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Abstract

It is possible to write endlessly on elliptic curves. (This is not a threat.)

Serge Lang – Elliptic curves: Diophantine analysis

This thesis1 explores the security of cryptographic systems related
to elliptic curves from various angles. We discuss a way of leverag-
ing a special factorization method based on elliptic curves to insert a
backdoor into RSA implementations. We try to fool the primality tests
applied to elliptic curve parameters that are present on smartcards.
We study a flaw in scalar multiplication that allowed us to recover the
private key in many real-world signature scheme implementations.
We unify several approaches to detecting problems in elliptic curve
addition formulas in the side-channel context and come upwith a new
attack.We propose a new scheme for elliptic curve Schnorr multisigna-
tures, focusing on efficiency and interoperability. Finally, we design a
framework that allows for a systematic analysis of standardized curves
by comparing them to simulated ones in many different aspects.

We conclude that while elliptic curve cryptography is very useful,
one must be very careful to correctly tame its complexity and avoid
devastating pitfalls at many levels.

1. The thesis builds upon the author’s previous PhD research proposal thesis
[Sed20].
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1 Introduction

1.1 Problem statement

The central question of this thesis is: What are the undiscovered weak-
nesses of cryptographic systems related to elliptic curves, and how can we
defend against them?We tackle this question from various viewpoints,
ranging from implementation choices through protocols to parameters
of standardized curves. Another underlying leitmotiv is: When is it
possible to hide a weakness or even a backdoor in asymmetric cryptography
primitives?

1.2 Thesis structure

The rest of this chapter summarizes the contributions, while Chapter 2
provides some basic background on elliptic curves. The following six
chapters each correspond to di�erent projects:

ˆ Chapter 3 describes the author's initial work on a very e�cient
factorization algorithm (using elliptic curves) for integers of a
special form, possibly leading to RSA backdoors;

ˆ Chapter 4 shows how the known methods for fooling primal-
ity tests can be adapted and used in the context of ECC and
smartcards;

ˆ Chapter 5 presents a key-recovery attack on real-world ECDSA
implementations, using side channels and lattice reduction;

ˆ Chapter 6 systematically studies many ECC formulas with re-
spect to side channel attacks and introduces a uni�ed attack
framework;

ˆ Chapter 7 proposes a new e�cient and interoperable scheme
for ECC Schnorr multisignatures;

ˆ Chapter 8 aspires to provide an analytical framework to survey
all standard curves and the standards according to which they
were generated, in order to �nd potential hidden weaknesses.

5



1. Introduction

1.3 Contributions

The most important contributions of this thesis follow, in order corre-
sponding to the thesis structure.

On 4p � 1 factorization. We address Cheng's 4p � 1 factorization
method [Che02] based on complex multiplication on elliptic curves
and propose an improved, simpli�ed and asymptotically determinis-
tic version. We further study the viability of the 4p � 1 factorization
method as the means of a potential backdoor for the RSA primes gen-
erated on black-box devices like cryptographic smartcards. We devise
three detection methods for such a backdoor and audit 44 millions of
RSA keypairs generated by 18 di�erent types of cryptographic devices.

The results were published at Secrypt 2019 [Sed+19].

Fooling primality tests of smartcards. We analyze whether the smart-
cards of the JavaCard platform correctly validate primality of domain
parameters. The work is inspired by Albrecht et al. [Alb+18], where
the authors studied many open-source libraries and fooled them with
specially crafted pseudoprimes. However, in the case of smartcards,
often there is no way to invoke the primality test directly, so we trigger
it by replacing (EC)DSA and (EC)DH prime domain parameters by
adversarial composites. Such a replacement results in vulnerability to
Pohlig-Hellman [PH78] style attacks, leading to private key recovery.

Out of nine smartcards (produced by �ve major manufacturers)
we tested, all but one have no primality test in parameter validation.
As the JavaCard platform provides no public primality testing API,
the problem cannot be �xed by an extra parameter check, making it
di�cult to mitigate in already deployed smartcards.

The results were published at European Symposium on Research
in Computer Security (ESORICS) 2020 [SJS20].

Minerva: The curse of ECDSA nonces. We present our discovery
of a group of side-channel vulnerabilities in implementations of the
ECDSA signature algorithm in a widely used Atmel AT90SC FIPS 140-
2 certi�ed smartcard chip and �ve cryptographic libraries (libgcrypt,
wolfSSL, MatrixSSL, Crypto++, SunEC/OpenJDK/Oracle JDK).

Vulnerable implementations leak the bit-length of the scalar used
in scalar multiplication via timing. Using leaked bit-length, we mount
a lattice attack on a 256-bit curve, after observing enough signing

6



1. Introduction

operations. We propose two new methods to recover the full private
key requiring just 500 signatures for simulated leakage data, 1200 for
real cryptographic library data, and 2100 for smartcard data.

The number of signatures needed for a successful attack depends
on the chosen method and its parameters as well as on the noise pro�le,
in�uenced by the type of leakage and used computation platform. We
use the set of vulnerabilities reported in this work, together with the
recently published TPM-FAIL vulnerability [Mog+20], as a basis for
real-world benchmark datasets to systematically compare our newly
proposed methods and all previously published applicable lattice-
based key recovery methods. The resulting exhaustive comparison
highlights the methods' sensitivity to its proper parametrization and
demonstrates that our methods are more e�cient in most cases. For the
TPM-FAIL dataset, we decreased the number of required signatures
from approximately 40 000 to a mere 900.

