of precomputed input
point multiples, conditionally on secret scalar bits.

7. The homogeneity of f allows us to only consider affine representations.

109

6. A unified approach to special-point-based curve attacks

The attack requires that the addition formula in question has an
intermediate value which depends only on one of the operands, thus
producing an easy case of the DCP as mentioned in Section 6.2.2.
Together with an appropriate side channel, this allows the attacker to
construct a Oadd

T,([e],_) oracle. Note that the attacker needs a temporal
special point oracle, and not a Boolean one, as the event that the e-th
multiple was added to the accumulator point somewhere in the scalar
multiplication is insufficient to extract information on the secret scalar.
Once the attacker is able to detect the relevant iterations, the attacker
varies over all values e in the set of precomputed multiples, based on
the algorithm. In this way, the attacker recovers the full secret scalar.

This attack works even if the curve has no RPA points (0,y), (x,0),
and thus RPA does not apply. However, the target must use a suitable
algorithm with an addition formula that has a suitable intermediate
value to zero out.

6.3 Classifying the exceptional points

While many EFD formulas [BL07a] are not complete, we are not aware
of any systematic overview of the respective pairs of exceptional points.
To rectify this, we implemented tooling for unrolling the formulas
and tracing their intermediate values. The tooling is an extension of
pyecsca [Jan20] (Python Elliptic Curve cryptography Side-Channel
Analysis) – a Python toolkit that aims to extract information from
black-box implementations of ECC through side channels and offers
extensive simulations of ECC implementations.

Our methodology loosely combines two very different, yet com-
plementary, techniques: fuzzing and manual analysis.

Fuzzing. To quickly identify possible exceptional points (and later
verify our findings heuristically), an automated approach is useful.
We fuzzed small curves of all relevant types, trying all pairs of input
points for all the analyzed formulas. This approach scales well, but at
the cost of an inherently high number of false positives (and possibly
false negatives). The results for small curves do not always generalize,
and the unrolling tool might not handle all corner cases correctly.

110

6. A unified approach to special-point-based curve attacks

Manual analysis. To find the sufficient and necessary conditions that
classify all the exceptional points, we resort to manual inspection.
Compared to the cost of fuzzing, it takes much more effort, argumen-
tation, and attention to detail. But in the end, it provides more insight,
and is applicable to all relevant curves of all sizes. In this light, the
fuzzing part of ourmethodology focuses on breadth, while themanual
analysis on depth.

We carefully went through all 111 addition formulas and 42 differ-
ential addition/ladder formulas8 in the EFD9, and studied when the
expressions by which we divide during the conversion to affine coordi-
nates could be zero10. Namely, for addition, this amounted to studying
the conditions X3 = 0 or Y3 = 0 for (twisted) inverted Edwards coordi-
nates, ZZ3 = 0 or ZZZ3 = 0 for short Weierstrass xyzz coordinates11,
and Z3 = 0 for all other coordinates. The variable’s subscript denotes
its index in the addition formula with 1 and 2 being the inputs and 3
being the output. Similarly, for differential addition and/or ladders,
we investigated when the outputs Z4 and Z5 equaled zero. Further-
more, the unrolled expressions could be studied to see which formulas
are unified, though we did not pursue this path further.

The rest of this section describes the details of our manual analysis.
See Table 6.2 for examples of the expressions we refer to.

6.3.1 Exceptional points for addition

We call a pair of points P, Q exceptional (w.r.t. some representation) for
an addition formulaF ifF (P, Q) 6= (P+ Q). If also P 6=±Q, and both
P and Q have odd prime order, we say that P, Q are non-trivial. This
also implies that F (P, Q) should always have an affine representation
for all F we discuss.
Short Weierstrass: projective, jacobian, modified, w12, xyzz
coordinates. For short Weierstrass curves, non-triviality implies x1 6=

8. Ladder formulas already include the doubling formulas for the same coordi-
nates.
9. The formulas include various coordinates and models, but some of them are
just adaptations for specific coefficients (e.g. a = −3 for EW), mixed additions, etc.
10. potentially omitting the cases where the result is a point at infinity
11. ZZi and ZZZi are variables whose values equal Z2

i and Z3
i throughout the

computation, respectively.

111

6. A unified approach to special-point-based curve attacks

Coordinates Formula Expression

jacobian
jacobian-0
jacobian-3

add-1986-cc Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-1998-cmo-2 Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-1998-cmo Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-1998-hnm Z3 = (−1) ∗ Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-2001-b Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-2007-bl Z3 = 2 ∗ Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
madd-2004-hmv Z3 = Z1 ∗ (X2 ∗ Z12 − X1)
madd-2007-bl Z3 = 2 ∗ Z1 ∗ (X2 ∗ Z12 − X1)
madd-2008-g Z3 = (−1) ∗ Z1 ∗ (X2 ∗ Z12 − X1)
madd Z3 = 2 ∗ Z1 ∗ (X2 ∗ Z12 − X1)
mmadd-2007-bl Z3 = (−1) ∗ 2 ∗ (X1− X2)
zadd-2007-m Z3 = (−1) ∗ Z1 ∗ (X1− X2)

Table 6.2: Jacobian coordinate outputs on short Weierstrass curves.

x2. Moreover, we do not need to consider the expression corresponding
to Z3 in the formulas by Renes, Costello, and Batina [RCB16], as Bosma
and Lenstra [BL95] prove their completeness. Since none of the Z3
expressions depend on a particular representation of a point, we can
(without loss of generality) assume

Z1 = Z2 = ZZ1 = ZZ2 = ZZZ1 = ZZZ2 = 1

when searching for non-trivial exceptional points, implying xi = Xi,yi =
Yi. With this in mind, there is only a single factor that could possibly
be zero in the studied Z3 expressions, namely (y1 + y2)

3. This factor is
present in all variants of the Brier-Joye [BJ02] formulas (add-2002-bj)
and Bernstein-Lange [BL07a] formulas (add-2007-bl), illustrated in
Algorithm 4. Note that (y1 + y2)

3 = 0 is equivalent to y1 =−y2, which
implies

x3
1 + ax1 + b = y2

1 = y2
1 = y2

2 = x3
2 + ax2 + b

(x2
1 + x1x2 + x2

2 + a)(x1 − x2) = 0

x2
1 + x1x2 + x2

2 + a = 0, since x1 6= x2.

Thus, we get a family of non-trivial exceptional points

P = (x,y) and Q = (x′,−y) with x 6= x′,

112

6. A unified approach to special-point-based curve attacks

equivalently characterized by x2 + xx′+ x′2 + a = 0, which is a possible
input to the xDCP. Izu and Takagi [IT03] previously identified this
family for the add-2002-bj case, but not for the add-2007-bl one.

Algorithm 4: Point addition formula add-2007-bl in projective
coordinates.
Input :E/Fp : y2 = x3 + ax + b,

P, Q ∈ E/Fp,
P = (X1 : Y1 : Z1),
Q = (X2 : Y2 : Z2)

Output : (X3 : Y3 : Z3) = P + Q
U1← X1 · Z2;
U2← X2 · Z1;
S1← Y1 · Z2;
S2← Y2 · Z1;
ZZ← Z1 · Z2;
T←U1 + U2;
TT← T2;
M← S1 + S2;
t0← ZZ2;
t1← a · t0;
t2←U1 ·U2;
t3← TT − t2;
R← t3 + t1;
F← ZZ ·M;

L← M · F;
LL← L2;
t4← T + L;
t5← t2

4;
t6← t5 − TT;
G← t6 − LL;
t7← R2;
t8← 2 · t7;
W← t8 − G;
t9← F ·W;
X3← 2 · t9;
t10← 2 ·W;
t11← G− t10;
t12← 2 · LL;
t13← R · t11;
Y3← t13 − t12;
t14← F2;
t15← F · t14;
Z3← 4 · t15;

(Twisted) Edwards: projective, extended, inverted coordinates. Let
Ea,d : ax2 + y2 = 1 + dx2y2 be a (twisted) Edwards curve 12 (cf. Sec-
tion 6.1) (note that we do not impose any (non-)square restrictions on
a,d ∈ Fp). In order to go through all the Z3 expressions and see when
they are equal to zero, we introduce the following lemma.

12. We only consider Edwards curves with c = 1, since the others can be isomorphi-
cally rescaled to this case without affecting the nullity of the Z3 expressions.

113

6. A unified approach to special-point-based curve attacks

Lemma 2. Let P = (x1,y1), Q = (x2,y2) be a pair of non-trivial excep-
tional points on Ea,d. Then the following holds:

x1x2y1y2 6= 0, (6.1)
dx1x2y1y2 6= ±1, (6.2)

y1y2 6= −ax1x2, (6.3)
x1y2 6= x2y1, (6.4)
x1y2 6= −x2y1, (6.5)
y1y2 6= ax1x2. (6.6)
x1y1 6= ±x2y2. (6.7)

Proof. (6.1) follows from the fact that neither P nor Q are 4-torsion.
Hisil et al. [His+08] (Theorem 1, Corollary 1) prove (6.2), (6.3) and
(6.4).

Now consider the addition law from [Ber+08]:

(x1,y1) + (y1,y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1− dx1x2y1y2

)
.

Assume that either (6.5) or (6.6) is not true. Since the denominators
are nonzero by (6.2), one of the coordinates of P + Q is zero, which
implies P + Q is a 4-torsion point. This is impossible, since both P and
Q have odd order and P 6= −Q.

Finally, consider the addition law from [His+08]:

(x1,y1) + (y1,y2) =

(
x1y1 + x2y2

y1y2 + ax1x2
,
x1y1 − x2y2

x1y2 − y1x2

)
.

Assume that (6.7) is not true. Since the denominators are nonzero by
(6.3) and (6.4), one of the coordinates of P + Q is zero, which implies
P + Q is a 4-torsion point. This is impossible, since both P and Q have
odd prime order and P 6= −Q.

After factoring all the Z3 expressions, we can (without loss of gen-
erality) set Z1 = Z2 = 1. Thenwe have xi = 1/Xi,yi = 1/Yi for inverted
coordinates, and xi = Xi,yi = Yi for all others. Lemma 2 handles all
the possible zero factors, which means that there are no non-trivial
exceptional points.

114

6. A unified approach to special-point-based curve attacks

Curve model Coordinates Formula name

EW

projective add-2007-bl
add-2002-bj

xz

dadd-2002-it, mdadd-2002-it
ladd-2002-it, mladd-2002-it
dadd-2002-it-3, mdadd-2002-it-3
ladd-2002-it-3, mladd-2002-it-3
mdadd-2002-bj, mladd-2002-bj
mdadd-2002-bj-2, mladd-2002-bj-2
mladd-2002-bj-3

Table 6.3: Formulas [BL07a; IT02; BJ02] with non-trivial exceptional points.
The projective coordinates apply to all formula versions: a = −1,
a = −3 and general a.

6.3.2 Exceptional points for differential addition and ladders

Recall from Section 6.1.3 that differential addition and ladder formulas
take representations of three input points (P−Q, P, Q) and return the
representation of P + Q or ([2]P, P + Q), respectively.

We call a triplet of points (P−Q, P, Q) exceptional (w.r.t. a repre-
sentation) for a differential addition or ladder formula F if F (P−
Q, P, Q) 6= P + Q or F (P − Q, P, Q) 6= ([2]P, P + Q), respectively. If
moreover P 6= ±Q, and both P and Q have odd prime order, we say
that (P−Q, P, Q) are non-trivial. This also implies that F (P−Q, P, Q)
should always have an affine representation for allF wediscuss (hence
Z4 and Z5 should be nonzero).
ShortWeierstrass: xz coordinates. In this case, the inputs are P−Q =
(X1, Z1), P = (X2, Z2), Q = (X3, Z3) on EW/Fp : y2 = x3 + ax + b; the
outputs are (X4, Z4) for diff. addition and (X4, Z4), (X5, Z5) for ladders.

Setting Z1 = Z2 = Z3 = 1 and x1 = X1, x2 = X2, x3 = X3, the only
possibilities for Z4 = 0 or Z5 = 0 that arise in the formulas are x2 = x3,
x3

2 + ax2 + b = 0, and x1 = 0. Only the latter corresponds13 to a triplet
of non-trivial exceptional points ((0 : 1) − Q, (0 : 1), Q), whenever
b is a square in Fp. The impacted formulas are {d/l}add-2002-it,

13. Note that x1 does not directly affect X4 nor X5.

115

6. A unified approach to special-point-based curve attacks

{d/l}add-2002-it-3, and their mixed variants, plus mdadd-2002-bj,
m{l/d}add-2002-bj-2 and mladd-2002-bj-3.
Montgomery: xz coordinates.Here, the inputs are P−Q = (X1, Z1),
P = (X2, Z2), Q = (X3, Z3) on EM/Fp : By2 = x3 + Ax2 + x; the outputs
are (X4, Z4) for diff. addition and (X4, Z4), (X5, Z5) for ladders.

Setting Z1 = Z2 = Z3 = 1 and x1 = X1, x2 = X2, x3 = X3, the only
possibilities for Z4 = 0 or Z5 = 0 that arise in the formulas are x1 = 0,
x2 = 0, x2 = 1/2 · (−A ±

√
A2 − 4), x2 = x3 and (x2 − 1)(x3 + 1) =

(x2 + 1)(x3 − 1). Section 6.1 shows that the former three correspond
to points of order 2 (though

√
A2 − 4 might not exist over Fp). The

last one implies either x2 − 1 = x3 − 1 = 0, or x2 + 1 = x3 + 1 = 0, or
else

1− 2
x2 + 1

=
x2 − 1
x2 + 1

=
x3 − 1
x3 + 1

= 1− 2
x3 + 1

.

In all of these cases, we have x2 = x3, hence the corresponding points
are trivial.
Edwards: yz, yz-squared coordinates.Recall that in these cases, d = r2

for some r 6= ±1 in F∗p. The inputs are P−Q = (Y1, Z1), P = (Y2, Z2),
Q = (Y3, Z3) on EE/Fp : x2 + y2 = 1 + r2x2y2; the outputs are (Y4, Z4)
for diff. addition and (Y4, Z4), (Y5, Z5) for ladders. In fact, (Y4, Z4) for
ladders is just a special case of (Y5, Z5) with Y2 = Y3, Z2 = Z3, so we
may ignore it.

Setting Z1 = Z2 = Z3 = 1, we get y1 = Y1/r,y2 = Y2/r,y3 = Y3/r
for the yz coordinates, and y2

1 = Y1/r,y2
2 = Y2/r,y2

3 = Y3/r for the
yz-squared coordinates, the ladder Z5 and diff. addition Z4 coincide
for all of these formulas. The only conditions to analyze are y1 = 0
(which is a trivial case as it corresponds to 4-torsion P−Q) and

(1 + ry2
2)(1 + ry2

3) =
r + 1
r− 1

(
1− ry2

2

)(
1− ry2

3

)
,

which implies

(r− 1)(1 + ry2
2 + ry2

3 + r2y2
2y2

3) = (r + 1)(1− ry2
2 − ry2

3 + r2y2
2y2

3)

−2 + 2r2y2
2 + 2r2y2

3 − 2r2y2
2y2

3 = 0

r2y2
3(1− y2

2) = 1− r2y2
2. (6.8)

116

6. A unified approach to special-point-based curve attacks

If 1− r2y2
2 = 0, then either y3 = 0 or y2

2 = 1, implying Q or P being
4-torsion. In the other case, we get

y2
3 =

1− r2y2
2

r2(1− y2
2)

=
1

r2x2
2

,

and since (6.8) is symmetric, analogical arguments yield

y2
2 =

1− r2y2
3

r2(1− y2
3)

=
1

r2x2
3

.

Thus the only case left to consider is x2
2y2

3 = x2
3y2

2 =
1
r2 . But then we

have (1 + dx2x3y2y3)(1− dx2x3y2y3) = 1− r4x2
2x2

3y2
2y2

3 = 0, which is
impossible for non-trivial exceptional points by (6.2) in Lemma 2.

6.4 Practical implications

This work has several practical implications, stemming from (i) its
findings on exceptional points for EFD formulas; (ii) its development
of a ZVP-like attack on windowed scalar multiplication methods; and
(iii) improvements to the techniques used in the ZVP and EPA attacks.

6.4.1 Impact on cryptographic libraries

We examined the EC arithmetic implementations in 13 popular open-
source cryptographic libraries. Table 6.4 lists their scalar multiplica-
tion algorithm, coordinates, and addition formulas. The focus of our
analysis was on ECDH operations over EW , and in case the library
implements several algorithms, we list the one used for generic curves.
Most analyzed libraries use jacobian coordinates, for which we report
no classes of non-trivial exceptional points in any of the formulas on
EFD. One could conclude that the impact of the new classes of ex-
ceptional points is thus negligible. However, these libraries represent
only a fraction of the uses of addition formulas. Implementations of
EC arithmetic, potentially using one of the addition formulas with
non-trivial exceptional points, are found in pairing-based cryptogra-
phy, password-authenticated key exchange, or many zero-knowledge
proof system implementations.

117

6. A unified approach to special-point-based curve attacks

The discovered classes of exceptional points are unexpected from
the point-of-view of a developer. While many developers know that
formulas which are not complete or unified need special handling,
they do not expect seemingly unrelated points causing issues in the for-
mula. We illustrate this by presenting a history of issues surrounding
exceptional cases in formulas used by cryptographic libraries.
NSS: unimplemented exceptions. For generic EW , NSS has three dif-
ferent implementations of EC arithmetic. The first is pure affine, which
wedisregard. The second ismixedpoint addition using an implementa-
tion of madd-2004-hmv, optimized for a =−3. However, the code failed
to account for the P =±Q cases. Furthermore, the corresponding point
doubling is an implementation of dbl-1998-cmo-2, and failed to ac-
count for the 2P = O case. Mozilla issued CVE-2015-273014 to track
these issues.
NSS: more unimplemented exceptions. The last, and most generic
EW arithmetic in NSS, is mixed point addition using a madd-2004-hmv
implementation, with no optimizations for curve coefficients. Two
years after the previous issue, Valenta et al. [Val+18, Section 7.2] un-
covered the analogous flaw in this code. There were no corresponding
flaws in point doubling. Mozilla issued CVE-2017-778115 to track this
issue.
OpenSSL: broken ladder. In 2018, OpenSSL switched to a ladder im-
plementation for generic EW scalar multiplications. Work by Tuveri
et al. [Tuv+18] prompted the change. For the ladder step, the initial
code, merged to the development branch, was an implementation of
ladd-2002-it-3. Unfortunately, this code fails in the case of a par-
ticular x-coordinate being zero (Section 6.3.2). One month passed
between merging the broken implementation and the fix16, switch-
ing to ladd-2002-it-4. The discovery17 was mostly luck – during
standardization, GOST curves utilized generators with the smallest
possible x-coordinate.

14. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2730
15. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7781
16. https://github.com/openssl/openssl/pull/7000
17. https://github.com/openssl/openssl/issues/6999

118

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7781
https://github.com/openssl/openssl/pull/7000
https://github.com/openssl/openssl/issues/6999

6. A unified approach to special-point-based curve attacks

BoringSSL: untaken exceptions leak.Historically, Google’s BoringSSL
only supports a very narrow subset of curves: P-224, P-256, P-384, P-
521, andCurve25519.Weiser et al. [Wei+20] discovered timing leaks in
BoringSSL’s point addition formulas, affecting the legacy NIST curves
in the aforementioned list. The leaks were in three distinct implemen-
tations: P-224 and P-256 have dedicated EC arithmetic stacks, while
P-384 and P-521 share a single stack. In all cases, the root cause is short
circuit logic: a snippet from the vulnerabilities follows.

if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)

The first two variables are Booleans tracking whether the two
x-coordinates are equal (resp. y), and the last two ensure neither
operand is O by checking if the z-coordinates are zero. This C state-
ment violates the constant-address model, a requirement for constant-
time code. For instance:

• if the first branch fails, this tells the attacker the x-coordinates
are not equal;

• if the second branch fails, this tells the attacker the x-coordinates
are equal, but the y-coordinates are not;

• if the third branch fails, this tells the attacker the x- and y-
coordinates are equal, and the first operand is O;

• if the fourth branch fails, this tells the attacker the x- and y-
coordinates are equal, the first operand is not O, yet the last
operand is O;

• if no branch fails, this tells the attacker the x- and y-coordinates
are equal, and neither operand isO (subsequently early exiting
to point doubling).

For example, this leak is relevant at the beginning of scalar mul-
tiplication, in various cases where the accumulator takes the value
O. These (probabilistically) small leaks are often sufficient for lattice-
based cryptanalysis of nonce-based digital signature schemes, such as
ECDSA. We feel this case is particularly interesting, since it is not the

119

6. A unified approach to special-point-based curve attacks

exception itself that usually leaks, but rather the check for the exception.
Google fixed18 the issues in 2019.
Python fastecdsa: division by zero. The Pythonmodule fastecdsa is
an extension module, backed by GNUMP, a multiprecision arithmetic
library written in C. It implements the ECDSA signature scheme19,
also providing flexible EC arithmetic with affine coordinates. The
module supports generic EW curves, as well as several standardized
curves with fixed parameters, and EW versions of modern EE and
ET curves such as Curve25519 and Curve448. Using our Section 6.3
methodology, we discovered 20 that the point doubling code does not
handle the 2P =O case properly. The C code ignores the return code
from GNU MP’s modular inversion function. In the y = 0 case, this
leads to a silent division by zero, and incorrect results for points with
even order. While this naturally affected generic fastecdsa curves,
the EW versions of Curve25519 and Curve448 were impacted the most.
This is because all other standardized curves built into fastecdsa have
large prime order.

6.4.2 Attack improvements

Previous ZVP attacks targeting addition formulas on different scalar
multiplication methods required the computation of large degree di-
vision polynomials. This limited the attack to only recover a small
amount of secret scalar bits. On the other hand, our proposed attack
on windowed scalar multiplication methods from Section 6.2.5 allows
the attacker to recover the full scalar. Thus, this shows that windowed
methods of scalar multiplication are somewhat more vulnerable to
ZVP-like attacks. We simulated the attack using the pyecsca toolkit,
and were able to recover the full secret scalar from a window NAF al-
gorithmwith add-2016-rcb formulas on the P-224 curve. In the attack,
we do not observe a real power or electromagnetic side channel, but
the toolkit simulates the computation down to individual finite field
operations, and produces the side-channel output (e.g., whether a zero
occurred during computation). Appendix D.1 shows the attack code

18. https://boringssl.googlesource.com/boringssl/+/
12d9ed670da3edd64ce8175c
19. https://pypi.org/project/fastecdsa/
20. https://github.com/AntonKueltz/fastecdsa/pull/58

120

https://boringssl.googlesource.com/boringssl/+/12d9ed670da3edd64ce8175c
https://boringssl.googlesource.com/boringssl/+/12d9ed670da3edd64ce8175c
https://pypi.org/project/fastecdsa/
https://github.com/AntonKueltz/fastecdsa/pull/58

6. A unified approach to special-point-based curve attacks

Library Operation Scalar multiplier Coordinates Addition formula
BouncyCastle
1.68

KeyGen Comb modified add-1998-cmo-2
Derive Window NAF modified add-1998-cmo-2

BoringSSL
9f55d97

KeyGen Fixed window jacobian add-2007-bl
Derive Fixed window jacobian add-2007-bl

Botan
2.18.0

KeyGen Fixed window jacobian-3 add-1998-cmo-2
Derive Fixed window jacobian-3 add-1998-cmo-2

Crypto++
8.5.0

KeyGen Sliding window affine textbook1
Derive Sliding window affine textbook1

fastecdsa
2.2.1

KeyGen Ladder affine textbook1
Derive Ladder affine textbook1

libgcrypt
1.9.3

KeyGen Basic left-to-right jacobian add-1998-hnm
Derive Basic left-to-right jacobian add-1998-hnm

LibreSSL
3.3.3

KeyGen Ladder jacobian add-1998-hnm
Derive Ladder jacobian add-1998-hnm

libtomcrypt
0.18.2

KeyGen Sliding window jacobian add-1998-hnm
Derive Sliding window jacobian add-1998-hnm

IPP-crypto
2021.2

KeyGen Window NAF jacobian add-1998-cmo-2
Derive Window NAF jacobian add-1998-cmo-2

Microsoft CNG
6d019ce

KeyGen Fixed window jacobian add-2007-bl
Derive Fixed window jacobian add-2007-bl

NSS
3.65

KeyGen Window NAF jacobian madd-2004-hmv
Derive Window NAF jacobian madd-2004-hmv

OpenSSL
1.1.1k

KeyGen Ladder xz mladd-2002-it-4
Derive Ladder xz mladd-2002-it-4

wolfSSL
4.7.0

KeyGen Sliding window jacobian add-1998-hnm
Derive Sliding window jacobian add-1998-hnm

MatrixSSL
4.3.0

KeyGen Sliding window jacobian add-1998-hnm
Derive Sliding window jacobian add-1998-hnm

Go 1.16.4
crypto/elliptic

KeyGen Basic left-to-right jacobian add-2007-bl
Derive Basic left-to-right jacobian add-2007-bl

1 Using textbook chord-and-tangent addition formulas.

Table 6.4: Libraries analyzed in this work, in the context of ECDH over EW , i.e., both key
generation (KeyGen) and shared secret derivation (Derive). For libraries
supporting multiple choices of coordinates or formulas, we report the most generic
and default setting.

snippets. Note that the P-224 curve does not have any zero-coordinate
point suitable for the RPA attack, and the used formulas are complete,
disallowing the possibility of an EPA attack.

