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ABSTRACT 

It has been recognized that the increase of atmospheric greenhouse gases (GHG) due to 

anthropogenic activities is causing changes in Earth’s climate. Coastal waterbodies such as 

estuaries, bays and lagoons together with the ecological and socio-economic services they 

provide, could be among those most affected by the ongoing changes on climate. Because of 

their position at the land-sea interface, they are subjected to the combined changes in the 

physico-chemical processes of atmosphere, upstream land and coastal waters. 

Particularly, climate change is expected to alter phytoplankton communities by changing their 

climate and environmental drivers, such as temperature, precipitation, wind, solar radiation 

and nutrient loadings, and to exacerbate the symptoms of eutrophication events, such as 

hypoxia, harmful algal blooms (HAB) and loss of habitat. 

A better understanding of the links between climate-related drivers and phytoplankton is 

therefore necessary for predicting climate change impacts on aquatic ecosystems. In this 

context, the integration of climate scenarios and environmental models can become a valuable 

tool for the investigation and prediction of phytoplankton ecosystem dynamics under climate 

change conditions. 

Here we present the case study of the Zero river basin in Italy, one of the main contributors of 

freshwater and nutrients loadings to the salt-marsh Palude di Cona, a waterbody belonging to 

the lagoon of Venice. To predict the effects of climate change on nutrient loadings and their 

effects on the phytoplankton community of the receiving waterbody, we applied an integrated 

modelling approach made of an ensemble of GCM-RCM climate projections, the hydrological 

model SWAT and the ecological model AQUATOX. 

Climate scenarios point out an increase of precipitations in the winter period and a decrease 

in the summer months, while temperature shows a significant increase over the whole year.  

Water discharge and nutrient load simulate by SWAT show a tendency to increase in the winter 

period, and a reduction during the summer months. AQUATOX predicted changes in the 

concentration of nutrients in the salt-marsh Palude di Cona, and variations in the biomass and 

species of the phytoplankton community. 
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1 GENERAL INTRODUCTION 

1.1 The science of climate change: current and future changes in the 

climate system  

In its Fifth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC 2013) 

identified human activities as the dominant cause of the observed warming since the mid-20th 

century. According to several independent studies, this position is shared by 90%-100% of 

publishing climate scientists (Cook et al. 2016). 

Human activities are altering the energy budget of the Earth by increasing the emissions and 

the resulting atmospheric concentrations of greenhouse gases (GHGs), and by reshaping the 

land surface at a global scale. Anthropogenic GHGs such as carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O), and chlorofluorocarbons (CFCs) in the atmosphere have 

continuously increased since the pre-industrial era (Fig. 1.1). Land-use practices, by affecting 

both the surface-energy budget and the carbon cycle, play an equally important role in climate 

change (Ludwig and Asseng 2006) (Pielke Sr. 2005). Since 1850, about 35% of GHGs emissions 

directly resulted from changes in land use, such as urbanization and agriculture (Foley et al. 

2005). 

As a result of these pressures, the overall climate system is undergoing an unequivocal and 

continuous warming (Fig. 1.2), with global surface mean temperatures that have been 

increasingly warmer in the last three decades, showing a warming trend of 0.85 ± 0.2 °C over 

the period 1880-2012 (IPCC 2013). To date, 15 of the 16 warmest years on record have 

occurred during the 21st century, with 2015 being the warmest year since record keeping 

began in 1880 (NOAA 2016).  

Multiple lines of evidence support this rapid increase in temperatures: on average, global sea 

level rose about 17 ± 3 cm in the last century, and the rate nearly doubled in the 21st century 

(Church and White 2006); Greenland and Antarctic ice sheets have lost mass (Bintanja et al. 

2013; Khan et al. 2014); Arctic sea ice has declined over the last decades (Maslowski et al. 2012; 

Parkinson and Comiso 2013); extreme heat events are becoming more common (Herring et al. 

2015); 
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It must be highlighted that, even though global warming and climate change are considered a 

global threat, they do not manifest geographic homogeneity. For example, regions like 

Western Europe and the Arctic are warming faster than the global average (van Oldenborgh 

et al. 2009; Zhang 2005). Thus, the resulting impacts of climate change can differ 

geographically. 

 

Fig. 1.1 – Atmospheric concentration of GHGs: Carbon dioxide, CO2 (green); Methane, CH4 (orange); Nitrous Oxide, N2O (red) 
(Hartmann, Tank, and Rusticucci 2013). 

 

Fig. 1.2 – Averaged global surface (land and ocean) temperature change. Colors indicate different datasets (IPCC 2013). 

Continued emissions of GHGs will sustain the rising trend of surface temperature over the 21st 

century (Fig. 1.3a), forcing climate change to continue for centuries (Karl 2003). Projected 

global average surface warming for the end of the century (2081-2100) relative to the average 
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over the period 1986-2015 are projected to be in the ranges of 0.3°C to 4.8°C (IPCC 2013), as 

shown in Fig. 1.3b. 

 

Fig. 1.3 – a) Past emissions of carbon dioxide (black), and future Representative Concentration Pathways (RCPs) (colored lines) 
and associated scenario categories of emissions, which summarize the wide range of emission scenarios published in the 
scientific literature. b) Global average surface temperature from 1950 to 2100 as determined by the simulations run for the 
IPCC AR5. Temperature trajectories are shown only for RCP 2.6 (blue line and area) and RCP 8.5 (red line and area) (IPCC 2013). 

 

Climate projections are plausible representations of future climate conditions and can be 

generated adopting a variety of approaches (Moss et al. 2010): incremental techniques, where 

climatic variables (e.g. temperature, precipitation) are changed by plausible amounts (Garg et 

al. 2013); spatial and temporal analogues in which monitored climate variables can be used as 

example of future conditions in another region or period (Ford et al. 2010); and climate system 

models (Fowler et al. 2007; Graham et al. 2007; Xu 1999). Climate models are powerful tools 

based on well-known physical processes that are used to simulate and explain the transfer of 

energy and material through the climate system, and the responses of the climate system to 

natural and anthropogenic forcing. Climate models are mainly used for making climate 

projections over the coming centuries and beyond (Cooney 2012; Ferguson 2010), indicating 

areas with higher chances to be warmer or cooler and wetter or drier than the present 

conditions. Different types of climate models exist. The simplest forms are the Energy Balance 

Models (EBMs), simple models focusing on the energetics and thermodynamics of the climate 

system. They attempt to find the balance between the energy input and output of the Earth 

system (North, Cahalan, and Coakley 1981). 

Atmosphere-Ocean General Circulation Models (AOGCMs) simulate the principal dynamics of 

the physical components of the climate system (atmosphere, ocean, land and ice), and are 
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used to make projections of the future based on GHG emissions and aerosol concentrations 

(Mechoso and Arakawa 2015). These models were used in the IPCC Forth Assessment Report 

(AR4) and are still widely adopted in climate impact studies. General Circulation Models (GCMs) 

portray the global climate as a three-dimensional grid with a spatial horizontal resolution of 

between 250 and 600 km. Regional Climate Models (RCMs) add further detail to GCMs 

(Rummukainen 2010). They increase the spatial resolution of a limited area of interest by 

capturing the fundamental climatic and morphologic features of that area. RCMs usually have 

a resolution as fine as 50 or 25 km. Recently, higher resolution RCMs have been developed, 

adopting spatial grids of 12.5 km to 8 km (Jacob et al. 2014). Earth System Models (EMSs) are 

the current the state of the art in climate modelling. They expand the potentialities of GCMs 

by simulating very important climate-related biogeochemical cycles such as the carbon cycle, 

the ozone cycle, or the sulphur cycle (Flato 2011). Climate models make use of GHGs and 

aerosol emission scenarios to make projections of possible future climate conditions. Emission 

scenarios are storylines describing how future populations totals, economic development and 

land use change might unfold (Arnell et al. 2004). The best known emission scenarios belong 

to the Special Report on Emission Scenarios (SRES) (Arnell et al. 2004), which were used in the 

IPCC Third Assessment Report (TAR) and AR4. Each SRES scenario is based on assumptions 

about future economic and technological development, which in turn influence greenhouse 

gas emissions, land use and other driving forces of climate change. The SRES scenarios are 

divided into four scenario families: A1, A2, B1, and B2. A brief description of the scenario 

families is portrayed in Table 1.1. 

Table 1.1 – The four SRES scenario families and the projected global average surface temperature by the end of the 21st century 
(IPCC 2000). 

 Economic Focus Environmental Focus 

Globalization 

A1 

Rapid economic growth 

1.4 – 6.4 °C 

B1 

Global environmental sustainability 

1.1 – 2.9 °C 

Regionalization 

A2 

Regionally oriented economic 
development 

2.0 – 5.4 °C 

B2 

Local environmental sustainability 

1.4 – 3.8 °C 
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Currently, a new process has been established for developing scenarios. Instead of starting 

with socio-economic scenarios from which emission projections are generated, as in the SRES 

scenarios, the new process starts from an emission trajectory and concentration by the year 

2100, and the consequent radiative forcing (W m-2), which describes the balance between 

incoming and outgoing radiation to the atmosphere caused by changes in atmospheric 

constituents (e.g. carbon dioxide). The central point of this concept is that each radiative 

forcing pathways can be achieved by various permutations of socio-economic and 

technological development circumstances (Moss et al. 2010). The new scenarios, defined as 

Representative Concentration Pathways (RCPs) (van Vuuren et al. 2011), are used in the IPCC 

AR5. RCPs are scenarios that specify concentrations and corresponding emissions, but do not 

directly refer to specific socio-economic trajectories like the SRES scenarios. RCPs do not 

describe fixed scenarios, as many different socio-economic trajectories can lead to the same 

level of radiative forcing. RCPs differentiate each other by the stabilization value of radiative 

forcing at the end of the 21st century. The IPCC selected four RCP scenarios from the published 

literature (Meinshausen et al. 2011): RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5. A brief description of 

these RCP scenarios is portrayed in Table 1.2. 

Table 1.2 – RCPs global warming increase projections (van Vuuren et al. 2011). 

  2046 – 2065 2081 – 2100 

Scenario Radiative Forcing (W m-2) Mean and likely range 
(°C) 

Mean and likely range 
(°C) 

RCP2.6 2.6 1.0 (0.4 to 1.6) 1 (0.3 to 1.7) 

RCP4.5 4.5 1.4 (0.9 to 2.0) 1.8 (1.1 to 2.6) 

RCP6.0 6.0 1.3 (0.8 to 1.8) 2.2 (1.4 to 3.1) 

RCP8.5 8.5 2.0 (1.4 to 2.6) 3.7 (2.6 to 4.8) 

 

It is important to highlight that both climate and emission scenarios cannot be considered as 

predictions or forecasts but merely as possible future outcomes, as no probability or 

likelihoods of happening are assigned to them (Nakicenovic and Swart 2000). This feature 

raised several critiques, as many scientists stated the necessity to have probability estimates 

to correctly assess climate change risks resulting from different scenarios (Webster et al. 2003).   



26 
 

1.2 The effects of climate change on nutrients and phytoplankton of 

coastal aquatic ecosystems and modeling methods of assessment 

In its last report, the IPCC documented a plethora of effects at the global, regional and local 

scale. Current climate change and global warming are causing changes in temperature, sea 

level, precipitation patterns, frequency of droughts and other extreme events, air-water 

circulation patterns, food security, ecosystem health and species distribution, and human 

health (IPCC 2014b). The sustained warming of the last decades and the resulting changes in 

climate will exacerbate existing risks and create new ones by acting both on the magnitude of 

hazards (e.g. floods, sea level rise, air pollution, pollutant loadings), and on the exposure and 

vulnerability of targets (humans or ecosystems). In general, the effects of climate change will 

be mostly disadvantageous, even though some regions of the planet may benefit from these 

changes (Smith et al. 2009). 

Potential impacts of climate change on the hydrology and water availability have received 

much attention in the last decades (Arnell 1999, 2003; Haddeland et al. 2014; Steele-Dunne et 

al. 2008). On the other hand, much less focus has being placed on the concomitant changes in 

water quality (Whitehead et al. 2009). In its previous reports, the IPCC did not cover the topic 

of water quality with great detail. 

Many aquatic ecosystems such as lakes, estuaries and coastal waterbodies (e.g. lagoons, salt-

marshes, etc.) are affected by direct anthropogenic pressures (e.g. overloads of nutrients, 

release of contaminants, etc.) originating mainly from land-based human activities. Until 

recently, the impacts of climate change and direct anthropogenic pressures on ecosystems 

have been discussed separately (Schiedek et al. 2007), and the awareness and number of 

studies on the combined impacts of climate- and non-climate-related drivers increased only in 

the last decade (Noyes et al. 2009; Schiedek et al. 2007; Stahl et al. 2013; Wakelin et al. 2015). 

In particular, the combined effects of climate change and nutrient availability may severely 

affect aquatic ecosystems over the 21st century, especially those of coastal areas. Coastal 

zones are among the most productive ecosystems on Earth and are providers of a wide range 

of resources and services for human activities (UNEP 2006). Given their global importance, 
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coastal aquatic environments became a major concern regarding the potential impacts of 

climate change (Christopher D. G. Harley et al. 2006). 

Phytoplankton is responsible for a large share of photosynthesis and primary production of 

coastal areas, and plays an essential role in several biogeochemical cycles such as carbon, 

nutrient and oxygen cycles (Paerl and Justic 2011). Furthermore, it is at the base of every 

aquatic food web, and changes in its processes, dynamics and composition have repercussions 

on both the environment and higher trophic levels (Hernandez-Farinas et al. 2014; Schloss et 

al. 2014). 

Nowadays, coastal areas are recognised as being particularly vulnerable to future global 

climate change. They are already subjected to multiple anthropic pressures such as population 

growth and land-use alteration (Lloret, Marín, and Marín-Guirao 2008). The rapid urbanization 

and industrialization, together with the conversion of natural land to agricultural purposes, has 

increased the loading of nutrients discharging into coastal waters, causing cascading impacts 

on water quality and ecosystems, and consequent impairments to ecosystem services. 

Considering this, additional stress from climate change might further exacerbate existing 

pressures as well as creating new ones, with evident consequences for aquatic ecosystems 

(Rabalais et al. 2009).  