Because of the impact, the work received a lot of media coverage
[ZDN19; Ber19; Fei19; Tra19]. The results were published in [Jan+20],
winning the Best Paper Award at Cryptographic Hardware and Em-
bedded Systems (CHES) 2020.

A uni�ed approach to special-point-based curve attacks. The Re-
�ned Power Analysis, Zero-Value Point, and Exceptional Procedure
attacks [Gou03; AT03; IT03] introduced side-channel attack techniques
against speci�c cases of elliptic curve cryptography. The three attacks
recover bits of a static ECDH key adaptively, collecting information
if a certain multiple of the input point was computed. We unify and
generalize these attacks in a common framework, and solve the cor-
responding problem for a new class of inputs. We also introduce a
version of the attack against windowed scalar multiplication meth-
ods, recovering the full scalar instead of just a part of it. Finally, we
systematically analyze elliptic curve point addition formulas from
the Explicit-Formulas Database [BL07a], classify all non-trivial excep-
tional points, and �nd them in new formulas. These results indicate
the usefulness of our tooling for unrolling formulas and �nding special
points, potentially of independent research interest.

The results were published at Asiacrypt 2021 as �A formula for dis-
aster: a uni�ed approach to elliptic curve special-point-based attacks�
with coauthors J.-J. Chi-Dominguez, J. Jancar and B. B. Brumley.

7



1. Introduction

Interoperable Schnorr multisignatures.
We study the possibility of interoperability of di�erent multiparty

Schnorr signature schemes and classify them based on their approach
to the nonce agreement. We identify issues that could hinder in-class
interoperability and propose a construction of a trustless mediator that
can facilitate interoperability among di�erent classes in certain cases.
Besides the risk mitigation, interoperability provides usability and per-
formance bene�ts, as protocols better suited for special devices can be
used in conjunction with more general protocols. Finally, we propose
a new multiparty signature scheme SHINE, which is e�ciently com-
putable on resource-limited devices like cryptographic smartcards.
SHINE is compatible with most existing unmodi�ed Schnorr protocols
like MSDL, MuSig2, or FROST thanks to the proposed interoperability
construction.

The results were submitted to Applied Cryptography and Network
Security 2022 as �Resilience via Practical Interoperability of Multiparty
Schnorr Signature Schemes�with coauthors A. Dufka and P. Svenda.

DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves
via Traits. It is hard to trust elliptic curves standardized in a non-
transparent way. To rectify this, we present a systematic methodology
for analyzing properties of standard curves and statistically comparing
them to the expected results with respect to their generation process.
Based on this idea, we develop a large-scale computational framework,
which thoroughly analyzes the curves and visualizes the results.

We put together the largest publicly available database of standard
curves. Using our framework, we simulate over 200 000 curves to
mimic the generation process of three major standards. Using three
distinct distinguishing strategies for our 22 custom functions, we try
to �nd any deviations pointing to possible weaknesses of standard
curves. In this way, we discover properties of GOST curves inconsistent
with claims about their origin, as well as an undocumented behavior
of the BLS12-381 curve.

The results were submitted to Public Key Cryptography 2022 as
�DiSSECT: Distinguisher of Standard & Simulated Elliptic Curves via
Traits� with coauthors V. Suchanek and A. Dufka.

8



2 Elliptic curve cryptography in practice

Elliptic curves have been studied by mathematicians for a very long
time and provide a very rich interplay between many areas, such as
algebra, geometry, number theory and analysis. With the advent of
computers, they became an important tool feasible for tasks such as
integer factorization and primality proving. Crucially, they also play a
fundamental role in modern cryptography because of the presumed
hardness of the elliptic curve discrete logarithm problem (ECDLP).

First proposed by Koblitz [Kob87] and Miller [Mil85], widespread
usage of elliptic curve cryptography (ECC) started in 2006 when the
NIST standardized EC Digital Signature Algorithm (ECDSA). Besides
ECDSA and its mature version EdDSA, elliptic curve Di�e-Hellman
(ECDH) is also widely used � nowadays, all of these are deployed in
protocols like TLS [Bla+06b] or SSH [SG09] that form the backbone of
a secure Internet. Practical ECC bene�ts include smaller key sizes and
more e�cient implementations at the same security level compared
to other public-key schemes like RSA or ElGamal [KMV00]. Hence
it is no wonder that ECC's popularity grows, especially for security
applications where computational power and integrated circuit space
are limited, such as Internet of Things devices or smartcards.

ECC is also deployed in many modern systems [IANa; IANb] and
even government-issued documents (such as eIDs) of many countries
like Austria [Hol+08], Germany [Loc+15], Estonia, or United Arab
Emirates [Qui+20], where ECDSA is used as an equivalent to hand-
written signatures. Elliptic curves are also at the core of cryptocurren-
cies like Bitcoin [Nak08], Ethereum [Woo+14], Monero [Noe] or even
Zcash [Sas+14]; the last one utilizes pairing-based cryptography.

Even though ECDLP falls prey to Shor's quantum factorization
algorithm [Roe+17], the proposed post-quantum schemes include
ones based on isogenies of elliptic curves [Aza+17; Cas+18], so they
will probably still play an important role in the future.