121

https://github.com/bcgit/bc-java/blob/r1rv68/core/src/main/java/org/bouncycastle/math/ec/ECPoint.java#L658
https://github.com/bcgit/bc-java/blob/r1rv68/core/src/main/java/org/bouncycastle/math/ec/ECPoint.java#L877
https://boringssl.googlesource.com/boringssl/+/9f55d972854d0b34dae39c7cd3679d6ada3dfd5b/crypto/ fipsmodule/ec/ec_montgomery.c#249
https://boringssl.googlesource.com/boringssl/+/9f55d972854d0b34dae39c7cd3679d6ada3dfd5b/crypto/ fipsmodule/ec/ec_montgomery.c#249
https://github.com/randombit/botan/blob/2.18.0/src/lib/pubkey/ec_group/point_gfp.cpp#L89
https://github.com/randombit/botan/blob/2.18.0/src/lib/pubkey/ec_group/point_gfp.cpp#L89
https://github.com/weidai11/cryptopp/blob/CRYPTOPP_8_5_0/ecp.cpp#L260
https://github.com/weidai11/cryptopp/blob/CRYPTOPP_8_5_0/ecp.cpp#L260
https://github.com/AntonKueltz/fastecdsa/blob/9f31ceb2fada67ddc61f931daf1d6a249b969900/src/curveMath.c#L68
https://github.com/AntonKueltz/fastecdsa/blob/9f31ceb2fada67ddc61f931daf1d6a249b969900/src/curveMath.c#L68
https://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=mpi/ec.c; h=0b6ae9a99bec0836963000fc5bd7d6c190a4c88d;hb=5f814e8a4968c01a7ffc7762bcaf3ce040594caf#l1307
https://git.gnupg.org/cgi-bin/gitweb.cgi?p=libgcrypt.git;a=blob;f=mpi/ec.c; h=0b6ae9a99bec0836963000fc5bd7d6c190a4c88d;hb=5f814e8a4968c01a7ffc7762bcaf3ce040594caf#l1307
https://github.com/libressl-portable/openbsd/blob/libressl-v3.3.3/src/lib/libcrypto/ec/ecp_smpl.c#L637
https://github.com/libressl-portable/openbsd/blob/libressl-v3.3.3/src/lib/libcrypto/ec/ecp_smpl.c#L637
https://github.com/libtom/libtomcrypt/blob/v1.18.2/src/pk/ecc/ltc_ecc_projective_add_point.c#L33
https://github.com/libtom/libtomcrypt/blob/v1.18.2/src/pk/ecc/ltc_ecc_projective_add_point.c#L33
https://github.com/intel/ipp-crypto/blob/ippcp_2021.2/sources/ippcp/pcpgfpec_add.c#L34
https://github.com/intel/ipp-crypto/blob/ippcp_2021.2/sources/ippcp/pcpgfpec_add.c#L34
https://github.com/microsoft/SymCrypt/blob/6d019cefafb3fefe3c53b0de3bba6f8c86e2d48a/lib/ec_short_weierstrass.c#L483
https://github.com/microsoft/SymCrypt/blob/6d019cefafb3fefe3c53b0de3bba6f8c86e2d48a/lib/ec_short_weierstrass.c#L483
https://hg.mozilla.org/projects/nss/file/0e785b3a4a10a25afa367dc0b93c01c166a499a5/lib/freebl/ecl/ecp_jm.c#l88
https://hg.mozilla.org/projects/nss/file/0e785b3a4a10a25afa367dc0b93c01c166a499a5/lib/freebl/ecl/ecp_jm.c#l88
https://github.com/openssl/openssl/blob/OpenSSL_1_1_1k/crypto/ec/ecp_smpl.c#L1556
https://github.com/openssl/openssl/blob/OpenSSL_1_1_1k/crypto/ec/ecp_smpl.c#L1556
https://github.com/wolfSSL/wolfssl/blob/v4.7.0-stable/wolfcrypt/src/ecc.c#L1726
https://github.com/wolfSSL/wolfssl/blob/v4.7.0-stable/wolfcrypt/src/ecc.c#L1726
https://github.com/matrixssl/matrixssl/blob/4-3-0-open/crypto/pubkey/ecc_math.c#L740
https://github.com/matrixssl/matrixssl/blob/4-3-0-open/crypto/pubkey/ecc_math.c#L740
https://github.com/golang/go/blob/go1.16.4/src/crypto/elliptic/elliptic.go#L118
https://github.com/golang/go/blob/go1.16.4/src/crypto/elliptic/elliptic.go#L118

6. A unified approach to special-point-based curve attacks

We also expanded the range of scalars for which the (x)DCP can be
solved. While this increases the number of recovered bits only slightly,
our improvements are quite general and might be combined with
future ones.

6.4.3 Tooling

We released all of our code and data under an open-source license,
as an extension to the pyecsca project 21. This includes tooling for
unrolling EFD formulas, helping analyze exceptional cases and auto-
matically construct ZVP points (note that Akishita and Takagi [AT03]
construct them manually), as well as improvements to solving the
(x)DCP (Section 6.2.3).

6.4.4 Reverse engineering

Another application of our techniques is in reverse engineering black-
box implementations of ECC, as suggested in [Jan20]. Many side-
channel attacks critically depend on the attacker having detailed
knowledge of the target implementation, such as the scalar multi-
plication algorithm, coordinates, or even specific formulas used. In
practice (e.g., smartcards), vendors keep this information secret; de
facto security-by-obscurity.

In our unified framework, reverse engineering is an easier problem
than attacking. Indeed, it suffices to choose f as an intermediate value
of a point addition formula, then solve the (x)DCP problem for several
small values of k. Our methodology allows us to choose f in a manner
that allows us to identify the target addition formulas, after confirming
one of our guesses (e.g., using k = 1 and k = 2). Furthermore, as the
sequence of formula executions during scalar multiplication with a
fixed scalar depends on the scalar multiplication algorithm used, we
can apply our technique to identify this algorithm as well.

21. https://github.com/crocs-muni/formula-for-disaster

122

https://github.com/crocs-muni/formula-for-disaster

6. A unified approach to special-point-based curve attacks

6.5 Conclusions

In this chapter, we presented a unified framework for the RPA, ZVP,
and EPA attacks, and demonstrated its utility by mounting an attack
on window-based scalar multiplication methods (Section 6.2.5). We
were also able to push the ZVP and EPA attacks further: introducing
the dependent coordinates problem, and solving it for new cases. We
created automated tooling that unrolls formulas and constructs ZVP
points, which was only possible manually before. We released all our
code and data as an open-source extension of the pyecsca toolkit, with
the hope that they can serve as a basis for future work.

As a result of our systematic classification, we uncovered new
classes of exceptional points in EFD formulas. These formulas are,
however, currently not used by any of the open-source cryptographic
libraries we analyzed, which we see more as happenstance than com-
petence – for example, OpenSSL was using ladd-2002-it-3 not that
long ago.
Lessons learned. Our Section 6.4 results demonstrate Murphy’s law,
in action, (sometimes) in real code, with (at least) billions of deploy-
ments. Furthermore, they highlight our failure as a research commu-
nity. We know of these exceptions for over two decades, yet we are
still unable to eradicate legacy theoretical constructs and code from
real-world standards, products, and systems. This is exacerbated by
the fact that, again as a research community, we often prioritize speed
over security, in the name of establishing novelty for scientific contri-
butions. These are often then left in dubious hands, without diligent
technology transfer, and with little to no knowledge of how to apply
them safely. This is precisely where our Section 6.3 results help, by
providing feedback on the type and nature of failures in various EC
arithmetic formulas. All of these results are enabled by our unified
attack framework in Section 6.2, our showcase theoretical contribution
upon which we build our practical contributions.

We believe that in order to prevent future vulnerabilities, we should
start paying more attention to the properties of the formulas and their
assumptions, and clearly document them in libraries, papers, and the
EFD.

123

7 Interoperable Schnorr multisignatures1

Multiparty protocols are becoming increasingly popular as a method
of private key compromise prevention. These approaches divide the
secret key among multiple devices and never reconstruct it in a single
place. Such a mechanism protects not only against malware but also
against code vulnerabilities or backdoors when different implemen-
tations and devices are used. Still, an issue on the protocol level may
result in compromise, and up until now, it has been unknown how
exactly can different unmodified multiparty protocols be combined.

Since the expiry of Schnorr’s patent in 2008 [Sch91a], Schnorr sig-
natures are making a considerable comeback, fueling digital signature
specifications like EdDSA [Ber+12] – which is being gradually incor-
porated in state-of-the-art protocols like TLS, SSH, Tor, andWireGuard
[IANb] – and BIP-Schnorr [WNT20a], a Bitcoin community specifica-
tion currently being adopted in the Bitcoin blockchain [Nak08] as a
part of the Taproot [WNT20b; WNT20c] consensus update.

Adopters of Schnorr signatures benefit from their efficiency as well
as linearity, which provides several usability benefits. In the blockchain
scenario, they can be used to enforce contractswithout the requirement
of the scripting capabilities of the underlying blockchain [Poe18].
More generally, they allow for an efficient construction of multiparty
signatures, indistinguishable from a single-party one.

Recent schemes [AB21; KG; Max+19; NRS; Syt+16] significantly
advanced the construction of Schnorr signatures bymultiple co-signing
parties, decreasing communication and achieving security in the plain
public-key model. However, no single scheme is suitable for all appli-
cations, and they often differ in technical or design details, typically
rendering them partly or fully incompatible.

Apart from the usability benefits, interoperability also brings secu-
rity improvements. In real-world cryptographic systems, implementa-
tion vulnerabilities are a frequent weak point. Multiparty computation
can mitigate their impact by running different implementations on
different devices [Mav+17], as long as at least one implementation

1. The results in this chapter were submitted to Applied Cryptography and Net-
work Security 2022 as “Resilience via Practical Interoperability ofMultiparty Schnorr
Signature Schemes”with coauthors Antonin Dufka and Petr Svenda.

125

7. Interoperable Schnorr multisignatures

remains secure. Multiparty scheme interoperability extends this idea
by an additional parameter: choosing different protocols limits the
threat of common implementation errors in all protocols at once.

In this work, we study the differences between multiparty Schnorr
signature schemes, classify them based on their approach to the aggre-
gated nonce agreement, and identify technical issues that could hinder
the interoperability of schemes within the same class. Furthermore,
we investigate the possibility of interoperability of multiparty schemes
across classes. We manage to achieve it by introducing an untrusted
central party that mediates communication among different protocols
and arrives at the correct signature without violating the security of
any of the protocols.

Based on these insights, we design a new multiparty Schnorr
scheme SHINE, which is interoperable with several other Schnorr
schemes and is optimized for computationally limited devices like
smartcards. Unlike recent schemes that trade additional computation
for low communication complexity and unlimited-parallelism security,
we reduce the on-device computation, which is the major bottleneck
for smartcards. SHINE is a serial, two-round scheme, where the first
round can be precomputed with a novel approach to nonce caching
that avoids the Drijvers attack [Dri+19] by construction.

Our main contributions are:
• Classifying the current multiparty Schnorr signature protocols

based on their approach to the nonce agreement.
• Proposing a mediation layer with an untrusted third party,

bridging protocol class differences to achieve interoperability.
• Designing a novel two-round (one-round plus precomputation)

multiparty Schnorr signature scheme called SHINE, which fea-
tures encrypted nonce caching and targets computationally lim-
ited devices like smartcards.

• Providing open-source implementation of SHINE on the Java-
Card platform and evaluating its performance on five different
smartcard models.

• Demonstrating practical interoperability of SHINE with other
scheme classes via the proposed mediation layer.

126

7. Interoperable Schnorr multisignatures

This chapter is structured as follows: after the first introductory
section, Section 7.1 sums up the related work, while Section 7.2 de-
clares the used notation and presents the relevant background. We
compare different approaches to nonce agreement and discuss their
comparability in Section 7.3. Building upon the lessons learned, we
introduce our scheme SHINE in Section 7.4 and draw conclusions in
Section 7.5.

7.1 Related work

Wegner [Weg96] defined the concept of interoperability as the ability
of two or more software components to cooperate despite their im-
plementation differences and provided two approaches for achieving
it. This concept has been applied to various components of computer
systems, but to the best of our knowledge, no previous work focused
on the interoperability of different multiparty signature schemes.

CoSi [Syt+16] is a two-round Schnorr multi-signature scheme
designed for high-speed signing by many parties organized into a tree
structure. The scheme has been proven secure only for logarithmically
many parallel signing instances in follow-up work [Dri+19].

Myst [Mav+17] is a setup of 240 smartcards interconnected into a
grid performing multiparty computations to achieve high guarantees
of backdoor tolerance. Myst uses a multi-signature scheme similar to
CoSi, which was optimized for limited devices. One of the optimiza-
tions the scheme uses (nonce caching) was found vulnerable to an
attack by Drijvers et al. [Dri+19]

MuSig [Max+19] was originally presented as a two-round scheme
that was later found vulnerable by Drijvers et al. [Dri+19] MSDL by
Boneh et al. [BDN18] added a preliminary commitment round to
prevent the attack, inspired by Bellare and Neven [BN06], resulting
in a three-round parallel-secure scheme.

The first parallel-secure two-round Schnorrmulti-signature scheme
was MuSig-DN [Nic+20], which avoids the Drijvers attack by generat-
ing the nonce deterministically. The nonce needs to be supplemented
with costly non-interactive zero-knowledge proofs of its correct con-
struction to achieve security.

127

7. Interoperable Schnorr multisignatures

MuSig2 [NRS] and DWMS [AB21] made advances in secure two-
round multi-signature schemes with unlimited parallelism and, inde-
pendently of each other, introduced a technique preventing the Dri-
jvers attack. This approach is much more efficient than deterministic
nonce derivation but still presents a significant computation overhead,
limiting its usefulness for computationally restricted devices.

FROST [KG] is a threshold signature scheme that is secure for an
arbitrary threshold t ≤ n and, as such, provides great flexibility to its
applications. Its original version was also vulnerable to the Drijvers
attack, but later version employed a variation of the technique used in
[AB21; NRS] to avoid the issue.

Garillot et al. [Gar+21] presented another threshold signature
scheme secure in the dishonest majority setting that has the benefit of
not requiring additional randomness nor state. Its construction is con-
ceptually similar to the MuSig-DN scheme, and it uses deterministic
nonce derivation supplemented by zero-knowledge proofs.

7.2 Notation and background

A group description is a triplet (G,q, G), where q is a λ-bit prime, G is a
cyclic group of order q and G is a selected generator of G. We denote
uniform sampling of e from a non-empty set S as e←$ S. Unless stated
otherwise, a function H : {0,1}∗→Zq can take an arbitrary number
of arguments that are first uniquely encoded to binary strings. We
reserve k for the number of signing parties and t for the threshold
needed to perform signing.2 We call schemes that allow any t ≤ k
threshold signatures, while multi-signatures require t = k. Furthermore,
for a secret s, we use the following notation:

• PRFs – a cryptographic pseudorandom function seeded with s;
• KDFs – a cryptographic key derivation function seeded with s;
• Encs – a symmetric encryption function with a key s;
• Decs – a symmetric decryption function with a key s;
• Com – a cryptographic commitment.

2. Less than t parties cannot create the signature.

128

7. Interoperable Schnorr multisignatures

7.2.1 Schnorr signatures

The original Schnorr signature scheme [Sch91b] is derived from the
Schnorr identification scheme using the Fiat-Shamir transform [FS86],
and it relies on the hardness of the discrete logarithm problem. The
scheme outputs efficiently computable and verifiable signatures of
short length. It has been proven existentially unforgeable under the
chosenmessage attack [PS00] in the random oracle model [BR93]. Var-
ious equivalent formulations of Schnorr signature schemes have been
suggested, but in this work, we choose the one typically used[Ber+12;
WNT20a], as it supports efficient batch verification and prevents
related-key attacks [Mor+15].

Definition 7.2.1 (Schnorr signature). Let (G,q, G) be a group descrip-
tion and H : G2×Zq→Zq be a hash function. A Schnorr signature of
a message m ∈Zq verifiable with public key X ∈G is any pair (R, s) ∈
G×Zq satisfying the verification equation [s]G = R + [H(R, X,m)]X.

For a random nonce r ∈ Zq and a private key x ∈ Zq such that
[x]G = X, the Schnorr signature of a message m is computed as

(R, s) = ([r]G,r + [H(R, X,m)]x).

If the challenge H(R, X,m) is fixed, the signing equation is lin-
ear. This property is utilized for constructing of efficient multiparty
Schnorr signature schemes. First, all k parties need to agree on a collec-
tive nonce element R which is a linear combination of their individual
contributions Ri = [ri]G. Subsequently, they can produce partial signa-
ture shares si = ri + H(R, X,m)xi, which can be summed up to obtain
the resulting signature s = ∑k

i=1 si, verifiable under their aggregated
public key X = ∑k

i=1 Xi.
The simple multi-signature scheme described in the previous para-

graph has a few caveats, which cause it to be insecure in many use-
cases and these issues are addressed by more complex designs. The
two main security obstacles are related to the key aggregation and the
nonce agreement, both of which can be attacked to perform a forgery.

The key aggregation is prone to rogue-key attacks, where the ad-
versary computes his key as a function of the public keys of other
parties and cancels out their contribution. To illustrate the problem,

129

7. Interoperable Schnorr multisignatures

assume the attacker is the first party. He can compute his key as
X1 = [x′1]G−∑k

i=2 Xi for some x′ ∈Zq. When this rogue key is com-
bined with the other keys, the resulting aggregated key is X = [x′]G
and the attacker can create signatures on behalf of the group.

Rogue-key attacks can be prevented by distributed key generation,
which requires fresh key pairs [Mav+17]. Alternatively, pre-existing
keys can be reused when supplemented by a proof-of-knowledge
of their private key [BDN18]. Another method that supports key
reuse is a non-interactive key aggregation method presented in MuSig
[Max+19], which avoids the attack by unpredictably altering the ag-
gregated key whenever any of the combined keys changes.

The other problem occurs in a parallel setting. If serial signing can
be enforced, the protocol is secure, and the aggregated nonce does not
even need to be computed by the signer, as is the case in CoSi [Syt+16;
Dri+19]. However, if signing instances with the same key can be
executed in parallel (e.g., nonce contributions are shared in advance),
the Drijvers attack can achieve signature forgery. The Drijvers attack
relies on solving an instance of the ROS problem [Sch01], which can
be solved in subexponential [Wag02] or polynomial time [Ben+21],
depending on the number of parallel sessions.

7.3 Interoperability of Schnorr schemes

Different Schnorr schemes mentioned in Section 7.1 exhibit different
trade-offs. Some schemes are optimized for a low number of commu-
nication rounds; others are better suited for limited devices where the
computation is costly; some use only standard operations commonly
available on legacy systems or can utilize dedicated co-processors, and
some need to use novel cryptographic primitives. As a result, none of
the schemes is ideally suitable for all computing platforms.

In this section, we attempt to address the problem of scheme het-
erogeneity. We surveyed current multiparty Schnorr signature designs
and classified them based on their approach to the nonce agreement.
With this classification, we specify what is required of the schemes
from the same class to be compatible with each other. Furthermore,
we inspect the differences among the classes and bridge them using an

130

7. Interoperable Schnorr multisignatures

untrusted third party3 without any changes to the underlying schemes.
If this mediation is possible, we call the schemes interoperable.

All of the considered schemes were proven secure in the dishon-
est majority setting, i.e., their security does not rely on the actions of
other participants, who can only cause a signing failure by providing
incorrect signature shares. Therefore, if the translated communication
among different schemes achieves correctness, each participant main-
tains their security guarantees with respect to their protocol, and they
will jointly be able to produce valid signatures.
Group Key Computation. A plethora of approaches can be used to
establish the group key – the public key that represents the signing
group. Some of them require an interactive fresh key generation for
every new signing group [Mav+17], while some allow reusing a
previously generated key in a non-interactive key aggregation [BDN18;
Max+19]. Yet to achieve interoperability, the signature schemes need
to use compatible key generation and aggregation methods.

The group key computations typically result in additive or Shamir
secret sharing [Sha79] of the underlying secret key. The former ap-
proach is more efficient but can only be used with multi-signatures,
while the latter is more general as it allows for an arbitrary t≤ k. How-
ever, these approaches cannot be directly combined. If some schemes
rely on having Shamir secret shares, they are inherently incompatible
with additive sharing schemes.
Nonce Agreement. The method of nonce agreement is the fundamen-
tal consideration in computing multiparty Schnorr signatures. All
signing parties need to contribute to the nonce agreement with their
fresh partial nonce, which they later reflect in signing. After the nonce
is known, the partial signatures can be computed and aggregated
non-interactively.

There are four main approaches to the nonce agreement: 1) nonce
exchange, 2) nonce commitment, 3) nonce delinearization, and 4)
deterministic nonce derivation. These methods differ in the number of
communication rounds, operational assumptions, and computational
complexity. We analyze them in the following subsections.

3. The party can cause signing to fail, but it cannot forge signatures.

131

7. Interoperable Schnorr multisignatures

7.3.1 Nonce exchange

The simplest approach to the nonce agreement is nonce exchange, where
each signer i uniformly samples a random nonce ri←$ Zq, computes
the corresponding element Ri = [ri]G, and transmits this element. The
elements are then summed up into the aggregate nonce R = ∑k

i=1 Ri,
which is used in the signing.

The simplicity of this approach comes at a cost. Signing with nonce
exchange is only secure when the scheme is executed serially, i.e.,
no parallel signing sessions are allowed [Dri+19]. If parallel signing
sessions can occur, a practical message forgery can be performed by
the Drijvers attack [Dri+19]. This problem needs to be addressed by
an implementation that enforces correct operation.

Nonetheless, if implemented correctly, it results in a secure and
very efficient two-round signing protocol adopted by applications
focusing on performance [Mav+17; Syt+16]. These applications also
utilize that the security of nonce exchange does not rely on the specific
construction of the aggregate nonce. Therefore, the aggregate nonce
does not need to be computed by the signers, further decreasing the
computational requirements.

Furthermore, since there are no constraints on the construction
of the aggregate nonce, nonce exchange schemes are convenient for
achieving interoperability with other nonce agreement approaches
that are more restrictive but provide parallel security.

7.3.2 Nonce commitment

The Drijvers attack requires the attacker to be able to choose their
nonce depending on the nonces of other parties4. This precondition
can be broken by a preliminary communication round, in which each
signer i first shares a commitment to his nonce element Com(Ri) and
only after that reveals the actual nonce element Ri. The provided
nonce elements need to be verified against the commitments, and if
an inconsistency is discovered, the protocol must be aborted.

This three-round approach is called textitnonce commitment and
has been used by theMuSig andMSDL [Max+19; BDN18]. It provides
parallel security with only a minimal computation overhead over

4. Assuming the other parts of the challenge hash are already fixed.

132

7. Interoperable Schnorr multisignatures

the nonce exchange. If the additional communication round is not
too costly, e.g., the devices are co-located, this approach is also quite
efficient and suitable for computationally limited devices.

However, the requirement put on the nonce construction intro-
duces a limitation to interoperability. To achieve interoperability with
different implementations of nonce commitment, the implementations
need to compute the Com using the same (typically hash) function. It
is a consequence of the hiding property of the Com function, which
prevents the commitment from being readjusted by a third party.

Still, nonce commitment is interoperable with serial schemes. It can
be achieved via a translation layer that simulates the additional com-
mitment round on behalf of the serial schemes in the following way:
First, the nonce exchange schemes begin their nonce element sharing.
The translation layer computes commitments for these elements with
an appropriate Com function and simulates the commitment round
with nonce commitment schemes. Afterward, the nonce commitment
schemes and the translation layer (on behalf of exchange schemes)
reveal the nonce elements that successfully verify against the commit-
ments. As a result, each party arrives at the same aggregate nonce that
can be used for signing.

7.3.3 Nonce delinearization

The more recent nonce delinearization is secure under parallel execution
with just two communication rounds, the first of which can be precom-
puted. The main downside of this approach is its high computational
cost, as it requires the signers to performmulti-scalar multiplication in
the second round. Nonetheless, the practical benefits often outweigh
the cost, and this technique has been used in the design of multiple
schemes [AB21; KG; NRS].

With nonce delinearization, the aggregate nonce is constructed
as a linear combination of ν pre-nonces, where the coefficients are
non-linearly dependent on the pre-nonces and the signed message via
a cryptographic hash function. Consequently, any change to the pre-
nonces or the signed message results in an unpredictable non-linear
change of the aggregate nonce, which thwarts the Drijvers attack.

When this process is applied to multiparty schemes, each signer
i independently generates partial pre-nonces ri,1, . . . ,ri,ν and trans-

133

7. Interoperable Schnorr multisignatures

mits the corresponding elements Ri,1 = ri,1G, . . . , Ri,ν = ri,νG. Once
the signed message m is known, the pre-nonces are aggregated into
R = ∑n

i=1 ∑ν
j=1 βi,jRi,j, where βi,j are the delinearization coefficients.

The actual schemes differ in the choice of βi,j. DWMS [AB21]
computes a different coefficient for each partial pre-nonce: βi,j =
H(i, j, Ri,1, . . . , Rn,ν,m). Alternatively, in FROST [KG] andMuSig2 [NRS],
βi,j does not depend on i, allowing parties to compute aggregated
pre-nonces Rj = ∑n

i=1 Ri,j in advance – thus avoiding some multipli-
cations when computing the aggregate nonce as R = ∑ν

j=1[β1,j]Rj.
In such cases, the coefficients β1,j can be, for example, chosen as
H(j, R1, . . . , Rν,m) or as powers H(R1, . . . , Rν,m)j−1 [NRS].

The specific nonce aggregation used by delinearization schemes in-
troduces severe limitations to interoperability. It requires the schemes
to be able to construct the nonce non-interactively, based on the initial
pre-nonces and the signedmessage. Thus the only way of achieving in-
teroperability among different implementations of nonce delineariza-
tion schemes is to compute the same coefficients βi,j and use the same
number of pre-nonces ν. Otherwise, if the schemes use, e.g., a different
hash function in the coefficient computation, they do not arrive at the
same aggregated nonce.

Interoperability of nonce delinearization with schemes of other
classes is a bit more nuanced and cannot be achieved in general. Equa-
tion (7.1) shows a signature produced by a nonce exchange scheme,
while Equation (7.2) displays a signature produced by a nonce delin-
earization scheme (ν = 2 for brevity).

s = ri,1 + exi (7.1)
s = βi,1ri,1 + βi,2ri,2 + exi (7.2)

The difference between (7.1) and (7.2) cannot be reconciled by an
intermediating party because it cannot multiply the nonce ri,1 without
also changing the exi component. However, if βi,1 = 1, the intermedi-
ating party can simulate the second pre-nonce on behalf of the nonce
exchange schemes and add βi,2ri,2 to the produced partial signature.
This results in a valid signature contribution, without any change to
the underlying scheme.

Such preconditions occur in FROST [KG] and have also been sug-
gested as an optimization of MuSig2 [NRS] that became the default

134

7. Interoperable Schnorr multisignatures

choice in a later revision of the scheme. We call this variation, where
the first pre-nonce is not multiplied by the coefficient, as half-nonce
delinearization. This variant is not a mere performance optimization
(as presented in the original paper), but importantly, it also enables
interoperability with nonce exchange schemes, as illustrated above.

The simulation can then proceed in the followingway. First, signers
begin by sharing their nonces or pre-nonces. The single nonce pro-
vided by nonce exchange schemes is used as their first pre-nonce, and
the coordinator computes the other pre-nonces on their behalf. These
simulated pre-nonces can be sent to the delinearization schemes that
can now compute the aggregated nonce. At this point, the aggregated
nonce is also computed by the intermediating party that provides it to
the nonce exchange schemes, which reply with their partial signatures
si = ri,1 + exi. The intermediating party augments the partial signa-
tures by the simulated pre-nonces si + βi,2ri,2 + · · ·+ βi,νri,ν, making
them compatible with signatures of nonce delinearization schemes.

For this reason, we suggest preferring schemes with half-nonce
delinearization, i.e., schemes where the first pre-nonce is not multi-
plied by a coefficient. This choice still allows adding arbitrarily many
pre-nonces to tweak the difficulty of the underlying problem5 while
remaining interoperable with nonce exchange schemes and incurring
no additional cost to them.

Achieving interoperability is not possible with nonce commitment
schemes, as those schemes need to receive a commitment to the sin-
gle nonce produced by each party before revealing their own nonce,
but nonce delinearization schemes use multiple nonces and cannot
combine them before all other nonces are known. If the nonce com-
mitment scheme was changed to cover the additional pre-nonces so
that each signer can derive the delinearization coefficients itself, it
would collapse into a nonce delinearization scheme with a redundant
commitment round.

7.3.4 Deterministic nonce derivation

Another approach to parallel-secure two-round scheme construction is
deterministic nonce derivation. Deterministic nonce derivation has been

5. AMuSig2 variant proposed four pre-nonces underweaker security assumptions.

135

7. Interoperable Schnorr multisignatures

used in standard signature schemes, preventing attacks due to biased
randomness in the nonce generation. However, these approaches are
not directly applicable to the multiparty setting, as a malicious party
that diverges from the correct computation could force an honest
signer to reuse a nonce, which would result in a key compromise
[Nic+20].

MuSig-DN [Nic+20] solves this problem using non-interactive
zero-knowledge proofs. In the scheme, the participants derive the
nonce using an algebraic pseudorandom function provided the signed
message and public keys of other participants and compute a proof of
the correct construction. This proof is provided along with the nonce,
and other protocol participants need to verify it. If the verification
fails, the signing must be aborted.