Changes in climate may directly impact on coastal aquatic ecosystems through large scale 

changes in the chemical and physical conditions, such as temperature, stratification, and 

acidification (Hoegh-Guldberg and Bruno 2010). For example, the distribution, abundance, and 

structure of phytoplankton communities as well as their phenology and productivity, are 

changing in response to warming, acidifying, and stratifying waters (Hunter-Cevera et al. 2016; 

Lassen et al. 2010; Weisse, Gröschl, and Bergkemper 2016). Sea level rise might have further 

important consequences on coastal ecosystems, especially in those of shallow waters. For 

example, shallow lagoons can have well-developed benthic microalgae communities that can 

contribute to a major portion of the fixed carbon in the system (Parodi and De Cao 2002). In 

the case of sea level rise, microalgae are expected to capture a smaller proportion of the solar 

radiation due to the stronger light attenuation in the water column (Brito et al. 2012). 
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In addition, climate-related changes in the availability of nutrients may also affect coastal 

primary producers. The nutrient supply, together with solar radiation and temperature, 

controls phytoplankton dynamics. There is scientific evidence that climate change will affect 

nutrient availability by altering sources, transport and fate of nutrients, with consequent 

effects on aquatic ecosystems (Boxall et al. 2009). First, the use of industrial fertilizers may 

increase in order to cope with an increasing food demand (Tilman et al. 2011), changes in 

temperature and precipitation (Howden et al. 2007), and harsher environmental conditions 

(Abberton et al. 2016) such as the decrease in soil organic carbon caused by raising 

temperatures (Brevik 2013; Follett et al. 2012; Kirschbaum 1995), and the increased leaching 

and runoff of water and nutrients due to the expected greater occurrence of extreme events 

(Aydinalp and Cresser 2008; Ludwig and Asseng 2006). On the other hand, factors such as: 

increased production costs of fertilizers due to high-demand and depletion of nitrogen, 

phosphorus and potassium reserves (Blanco 2011); application of good agricultural practices 

(GAPs) and integrated nutrient management (INM) (Moustache 2017); and enhanced nutrient 

uptake by the plants caused by the CO2 fertilization effect in some regions of the planet (Kanter 

et al. 2016) might balance out the increase fertilizer usage.  

Second, nutrient loads are expected to increase over the 21st century due to climate change 

(Bouraoui, Galbiati, and Bidoglio 2002; Huttunen et al. 2015; Jeppesen et al. 2009). Effects of 

climate change on the hydrologic cycle alter those physical processes (e.g. runoff, leaching, 

percolation, water retention time, evapotranspiration) that regulate the transport of nutrients 

from land to water bodies (Alam and Dutta 2013; Culbertson et al. 2016; El-Khoury et al. 2015; 

Ockenden et al. 2016). Increased temperature can accelerate nutrient mineralization from 

organic matter in the soil and applied manure (Eghball et al. 2002), thereby increasing the 

amount of inorganic forms of nitrogen and phosphorus. Decrease in precipitation could reduce 

river flow and nutrient loadings, but it will simultaneously reduce the dilution of nutrients 

(Whitehead et al. 2009). In addition, drier summers may lead to long periods of soil moisture 

deficits, leading to increased hydrophobicity of the soil surface, with increased runoff when 

the wet season comes (Boxall et al. 2009). Prolonged droughts may also increase the number 

of soil cracks, which will favor the percolation of water and mobile forms of nutrients (i.e. 
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nitrates, NO3
-) through the soil profile, thereby reducing the quality of streams and 

groundwater (Green et al. 2011). Increased winter precipitation and more frequent and 

extreme flood events during summer will increase runoff and associated wash-off of organic 

matter and fertilizers, thereby contributing to the increase of nutrient contamination of water 

bodies (Jeppesen et al. 2009; Najafi and Moradkhani 2015; Sterk et al. 2016; Whitehead et al. 

2009).  

Finally, climate change will also impact atmospheric depositions. Volatile forms of nutrients 

such as ammonia can be transported in the atmosphere through a combination of 

volatilization and dispersion processes, which are dependent on soil properties, air 

temperature and wind, all of which are predicted to change over this century (Hole and 

Engardt 2008). Drier summers could also increase the dry transport of nutrients. Increased 

drying of the soil could facilitate the transport of fine sediment in the form of dust (Zobeck and 

Van Pelt 2006). 

The sum of these changes can significantly alter the nutrient ratio in coastal waters. Redfield 

(1934) found a remarkable consistency between the proportion of nutrients in seawater and 

the chemical composition of marine phytoplankton, which tends towards an average atomic 

weight C:N:Si:P ratio of 106:16:15:1, known as the “Redfield Ratio”. However, the conditions 

of coastal water are not constant, and so is the ratio, which is modulated by several factors 

such as nutrient loading, oceanic inputs and groundwater (Paerl and Justic 2011; Zirino et al. 

2016a). In these conditions, the limiting nutrient, defined as the element in least supply 

relative to the requirements for growth of phytoplankton cells (Davidson, Flynn, and 

Cunningham 1992), is not well-defined. Although in estuaries and coastal areas nitrogen (N) 

has been identified as the limiting nutrient (Elmgren and Larsson 2001; Howarth and Marino 

2006), “co-limited” or “alternate” conditions of nitrogen N and P are commonly observed 

(Malone et al. 1996; Paerl et al. 1995). Changing climate conditions and modified nutrient 

ratios may significantly alter the phytoplankton community and generate the conditions for 

water quality problems in coastal environments. 

In particular, numerous studies predict an increase in eutrophication events (Justić, Rabalais, 

and Turner 2005; Paerl 2006) and related symptoms, such as elevated biomass (Cadée and 
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Hegeman 2002), harmful algal blooms (HABs) (Davidson et al. 2014; Paerl and Huisman 2008; 

Wells et al. 2015), reduced water quality, loss of biodiversity, and hypoxia (Glibert et al. 2014; 

Paerl and Paul 2012; Rabalais et al. 2009). Eutrophication occurs as a result of complex 

interactions between numerous factors (Jeppesen et al. 2005). The increased loadings of 

nutrients from coastal watersheds, combined with higher temperatures, increased rates of 

biological processes and mineralization (Pörtner and Knust 2007), enhanced stratification 

(Blanchard et al. 2012), changes in wind regional patterns (Chan et al. 2008), and the decrease 

of wetlands associated with sea level rise (Blankespoor, Dasgupta, and Laplante 2012) will all 

contribute to trigger eutrophication events more frequently. Eutrophication poses already a 

great threat to the  integrity of coastal ecosystems and climate change may further escalate 

its effects in the future decades (Rabalais et al. 2009). 

This justifies the interest and necessity for a better understanding of the links between climate-

related drivers and primary producers for predicting the effects of climate change on the state 

and functioning of aquatic ecosystems (Ho and Michalak 2015; Wells et al. 2015). In this 

context, the integration of climate scenarios and process-based environmental models can 

become a valuable tool for the investigation and prediction of aquatic ecosystem dynamics 

under climate change conditions. Supported by empirical studies, these approaches can 

contribute to better represent the processes and interactions between climate, abiotic and 

biotic factors regulating phytoplankton dynamics and its community structures. The adoption 

of model-based methodologies in order to assess environmental responses to climate change 

has recently become more popular (Guse et al. 2015; Taner, Carleton, and Wellman 2011; 

Trolle et al. 2011). In the last decades, the adoption of process-based models have become a 

popular tool for assessing the impacts of climate change on hydrologic and abiotic components 

of aquatic systems (Vohland et al., 2014). Most modelling studies have analysed the impacts 

of climate change on single environmental aspects. For example, hydrologic, water quality and 

rainfall-runoff and sediment transport models are among the preferred and most used tools 

to assess the likely impacts of climate change on watershed hydrology (Amin et al. 2017; Leta 

et al. 2016; Trinh et al. 2017), loadings of nutrients (Huttunen et al. 2015) and sediments (Bussi 

et al. 2016; Samaras & Koutitas 2014), and water quality (Wilby et al. 2006). A number of 
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hydrologic models have been applied to climate change impacts studies, such as SWAT (Arnold 

et al. 1998), CE-QUAL-W2 (Cole and Buchak 1995) and BASINS (EPA 2015). These models are 

selected for a number of specific reasons: physical processes are well understood and 

simulated; required data are generally limited and easily available; computational 

requirements are low, even for long-term simulations, allowing the user to implement climate 

and land use change scenarios; and the majority of available tools and models is open-source 

and freely available on the internet.  

Models are also useful tools to study the potential conditions of ecosystems under different 

pressures, such as future climate and nutrient loadings. In 2002, IPCC stated that most 

ecosystem models are not suitable to project changes on biodiversity and ecosystems. 

However, since that time a number of studies have been submitted to the scientific literature. 

To date, the number of studies that apply process-based ecosystem models to assess the 

impacts of global change on biological processes focuses mostly on lakes (Mooij et al. 2010). 

In the last years more studies on other types of water bodies appeared in the scientific 

literature (Brito et al. 2012; Bussi, Whitehead, et al. 2016; Guse et al. 2015; Rodrigues et al. 

2015; Wakelin et al. 2015). A number of ecosystem models have already been applied to 

climate change impact assessment studies, such as EwE (Hoover, Pitcher, and Christensen 

2013; Watson et al. 2013), AQUATOX (Taner et al. 2011), PCLake (Mooij et al. 2007; Mooij, De 

Senerpont Domis, and Janse 2009), ECO-SELFE (Rodrigues et al. 2015), DYRESM-CAEDYM 

(Schlabing et al. 2014), POLCOMS-ERSEM (Wakelin et al. 2015)  and PROTBAS (Markensten, 

Moore, and Persson 2010). 

The integration of climate, hydrologic, and ecosystem models provides a means to deal with 

the complex and interrelated nature of recent global environmental change problems, and 

help to explain, explore, and predict environmental-system response to natural and human-

induced stressors (Laniak et al. 2013). Traditionally, environmental models have been applied 

to assess the impact of a single pressure in a single environmental medium. Today this 

approach is no longer considered as sufficient for effective decision-making in environmental 

matters.  It is recognized that a comprehensive approach, able to model the environment and 

its physico-chemical and biological processes, as well as the exposure to environmental 
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pressures and the consequent responses of ecosystems, is required to assess and address 

environmental problems (EPA 2008; Laniak et al. 2013). 

EPA (2008, 2009) defines integrated modeling as "a systems analysis-based approach to 

environmental assessment. It includes a set of interdependent science-based components 

(models, data, and assessment methods) that together form the basis for constructing an 

appropriate modeling system. The constructed modeling system is capable of simulating the 

environmental stressor-response relationships relevant to a well specified problem 

statement". 

The integrated modeling approach is fundamental for describing the complexity of 

environmental systems and can provide a better understanding of the links among the 

components that characterise an environmental problem. The adoption of this approach aims 

to significantly improve the effectiveness of decisions and to provide a comprehensive 

outcome able to positively impact management actions and policies (EPA 2009). The concepts 

of the integrated modeling approach are being applied to an increasing number of 

environmental problems but several challenges that limit their application still exist. In the 

context of combined impacts of climate change and nutrient loadings in aquatic ecosystems, 

an integrated modeling approach should adopt tools able to foresee changes in climate 

variables (i.e. climate models), as well as non-climate-related drivers (e.g. land-use change 

models), and link them to impact assessment tools such as hydrologic and ecosystem models. 

Section 1.3  illustrates the “model cascade” approach, an integrated modelling method 

commonly adopted the field of climate change impact assessment. 

 

1.3 The adoption of the “model cascade” approach to model climate 

change impacts on nutrients and aquatic ecosystems 

Kiesel (2009) defines a “model cascade” as a sequence of combined models where one model 

provides the input for another model. In climate change impact assessment studies, a model 

cascade is a top-down approach that usually starts with socioeconomic assumption for the 

development of global greenhouse gas emission scenarios, continues to the impact of GHGs 
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and aerosols on the global climate system, up to the impacts of climate change on the abiotic 

and biotic compartments of the environment. A common representation of a model cascade 

in shown in Fig. 1.4. The approach is characterized by a number of assumptions and related 

uncertainties that tend to expand at each step of the process to the extent that information 

on potential impacts might be unhelpful (Maslin 2013; Wilby and Dessai 2010) as shown in  Fig. 

1.5. 

 

Fig. 1.4 – Conceptual representation of a “model cascade”. Socioeconomic, Geochemical, Climate, Hydrologic, and Ecosystem 
models are involved. 
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Fig. 1.5 – The cascade of uncertainty in a top-down approach. Every step of the process brings some degrees of uncertainty, 
from future scenarios to hydrological models (Wilby and Dessai 2010). 

 

A series of considerations and assumptions can be made for each step of the model cascade. 

The model cascade generally starts from the generation of climate scenarios. Here, 

uncertainties arise from different sources. First, climate models are based on our best 

understanding of how the earth-climate system works, and still contain assumptions for 

processes that are not entirely known, for example cloud formation (Charlson 2001). Second, 

climate models differ from each other for technical reason, or simulate physical processes in 

different ways (Wiens et al. 2009).  Third, they are based on inadequate resolutions for impact 

assessment studies. The resolution of GCMs is generally too coarse for most climate impact 

assessment studies, and information on the future climate on a scale as close as possible to 

the size of the impact area should be provided (Maslin 2013). Different method to increase 

the spatial resolution of climate projections exist. Currently, the most used are the nesting of 

RCMs into GCMs (Wilcke and Bärring 2016) and statistical downscaling (Flint and Flint 2012). 

Even though RCMs and downscaling can improve the resolution of GCMs, some systematic 

errors may still exist. Systematic errors in regional climate models are caused by an imperfect 

conceptualization of the area and can increase the error in impact assessment studies (Villani 

et al. 2015). In order to reduce the bias, post-process methods can be applied to the output of 

RCMs. Several bias correction methodologies exist and have been applied in the literature to 
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solve the problems presented in the output of RCMs (Chen, Brissette, and Lucas-Picher 2015; 

Haerter et al. 2011). 

Hydrological models such as rainfall-runoff water quality models are based on well-known 

physical processes. However, results from these models are strongly dependent on the 

availability, quality and resolution of input data and their parameterization (Liu and Gupta 

2007). The quality of results is also dependent on the way calibration is performed and on the 

quality of time-series of monitoring data used in the calibration process. 

Finally, ecosystem models are strongly dependent on the input from hydrological models. For 

example, model-simulated eutrophication events are heavily influenced by nutrient input from 

hydrological models and weather conditions provided by climate models. Moreover, 

ecosystems are rarely closed systems, and continuously interact with the surrounding 

environment. Models struggle with this aspect, as it is impossible to predict all the external 

factors that may influence an ecosystem over a long period of time (Littell et al. 2011). Finally, 

in a period of global change, ecosystems are continuously affected by a wide number of 

stressors and it becomes difficult to identify the correct cause-effect relationship (Stahl et al. 

2013). 