9



2. Elliptic curve cryptography in practice

2.1 Theoretical background

We de�ne an elliptic curve E in the short Weierstrass model1 over a
prime 2 �eld F p, p � 3 by the following equation:

E/ F p : y2 = x3 + ax+ b, a,b 2 F p, 4a3 + 27b2 6= 0. (2.1)

The group E(F p) consists of a�ne points (x,y) 2 F p � F p satisfy-
ing (2.1) , together with the neutral element O � the point at in�nity. For
any positive integer k, we de�ne the scalar multiplication [k]P as the
sum of k copies of P and also de�ne [� k]P := � [k]P. The ECDLP is the
task of �nding k when given G and [k]G. The order of a pointP 2 E(F p)
is de�ned as the smallest positive integer k such that [k]P = O. By
k-torsion points, we mean points of order that divides k. We denote
the cardinality of E(F p) by n := #E(F p) and call t := p + 1 � n the
trace of Frobeniusof E. For typical cryptographic applications, n = h � q,
where q is prime and h 2 f 1,2,4,8g; h is called the cofactor.

The scalar multiplication map P 7! [k]P can also be computed
using the division polynomialy k [Was08]: that is,

[k](x,y) =

 
f k(x)
y 2

k(x)
,
wk(x,y)
y 3

k(x,y)

!

,

where

y 0 = 0,

y 1 = x,

y 2 = 2y,

y 3 = 3x4 + 6ax2 + 12bx � a2,

y 4 = 4y(x6 + 5ax4 + 20bx3 � 5a2x2 � 4abx� 8b2 � a3),

y 2k+ 1 = y k+ 2y 3
k � y k� 1y 3

k+ 1 for k � 2,

y 2k = ( 2y) � 1y k(y k+ 2y 2
k� 1 � y k� 2y 2

k+ 1) for k � 3,

f k = xy 2
k � y k+ 1y k� 1,

wk = ( 4y) � 1(y k+ 2y 2
k� 1 � y k� 2y 2

k+ 1).

1. We will introduce other forms in Section 6.1.
2. Prime power �elds are also possible, but very rare in cryptography; the only
relevant caseF2m would require special care and will not be important for us.

10



2. Elliptic curve cryptography in practice

These polynomials are considered modulo the curve equation (2.1) ;
in particular, f k and y 2

k do not depend on y for any k. We will use
these polynomials in Chapter 3 and Chapter 6.

Curves over more general rings. In Chapter 3 and Chapter 4, we will
work with elliptic curves over E(Z m), where m is composite and odd3.
We will follow the exposition by Washington [Was08].

The projective plane over Z m is de�ned as

P2(Z m) := f (x,y,z) 2 (Z m)3 j gcd(m,x,y,z) = 1g/ � ,

where (x,y,z) � (x0,y0,z0) i� x = ux0,y = uy0,z = uz0for some u 2 Z �
m.

An elliptic curve over Z m is then given by

E(Z m) = f (x : y : z) 2 P2(Z m) j y2z = x3 + Axz2 + Bz3g,

where A,B 2 Z m and 4A3 + 27B2 2 Z �
m. This generalizes the classical

notion of an elliptic curve over a �eld, and indeed, with some caveats,
the standard group addition law applies. Moreover, for odd coprime
integers m1,m2, the natural projections Z m1m2 ! Z mi ( i 2 f 1,2g) give
rise to an isomorphism

E(Z m1m2) �= E(Z m1) � E(Z m2), (2.2)

which we will use heavily.

2.2 ECC vulnerabilities: state of the art

The complexity of ECC opens up many possible attack vectors. We
will �rst describe generic attacks on the discrete logarithm problem
(DLP), which serve as a basic guideline for selecting secure group
sizes. Next, we will discuss implementation vulnerabilities, which
are the most common source of problems in practice, and end with
possible problems of selected standard curves.

3. More generally, we can de�ne elliptic curves over any ring R such that 2 2 R�

and any projective R-module of rank 1 is free [Was08]; in particular, this includes
all �nite and local rings.

11



2. Elliptic curve cryptography in practice

Generic attacks. While the DLP can be de�ned in any �nite cyclic
group, its di�culty might drastically di�er for varying groups. In the
multiplicative group Z �

p (or its subgroup), where p is a prime, there is
the subexponential index calculus algorithm [Pol93], which results in
long keys for the DH and DSA schemes that operate in these groups.
In contrast, despite several attempts, there does not exist an e�cient
analog of this algorithm for elliptic curves over prime �elds, which
is the reason ECC keys might be much shorter while still providing
the same level of security. Thus it seems so far that besides certain
weak classes of curves, the only e�cient attacks against the ECDLP
are those that could be applied to any �nite cyclic group.

One such important attack is the one introduced by Pohlig and
Hellman [PH78], which makes use of the Chinese remainder theorem
(CRT) group decomposition: when p1, . . . ,pr are distinct primes, we
have Z p

e1
1 ...per

r

�=
L r

i= 1Z p
ei
i
. Since the DLP in Z p

ei
i

can be solved by

computing the corresponding DLP in Z pi and lifting it to Z p
ei
i
, the

algorithm essentially reduces the DLP in a group to DLPs in its prime
order subgroups.

Given a DLP in a prime order group, the best general attack in
practice is Pollard's r method [Pol78], asymptotically running in time
polynomial in the square root of the group order. Furthermore, the
attack can be slightly optimized by using e�cient arithmetic and the
negation map [BL].

Implementation vulnerabilities. There are many di�erent kinds of
implementation-speci�c vulnerabilities; the following list is by no
means exhaustive:

ˆ Twist attacks [Fou+08] � these apply when the attacker is al-
lowed to compute on the quadratic twist instead of the original
one; can be mitigated by point validation at the implementation
level or by using twist-secure curves at the curve design level.

ˆ Invalid curve attacks [BMM00; JSS15] � these apply when an
attacker is allowed to compute on another curve (usually shar-
ing the linear coe�cient in Weierstrass form) instead of the
original curve. It can be mitigated by point validation at the
implementation level or by specifying point compression at the
protocol design level.