The described construction does not suffer from the problems of
insufficiently random nonces. However, it requires the computation
of a zero-knowledge proof, which is relatively costly even for regular
devices, let alone for smartcards.

The need for the zero-knowledge proof also severely limits the
interoperability of the scheme. Different implementations of deter-
ministic nonce derivation schemes require a consensus on the used
derivation function and the proof construction to work together. In-
teroperability with schemes using a different approach to the nonce
agreement is not possible, as it would break the security assumption
of the deterministic nonce derivation.

7.3.5 Summary

Table 7.1 displays the interoperability matrix of different schemes.
Nonce exchange schemes stand out among others as the most flexible
ones due to their ability to accept an externally provided noncewithout
any knowledge of its construction and remain secure with a sequential
execution. Interactions of nonce exchange and nonce delinearization
schemes are denoted with a question mark, as they are interoperable
only if the half-nonce delinearization method is used. Deterministic
nonce derivation is compatible only with itself.

Nonce exchange schemes are interoperable with nonce commit-
ment schemes and half-nonce delinearization schemes separately. Yet
nonce commitment schemes and nonce delinearization schemes are

136

7. Interoperable Schnorr multisignatures

not interoperable as they have contradictory requirements on the con-
struction of the nonce. Therefore, non-interactive setups including
schemes using both nonce commitment and nonce delinearization are
not possible.

No
nce

exc
han

ge

No
nce

com
mi
tm
ent

No
nce

del
ine
ari
zat
ion

De
ter
mi
nis
tic
non

ce

Nonce exchange 3 3 ?
Nonce commitment 3 3

Nonce delinearization ? 3

Deterministic nonce 3

Table 7.1: Interoperability of nonce agreement approaches.

Lastly, even though the schemes are interoperable in theory, sev-
eral technical details need to be addressed in practice. The schemes
need to produce compatible signatures – not only Schnorr signatures
but the same instance of Schnorr signatures, e.g., Ed25519 [Ber+12]
or BIP-Schnorr [WNT20a]. That requires a precise specification of
the used elliptic curve, point encoding, and hash function(s). If this
requirement is satisfied, the interoperability discussed in this section
is achievable.

7.4 Multiparty scheme SHINE

This section describes SHINE (Smartcard Highly-Interoperable Nonce
Encryption scheme) – our multiparty Schnorr signature scheme op-
timized for computations on cryptographic smartcards while being
interoperable with the majority of pre-existing Schnorr multiparty
schemes. The design relies on a central party that is trusted only to
mediate communication among individual signers.6 We utilize this

6. Violating this trust does not endanger shares of the secret held by honest signers.

137

7. Interoperable Schnorr multisignatures

central party for the precomputation of inputs, data storage, and also
as a translation layer for achieving interoperability, as described in
Section 7.3.

SHINE can create a signature in two communication rounds, the
first of which can be securely precomputed. The scheme uses a variant
of nonce exchange that enables interoperability with all classes except
deterministic nonce derivation. But it also requires serial execution to
be secure, which we enforce by design. Additionally, to avoid random-
ness generation failure attacks and minimize storage requirements,
we derive nonce using a secret pseudorandom function that depends
on an internal counter.

7.4.1 Attacker Model

We assume that the attacker is able to control the central party and at
most t− 1 of the signing parties. Since the central party is under the
control of the attacker, she can drop or alter messages, and as a result,
cause a denial of service. We also make the standard assumption that
the attacker’s computational power is bound by a polynomial.

Additionally, we assume that correct group establishment was
verified by secondary channels, and thus the attacker could not ex-
clude parties from the group establishment. In practice, this could
be achieved by querying each of the smartcards for its public key by
different readers, verifying that each of them obtained the same value,
aggregating the public keys, comparing the result against the reported
group key.

7.4.2 Group establishment

Before SHINE can be used to sign messages, the signing group needs
to be established. The signing group consists of a set of signers, who
need to generate their private key shares, compute the group key,
and initialize context information. In this process, SHINE relies on
the central party to include all participants in the key generation, i.e.,
to not ignore or simulate messages by some parties. After the key
generation, the validity of this assumption can be externally verified
by querying individual participants for their group key contribution.

138

7. Interoperable Schnorr multisignatures

By default, SHINE uses a three-round distributed key generation
protocol, which avoids the rogue-key attack by committing to key con-
tributions (for a detailed description, see Figure E.21 in Appendix E.1).
We chose this approach as it trades computation in favor of communi-
cation suitable for the smartcard environment. However, if another
method suits the particular application better, it can be used instead.
For example, non-interactive key aggregation of MuSig [Max+19] can
be selected to achieve interoperability with schemes that use it.

Different type of key generation protocols needs to be used to
support threshold signing, i.e., protocols resulting in Shamir secret
sharing of the group key. This secret sharing can be obtained using
the protocol of Komlo et al. [KG], though it relies on secure channels
between the parties and is quite costly, as it requires O(kt) group
operations by signers.

After a new group key is successfully computed, each party i
finalizes the group establishment process by initializing its signing
context. Each signer stores in its internal state a λ-bit secret pi that is
used for deterministic nonce derivation and an increase-only counter
ci that tracks the index of the most recently used nonce. The former
value is uniformly sampled, and the latter is initially set to zero. These
values are later used in the signing protocol.

7.4.3 Nonce caching with encryption

Mavroudis et al. [Mav+17] introduced nonce caching for a smartcard
setup. The technique optimizes the signing speed by generating nonces
in advance and storing the corresponding elements on a central server.
This way, the expensive scalar multiplication can be performed during
down-time when there are no signing requests, and the precomputed
nonces can be provided to the signers when needed.

However, this approach turned out to be vulnerable to the Drijvers
attack [Dri+19]. Since the benefits of nonce caching for smartcards
are meaningful, we designed a technique that we call nonce caching
with encryption or nonce encryption for short, which avoids the Drijvers
attack and still allows for nonce caching with some restrictions.

The vulnerability to the Drijvers attack occurs only if the scheme is
used in a parallel, i.e., an adversary can openmultiple signing sessions
in parallel or cache multiple nonces before they are used for signing.

139

7. Interoperable Schnorr multisignatures

Algorithm 5: Cache

Input: Session index j

Output: Encrypted nonce Ei,j

ri,j := PRFpi(j)

Ri,j := [ri,j]G

Ki,j := KDFpi(c)

Ei,j := EncKi,j(Ri,j)

return Ei,j

Algorithm 6: Reveal

Input: Session index j

Output: Decryption key Ki,j

if j ≥ ci then
ci := j

Ki,j := KDFpi(ci)

return Ki,j

Figure 7.1: SHINE nonce caching and revealing algorithms.

Nonce encryption leverages this property and enforces serial execution
to ensure at most a single cached nonce is revealed at a time without
having a signature created with it.

Nonce encryption works in two phases – cache and reveal, shown
on Figure 7.1. During the caching phase, the smartcard computes the
nonce element and sends it encrypted to the central party. The reveal
phase is then used to reveal only a single nonce element at a time.

The cache phase is initiated by the central party, who sends a
signing instance identifier j. The smartcard i uses a pseudorandom
function, keyed with a secret pi (generated during the group establish-
ment), to derive a nonce ri,j corresponding to the signing instance j.
Subsequently, the smartcard computes the nonce element Ri,j = [ri,j]G.
This computation is the demanding operation that would be the bot-
tleneck during the signing.

In the standard nonce caching, Ri,j would be transmitted to the
central party; however, if this step was repeated, it would lead to the
vulnerability to the Drijvers attack. With nonce encryption, the nonce
is not transmitted in plaintext but rather encrypted with symmetric
key Ki,j derived from the signing instance identifier j using a key
derivation function known only to the signer i. The central party stores
the received value for future use.

140

7. Interoperable Schnorr multisignatures

The reveal phase uses the smartcard internal increase-only counter
ci to track already revealed nonce elements. When prompted by the
central party to send Ki,j for a signing instance j ≥ c, the smartcard
derives Ki,j and sends it back, but at the same time increases its inner
counter ci := j. With the knowledge of Ki,j, the central party can de-
crypt the cached nonce Ri,j, possibly combine it with nonces of other
parties, and use it in a subsequent signing.

So far, the counter ci did not limit the attacker in any way. It plays
a role only during the signing, where the smartcard must not pro-
duce a signature for a signing instance j < ci. When combined, these
restrictions ensure that only the signing instance j = ci can succeed
since nonces for j > ci are not known yet, and a signature for j < ci
will not be created. The technique already enforces the signing of
only monotonous sequences, but to achieve serial signing and thus
security, only strictly increasing sequences can be allowed; otherwise,
the key would be extractable by reusing the same nonce. Therefore,
the smartcard must increase the internal counter ci := ci + 1 when
producing a signature.

Comparison to Plain Nonce Caching. Just as in plain nonce caching,
we manage to avoid costly group operations during the signing. In
this subsection, we highlight the differences.

Storage-wise, SHINE still requires only constant memory on smart-
cards, but the central party cannot pre-aggregate nonces anymore as
only a single nonce is known at a time. Therefore, the space required
by the central party grows linearly in the number of signing parties.
However, this is not necessarily a disadvantage because when the
nonces are not aggregated in advance, they can be adapted to an arbi-
trary signing subset. For example, if a smartcard malfunctioned and
needed to be removed from the signing set, all cached nonces would
need to be discarded. But without the aggregation, it suffices to delete
the nonces corresponding to the malfunctioning smartcard.

Communication-wise, SHINE seemingly needs one additional
round to transmit the decryption key. However, this transmission
can be automatically piggybacked with the previous signing, where
the decryption key for ci + 1 can be revealed, as ci was already invali-
dated. As a result, the number of communication rounds can remain
the same; only the additional decryption key is transmitted.

141

7. Interoperable Schnorr multisignatures

Finally, computation-wise, the symmetric encryption can be re-
alized efficiently so that the additional demands on the smartcards
are minimal. The only introduced concern is the aggregate nonce
computation by the central party. The aggregate nonces cannot be
precomputed, as only a single decryption key is known at a time. In
the case of burst signing requests, the overall solution would result in
a performance decrease compared to the vulnerable nonce caching.
But assuming the central party is significantly more capable than the
smartcards (which in practice is), the aggregation can be performed
relatively quickly and is not a limiting factor.

7.4.4 Signing protocol

In Figure 7.2, we describe the signing protocol that uses encrypted
nonce caching together with the piggybacking of the decryption key
with the signature output.

Given a message m to be signed, the central party initiates the
signing phase by computing the aggregated nonce. If it already has
a cached nonce with the appropriate decryption key for each partici-
pant, it can sum them as R← ∑k

i=1 Ri,ci . Otherwise, the central party
might need to exchange an additional cache or reveal message with
some smartcards prior to the aggregation.When the aggregated nonce
is computed, the central party sends a signature request to every par-
ticipating smartcard with the given signing index (which may vary
among the smartcards), the aggregated nonce R, and the message m.

When a smartcard receives a signing request, it first checkswhether
the signing index is greater or equal to its internal counter. If not, it
replies with an abort message and its internal counter value, and
aborts the protocol. Otherwise, the smartcard sets its internal counter
ci← j + 1 and continues with the signing. It derives its nonce ri,j and
computes its partial signature si,j := ri,j + H(R, X,m)xi.7 Once that
is done, the smartcard also derives the decryption key for the next
cached nonce and transmits these values to the central party.

Finally, the central party can sum the partial signatures to obtain
the resulting signature (R, s). If the partial nonces for the next signing

7. If the key shares xi are Shamir secret shares and not additive shares, they first
need to be multiplied by a Lagrange coefficient corresponding to the signing party
in the signing subset.
142

7. Interoperable Schnorr multisignatures

Algorithm 7: Sign

Input: Aggregate nonce R, message m, signing index j

Output: Partial signature si,j, decryption key Ki,j+1 for j + 1-th
nonce

if j < ci then
abort

ci := j + 1

ri,j := PRFpi(j)

si,j := ri,j + H(R, X,m)xi

Ki,ci := KDFpi(ci)

return (si,j,Ki,ci)

Figure 7.2: SHINE signing algorithm.

round have been already cached, the central party can decrypt them
with the provided decryption keys.

Security of SHINE. Drijvers et al. [Dri+19] have shown that the CoSi
scheme [Syt+16] is secure in the random oracle model (ROM) [BR93],
assuming the one-more discrete logarithm (OMDL) problem [Bel+03]
is hard, parallel signing instances do not occur, the number of signers
is bound by a polynomial, and the signers committed to their keys in
the group key computation. We claim that all of these prerequisites
also hold in SHINE and that the security of SHINE is the same as of
CoSi, as the scheme differences do not affect the security proof.

One of the differences between CoSi and SHINE is the used topol-
ogy. CoSi considers tree topology with a layered nonce and signature
aggregation to minimize communication, whereas SHINE relies on
the star topology to facilitate interoperabilitymediation. The star topol-
ogy can be considered a special case of the tree topology, where the
central party is the root, and the other parties are its children; thus,
this version is also covered by the CoSi security proof.

143

7. Interoperable Schnorr multisignatures

Another difference is in the nonce generation process. SHINE uses
a PRF to deterministically derive nonces based on a random secret
seed, whereas CoSi uses fresh randomness for each nonce. We model
thePRF as a randomoracle, so as long as the same input to the function
is never reused in signing, the generated nonces are indistinguishable
by the adversary from the nonces produced by CoSi. SHINE prevents
the PRF input reuse by the increase-only counter ci.

The last difference between the schemes is the technique of nonce
cachingwith encryption featured in SHINE. In theROM, the encrypted
precomputed nonces sent to the central party convey no information
unless the central party knows the key Ki,j. Thus until Ki,j is transmit-
ted, the central party learns nothing about the nonces, just as if they
were computed on the fly during the signing, as in CoSi.

7.4.5 Implementation and evaluation

We implemented SHINE for the JavaCard platform using a modified
version of the JCMathLib library [MS20] that provides the neces-
sary low-level operations without relying on proprietary smartcard
API and thus enables our results to be reproduced on a wide vari-
ety of supported smartcards. While the solution achieves a decent
speed with JCMathLib, using proprietary API calls will significantly
increase its performance in practice, especially for the GET_NONCE and
CACHE_NONCE operations.

We tested and evaluated our implementation onfive JavaCards: NXP
J2E145G (1), NXP J3H145 (2), GD SmartCafe 6.0 (3), GD SmartCafe
7.0 (4), and NXP J3R180 (5). We measured the time required to com-
pute each phase of the protocol and also their counterparts in a variant
without nonce caching so that we would be able to assess its impact.
We repeated each measurement 100 times and averaged the results.
The summary of the results is presented in Table 7.2.

The implementation achieves an average signing speed of around
700 ms, comparable to Myst [Mav+17]. The signing slowdown caused
by key derivation for piggybacking did not exceed 45 ms for any of the
cards and thus increased signing latency by at most 6%. Encryption
operation added to the nonce caching resulted in less than 36 ms
slowdown, which was at most 23% (but mostly only 1%) of the time
required to perform the nonce computation.

144

7. Interoperable Schnorr multisignatures

Card 1 Card 2 Card 3 Card 4 Card 5
GET_NONCE 2826 194 2764 1962 60
CACHE_NONCE 2854 217 2801 1984 74
Overhead 28 24 36 23 14
Overhead (%) 1 12 1 1 23
SIGN 802 737 768 637 457
SIGN_REVEAL 842 756 813 660 472
Overhead 28 19 45 23 15
Overhead (%) 5 3 6 4 3
Signing w/o caching 3627 931 3532 2599 518
Signing w/ caching 842 756 813 660 472
Speedup 2785 175 2719 1938 46
Speedup (%) 77 19 77 75 9

Table 7.2: Time (ms) to compute steps of SHINE on different JavaCards.

The differences in time required to compute the nonce are caused
by different native algorithm support. For example, cards 2 and 5 sup-
ported ALG_EC_SVDP_DH_PLAIN_XY algorithm, which made the nonce
computation quite close to the native performance of the hardware,
while on other cards, additional adjustments in code had to be made.
This computation is the precomputed part, and therefore it influences
the overall speedup over signing without caching the most.

We estimate that implementing the signing part using native low-
level operations instead of slower software emulation via JCMathLib
would achieve performance comparable to ECDSA on a given plat-
form (e.g., around 200 ms for common smartcards [Dzu+17]). Nonce
caching with encryption would provide an overall speedup of around
50% in such implementations.

Our implementation of SHINE uses a central party written in Rust,
which mediates communication among different devices and serves
as storage for cached nonces. It includes nonce exchange, nonce com-
mitment, and nonce delinearization schemes, usable by themselves
or jointly with the SHINE applet, demonstrating its interoperability.
Both implementations are available at GitHub repositories.8 9

8. https://github.com/dufkan/SHINE
9. https://github.com/dufkan/mpcd

145

https://github.com/dufkan/SHINE
https://github.com/dufkan/mpcd

7. Interoperable Schnorr multisignatures

7.5 Conclusions

We classified the existing schemes based on their approach to a nonce
agreement into four categories We discovered that the most interop-
erable schemes utilize nonce exchange, which is also the least com-
putationally demanding, as a consequence of its ability to accept an
externally provided nonce without any knowledge of its construction.

In the case of nonce commitment schemes, an untrusted central
party can mediate the interoperability with nonce exchange schemes.
The central party in this setup needs only to simulate the commitment
round on behalf of the nonce exchange signers.

The situation is more complex with nonce delinearization schemes,
which are not interoperable with others schemes in general. However,
when the half-nonce delinearization is used, the interoperability with
nonce exchange schemes can be fully mediated via a central party that
simulates the delinearized nonce contributions on their behalf. Thus
half-nonce delinearization is not merely an optimization; it also has
interoperability benefits.

Deterministic nonce derivation schemes need to receive additional
data about the nonce construction, i.e., the proof of its correctness,
that cannot be simulated externally. Therefore, it seems that these
schemes can only be combined with their own instances and are not
interoperable with any other approach.

Based on these observations, we propose to focus on three designs
of Schnorr schemes:

1. The serially constrained nonce exchange schemes for compu-
tationally restricted devices, which benefit the most from the
more efficient computation;

2. the half-nonce delinearization schemes for devices where the
additional computations are not a limiting factor, and that could
benefit from interoperability;

3. the deterministic nonce derivation for cases where the perfor-
mance is not an issue, deterministic nonces are crucial, and a
setup of homogeneous implementations can be guaranteed.

146

7. Interoperable Schnorr multisignatures

We followed up on our first recommendation and designed the
smartcard-optimized SHINE scheme, which uses nonce exchange for
signing and thus is interoperable with other approaches.

To ensure serial signing and avoid nonce reuse, we introduced an
internal increase-only counter to the design, which is used to derive
nonces and ensures that for any given nonce, at most, one signature
is produced. This approach is complemented by nonce caching with
encryption, a novel optimization technique that allows precomputing
and sharing nonces in advance while avoiding the Drijvers attack,
which threatened previous attempts at nonce caching.

We have implemented SHINE as an applet for the JavaCard plat-
form and evaluated its performance on five smartcards. The per-
formance measurement empirically confirms the benefits of nonce
caching on computationally restricted devices. Furthermore, we pro-
vide a Rust implementation of the central party that practically demon-
strates the interoperability of SHINE with nonce commitment and
nonce delinearization schemes.

147

8 DiSSECT: Distinguisher of Standard & Sim-
ulated Elliptic Curves via Traits1

8.1 Introduction

Properly selecting elliptic curves suitable for cryptographic applica-
tions is a difficult task and many standards do not tackle it very well
[ANSI98; Cer10; ANS14; PLK06; SSL14]. Sometimes, their parameter
choice is not explained at all; in other cases, it is still unsatisfactory.
This was already criticized by Scott [Sco99], who introduced the no-
tion of rigidity: the origin of all constants in cryptographic standards
should be clearly explained, otherwise there can be a hidden vulner-
ability. Many cryptographers agree [Sch13; Loc+; Ber+15; CLN15],
even if no major security problems have been found so far.

In the light of the documented instance of a standard being ma-
nipulated – the Dual EC DRBG incident [Hal13; BLN16; Che+16],
this is a potentially serious matter, considering that the popular NIST
curves have also been chosen by the NSA. Bernstein et al. [Ber+15]
build upon Scott’s idea, showing how to insert backdoors to certain
standards, assuming enough weak curves exist, though Koblitz and
Menezes [KM16] dispute this assumption.

Even if newer, more rigidly generated curves like Curve25519
[Ber06], Ed448-Goldilocks [Hamb] or NUMS curves [Bla+14] are
on the rise, the old curves still remain in wide use [Val+18]. Moreover,
Lochter et al. [Loc+] argue that “perfect rigidity, i.e., defining a process
that is accepted as completely transparent and traceable by everyone, seems
to be impossible”. Thus, we believe a thorough wide-scale analysis of
the standard curves is important to re-establish the trust, especially if
the standards are not transparent enough.

Our main idea is that if a weakness is present in a curve, it will
manifest via a statistical deviation of some property compared tomany
similar pseudorandom curves. We design trait functions that cover a
wide range of such properties.

1. The results in this chapter were submitted to Public Key Cryptography 2022 as
“DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves via Traits” with
coauthors Vojtech Suchanek and Antonin Dufka.

149

8. DiSSECT

Contributions. Our work includes the following contributions:
• We assemble the first public database of all standard2 curves

(to the best of our knowledge), with comprehensive parameter
details and visualisation.

• We develop an open-source extensible framework3 for generat-
ing curves according to known standards.

• Wepropose a large number of trait functions and offer amethod-
ology for distinguishing the standard curves from the simulated
ones on a large scale.

• By a systematic analysis of standard curves, we rule out certain
types of problems, potentially raising the level of trust in most
of them.

• We find properties of the standardized GOST curves [PLK06;
Fed16] that are inconsistent with the claimed [ANS18] genera-
tion method and present unreported properties of the BLS12-
381 [BLS] curve.

This chapter is organized as follows: In Section 8.2, we briefly
survey the major elliptic curve standards. Section 8.3 introduces our
database and explains our methodology for simulating and distin-
guishing curves. Section 8.4 gives an overview of our proposed traits
and presents the findings of the outlier detection. We report on the
technicalities of our tool in Section 8.5 and draw conclusions in Sec-
tion 8.6. Finally, Appendix F.1 describes all our traits in more detail,
and Appendix F.2 lists all standard curves in our database.

8.2 Overview of standard curve generation

Even though pairing-friendly curves and curves over binary and ex-
tension fields have found some applications, we focus mainly4 on the

2. In this work, we use the adjective “standardized” for curves appearing in a
standard, and the adjective “standard” for widely used curves (that are/were a de
facto standard).
3. https://dissect.crocs.fi.muni.cz/
4. However, our database contains binary, extension and pairing-friendly curves
as well, see Appendix F.2.

150

https://dissect.crocs.fi.muni.cz/

8. DiSSECT

prevalent category of prime field curves that are recommended for
ECDLP-based cryptosystems. We include Montgomery and (twisted)
Edwards curves as well, though for unification purposes, we convert
them to the short Weierstrass form, which is universal.

The main approach for finding a curve that satisfies the public
security criteria (see Section 2.2), including a sufficiently large CM
discriminant, is repeatedly selecting curve parameters until the de-
sieed conditions hold. The main bottleneck here is point-counting: we
can use the polynomial SEA algorithm [Sch95], but in practice, it is
not fast enough to allow on-the-fly ECC parameter generation.

Several standardization organizations have therefore proposed
elliptic curve parameters for public use. To choose a curve, one has
to first pick the appropriate base field. Several standards also choose
primes of special form for more efficient arithmetic, e.g., generalized
Mersenne primes [Sol11] or Montgomery-friendly primes [CLN15].
When the field and the curve form are fixed, it remains to pick the
two5 coefficients, though one of them is often fixed.

In this section, we survey the origin of all the standard curves.
For easier orientation, we divide the generation methods of standard
curves into three rough categories. Curves with unknown or ambigu-
ous origin are hard to trust, while verifiably pseudorandom onesmake
use of one-way functions in hopes of addressing this. Other rigidmeth-
ods go even further in attempts to increase their transparency.
Unknown or ambiguous origin. The following is a list of curves we
analyze and whose method of generations is either completely unex-
plained or ambiguous.

• The 256-bit curve FRP256v1 has been recommended in 2011
by the French National Cybersecurity Agency (ANSSI) in the
Official Journal of the French Republic [Jou11]. The document
does not specify any method of generation.

• The Chinese SM2 standard [SSL14] was published in 2010
[DY15] by the Office of State Commercial Cryptography Ad-
ministration (OSCCA). The standard recommends one 256-bit
curve but does not specify the generation method.

5. At least for short Weierstrass, Montgomery and twisted Edwards curves.

151

8. DiSSECT

• In addition to the Russian GOST R 34.10 standard from 2001,
six standardized curves were provided in [PLK06] and [Fed16].
Again, no method of generation was specified.

• The Wireless Application Protocol Wireless Transport Layer Se-
curity Specification [Wir00] recommends 8 curves, 3 of which
are over prime fields and are not copied from previous stan-
dards. Their method of generation is not described.

• Apart from verifiably pseudorandom curves, the Standards for
Efficient Cryptography Group (SECG) [Cer] recommends so-
called Koblitz curves6, which possess an efficiently computable
endomorphism.However, the standard only vaguely states “The
recommended parameters associated with a Koblitz curve were chosen
by repeatedly selecting parameters admitting an efficiently computable
endomorphism until a prime order curve was found.”.

Verifiably pseudorandom curves. Aiming to re-establish the trust in
ECC, several standards have picked the Weierstrass a,b coefficients in
a so-called verifiably pseudorandom way, as Figure 8.1 demonstrates.

pick a
new seed a,b = Hash(seed) E(a,b) output: std curvesecure

insecure

Figure 8.1: A simplified template for generating verifiably pseudorandom
curves over fixed Fp.

The details differ and we study them more closely in Section 8.3.2.
The common idea is that the seed is made public, which limits the
curve designer’s freedom tomanipulate the curve. However, Bernstein
et al. [Ber+15] show that one could still iterate over many seeds (and
potentially also over other “natural” choices) until they find a suitable
curve. If a large enough proportion of curves (say, one in a million) is
vulnerable to an attack known to the designer but not publicly, this
offers an opportunity to insert a backdoor. In particular, we should be
suspicious of curves whose seed’s origin is unknown.

6. Analyzing these curves is of great importance due to the usage of secp256k1 in
Bitcoin [Nak08].

152

8. DiSSECT

In the rest of this work, we will focus on two major standards
containing verifiably pseudorandom generation procedures:

• The Brainpool curves, proposed in 2005 by Manfred Lochter
and Johannes Merkle under the titles ”ECC Brainpool Standard
Curves and Curve Generation” [Bra10] to focus on issues that
have not been previously addressed such as verifiable choice of
seed or usage of prime of nonspecial form.

• NIST in collaboration with NSA presented the first standard-
ization of curves was in FIPS 186-2 in 2000 [NIST00]. However,
the used generation method already appeared in ANSI X9.62
in 1998 [ANSI98]. Other standards recommend these curves
(e.g. SECG [Cer] or WTLS [Wir00]).

“The Million dollar curve”[Bai+a] took another approach to the verifi-
ably pseudorandom strateg, proposing a new source of public entropy
for the seeds, combining lotteries from several different countries.

1998 2000 2001 2005 2006 2009 2010 2011 2012 2013 2014 2016 2018 2019 2020

X9.62

FIPS

SECG

IEEE

WTLS

GOST

Brainpool

OSCCA

ANSSI

NUMS

MIRACL

Figure 8.2: Timeline of standardization of publicly available prime-field curves.
Dashed line indicates that the source does not specify curve
parameters. Individual curves (e.g., Curve25519) are omitted.