In conclusion, the adoption of model-based methodologies in climate change impact 

assessment can provide useful information for adaptation management decisions, even 

though these studies are still characterised by a high degree of uncertainty. The integration of 

models can generate knowledge and information that can be used to explain, explore, and 

predict the behavior of environmental systems in response to human and natural pressures 

(Laniak et al. 2013). Given model’s intrinsic state of not being completely defined and clear, 

and the impossibility to provide a perfect representation of the phenomena they model, model 

output should be analysed and included in a wider decision-making context in order to gain 

useful insight for the management of environmental pressures (Vohland et al. 2014). 
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1.4 Research aim 

This dissertation attempts to develop and apply an integrated modeling approach to study the 

impacts of climate change on nutrient loadings and the consequent effects on the first trophic 

level of coastal aquatic ecosystems over the 21st century.  The overall aim of this study is to 

develop an approach for assessing potential long-term effects of climate change on the 

productivity and community structure of coastal phytoplankton at a catchment scale. The 

approach can investigate the consecutive impacts of climate change along the land-water 

continuum, from climate-related impacts on stream flow and nutrient loadings, to direct 

influence of temperature changes on coastal waters. This approach consists of climate 

scenarios and tools able to provide climate data suitable for impact assessment studies, and 

two separate environmental models used to depict the physico-chemical and biological 

characteristics of a watershed and of the receiving waters of a coastal environment. This study 

is a further attempt to integrate climate scenarios and tools with environmental models to 

assess the responses of coastal aquatic ecosystems. The main objective of the study is to 

present the approach, illustrate its applicability through a local case study, and discuss 

strengths, limitations and areas of improvement. Specific objectives are: 

▪ To develop and apply an integrated modelling approach that allows for the assessment 

of the impacts of climate change on the Zero river basin (ZRB) and the salt-mars 

“Palude di Cona” (PDC), Italy. 

▪ To select an ensemble of future climate scenarios for the 21st century, and optimize 

their use for hydrological and ecosystem modelling. 

▪ To develop a process-based hydrological model of ZRB, that allows for the assessment 

of climate change on the hydrology and nutrient loading. 

▪ To implement an ecosystem model for the phytoplankton of PDC. 

▪ To provide an assessment of the projected changes in climate, temperature (T) and 

precipitation (P) on the study area over the 21st century. 

▪ To assess the impacts of climate change on nutrients and coastal phytoplankton 

community of the area of study over the 21st century. 

▪ To carry out a variability analysis of the future impacts of climate change on nutrient 

loadings and coastal phytoplankton communities. 
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1.5 Outline of the dissertation 

The dissertation is organized as follows: Chapter 2 describes the study area. It focuses on 

climate, morphological and geological aspects, land use and hydrology of the area. Chapter 3 

describes the methodological approach and its implementation on the Zero river basin and the 

receiving waters of Palude di Cona, a salt-marsh located in the northern basin of the Lagoon 

of Venice. Chapter 4 presents the results of the study. First, it presents the results of calibration 

of SWAT and AQUATOX. Second, it shows the projected changes for temperature (T) and 

precipitation (P) on the Zero river basin by the mid (2041-2070) and end of this century (2071-

2100). Finally, it presents the projected changes in freshwater discharge, nutrient loadings, 

and the consequent impacts on the ecosystems. Chapter 5 presents an overall summary of the 

study and a discussion of the current research findings, acknowledges strengths and 

limitations of the study, and provides insight for future research in the field. 
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2 STUDY AREA 

2.1 Location and overview 

This chapter presents the case study of the Zero river basin (ZRB) and the shallow water area 

named “Palude di Cona” (PDC), which belong to the land-water continuum of the Venice 

Lagoon Watershed (VLW), in Italy (Fig. 2.1). The ZRB is located between latitudes 45°28’N and 

45°48’N, and longitudes 11°54’E and 12°25’E. It has a surface area of 140 km2 and its waters 

flow eastward with an elevation decline from 110 m to 1 m above sea level. The Zero river 

merges with the Dese river 2 kilometers from the coast before flowing into the lagoon of 

Venice from different outlets. The two rivers together provide the greatest contribution of 

freshwater (21% of the total) to the lagoon of Venice (Zuliani et al. 2005). The ZRB is described 

in Section 2.3. PDC is a shallow water area in the upper-north basin of the lagoon of Venice 

(latitude of 45°31’N and longitude of 12°24’E) that maintained its original salt-marsh features 

over the centuries. PDC is described in Section 2.4. 

 

Fig. 2.1 - The study area consists of the Zero river basin (ZRB, orange) and Palude di Cona (PDC, green), a shallow marsh area 
in the upper-north area of the Venice Lagoon Watershed (VLW). 

 



39 
 

2.2 Climate 

Due to its transitional position and the several climatic influences involved (i.e. the effects of 

the Mediterranean Sea, the orography of the Alps, the Continental climate of Central Europe, 

and the Azores High) the area of the VLW features a Mediterranean climate with unique 

characteristics typical of more Continental climates (Guerzoni and Tagliapietra 2006). Mild 

winters and dry summers, typical of Mediterranean climates, are replaced by cold winters and 

summers with frequent storms. The area shows a clear climatic gradient from the watershed 

to its lagoon. As shown in Fig. 2.2, the climate of the lagoon is characterized, on average, by 

warmer (+1° C) and drier (-250 mm of rain) conditions. The region of the VLW has a marked 

inter-annual climate variability, which can originate years climatologically very different from 

each other. 

 

Fig. 2.2 – Average temperatures (°C) and isopluvial curves (mm/year) for the 2001-2003 period in the VLW  (Guerzoni and 
Tagliapietra 2006). 
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As temperature and precipitation are considered the most important climate variables in 

climate change studies, they are thoroughly described in sections 2.2.1 and 2.2.2. Sections 

2.2.3 and 2.2.4 describe the wind components (i.e. speed and directions) and the solar 

radiation of PDC, as they are important climate variables for phytoplankton dynamics. The 

location of the weather stations is shown in Fig. 2.3. In this study, the weather stations 

“Castelfranco Veneto”, “Zero Branco”, “Mogliano Veneto” describe the climatic profile of the 

ZRB, while the weather station “Venezia – Istituto Cavanis” is deemed as representative of the 

climate of PDC. The selected weather stations belong to and are managed by the 

meteorological service of the Regional Environmental Protection Agency (ARPAV). 

 

 

Fig. 2.3 – Position of the weather stations selected for this study. The weather stations “Castelfranco Veneto”, “Zero Branco”, 
and “Resana” (blue dots) are used to describe the climate of the ZRB, while the weather station “Venezia – Istituto Cavanis 
(green dot) are used to describe the climate of PDC. 

PDC 

ZRB 
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2.2.1 Temperature 

Temperature along the ZRB-PDC land-sea continuum features an annual average of 14 °C in 

the period 2004-2013, and shows the typical temperature gradient characterizing the VLW, 

with temperatures increasing of 1 °C from the north-western part of the basin to the coast (Fig. 

2.4). The lowest temperatures occur in the months of January and December, with 

temperatures at an average of 4 to 5 °C, while the warmest months are July and August, with 

monthly averages around 25 °C (Fig. 2.5). The temperature gradient between the north-

western part of the ZRB and PDC is always observed throughout the year, but it appears less 

marked during the summer period.  

 

Fig. 2.4 – Average temperature by year (°C) in the decade 2004-2013 for four weather stations considered in the study. Data 
source: ARPAV – Servizio Meteorologico. 

 

Fig. 2.5 – Average temperature by month (°C) in the decade 2004-2013 for the four weather stations considered in the study. 
Data source: ARPAV – Servizio Meteorologico. 
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2.2.2 Precipitation 

The precipitation along the ZRB-PDC land-sea continuum features an annual average of 1000 

mm for the period 2007-2012. The precipitation shows the climatic gradient of the area, with 

more precipitation in the north-eastern part of the basin with respect to the lagoon (Fig. 2.6). 

There is marked variability in precipitation among years, with very wet years (2008, 2010) and 

dry years (2011, 2012). Precipitations are generally well distributed throughout the year, with 

peaks in spring and autumn and minimums during the winter and summer periods (Fig. 2.7). 

Summers are frequently characterized by intense storms of short duration (Guerzoni and 

Tagliapietra 2006).  

 

Fig. 2.6 – Total rainfall by year (mm) in the decade 2004-2013 for the four weather stations considered in the study. Data 
source: ARPAV – Servizio Meteorologico. 

 

Fig. 2.7 – Average precipitation by month (mm) in the decade 2004-2013 for the four weather stations considered in the study. 
Data source: ARPAV – Servizio Meteorologico. 
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2.2.3 Wind speed and direction 

Wind speed in the lagoon of Venice has an annual mean that varies between 1.4 to 1.9 m/s 

(Fig. 2.8) for the decade 2004-2013, and shows a low variability throughout the year (Fig. 2.9). 

The most common wind direction is from north-east (NE), followed by south, east, north and 

south-east. Winds from NE are dominant for 7-8 months of the year, from October until May, 

while winds from SE dominate during summer. The strongest prevailing winds of these two 

regimes are the Bora (NE) and the Sirocco (SE), which influence the dynamics of the system 

Adriatic Sea/Lagoon of Venice (Lovato et al. 2010). 

 

Fig. 2.8 – Average wind speed by year in Palude di Cona. Measures refer to the weather station “Venezia – Istituto Cavanis”. 
Data Source: ARPAV – Servizio Meteorologico. 

 

Fig. 2.9 – Average wind speed by month in Palude di Cona. Measures refer to the weather station “Venezia – Istituto Cavanis”. 
Data Source: ARPAV – Servizio Meteorologico. 
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2.2.4 Solar radiation 

Annual average solar radiation in the lagoon of Venice is 14.1 MJ/m2 over the decade 2004-

2013 (Fig. 2.10). Given its latitude (45.3° N), solar radiation reaches its peak of 25 MJ/m2 in 

the months of June and July, and lowest of 5 MJ/m2 in the winter time (Fig. 2.11). 

 

 

Fig. 2.10 – Average solar radiation by year in Palude di Cona. Measures refer to the weather station “Venezia – Istituto 
Cavanis”. Data Source: ARPAV – Servizio Meteorologico. 

 

 

Fig. 2.11 – Average solar radiation by month in Palude di Cona. Measures refer to the weather station “Venezia – Istituto 
Cavanis”. Data Source: ARPAV – Servizio Meteorologico. 
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2.3 The Zero river basin 

2.3.1 Morphological and geological aspects 

The region of the ZRB is located in the Venetian floodplain, as represented in Fig. 2.12. This 

area of the floodplain consists mainly of depositions from the rivers Brenta, Piave and Musone 

(ARPAV 2001). Sediments are predominantly dominated by carbonates, with differences in 

percentage depending on the river from which they originate. There is a progressive 

granulometric differentiation of the sediment from the “high plain” (north-west) to the “low 

plain” (south-east). The high plain consists mainly of coarse gravel with a sandy matrix. The 

sections further downstream are progressively characterised by sandy-silty-clay sediments 

(ARPAV 2004a). 

 

Fig. 2.12 – Depositional systems of the Venetian floodplain. Legend: B – Brenta river floodplain; P – Piave river floodplain; A – 
Adige river floodplain; M – Musone river floodplain; D – coastal and lagoon plain; T – Tagliamento river floodplain; Z – Alps, 
Prealps and moraine hills. Source: adapted from (ARPAV 2004b). 

 

The ZRB has a surface area of 140 km2 and its waters flow eastward with an elevation decline 

from 110 m to 1 m above sea level (Fig. 2.13). Approximately 93% of its surface has an 

inclination between 0 and 2%, and only 2% of the surface has an inclination above 5%. This 
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makes the morphology of the basin mainly flat. The steeper slopes can be found at the feet of 

the hilly area “Colli di Asolo”, at the head of the basin. The region between the high plain and 

the low plain, defined as “media Pianura Veneta”, is also characterized by the natural 

phenomenon of springs, which takes place in the area called “spring belt” (Fig. 2.13). The 

distance between the water table of the unconfined aquifers and the surface decreases with 

distance downstream, ranging from 50 m to less than 1 m deep. When the water table 

intersects the surface, a spring is generated. 

 

Fig. 2.13 – The Zero river basin is located at an altitude that goes from 110 m to 1 m above sea level. The central area is 
characterised by a spring zone, which influences the hydrology of the basin. 

The morphology and characteristics of the sediment, together with the local climate and 

human activities, are the main factors in the pedogenesis of the soils of the ZRB. The soils of 

the VLW are classified in “districts”(ARPAV 2004a), as shown in Fig. 2.14. 

The high plain is characterized mainly by soils of the Piave and Musone floodplains, while the 

remaining surface, the medium and low plain, is made of soil of the Brenta floodplain. The soils 

of the Piave floodplain are characterized by profiles with well-marked horizons. Superficial 

horizons are strongly decarbonated due to runoff and leaching. Clay is transported in depth, 

forming a clear clay horizon. Typical soils of the Musone floodplain show well-marked horizons. 

Colli di Asolo 

High plain 

Low plain 
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Horizons tend to be decarbonated at the surface, with carbonate concretions (calcic horizon) 

in the deeper horizons caused by the percolation of carbonate-rich waters. Also, some of these 

soils feature a coarse texture also in the superficial horizons, due to agricultural management 

practices (i.e. tillage). 

 

 

Fig. 2.14 – Subdivision of the Venice lagoon Watershed in soil districts. B – Brenta river floodplain; P – Piave river floodplain; A 
– Adige river floodplain; M – Musone river floodplain; R – Spring rivers floodplain; D – Coastal area; S – Asolo Hills; E -Euganei 
Hills. (ARPAV 2004a) . 

 

The soils of the Brenta floodplain belong to the ancient part of the plain. The strong 

pedogenesis of the area generated soil with decarbonated superficial horizons. Carbonates 

accumulate in the deeper horizons. Moving downward, texture becomes progressively finer. 

Soils with loamy textures are characteristic of the northern zone of the floodplain, while loamy 

textures are common in the central area. Finally, silt-clay-loam textures are typical of soils 

bordering the lagoon of Venice. Generally, soils of the Brenta floodplain tend to be poorly 

drained, resulting in a superficial water table, usually within a depth of 150 cm. 
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2.3.2 Land use in the Zero river basin 

The ZRB features distinct suburban traits. The vegetative cover consists mainly of agricultural 

crops, while forested areas are present only sporadically and in the forms of hedges and tree 

rows. The land use of the ZRB shows the typical characteristics of the VLW (Fig. 2.15a and b) 

(ARPAV 2009). Agricultural areas in the ZRB represent 73% of the total surface, while the 

remaining surface of the basin is covered by artificial (24%), semi-natural1 and forested areas 

(4 %) (Fig. 2.15b). 