12



2. Elliptic curve cryptography in practice

ˆ Small subgroup attacks [LL97] � these apply when the attacker
is allowed to make queries for multiplication by the secret scalar
with points of small order, which can become powerful when
combined with the above attacks. The basic form can be miti-
gated by a simple point check at the implementation level or by
choosing curves with trivial (or small) cofactor (i.e., the ratio
of the order of the full group and the subgroup generated by
the public generator).

ˆ Problems with random number generation (RNG), leading for
example to trivial breaks of ECDSA if the nonce is repeated, as
happened in 2010 with many Sony PlayStation 3 devices [Sch15;
Ber+12].

ˆ Side-channel attacks [Fan+10; ACL] � these consist of extracting
and utilizing sensitive data from the implementation, usually
from the scalar multiplication algorithms or sometimes even
the �eld arithmetic itself; can be mitigated by using constant-
time algorithms (which is not as easy to achieve as it might
seem). This is a vast category of attacks [Gou03; AT03; IT03;
BH09; BT11; Mur+12; Ben+14; PSY15; FWC16; Bel+16; Gen+16;
GVY17; Dal+18; Ald+19; Rya19a; Rya19b; Gar+20; Ara+20;
Mog+20; Wei+20]; we discuss the cases relevant to nonce leak-
age in Chapter 5 and curve formulas in Chapter 6 in more detail.

Even if the �rst three types of attacks are quite easy to defend
against, Valenta, Sullivan, Sanso, and Heninger [Val+18] analyzed the
security of ECDH key exchange implementations in common protocols
TLS, SSH, and IPSec and estimated that a small proportion of hosts
(<1% of HTTPS and SSH, and 4% of IKEv2) that support ECC do not
perform required curve validity checks. Faulty RNG and side channels
are generally much harder to avoid. Also, new implementation-speci�c
attacks appear quite regularly [Age20].

Curve vulnerabilities. When using ECC in the real world, both sides
of the scheme must agree on the choice of a particular curve, avoiding
curves where the ECDLP is easier than it should be. The SafeCurves
website [BL] presents a good overview of known curve vulnerabilities
(and discusses implementation-speci�c vulnerabilities as well).

13



2. Elliptic curve cryptography in practice

In short, to avoid the known mathematical attacks, the curve E
de�ned over a prime �elds F p with a public generator G of order l
should satisfy the following criteria:

ˆ p should be large enough, e.g., over256bits if we aim for 128-bit
security;

ˆ l should have a large prime factor, as this determines the com-
plexity of the Pohlig-Hellman attack; [PH78])

ˆ the curve should not be anomalous (i.e., l 6= p), otherwise the
Semaev-Satoh-Araki-Smart attack based on the additive transfer
applies [Sma99; Sem98; SA+98];

ˆ the embedding degree of E (i.e., the order of p in F �
l if l is prime)

should be large enough (e.g., at least 20 for the current param-
eter sizes), otherwise the MOV attack based on multiplicative
transfer using the Weil and Tate pairings applies [Sem96; FR94;
MOV93] � in particular, this rules out all supersingular curves;

ˆ the absolute value of the CM �eld discriminant (i.e., the dis-
criminant of the �eld Q(

p
t2 � 4p)) should not be too low

([BL] suggests at least 2100), otherwise Pollard's r attack can be
speeded up due to the presence of e�ciently computable endo-
morphisms of the curve [GLV01]; this does not pose a serious
threat for the moment though, as the limits of the speedup are
reasonably well understood.

Curve standardization. Curves suitable for wide use have been stan-
dardized by many organizations [ANSI98; Cer10; ANS14; PLK06;
SSL14] and are not susceptible to any of the public mathematical at-
tacks, but some of them fail to satisfy some SafeCurves criteria (such
as twist security). Perhaps more worrisome is the fact that the choice
of the constants is often not satis�ably explained, and thus we have no
guarantee that these curves do not have a hidden weakness, deliberate
or not. We explore this topic in much more depth in Chapter 8.

While mathematical weaknesses have a very large impact when
they occur, buggy or vulnerable implementations are much more
common in practice. The developers are often confronted with choices
they might not be quali�ed to decide and the standards are usually

14



2. Elliptic curve cryptography in practice

not explicit enough to help them. There are many potential pitfalls,
and history and statistics show us that problems will inevitably occur
under these circumstances. Instead of blaming the developers, it seems
to be more constructive to try to improve the standards, which are
often at fault.

Indeed, widely used standards are often unnecessarily compli-
cated, hard to implement correctly, do not explicitly protect against
certain attacks (e.g., the invalid-curve attack on TLS-ECDH imple-
mentations [JSS15]), create tensions between simplicity and security
(so that producing correct and secure implementations becomes very
hard) and are suboptimal in terms of performance [BL16; Ber14; BL].
As a result, many ECC-based systems could be potentially vulnerable.

Bernstein suggested many improvements, e.g., the use of twisted
Edwards curves (which also have a Montgomery form). He also de-
signed Curve25519 [Ber06], speci�cally created to address many of
the issues described above (for example, it has a very transparent gen-
eration, lifts the burden of responsible choices from the implementors
and enables a very fast and constant-time scalar multiplication). Note
that the curve is used under the name X25519 in the Montgomery
form for ECDH, while the birationally equivalent curve Ed25519 in
the twisted Edwards form used for EdDSA, a digital signature scheme
improving on ECDSA [Ber+12; Ber+]. These curves are rising in pop-
ularity [IANa; IANb] and have also inspired the creation of several
curves of the same type, notably Ed448-Goldilocks [Hamb]. The new
TLS v1.3 standard from 2018 [Res18] requires support for Ed25519
and Ed448.