153

8. DiSSECT

Other rigid methods.
As a reaction to the NIST standardized curves, an interest in faster

curves generated using rigid and verifiable methods has emerged:
• Three Weierstrass curves and three twisted Edwards curves
were proposed by Black et al. [Bla+14] as an Internet draft
called ”Elliptic Curve Cryptography (ECC) Nothing Up My
Sleeve (NUMS) Curves and Curve Generation” [Bla+14]. We
analyze the generation method further in this work.

• MIRACL library [MIR18] combines approaches of NUMS and
Brainpool by extracting seeds from well-known constants and
iteratively incrementing one of the parameters of a curve in the
Weierstrass form.

• Bernstein’s Curve25519 and its sibling Ed25519 were created
in 2006 [Ber06] and since then have been widely accepted by
the cryptography community. The curve is in the Montgomery
form and allows extremely fast x-coordinate point operations
while meeting the SafeCurves security requirements. In 2013,
Bernstein et al. [Ber+13] proposed the curve Curve1174with an
encoding for points as strings indistinguishable from uniform
random strings (the Elligator map).

• To address higher security levels and maintain good perfor-
mance, several authors developed curves of sizes in the 400-
521 bit range such as the Edwards curve Curve41417 by Bern-
stein, Chuengsatiansup, and Lange [BCL], Ed448-Goldilocks
by Hamburg [Hama], E-3363 by Scott [Sco15] or M, E curves
by Aranha1 et al. [Ara+].

8.3 Methodology

Our ultimate goal would be assessing the true security of standard
curves. Yet since it is not clear how to look for unknown curve vulner-
abilities, we instead aim to pinpoint possible problems via identifying
standard curves that differ from other curves in specific aspects.

To find these deviations, we mimic the generation process of the
standards to create a large set of simulated curves. If the standard

154

8. DiSSECT

curveswere generated using the defined processeswithout any hidden
conditions, it would be unexpected to statistically distinguish them
from our simulated ones. Yet we try to do exactly that, employing one
of the following strategies (complementing manual inspection with
automatic outlier detection):

1. Compare curves from a standard to corresponding simulated
ones. This is the most natural strategy. We are looking for a
standard curve achieving a value that almost no other simulated
curve achieved.

2. Compare curves from a standard to Pseudorandom7 curves.
If the generation algorithm introduces a systematic bias, the first
strategy will not allow us to find it – the problem might occur
in both standard and simulated curves. The second strategy
tries to detect any sort of unexpected behaviour by comparing
curves from a given standard to our Pseudorandom curves.

3. Compare curves from all standardized curves to simulated
curves of a single standard.Unlike the previous two, this strat-
egy is designed to finddifferences across standards. Even though
not all of the comparisons are fair, the strategy still revealed
relevant results.

To target specific curve properties, we describe and implement
traits, which are functions that take a curve as an input (sometimes
with additional parameters) and return numerical results. We run
these traits on standard curves as well as simulated ones whenever
it is computationally feasible. Once we compute the trait results, we
divide them by curve bitlengths and optionally apply transformations
to keep the set of measured values comparable.

8.3.1 Standard curve database

DiSSECT is, to the best of our knowledge, the first public database of
all standard elliptic curves, featuring 18 curve categories according to
their source.

7. In the remainder of this work, the word Pseudorandom with capital P will refer
to the curves we simulated by our own method.

155

8. DiSSECT

The database includes:
• verifiably pseudorandom curves (X9.62, NIST, SEC, Brainpool);
• pairing-friendly curves: Barreto-Lynn-Scott [BLS], Barreto-Naehrig

[Per+], Miyaji-Nakabayashi-Takano [MNT01]);
• amicable curves: Tweedledee/Tweedledum[BGH], Pallas/Vesta

[Hop20];
• rigidly generated NUMS curves and curves from the MIRACL

library [MIR18];
• Bernstein’s high performance curves [Ber06] and M, E curves

[Ara+];
• curves from the standards ANSSI [Jou11], OSCCA [SSL14],

GOST [PLK06; Fed16], OAKLEY [Orm98], ISO/IEC [ISO17],
WTLS [Wir00] and others;

Although our analysis focuses mainly on prime-field curves, the
database contains 31 curves over binary fields and one over an exten-
sion field. Currently, there are 188 standard curves in total. Note that
we also include curves that were but are no longer supported by the
standards, and curves which are not recommended for public use,
but have been included in the documents for various reasons (e.g.,
curves for implementation checks). The database provides filtering
by bit-length, field type, cofactor size, and curve form.

Additionally, our database contains four categories of simulated
curves:

• X9.62sim;
• Brainpoolsim;
• NUMSsim;
• Pseudorandom8.

For each curve, we also precomputed usual properties such as the
CM discriminant, the j-invariant, the trace of Frobenius t, and the
embedding degree. This precomputation significantly speeds up any
analysis on these curves.

8. The set of Pseudorandom curves and their trait results is currently still evolving.

156

8. DiSSECT

Source # Source #
X9.62 40 BARP 6

Brainpool 14 BLS 6
NUMS 24 GOST 9
SECG 33 ISO 4
NIST 15 MNT 10

MIRACL 8 OAKLEY 2
X9.62sim 120k OSCCA 1

Brainpoolsim 12k WTLS 8
NUMSsim 1.2k BN 16
AMIC 4 DJB 10
ANSSI 1 other 11

Pseudorandom 250k
Table 8.1: Numbers of elliptic curves in our database grouped by their source.

8.3.2 Simulations

We have picked three major standards X9.62 [ANSI98], Brainpool
[Bra10] and NUMS [Bla+14] for simulations, since their generation
method was explained in enough detail and can be easily extended
for large scale generation. At a few points, the standards were a little
ambiguous, so we filled the gaps to reflect the choices made for the
actual standard curves whenever possible. We have generated over
120 000 simulated X9.62 curves, 12 000 Brainpool curves and 1 200
NUMS curves9.

The aim of this part is not to give a thorough analysis of the pub-
lished algorithms, rather explain our approach to the large-scale gen-
eration using the given methods. For the details of the original al-
gorithms, see the individual standards. Although both NUMS and
Brainpool provide a method for generating group generators, we are
currently not focusing on their analysis.
X9.62 – the standard. We focus on the generation method of the 1998
version [ANSI98]. Its input is a 160-bit seed and a large prime p and
the output is an elliptic curve in short Weierstrass form over the field
Fp, satisfying the following security conditions:

9. This took up to a week per standard on 40-core cluster of Intel Xeon Gold 5218.

157

8. DiSSECT

• “Near-primality”: The curve order shall have a prime factor l
of size at least min{2160,4

√
p}. Furthermore, the cofactor shall

be s-smooth, where s is a small integer (the standard proposes
s = 255 as a guide).

• The embedding degree of the curve shall be greater than 20.
The standard also specifies that to check this condition, we may
simply verify that pe 6= 1 (mod l) for all e ≤ 20.

• The trace of Frobenius t shall not be equal to 1.
Given a seed and a prime p, the standard computes a log(p)-bit

integer r using10 the function (8.1). The next step is choosing a,b ∈ Fp
such that b2r = a3. This process is repeated until the curve satisfies
the security conditions mentioned above.

H(seed) = SHA-1(s︸ ︷︷ ︸
discard

eed)||SHA-1(seed+ 1)|| . . . ||SHA-1(seed+ i)︸ ︷︷ ︸
log(p)−bit integer as output

.

(8.1)
X9.62 – our approach. For each of the bit-lengths 128, 160, 192, 224
and 256, we have fixed the same prime as the standard (hence all
curves of the same bit-length are defined over the same field). Since
the standard offers no guidance how to pick the seed for each iteration,
we have taken the published seed for each bit-length and iteratively
incremented its value by 1. To pick a and b, we have fixed a = −3 (as
was done for most X9.62 curves for performance reasons [CC86]) and
computed b accordingly, discarding the curve if b2 = −27/r does not
have a solution for b ∈ Fp. We also restricted the accepted cofactors to
1, 2, or 4 as this notably accelerated the point counting. This choice also
agrees with the fact that the standardized curves all have the cofactor 1
and the SECG standard (which overlaps with the X9.62 specifications)
recommends the cofactor to be bounded by 4. The point counting –
the main bottleneck of the computations – was done by an early-abort
version of the SEA algorithm [Sch95]. For each of the five bit-lengths
we have tried 5 million seeds, resulting in over 120 000 elliptic curves.
Figure 8.3 captures a simplified overview of the algorithm.

10. More precisely, H also changes the most significant bit of the output to 0.

158

8. DiSSECT

seed := initial seed

r = H(seed)

output E(a,b)

Increment seed E(−3,
√
−27

r)

secure

insecure

Figure 8.3: X9.62 algorithm adjusted (indicated by dashed line) for large-scale
generation.

Brainpool – the standard. The Brainpool standard proposes an algo-
rithm for generating both the prime p and the curve over Fp. Since
in our simulations we have used the same finite fields as are in the
recommended curve parameters we will skip the algorithm for prime
generation.

Given a seed and a prime, the generation process outputs an elliptic
curve in Weierstrass form satisfying the following security conditions:

• The cofactor shall be 1, i.e., the group order n shall be prime.

• The embedding degree shall be greater than (n− 1)/100.

• The trace of Frobenius t shall not be equal to 1. Technical re-
quirements then state that t > 1.

• The class number should be larger than 107.

The algorithm itself follows similar idea as X9.62 but in more con-
voluted way as can be seen in Figure 8.4. This time, the H function
(8.1) is used to compute both a and b in pseudorandom way. Roughly
speaking, a given seed is repeatedly incremented by 1 and mapped
by H until an appropriate a is found and the resulting seed is used for
finding b in a similar way. If the curve does not satisfy the condition,
the seed is incremented and used again as initial seed. See the standard

159

8. DiSSECT

for details of generation, GenA and GenB represent generation of a
and b in Figure 8.4.
Brainpool – our approach. We have used the same approach as in
X9.62 and used the published seed as initial seed for the whole genera-
tion, incrementing seed after each curvewas found. Since generation of
both a and b can in theory take an arbitrary number of tries, after each
fail attempt to find an appropriate parameter the seed is incremented.
We have again used 5 million seeds for each of the four bit-lengths
(160, 192, 224, 256) Brainpool recommends. The number of generated
curves in total is over 12 000. The drop in the proportion of generated
curves compared to X9.62 standard is caused by stricted conditions.

There is currently no known efficient method that computes the
class number; instead we checked that a related quantity – the CM
discriminant – is greater than 2100, following the SafeCurves recom-
mendations [BL].

seed := initial seed

a, seeda := GenA(seed)
b, seedb := GenB(seeda)Increment seed

output E(a,b)
seed := seeda

seed := seedb E(a,b)

secure

insecure

Figure 8.4: Brainpool algorithm adjusted (indicated by dashed line) for
large-scale generation.

NUMS – the standard. The NUMS generation method, in accordance
with its name, does not fall into the verifiably pseudorandom category.
As Brainpool, NUMS proposes algorithms for generating both the
prime field and the curve. The lowest recommended bit-length for
prime fields by NUMS is 256. The method of prime generation works
by starting with c = 1 and incrementing this value by 4 until p = 2s− c
is a prime congruent to 3 mod 4.

160

8. DiSSECT

Although NUMS proposes algorithms for generating both Weier-
strass and Edwards curves, we have focused on theWeierstrass curves.
The curve is found by searching for E(−3,b) satisfying the following
security conditions by incrementing b, starting from b = 1:

• The curve order as well as the order of its twist shall be primes.

• The trace of Frobenius t shall not equal 0 or 1. This condition is
further extended by requiring t > 1, supposedly for practical
reasons.

• The embedding degree shall be greater than (n− 1)/100 fol-
lowing the Brainpool standard.

• The CM discriminant shall be greater than 2100, following the
SafeCurves recommendations.

NUMS – our approach.We have used the same process, but this time
iterating over 10million values for b, for each of the four bit-lengths 160,
192, 224 and 256. Even though the lowest recommended bit-length
for prime fields by NUMS is 256 we have generated 160, 192 and
224-bit primes using the proposed method to study curves of lower
bit-lengths. This process produced over 1 200 curves, implying that
the twist condition is strongly restrictive.
Pseudorandom – our approach. The final category of simulated curve
is our own and does not relate to any standard. Since all of the three
simulated standards contain certain unique properties (small b for
NUMS, bit overlaps in Brainpool, rb2 = −27 for X9.62) and curves of
the same bit-length share a base field, we have also generated pseudo-
random curves for bit-lengths 128, 160, 192, 224, 256 using the method
depicted in Figure 8.5. Moreover, for each curve, we generated a prime
for the base field by hashing a seed and taking the smallest prime
bigger than this hash when interpreted as an integer. We kept such a
curve if it is not anomalous, has the cofactor 1, 2, 4 or 8 and satisfies the
SafeCurves criteria on embedding degree and complex multiplication
discriminant. We have tried 5 million seeds, resulting in over 250 000
Pseudorandom curves.

161

8. DiSSECT

seed:=0

p := GenPrime(seed)
a := SHA-512(seed)

b := SHA-512(a)
Increment seed

output E(a,b)

E(a,b)

secure

insecure

Figure 8.5: Pseudorandom simulation.

8.3.3 Outlier detection

Our framework offers options for graphical comparisons for all distin-
guishing strategies. However,manual inspection does not scalewell, so
we utilize automated approaches to identify suspicious curves. Since
we do not have a labeling that could be used for the typical supervised
approaches, we had to resort to unsupervisedmethods, namely outlier
detection, as it is suitable for our distinguishing strategies.

We built several datasets of simulated curves according to the
selected distinguishing strategies. Each dataset of simulated curves
consists only of curves of the same bitlength that were generated by
the samemethod. Table 8.2 shows numbers of curves containedwithin
each dataset. The rows correspond to the used generation method and
the columns to the bitlength of the selected curves.

256 bits 224 bits 192 bits 160 bits 128 bits
X9.62 18 502 22 211 18 836 27 780 36 126
Brainpool 1 677 2 361 2 640 3 184 0
NUMS 83 109 191 325 0
Pseudorandom 18 636 21 226 24 805 29 639 37 311

Table 8.2: Numbers of curves in our datasets of simulated curves.

162

8. DiSSECT

Additionally, in cases when trait results are (mostly) independent
of curve bitlength, we analyzed curves of all bitlengths together. This
approach allowed us to analyze even curves that did not match any of
the generated categories.

In order to use outlier detection in conformity with the distinguish-
ing strategies, we augmented each dataset with the corresponding
standard curves. Based on these datasets, we derived feature vectors
consisting of all computed trait results, as well as their interesting
subsets. The features were scaled using a min-max scaler to fit within
the [0;1] range. In case some results were not computed, they were
replaced with −1, signifying that the given value took too long to
compute (e.g., the factorization of large numbers).

We ran the k-nearest neighbors algorithm to identify outlierswithin
each augmented dataset, focusing on the results that reported few
outliers. However, as some of the strategies inherently output many
false positives, we also inspected the results with few standard curve
outliers.

8.4 Traits

DiSSECT currently contains 22 trait functions – traits for brevity –
designed to test a wide range of elliptic curve properties. We have
divided them into two categories: algebraic11 traits focusing on math-
ematical characteristics of curves (denoted with a prefix a) and traits
targeting properties connected to curves standards or implementations
(denoted with a prefix i). We can subdivide the traits even further:
Potential attacks. Traits a01, a03, a07 test the classical properties of
elliptic curves relevant to known attacks (group structure of the curve;
the quadratic twist; the embedding degree). However, we also cover
lesser-known and threatening attacks. Trait a04 analyzes factorization
of values of the form kn± 1 as a generalization of [Che06]. To test
scalar multiplication, essential to all ECC protocols, trait a12 inspects
multiplicative orders of small values modulo the group order n. Trait
i06 follows the idea from [Che02], with a possible connection of the
discrete logarithm on ECC to factorization.

11. Introduction to the algebraic properties of curves mentioned in this work can be
found in [Was08].

163

8. DiSSECT

Complexmultiplication.Although at this moment there is no serious
attack utilizing any knowledge about the CM discriminant or class
number, these values are the defining features of an elliptic curve. They
determine the structure of the endomorphism ring, the torsion points,
isogeny classes, etc. Traits a02, a06, a25 deal with the factorization of
t, the size and the factorization of the Frobenius discriminant D :=
t2− 4p, as well as how D changes as wemove the defining base field to
its extensions. Trait a08 computes bounds on the class number using
the Dirichlet class number formula [Dav80].
Torsion. To directly analyze the torsion points of a given elliptic curve,
we have created traits a05, a22 and a29. Trait a05 computes the degree
of the extension Fpk /Fp over which the torsion subgroup is (partially)
defined. Trait a22 approaches torsion from the division polynomials
direction and computes their factorization. Trait a29 considers the lift
E(Fp)→ E(Q) and computes the size of the torsion subgroup over Q.
Isogenies. Both torsion and complex multiplication can be described
using isogenies. Kernel polynomial of every isogeny is a factor of the di-
vision polynomial, and the special cases of isogenies, endomorphisms,
form an order in an imaginary quadratic field of Q(

√
D). Trait a24,

similarly as a05, computes the degree of the extension where some/all
isogenies of a given degree are defined. Isogenies of ordinary curves
form, in general, isogeny volcanoes; trait a23 measures their depth
and the shape of the so-called crater. Trait a28 computes the number
of neighbors for a given vertex in the isogeny graph.

The so far mentioned four categories of traits systematically exam-
ine algebraic properties of elliptic curves, thus providing a compre-
hensive analysis tool. In particular, it covers all SafeCurves ECDLP
requirements.
Standards and implementation.During our analysis of standardmeth-
ods for generating curves, we have noticed unusual steps in the algo-
rithms, so we designed traits to capture the resulting properties. The
nature of the Brainpool standard (see Figure 8.4) causes overlaps in
the binary representations of the curve coefficients in roughly half
of the generated curves (trait i14). The NUMS standard, as well as
the Koblitz curves, use small curve coefficients by design (trait i15).
The X9.62 standard uses the relation b2r = a3 to determine the curve
coefficients from r (trait i13). The SECG standard recommends the

164

8. DiSSECT

curves secp224k1 and secp256k1 together with the group generators;
the x-coordinate of half of both of these generators is the same small
number (trait i08).

Most attacks on the ECDLP are aiming at specific implementation
vulnerabilities. To address this, we propose traits that target possible
irregularities in practical implementations. Trait i07 follows the idea of
[Wei+20], where the authors analyze the side-channel leakage caused
by improper representation of large integers in memory. Based on
[Bai+b], trait i04 analyzes the number of points with a lowHamming
weight on a given curve.

For a detailed description of each trait, see Appendix F.1.

8.4.1 Notable findings

GOST curves. Trait i15 analyzes the size of the Weiestrass form co-
efficients. The trait was motivated by the NUMS generation method,
which produces curves with a small b coefficient – as can be seen in
Figure 8.7, where we compare the standard NUMS curves with Pseu-
dorandom curves according to strategy 2. In Figure 8.7, there are two
Weierstrass NUMS curves corresponding to the leftmost values and
two Edwards curves corresponding to the rightmost value (there is
no reason to expect a small b coefficient after a transformation from
the Edwards form to the Weierstrass form).

However, our outlier detection also recognized two 256-bit GOST
curves (CryptoPro-A-ParamSet, CryptoPro-C-ParamSet) and a closer
inspection in Figure 8.7 revealed that both curves have small b coef-
ficients (166 and 32858). This contradicts Alekseev, Nikolaev, and
Smyshlyaev [ANS18], who claim that all of the standardized GOST R
curves were generated in the following way:

1. Select p that allows fast arithmetic.

2. Compute r by hashing a random seed with the Streebog hash
function.

3. For the generation of twisted Edwards curve eu2 + v2 = 1 +
du2v2, put e = 1,d = r. For the generation of Weierstrass curve
y2 = x3 + ax + b, put a =−3 and b equal to any value such that
rb2 = a3.

165

8. DiSSECT

4. Check the following security conditions:
• n ∈ (2254,2256) ∪ (2508,2512).
• The embeddding degree is at least 32 (resp. 132) if n ∈
(2254,2256) (resp. if n ∈ (2508,2512)).

• The curve is not anomalous.
• The j-invariant is not 0 or 1728.

Thus the small size of b (which should be pseudorandom if r is) im-
plies that it is very unlikely that they were generated with this claimed
method. We hypothesise that the CryptoPro-A-ParamSet curve was
generated by incrementing b from 0 until the GOST security conditions
were satisfied. We have verified that b = 166 is the smallest such value
with the added condition that the cofactor is 1 (otherwise, the small-
est value is b = 36). On the other hand, the CryptoPro-C-ParamSet
does not have this property, as its b coefficient 32858 is only the 80th
smallest such value.

Furthermore, the a02 trait found that the third curve from [PLK06],
called CryptoPro-B-ParamSet, has a CM discriminant of −619. Such
a small value is extremely improbable, unless the curve was generated
by the CMmethod [Bro06]. (The CM discriminant −915 of gost256
is small as well, but this curve was used just as an example and there
are no claims about its generation.)

18 19 246 247 248 249 250 251 252 253 254 255 256 257
Bitlength of coefficient b in Weierstrass form

0.0

0.2

0.4

N
or

m
al

iz
ed

cu
rv

e
co

u
n
t

NUMS curves (4)

Pseudorandom curves (18636)

Figure 8.6: Trait i15 for 256-bit NUMS curves and Pseudorandom curves.

The BLS12-381 curve. The possibilities for the multiplicative order of
an element of Z∗n depend on the factorization of n. Trait a12 measures
φ(n) divided by the order of 2, so low orders translate to high values
and vice versa. The outlier in Figure 8.8 is the BLS12-381 curve [Bow17].

166

8. DiSSECT

9 17 246 247 248 249 250 251 252 253 254 255 256 257
Bitlength of coefficient b in Weierstrass form

0.0

0.2

0.4

N
or

m
al

iz
ed

cu
rv

e
co

u
n
t

Gost curves (5)

Pseudorandom curves (18636)

Figure 8.7: Trait i15 for 256-bit GOST curves and Pseudorandom curves.

Indeed, its closer inspection revealed that for all prime pi dividing n,
the values pi − 1 are quite smooth and often share a factor, imposing
an upper bound on the order of Z∗n elements, which was the real cause
of our observation. It seems that this property might be common to
the BLS generation process, but this is not documented and requires
further investigation.

1 2 3 4 5 6 8

Complement of the order of 2 in Z∗n (log2 scale)

0.0

0.2

0.4

N
or

m
al

iz
ed

cu
rv

e
co

u
n
t

Standard curves (158)

X9.62 simulated curves (52700)

Figure 8.8: Trait a12 for all standard and X9.62 simulated curves.

The Bitcoin curve. Trait i08 inspects the x-coordinate of inverted
generator scalar multiples, i.e., x-coordinates of points [k−1]G, where
k ∈ {1, . . . ,8}. The motivation behind this trait is due to Brengel et al.
[BR18], who reported an unexpectedly low value for k = 2 on the
Bitcoin curve secp256k1. Furthermore, Maxwell [Max15] pointed out
that secp224k1 yields exactly the same result. Pornin [Por19] guesses
that this was caused by reusing the code for Koblitz curves with the
same seeds, together with poor documentation.

We analyzed the results of this trait in our visualization framework
(Figure 8.9) and discovered that secp256k1 and secp224k1 are the

167

8. DiSSECT

only standard curves for which the x-coordinate of [k−1]G is signifi-
cantly shorter than the full bitlength.

166 192 224 256

Bitlength of the x-coordinate of 2−1G

0.0

2.5

5.0

C
u

rv
e

co
u

n
t 256-bit

224-bit

192-bit

Figure 8.9: Trait i08 for all 192-, 224-, and 256-bit standard curves.

Brainpool overlaps. Trait i14 – designed to detect bit-overlaps in the
Weierstrass coefficients, see Appendix F.1 for details – revealed a struc-
ture in the Brainpool curves (Figure 8.10), already observed by Bern-
stein et al. [Ber+15].

0 80 81 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
Overlap of coefficients

0.0

0.2

0.4

N
or

m
al

iz
ed

cu
rv

e
co

u
n
t

Brainpool curves (4)

Pseudorandom curves (7000)

Figure 8.10: Trait i14 for 256-bit Brainpool and Pseudorandom curves.

Inspecting brainpoolP256r1, we see the identical segments in a,b:
a = 0x7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9

b = 0x26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6

Such overlaps occur for roughly half of the curves (Figure 8.11);
e.g., this is the case for brainpoolP{192,256,384}r1 curves, but not
for brainpoolP{160,224,320}r1. More specifically, after generating
a, the seed is incremented, and b is produced from this seed using
Function 8.1 (which itself has an incremental character). This is re-
peated until b is not a square. The overlaps occur when the loop only
executes once. E.g., for brainpoolP320r1, if we assume that b was a

168

8. DiSSECT

0 80 81 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
Overlap of coefficients

0.0

0.2

0.4

N
or

m
al

iz
ed

cu
rv

e
co

u
n
t

Brainpool simulated curves (1677)

Pseudorandom curves (7000)

Figure 8.11: Trait i14 for 256-bit simulated Brainpool and Pseudorandom
curves.

square on the second pass, we can actually reconstruct the discarded
b′ of the first try without the original seed:

a = 0x3ee30...a73513f5eb79da66...d860eb4

b′ = 0x75eb79da66...d860eb4d20883949dfdbc42d3ad198640688a6fe13f4134

b = 0x520883949dfdbc42d3ad198640688a6fe13f41349554b...b1f1a6

Indeed, b′ is a square (else we could construct b′′, b′′′, and so on).

8.5 Our tool DiSSECT

DiSSECT is an open-source tool for generating elliptic curves accord-
ing to our standard simulation methods, computing traits on elliptic
curves, and analyzing data using automated approaches and an easy-
to-use visualization environment. Its code contains implementations
of the 22 traits described in the previous section, but it can be easily
extended using a trait addition script. Adding a new trait requires
only a short description of its function and writing a few lines of Sage
code that computes the new trait result for any given curve.

We offer two method to analyze trait results: a Jupyter notebook
and an automated outlier detection. Both of these tools allow configur-
ing the subset of analyzed curves, traits, and their parameters, and can
access locally stored data as well as our publicly available database.

Our website12 contains detailed information about curves in our
database and their trait results, and trait descriptions with statistics.

12. https://dissect.crocs.fi.muni.cz/

169

https://dissect.crocs.fi.muni.cz/

8. DiSSECT

For a more complex data inspection, the analysis environment config-
ured with access to our database can be launched directly from the
website. Additionally, the frontend provides an API for accessing the
database to analyze the data without any need for its local storage.

8.6 Conclusions

Our framework DiSSECT13 aspires to survey all standard elliptic
curves and find any potential problems by comparing them to simu-
lated ones and visualizing the results. We built it as a foundation of
elliptic curve cryptanalysis for the cryptographic community and hope
that more cryptographers and mathematicians will join the project.

Our tool revealed that the generation process of three GOST curves
described by Alekseev, Nikolaev, and Smyshlyaev [ANS18] is incon-
sistent with the sizes of the b cofficient in two cases and with the size
of the CM discriminant in the third one. We also found an interesting
property of the BLS12-381 curve (related to smoothness) that might
be caused by its generation, but is not documented anywhere.

Selected parts of DiSSECT could also be used to quickly assess
new individual curves. This might be useful for implementations
following the idea of Miele and Lenstra [ML15], trading standard
curves for ephemeral on-the-fly generated ones. Besides cryptographic
applications, DiSSECT might also be useful to number theorists by
providing them with empiric distributions of various traits.