 

Fig. 2.15 –  Comparison between the land uses of the VLW and the ZRB. (a) Main land uses of the VLW. (b) Main land uses of 
the ZRB  (ARPAV 2009). 

                                                      
1 Any area where human induced changes can be detected or that is human managed, but that still features the 
characteristics of a natural habitat (EEA 2006). 

Agricultural area
72%

Artificial surfaces
24%

Forests and semi-
natural areas

3%

Wetlands
1%

Waterbodies
1%

Land use of the VLW (a)

Agricultural area

Artificial surfaces

Forests and semi-natural areas

Wetlands

Waterbodies

Agricultural area
73%

Artificial surfaces
24%

Forests and semi-
natural areas

4%

Land use of the ZRB (b)

Agricultural area

Artificial surfaces

Forests and semi-natural areas



49 
 

Agricultural areas are dominated by industrial crops. The most widespread crop is corn (Zea 

mays L.), followed by soy (Glycine max L.), and autumn-winter cereals such as winter wheat 

(Triticum aestivum L.) and barley (Hordeum vulgare L.). A small percentage of the agricultural 

land is also used for the cultivation of beets and other permanent horticultural crops. In the 

north-western part there is a significant presence of livestock farms, with a density of 5 to 10 

farms per km2 (ARPAV 2009). The agricultural activities of the area input a substantial amount 

of chemical substances such as synthetic fertilizers and pesticides, and organic fertilizer (i.e. 

manure and urea). For this reason, the region of Veneto has implemented the European 

Directive on nitrates 1991/676/CEE, which aims at regulating the input of fertilizers, especially 

nitrogen fertilizers, from agricultural activities. 

Artificial surfaces are mainly represented by housing areas (54%), industrial businesses (32%) 

and transportation and services (14%). The north-western area of the ZRB is also characterized 

by the presence of surface-mining areas, to the detriment of agricultural land. Table 2.1 

illustrates a classification of the main land use categories in the Zero river basin based on the 

CORINE land-use classification system (EEA 2006). 

 

Table 2.1 – Classification of the main land use categories in the ZRB (ARPAV 2009). 

Land Use Relative % Absolute % 

ARTIFICIAL SURFACES 100  

Housing areas 54 13 

Industrial businesses 33 8 

Transportation and services 13 3 

AGRICULTURAL AREAS 100  

Corn 62 45 

Soy 18 9 

Autumn-Winter Cereals 13 13 

Pasture 8 6 

SEMI-NATURAL AND FORESTED AREAS 100  

Semi-natural areas 75 3 

Forested areas 25 1 
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2.3.3 Hydrology of the Zero river basin 

The zero river is 47 km long and originates near “San Marco di Resana”, located 32 metres 

above sea level. Along its way, the river collects the waters of numerous tributaries, the most 

important being the streams “Brenton del Maglio”, “Scolo Vernise” and “Rio Zermason” (Fig. 

2.16). The environment and the hydrology of the ZRB are heavily influenced by human 

activities and natural phenomena, that has given rise to a complex hydrologic network. 

Hydrology is influenced not only by climate and hydrologic events happening within its 

drainage area, but also by those occurring in the neighboring basins. Such a complex and 

dynamic situation poses a number of difficult challenges to hydrological and water quality 

modelling, which have been assessed in different studies (Essenfelder, Giove, and Giupponi 

2016; Giupponi et al. 2012). The basin is characterised by several hydraulic infrastructures and 

artificial channels developed to reclaim land for agricultural purposes, and to regulate the flow 

discharging into the lagoon of Venice  (CVN 2006). In case of emergencies, hydraulic nodes can 

divert a considerable fraction of peak flow outside the basin. Furthermore, spring waters 

originating in the surrounding areas influence the hydrology of the Zero river. The main 

contribution comes from the unconfined aquifer system located on the high plain (Servizio 

Acque Interne 2008). The spring water influx is highly variable along the year, and has a not 

entirely negligible influence over the hydrology of the Zero river. 

 

Fig. 2.16 – River network of the ZRB  (Adapted from ARPAV 2010). 
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2.4 Palude di Cona 

2.4.1 Morphological and geological aspects 

Palude di Cona is a shallow water area that preserved its original salt-marsh characteristics, 

located near the airport of Venice. It borders the ZRB on its north-western side and is 

surrounded by barene (salt-marshes) and velme (mudflats), typical ecological elements of the 

lagoon of Venice. A barena is the flat and silty emerged part of a salt-marsh, frequently covered 

by halophytic plants which are submerged during high tides. A velma is a shallow muddy area 

emerging during low tides.  The complex morphology and hydrodynamic of PDC make it an 

interesting natural laboratory to study the transfer and accumulation of nutrients and 

pollutants in the lagoon of Venice. The area is 4 km long, 0.9 km to 1.7 km wide, with a mean 

depth between 50 and 80 cm (Fig. 2.17). It is surrounded and crisscrossed by navigation 

channels that affect its hydrology. Surface sediments of PDC, made up of solid materials and 

fluid that were transported from the VLW to the lagoon, are dominantly of silt texture 

(Molinaroli 2006). Mud content (the incoherent material that includes all sediment particles 

less than 63 μm in size) in PDC is above 95% (MAV 1999). This reflects the effects of 

hydrodynamics on the sediment of the northern part of the lagoon, where small sediment 

particles are transported toward the landward side of the lagoon thanks to the strong current 

at the seaward inlets. 

 

Fig. 2.17 – Palude di Cona, situated in the northern basin of the Venice lagoon, is an ecologically important marsh area. The 
map shows the bathymetry and the channelization of the area. Colored boxes represent the depth of the bottom surface. Yellow 
lines indicate the navigation channels of the area (Guerzoni and Tagliapietra 2006). 
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2.4.2 Physico-chemical characteristics 

The physico-chemical characteristics of PDC, as those of the entire lagoon of Venice, are 

characterized by extreme diurnal fluctuations. However, it is possible to identify clear trends 

over higher temporal scales. Physico-chemical characteristics are defined by a number of 

factors, the most important being the freshwater inputs from the VLW, and the Adriatic Sea. 

The strong influence of freshwaters is observed in the salinity values of PDC, which are lower 

than the average value of the Lagoon of Venice (Zirino et al. 2014). Salinity values oscillate 

between 30 and 15 PSU, with an average of 23.5 PSU in the period 2007-2012. In Fig. 2.18 is 

shown an inverse correlation between salinity and freshwater discharge from the rivers Zero 

for the time period 2007-2012 (Pearson’s coefficient R=-0.77). 

 

Fig. 2.18 – Salinity and freshwater discharge from the Zero river (2007-2012). There is an evident inverse correlation between 
the two variables (Pearson’s coefficient R=-0.77). Data source: Magistrato alle Acque di Venezia and SAMANET. 

 

Turbidity of the shallow waters in PDC is characterized by high temporal variability and is 

function of climate conditions, watershed loadings, hydrodynamics of the Venice lagoon, and 

difficult-to-predict local phenomena such as boat traffic. In Fig. 2.19 is represented the 

monthly variability of total suspended solids (TSS, mg/l) obtained from data of the station 1B 

of the MELa1-3 (Monitoraggio Ecologico Lagunare) programme (MAV & CVN 2002) over the 

period 2001-2009, with the exception of 2006, when no data were collected. Seasonal average 

turbidity for the period 2001-2009 ranges from 5.44 mg/l to 43.5 mg/l, with peaks reached 
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during the summer season. Bloom (2004) hypothesizes that higher TSS concentrations in the 

warmer months represent increased anthropogenic activities during these periods. 

 

Fig. 2.19 – Seasonal averages of Total Suspended Solids (TSS) in PDC in the light of data provided by station 1B of the MELa 
monitoring programme (MAV & CVN 2002). 

The shallow waters of PDC promote rapid temperature equilibrium between water and air, 

with water temperature following the seasonal trends of air temperature. The temperature in 

PDC shows an expected seasonal pattern (Fig. 2.20), with highest values in the summer 

reaching 26-27 °C, while wintertime lows typically around 5-7 °C, as indicated by data provided 

by the station 1B of the continuous monitoring network SAMANET (Ferrari, Badetti, and 

Ciavatta 2004).  

 

Fig. 2.20 - Average water temperature by month in PDC. Measures refer to the weather station 1B of the continuous monitoring 
network SAMANET.  
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Dissolved oxygen (DO) concentrations fluctuate with water temperature seasonally as well as 

diurnally (daily). Oxygen in water is controlled by temperature, which affects its solubility. In 

Fig. 2.21 is represented the monthly variability of DO in water (mg/l) for the station Ve-7 of the 

SAMANET monitoring network over the period 2007-2012. The highest values reaching 10-12 

mg/l are found in the winter season, while summertime lows are typically around 4-6 mg/l. Fig. 

2.22 shows the inverse correlation (R2 = 0.98) between water temperature (°C) and DO (mg/l). 

 

Fig. 2.21 - Average Dissolved Oxygen (DO) by month in PDC. Measures refer to the weather station Ve-7 of the continuous 
monitoring network SAMANET. 

 

Fig. 2.22 – Inverse correlation between DO and water temperature in PDC. Measures refer to the monitoring station Ve-7 of 
the continuous monitoring network SAMANET. 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

m
g/

l

Average Dissolved Oxygen (DO) by month (2007-2012)
Station Ve-7, SAMANET Monitoring Network

R² = 0.9778

0.0

5.0

10.0

15.0

20.0

25.0

30.0

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

°C

mg/l

Monthly DO-Temperature relation (2007-2012)
Station Ve-7, Samanet Monitoring Network



55 
 

2.4.3 Trophic state 

The trophic state of a transitional environment such as PDC is the result of multiple variables 

such as the loadings and concentrations of nutrients, bathymetry, water retention time ( water 

exchanges between sea and lagoon), climate conditions and biological processes (Cloern 2001). 

This section of the dissertation describes the trophic state of PDC through the concentration 

of inorganic forms of nutrients, Total Inorganic Nitrogen (TIN) and Total Inorganic Phosphorus 

(DIP), and the concentrations of chlorophyll-a (Chl-a), the most widely used proxy of 

phytoplankton biomass in the water column. Considering seasonal variability, PDC’s trophic 

state follows the classic cycle of an aquatic ecosystem in a temperate climate. In the winter 

period, primary production is low (Fig. 2.23) and the dynamics of nutrients, which are present 

in higher concentrations (Fig. 2.24 & Fig. 2.25), are mainly influenced by loading and transport 

phenomena. In the spring time, solar radiation triggers the first phytoplankton blooms, which 

can be further stimulated or inhibited by the availability of lack of nutrients. Nutrient 

concentrations show minimum values in the summer period, when phytoplanktonic blooms 

reach their peak. The dynamics of phytoplankton in PDC, as in the rest of the Venice lagoon, 

are not only driven by temperature, solar radiation, and nutrient concentrations. Other factors 

such as turbidity and water retention time influence phytoplankton blooms. In autumn, with 

the reduction in temperature and light hours, phytoplankton blooms end and nutrient 

concentrations rise up again. 

 

Fig. 2.23 – Concentration of phytoplankton chlorophyll-a by month (2007-2012) in PDC. Measures refer to the monitoring 
station Ve-7 of the continuous monitoring network SAMANET. 
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Fig. 2.24 – Seasonal TIN concentrations in the waters of PDC over the period 2007-2009. Data provided by station 1B of the 
MELa monitoring programme (MAV & CVN 2002). 

 

 

Fig. 2.25 - Seasonal DIP concentrations in the waters of PDC over the period 2007-2009. Data provided by station 1B of the 
MELa monitoring programme (MAV & CVN 2002). 

Fig. 2.26 shows the seasonal variability of the DIN-DIP ratio in PDC over the period 2007-2009. 

The ratio assumes higher values than the Redfield ratio (16:1), commonly used to describe the 

composition of marine phytoplankton. This provides evidence of the importance of 

phosphorus to phytoplankton development in PDC. However, the relationship between N and 

P is highly variable in estuarine and coastal waters (Zirino et al. 2016b) and other N-P ratios 

could be representative of these ecosystems. For example, Carstensen and colleagues (2011) 

indicate that primary production in a body of water with a N-P ratio under 29 could be N-
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limited, while a value over 29 would be P-limited. In conclusion, DIN-DIP ratios indicate that, 

on an annual average, primary production of PDC is limited by P concentrations. However, this 

condition become less evident in the summer period, where nitrogen may become the limiting 

factor (Sfriso et al. 1988). 

 

Fig. 2.26 – Seasonal DIN-DIP Ratio in the waters of PDC over the period 2007-2009. Data provided by station 1B of the MELa 
monitoring programme (MAV & CVN 2002). 

 

Phytoplankton composition in the Lagoon of Venice is dominated by diatoms and flagellates  

(Facca, Sfriso, and Ghetti 2004). A particular characteristics of water bodies in the lagoon of 

Venice is the frequent resuspension of sediments from the bed. Many benthic diatoms living 

attached to the sediment and in its interstitial waters are detached from the bottom and 

induced to a pelagic life. Therefore, in the Lagoon of Venice, a subtle equilibrium between 

pelagic phytoplankton and re-suspended microphytobenthos exists. In shallow areas on the 

landward side of the Lagoon such as PDC, the water temperature in winter often get close to 

freezing point, and phytoplankton biomass is particularly scarce. In contrast, in summer 

phytoplankton thermophile species find the most favorable environmental conditions to their 

metabolism, with temperatures of between 25 and 30 °C, triggering exponential growth 

(Guerzoni and Tagliapietra 2006).   
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3 METHODOLOGICAL APPROACH 

The integrated modeling approach described in this chapter was applied to the case study 

described in Chapter 2 of this dissertation to demonstrate its applicability, strengths and 

limitations. The developed approach (Fig. 3.1) adopted climate scenarios and environmental 

models to study the effects of climate change on nutrient loadings in coastal watersheds. It is 

made of 3 components: an ensemble of high resolution climate projections used to describe 

the future climate conditions, the hydrological model Soil and Water Assessment Tool (SWAT, 

Arnold et al. 1998) to evaluate the impacts of climate change on the hydrology and nutrient 

loadings of the watershed (ZRB); and the ecological model AQUATOX (Park et al. 2008) to 

assess the combined impacts of climate change and nutrient loadings on the aquatic 

ecosystems of coastal waters (PDC). Figure 3.1 describes the methodology adopted in the 

research highlighting 3 fundamental steps: climate projections; the hydrological modelling 

with SWAT; and the ecological modelling with AQUATOX. Paragraphs 3.1, 3.2 and 3.3 3 

describe each step of the adopted methodology. 