This does not mean, however, that these curves will automatically
solve all problems. Certain libraries still only support the Weierstrass
form, so when using these curves, they must perform certain transfor-
mations, thus opening themselves to potential problems again.
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3 On 4p � 1 factorization 1

Factorization of composite integers is an old and important problem
and cryptographic schemes such as RSA are based on its intractability.
RSA is one of the most frequently deployed public key cryptosystems,
and a possible factorization of RSA moduli could have a serious impact
on the security of real-world applications. This was demonstrated in
past incidents such as �nding weak RSA keys used for TLS [Hen+12],
LogJam [Adr+15] or factorable RSA keys from cryptographic smart-
cards known as the ROCA attack [Nem+17] with at least hundreds of
millions a�ected devices. The performance of already known factoriza-
tion methods, together with the required security margin, determine
the necessary security parameters, such as the length of the prime
factors p,qof the RSA modulus N = pq. Relevant standards (e.g., NIST
FIPS 140-2 [NIST07], BSI TR-02102-1 [Bun18],keylength.com[Gir19])
then de�ne the minimal required parameters.

We divide factorization algorithms into two categories:

1. General-purpose � applicable to all integers N (and thus in�u-
encing the minimal secure length of the RSA moduli); these
include Pollard r [Pol75], Quadratic Sieve [Pom85] and asymp-
totically fastest Number Field Sieve [Pol93].

2. Special-purpose � very e�cient when a factor pjN or N itself is
of a special form:

(a) A number related to the prime factor p is smooth (has only
small prime divisors) � Pollard's p � 1 [Pol74], Williams's
p + 1 [Wil82], Bach-Shallit [BS85] and Lenstra's Elliptic
Curve (ECM) [Len87] methods assume smoothness of the
integers p � 1, p + 1, f k(p) ( k-th cyclotomic polynomial)
and #E(p), respectively.

(b) Assumptions on p or N: there are fast methods for N of the
form N = prq [BDH99] or N = prqs [Cor+16]. Cheng's
4p � 1 [Che] method is e�ective whenever the square-free
part of 4p � 1 is small.

1. The results in this chapter were published in [Sed+19]. See https://crocs.fi.
muni.cz/public/papers/Secrypt2019 for additional materials.
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3. On 4p � 1 factorization

All of the mentioned methods look for a multiple kp of some prime
divisor pjN. In the last step, the methods compute gcd(N,kp) = d. If
1 < d < N, then a factor is found and the factorization can continue
recursively. The methods are probabilistic since the factorization fails
when d = N.

We focus on the relatively new and unexplored (there are only
three related publications) 4p � 1 method in this chapter. Our contri-
butions are the following:

ˆ we simplify the method and analyze it in greater detail, show-
ing that the number of expected iterations is 2-4 times lower
than stated in [Che02] and the algorithm is asymptotically de-
terministic;

ˆ we o�er a compact public implementation of the method in
Sage, together with an extensive run-time analysis;

ˆ we discuss the viability of the method as a potential backdoor
from di�erent perspectives;

ˆ we perform an audit of a large collection of RSA keypairs gener-
ated by 18 di�erent types of cryptographic devices with respect
to the potential backdoor;

ˆ we discover and explain a discrepancy (that governs the possi-
bility of modulus factorization) between random primes and
primes generated by certain smartcards.

This chapter is organized as follows: In Section 3.1, we give a brief
overview of the method, together with the related work. We simplify
the method in Section 3.2 and analyze it in more depth in Section 3.3.
Section 3.4 discusses the practical limits of the method and the time
analysis of the Sage implementation. Section 3.5 is concerned with
the real-world impact of the algorithm and covers both the backdoor
discussion and our audit. We draw conclusions in Section 3.6.

3.1 Previous work

Chengs's 4p � 1 method is similar to Lenstra's ECM [Len87]. To �nd
a prime factor p of an integer N, both methods use an elliptic curve

18



3. On 4p � 1 factorization

E(Z N ) �= E(F p) � E(Fq) (see Section 2.1). Ifm 2 Z is a multiple of
#E(F p) and P 2 E(Z N ), then the computation of [m]P often fails (as
it requires an inversion of a multiple of p modulo N), which reveals
p. The methods di�er in the choice of E and P as well as in the com-
putation of [m]P. In ECM, we choose random curves E in the hope
that #E(F p) is smooth, so we take m as product of small primes (e.g.,
m = B! for some small B). It is hard to �nd a point on the curve E(Z N )
for composite N in general, so we chooseP �rst and pick the curve
coe�cients accordingly.