It is unrealistic to go through the whole space of trait results for
different parameter choice and curve setsmanually. Thuswe employed
an automatic outlier detection method, confirming our prior findings.
Still, there may be other outliers, and we believe it is an interesting
open problem to statistically evaluate the results in a way that takes
into account the inner structure of the data for a given trait.

13. https://github.com/crocs-muni/DiSSECT

170

https://github.com/crocs-muni/DiSSECT

Conclusions

While each chapter of this thesis includes its individual conclusions,
let us come back to the big picture and highlight the most important
lessons learned. Unlike RSA, ECC provides us with a hard problem
that we are unable to solve with a subexponential algorithm, resulting
in short keys well suited for many practical applications. However,
ECC is also vastly more complex than RSA and should be treated as
such.

The first problem is choosing a curve where the discrete logarithm
problem is hard, because there is no known way to prove this. While
RSA uses a new group for each instance, ECC supports only a few
standardized choices, thus centralizing the whole system. This takes
one burden off the implementors, but greatly increases the impact of
any potential backdoors. Since the standard curves were not always
generated in a transparent way, it is critical to develop mechanisms to
analyze them and increase the public trust where it is deserved. We
believe that our tool DiSSECT (introduced in Chapter 8) is a glimpse
of hope in this direction.

Even when using secure curves (and protocols), the story does
not end yet. The path to implementing ECC is loaded with a plethora
of traps at many levels. Chapter 4 stresses the importance of correctly
validating all domain parameters as a defence against attackers who
canmanipulate them.Choosing a secure and efficient addition formula
and implementing it correctly is also hard, especially in the light of the
attacks described in Chapter 6. If the addition formula is incomplete,
many scalar multiplication algorithms might leak secrets – indeed,
this ultimately led to our real-world attack Minerva (presented in
Chapter 5).

Our research adds more evidence to the long line of historical
problems with ECC implementations. Indeed, security is often tricky
to achieve in the real world, where we often value performance, seek
backward compatibility and build both software and hardware upon
older layers in complex ways.

The bottom line is that ECC is a great tool (at least in the pre-
quantum world), but we should use it carefully, building on the best
practices from both research and industry that surfaced over the years.

171

Bibliography

[ACL] R. Abarzua, C. V. Cordero, and J. Lopez. Survey for Per-
formance & Security Problems of Passive Side-channel At-
tacks Countermeasures in ECC. IACR Cryptology ePrint
Archive, Report 2019/010.

[Adr+15] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M.
Green, J. A. Halderman, N. Heninger, D. Springall, E.
Thome, L. Valenta, et al. “Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice”. In: 22nd ACM
CCS. 2015, pp. 5–17.

[Age20] N. S. Agency.Windows CryptoAPI Spoofing Vulnerability
(CVE-2020-0601). 2020. url: https://nvd.nist.gov/
vuln/detail/CVE-2020-0601 (visited on 09/24/2021).

[AT03] T. Akishita and T. Takagi. “Zero-Value Point Attacks on
Elliptic CurveCryptosystem”. In: Information Security, 6th
International Conference, (ISC). Vol. 2851. Lecture Notes
in Computer Science. Springer, 2003, pp. 218–233.

[Alb+19] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W.
Postlethwaite, and M. Stevens. “The General Sieve Ker-
nel and New Records in Lattice Reduction”. In: EURO-
CRYPT, Proceedings, Part II. Vol. 11477. Lecture Notes in
Computer Science. Springer, 2019, pp. 717–746.

[Alb+18] M. R. Albrecht, J. Massimo, K. G. Paterson, and J. So-
morovsky. “Prime and Prejudice: Primality Testing Un-
der Adversarial Conditions”. In: 25th ACM CCS. 2018,
pp. 281–298.

[Ald+19] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García,
and N. Tuveri. “Port Contention for Fun and Profit”. In:
IEEE Symposium on Security and Privacy. 2019, pp. 870–
887.

[ANS18] E. K. Alekseev, V. Nikolaev, and S. V. Smyshlyaev. On
the security properties of Russian standardized elliptic curves.
2018.

[AB21] H. K. Alper and J. Burdges. “Two-Round Trip Schnorr
Multi-signatures viaDelinearizedWitnesses”. In:CRYPTO.
Springer. 2021.

173

https://nvd.nist.gov/vuln/detail/CVE-2020-0601
https://nvd.nist.gov/vuln/detail/CVE-2020-0601

BIBLIOGRAPHY
[ANSI98] American National Standard X9.62-1998, Public key cryp-

tography for the financial services industry: the elliptic curve
digital signature algorithm (ECDSA). Preliminary draft.
Accredited Standards Committee X9, 1998.

[ANS14] ANSSI. Référentiel Général de Sécurité, version 2.0, Annexe
B1. https://www.ssi.gouv.fr/uploads/2014/11/RGS_
v-2-0_B1.pdf. 2014. (Visited on 09/24/2021).

[Aon+16] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. “Improved
Progressive BKZ Algorithms and Their Precise Cost Es-
timation by Sharp Simulator”. In: EUROCRYPT, Proceed-
ings, Part I. 2016, pp. 789–819.

[Ara+14] D. F. Aranha, P. Fouque, B. Gerard, J. Kammerer, M. Ti-
bouchi, and J. Zapalowicz. “GLV/GLS Decomposition,
Power Analysis, and Attacks on ECDSA Signatures with
Single-Bit Nonce Bias”. In: ASIACRYPT, Proceedings, Part
I. 2014, pp. 262–281.

[Ara+20] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi,
and Y. Yarom. “Ladderleak: Breaking ecdsa with less
than one bit of nonce leakage”. In: 27th ACM CCS. 2020,
pp. 225–242.

[Ara+] D. F. Aranha1, P. S. L. M. Barreto, G. C. C. F. Pereira, and
J. E. Ricardini. A note on high-security general-purpose ellip-
tic curves. Cryptology ePrint Archive, Report 2013/647.

[Arn95a] F. Arnault. “Constructing Carmichael numbers which
are strong pseudoprimes to several bases”. In: Journal of
Symbolic Computation 20.2 (1995), pp. 151–161.

[Arn95b] F. Arnault. “Rabin-Miller primality test: composite num-
bers which pass it”. In:Mathematics of Computation 64.209
(1995), pp. 355–361.

[Ath12a] Athena Smartcard. IDProtect with LASER PKI. 2012. url:
https : / / csrc . nist . gov / CSRC / media / projects /
cryptographic-module-validation-program/documents/
security-policies/140sp1711.pdf.

[Ath12b] Athena Smartcard. OS755/IDProtect v6 SSCD – Security
Target. 2012. url: https://www.ssi.gouv.fr/uploads/
IMG/certificat/ANSSI-CC-cible_2012-23en.pdf.

174

 https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
 https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp1711.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp1711.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp1711.pdf
https://www.ssi.gouv.fr/uploads/IMG/certificat/ANSSI-CC-cible_2012-23en.pdf
https://www.ssi.gouv.fr/uploads/IMG/certificat/ANSSI-CC-cible_2012-23en.pdf

BIBLIOGRAPHY
[Atm09] Atmel. Atmel toolbox 00.03.11.05 on the AT90SC Family

of Devices: Security target lite. 2009. url: https://www.
ssi.gouv.fr/uploads/IMG/certificat/dcssi-cible_
2009-11en.pdf.

[Aza+17] R. Azarderakhsh, M. Campagna, C. Costello, L. Feo, B.
Hess, A. Jalali, D. Jao, B. Koziel, B. LaMacchia, P. Longa,
et al. “Supersingular isogeny key encapsulation”. In: Sub-
mission to the NIST Post-Quantum Standardization project
(2017).

[Bab86] L. Babai. “On Lovasz’ lattice reduction and the nearest
lattice point problem”. In:Combinatorica 6.1 (1986), pp. 1–
13.

[BS85] E. Bach and J. Shallit. “Factoring with Cyclotomic Poly-
nomials”. In:Mathematics of Computation. Vol. 52. IEEE,
1985, pp. 443–450.

[Bai+a] T. Baignères, C. Delerablée, M. Finiasz, L. Goubin, T.
Lepoint, andM.Rivain.TrapMe If YouCan –MillionDollar
Curve. Cryptology ePrint Archive, Report 2015/1249.

[Bai+b] D. V. Bailey et al. Breaking ECC2K-130. Cryptology ePrint
Archive, Report 2009/541.

[BLS] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing
Elliptic Curves with Prescribed Embedding Degrees. Cryp-
tology ePrint Archive, Report 2002/088.

[Bel+16] P. Belgarric, P. Fouque, G. Macario-Rat, and M. Tibouchi.
“Side-Channel Analysis ofWeierstrass andKoblitz Curve
ECDSA on Android Smartphones”. In: Topics in Cryp-
tology - CT-RSA 2016 - The Cryptographers’ Track at the
RSA Conference 2016, San Francisco, CA, USA, February 29
- March 4, 2016, Proceedings. 2016, pp. 236–252.

[Bel+03] M. Bellare, C. Namprempre, D. Pointcheval, and M. Se-
manko. “The One-More-RSA-Inversion Problems and
the Security of Chaum’s Blind Signature Scheme.” In:
Journal of Cryptology 16.3 (2003).

[BN06] M. Bellare and G. Neven. “Multi-Signatures in the Plain
Public-Key Model and a General Forking Lemma”. In:
13th ACM CCS. 2006, pp. 390–399.

175

https://www.ssi.gouv.fr/uploads/IMG/certificat/dcssi-cible_2009-11en.pdf
https://www.ssi.gouv.fr/uploads/IMG/certificat/dcssi-cible_2009-11en.pdf
https://www.ssi.gouv.fr/uploads/IMG/certificat/dcssi-cible_2009-11en.pdf

BIBLIOGRAPHY
[BR93] M. Bellare and P. Rogaway. “Random oracles are prac-

tical: A paradigm for designing efficient protocols”. In:
1st ACM CCS. 1993, pp. 62–73.

[Bel+20] D. Belyavsky, B. B. Brumley, J. Chi-Dominguez, L. Rivera-
Zamarripa, and I. Ustinov. “Set It and Forget It! Turnkey
ECC for Instant Integration”. In:Proceedings of the 36thAn-
nual Computer Security Applications Conference (ACSAC).
ACM, 2020, pp. 760–771.

[Ben+14] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. “"Ooh
Aah... Just a Little Bit" : A Small Amount of Side Channel
Can Go a Long Way”. In: Cryptographic Hardware and
Embedded Systems (CHES). 2014, pp. 75–92.

[Ben+21] F. Benhamouda, T. Lepoint, J. Loss, M. Orru, and M.
Raykova. “On the (in) security of ROS”. In: Annual In-
ternational Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2021, pp. 33–53.

[Ber06] D. J. Bernstein. “Curve25519: new Diffie-Hellman speed
records”. In: International Workshop on Public Key Cryp-
tography. Springer. 2006, pp. 207–228.

[Ber14] D. J. Bernstein. The cr.yp.to blog: How to design an elliptic-
curve signature system. https://blog.cr.yp.to/20140323-
ecdsa.html. 2014. (Visited on 09/24/2021).

[Ber19] D. J. Bernstein. The cr.yp.to blog: Why EdDSA held up better
than ECDSA against Minerva. https://blog.cr.yp.to/
20191024-eddsa.html. 2019. (Visited on 09/24/2021).

[Ber+08] D. J. Bernstein, P. Birkner,M. Joye, T. Lange, andC. Peters.
“Twisted Edwards Curves”. In: AFRICACRYPT, 1st Inter-
national Conference on Cryptology in Africa. Vol. 5023. Lec-
ture Notes in Computer Science. Springer, 2008, pp. 389–
405.

[BCL] D. J. Bernstein, C. Chuengsatiansup, andT. Lange.Curve41417:
Karatsuba revisited. Cryptology ePrint Archive, Report
2014/526.

[BL07a] D. J. Bernstein and T. Lange. Explicit-Formulas Database
(EFD). 2007. url: https://www.hyperelliptic.org/
EFD/.

176

https://blog.cr.yp.to/20140323-ecdsa.html
https://blog.cr.yp.to/20140323-ecdsa.html
https://blog.cr.yp.to/20191024-eddsa.html
https://blog.cr.yp.to/20191024-eddsa.html
https://www.hyperelliptic.org/EFD/
https://www.hyperelliptic.org/EFD/

BIBLIOGRAPHY
[BL07b] D. J. Bernstein and T. Lange. “Faster Addition and Dou-

bling on Elliptic Curves”. In: ASIACRYPT. Vol. 4833. Lec-
ture Notes in Computer Science. Springer, 2007, pp. 29–
50.

[BL07c] D. J. Bernstein and T. Lange. “Inverted Edwards Coordi-
nates”. In: Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes (AAECC-17), 17th International Sympo-
sium. Vol. 4851. LectureNotes inComputer Science. Sprin-
ger, 2007, pp. 20–27.

[BL] D. J. Bernstein and T. Lange. SafeCurves: choosing safe
curves for elliptic-curve cryptography. url: https://safecurves.
cr.yp.to/ (visited on 09/24/2021).

[BLS12] D. J. Bernstein, T. Lange, and P. Schwabe. “The Security
Impact of a New Cryptographic Library”. In: LATIN-
CRYPT, 2nd International Conference on Cryptology and
Information Security in Latin America. 2012, pp. 159–176.

[Ber+15] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Huls-
ing, E. Lambooij, T. Lange, R. Niederhagen, and C. Van
Vredendaal. “How to Manipulate Curve Standards: A
White Paper for the Black Hat”. In: International Confer-
ence on Research in Security Standardisation. Springer. 2015,
pp. 109–139. url: https://bada55.cr.yp.to (visited on
09/24/2021).

[Ber+12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang. “High-speed high-security signatures”. In: Journal
of Cryptographic Engineering 2.2 (2012), pp. 77–89.

[Ber+13] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange.
“Elligator: Elliptic-curve points indistinguishable from
uniform random strings”. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security.
2013, pp. 967–980.

[Ber+] D. J. Bernstein, S. Josefsson, T. Lange, P. Schwabe, and
B.-Y. Yang. EdDSA for more curves. IACR Cryptology
ePrint Archive, Report 2015/677.

[BL16] D. J. Bernstein and T. Lange. Failures in NIST’s ECC stan-
dards. https : / / cr . yp . to / newelliptic / nistecc -
20160106.pdf. 2016. (Visited on 09/24/2021).

177

https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to/
https://bada55.cr.yp.to
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf

BIBLIOGRAPHY
[BLN16] D. J. Bernstein, T. Lange, and R. Niederhagen. “Dual

EC: A standardized back door”. In: The New Codebreakers.
Springer, 2016, pp. 256–281.

[BMM00] I. Biehl, B. Meyer, and V. Muller. “Differential fault at-
tacks on elliptic curve cryptosystems”. In:CRYPTO. Sprin-
ger, 2000, pp. 131–146.

[Bla+14] B. Black, J. Bos, C. Costello, P. Longa, and M. Naehrig.
Elliptic Curve Cryptography (ECC) Nothing Up My Sleeve
(NUMS) Curves and Curve Generation. Internet-Drafts
are working documents of the Internet Engineering Task
Force. https://datatracker.ietf.org/doc/html/
draft-black-numscurves-02. 2014.

[Bla+06a] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B.
Moeller. Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS). RFC 4492. RFC Editor,
2006, pp. 1–35. url: https://tools.ietf.org/html/
rfc4492.

[Bla+06b] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B.
Moeller. Elliptic curve cryptography (ECC) cipher suites for
transport layer security (TLS). Tech. rep. RFC 4492, 2006.

[Ble05] D. Bleichenbacher. “Breaking a Cryptographic Protocol
with Pseudoprimes”. In: Public Key Cryptography (PKC).
2005, pp. 9–15.

[BDN18] D. Boneh, M. Drijvers, and G. Neven. “Compact multi-
signatures for smaller blockchains”. In: International Con-
ference on the Theory and Application of Cryptology and In-
formation Security. Springer. 2018, pp. 435–464.

[BDH99] D. Boneh, G. Durfee, and N. Howgrave-Graham. “Factor-
ing N = prq for Large r”. In: CRYPTO. Springer-Verlag,
1999, pp. 326–337. url: http://dl.acm.org/citation.
cfm?id=646764.703963.

[BV96] D. Boneh and R. Venkatesan. “Hardness of Comput-
ing the Most Significant Bits of Secret Keys in Diffie-
Hellman and Related Schemes”. In: CRYPTO. Springer,
1996, pp. 129–142.

[BL95] W. Bosma and H. W. Lenstra Jr. “Complete systems of
two addition laws for elliptic curves”. In: Journal of Num-
ber Theory 53.2 (1995), pp. 229–240.

178

https://datatracker.ietf.org/doc/html/draft-black-numscurves-02
https://datatracker.ietf.org/doc/html/draft-black-numscurves-02
https://tools.ietf.org/html/rfc4492
https://tools.ietf.org/html/rfc4492
http://dl.acm.org/citation.cfm?id=646764.703963
http://dl.acm.org/citation.cfm?id=646764.703963

BIBLIOGRAPHY
[Bou+20] F. Boudot, P. Gaudry,A.Guillevic,N.Heninger, E. Thomé,

and P. Zimmermann. “Comparing the difficulty of factor-
ization and discrete logarithm: a 240-digit experiment”.
In: CRYPTO. Springer. 2020, pp. 62–91.

[Bow17] S. Bowe. BLS12-381: New zk-SNARK Elliptic Curve Con-
struction. https://electriccoin.co/blog/new-snark-
curve/. 2017. (Visited on 09/24/2021).

[BGH] S. Bowe, J. Grigg, and D. Hopwood. Recursive Proof Com-
positionwithout a Trusted Setup. Cryptology ePrintArchive,
Report 2019/1021.

[Bra10] Brainpool. Elliptic Curve Cryptography (ECC) Brainpool
Standard Curves and Curve Generation. Tech. rep. IETF RFC
5639, 2010.

[BH19] J. Breitner andN.Heninger. “BiasedNonce Sense: Lattice
Attacks Against Weak ECDSA Signatures in Cryptocur-
rencies”. In: Financial Cryptography and Data Security -
23rd International Conference, FC 2019, Frigate Bay, St. Kitts
and Nevis, February 18-22, 2019, Revised Selected Papers.
Vol. 11598. Lecture Notes in Computer Science. Springer,
2019, pp. 3–20.

[BR18] M. Brengel and C. Rossow. “Identifying Key Leakage
of Bitcoin Users”. In: Research in Attacks, Intrusions, and
Defenses. Ed. by M. Bailey, T. Holz, M. Stamatogiannakis,
and S. Ioannidis. Cham: Springer International Publish-
ing, 2018, pp. 623–643.

[BJ02] E. Brier and M. Joye. “Weierstraß Elliptic Curves and
Side-ChannelAttacks”. In:Public KeyCryptography (PKC).
Vol. 2274. Lecture Notes in Computer Science. Springer,
2002, pp. 335–345.

[Bro06] R. Broker. “Constructing elliptic curves of prescribed
order”. PhD thesis. Thomas Stieltjes Institute for Mathe-
matics, 2006.

[BS07] R. Broker andP. Stevenhagen. “Efficient CM-constructions
of elliptic curves over finite fields”. In: Mathematics of
Computation. Vol. 76. AMS, 2007, pp. 2161–2179.

[BH09] B. B. Brumley and R. M. Hakala. “Cache-Timing Tem-
plate Attacks”. In: ASIACRYPT. Vol. 5912. Lecture Notes
in Computer Science. Springer, 2009, pp. 667–684.

179

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/

BIBLIOGRAPHY
[BT11] B. B. Brumley and N. Tuveri. “Remote Timing Attacks

Are Still Practical”. In: 16th European Symposium on Re-
search in Computer Security (ESORICS). 2011, pp. 355–
371.

[Bun18] Bundesamt fur Sicherheit in der Informationstechnik.
CryptographicMechanisms: Recommendations andKey Lengths.
Technical Guideline: TR-02102-1. BSI, 2018. url: https:
/ / www . bsi . bund . de / SharedDocs / Downloads / EN /
BSI/Publications/TechGuidelines/TG02102/BSI-TR-
02102-1.pdf?__blob=publicationFile&v=7.

[CADO17] CADO-NFS Development Team. CADO-NFS, An Imple-
mentation of the Number Field Sieve Algorithm. Release 2.3.0.
2017. url: https://cado-nfs.gforge.inria.fr/ (vis-
ited on 09/24/2021).

[CGF] W. Castryck, S. D. Galbraith, and R. R. Farashahi. Ef-
ficient arithmetic on elliptic curves using a mixed Edwards-
Montgomery representation. IACRCryptology ePrintArchive,
Report 2008/218.

[Cas+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J.
Renes. “CSIDH: an efficient post-quantum commuta-
tive group action”. In: International Conference on the The-
ory and Application of Cryptology and Information Security.
Springer. 2018, pp. 395–427.

[Cer10] Certicom Research. SEC 2: Recommended Elliptic Curve
Domain Parameters, Version 2.0. 2010. url: https://secg.
org/ (visited on 09/24/2021).

[Cer] Certicom Research. Standards for Efficient Cryptography
Group. https://secg.org/. (Visited on 09/24/2021).

[Che+16] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S.
Cohney,M.Green,N.Heninger, R.Weinmann, E. Rescorla,
and H. Shacham. “A Systematic Analysis of the Juniper
Dual EC Incident”. In: 23rd ACM CCS. 2016, pp. 468–479.

[Che02] Q. Cheng. A New Special-Purpose Factorization Algorithm.
Citeseer. 2002. url: https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.8.9071&rep=rep1&
type=pdf (visited on 09/24/2021).

[Che] Q. Cheng.ANewClass of Unsafe Primes. IACRCryptology
ePrint Archive, Report 2002/109.

180

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=7
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=7
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=7
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=7
https://cado-nfs.gforge.inria.fr/
https://secg.org/
https://secg.org/
https://secg.org/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.9071&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.9071&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.9071&rep=rep1&type=pdf

BIBLIOGRAPHY
[Che06] J.H. Cheon. “SecurityAnalysis of the StrongDiffie-Hellman

Problem”. In:Advances in Cryptology - EUROCRYPT 2006.
Ed. by S. Vaudenay. Springer Berlin Heidelberg, 2006.

[Chro19] Chromium OS. U2F ECDSA vulnerability - The Chromium
Projects. url: https://sites.google.com/a/chromium.
org / dev / chromium - os / u2f - ecdsa - vulnerability
(visited on 09/24/2021).

[CC86] D. V. Chudnovsky and G. V. Chudnovsky. “Sequences
of numbers generated by addition in formal groups and
new primality and factorization tests”. In: Advances in
Applied Mathematics 7.4 (1986), pp. 385–434.

[CMO98] H. Cohen, A. Miyaji, and T. Ono. “Efficient Elliptic Curve
ExponentiationUsingMixedCoordinates”. In:ASIACRYPT.
Vol. 1514. Lecture Notes in Computer Science. Springer,
1998, pp. 51–65.

[Col85] Collectif. “Nombres de classes des corps quadratiques
imaginaires”. In: Séminaire Bourbaki: 1983/84, exposés 615-
632. Astérisque 121-122. Sociétémathématique de France,
1985. url: http://www.numdam.org/item/SB_1983-
1984__26__309_0/ (visited on 09/24/2021).

[Cor+16] J.-S. Coron, J.-C. Faugere, G. Renault, and R. Zeitoun.
“Factoring N = prqs for large r and s”. In: Proceedings of
the RSA Conference on Topics in Cryptology - CT-RSA 2016
- Volume 9610. Springer-Verlag, 2016, pp. 448–464.

[CLN10] C. Costello, T. Lange, and M. Naehrig. “Faster Pairing
Computations on Curves with High-Degree Twists”. In:
Public Key Cryptography (PKC). Vol. 6056. Lecture Notes
in Computer Science. Springer, 2010, pp. 224–242.

[CLN15] C. Costello, P. Longa, and M. Naehrig. “A brief discus-
sion on selecting new elliptic curves”. In: Microsoft Re-
search. Microsoft 8 (2015).

[CS18] C. Costello and B. Smith. “Montgomery curves and their
arithmetic - The case of large characteristic fields”. In: J.
Cryptographic Engineering 8.3 (2018), pp. 227–240.

[CK] C. Crepeau and R. A. Kazmi. An Analysis of ZVP-Attack
on ECC Cryptosystems. IACR Cryptology ePrint Archive,
Report 2012/329.

181

https://sites.google.com/a/chromium.org/dev/chromium-os/u2f-ecdsa-vulnerability
https://sites.google.com/a/chromium.org/dev/chromium-os/u2f-ecdsa-vulnerability
http://www.numdam.org/item/SB_1983-1984__26__309_0/
http://www.numdam.org/item/SB_1983-1984__26__309_0/

BIBLIOGRAPHY
[Dal+18] F.Dall, G.D.Micheli, T. Eisenbarth,D.Genkin,N.Heninger,

A. Moghimi, and Y. Yarom. “CacheQuote: Efficiently
Recovering Long-term Secrets of SGX EPID via Cache
Attacks”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018.2 (2018), pp. 171–191.

[Dan+13a] J.-L. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and
D. Naccache. “A synthesis of side-channel attacks on
elliptic curve cryptography in smart-cards”. In: Journal
of Cryptographic Engineering 3.4 (2013), pp. 241–265.

[Dan+13b] J. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and D.
Naccache. “Dynamic countermeasure against the Zero
Power Analysis”. In: IEEE International Symposium on
Signal Processing and Information Technology. 2013, pp. 140–
147.

[Dav80] H. Davenport. Multiplicative number theory. 1980, pp. 43–
53.

[DY15] L. Di and L. Yan. Introduction to the Commercial Cryptogra-
phy Scheme in China. https://icmconference.org/wp-
content/uploads/C23Introduction-on-the-Commercial-
Cryptography-Scheme-in-China-20151105.pdf. 2015.
(Visited on 09/24/2021).

[DCE] K. Dorey, N. Chang-Fong, and A. Essex. Indiscreet Logs:
Persistent Diffie-Hellman Backdoors in TLS. IACR Cryptol-
ogy ePrint Archive, Report 2016/999.

[Dri+19] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G.
Neven, and I. Stepanovs. “On the Security of Two-Round
Multi-Signatures”. In: IEEE Symposium on Security and
Privacy. 2019, pp. 1084–1101.

[Dzu+17] P. Dzurenda, S. Ricci, J. Hajny, and L. Malina. “Perfor-
mance analysis and comparison of different elliptic curves
on smart cards”. In: 2017 15th Annual Conference on Pri-
vacy, Security and Trust (PST). IEEE. 2017, pp. 365–36509.

[Edw07] H. M. Edwards. “A normal form for elliptic curves”. In:
AMS. Bulletin. New Series 44.3 (2007), pp. 393–422.

[Eni19] EnigmaBridge. Curated list of JavaCard applications. 2019.
url: https://github.com/EnigmaBridge/javacard-
curated-list (visited on 09/24/2021).

182

https://icmconference.org/wp-content/uploads/C23Introduction-on-the-Commercial-Cryptography-Scheme-in-China-20151105.pdf
https://icmconference.org/wp-content/uploads/C23Introduction-on-the-Commercial-Cryptography-Scheme-in-China-20151105.pdf
https://icmconference.org/wp-content/uploads/C23Introduction-on-the-Commercial-Cryptography-Scheme-in-China-20151105.pdf
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list

BIBLIOGRAPHY
[FAIL10] failOverflow. Console Hacking 2010: PS3 Epic Fail. url:

https://www.cs.cmu.edu/~dst/GeoHot/1780_27c3_
console_hacking_2010.pdf (visited on 09/24/2021).