 

Fig. 3.1 - The developed integrated modelling approach includes 3 fundamental steps: climate projections; the hydrological 
modeling with SWAT; and the ecological modelling with AQUATOX. 
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The first component of the methodological approach consists a set of climate projections 

obtained from the coupling of general circulation models (GCMs) with regional climate models 

(RCMs), and a bias correction method adopted to reduce the intrinsic biases of climate 

projections and thus providing reliable climate scenarios of the 21st century (from 2013 to 

2100). Future climate projections were estimated for two time periods of 30 years each: a mid-

term period (2041-2070) and a long-term period (2071-2100). The second component consists 

in the modelling of present and future conditions of the hydrology and nutrient loadings of the 

watershed through the adoption of the hydrological model SWAT. The last component is the 

ecological model AQUATOX, selected to study the future combined effects of climate change 

and nutrient loadings on the primary production of coastal aquatic ecosystems. The output of 

SWAT (freshwater discharge, nitrogen and phosphorous loadings), were implemented in 

AQUATOX in order to observe the effects on the phytoplankton community. The final output 

produced information about the potential effects on nutrients and primary producers 

(phytoplankton) of the coastal aquatic ecosystem. Such information can be used to evaluate 

how the possible changes in climate can affect hydrological and water quality parameters of 

watersheds and the ecological aspects of receiving coastal waters. The results can be 

implemented in environmental risk assessment studies in order to generate potential future 

scenarios of nutrient pollution and associated environmental impacts. 

 

3.1 Climate projections 

3.1.1 Selection of the control period 

To correctly assess the differences in climate between present and with future conditions, and 

to apply the bias-correction method, a control period must be selected. The control period 

should be sufficiently long in order to obtain representative statistics of the reference climate 

conditions. Considering this, the reference period from January 1983 to December 2012 was 

used as a baseline for the study.  
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3.1.2 Selection of future climate scenarios 

The IPCC Data distribution center suggests the use of more than one climate scenario in order 

to reflect the variability and uncertainties associated to climate models and the resulting 

climate scenarios (IPCC-TGICA 2007). Uncertainty is intrinsic in the science of climate change. 

Therefore, it is a fundamental assumption to understand that climate scenarios are not 

predictions of the future, but rather a plausible description of what might happen to climate 

in the future. To reduce as much as possible the dependence of the results of the study on the 

adopted scenarios, an ensemble of 10 climate scenarios was chosen. In order to be selected 

for the study, climate scenario should be: 

▪ Representative of the study area; 

▪ Representative of the selected time periods: 2041-2070 and 2071-2100 (scenarios that 

ended in the years 2099 were also selected); 

▪ Open-source and easy to obtain via the internet; 

▪ Forced by RCP4.5 and RCP8.5; 

▪ Characterized by the highest spatial resolution available; 

Two RCPs were considered in the study. The “moderate” emission scenario, RCP4.5, that 

predicts a stabilization of the emissions (approximately 650 ppm) shortly after 2100, with an 

increase in radiative forcing up to 4.5 W m-2 by 2100 (Thomson et al. 2011). The “extreme” 

emission scenario, RCP8.5, that describes a future without any specific climate mitigation 

target. In this scenario, the GHGs emissions and concentrations increase considerably over the 

21st century, leading to a radiative forcing of 8.5 W m-2 by 2100 (Riahi et al. 2011). It was 

decided to not adopt the RCP2.6 because of the weak effects produced by this pathway. 

In agreement with the abovementioned criteria, the CMCC-CM/COSMO-CLM GCM-RCM and 

an ensemble of 9 GCM-RCM model combinations from the EURO-CORDEX project (Jacob et al. 

2014) were selected for this study. The CMCC-CM global model (Scoccimarro et al. 2011) is 

the coupled atmosphere-ocean general circulation model adopted by the Centro Euro-

Mediterraneo sui Cambiamenti Climatici (CMCC). COSMO-CLM (CCLM) (Cattaneo et al. 2012) 

is a climate regional model that can be used with a spatial resolution between 1 and 50 km. 
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The coupling of the two models produced climate scenarios at a spatial resolution of 0.0715° 

(8 km) for the selected region. EURO-CORDEX is the European branch of the CORDEX initiative 

and aims to provide an ensemble of climate simulations for the European region (Fig. 3.2) 

based on dynamical statistical downscaling models forced by multiple GCMs. For this study, 9 

GCM-RCM model combinations, providing outputs at a spatial scale of 0.11° (12 km), were 

selected. The model combinations and their characteristics are presented in Table 3.1. 

Although the selected 9 CORDEX GCM/RCM outputs have been created within the same 

project, there are specific differences among the adopted calendars. Specifically, the models 

number 2 and 8 use a 360-day calendar and the model number 3 uses a 365-days calendar 

(Table 3.1). The remaining scenarios use the standard calendar which contains leap years and 

can be directly applied to impact models. To prepare the data for additional impact modelling, 

all climate scenarios were converted to a standard calendar. When a climate model used a 

360-days calendar an additional day had to be created in case of January, March, May, July, 

August, October, and December, and two (one day in the case of a leap year) had to be 

removed from the month of February. For each added-day a null value (NA) was assigned. The 

rationale behind removing one/two days from the month of February was that their removal 

cannot have significant effect on hydrology and ecosystem processes. When a climate model 

used a 365-days calendar, an additional day with a NA value had to be created every 4 year for 

the month of February (February 29th). Adding NA values to the time series does not have any 

effect on statistics and allows the time series to be implemented into SWAT and AQUATOX. 
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Fig. 3.2 – The EURO-CORDEX region (CORDEX 2015). 

Table 3.1 – Future climate scenarios selected and implemented in the models SWAT and AQUATOX.  

 N. Scenario GCM RCM Spatial 

Resolution 

Calendar Time 

range 

Institute 

CMCC 
1 CMCC-CM COSMO-

CLM 

0.0715 deg (8 

km) 

Standard 1976-

2100 

CMCC 

EURO-

CORDEX 

2 HadGEM2-

ES 

RCA4 0.11 deg (12 

km) 

360-

days 

1970-

2099 

SMHI 

3 IPSL-CM5A-

MR 

RCA4 0.11 deg (12 

km) 

365-

days 

1970-

2100 

SMHI 

4 CNRM-CM5 RCA4 0.11 deg (12 

km) 

Standard 1970-

2100 

SMHI 

5 EC-EARTH RCA4 0.11 deg (12 

km) 

Standard 1970-

2100 

SMHI 

6 MPI-ESM-

LR 

RCA4 0.11 deg (12 

km) 

Standard 1970-

2100 

SMHI 

7 CNRM-CM5 CCLM 0.11 deg (12 

km) 

Standard 1950-

2100 

CLMcom 

8 HadGEM2-

ES 

RACMO22E 0.11 deg (12 

km) 

360-

days 

1950-

2099 

KNMI 
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9 EC-EARTH HIRHAM5 0.11 deg (12 

km) 

Standard 1951-

2100 

DMI 

10 EC-EARTH RACMO22E 0.11 deg (12 

km) 

Standard 1950-

2100 

KNMI 

CTRL: Control period; SCEN: future scenario; CMCC: Centro Euro-Mediterraneo Cambiamenti Climatici; KNMI: 
Royal Netherlands Meteorological Institute, Ministry of Infrastructure and the Environment; SMHI: Rossby Centre, 
Swedish Meteorological and Hydrological Institute, Norrkoping Sweden; DMI: Danish Meteorological Institute, 
Copenhagen, Denmark. 

 

3.1.3 Bias correction of climate change scenarios with CLIME 

GCMs have a spatial resolution too coarse for watershed-scale assessments. Therefore, they 

are generally coupled with RCMs to provide a better description of the effects of orography, 

land-sea surface contrast and land surface characteristics. However, also RCMs often show 

significant biases due to an imperfect conceptualization, discretization and spatial averaging 

within grid cells (Christensen and Christensen 2007). In order to implement the output of the 

GCM-RCM into hydrological and ecological models, bias correction is highly recommended 

(Teutschbein and Seibert 2012). In this study, a simple bias correction post-processing method, 

the linear scaling (LS) method, was applied to correct the biases in the daily values of 

temperature (T) and precipitation (P). 

The software CLIME was used in this study to apply the LS method to all the selected climate 

scenarios. CLIME is a GIS software for climate data analysis developed by the REgional Models 

and geo-Hydrogeological Impacts division (REMHI) of CMCC (Cattaneo et al. 2015). The 

software CLIME has been here applied to link climate scenarios with environmental impact 

assessment models, by providing “corrected” and meaningful climate data useful for impact 

studies. CLIME allows the user to run a bias correction process and to provide the bias 

corrected results in a readable and usable format (Villani et al. 2015). All the processes run by 

CLIME are executed by a set of freely consultable functions written in R language and included 

in the R package named “qmap”, available on the R Archive Network2. The process consists in 

comparing the “observation grid”, namely the spatial grid containing the weather stations of 

the study area, with the “model grid”, containing the geographical points of the climate 

                                                      
2 http://www.cran.r-project.org 
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scenario, for the control period (1983-2012). The bias correction is then applied to a “model 

box” containing the nearest points of the “model grid” to the selected weather station. This 

process creates a “correction mask”, that is then applied to the “correction period”, which 

corresponds to the future period to be studied (2041-2070 and 2071-2100). The bias corrected 

values of each of the points in the model box are then averaged and considered as 

representative of the weather station under exam. In this study, a box of 9 points of the “model 

grid” was selected for each weather station (Fig. 3.3).  

 

Fig. 3.3 – Representation of the “observation grid” (green dots) and “model grid” (black dots) in CLIME. In this study, the 9 
nearest points of the model grid (yellow dots) to the weather station “Castelfranco” were selected as representative. The same 
process was performed for each of the three weather stations. Elaboration performed by CLIME software. 

 

The method was implemented to all 10 climate scenarios for every weather station of the case 

study (Fig. 2.3). The longest series of observations available for all the selected weather 

stations (1993-2012) was used to implement the bias correction method. The time series has 

a percentage of valid data above 75%, which is considered as acceptable for the application of 

bias correction in the software CLIME (Cattaneo et al. 2015). The missing values were sporadic 

and isolated, presenting interruptions not more than 10 days long. Accordingly, it was decided 
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to leave the values as blank and not substitute them with any interpolation method as they 

were considered unable to affect long-term statistics (Sachindra et al. 2014). 

The LS method aims to perfectly match the monthly mean of corrected values with that of 

observed ones (Lenderink, Buishand, and van Deursen 2007). The monthly correction is based 

on the differences between observed and raw RCM data. Precipitation is corrected with a 

multiplier term while temperature with an additive term on a monthly basis, as shown in Eq. 

3.1 and Eq. 3.2: 

 

𝑃𝑐𝑜𝑟,𝑚,𝑑 =  𝑃𝑅𝐶𝑀𝑟𝑎𝑤,𝑚,𝑑×
𝜇(𝑃𝑜𝑏𝑠,𝑚)

𝜇(𝑃𝑅𝐶𝑀𝑟𝑎𝑤,𝑚)
     Eq. 3.1 

𝑇𝑐𝑜𝑟,𝑚,𝑑 =  𝑇𝑅𝐶𝑀𝑟𝑎𝑤,𝑚,𝑑 + 𝜇(𝑇𝑜𝑏𝑠,𝑚) − 𝜇(𝑇𝑅𝐶𝑀𝑟𝑎𝑤,𝑚)     Eq. 3.2 

 

where Pcor,m,d and Tcor,m,d are corrected precipitation and temperature on the dth day of the 

mth month, and PRCMraw,m,d and TRCMraw,m,d are the RCM raw precipitation and temperature on 

the dthday of the mth month. Finally, µ represents the mean value. The method was selected 

for its simplicity and modest data requirements: only the observed daily values for 

precipitation and temperature are required to calculate the correction factors. 

The monthly bias corrections between observed and RCM-simulated variables for the control 

period for each GCM-RCM model combination were applied at each rainfall and temperature 

station for both case studies. 

The software CLIME was also used to convert the format of climate data into a format readable 

by the models SWAT and AQUATOX. Climate data are commonly provided to final users in the 

NetCDF format (Network Common Data Format), an efficient binary data format for large 

volumes of data. However, this format is generally unreadable by other software and therefore 

needs to be converted. 
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3.2 Hydrological modelling: SWAT 

3.2.1 Soil and Water Assessment Tool (SWAT) 

SWAT was selected for studying the hydrology and water quality parameter of the ZRB. The 

SWAT model has been developed in order to support the work of managers in assessing the 

impacts of climate and land management practices in watersheds and large complex river 

basins. It allows performing studies focusing on hydrology, sediments, non-point source 

loadings, land management and climate change. The model was selected for the following 

reasons: 

▪ it has been widely used for modeling nutrient loadings and long-term impacts of 

climate change on the hydrology of river basins (Cousino, Becker, and Zmijewski 2015; 

Fan and Shibata 2015; Kim et al. 2016; Sellami et al. 2016); 

▪ the user-friendly interface is based on the software ESRI ArcGIS©, and allows the user 

to perform a relatively fast implementation of the data into the model and an easy 

customization of all the parameters involved in the model; 

▪ the input required by SWAT is commonly available from public institutions and 

government agencies; 

▪ SWAT is a public domain software, freely available on the internet, which receives 

constant updates and support from the developers; and 

▪ it is well documented and supported by an active user community on the Internet. 

SWAT is a semi-distributed and time continuous eco-hydrologic model that operates on a daily 

time step. SWAT allows to simulate several different physico-chemical and biological processes 

in a watershed. The model is based on the Hydrologic Response Units (HRUs), areas with 

identical combinations surface slope, land use and soil type that are able to represent the 

spatial heterogeneity of a watershed, increasing the accuracy of load computations, and 

providing an improved description of the water balance (FitzHugh and Mackay 2000). The 

model components (e.g. soil water content, surface runoff, sediment yield, nutrient cycling) 

are calculated for every HRU and then are aggregated at a sub-basin level through a weighted 

average. Finally, water flow, sediment yield and nutrient loadings for each sub-basin are routed 

through the river network to the watershed outlet (Neitsch et al. 2011). In this section, a brief 
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description of the main components of the model is provided. A complete description of SWAT 

equations can be found in Arnold et al. (1998) and Neitsch et al. (2011). 