In Cheng's 4p � 1 method, we hope that a given D is a square-free
part of 4p � 1.The method constructs E(Z N ) so that the corresponding
E(F p) is anomalous (#E(F p) = p), so we take m = N. Since we cannot
chooseP before E here, it is important that Cheng found a way how to
avoid working with points explicitly. Instead of a direct computation
of the scalar multiple [N ]P, he used the N-th division polynomial y N
to compute the required y N (P) = y N (x) for a randomly chosen x 2 Z ,
which he hopes to be an x-coordinate of some point on E(F p). Cheng's
method uses the complex multiplication (CM) method [Bro06; BS07]
to construct an anomalous curve. CM computes the j-invariant of
the curve as a root of the Hilbert polynomial (HP) H� D (x) in F p
corresponding to D. There are two di�erent yet related curves (twists)
E and Ec with the given j-invariant having exactly p � 2 and p points,
respectively. The curve E is de�ned by the constants a,b, which can be
computed as rational functions of the j-invariant, i.e., a= a( j),b= b( j)
de�nes E. The curve Ec is de�ned by the j-invariant and some quadratic
non-residue c in F p, i.e.,a= a( j,c),b= b( j,c). Since the method cannot
distinguish between a curve with p points and a curve with p + 2
points over F p, Cheng's method computes [N ]P (more precisely y N )
for both curves. The method iterates through various values of x (to
guess the x-coordinate of some point) and various values of c (to
guess the quadratic non-residue), hence two for-loops are used in
the method. Cheng stated that the probability of a successful guess
of x or a correct twist is 1

2. Later research [RS07] showed that it is
possible to choose the correct twist (having p elements) with some
small additional e�ort (at least with the knowledge of p). However,
we will show later that Cheng's method works for both twists without
in�uencing the probability of success.
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3. On 4p � 1 factorization

Cheng introduced his method in 2002 in [Che]. The original method
computes the j-invariant as the root of the HP H� D (X) of degree one.
Thus in this case we have a concrete value of thej-invariant and are
able to construct a concrete curve E over Z N (up to a twist). There
are only six HPs of degree one that can occur (we are not counting
the cases� D 2 f� 4,� 7,� 8g which are excluded by a congruence
condition on D) so the method can be used for a prime divisor p of N
of six di�erent forms. In the same year, Cheng generalized his method
in [Che02] for HPs of an arbitrary degree. In the generalized version, a
concrete j-invariant is not computed (as �nding roots of polynomials
modulo N is very hard in general), but the method works with j sym-
bolically. In 2017, Shirase published the paper [Shi], where he followed
up on Cheng's older publication [Che] (he clearly missed the newer
one). Although Shirase �reinvented� Cheng's method only for HPs of
degree at most two, the contribution of his work is not negligible. Shi-
rase improved Cheng's unclear description of his method (especially
the equation g(X) = PN (x) 2 Z/ (N )[X ] on page 6 of [Che02] is not
clear enough). On the other hand, his description is quite complex
and can be simpli�ed.

3.2 A simpler version of Cheng's 4p � 1 method

In our simpli�ed method, we assume that N, the number to be factored,
has a prime divisor p satisfying

4p � 1 = Ds2,

where D is square-free (note that this immediately implies D � 3
(mod 8). We will also assume D 6= 3 (the case D = 3 is much eas-
ier and is handled separately in [Shi]). For simplicity, we will only
deal with the case N = pq, where q is also a prime, although this is
not a necessary condition. The most important ideas involved in the
algorithm are the following:

1. we can control the number of points on a curve E(F p) through
the CM method � in our case, �nding a root j of the HP modulo
p and constructing a curve E with j as its j-invariant ensures
that E(F p) is either p or p + 2;
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3. On 4p � 1 factorization

2. instead of working with unknown roots j 2 F p of the HP H� D ,
we compute symbolically in the ring Q := Z N [X ]/ (H� D (X)) ;

3. division polynomials y N can be used to compute the desired
non-invertible denominators ( y N (P) � 0 (mod p)):

O = [ N ]P =

 
j N (P)
y N (P)2 ,

wN (P)
y 3

N (P)

!

. (3.1)

Algorithm 1: Cheng's 4p � 1 factorization [Che], simpli�ed.
Input : N (the integer to be factored);

D (the square-free part of 4p � 1 for pjN)
Output : p (or failure)
compute H� D,N (X) (the � D-th HP modulo N);
Q  Z N [X ]/ (H� D,N (X)) ;
j  [X ] 2 Q;
k  j � (1728� j) � 1 2 Q (*);
a,b  3k,2k 2 Q ;
choose bound B appropriately (for example B = 10);
forall i 2 f 1,2,� � � ,Bg do

generate random xi 2 Z N � Q;
z  y N (a,b,xi ) 2 Q ;
d = gcd( z̄(X),H� D,N (X)) 2 Z N [X ] (*);
r  gcd(d,n);
if 1 < r < N then

return r;
return failure ;

In Algorithm 1, two operations are marked by (*), since these
operations may fail. Both of these operations (the computation of d or
the inverse (1728� j) � 1 in Q) can be performed using the extended
version of Euclid's algorithm with polynomials over Z N [X ] as an input.
The problematic step in the Euclid's algorithm is to compute qk,rk� 1
such that rk� 2 = qkrk� 1 + rk, when the leading coe�cient lc of rk� 1
polynomial is not coprime to N. However, this means that we can
directly return gcd( lc,N ) > 1.

21



3. On 4p � 1 factorization

3.3 Analysis of the method

This section focuses on a clear description and explanation of the
method (Section 3.3.1) and its analysis (subsections 3.3.2, 3.3.3). The
original Cheng's method computes within two curves � curve de�ned
by the a,b and its twist de�ned by same a,b and some quadratic non-
residue c (mod p). Sincep is unknown, Cheng's algorithm iterates
through various c, though in Section 3.3.2, we show that this c-loop
can be omitted, yielding Algorithm 1. Moreover, in Section 3.3.3, we
show that the average number of iterations (the x-loop) of the method
depends on the class number h(� D) (the degree of the HP H� D (X))
and is close to 1 for a large D.