[FGV11] J. Fan, B. Gierlichs, and F. Vercauteren. “To infinity and
beyond: Combined attack on ECC using points of low
order”. In: Cryptographic Hardware and Embedded Systems
(CHES). Springer. 2011, pp. 143–159.

[Fan+10] J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel,
and I. Verbauwhede. “State-of-the-art of secure ECC
implementations: a survey on known side-channel at-
tacks and countermeasures”. In: IEEE international sympo-
sium on hardware-oriented security and trust (HOST). 2010,
pp. 76–87.

[FWC16] S. Fan, W. Wang, and Q. Cheng. “Attacking OpenSSL
implementation of ECDSA with a few signatures”. In:
23rd ACM CCS. 2016, pp. 1505–1515.

[FGR12] J.-C. Faugere, C.Goyet, andG. Renault. “Attacking (EC)DSA
given only an implicit hint”. In: International Conference
on Selected Areas in Cryptography. Springer. 2012, pp. 252–
274.

[Fed16] Federal Agency on Technical Regulating and Metrology.
Information technology. Cryptographic data security. Parame-
ters of elliptic curves for cryptographic algorithms and proto-
cols. 2016.

[Fei19] Feisty Duck. Elliptic curve implementations vulnerable to
Minerva timing attack. 2019. url: https://www.feistyduck.
com/bulletproof-tls-newsletter/issue_58_elliptic_
curve _ implementations _ vulnerable _ to _ minerva _
timing_attack (visited on 09/24/2021).

[FS86] A. Fiat and A. Shamir. “How to prove yourself: Practical
solutions to identification and signature problems”. In:
Conference on the theory and application of cryptographic
techniques. Springer. 1986, pp. 186–194.

[FIDO18] FIDOAlliance. FIDOECDAAAlgorithm. 2018. url: https:
//fidoalliance.org/specs/fido-v2.0-id-20180227/
fido-ecdaa-algorithm-v2.0-id-20180227.html.

183

https://www.cs.cmu.edu/~dst/GeoHot/1780_27c3_console_hacking_2010.pdf
https://www.cs.cmu.edu/~dst/GeoHot/1780_27c3_console_hacking_2010.pdf
https://www.feistyduck.com/bulletproof-tls-newsletter/issue_58_elliptic_curve_implementations_vulnerable_to_minerva_timing_attack
https://www.feistyduck.com/bulletproof-tls-newsletter/issue_58_elliptic_curve_implementations_vulnerable_to_minerva_timing_attack
https://www.feistyduck.com/bulletproof-tls-newsletter/issue_58_elliptic_curve_implementations_vulnerable_to_minerva_timing_attack
https://www.feistyduck.com/bulletproof-tls-newsletter/issue_58_elliptic_curve_implementations_vulnerable_to_minerva_timing_attack
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

BIBLIOGRAPHY
[Fou+08] P.-A. Fouque, R. Lercier, D. Real, and F. Valette. “Fault

attack on elliptic curve Montgomery ladder implemen-
tation”. In: Fault Diagnosis and Tolerance in Cryptography.
IEEE. 2008, pp. 92–98.

[FPL16] FPLLL development team. “fplll, a lattice reduction li-
brary”. 2016. url: https://github.com/fplll/fplll.

[FR94] G. Frey andH.-G. Ruck. “A remark concerningm-divisibility
and the discrete logarithm in the divisor class group of
curves”. In: Mathematics of Computation 62.206 (1994),
pp. 865–874.

[Fri+17] J. Fried, P. Gaudry, N. Heninger, and E. Thome. “A Kilo-
bit Hidden SNFS Discrete Logarithm Computation”. In:
EUROCRYPT, Proceedings, Part I. 2017, pp. 202–231.

[GMP19] S. D. Galbraith, J. Massimo, and K. G. Paterson. “Safety
in Numbers: On the Need for Robust Diffie-Hellman
Parameter Validation”. In:Public Key Cryptography (PKC),
Proceedings, Part II. 2019, pp. 379–407.

[GLV01] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. “Faster
point multiplication on elliptic curves with efficient en-
domorphisms”. In: CRYPTO. Springer, 2001, pp. 190–
200.

[GNR10] N. Gama, P. Q. Nguyen, and O. Regev. “Lattice Enu-
meration Using Extreme Pruning”. In: EUROCRYPT.
Vol. 6110. Lecture Notes in Computer Science. Springer,
2010, pp. 257–278.

[Gar+20] C. P. Garcia, S. ul Hassan, N. Tuveri, I. Gridin, A. C. Al-
daya, and B. B. Brumley. “Certified Side Channels”. In:
The 29th USENIX Security Symposium. 2020, pp. 2021–
2038.

[Gar+21] F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko.
“Threshold Schnorr with Stateless Deterministic Signing
from Standard Assumptions”. In: CRYPTO. Springer.
2021, pp. 127–156.

[Gau06] P. Gaudry. “Variants of the Montgomery form based on
Theta functions”. In: Toronto (2006).

[Gen+16] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y.
Yarom. “ECDSA key extraction from mobile devices via

184

https://github.com/fplll/fplll

BIBLIOGRAPHY
nonintrusive physical side channels”. In: 23rd ACM CCS.
2016, pp. 1626–1638.

[GVY17] D. Genkin, L. Valenta, and Y. Yarom. “May the fourth be
with you: A microarchitectural side channel attack on
several real-world applications of Curve25519”. In: 24th
ACM CCS. 2017, pp. 845–858.

[Gir19] D.Giry.CryptographyKey Length Recommendations. https:
//www.keylength.com. 2019. (Visited on 09/24/2021).

[Gol73] L. J. Goldstein. “A history of the prime number theo-
rem”. In: The American Mathematical Monthly 80.6 (1973),
pp. 599–615.

[Gou03] L. Goubin. “A Refined Power-Analysis Attack on Ellip-
tic Curve Cryptosystems”. In: Public Key Cryptography
(PKC). Vol. 2567. Lecture Notes in Computer Science.
Springer, 2003, pp. 199–210.

[GRV16] D. Goudarzi, M. Rivain, and D. Vergnaud. “Lattice At-
tacks Against Elliptic-Curve Signatures with Blinded
Scalar Multiplication”. In: Selected Areas in Cryptography
(SAC), Revised Selected Papers. 2016, pp. 120–139.

[Hal13] T. C. Hales. “The NSA back door to NIST”. In: Notices of
the AMS 61.2 (2013), pp. 190–192.

[Hama] M. Hamburg. A note on high-security general-purpose ellip-
tic curves. Cryptology ePrint Archive, Report 2015/625.

[Hamb] M. Hamburg. Ed448-Goldilocks, a new elliptic curve. IACR
Cryptology ePrint Archive, Report 2015/625.

[HMV04] D. Hankerson, A. Menezes, and S. Vanstone. Guide to
elliptic curve cryptography. Springer Professional Comput-
ing. Springer, 2004.

[Har08] D. Harkins. Synthetic Initialization Vector (SIV) Authenti-
cated Encryption Using the Advanced Encryption Standard
(AES). RFC 5297. RFC Editor, 2008, pp. 1–26. url: https:
//tools.ietf.org/html/rfc5297.

[HNM98] T. Hasegawa, J. Nakajima, and M. Matsui. “A Practical
Implementation of Elliptic Curve Cryptosystems over
GF(p) on a 16-bit Microcomputer”. In: Public Key Cryp-
tography (PKC). Vol. 1431. Lecture Notes in Computer
Science. Springer, 1998, pp. 182–194.

185

https://www.keylength.com
https://www.keylength.com
https://tools.ietf.org/html/rfc5297
https://tools.ietf.org/html/rfc5297

BIBLIOGRAPHY
[Hen+12] N.Heninger, Z. Durumeric, E.Wustrow, and J. A. Halder-

man. “Mining your Ps and Qs: Detection of widespread
weak keys in network devices”. In: The 21st USENIX
Security Symposium. 2012, pp. 205–220.

[HCD07] H. Hisil, G. Carter, and E. Dawson. “New Formulae for
Efficient Elliptic Curve Arithmetic”. In: INDOCRYPT, 8th
International Conference on Cryptology in India. Vol. 4859.
LectureNotes inComputer Science. Springer, 2007, pp. 138–
151.

[His+08] H.Hisil, K. K.-H.Wong,G. Carter, andE.Dawson. “Twisted
Edwards curves revisited”. In: International Conference on
the Theory and Application of Cryptology and Information
Security. Springer. 2008, pp. 326–343.

[HR06] M. Hlavac and T. Rosa. “ExtendedHiddenNumber Prob-
lem and Its Cryptanalytic Applications”. In: Selected Ar-
eas in Cryptography (SAC), Revised Selected Papers. Vol. 4356.
LectureNotes inComputer Science. Springer, 2006, pp. 114–
133.

[Hol+08] A. Hollosi, G. Karlinger, T. Rossler, M. Centner, and et al.
Die österreichische bürgerkarte. https://www.buergerkarte.
at/konzept/securitylayer/spezifikation/20080220/.
2008. (Visited on 09/24/2021).

[Hop20] D. Hopwood. The pasta curves. https://electriccoin.
co/blog/the-pasta-curves-for-halo-2-and-beyond/.
2020. (Visited on 09/24/2021).

[HS01] N. Howgrave-Graham and N. P. Smart. “Lattice Attacks
on Digital Signature Schemes”. In: Designs, Codes and
Cryptography 23.3 (2001), pp. 283–290.

[IANa] IANIX. Things that use Curve25519. url: https://ianix.
com / pub / curve25519 - deployment . html (visited on
09/24/2021).

[IANb] IANIX. Things that use Ed25519. url: https://ianix.
com/pub/ed25519-deployment.html (visited on 09/24/2021).

[ICAO15] Doc 9303 - Machine Readable Travel Documents. Document.
International Civil Aviation Organization, 2015.

[IEEE00] IEEE Standard - Specifications for Public-Key Cryptography.
Standard. IEEE Std 1363-2000 Working Group, 2000.

186

https://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/
https://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html
https://ianix.com/pub/ed25519-deployment.html

BIBLIOGRAPHY
[ISO17] ISO/IEC 15946. Information technology — Security tech-

niques — Cryptographic techniques based on elliptic curves
— Part 5: Elliptic curve generation. 2017.

[IT02] T. Izu and T. Takagi. “A Fast Parallel Elliptic Curve Mul-
tiplication Resistant against Side Channel Attacks”. In:
Public Key Cryptography (PKC). Vol. 2274. Lecture Notes
in Computer Science. Springer, 2002, pp. 280–296.

[IT03] T. Izu and T. Takagi. “Exceptional Procedure Attack on
Elliptic Curve Cryptosystems”. In: Public Key Cryptogra-
phy (PKC). Vol. 2567. Lecture Notes in Computer Science.
Springer, 2003, pp. 224–239.

[JSS15] T. Jager, J. Schwenk, and J. Somorovsky. “Practical in-
valid curve attacks on TLS-ECDH”. In: 20th European
Symposium on Research in Computer Security. Springer.
2015, pp. 407–425.

[Jan19] J. Jancar. ecgen. 2019. url: https://github.com/J08nY/
ecgen (visited on 09/24/2021).

[Jan20] J. Jancar. “PYECSCA: Reverse-engineering black-box El-
liptic Curve Cryptography implementations via side-
channels”. Master’s thesis. Masaryk University, Brno,
Czechia, 2020. url: https://is.muni.cz/th/fjgay/.

[Jan+20] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. “Minerva:
The curse of ECDSAnonces; Systematic analysis of lattice
attacks on noisy leakage of bit-length of ECDSA nonces”.
In: Cryptographic Hardware and Embedded Systems (CHES).
Ruhr-University of Bochum, 2020.

[JS19] J. Jancar and P. Svenda. ECTester. 2019. url: https://
crocs-muni.github.io/ECTester/.

[Jou11] Journal officiel de la republique francaise. Avis relatif aux
paramètres de courbes elliptiques définis par l’Etat français.
2011. url: https://www.legifrance.gouv.fr/download/
pdf?id=QfYWtPSAJVtAB_c6Je5tAv00OY2r1ad3LaVVmnStGvQ=.

[Kob87] N. Koblitz. “Elliptic curve cryptosystems”. In: Mathemat-
ics of Computation 48.177 (1987), pp. 203–209.

[KM16] N. Koblitz and A. Menezes. “A riddle wrapped in an
enigma”. In: IEEE Security & Privacy 14.6 (2016), pp. 34–
42.

187

https://github.com/J08nY/ecgen
https://github.com/J08nY/ecgen
https://is.muni.cz/th/fjgay/
https://crocs-muni.github.io/ECTester/
https://crocs-muni.github.io/ECTester/
https://www.legifrance.gouv.fr/download/pdf?id=QfYWtPSAJVtAB_c6Je5tAv00OY2r1ad3LaVVmnStGvQ=
https://www.legifrance.gouv.fr/download/pdf?id=QfYWtPSAJVtAB_c6Je5tAv00OY2r1ad3LaVVmnStGvQ=

BIBLIOGRAPHY
[KMV00] N. Koblitz, A. Menezes, and S. Vanstone. “The State

of Elliptic Curve Cryptography”. In: Towards a Quarter-
Century of Public Key Cryptography: A Special Issue of DE-
SIGNS, CODES AND CRYPTOGRAPHY An International
Journal. Volume 19, No. 2/3. Springer, 2000, pp. 103–123.

[KG] C.Komlo and I. Goldberg. FROST: Flexible Round-Optimized
Schnorr Threshold Signatures. IACR Cryptology ePrint
Archive, Report 2020/852.

[Len87] H. W. Lenstra. “Factoring Integers with Elliptic Curves”.
In: Annals of Mathematics. Vol. 126. Princeton Univer-
sity, 1987, pp. 649–673. url: https://www.jstor.org/
stable/1971363 (visited on 09/24/2021).

[LLL+82] H.W. Lenstra, A. K. Lenstra, L. Lovfiasz, et al. “Factoring
polynomials with rational coeficients”. In: (1982).

[LL97] C.H. Lim and P. J. Lee. “A key recovery attack on discrete
log-based schemes using a prime order subgroup”. In:
CRYPTO. Springer, 1997, pp. 249–263.

[LCL13] M. Liu, J. Chen, and H. Li. “Partially Known Nonces and
Fault Injection Attacks on SM2 Signature Algorithm”.
In: Information Security and Cryptology - 9th International
Conference, Inscrypt 2013, Guangzhou, China, November
27-30, 2013, Revised Selected Papers. 2013, pp. 343–358.

[Loc+15] M. Lochter, J. Merkle, J.-M. Schmidt, and T. Schutze.
Requirements for Elliptic Curves for High-Assurance Ap-
plications. https : / / csrc . nist . gov / csrc / media /
events/workshop-on-elliptic-curve-cryptography-
standards/documents/presentations/session4-merkle-
johannes.pdf. 2015. (Visited on 09/24/2021).

[Loc+] M. Lochter, J. Merkle, J.-M. Schmidt, and T. Schutze. Re-
quirements for Standard Elliptic Curves. IACR Cryptology
ePrint Archive, Report 2014/832.

[Mar+13] S. Martinez, D. Sadornil, J. Tena, R. Tomas, and M. Valls.
“On Edwards curves and ZVP-attacks”. In: Appl. Algebra
Eng. Commun. Comput. 24.6 (2013), pp. 507–517.

[MP20] J. Massimo and K. G. Paterson. “A Performant, Misuse-
Resistant API for Primality Testing”. In: 27th ACM CCS.
2020, pp. 195–210.

188

https://www.jstor.org/stable/1971363
https://www.jstor.org/stable/1971363
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session4-merkle-johannes.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session4-merkle-johannes.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session4-merkle-johannes.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session4-merkle-johannes.pdf

BIBLIOGRAPHY
[Mav+17] V. Mavroudis, A. Cerulli, P. Svenda, D. Cvrcek, D. Klinec,

and G. Danezis. “A touch of evil: High-assurance crypto-
graphic hardware from untrusted components”. In: 24th
ACM CCS. 2017, pp. 1583–1600.

[MS20] V.Mavroudis andP. Svenda. “JCMathLib:WrapperCryp-
tographic Library for Transparent and Certifiable Java-
Card Applets”. In: IEEE European Symposium on Security
and Privacy Workshops (2020), pp. 89–96.

[Max15] G. Maxwell. The most repeated R value on the blockchain.
https://bitcointalk.org/index.php?topic=1118704.
0. 2015. (Visited on 09/24/2021).

[Max+19] G. Maxwell, A. Poelstra, Y. Seurin, and P.Wuille. “Simple
Schnorr multi-signatures with applications to Bitcoin”.
In:Designs, Codes and Cryptography 87.9 (2019), pp. 2139–
2164.

[Mel07] N. Meloni. “New Point Addition Formulae for ECC Ap-
plications”. In:Arithmetic of Finite Fields, First International
Workshop, (WAIFI). Vol. 4547. LectureNotes in Computer
Science. Springer, 2007, pp. 189–201.

[MOV93] A. J. Menezes, T. Okamoto, and S. A. Vanstone. “Reduc-
ing elliptic curve logarithms to logarithms in a finite
field”. In: IEEE Transactions on information Theory 39.5
(1993), pp. 1639–1646.

[ML15] A. Miele and A. K. Lenstra. “Efficient ephemeral elliptic
curve cryptographic keys”. In: International Conference on
Information Security. Springer. 2015, pp. 524–547.

[Mil75] G. L.Miller. “Riemann’s Hypothesis and Tests for Primal-
ity”. In: Proceedings of the Seventh Annual ACMSymposium
on Theory of Computing. STOC ’75. 1975, pp. 234–239.

[Mil85] V. S. Miller. “Use of Elliptic Curves in Cryptography”. In:
CRYPTO. Vol. 218. Lecture Notes in Computer Science.
Springer, 1985, pp. 417–426.

[MIR18] MIRACLUKLtd.Multiprecision Integer and Rational Arith-
metic Cryptographic Library. https://github.com/miracl/
MIRACL. 2018.

[MNT01] A. Miyaji, M. Nakabayashi, and S. Takano. “New Explicit
Conditions of Elliptic Curve Traces for FR-Reduction”.
In: IEICE Transactions on Fundamentals of Electronics, Com-

189

https://bitcointalk.org/index.php?topic=1118704.0
https://bitcointalk.org/index.php?topic=1118704.0
https://github.com/miracl/MIRACL
https://github.com/miracl/MIRACL

BIBLIOGRAPHY
munications and Computer Sciences 84 (2001), pp. 1234–
1243.

[Mog+20] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger.
“TPM-FAIL:TPM meets Timing and Lattice Attacks”. In:
The 29th USENIX Security Symposium. 2020, pp. 2057–
2073.

[Mon80] L. Monier. “Evaluation and comparison of two efficient
probabilistic primality testing algorithms”. In: Theoretical
Computer Science 12.1 (1980), pp. 97–108.

[Mon87] P. L. Montgomery. “Speeding the Pollard and elliptic
curve methods of factorization”. In: Mathematics of Com-
putation 48.177 (1987), pp. 243–264.

[Mor+15] H. Morita, J. C. Schuldt, T. Matsuda, G. Hanaoka, and T.
Iwata. “On the security of the schnorr signature scheme
and DSA against related-key attacks”. In: ICISC 2015.
Springer. 2015, pp. 20–35.

[Mul+13] E. D. Mulder, M. Hutter, M. E. Marson, and P. Pearson.
“Using Bleichenbacher’s Solution to the Hidden Number
Problem to Attack Nonce Leaks in 384-Bit ECDSA”. In:
Cryptographic Hardware and Embedded Systems (CHES).
2013, pp. 435–452.

[Mur+12] C. Murdica, S. Guilley, J. Danger, P. Hoogvorst, and D.
Naccache. “Same Values Power Analysis Using Special
Points on Elliptic Curves”. In: Constructive Side-Channel
Analysis and Secure Design (COSADE) - Third International
Workshop. Vol. 7275. Lecture Notes in Computer Science.
Springer, 2012, pp. 183–198.

[Nak08] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash sys-
tem”. In: Decentralized Business Review (2008), p. 21260.

[Nem+17] M. Nemec, M. Sys, P. Svenda, D. Klinec, and V. Matyas.
“The Return of Coppersmith’s Attack: Practical Factor-
ization of Widely Used RSA Moduli”. In: 24th ACM CCS.
2017, pp. 1631–1648.

[NS02] P. Q. Nguyen and I. E. Shparlinski. “The Insecurity of
the Digital Signature Algorithm with Partially Known
Nonces”. In: J. Cryptology 15.3 (2002), pp. 151–176.

190

BIBLIOGRAPHY
[NS03] P. Q. Nguyen and I. E. Shparlinski. “The Insecurity of the

Elliptic Curve Digital Signature Algorithmwith Partially
KnownNonces”. In:Designs, Codes and Cryptography 30.2
(2003), pp. 201–217.

[NRS] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple Two-
Round Schnorr Multi-Signatures. IACR Cryptology ePrint
Archive, Report 2020/1261.

[Nic+20] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. “Musig-DN:
Schnorr multi-signatures with verifiably deterministic
nonces”. In: 27th ACM CCS. 2020, pp. 1717–1731.

[NJP18] Y. Nir, S. Josefsson, and M. Pegourie-Gonnard. Elliptic
Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS) Versions 1.2 and Earlier. RFC 8422. RFC
Editor, 2018, pp. 1–34. url: https://tools.ietf.org/
html/rfc8422.

[NIST06] National Institute for Standards and Technology. Special
Publication 800-89: Recommendation for Obtaining Assur-
ances for Digital Signature Applications. Standard. 2006.

[NIST00] National Institute of Standards and Technology. FIPS
Publication 186-2. 2000. url: https://csrc.nist.gov/
publications/detail/fips/186/2/archive/2000-01-
27.

[NIST07] National Institute of Standards and Technology. Security
Requirements for Cryptographic Modules. FIPS 140-2. 2007.

[NIST13] National Institute for Standards and Technology. FED-
ERAL INFORMATIONPROCESSINGSTANDARDSPUB-
LICATION 186-4 Digital Signature Standard (DSS). Stan-
dard. 2013.

[Noe] S. Noether. Ring Signature Confidential Transactions for
Monero. IACRCryptology ePrintArchive, Report 2015/1098.

[Ora19] Oracle. Java Card API 3.0.5, Classic Edition. 2019. url:
https://docs.oracle.com/javacard/3.0.5/api/
index.html (visited on 09/24/2021).

[Orm98] H. Orman. The OAKLEY Key Determination Protocol. RFC
2412. Nov. 1998. url: https://rfc-editor.org/rfc/
rfc2412.txt.

191

https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc8422
https://csrc.nist.gov/publications/detail/fips/186/2/archive/2000-01-27
https://csrc.nist.gov/publications/detail/fips/186/2/archive/2000-01-27
https://csrc.nist.gov/publications/detail/fips/186/2/archive/2000-01-27
https://docs.oracle.com/javacard/3.0.5/api/index.html
https://docs.oracle.com/javacard/3.0.5/api/index.html
https://rfc-editor.org/rfc/rfc2412.txt
https://rfc-editor.org/rfc/rfc2412.txt

BIBLIOGRAPHY
[Per+] G. C. C. F. Pereira, M. A. S. Jr, M. Naehrig, and P. S. L. M.

Barreto. A Family of Implementation-Friendly BN Elliptic
Curves. Cryptology ePrint Archive, Report 2010/429.

[Poe18] A. Poelstra.Mimblewimble and Scriptless Scripts. 2018. url:
https://diyhpl.us/wiki/transcripts/realworldcrypto/
2018/mimblewimble-and-scriptless-scripts/ (vis-
ited on 09/24/2021).

[PH78] S. Pohlig and M. Hellman. “An Improved Algorithm
for Computing Logarithms over GF(p) and Its Crypto-
graphic Significance”. In: IEEE Transactions on Information
Theory 24.1 (1978), pp. 106–110.

[PS00] D. Pointcheval and J. Stern. “Security arguments for dig-
ital signatures and blind signatures”. In: Journal of cryp-
tology 13.3 (2000), pp. 361–396.

[PSY15] J. van de Pol, N. P. Smart, and Y. Yarom. “Just a Little Bit
More”. In: Topics in Cryptology - CT-RSA 2015, The Cryp-
tographer’s Track at the RSA Conference 2015, San Francisco,
CA, USA, April 20-24, 2015. Proceedings. 2015, pp. 3–21.

[PHB02] T. Polk, R. Housley, and L. Bassham. Algorithms and Iden-
tifiers for the Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile. RFC
3279. RFC Editor, 2002, pp. 1–27. url: https://tools.
ietf.org/html/rfc3279.

[Pol74] J. M. Pollard. “Theorems on factorization and primal-
ity testing”. In: Mathematical Proceedings of the Cambridge
Philosophical Society 76.3 (1974), pp. 521–528.

[Pol75] J. M. Pollard. “A Monte Carlo method for factorization”.
In: BIT Numerical Mathematics. Vol. 15. Springer-Verlag,
1975, pp. 331–334.

[Pol78] J. M. Pollard. “Monte Carlo methods for index compu-
tation (mod p)”. In: Mathematics of Computation 32.143
(1978), pp. 918–924.

[Pol93] J. M. Pollard. “Factoring with cubic integers”. In: The
development of the number field sieve. Springer-Verlag, 1993,
pp. 4–10.

[Pom85] C. Pomerance. “The Quadratic Sieve Factoring Algo-
rithm”. In: EUROCRYPT. Springer-Verlag, 1985, pp. 169–
182.

192

https://diyhpl.us/wiki/transcripts/realworldcrypto/2018/mimblewimble-and-scriptless-scripts/
https://diyhpl.us/wiki/transcripts/realworldcrypto/2018/mimblewimble-and-scriptless-scripts/
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279

BIBLIOGRAPHY
[PLK06] V. Popov, S. Leontiev, and I. Kurepkin. Additional Cryp-

tographic Algorithms for Use with GOST 28147-89, GOST
R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94
Algorithms. 2006. url: https://rfc-editor.org/rfc/
rfc4357.txt.

[Por13] T. Pornin. Deterministic Usage of the Digital Signature Algo-
rithm (DSA) and Elliptic Curve Digital Signature Algorithm
(ECDSA). RFC 6979. RFC Editor, 2013, pp. 1–79. url:
https://tools.ietf.org/html/rfc6979.

[Por19] T. Pornin. https://crypto.stackexchange.com/questions/
60420/what-does-the-special-form-of-the-base-
point-of-secp256k1-allow. 2019. (Visited on 09/24/2021).

[Qui+20] E. P. Quiroz, A. Cuno, W. R. Lovon, and E. Cruzado.
“ECC usage on X. 509 digital certificates”. In: IEEE Engi-
neering International Research Conference (EIRCON). 2020,
pp. 1–4.

[Rab80] M. O. Rabin. “Probabilistic algorithm for testing primal-
ity”. In: Journal of Number Theory 12 (1 1980), pp. 128–
138.

[RCB16] J. Renes, C. Costello, and L. Batina. “Complete Addition
Formulas for Prime Order Elliptic Curves”. In: EURO-
CRYPT, Proceedings, Part I. 2016, pp. 403–428.

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446. RFC Editor, 2018, pp. 1–160. url:
https://tools.ietf.org/html/rfc8446.

[Roe+17] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter.
“Quantum resource estimates for computing elliptic curve
discrete logarithms”. In: International Conference on the
Theory and Application of Cryptology and Information Secu-
rity. Springer. 2017, pp. 241–270.

[RS07] K. Rubin andA. Silverberg. “Choosing the correct elliptic
curve in the CMmethod”. In:Mathematics of Computation.
Vol. 79. AMS, 2007, pp. 545–561.