Climate 

Climate is the engine of the hydrologic cycle as it provides the energy necessary to regulate 

the water balance of a watershed. To simulate the climate, SWAT requires daily precipitation 

(mm), maximum/minimum air temperature (°C), solar radiation (MJ/m2), wind speed (m/s) and 

relative humidity (%). SWAT is equipped with a weather generator that can be used to generate 

missing values on climate time-series based on statistics of the provided data. Specifically, daily 

precipitation values are generated using a Markov chain model (Nicks 1974) that defines a day 

as wet or dry by comparing a random number (0.0-1.0) generated by the model with monthly 

“wet-dry” probabilities obtained from the provided time-series. If the day is “wet”, the amount 

of rainfall is determined from a skewed distribution based on the statistics of the time-series 

provided to the model. Air temperature and solar radiation are generated from a normal 

distribution which accounts for temperature and radiation variations caused by dry/rainy days 

through a continuity equation. Air temperature and solar radiation are reduced when 

simulating rainy conditions and increased when simulating dry conditions. The goal is to 

generate long-term statistics in agreement with the averages of the time-series provided to 

the model. Wind values are generated using a modified exponential equation that reproduces 

daily mean wind speed based on the mean monthly wind speed of the provided time-series. 

Daily values of relative humidity are generated using a triangular distribution that makes use 

of monthly averages of the provided time-series.  

Hydrology 

Simulation of the hydrology of a watershed can be separated into two phases. The first is the 

“land phase” (Fig. 3.4), which controls the amount of water, sediment, nutrient and pesticide 

loadings to the stream channel. The driving force of the model in the land phase is water 

balance, and the equation the regulates it is formulated as follow (Eq. 3.3): 
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𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 + 𝑄𝑠𝑢𝑟𝑓 + 𝐸𝑎 + 𝑊𝑠𝑒𝑒𝑝 + 𝑄𝑔𝑤)     Eq. 3.3 

 

where SWt is the final soil water content (mm), SW0 is the initial soil water content (mm), Rday 

is the amount of precipitation for the day (mm), Qsurf is the amount of surface runoff for the 

day (mm), Ea is the amount of evapotranspiration for the day (mm), Wseep is the amount of 

water entering the vadose zone from the soil profile for the day (mm), and Qgw is the amount 

of return flow to groundwater for the day (mm). Precipitation in SWAT can be intercepted and 

held by the vegetation or fall to the soil surface. Water on the soil surface will infiltrate into 

the soil profile or runoff, thus contributing to short-term stream responses. Infiltrated water 

can be held in the soil and later leave the ground through evapotranspiration, or can reach the 

underground waters and be removed from the system or making its way back to the surface-

water system. The groundwater component of SWAT is a simple conceptual linear reservoir 

based on information in the form of recharge to and baseflow from the groundwater system. 

Once SWAT calculates the loadings of water and nutrients, they enter the “routing phase”, 

where they are routed through the stream network of the watershed (Fig. 3.5). In the routing 

phase water flows downstream. Here, water may be lost due to evaporation and transmission 

through the bed of the channel, or due to to removal from the network for agricultural 

purposes. The volume of water may increase as rainfall falls directly on the river network or 

from point source discharges (e.g. WWTP). Water flow is routed through the channel using a 

variable storage coefficient method developed by Williams (1969). Hydrologica processes in 

SWAT are indicated in Fig. 3.6. 
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Fig. 3.4 – Land-phase processes modeled by SWAT. Adapted from (Arnold et al. 1998). 

 

Fig. 3.5 – In-stream processes modeled by SWAT. Adapted from (Arnold et al. 1998). 
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Fig. 3.6 – Schematic representation of hydrology in SWAT. 
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Nutrient cycles 

SWAT can simulate the dynamics of nutrients in the soil profile and in the stream channel. The 

cycle of nitrogen includes water, atmosphere and soil. While elemental nitrogen is inert, “fixed” 

nitrogen is an extremely active element and exists in the soil in many valence states. SWAT can 

simulate all the major forms of nitrogen in the soil, which are subdivided into two main pools, 

mineral nitrogen and organic Nitrogen (Fig. 3.7). The two forms of inorganic nitrogen in SWAT 

are ammonium (NH4
+) and nitrate (NO3

-). The three forms organic nitrogen are fresh organic 

nitrogen, representing the crop residue and the microbial mass, stable humic nitrogen, and 

active humic nitrogen.  

The most prevailing form of nitrogen in the soil is organic nitrogen, which is slowly converted 

to inorganic forms (ammonia and nitrates) through mineralization, which makes nitrogen 

ready to be assimilated by the plants. Nitrate is very soluble and percolates easily through the 

soil or is removed by runoff during precipitation events. Ammonium and organic nitrogen are 

sorbed very readily to soil particles and therefore tend to remain in the soil profile and be 

removed only during erosion events. The denitrification process facilitates nitrate reduction 

and produces molecular nitrogen (N2), causing nitrogen losses toward the atmosphere. 

 

Fig. 3.7 – Soil nitrogen pool and processes simulated in SWAT (Neitsch et al. 2011). 

 



72 
 

 

Phosphorus is less mobile than nitrogen, and its cycle differs from the other in that it does not 

include a gaseous phase. Phosphorous is not very mobile and does not percolate through the 

soil profile very easily. Phosphorous is sorbed by clays and organic matter and it is removed by 

erosive processes. For this reason, most of the phosphorous in the soil is not directly available 

for plants and it remains adsorbed by the soil. Although phosphorous plant demand is 

considerably less than nitrogen demand, it is necessary for several vital functions such as 

transfer and storage of energy. Moreover, excess of phosphorus in the water may lead to 

eutrophication events due to the rapid growth of algae and other organisms rich in chlorophyll. 

SWAT models six forms of phosphorus, which are subdivided into two main pools, mineral 

phosphorus and organic phosphorus (Fig. 3.8). Inorganic forms of phosphorus in SWAT are 

solution, active, and stable. Organic forms of phosphorus are fresh, representing the crop 

residue and the microbial mass, stable, and active. The major soil processes for nitrogen and 

phosphorus cycle represented by the SWAT model are: mineralization, decomposition and 

immobilization. 

 

Fig. 3.8 – Soil phosphorus pool and processes simulated in SWAT (Neitsch et al. 2011). 

In the “routing phase”, SWAT simulates nutrient dynamics by incorporating the kinetic 

equations of the QUAL2E model (Brown and Barnwell 1987). SWAT model nutrients dissolved 
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in the stream and nutrients adsorbed to the sediment. Dissolved nutrients are transported 

with the water while those adsorbed to the sediment can deposit on the bed of the stream. 

Agricultural management practices 

The impact of agricultural management practices on water quality is very important. SWAT 

provide an elaborated internal model for the simulation of agricultural practices. Management 

practices are defined for each crop or vegetative area. For each crop, it is possible to indicate 

the beginning of the growing season and the harvest period. A harvest efficiency may also be 

defined as a fraction of harvest plant biomass removed from the HRU. The remaining fraction 

is converted to residue and remains in the system. Tillage operations in SWAT include the 

timing of the action and the type of tillage technique. Tillage is very important as it 

redistributes residue and nutrients in the soil profile, thus defining the fraction of residue and 

nutrients in each soil layer. SWAT allows for the application of inorganic fertilizers or manure 

to the soil. The required information includes the timing of operation, the type of 

fertilizer/manure applied, and the depth to which the fertilizer is applied. Finally, irrigation in 

SWAT may be scheduled by the user or automatically applied by the model in response to 

water deficit. Timing, application amount and source of irrigation have to be specified. 

3.2.2 Data input for the SWAT model applied to the ZRB 

The ability of SWAT to correctly represent the hydrological and water quality processes of a 

river basin depends on the quality and completeness of input data. In this section, the data 

collected and implemented for the modeling of the ZRB are described (Fig. 3.9). Table 3.2 

shows the list of input data used for the construction of the SWAT model of the ZRB. 



74 
 

 

Fig. 3.9 – SWAT input data used for the modeling of the ZRB. 

Table 3.2 – List of input data for the SWAT model of the ZRB. 

Data type Description Resolution/Scale Source 

DEM Digital Elevation model of 
the study area 

5 meters Regione del Veneto – 

Infrastruttura dati territoriali3 

Sub-basin map Subdivision of the Zero river 
basin (adapted for SWAT) 

- Salvetti et al. (2008) 

River network map Network of the main water 
streams of the study area 
(adapted for SWAT) 

- Salvetti et al. (2008) 

Land Use map Land use map of the Veneto 
region for the year 2007 

1:10.000 Regione del Veneto – 
Infrastruttura dati territoriali1 

Soil map & properties Soil map of the Venice 
Lagoon Watershed for the 
year 2004; soil properties 
updated to the year 2012 

1:50.000 ARPAV (2003) 

Weather Data Daily precipitation, max/min 
temperature, relative 
humidity, solar radiation, 
wind speed (years 2007-
2012) 

3 stations ARPAV – Servizio 
Meteorologico 

Hydrologic data Water flow (Q) and nutrient 
loadings 

2 stations ARPAV – Servizio Acque 
Interne 
MAV – Magistrato Acque 
Venezia 

Point-source pollution WWTP and Industrial 
discharges 

Constant value ARPAV & Regione Veneto 
(2009) 

Spring belt contribution Fluxes from the spring area  Constant value Expert opinion from ARPAV 
(Salvetti et al. 2008) 

Agricultural 
management practices 

Manure, fertilizer type and 
application rate, tillage 
practices, cropping seasons 

- Expert opinion from Veneto 
Agricoltura (Bonetto and 
Furlan 2012) 

                                                      
3 http://idt.regione.veneto.it/app/metacatalog/ 
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Digital Elevation Model 

Topographic data are implemented into SWAT through Digital Elevation Models (DEM). For 

the ZRB, a 5x5 meters DEM of the Veneto Region was available from the Spatial data 

infrastructure of the Veneto Region website (http://idt.regione.veneto.it/app/metacatalog/). 

The DEM was developed by the Centro Nazionale Ricerche di Pisa (Italy). The original reference 

spatial system of the DEM is ROMA40/West. The DEM is presented in Fig. 3.10, and Table 3.3 

provides the statistics of the topography of the ZRB. 

 

Fig. 3.10 – Digital Elevation Model (DEM) of the ZRB. Source: Regione Veneto. 

 

Table 3.3 –Topographic data of the ZRB. 

Min. Elevation -2 m 

Max. Elevation 127 m 

Mean Elevation 35 m 

 

Elevation % Area Below Elevation Absolute % 

-2m – 0 m 1.59 1.59 

0m – 25m 48.49 46.9 

25m – 50m 71.98 23.49 
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Elevation % Area Below Elevation Absolute % 

50m – 75m 86.76 14.78 

75m – 100m 96.38 9.62 

100m – 125m 99.97 3.59 

> 125m 100 0.03 

 

Sub-basin and river network maps 

The sub-basin and river network maps are not mandatory requirements in SWAT. However, in 

order to correctly represent the river network of the ZRB the maps had to be implemented 

into the SWAT model. This was necessary because of the flat aspect of the basin, which does 

not allow the software to automatically delineate the river network through the sole use of 

the DEM. The ZRB was subdivided into 17 sub-basins. A representation of the sub-basins and 

the river network is shown in Fig. 3.11. 

 

Fig. 3.11 – River network and sub-basin implemented in SWAT for the delineation of the ZRB. 
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Land-use 

The land-use map of the ZRB is based on an adapted version of the CORINE Land Cover 

classification 2006 (EEA 2006). The CORINE classification is made of 44 classes organized 

hierarchically in three levels. The version adopted by the Veneto Region (ARPAV 2009) has two 

additional levels that increase the detail of the classification. The first level contains five main 

categories: artificial surfaces; agricultural land; forests and semi-natural areas; wetlands; water 

surfaces). The conversion from CORINE Land Cover to SWAT Land Cover classification was 

operated at the third level of detail, with the exception of the agricultural land, which was 

further classified into different crop cultivations. It was decided to assign the CORINE classes 

2.1.1 and 2.1.2 to the SWAT class AGRL. The class AGRL was then subdivided into the classes 

CORN, SOYB and WWHT. The existing surface proportions between the three crops were 

maintained. The land-use map of the ZRB is presented in Fig. 3.12, and Table 3.4 shows the 

adopted conversion method between the CORINE and SWAT land-use classification systems. 

 

Fig. 3.12 – Land use map of the ZRB based on the SWAT nomenclature. 
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Table 3.4 – CORINE Land Cover and SWAT classification and correspondence adopted in this study. 

CORINE Code CORINE Nomenclature (Level 3) SWAT Code SWAT Nomenclature 

1.1.1 Continuous urban fabric URBN Residential 

1.1.2 Discontinuous urban fabric URBN Residential 

1.2.1 Industrial or commercial units UIDU Industrial 

1.2.2 Road, railways, airports UTRN Transportation 

1.3.1 Mineral extraction sites UIDU Industrial 

1.3.2 Dump sites UIDU Industrial 

1.3.3 Construction sites UIDU Industrial 

1.4.1 Green Urban Areas FESC Tall fescue (Festuca arundinacea) 

1.4.2 Sport and leisure facilities FESC Tall fescue (Festuca arundinacea) 

2.1.1/2.1.2 Non-irrigated/ Irrigated arable land AGRL Agricultural Land - Generic 

2.1.2.1.1 Arable land: Corn  CORN Corn (Zea mays L.) 

2.1.2.1.2 Arable land: Soy SOYB Soy (Glycine max L., Merr.) 

2.1.2.2.1 Arable land: Wheat WWHT Winter Wheat (Triticum aestivum L.) 

2.3.1/2.3.2 Pastures PAST Pasture 

3.1.1 Broad-level forest FRSD Forest Deciduous 

3.2.2 Moors and heathland FRSD Forest Deciduous  

4.1.1 Inland marshes WETL Wetlands 

4.2.1 Peat bogs WETL Wetlands 

5.1.1 Water courses WATR Water 

Soil map and properties 

The soil map of the ZRB was developed by ARPAV at a scale of 1:50.000. The field monitoring 

of ARPAV provided all the parameters required by SWAT. As a result, it was possible to create 

and implement into SWAT soils specific to the ZRB. The soil map of the ZRB is shown in Fig. 

3.13 and the parameters required by SWAT for describing the soil profiles are explicated in 

Table 3.5. A more detailed description of every soil type is found in ARPAV (2004a) and in 

Section 2.3.1 of this dissertation . 
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Fig. 3.13 – Soil map classification 

 

Table 3.5 – Soil parameters required by SWAT. Data were input for every layer of every soil of the Zero river basin.  