3.3.1 Correctness of the algorithm

Many computations in the algorithm are performed over the quotient
ring Q = Z N [X ]/ (H� D,N (X)) . It's easy to see that the substitution
X 7! j induces a ring homomorphism hj : Q ! F p. In other words, any
computation in Q corresponds to a symbolic computation with a root
j 2 Z N of the HP (i.e., H� D,N ( j) � 0 (mod p)). Hence X 7! j induces
a homomorphism Q 7! Z N , which can be composed with the natural
projection Z N 7! F p to obtain the homomorphism hj . Figure 3.1 de-
picts the relation of computation in F p and Q through the hj . It should
be noted that in Q, we are working symbolically with all roots of the
HP modulo p at once.

The key and most time consuming part of the algorithm is the
evaluation of the division polynomial y N at P = ( x,y) 2 E(Z N ). When
N is odd, y N contains y only in even powers [Was08]. Thus we can
eliminate y using the de�ning Weierstrass equation and write y N (P) =
y N (a,b,x). The homomorphism hj maps y N (a,b,x) 2 Q computed in
the method to 0 2 F p, as Figure 3.1 illustrates.

In Algorithm 1, we compute gcd( z̄(X),H� D,N (X)) = d for the lift
z̄ of z 2 Q to Z N [x]. Lemma 4 in [Che02] says that d is a constant from
Z N . Since hj (H� D,N (X)) = 0 and hj (y N (a,b,x)) = 0, we must have
d � 0 (mod p).

For a further analysis, we will need to understand the structure
of Q. Since the � D-th HP splits completely modulo p [BS07], we

have H� D (X) � Õ
h(� D)
i= 1 (X � ji ) (mod p) for some pairwise distinct
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F p :H� D ( j) = 0 ! (a,b) =
�

3j
1728� j

,
2j

1728� j

�
! y N (a,b,xi ) = 0

" hj : X 7! j " hj : X 7! j " hj : X 7! j

Q :H� D,N (X) = 0 ! (a,b) =
�

3X
1728� X

,
2X

1728� X

�
! y N (a,b,xi ).

Figure 3.1: A diagrammatic overview of arithmetic inF p and Q.

j1, . . . ,jh(� D) 2 Z (hence the ideals (X � ji ) � F p[X ] are pairwise co-
maximal). Now let H� D,p(X),H� D,q(X) be the projections of H� D (X)
to F p and Z q, respectively. Applying the generalized CRT several
times, we obtain the isomorphisms:

Q = Z N [X ]/ (H� D,N (X))
�=

�
Z q[X ]/ (H� D,q(X))

�
� F p[X ]/ (H� D,p(X))

�=
�
Z q[X ]/ (H� D,q(X))

�
�

h(� D)

Õ
i= 1

F p[X ]/ (X � ji )

�=
�
Z q[X ]/ (H� D,q(X))

�
�

h(� D)

Õ
i= 1

F p.

In particular, we have h(� D) di�erent projections from Q to F p,
and these are essentially given by lifting an element from Q to Z N [X ],
substituting some ji into the obtained polynomial and reducing the
result modulo p.

3.3.2 Both twists work

If the constructed curve E : y2 = f (x) (where f (x) = x3 + 3kx + 2k)

has p points over F p, it is clear that for x such that ( f (x)
p ) = 1, the value

y N (x) will be zero modulo p (since this x then represents a coordinate
of a point on E(F p)). However, if E has p + 2 points over F p, it must
be a quadratic twist of some curve E0: y2 = x3 + 3kc2x + 2kc3 for some
c 2 F p,

� c
p

�
= � 1, such that E0has p points over F p. Then there is an

isomorphism E ! E0over F p(
p

c) given by (x,y) 7! (cx,c3/2 y). Since
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c is invertible, this implies that the division polynomials of the curves
must also be related by an invertible transformation. More speci�-
cally, if we let y n,E(x),y 0

n,E0(x) be the division polynomials associated
to E and E0, respectively, then we have y n,E0(x) = y n,E(cx). Thus if
� f (c� 1x)

p

�
= 1, the value y N (x) will be zero modulo p as well. Since for

�xed c the values c� 1x have the same distribution as x, we do not have
to iterate over the twists and can �x any of them instead.

Moreover, the probability that value y N (x) will be zero modulo p
for a �xed curve and a randomly chosen x 2 F p (more precisely, the
projection of a randomly chosen x 2 Z N ) is pt px + ( 1 � pt )(1 � px),
where pt is the probability of choosing the right twist and px is the

probability of the event
� f (x)

p

�
= 1.

Thus under the classical heuristical assumption that pt = 1
2 (or

alternatively, after calculating that px is very close to 1
2), the above

probability is 1
2.

3.3.3 Expected number of iterations

Now we can estimate the probability that the core part of the algorithm
will work. During scalar multiplication on a curve over a product
of rings, the rational functions in Equation (3.1) can be computed
coordinate-wise. This might be problematic when the result is a �point
in semi-in�nity� (i.e., in�nite in only some coordinates) 2, but that is
exactly what we want, as one of the denominators will then reveal a
factor of N.

Thus when we have an elliptic curve over

Q �=
�
Z q[X ]/ (H� D,q(X))

�
�

h(� D)

Õ
i= 1

F p,

the algorithm will succeed for a �xed x 2 Z N whenever there is at
least one copy of F p over which the x corresponds to the right twist
(unless this happens over all of the copies at the same time and simul-
taneously over Z q[X ]/ (H� D,q(X)) , which is extremely unlikely, as q

2. This issue can be �xed by a more general de�nition of a projective space over
satisfying the assumptions in Section 2.1.
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3. On 4p � 1 factorization

has no relation to H� D (X)). Heuristically, these copies of F p behave
independently, so by the argumentation in Section 3.3.2, the estimated
probability that one iteration of the loop over xi 's in Algorithm 1 reveal
p is 1 � 2� h(� D) . Therefore the expected number of the times the loop
will have to be executed is close to

1

1 � 2� h(� D)
=

2h(� D)

2h(� D) � 1
.