[Rya19a] K. Ryan. “Hardware-Backed Heist: Extracting ECDSA
Keys from Qualcomm’s TrustZone”. In: 26th ACM CCS.
2019, pp. 181–194.

193

https://rfc-editor.org/rfc/rfc4357.txt
https://rfc-editor.org/rfc/rfc4357.txt
https://tools.ietf.org/html/rfc6979
https://crypto.stackexchange.com/questions/60420/what-does-the-special-form-of-the-base-point-of-secp256k1-allow
https://crypto.stackexchange.com/questions/60420/what-does-the-special-form-of-the-base-point-of-secp256k1-allow
https://crypto.stackexchange.com/questions/60420/what-does-the-special-form-of-the-base-point-of-secp256k1-allow
https://tools.ietf.org/html/rfc8446

BIBLIOGRAPHY
[Rya19b] K. Ryan. “Return of the Hidden Number Problem. A

Widespread and Novel Key Extraction Attack on ECDSA
and DSA”. In: IACR Transactions on Cryptographic Hard-
ware and Embedded Systems (CHES) (2019), pp. 146–168.

[Sas+14] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E.
Tromer, and M. Virza. “Zerocash: Decentralized anony-
mous payments from bitcoin”. In: IEEE Symposium on
Security and Privacy. 2014, pp. 459–474.

[SA+98] T. Satoh, K. Araki, et al. “Fermat quotients and the poly-
nomial time discrete log algorithm for anomalous ellip-
tic curves”. In: Rikkyo Daigaku sugaku zasshi 47.1 (1998),
pp. 81–92.

[Sch15] M. Schmid. ECDSA-application and implementation failures.
2015.

[Sch13] B. Schneier. The NSA Is Breaking Most Encryption on the
Internet. 2013. url: https://www.schneier.com/blog/
archives/2013/09/the_nsa_is_brea.html#c1675929
(visited on 09/24/2021).

[Sch91a] C. P. Schnorr.Method for identifying subscribers and for gen-
erating and verifying electronic signatures in a data exchange
system. US Patent 4,995,082. 1991.

[Sch91b] C. P. Schnorr. “Efficient signature generation by smart
cards”. In: Journal of Cryptology 4.3 (1991), pp. 161–174.

[Sch01] C. P. Schnorr. “Security of blind discrete log signatures
against interactive attacks”. In: International Conference on
Information and Communications Security. Springer. 2001,
pp. 1–12.

[Sch89] C. Schnorr. “Efficient Identification and Signatures for
Smart Cards”. In: CRYPTO. Springer, 1989, pp. 239–252.

[Sch95] R. Schoof. “Counting points on elliptic curves over fi-
nite fields”. In: Journal de Théorie des Nombres de Bordeaux
(1995), pp. 219–254.

[Sco99] M. Scott. Re: NIST annouces set of Elliptic Curves. 1999. url:
%7Bhttps://web.archive.org/web/20160313065951/
https://groups.google.com/forum/message/raw?
msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ%7D (vis-
ited on 09/24/2021).

194

https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html#c1675929
https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html#c1675929
%7Bhttps://web.archive.org/web/20160313065951/https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ%7D
%7Bhttps://web.archive.org/web/20160313065951/https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ%7D
%7Bhttps://web.archive.org/web/20160313065951/https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ%7D

BIBLIOGRAPHY
[Sco15] M. Scott. A new curve. https : / / moderncrypto . org /

mail-archive/curves/2015/000449.html. 2015. (Vis-
ited on 09/24/2021).

[Sed20] V. Sedlacek. Examining and improving the security of elliptic
curve cryptography [online]. Advanced Master’s thesis.
2020. url: %5Curl%7Bhttps://is.muni.cz/th/vzvjz/
%7D (visited on 09/24/2021).

[Sed+21] V. Sedlacek, J.-J. Chi-Dominguez, J. Jancar, and B. B.
Brumley. “A formula for disaster: a unified approach
to elliptic curve special-point-based attacks”. In: ASI-
ACRYPT. Lecture Notes in Computer Science. In prepa-
ration. Springer, 2021.

[SJS20] V. Sedlacek, J. Jancar, and P. Svenda. “Fooling primality
tests on smartcards”. In: 25th European Symposium on
Research in Computer Security (ESORICS). Springer, 2020.

[Sed+19] V. Sedlacek, D. Klinec, M. Sys, P. Svenda, and V. Matyas.
“I Want to Break Square-free: The 4p− 1 Factorization
Method and Its RSA Backdoor Viability”. In: Proceed-
ings of the 16th International Joint Conference on e-Business
and Telecommunications (ICETE)- Volume 2: SECRYPT, IN-
STICC. SciTePress, 2019, pp. 25–36.

[Sem96] I. Semaev. “On computing logarithms on elliptic curves”.
In:DiscreteMathematics andApplications 6.1 (1996), pp. 69–
76.

[Sem98] I. Semaev. “Evaluation of discrete logarithms in a group
of p-torsion points of an elliptic curve in characteristic
p”. In:Mathematics of Computation 67.221 (1998), pp. 353–
356.

[Sha79] A. Shamir. “How to share a secret”. In: Communications
of the ACM 22.11 (1979), pp. 612–613.

[SSL14] S. Shen, S. Shen, and X. Lee. SM2 Digital Signature Algo-
rithm. Internet-Draft. Work in Progress. 2014. url: https:
//datatracker.ietf.org/doc/html/draft-shen-sm2-
ecdsa-02.

[Shi] M. Shirase. Condition on composite numbers easily factored
with elliptic curvemethod. IACRCryptology ePrintArchive,
Report 2017/403.

195

https://moderncrypto.org/mail-archive/curves/2015/000449.html
https://moderncrypto.org/mail-archive/curves/2015/000449.html
%5Curl%7Bhttps://is.muni.cz/th/vzvjz/%7D
%5Curl%7Bhttps://is.muni.cz/th/vzvjz/%7D
https://datatracker.ietf.org/doc/html/draft-shen-sm2-ecdsa-02
https://datatracker.ietf.org/doc/html/draft-shen-sm2-ecdsa-02
https://datatracker.ietf.org/doc/html/draft-shen-sm2-ecdsa-02

BIBLIOGRAPHY
[Sma99] N. P. Smart. “The discrete logarithm problem on elliptic

curves of trace one”. In: Journal of cryptology 12.3 (1999),
pp. 193–196.

[Sma03] N. P. Smart. “An Analysis of Goubin’s Refined Power
Analysis Attack”. In: Cryptographic Hardware and Embed-
ded Systems (CHES). Vol. 2779. Lecture Notes in Com-
puter Science. Springer, 2003, pp. 281–290.

[Sol11] J. A. Solinas. “Generalized Mersenne Prime”. In: Ency-
clopedia of Cryptography and Security. Ed. by H. C. A. van
Tilborg and S. Jajodia. Springer US, 2011.

[SG09] D. Stebila and J. Green. “Elliptic curve algorithm inte-
gration in the secure shell transport layer”. In: RFC 5656
(2009).

[SM16] R. Susella and S. Montrasio. “A Compact and Exception-
Free Ladder for All ShortWeierstrass Elliptic Curves”. In:
Smart Card Research and Advanced Applications (CARDIS),
Revised Selected Papers. 2016, pp. 156–173.

[Sut11] A. V. Sutherland. “Computing Hilbert class polynomials
with the Chinese remainder theorem”. In:Mathematics
of Computation. Vol. 80. AMS, 2011, pp. 501–538.

[Sve19] P. Svenda. JCAlgTest: Detailed analysis of cryptographic
smart cards runningwith JavaCard platform. 2019. url: https:
//www.fi.muni.cz/~xsvenda/jcalgtest/ (visited on
09/24/2021).

[Sve+16] P. Svenda, M. Nemec, P. Sekan, R. Kvasnovsky, D. For-
manek, D. Komarek, and V. Matyas. “The Million-Key
Question – Investigating theOrigins of RSAPublic Keys”.
In: The 25th USENIX Security Symposium. 2016, pp. 893–
910.

[Syt+16] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic,
L. Gasser, N. Gailly, I. Khoffi, and B. Ford. “Keeping
authorities "honest or bust" with decentralized witness
cosigning”. In: IEEE Symposium on Security and Privacy.
2016, pp. 526–545.

[TT19] A. Takahashi and M. Tibouchi. “Degenerate fault attacks
on elliptic curve parameters in OpenSSL”. In: IEEE Eu-
ropean Symposium on Security and Privacy. 2019, pp. 371–
386.

196

https://www.fi.muni.cz/~xsvenda/jcalgtest/
https://www.fi.muni.cz/~xsvenda/jcalgtest/

BIBLIOGRAPHY
[SAGE19] The Sage Developers. SageMath, the Sage Mathematics

Software System (Version 8.9). 2019. url: https://www.
sagemath.org.

[Tra19] Trail of Bits. ECDSA: Handle with Care. 2019. url: https:
//blog.trailofbits.com/2020/06/11/ecdsa-handle-
with-care/ (visited on 09/24/2021).

[Tuv+18] N. Tuveri, S. ul Hassan, C. PereidaGarcia, and B. B. Brum-
ley. “Side-Channel Analysis of SM2: A Late-Stage Fea-
turization Case Study”. In: Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC). ACM,
2018, pp. 147–160.

[Val+18] L. Valenta, N. Sullivan, A. Sanso, and N. Heninger. “In
Search of CurveSwap: Measuring Elliptic Curve Imple-
mentations in the Wild”. In: IEEE Symposium on Security
and Privacy. 2018, pp. 384–398.

[Wag02] D. Wagner. “A generalized birthday problem”. In: An-
nual International Cryptology Conference. Springer. 2002,
pp. 288–304.

[Was08] L. C.Washington.Elliptic Curves: Number Theory and Cryp-
tography, Second Edition. 2nd ed. Chapman & Hall/CRC,
2008.

[Weg96] P. Wegner. “Interoperability”. In: ACM Computing Sur-
veys (CSUR) 28.1 (1996), pp. 285–287.

[Wei+20] S. Weiser, D. Schrammel, L. Bodner, and R. Spreitzer.
“Big Numbers - Big Troubles: Systematically Analyzing
Nonce Leakage in (EC)DSA Implementations”. In: The
29th USENIX Security Symposium. 2020, pp. 1767–1784.

[Wil82] H. C. Williams. “A p + 1 Method of Factoring”. In:Math-
ematics of Computation. Vol. 39. AMS, 1982, pp. 225–234.

[Wir00] Wireless Application Protocol Forum.Wireless Applica-
tion Protocol Wireless Transport Layer Security Specification.
https : / / web . archive . org / web / 20170829023257 /
https://www.wapforum.org/tech/documents/WAP-
199-WTLS-20000218-a.pdf. 2000.

[Wis] WiseKey. Secure Microcontrollers. url: https : / / www .
wisekey.com/vaultic/secure-microcontrollers/ (vis-
ited on 09/24/2021).

197

https://www.sagemath.org
https://www.sagemath.org
https://blog.trailofbits.com/2020/06/11/ecdsa-handle-with-care/
https://blog.trailofbits.com/2020/06/11/ecdsa-handle-with-care/
https://blog.trailofbits.com/2020/06/11/ecdsa-handle-with-care/
https://web.archive.org/web/20170829023257/https://www.wapforum.org/tech/documents/WAP-199-WTLS-20000218-a.pdf
https://web.archive.org/web/20170829023257/https://www.wapforum.org/tech/documents/WAP-199-WTLS-20000218-a.pdf
https://web.archive.org/web/20170829023257/https://www.wapforum.org/tech/documents/WAP-199-WTLS-20000218-a.pdf
https://www.wisekey.com/vaultic/secure-microcontrollers/
https://www.wisekey.com/vaultic/secure-microcontrollers/

BIBLIOGRAPHY
[Woo+14] G. Wood et al. “Ethereum: A secure decentralised gen-

eralised transaction ledger”. In: Ethereum project yellow
paper 151 (2014), pp. 1–32.

[WNT20a] P. Wuille, J. Nick, and A. Towns. Schnorr signatures for
secp256k1. 2020. url: https://github.com/bitcoin/
bips/blob/master/bip-0340.mediawiki (visited on
09/24/2021).

[WNT20b] P. Wuille, J. Nick, and A. Towns. Taproot: SegWit Ver-
sion 1 Spending Rules. 2020. url: https://github.com/
bitcoin/bips/blob/master/bip-0341.mediawiki (vis-
ited on 09/24/2021).

[WNT20c] P. Wuille, J. Nick, and A. Towns. Validation of Taproot
scripts. 2020. url: https://github.com/bitcoin/bips/
blob/master/bip-0342.mediawiki (visited on 09/24/2021).

[YY97] A. L. Young and M. Yung. “Kleptography: Using Cryp-
tographyAgainst Cryptography”. In:EUROCRYPT. 1997,
pp. 62–74.

[ZDN19] ZDNet.Minerva attack can recover private keys from smart
cards, cryptographic libraries. 2019. url: https : / / www .
zdnet.com/article/minerva-attack-can-recover-
private - keys - from - smart - cards - cryptographic -
libraries/ (visited on 09/24/2021).

[ZLL12] F. Zhang, Q. Lin, and S. Liu. “Zero-Value Point Attacks
on Kummer-Based Cryptosystem”. In: Applied Cryptog-
raphy and Network Security (ACNS)- 10th International
Conference. Vol. 7341. Lecture Notes in Computer Science.
Springer, 2012, pp. 293–310.

198

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki
https://www.zdnet.com/article/minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/
https://www.zdnet.com/article/minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/
https://www.zdnet.com/article/minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/
https://www.zdnet.com/article/minerva-attack-can-recover-private-keys-from-smart-cards-cryptographic-libraries/

Appendices

A Author’s publications

The author’s publications relevant to the thesis follow.
• [Sed+19]: V. Sedlacek, D. Klinec, M. Sys, P. Svenda, and V.

Matyas. “I Want to Break Square-free: The 4p− 1 Factorization
Method and Its RSA Backdoor Viability”. In: Proceedings of the
16th International Joint Conference on e-Business and Telecommu-
nications (ICETE)- Volume 2: SECRYPT, INSTICC. SciTePress,
2019, pp. 25–36.
Contribution: 43% (5 authors). The author was responsible for
the theoretical analysis and improvements as well as the design
of the models and experiments.

• [SJS20]: V. Sedlacek, J. Jancar, and P. Svenda. “Fooling primality
tests on smartcards”. In: 25th European Symposium on Research
in Computer Security (ESORICS). Springer, 2020.
Contribution: 43% (3 authors). The author was responsible
for the methodology and experiments design, as well as for
generating the testing parameters.

• [Jan+20]: J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. “Min-
erva: The curse of ECDSA nonces; Systematic analysis of lattice
attacks on noisy leakage of bit-length of ECDSA nonces”. In:
Cryptographic Hardware and Embedded Systems (CHES). Ruhr-
University of Bochum, 2020.
Best Paper Award received. Contribution: 30% (4 authors). The
authorwas responsible for the formalization of the vulnerability
as well as for the theoretical improvements of the attack.

• [Sed+21]: V. Sedlacek, J.-J. Chi-Dominguez, J. Jancar, and B. B.
Brumley. “A formula for disaster: a unified approach to elliptic
curve special-point-based attacks”. In: ASIACRYPT. Lecture
Notes in Computer Science. In preparation. Springer, 2021.
Contribution: 40% (4 authors). The author was responsible for
the formalization, theoretical attacks, some of the experiments
and the exceptional point classification.

199

Publications waiting to be reviewed

• Resilience via Practical Interoperability of Multiparty Schnorr Signa-
ture Schemes, submitted to ACNS 2022.
Contribution: 30% (3 authors). The author was responsible for
the formalization and security analysis.

• DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves
via Traits, submitted to PKC 2022.
Contribution: 40% (3 authors). The author was responsible for
the methodology, foundations of the framework and all the
initial implementations.

200

B Fooling primality tests on smartcards

B.1 The Miller-Rabin primality test

The MR test [Mil75; Rab80] was one of the first practical primality
tests and to this day remains very popular because of its simplicity and
efficiency. In particular, we believe that if a low-resource device such
as a smartcard (shortened as card for the rest of text) uses a primality
test, MR is the most probable choice (perhaps followed by the Lucas
test, which does not seem to be that widespread, and a Ballie-PSW
test, which is a combination of these two), as most other tests are too
resource-heavy.

However, the MR test cannot be used to prove that a number is
prime; only compositeness can be proven. It relies on the fact that there
exist no nontrivial roots of unity modulo a prime. More precisely, let n
be the number we want to test for primality and let n− 1 = 2sd, where
d is odd. If n is prime, Fermat’s Little Theorem implies that for any
1 ≤ a < n, we have either ad ≡ 1 (mod n) or a2id ≡ −1 (mod n) for
some 0≤ i < s. By taking the contrapositive, if there is some 1≤ a < n
such that none of these congruences hold, then n is composite (and
a is called a witness of compositeness for n). However, if at least one of
the congruences holds, then we say that n is pseudoprime with respect to
base a (or that a is a non-witness of compositeness for n, or also a liar for
n). There is the Monier-Rabin bound [Mon80] for the number S(n)
of such bases (that are less than n): S(n) ≤ ϕ(n)

4 , where ϕ is the Euler
totient function.

Since ϕ(n) ≈ n for large n, we get a practical upper bound for the
number of inputs that pass the test for a given a. Thus if we repeat the
test t times for random a’s, the probability of fooling the MR test will
be at most (1

4)
t.

The fact that the a’s were picked randomly is crucial for the guar-
antees above. If the bases are fixed and known in advance (as in
[Alb+18]), it is possible to construct a pseudoprime (seeAppendix B.2),
i.e., a number that passes the test with respect to these bases.

201

B.2 Constructing pseudoprimes

Wewill briefly describe how to generate pseudoprimes having 3 prime
factors with respect to given distinct prime bases a1, . . . , at according to
[Alb+18] and [Arn95a], where more details can be found. The whole
method can be summarised as follows:

1. Choose t odd prime bases a1 < · · · < at (we always choose the
first t smallest primes) and let A := {a1, . . . , at}.

2. Let k1 = 1 and choose distinct coprime k2,k3 ∈ Z, k2,k3 > at
(see Table 4.1).

3. For each a ∈ A, compute the set Sa of primes p reduced modulo
4a s.t.

(
a
p

)
= −1. This can be done constructively by looping

over values x ∈ {1,2, . . . ,4a− 1} and adding x to Sa iff(x
a

)
(−1)(x−1)(a−1)/4 = −1

(using quadratic reciprocity).

4. For each a ∈ A, compute the intersection Ra :=
⋂3

j=1 k−1
j (Sa +

k j − 1), where k−1
j (Sa + k j − 1) denotes the set {k−1

j (s + k j − 1)
mod 4a | s ∈ Sa} for each a ∈ A. If any are empty, go back to
step 2.

5. For each a ∈ A, randomly pick an element ra ∈ Ra.
6. Using the CRT, find p1 such that

p1 ≡ k−1
3 (mod k2), p1 ≡ k−1

2 (mod k3) and p1 ≡ ra (mod 4a)
for all a ∈ A.

7. Compute p2 = k2(p1 − 1) + 1 and p3 = k3(p1 − 1) + 1. If all
p1, p2, p3 are primes, then p1p2p3 is pseudoprime with respect
to all bases a ∈ A. Otherwise, go back to step 4 (or even 2 or 1
after a certain amount of time has passed).

If we take a1 = 2 and enforce the condition p1 ≡ 3 (mod 8) (by
slightly tweaking some steps above), the constructed pseudoprimes
will meet the Monier-Rabin bound (maximizing the probability of

202

passing the test for a random base choice) and will also pass the MR
test for any composite base with no prime divisors greater than at
[Alb+18].

Carmichael numbers are composite n that divide an−1 − 1 for all
a ∈Z coprime to n. Equivalently, a composite integer n is a Carmichael
number if and only if n is square-free, and p− 1 | n− 1 for all prime
divisors p of n [Mon80]. The pseudoprimes generated in this way are
automatically Carmichael numbers [Alb+18] and we are using this
fact in Section 4.3.4.

B.3 Generated domain parameters

The domain parameters and scripts used to generate them and pro-
duce our results are available at https://crocs.fi.muni.cz/papers/
primality_esorics20.

B.4 Examples of attacks

ECDSA/ECDH: Composite n. This case uses the 10-factor n param-
eters as specified in Appendix B.3. Such a smooth order of the curve
allows for a direct application of the Pohlig-Hellman algorithm for
computing discrete logarithms to obtain the private key.

Our Sage [SAGE19] script (Listing B.1) recovered the private key
on a 256-bit curve in just about 7 seconds on an ordinary laptop. Com-
puting such a discrete logarithm on a standard 256-bit curve is cur-
rently computationally infeasible.
ECDSA/ECDH: Composite p. This case uses the 10-factor p param-
eters as specified in Appendix B.3. Such a curve with composite p
can be decomposed into ten much smaller curves modulo the prime
divisors of p. On these curves, it is trivial to compute the discrete
logarithm of the public key. The resulting discrete logarithm (and the
private key) is then recovered via the CRT.

Our Sage script (Listing B.2) recovered the private key on a 256-bit
curve in about 9 seconds on an ordinary laptop.

DSA/DH: Composite q In case of composite q in DSA/DH, the
Pohlig-Hellman algorithm for computing discrete logarithms applies

203

https://crocs.fi.muni.cz/papers/primality_esorics20
https://crocs.fi.muni.cz/papers/primality_esorics20

from sage.groups.generic import discrete_log_rho
p = 0x8b7dada7aa2173f4a3ed9139570386fd2b65eb9ed2232e749385df5532e8349d
k = GF(p)
a = k(0x1b27b49f431ab73930736bea17cee09d455a91997a986029807e399713a25ffd)
b = k(0x6a5d9b63f85d937c868241fb54b5a4671556d46fd92aca1e20b312970b4e759f)
gx = 0x39494395fa2fa85ef2e6d441493e70b1adedaaf74360b9a9cc038c9897fbb42e
gy = 0x4b065332f5369883087e3943518b2da10cf9aa5e28a08f74968206bc2cc9b33e
n = 27424609 * 33419179 * 37898257 * 39440263 * 49818481 * 52559371 \

* 53216161 * 59617639 * 61332769 * 90393689

e = EllipticCurve([a, b]); e.set_order(n)
g = e(gx, gy)

privkey = randrange(0, n); pubkey = privkey * g

dlogs = []; mods = []
for factor, power in factor(n):

mul = Integer(n/factor)
dlog = discrete_log_rho(mul * pubkey, mul * g, factor, operation="+")
dlogs.append(dlog); mods.append(factor)

result = CRT_list(dlogs, mods)
print(result == privkey)

Listing B.1: Simple key recovery via the Pohlig-Hellman algorithm

again. Our Sage script computed the private key of a public key using
the 1024 bit DSA/DH parameters given in Appendix B.3 in 35 minutes
on one Intel Xeon X7560 @ 2.26 GHz processor.

DSA/DH: Composite p. We have used the CADO-NFS [CADO17]
implementation of the Number Field Sieve, to demonstrate the ease
of computing the discrete logarithm of a public key using the 1024
bit DSA/DH parameters given in Appendix B.3. We computed the
discrete logarithm in the order q subgroup of Z∗p1

as it defined the
smallest group of only 336 bits.

The computation took 70 minutes to recover the private key on
three Intel Xeon X7560 @ 2.26 GHz processors (24 cores total), with
total CPU time of 22 hours. Furthermore, this computation is generic
for all public keys using the given domain parameters. The per-key
computation is trivial and takes a few minutes at most.

Only one computation of the discrete logarithm on prime 1024
bit DSA/DH parameters is publicly known [Fri+17]. It used the fact
that the prime was trapdoored and ran much faster than random

204

from sage.groups.generic import discrete_log
p = 28260319 * 30235481 * 39172037 * 39191063 * 41237249 * 47624921 \

* 51042223 * 71578097 * 77171399 * 107659879
a = 0x84a477c83f88e833a49b562869f1553a4abbf7ffe29893ca272bf85b300cfe43
b = 0x9567df38696eec2e80b4f43d056621c639938361b58260e12df91ac528c1ee2c
gx = 0x8e6da816bc1bd86cc7b9d393c08bcb9cdb44a016f44890419542ae43f34f9041
gy = 0x68e8c1d9e8ad5d256cfcf161c41090b5a7bbd3c7ca83f3cc185e289d8ce6ca0e
n = 0xacc602e17e38aa923887566d83b95ec21b72368cc6a8565bd907f71d4824e67d

e = EllipticCurve(Integers(p), [a, b])
g = e(gx, gy)

privkey = randrange(0, n); pubkey = privkey * g
pub_x, pub_y = pubkey.xy()
pub_x, pub_y = lift(pub_x), lift(pub_y)

dlogs = []; mods = []
for factor, power in factor(p):

kf = GF(factor)
ef = EllipticCurve([kf(a), kf(b)])
gf = ef(kf(gx), kf(gy))
pf = ef(kf(pub_x), kf(pub_y))
dlog = discrete_log(pf, gf, n, operation="+")
dlogs.append(dlog); mods.append(gf.order())

result = CRT_list(dlogs, mods) % n
print(result == privkey)

Listing B.2: Simple key recovery via decomposition into smaller curves

parameters. Even then, it took two months on a large computation
cluster, with a total CPU time of 385 CPU years.

205

C Minerva: The curse of ECDSA nonces

C.1 Additional figures

3570000 3600000 3630000 3660000 3690000 3720000 3750000 3780000 3810000
time (ns)

0

200

400

600

800

1000

1200

1400

co
un

t

all
256b
255b
254b
253b
252b
251b
250b
249b

Figure C.12: Histogram of signing duration for different number of leading
zeros of the random nonces on the secp256r1 curve using the
libgcrypt library.

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

no recentering

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
recentering

0

1

2

3

4

5

Figure C.13: Heatmap of success rate (out of 5 tries) when the true leading
zero bits are used as bounds, thus showing the real minimum of
the signatures required.

C.2 Impact of recentering with biased bounds

During our early experiments, we observed a counter-intuitive behav-
ior of the recentering technique. Figure C.16 illustrates the strange
behavior – the success rate decreases with the increasing number of
signatures that represents the amount of gained information. This
behavior occurs when the upper bounds n/2li for the nonces ki are too
conservative (too large upper bound, too small li), i.e., when number
of errors is lowered.

206

0 20 40 60 80 100
Index

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
er

ro
r i

nf
o

(b
its

)

card
sim
sw
tpm

Figure C.14: Average amount of erroneous information per index with d = 100,
when the geometric bounds are used with the four datasets. Here,
average erroneous information means the average of error
probability multiplied with the error depth (e.g. by how many bits
was the bound overstated) at each index.

500 2000 4000 6000 8000 10000

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

card

500 2000 4000 6000 8000 10000

60

80

100

120

140
sim

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

sw

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
tpm

20

30

40

50

60

Figure C.15: Heatmap of average number of errors for the various datasets,
when using geometric bounds.

We believe that the reason is a shift of the nonces caused by recen-
tering when using biased bounds. The bounded nonces bkicn < n/2li

are shifted towards the new bounds n/2li+1 for biased bounds. The
recentered nonces are bounded as follows: |ki − n/2li+1|n < n/2li+1.
This shift and the distribution of ki for i = 50, N = 5000 is illustrated
by Figure C.17. Note that ki represents the i-th nonce in the set of N
nonces sorted by their bit-length. The figure shows that the recenter-
ing acts as a shift of the nonces towards the bound n/2li+1 when a
conservative bound li is used.