Soil Component Parameter Description 

NLAYERS Number of layers in soil profile 

HYDGRP Soil hydrologic group 

SOL_ZMX Maximum rooting depth of soil profile (mm) 

ANION_EXCL Fraction of porosity from which anions are excluded 

Soil Layer Parameter Description 

SOL_Z Depth to bottom of n soil layer (mm) 

SOL_BD Moist bulk density of n soil layer (g/cm3) 

SOL_AWC Available water capacity of n soil layer (mm/mm) 

SOL_CBN Organic carbon content of n soil layer (%) 

SOL_K Saturated hydraulic conductivity of n soil layer (mm/hr) 

CLAY Clay content of n soil layer (%) 

SILT Silt content of n soil layer (%) 

SAND Sand content of n soil layer (%) 

SOL_ALB Moist soil albedo of first soil layer 

USLE_K USLE equation soil erodibility (K) factor 

 

Climate data 

SWAT requires daily data of 5 climate parameters, listed in Table 3.6. All the meteorological 

parameters were provided by the ARPAV meteorological service. The data were obtained for 

the following weather stations: Castelfranco Veneto; Zero Branco; Mogliano Veneto; Favaro 

Veneto; Maser; Volpago; Treviso; Roncade; Venezia-Istituto Cavanis; Cavallino; Trebaseleghe. 
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However, SWAT attributes to every sub-basin only the closest weather station. As a result: only 

four weather station were selected: Castelfranco Veneto; Zero Branco; Mogliano Veneto; 

Favaro Veneto. The weather station of Favaro Veneto was not implemented into the model 

because it became operative in 2009, two years after the beginning of the calibration-

validation period (2007-2012, Section Errore. L'origine riferimento non è stata trovata.). The 

selected weather stations are shown in Fig. 3.14. 

 

Table 3.6 – Weather parameters requested by SWAT to describe the climate of the ZRB. 

Weather parameter Unit of measure 

Minimum and Maximum Temperature °C 

Precipitation mm 

Relative Humidity % 

Solar Radiation MJ/m2 

Wind Speed m/s 

 

 

Fig. 3.14 – Weather stations representative of the ZRB and associated sub-basins. 

 

Hydrologic and water quality data 

Hydrologic data consisting of water flow (Q) of the Zero river and nutrient concentration were 

obtained from ARPAV – Servizio Acque Interne and the former MAV (Magistrato alle Acque di 
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Venezia). Adopted data refers to the hydrologic station “Mogliano”, located at the latitude 

45°33’N and longitude 12°15’E. Daily discharge data from the period 2007-2012 were 

collected. Nutrient concentration data were obtained from 2 monitoring stations: the manual 

station 122, located at the same site of the hydrologic station “Mogliano”, and the automatic 

station 2Bi, located at the latitude 45°34’N and longitude 12°17’E. Station 122 provided 

seasonal data (4 measurements a year) for inorganic species of nitrogen nitrate (N-NO3
-) and 

ammonium (N-NH4
+), and phosphorus as phosphate (P-PO4

3-). Station B2q provided daily 

concentration data of inorganic species of nitrate (N-NO3
-) and ammonium (N-NH4

+). For 

calibration and validation of the model, nitrogen loadings were obtained using data of the B2q 

station, while phosphorus loadings were obtained using data from station 122. The position of 

the monitoring stations is shown in Fig. 3.15.  

 

Fig. 3.15 – Position of the monitoring stations used in the study. The orange dot indicates the position of the Water Quality 
Manual station 122 and Water flow monitoring station “Mogliano”. The purple dot indicates the position of the Water Quality 
Automatic station B2q. 

 

Contributions of point-source pollution and spring waters 

The Zero river basin is not only affected by non-point source pollution from agricultural 

activities, but also by point-source pollution originating from wastewater treatment plants 

(WWTP) and industrial discharges. Due to the lack of continuous data, their influence on 
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nutrient loadings was assumed as constant throughout the year. The adopted values were 

obtained from ARPAV & Regione Veneto (2007, 2009). The loadings from WWTP and industrial 

sources implemented into the model are presented in Table 3.7. 

 

Table 3.7 – Non-point source loadings of nutrients from WWTP and Industrial activities implemented into SWAT. 

WWTP Industrial loads 

N (t/year) P (t/year) N (t/year) P (t/year) 

23.2 2.8 3.2 0.8 

 

For the same reason, also the influence of external spring waters on the water regime of the 

ZRB was assumed as constant. Values were obtained from literature review (Salvetti et al. 2008) 

and discussed with ARPAV experts. The selected values are presented in Table 3.8. 

 

Table 3.8 – Influx of external spring waters implemented into the SWAT model. 

Month Mean flow (m3/s) 

January 0.4 

February 0.4 

March 0.4 

April 0.4 

May 0.4 

June 0.4 

July 0.1 

August 0.1 

September 0.4 

October 0.4 

November 0.4 

December 0.4 

 

Agricultural Management Practices 

Agricultural management practices (e.g. planting and harvest dates, tillage methods, fertilizer 

applications, etc.) should be implemented into SWAT when the loadings of nutrients and their 

effects on water quality is the main objective of the study. Land management practices 



83 
 

information for the three crops (Corn, Soy, Winter Wheat) was obtained from literature 

(Benton Jones Jr. 2003; Giupponi et al. 2012; Tassinari 1976) and interviews with experts of 

Veneto Agricoltura (Bonetto and Furlan 2012; Regione Veneto 2014). Management operations 

and their timing are defined in Table 3.9. In this study, agricultural management practices have 

been considered as constant over the 21st century. See Appendix A for additional details on 

agricultural management practices in SWAT. 

 

Table 3.9 – Management operations and timing of the crops implemented in SWAT. Irrigation operations were initialized by 
the model only in the event of water deficit. 

 Corn Soy Winter Wheat 

January   
• Tillage operation 

• Fertilizer application 

(33-00-00) 

February • Tillage operation • Tillage operation  

March 
• Tillage operation 

• Fertilizer application 

(18-46-00) 

  

April • Begin growing season   

May 
• Fertilizer application 

(Urea) 

• Tillage operation 

• Fertilizer application 

(Elemental P) 

• Begin growing season 

 

June   • Harvest 

• Tillage operation 

July •  Irrigation (water def.) 

from external sources 

• Irrigation (water def.) 

from external sources 
 

August •  Irrigation (water def.) 

from external sources 

• Irrigation (water def.) 

from external sources 
 

September    

October 
• Harvest 

• Manure application 

• Tillage operation 

• Harvest 

• Manure application 

• Tillage operation 

• Manure application 

• Tillage operation 

November • Manure application • Manure application 

• Fertilizer application 

(18-46-00) 

• Tillage operation 

• Begin growing season 

December    
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3.2.3 Implementation of SWAT 

Parameterization of the model 

In order to model the ZRB into SWAT it was necessary to implement the data described in 

Section 3.2.2. The first step consisted in the definition of the topography and river network of 

the ZRB. Because of its flat aspect, the GIS software was not able to define a proper delineation 

of the ZRB river network through the single use of the DEM. For this reason, the maps of the 

river network and sub-basin had to be created outside SWAT and then implemented into the 

model. The outlet of the basin was positioned in correspondence of the confluence point of 

the Zero and Dese river. The Zero river basin was subdivided into 17 sub-basins. A further 

discretization of the basin was obtained through the implementation of the soil map and land 

use map. The combinations of slope, defined by the DEM, soil, and land-use, originated the 

HRUs. To reduce the computational load of the simulation, it was decided to keep only the 

representative features of each layer (slope, soil, land use). As a result, thresholds were 

defined and the following classes were included in the model for every sub-basin: 

 

1. each land use class representing over 7% of the sub-basin area; 

2. each soil class representing over 15% of that land use area; 

3. each slope class representing over 15% of that soil area. 

 

At the end of this characterization procedure, the Zero river basin was subdivided into 17 sub-

basins and 125 HRUs in total. This allowed a configuration representative of the physical 

characteristics of the area and at the same time computationally acceptable. 

The third step consisted in assigning for each sub-basin a specific weather station in order to 

simulate the variability of the local climate along the river basin. SWAT computes this step by 

automatically looking at the distance between the weather station and the centroid of each 

sub-basin. The weather station assigned to each sub-basin is shown in Fig. 3.14. During this 

step observed data on max/min temperature (°C), precipitation (mm), relative humidity (%), 

solar radiation (MJ/m2), and wind speed (m/s), relative to the calibration and validation period 

(2007-2012), were loaded into the simulation. 
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In the last step, point-source loadings (WWPT and industrial discharges), underground fluxes 

from external spring areas, and agricultural management practices were implemented into 

SWAT. Point-source, groundwater fluxes, and agricultural management practices  are 

described in Section 3.2.2. 

Once all the data were implemented into the model, they were overwritten into the database 

of the model. Finally, the simulation was run with a monthly time step for the desired period 

(2007-2012). It was decided to run a warm-up period of three years (2004-2006) in order to 

get the model to the steady state. Obtained data relative to the hydrologic and water quality 

parameters of the ZRB were then implemented into the software SWAT-CUP (Abbaspour 2014), 

a software designed to apply different sensitivity, calibration and uncertainty analysis for SWAT. 

 

Sensitivity analysis 

SWAT contains a wide number of parameters determining flow rate and nutrient processes. A 

sensitivity analysis was performed to determine which parameters should be selected for 

calibration. The identification of the most sensitive parameters allows the reduction of the 

number of parameters subject to calibration. In this study the “global sensitivity analysis” 

included in the SWAT-CUP software (Abbaspour 2014) was adopted. Through this analysis, 

parameter sensitivities are estimates of the average changes in the objective function resulting 

by allowing all the parameters to change. The major disadvantage of the global sensitivity 

analysis is that a large number of simulations is required (Arnold et al. 2012). A t-test is then 

used to identify the relative significance of each parameter in the model. The larger the value 

of t the more sensitive the parameter. The most sensitive parameters are presented in Table 

3.10 – Most sensitive parameters identified in the simulation of the ZRB. Parameters regulate 

hydrologic processes (blue), nitrogen processes (orange), and phosphorus processes (green) 

and were used for the calibration of the model 
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Calibration and validation of the model 

The calibration of the model was performed with the software SWAT-CUP. SWAT-CUP applies 

the Sequential Uncertainty FItting ver. 2 (SUFI-2) method, a semi-automatic calibration 

approach that allows the user to adjust watershed parameters between auto-calibration runs 

(Arnold et al. 2012). This method requires the selection of an objective function to assess the 

performance of the model. For this study, the Nash-Sutcliffe Efficiency Index NSE (Nash and 

Sutcliffe 1970) was selected. The NSE is defined in the Equation 3.3: 

 

𝑁𝑆𝐸 = 1 − [
∑ (𝑆𝑖−𝑂𝑖)𝑛

𝑖=1
2

∑ (𝑂𝑖−𝑂̅)𝑛
𝑖=1

2 ]     Eq. 3.3 

 

where Oi and Si correspond to the observed and simulated values at the time step I, and Ō is 

the arithmetic mean of all the observations. The optimal value of NSE is 1.0, while values below 

0 indicate that mean of the observed values is a better predictor than the simulations. The use 

of a single objective function to assess the goodness of fit is inappropriate for assessing the 

predictive capabilities of the model (Legates and McCabe 1999). For this reason, also the 

square of the correlation coefficient r, the coefficient of determination R2, was taken into 

account. A monthly calibration was performed, where flow was calibrated prior to inorganic 

forms of nutrients. Data for the inorganic form of phosphorus, phosphate (PO4
3-), were not 

sufficient to perform a meaningful monthly calibration. The 2012 version of the software 

LOADEST (USGS 2012) was used to obtain monthly values from the daily water flow values and 

the sporadic values phosphorus values. The calibration of phosphorus is considered as purely 

indicative. Following calibration, the model was finally validated. Several difficulties in 

evaluating the real observed values and in comparing the model results with the monitoring 

observations were found in this phase. The incompleteness of time-series caused by 

interruptions of the monitoring stations, the location of the monitoring stations, and the 

different monitoring techniques, may add additional uncertainty to the model created in SWAT. 

Results of calibration and validation are present in Section 4.2.1 of this dissertation. 
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Table 3.10 – Most sensitive parameters identified in the simulation of the ZRB. Parameters regulate hydrologic processes (blue), 
nitrogen processes (orange), and phosphorus processes (green) and were used for the calibration of the model. 

Parameter # Symbol Method Value Parameter # Symbol Method Value 

1 GW_DELAY Replace 184.0 11 BC4 Replace 0.5 

2 OV_N Absolute 9.3 12 RS5 Replace 0.1 

3 SOL_BD Relative 0.35     

4 REVAPMN Replace 208.68     

5 GW_REVAP Replace 0.23     

6 ALPHA_BF Replace 2     

7 CN2 Relative -0.25     

8 HRU_SLP Replace 0.06     

9 ERORGN Absolute 8.8     

10 HLIFE_NGW Replace 63     

GW_DELAY: Groundwater delay; OV_N: Manning's "n" value for overland flow; SOL_BD: Moist Bulk Density; REVAPMN: Threshold depth of water in the shallow 
aquifer for "revap" to occur (mm); GW_REVAP: Groundwater "revap" coefficient; ALPHA_BF: Baseflow alpha factor (days); CN2: SCS runoff curve number f; 
HRU_SLP: Average slope steepness; ERORGN: Organic N enrichment ratio; HLIFE_NGW: Half-life of nitrate in the shallow aquifer (days); BC4: Rate constant for 

mineralization of organic P to dissolved P in the reach at 20 °C; RS5: Organic phosphorus settling rate in the reach at 20 °C . 
 
 

Future climate scenarios in SWAT 

After performing calibration and validation of the model, daily temperature and precipitation 

data of future climate scenarios described in Section 3.1.2 were implemented into SWAT to 

observe the effects of climate change on hydrology and nutrient loadings. At this stage of the 

study, it was decided to not implement future projections of wind speed, relative humidity and 

solar radiation due to the high uncertainty in modelling their future variability at both global 

and local scale (Prosinger, Suhardimand, and Giordano 2015). Daily data for these parameters 

were automatically generated by the weather generator implemented into SWAT. Daily values 

were generated based on statistics of the observation period (2007-2012).  Each scenario was 

forced by RCP 4.5 and RCP 8.5, and propagated for two time periods: a mid-term scenario 

(2041-2070) and a long-term scenario (2071-2100). Missing daily Temperature and 

Precipitation values for the year 2100 of the climate scenarios 2 and 8 (Table 3.1) were 
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generated by the SWAT weather generator based on the Temperature and Precipitation 

statistics of the long-term scenario (2071-2100). As mentioned in Section 3.2.3 

“Parameterization of the model”, agricultural management practices and land-use were 

assumed as constant over the 21st century. Therefore, results are affect only by changes in 

climate conditions. Results of future scenarios of hydrology and nutrient loadings are 

presented in Section 4.2.2 of this dissertation. 
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3.3 Ecological modelling: AQUATOX 

3.3.1 AQUATOX 

The model AQUATOX was selected to simulate the effects of nutrients released by the ZRB on 

the primary producers (phytoplankton) of PDC. AQUATOX is a time continuous, process-based, 

ecological risk assessment model able to simulate different variables of an aquatic ecosystem. 