Thus when h(� D) = 1, one iteration of the loop will work with proba-
bility around 1

2, but for a large h(� D), the probability is almost 1 and
the algorithm becomes almost deterministic. These claims are also
supported by an empirical evidence in Section 3.4.2.

Note that this is a better result than in both [Che] and [Shi], where
both twists are non-deterministically tested and the expected number
of execution times of the innermost loop is claimed to be around 4.

3.4 Time analysis and practical limits of the method

When we do not know D in advance, we could try to loop through
all possible values of D up to some bound. This yields the complexity
(D log n)O(1) [Che02], as the computation of the � D-th HP is expo-
nential in D, while all other parts of Algorithm 1 can be performed
in a time polynomial in log N and D. Compare this to Pollard's p � 1
method with complexity (Blog n)O(1) , where B is the largest prime fac-
tor of p � 1). When D is small (or known), this is polynomial in log N,
which is asymptotically much better than for any general classical
non-quantum algorithm.

This quickly becomes ine�cient for larger values of D, for several
reasons. The degree of the HPs grows quite fast, which complicates
both the computations in the ring Q and the computation of the HPs
themselves, and their coe�cients grow even faster, which might even-
tually become a memory problem.

It is possible to compute the H� D,N ( H� D modulo N) directly
[Sut11] without computing H� D , which signi�cantly decreases the
memory cost. For instance, H� D takes about 93 GB to store forD =
2093236031while H� D,N takes only 24 MB for 4096-bit N as the de-
gree of the H� D is 100000.
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3. On 4p � 1 factorization

The main practical limit is still the fact that the method is only
applicable to numbers of a special form. For expected density results
about these numbers, see Section 3.4.1.

3.4.1 The expected occurrence of factorable numbers

We will limit ourselves to the RSA case here, because it is probably the
most important application of integer factorization in the real-world.
Let us take a look at the expected frequency of factorable numbers.
First, let us assume that D is �xed and that p is a random 2b-bit integer,
so that 22b� 1 < p < 22b. The condition 4p � 1 = Ds2 is equivalent to
4p� 1

D being a square of an odd integer. Since

22b+ 1

D
<

4p � 1
D

<
22b+ 2

D

and the number of odd integer squares in the interval
� 22b+ 1

D , 22b+ 2

D

�
is

roughly

1
2

 r
22b+ 2

D
�

r
22b+ 1

D

!

�
2b� 2
p

D
, (3.2)

the number of possible 2b-bit primes such that the square-free part

of 4p � 1 equals D can be roughly estimated as 2b� 2
p

D
. Since the total

number of 2b-bit primes is around

22b

ln (22b)
�

22b� 1

ln (22b� 1)
�

22b

b
(3.3)

by the Prime number theorem [Gol73], we can roughly estimate that
the probability that a random 2b-bit prime is vulnerable to factor-
ization with respect to a given D is around bp

D �2b+ 2 (for D = 11 and

2b = 1024, this is around 2� 507).
Not let us consider all D's up to some bound B instead of a �xed D.

Summing up the easy inequalities 1p
k

< 2
p

k � 2
p

k � 1 for k = 1, . . . ,B

and adding 1p
1

+ 1p
2

to both sides yields

B

å
k= 1

1
p

k
< 1 +

1
p

2
� 2

p
2 + 2

p
B < 2

p
B.
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3. On 4p � 1 factorization

Now (3.2) implies that the number of possible 2b-bit primes such that
the square-free part of 4p � 1 equals D < B can be bounded by

B

å
D= 3

D � 3 (mod 8)
D is square-free

2b� 2
p

D
� 2b� 2

B

å
D= 1

1
p

D
< 2b� 1 �

p
B,

which together with (3.3) gives an estimate that the probability that
a random 2b-bit prime is vulnerable to factorization with respect to

some D < B is at most
p

Bb
2b+ 1 (for B = 254 and 2b = 1024, this is 2� 477).

3.4.2 Run-time statistics

Implementation details. We implemented 3 the algorithm in Sage, an
open-source computer algebra system. We note that to the best of
our knowledge there is no other implementation available for the
vulnerable primes based on the same principle at the time of writing
the article.

Since most of the mathematical utilities needed are already imple-
mented in Sage, the code is compact and easy to use (although it could
probably be optimized even more). The only subtlety was the need
to set the internal recursion limit to 20 000 in order to compute the
N-th division polynomial (for N much larger than 22048, this should
probably be increased even more).

Experiment. The factorization algorithm complexity is mainly de-
termined by the class number h(� D) � degree of the HP H� D . We
sampled the function h(� D) over the square-free discriminants � D
( D � 3 (mod 8)), so that we could measure the running time of the
algorithm with the smallest discriminant per given class number. To
practically measure the running time of the factorization algorithm,
we performed the following experiment. For each h(� D) 2 [1,1000],
we took the smallest absolute value of the discriminant � D found,
obtained by sampling as described above. For each discriminant, we
randomly generated three composites pq with both the vulnerable
prime p and a random prime q of bit-size b 2 f 256,512,1024,2048g.

3. Our implementation is available at https://crocs.fi.muni.cz/public/
papers/Secrypt2019 .
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