207

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140

Di
m

en
sio

n
of

 m
at

rix
 (D

)

no recentering

500 2000 4000 6000 8000 10000
Number of signatures (N)

60

80

100

120

140
recentering

0

1

2

3

4

5

Figure C.16: Heatmap of success rate (out of 5 tries) for recentering with
biased bounds. Geometric bounds were used as if N = 4d, which
lead the bounds to be overly conservative for large N.

n/22n/23n/24n/25n/26n/27
0

100

200

300

400

500

600

700

biased recentering

unbiased bound
unbiased recentered bound
biased bound
biased recentered bound
raw data
unbiased recentered data
biased recentered data

Figure C.17: Distributions of the i = 50-th out of N = 5000 nonces, sorted by
bit-length, with both the biased bound li = 2 and unbiased bound
li = 6. The effect of biased recentering manifests as a shift of the
raw data to the right.

The overall conclusion is that recentering is usually beneficial, but
only if the bounds are reasonable estimates of the actual ones, as seems
to be the case for our geometric bounds.

208

D A unified approach to elliptic curve
special-point-based attacks

D.1 Example: ZVP attack on window NAF scalar multiplication

To demonstrate the ZVP attack on awindowNAF scalarmultiplication
algorithm (window size of 5), we used the pyecsca toolkit. We attack
NIST’s P-224 curve, which has no points suitable for RPA, so we use
ZVP as the basis. Figure D.18 shows the basic setup of the attack,
with zvp_p0 being a point which zeros out an intermediate value
when input into the add-2016-rcb formulas in projective coordinates,
regardless of the second input point.
x = Mod(0xd83d7049c30873afc4893bf229d1c1ccb9eefd30f62ec71504b65fdc, p)

y = Mod(0x27c28fb63cf78c503b76c40dd62e3e32461102cf09d138eafb49a025, p)

z = Mod(1, p)

zvp_p0 = Point(coords, X=x, Y=y, Z=z)

def zvp_c(c):

"""Compute [c^-1]P_0"""

return params.curve.affine_multiply(zvp_p0.to_affine(),

int(Mod(c, params.order).inverse())).to_model(coords, params.curve)

def query(pt: Point) -> Tuple[int, List[int]]:

"""Query the implementation and observe the ZVP side-channel,

i.e. at which iterations a zero in the intermediate value appeared.

Returns the total number of formula applications and indexes

where a zero in the intermediate value appeared."""

with local(DefaultContext()) as ctx:

mult.init(params, pt)

mult.multiply(scalar)

smult, subtree = ctx.actions.get_by_index([1])

iterations = []

for i, formula_action in enumerate(subtree):

for intermediate in formula_action.intermediates.values():

values = [j.value for j in intermediate]

if 0 in values:

iterations.append(i)

break

return len(subtree), iterations

def try_guess(guess) -> bool:

"""Test if we have the right private key."""

return params.curve.affine_multiply(g, guess) == pubkey

Figure D.18: Setup for the ZVP window NAF attack.

209

wnaf_multiples = [1, 3, 5, 7, 9, 11, 13, 15, -1, -3, -5, -7, -9, -11, -13, -15]

all_iters = {}

for multiple in wnaf_multiples:

rpa_point = zvp_c(multiple)

num_iters, iters = query(rpa_point)

all_iters[multiple] = (iters)

print(multiple, num_iters, iters)

full = [0 for _ in range(num_iters)]

for multiple, iters in all_iters.items():

for i in iters:

full[i] = multiple

full_wnaf = [e for i, e in enumerate(full) if (not full[i - 1] != 0) or i in (0, 1)]

full_wnaf[0] = 1

Figure D.19: ZVP attack demonstration on window NAF scalar multiplication.

D.2 Example: unrolled formula

To analyze the ZVP and EPA attacks, we developed tooling for “un-
rolling” EFD formulas. The tooling expresses all the intermediate val-
ues in the formula as polynomials in the input variables. Figure D.20
gives an excerpt of the unrolled add-2007-bl formula in projective
coordinates on short Weierstrass curves.

D.3 Example: output expressions

Appendix D.3 shows examples of unrolled Z3 values on short Weier-
strass curve with projective coordinates, which suggest the possible
use of xDCP for EPA.

Formula Expression
add-2002-bj Z3 = 2 ∗ Z23 ∗ Z13 ∗ (Y2 ∗ Z1 + Y1 ∗ Z2)3

add-1998-cmo-2 Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z12 − X1 ∗ Z22)
add-1998-cmo Z3 = Z2 ∗ Z1 ∗ (X2 ∗ Z1− X1 ∗ Z2)3

madd-1998-cmo Z3 = Z1 ∗ (X2 ∗ Z1− X1)3

mmadd-1998-cmo Z3 = (−1) ∗ (X1− X2)3

add-2007-bl Z3 = 22 ∗ Z23 ∗ Z13 ∗ (Y2 ∗ Z1 + Y1 ∗ Z2)3

add-2002-bj-2 Z3 = 2 ∗ Z23 ∗ Z13 ∗ (Y2 ∗ Z1 + Y1 ∗ Z2)3

Table D.3: Projective coordinate systems on short Weierstrass curves.

210

U1 = Z2 * X1

U2 = Z1 * X2

S1 = Z2 * Y1

S2 = Z1 * Y2

ZZ = Z2 * Z1

T = X2*Z1 + X1*Z2

TT = (X2*Z1 + X1*Z2)^2

M = Y2*Z1 + Y1*Z2

t0 = Z2^2 * Z1^2

t1 = a * Z2^2 * Z1^2

t2 = Z2 * Z1 * X2 * X1

t3 = X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2

R = a*Z1^2*Z2^2 + X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2

F = Z2 * Z1 * (Y2*Z1 + Y1*Z2)

L = Z2 * Z1 * (Y2*Z1 + Y1*Z2)^2

LL = Z2^2 * Z1^2 * (Y2*Z1 + Y1*Z2)^4

t4 = Y2^2*Z1^3*Z2 + 2*Y1*Y2*Z1^2*Z2^2 + Y1^2*Z1*Z2^3 + X2*Z1 + X1*Z2

t5 = (Y2^2*Z1^3*Z2 + 2*Y1*Y2*Z1^2*Z2^2 + Y1^2*Z1*Z2^3 + X2*Z1 + X1*Z2)^2

t6 = Z2 * Z1 * (Y2*Z1 + Y1*Z2)^2 * (Y2^2*Z1^3*Z2 + 2*Y1*Y2*Z1^2*Z2^2 +

Y1^2*Z1*Z2^3 + 2*X2*Z1 + 2*X1*Z2)

G = 2 * Z2 * Z1 * (Y2*Z1 + Y1*Z2)^2 * (X2*Z1 + X1*Z2)

t7 = (a*Z1^2*Z2^2 + X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2)^2

t8 = 2 * (a*Z1^2*Z2^2 + X2^2*Z1^2 + X1*X2*Z1*Z2 + X1^2*Z2^2)^2

W = 2 * (a^2*Z1^4*Z2^4 + 2*a*X2^2*Z1^4*Z2^2 + 2*a*X1*X2*Z1^3*Z2^3 +

2*a*X1^2*Z1^2*Z2^4 + X2^4*Z1^4 + 2*X1*X2^3*Z1^3*Z2 - X2*Y2^2*Z1^4*Z2 +

3*X1^2*X2^2*Z1^2*Z2^2 - 2*X2*Y1*Y2*Z1^3*Z2^2 - X1*Y2^2*Z1^3*Z2^2 +

2*X1^3*X2*Z1*Z2^3 - X2*Y1^2*Z1^2*Z2^3 - 2*X1*Y1*Y2*Z1^2*Z2^3 +

X1^4*Z2^4 - X1*Y1^2*Z1*Z2^4)

t9 = 2 * Z2 * Z1 * (Y2*Z1 + Y1*Z2) * (a^2*Z1^4*Z2^4 + 2*a*X2^2*Z1^4*Z2^2 +

2*a*X1*X2*Z1^3*Z2^3 + 2*a*X1^2*Z1^2*Z2^4 + X2^4*Z1^4 + 2*X1*X2^3*Z1^3*Z2 -

X2*Y2^2*Z1^4*Z2 + 3*X1^2*X2^2*Z1^2*Z2^2 - 2*X2*Y1*Y2*Z1^3*Z2^2 -

X1*Y2^2*Z1^3*Z2^2 + 2*X1^3*X2*Z1*Z2^3 - X2*Y1^2*Z1^2*Z2^3 -

2*X1*Y1*Y2*Z1^2*Z2^3 + X1^4*Z2^4 - X1*Y1^2*Z1*Z2^4)

X3 = 2^2 * Z2 * Z1 * (Y2*Z1 + Y1*Z2) * (a^2*Z1^4*Z2^4 + 2*a*X2^2*Z1^4*Z2^2 +

2*a*X1*X2*Z1^3*Z2^3 + 2*a*X1^2*Z1^2*Z2^4 + X2^4*Z1^4 + 2*X1*X2^3*Z1^3*Z2 -

X2*Y2^2*Z1^4*Z2 + 3*X1^2*X2^2*Z1^2*Z2^2 - 2*X2*Y1*Y2*Z1^3*Z2^2 -

X1*Y2^2*Z1^3*Z2^2 + 2*X1^3*X2*Z1*Z2^3 - X2*Y1^2*Z1^2*Z2^3 -

2*X1*Y1*Y2*Z1^2*Z2^3 + X1^4*Z2^4 - X1*Y1^2*Z1*Z2^4)

...

Figure D.20: An excerpt of an unrolled formula, add-2007-bl in projective
coordinates on short Weierstrass curves.

211

E Interoperable Schnorr multisignatures

E.1 Multi-signature distributed key generation

The following multi-signature distributed key generation is based on
the distributed key generation of Myst [Mav+17].

Smartcard i Central Party

(keygen-init,k)

xi←$ Zq

Xi := [xi]G
hi := H(Xi)

(keygen-init, hi)

~h := (h1, . . . , hk)

(keygen-reveal,~h)

(keygen-reveal, Xi)

~X := (X1, ..., Xk)

(keygen-finalize,~X)

if ∃j ∈ {1, . . . ,n} : H(Xj) 6= hj

then abort
fi

X :=
k

∑
j=1

Xj

(keygen-finalize, X)

Figure E.21: Multi-signature distributed key generation

212

F DiSSECT: Distinguisher of Standard &
Simulated Elliptic Curves via Traits

F.1 List of traits

Herewe list all traits used to analyze curves, including their inputs and
outputs, basic motivation and estimated time complexity expressed
using known operations or algorithms. We use β := log(n) for brevity.

a01
Input: Elliptic curve E/Fp and an integer r.
Output: Tuple (n1,n2) such that the group E(Fpr) is isomorphic to
Zn1 ×Zn2 and n1|n2 (in particular, n1 = 1 for cyclic groups).
Motivation: The group structure determines the complexity of all
general DLP attacks. Compared to the number of points (e.g.
n = n1n2), the output (n1,n2) is not an isogeny invariant.
Time complexity: Baby-step giant-step algorithm: O(

√
n).

a02
Input: Ordinary elliptic curve E/Fp.
Output: The factorization of D = t2 − 4p = v2dK, where dK is the
discriminant of the endomorphism algebra of E.
Motivation: A large square factor of D implies non-random curve
and an existence of multiple isogenies from the curve.
Time complexity: Factorization of a β-bit number.

a03
Input: Ordinary elliptic curve E/Fp and integer r.
Output: The factorization of the cardinality of the quadratic twist of
E(Fpr).
Motivation: A smooth cardinality of a quadratic twist might allow
attacks on some implementations.
Time complexity: Factorization of a β-bit number.

213

a04
Input: Elliptic curve E/Fp and integer k.
Output: The factorizations of kn + 1 , kn− 1, where n = #E(Fp).
Motivation: A generalization of [Che06].
Time complexity: Factorization of a β-bit number.

a05
Input: Elliptic curve E/Fp and prime l
Output: k1,k2,k2/k1, where k1,k2 are the smallest integers satisfying
E[l] ∩ E(Fpk1) 6= and E[l] ⊆ E(Fpk2).
Motivation: Low k1,k2 might lead to computable pairings.
Time complexity: Up to 20 scalar multiplications on a β-bit curve.

a06
Input: Ordinary elliptic curve E/Fp and integer r
Output: The factorization of Dr/D1 (which is a square), where
Dr = t2

r − 4pr and tr is the trace of Frobenius of E/Fpr .
Motivation: The prime factors of Dr/D1 determine for which l does
the l-isogeny crater of E grow in the r-th extension.
Time complexity: Factorization of a t/2-bit number.

a07
Input: Ordinary elliptic curve E/Fp.
Output: The embedding degree complement, i.e., φ(l)/e, where l is
the generator order and e is the multiplicative order of q (mod l).
Motivation: A low embedding degree might allow the MOV attack.
Time complexity: Computation of multiplicative order in a β-bit
prime field.

a08
Input: Ordinary elliptic curve E/Fp.
Output: Upper bound u [Dav80] and lower bound l [Col85] on the
class number of the endomorphism algebra of E given by
u = dlog(−dK)

√
−dk/πe and l = 1

7000 ∏p|dK∗(1−
b2√pc

p+1) ln(d) where
dK is the absolute discriminant and ∗ indicates that the largest prime
factor of dK is omitted from the product.

214

Motivation: The class number is a classical invariant determining
the number of curves sharing an endomorphism algebra.
Time complexity: Factorization of a β-bit number.

a12
Input: Elliptic curve E/Fp and prime l.
Output: φ(n)/m where m is the order of l in the multiplicative
group Z×n .
Motivation: A small m might have implications for scalar
multiplication.
Time complexity: Computation of multiplicative order in a β-bit
prime field.

a22
Input: Elliptic curve E/Fp and prime l.
Output: The factorization of the l-th division polynomial.
Motivation: The factorization determines the structure of l-torsion in
different extensions.
Time complexity: Factorization of a (l2 − 1)-degree polynomial over
a β-bit prime field.

a23
Input: Ordinary elliptic curve E/Fp and prime l.
Output: The depth of the l-volcano and the degree of the crater
subgraph (i.e., 2 is the degree of a circle crater, 1 for a segment and 0
for a point; more precisely: the degree is 1 + (dK

l).)
Motivation: The volcano structure determines Frobenius action and
transfers between levels is relevant for post-quantum cryptoanalysis.
Time complexity: Computing the Legendre symbol of a β-bit
number modulo a small prime.

a24
Input: Elliptic curve E/Fp and prime l.
Output: i1, i2, i2/i1 where i1, i2 are the smallest integers such that
there exists a Fpi1 -rational l-isogeny from E and there exist all l + 1
Fpi2 -rational l-isogenies.

215

Motivation: This determines l-isogeny volcano structure in different
extension fields.
Time complexity: Up to 20 scalar multiplications on a β-bit curve.

a25
Input: Elliptic curve E/Fp and integer r.
Output: A factorization of the trace of Frobenius of E/Fpr .
Motivation: This value, loosely speaking, measures the "extent of
supersingularity".
Time complexity: Factorization of a (r · β)-bit number.

a28
Input: Elliptic curve E/Fp and small prime l.
Output: A number of roots of Φl(j(E), x) where Φl is the l-th
modular polynomial.
Motivation: These roots correspond to l-isogenous curves.
Time complexity: Factorization of (l + 1)-degree polynomial over a
β-bit prime field.

a29
Input: Elliptic curve E/Fp : y2 = x3 + ax + b
Output: Torsion order of E′(Q) where E′ is is given by the same
equation y2 = x3 + ax + b.
Motivation: Inspired by the lifting of ECDLP to curve over Q.
Time complexity: Doud’s algorithm: O(β3).

i04
Input: Elliptic curve E/Fp and integer k.
Output: A number of points on E with the Hamming weight of the
x-coordinate equal to k.
Motivation: Inspired by [Bai+b].
Time complexity: Computing Binomial(β,k) Legendre symbols in a
β-bit prime field.

i06
Input: Elliptic curve E/Fp.
Output: The factorization of square-free parts of 4p− 1 and 4n− 1
where n is the order of the generator point of E

216

Motivation: Inspired by [Che02].
Time complexity: Factorization of a β-bit number.

i07
Input: Elliptic curve E/Fp.
Output: The distance of n to the nearest power of 2 and the nearest
multiple of 32 and 64.
Motivation: The first part is related to scalar multiplication bias
when not using rejection sampling, the second is inspired by the
paper [Wei+20].
Time complexity: Division in a β-bit prime field.

i08
Input: Elliptic curve E/Fp with generator G and integer k.
Output: The x-coordinate of 1

k G.
Motivation: The strange behaviour of secp{224,256}k1 for k = 2.
Time complexity: One scalar multiplication on a β-bit curve.

i13
Input: Elliptic curve E/Fp : y2 = x3 + ax + b.
Output: The value r = a3

b2 .
Motivation: The value r is used for the generation of curves in
various standards including X9.62, FIPS, SECG etc.
Time complexity: Division in a β-bit prime field.

i14
Input: Elliptic curve E/Fp : y2 = x3 + ax + b where p has bit-length s.
Output: a160 − b−160 where a160 are the s− 160 rightmost bits of a
and b−160 are the s− 160 leftmost bits of b.
Motivation: The Brainpool curve generation method.
Time complexity: Subtraction in a β-bit prime field.

i15
Input: Elliptic curve E/Fp : y2 = x3 + ax + b.
Output: The parameters a, b.
Motivation: NUMS generation method causes small b.
Time complexity: Constant

217

F.2 List of standard curves

Name Category Form Field type Bitlength Cofactor
{Tweedledum, Tweedledee} amicable W Prime 255 1

{Pallas, Vesta} amicable W Prime 255 1
FRP256v1 anssi W Prime 256 1

M-{221,383,511} barp M Prime {221, 383, 511} 8
E-{222,382,521} barp E Prime {222, 382, 521} 4

BLS12-381 bls W Prime 381 7.63e+37
BLS12-446 bls W Prime 446 2.68e+44
BLS12-455 bls W Prime 455 1.90e+45
BLS12-638 bls W Prime 638 4.94e+63
BLS24-477 bls W Prime 477 2.02e+28

Bandersnatch bls TE Prime 255 4
bn{158,190,224} bn W Prime {158, 190, 224} 1
bn{254,286,318} bn W Prime {256, 286, 318} 1
bn{350,382,414} bn W Prime {350, 382, 414} 1
bn{446,478,510} bn W Prime {446, 478, 510} 1
bn{542,574,606} bn W Prime {542, 574, 606} 1

bn638 bn W Prime 638 1
brainpoolP{160,192,224}r1 brainpool W Prime {160, 192, 224} 1
brainpoolP{256,320,384}r1 brainpool W Prime {256, 320, 384} 1

brainpoolP512r1 brainpool W Prime 512 1
brainpoolP{160,192,224}t1 brainpool W Prime {161, 192, 224} 1
brainpoolP{256,320,384}t1 brainpool W Prime {256, 320, 384} 1

brainpoolP512t1 brainpool W Prime 512 1
Curve25519 djb M Prime 255 8
Curve1174 djb W Prime 251 4
Ed25519 djb TE Prime 255 8

Curve41417 djb TE Prime 414 8
BADA55-R-256 djb W Prime 256 1

BADA55-VR-{224,256,384} djb W Prime {224, 256, 384} 1
BADA55-{VPR,VPR2}-224 djb W Prime 224 1

gost{256,512} gost W Prime {256, 512} 1
id-tc26-...mSet{A,B} gost W Prime 512 1

id-Gost...{A,B,C}-ParamSet gost W Prime 256 1
id-tc26-...mSet{A,C} gost TE Prime {256, 512} 4

Fp{224,256}BN iso W Prime {224, 256} 1
Fp{384,512}BN iso W Prime {384, 512} 1

ssc-{160,192,224} miracl W Prime {160, 192, 224} 1
ssc-{256,288,320} miracl W Prime {256, 288, 320} 1

ssc-{384,512} miracl W Prime {384, 512} 1
mnt1 mnt W Prime 170 15337

mnt2/{1,2} mnt W Prime 159 1
mnt3/{1,2,3} mnt W Prime 160 1

mnt4 mnt W Prime 240 1
mnt5/{1,2,3} mnt W Prime 240 1

P-{192,224,256} nist W Prime {192, 224, 256} 1
P-{384,521} nist W Prime {384, 512} 1

K-163 nist W Binary 163 2
K-{233,283,409} nist W Binary {233, 283, 409} 4

K-571 nist W Binary 571 4
B-{163,233,283} nist W Binary {163, 233, 283} 2

B-{409, 571} nist W Binary {409, 571} 2
numsp{256,384,512}d1 nums W Prime {256, 384, 512} 1
numsp{256,384,512}t1 nums TE Prime {256, 384, 512} 4

218

ed-{254,256,384}-mont nums TE Prime {254, 256, 384} 4
ed-{382,510,512}-mont nums TE Prime {382, 510, 512} 4
ed-{255,383,511}-mers nums TE Prime {255, 383, 511} 4
w-{254,256,382}-mont nums W Prime {254, 256, 382} 1
w-{384,510, 512}-mont nums W Prime {384, 510, 512} 1
w-{255,383,511}-mers nums W Prime {255, 383, 511} 1
Oakley Group {3,4} oakley W Binary {155, 185} 1

SM2 oscca W Prime 256 1
Curve{22103,4417,67254} other W Prime {221, 226, 382} {8, 4, 4}

Curve383187 other M Prime 283 8
Ed448 other TE Prime 448 4

Fp254BNa other W Prime 254 1
Fp254n2BNa other W Extension 508 1.60e+76

JubJub other TE Prime 255 8
MDC201601 other E Prime 256 4
Ted37919 other TE Prime 379 8
E-3363 other E Prime 336 8

secp{112,128,160}r1 secg W Prime {112, 128, 160} 1
secp{192,224,256}r1 secg W Prime {192, 224, 256} 1

secp{384,512}r1 secg W Prime {384, 521} 1
secp{112,128}r2 secg W Prime {112, 128} 4

secp{160r2, 256k1} secg W Prime {160, 256} 1
secp{160,192,224}k1 secg W Prime {160, 192, 224} 1
sect{113,131,163}r1 secg W Binary {113, 131, 163} 2
sect{193,233,283}r1 secg W Binary {193, 233, 283} 2

sect{409,571}r1 secg W Binary {409, 571} 2
sect{113,131,163}r2 secg W Binary {113, 131, 163} 2
sect{163k1, 193r2} secg W Binary {163, 193} 2
sect{233,239,283}k1 secg W Binary {233, 239, 283} 4

sect{409,571}k1 secg W Binary {409, 571} 4
wap-wsg-...wtls{1,4} wtls W Binary 113 2
wap-wsg-...wtls{3,5} wtls W Binary 163 2
wap-wsg-...wtls{6,8} wtls W Prime 112 1
wap-wsg-...wtls{7,9} wtls W Prime 160 1

prime192v{2,3} x962 W Prime 192 1
prime239v{1,2,3} x962 W Prime 239 1
c2pnb163v{1,2,3} x962 W Binary 163 2

c2pnb176w1 x962 W Binary 176 65390
c2pnb208w1 x962 W Binary 208 65096

c2tnb191v{1,2,3} x962 W Binary 191 {2, 4, 6}
c2tnb239v{1,2,3} x962 W Binary 239 {4, 6, 10}

c2pnb272w1 x962 W Binary 272 65286
c2pnb304w1 x962 W Binary 304 65070
c2pnb368w1 x962 W Binary 368 65392
c2tnb359v1 x962 W Binary 359 76
c2tnb431r1 x962 W Binary 431 10080

c2onb191v{4,5} x962 W Binary 191 {2, 8}
c2onb239v{4,5} x962 W Binary 239 {4, 6}

ansix9p{192,256}r1 x962 W Prime {192, 256} 1
ansip{224,384,521}r1 x962 W Prime {224, 384, 521} 1

ansix9t163k1 x962 W Binary 163 2
ansit163r2 x962 W Binary 163 2

ansit{233,283}r1 x962 W Binary {233, 283} 2
ansit{409,571}r1 x962 W Binary {409, 571} 2
ansit{233,283}k1 x962 W Binary {233, 283} 4
ansit{409,571}k1 x962 W Binary {409, 571} 4

219

	Mathematical notation
	Used abbreviations
	Introduction
	 Problem statement
	 Thesis structure
	 Contributions

	Elliptic curve cryptography in practice
	 Theoretical background
	 ECC vulnerabilities: state of the art

	On 4p-1 factorization
	 Previous work
	 A simpler version of Cheng's 4p-1 method
	 Analysis of the method
	 Correctness of the algorithm
	 Both twists work
	 Expected number of iterations

	 Time analysis and practical limits of the method
	 The expected occurrence of factorable numbers
	 Run-time statistics

	 The 4p-1 method as a backdoor
	 The backdoor construction
	 Inquirer detection strategies
	 Audit of real-world keys

	 Conclusions

	Fooling primality tests on smartcards
	 Previous work
	 Attack scenarios
	 Rationale for the attack scenarios
	 Attacks overview

	 Methodology for assessing primality tests
	 Domain parameters
	 Generating pseudoprimes
	 Generating special composites
	 Generating complete domain parameters

	 Practical results
	 The attacks in detail
	 Proposed defences
	 Conclusions

	Minerva: The curse of ECDSA nonces
	 Related work
	 The vulnerability
	 ECDSA
	 Leakage
	 Causes
	 Mitigations
	 Responsible disclosure

	 The attack
	 Constructing the HNP
	 Solving the HNP
	 Baseline attack

	 Attack variants and new improvements
	 Systematic comparison of attack variants
	 Conclusions

	A unified approach to special-point-based curve attacks
	 Background
	 Curve models and their zero-coordinate points
	 Point coordinates and addition formulas
	 Explicit-Formulas Database
	 Scalar multiplication algorithms
	 Side-channel attack countermeasures
	 The Refined power analysis and Zero-value point attacks
	 Exceptional procedure attacks

	 A unified approach to the attacks
	 Attack setting
	 The dependent coordinates problem
	 Solving the xDCP
	 The full attack
	 Window method attack

	 Classifying the exceptional points
	 Exceptional points for addition
	 Exceptional points for differential addition and ladders

	 Practical implications
	 Impact on cryptographic libraries
	 Attack improvements
	 Tooling
	 Reverse engineering

	 Conclusions

	Interoperable Schnorr multisignatures
	 Related work
	 Notation and background
	 Schnorr signatures

	 Interoperability of Schnorr schemes
	 Nonce exchange
	 Nonce commitment
	 Nonce delinearization
	 Deterministic nonce derivation
	 Summary

	 Multiparty scheme SHINE
	 Attacker Model
	 Group establishment
	 Nonce caching with encryption
	 Signing protocol
	 Implementation and evaluation

	 Conclusions

	DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves via Traits
	 Introduction
	 Overview of standard curve generation
	 Methodology
	 Standard curve database
	 Simulations
	 Outlier detection

	 Traits
	 Notable findings

	 Our tool DiSSECT
	 Conclusions

	Conclusions
	Bibliography
	Appendices
	 Author's publications
	 Fooling primality tests on smartcards
	 The Miller-Rabin primality test
	 Constructing pseudoprimes
	 Generated domain parameters
	 Examples of attacks

	 Minerva: The curse of ECDSA nonces
	 Additional figures
	 Impact of recentering with biased bounds

	 A unified approach to curve special-point-based curve attacks
	 Example: ZVP attack on window NAF scalar multiplication
	 Example: unrolled formula
	 Example: output expressions

	 Interoperable Schnorr multisignatures
	 Multi-signature distributed key generation

	 DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves via Traits
	 List of traits
	 List of standard curves