The model also represents conventional pollutants, nutrients and sediments, and considers 

several trophic levels, including attached and planktonic algae, submerged aquatic vegetation, 

several types of invertebrates, and several types of fish. It can evaluate past, present, and 

future ecological trends of different aquatic environments such as rivers, lakes, ponds, 

reservoirs and estuaries. AQUATOX was selected for the following reasons: 

▪ it provides a tool for assessing multiple and concomitant impacts on aquatic 

ecosystems (i.e. climate change and nutrient pollution); 

▪ it gives the possibility to use SWAT output as input for the model; 

▪ it is a public domain software, freely available on the internet, which receives constant 

updates and support from the developers; and  

▪ it has been extensively applied in studies on the fate and impacts of nutrients on the 

ecosystem (Schramm et al. 2009; Taner et al. 2011; Zouiten et al. 2013). 

AQUATOX can predict the fate of chemicals in aquatic ecosystems, and their direct and indirect 

effects on the organisms. It can also predict the effects of non-chemical stressors such as 

changes in climate (e.g. water temperature), and has the potential to establish causal links 

between water quality and biological responses of aquatic ecosystems. AQUATOX can be used 

in several applications related to the management of water resources. For example, in relation 

to nutrients, it can be applied to develop nutrient targets for river, lakes and reservoirs affected 

by eutrophication events; identify which factors have a bigger influence on algal blooms; 

evaluate the effects of land use and climate change on the fate and effects of nutrients (Park 

et al. 2008). AQUATOX can simulate the transfer of biomass, energy and chemicals such as 

nutrients and pesticides from one compartment of the ecosystem to another. It is a 

mechanistic model that computes the most important chemical and biological processes at a 
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daily time step of the simulation period within a unit volume of water. AQUATOX can simulate 

both food webs and food chains with multiple trophic levels. 

 

An ecosystem in AQUATOX is described by state variables and driving variables. State variables 

include nutrient concentrations, dissolved gases, organic detritus, inorganic solids, plant, and 

animals. Driving variables are those parameters that can force an ecosystem in a particular 

state. Example of driving variables in AQUATOX are temperature, nutrient input, pH, light, and 

freshwater inflow. 

 

Fig. 3.16 – Biotic and abiotic state variable (boxes) and processes (arrows) simulated in AQUATOX (Park et al. 2008). 

State and driving variables represent the average daily conditions of a well-mixed aquatic 

system. The model is run with a daily maximum time-step (which is not directly related to the 

temporal scale of the simulation), but numerical instability is avoided by allowing the step size 

of the integration to vary to achieve a predetermined accuracy in the solution. The length of 

simulation can be as long as several years or as short as one day. Moreover, results can be 

integrated to obtain the resulting time period. Results may be plotted in the AQUATOX output 

screen with the capability to import observed data to examine against model predictions. In 

this section, a description of the most important parameters for this study is provided. 
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Functions not implemented in this application (e.g. stream dynamics) are not described. A 

complete technical description of the AQUATOX model can be found in Park & Clough  (2009). 

 

Physical characteristics 

Important variables that describe the physical characteristics of PDC in AQUATOX are volume, 

bathymetry, and retention time. Volume, a state variable, can be computed in several ways 

depending on the availability of data and the site dynamics. A correct definition of the volume 

is important for computing the dilution of nutrients and organisms such as phytoplankton and 

zooplankton. In AQUATOX the change in volume of a water body, except for streams, is 

computed as indicated in Eq. 3.4: 

𝑑𝑉𝑜𝑙𝑢𝑚𝑒

𝑑𝑡
= 𝐼𝑛𝑓𝑙𝑜𝑤 − 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 − 𝐸𝑣𝑎𝑝  Eq. 3.4 

where dVolume/dt describes the derivative for volume of water (m3/d), Inflow the inflow of 

water into the waterbody (m3/d), Discharge the discharge of water from the waterbody (m3/d), 

and Evap the evaporation (m3/d). AQUATOX gives several options for computing the volume, 

including constant volume, dynamic volume (function of inflow, discharge, and evaporation), 

and time-series of known values. Table 3.11 indicates the necessary input for each of these 

options. 

Table 3.11 – Computation of Volume, Inflow, and Discharge in AQUATOX. 

Method Inflow Discharge 

Constant InflowLoad InflowLoad - Evap 

Dynamic InflowLoad DischargeLoad 

Known values InflowLoad InflowLoad – Evap + (State – KnownVals) / dt 

InflowLoad: user-supplied inflow loading (m3/d); DischargeLoad: user-supplied discharge loading (m3/d); State: computed 

state variable value for volume (m3); KnownVals: time series of known values of volume (m3); dt: incremental time in 

simulation (d). 

 

The depth profile of a water body determines the mixing and light penetration of a water body. 

AQUATOX normally uses an assumption of unchanging mean depth. The shapes of water 
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bodies in AQUATOX are represented in the model by idealized geometrical approximations, 

following the topological treatment of Junge (1966), indicated in Eq. 3.5: 

𝑃 = 6.0 ∙
𝑍𝑀𝑒𝑎𝑛

𝑍𝑀𝑎𝑥
− 3.0  Eq. 3.5 

 

where ZMean is the mean depth (m), ZMax the maximum depth (m), and P is the shape 

parameter that characterizes the shape of the site (constrained between -1.0 and 1.0). 

AQUATOX allows user to model a simpler system, where the bathymetric approximations may 

be bypassed in favor of a more rudimentary set of assumptions via an option in the software. 

Retention time is a measure expressing the mean time that water spends in a water body. 

AQUATOX calculates water retention time as indicated in Eq. 3.6: 

𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
 Eq. 3.6 

where Retention is the retention time (d), Volume the volume of the water body (m3), and 

Discharge is the discharge of water from the water body (m3/d).  

Climate 

In AQUATOX climate is described by water temperature, wind and solar radiation. Water 

temperature controls several factors in the model such as decomposition, photosynthesis, 

consumption, respiration, reproduction, and mortality. AQUATOX gives the user different 

options for computing temperature, including constant temperature, dynamic temperature 

and time-series of known values. Dynamic water temperature is represented through a sine 

approximation for seasonal variations (Ward 1963) based on observed means and ranges of 

variability, as indicated in Eq. 3.7: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑇𝑒𝑚𝑝𝑀𝑒𝑎𝑛 + (−1.0 ∙
𝑇𝑒𝑚𝑝𝑅𝑎𝑛𝑔𝑒

2
∙ sin(0.0174533 ∙ (0.987 ∙

(𝐷𝑎𝑦 + 𝑃ℎ𝑎𝑠𝑒𝑆ℎ𝑖𝑓𝑡) − 30))))) Eq. 3.7 
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where Temperature is the average daily water temperature (°C), TempMean is the mean 

annual temperature (°C), TempRange is the annual temperature range (°C), Day is the day of 

the year (d), and PhaseShift is the time-lag in heating (=90d). 

Wind in AQUATOX determines the stability of blooms of nitrogen-fixing cyanobacteria, affects 

air-water oxygen exchange, and controls volatilization of organic chemicals. If measured data 

are not available, AQUATOX gives users the possibility to represent wind speed through a 

Fourier series of sine and cosine terms (dynamic loading), as indicated in Eq. 3.8: 

 

 Eq. 3.8 

 

where Wind is wind speed (m/s), CosCoeff0  is the cosine coefficient for the 0-order harmonic 

(=3 m/s), CosCoeffn is the cosine coefficient for the nth-order harmonic, Day is the day of the 

year (d), SinCoeffn is the sine coefficient for the nth-order harmonic, and Freqn is the selected 

frequency for the nth-order harmonic. This default wind dynamic has a 365-day repeat, 

representative of seasonal variations in wind. The mean and twelve additional harmonics seem 

to effectively capture the variation of wind. This approach is useful because the user must 

specify only the mean, while wind variability is imposed by the function.  

Solar radiation in AQUATOX controls factors for the photosynthesis of primary producers. The 

default solar radiation function formulated for AQUATOX is a variation on the temperature 

equation (Eq. 3.7), but without the lag term, as indicated in Eq. 3.9: 

𝑆𝑜𝑙𝑎𝑟 = 𝐿𝑖𝑔ℎ𝑡𝑀𝑒𝑎𝑛 +
𝐿𝑖𝑔ℎ𝑡𝑅𝑎𝑛𝑔𝑒

2
∙ sin(0.0174533 ∙ 𝐷𝑎𝑦 − 1.76) ∙ 𝐹𝑟𝑎𝑐𝐿𝑖𝑔ℎ𝑡 Eq. 3.9 

where Solar is average daily incident light intensity (ly/d), LightMean is mean annual light 

intensity (ly/d), LightRange is annual range in light intensity (ly/d), Day is day of the year (d), 

FracLight is fraction of site that is shaded. The derived values are given as average light intensity 

in Langleys per day (Ly/d = 10 kcal/m2⋅d). An observed time-series of light also can be supplied 

by the user.  
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Detritus 

In AQUATOX, detritus (all non-living organic material and associated decomposers, bacteria 

and fungi) is divided into two categories: labile and refractory. Detritus is modeled as eight 

compartments: refractory (resistant) dissolved, suspended, sedimented, and buried detritus; 

and labile (readily decomposed) dissolved, suspended, sedimented, and buried detritus (Fig. 

3.17). 

 

 

 

Fig. 3.17 – Detritus compartments in AQUATOX. 
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Nutrient Cycle 

AQUATOX models the cycles of nitrogen and phosphorus in the water column. Two nitrogen 

compartments, total ammonia (NH3 + NH4
+) and nitrate (NO3

-) are modeled. Nitrite occurs in 

very low concentrations and is rapidly transformed through nitrification and denitrification, 

therefore, it is modeled with nitrate. In the basic version of AQUATOX, inorganic nitrogen in 

the sediment bed is ignored, but organic nitrogen is modeled as component of the sedimented 

detritus. AQUATOX can model several processes of the nitrogen cycle: remineralization, which 

includes all the necessary processes to convert organic nitrogen in ammonia; nitrification, 

which converts ammonia to nitrite and then to nitrate by nitrifying bacteria both at the 

sediment-water interface and in the water column; denitrification, the anaerobic process that 

converts nitrate and nitrite to free nitrogen; and ionization of ammonia. In the water column, 

ammonia is assimilated by algae and macrophytes and is converted to nitrate as a result of 

nitrification. Nitrate is assimilated by plants and is converted to free nitrogen (and lost) through 

denitrification. Free nitrogen can be fixed by cyanobacteria. Nitrogen processes are subject to 

several environmental conditions and are difficult to model with accuracy; therefore, the 

nitrogen cycle in AQUATOX is represented with considerable uncertainty. The nitrogen cycle 

in AQUATOX is represent in Fig. 3.18. 

 

Fig. 3.18 – Nitrogen cycle in AQUATOX. 
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The phosphorus cycle is simpler than the nitrogen cycle. AQUATOX models only phosphate 

available for plants. AQUATOX models the remineralization of phosphorus, which includes the 

processes to convert organic phosphorus in phosphate (PO4
3-). The basic version of AQUATOX 

does not model fluxes of phosphate from the sediment pore waters to the water column. The 

nitrogen cycle in AQUATOX is represent in Fig. 3.19. 

 

 

Fig. 3.19 – Phosphorus cycle in AQUATOX. 

Phytoplankton 

The change in phytoplankton biomass (g/m3) is function of photosynthesis, respiration, 

photorespiration, non-predatory mortality, predatory mortality, sinking, sloughing and 

washout. If the water body is stratified, turbulent diffusion also affects the biomass of 

phytoplankton. The equation that models the change in phytoplankton is illustrated here 

below (Eq. 3.10): 

𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑃ℎ𝑦𝑡𝑜

𝑑𝑡
= 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 + 𝑃ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 − 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑃ℎ𝑜𝑡𝑜𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 −

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 − 𝑃𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛 ± 𝑆𝑖𝑛𝑘𝑖𝑛𝑔 ± 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 − 𝑊𝑎𝑠ℎ𝑜𝑢𝑡 + 𝑊𝑎𝑠ℎ𝑖𝑛 ± 𝑇𝑢𝑟𝑏𝐷𝑖𝑓𝑓 +

𝑆𝑙𝑜𝑢𝑔ℎ

3
  Eq. 3.10 
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where dBiomass/dt is the change in biomass of phytoplankton with respect to time (g/m3d), 

Loading is the external loading of phytoplankton into the system (g/m3d), Photosynthesis is 

the rate of photosynthesis (g/m3d), Respiration is the respiratory loss (g/m3d), 

Photorespiration is the release of photosynthate (dissolved organic material) that occurs in the 

presence of light (g/m3d), Mortality is the nonpredatory mortality (g/m3d), Predation is the 

predatory mortality (g/m3d), Washout is the loss due to being carried out of the system 

(g/m3d), Washin is the gain from upstream waterbodies (g/m3d), Sinking is the loss or gain 

due to sinking between layers of the water body (in case of stratified system) and 

sedimentation to bottom (g/m3d), Floating is the loss from the hypolimnion or gain to the 

epilimnion due to the floatation of “surface-floating” phytoplankton (g/m3d), TurbDiff is 

turbulent diffusion (g/m3d), Slough is the addition to phytoplankton from the scour loss of 

periphyton (g/m3d).  

Photosynthesis is modeled as a maximum observed rate multiplied by reduction factors for 

the effects of toxicants (salinity), habitat, and suboptimal light, temperature, current, and 

nutrients. The equation that models photosynthesis is illustrated here below (Eq. 3.11 and 

3.12): 

𝑃ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 = 𝑃𝑀𝑎𝑥 ∙ 𝑃𝑃𝑟𝑜𝑑𝐿𝑖𝑚𝑖𝑡 ∙ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 ∙ 𝑆𝑎𝑙𝑡𝐸𝑓𝑓𝑒𝑐𝑡   Eq. 3.11 

𝑃𝑃𝑟𝑜𝑑𝐿𝑖𝑚𝑖𝑡 = 𝐿𝑡𝐿𝑖𝑚𝑖𝑡 ∙ 𝑁𝑢𝑡𝑟𝐿𝑖𝑚𝑖𝑡 ∙ 𝑇𝐶𝑜𝑟𝑟 Eq. 3.12 

where PMax is the maximum photosynthetic rate (1/d), PProdLimit is the limitation of primary 

production (Eq. 3.12), Biomass is the total biomass of phytoplankton in the system (g/m3), 

SaltEffect is the effect of salinity of photosynthesis, LtLimit is the light limitation (unitless), 

NutrLimit is the nutrient limitation (unitless), and TCorr is the limitation due to suboptimal 

temperature (unitless). 

 

 

 

Light is an important limiting variable for phytoplankton. Light limitation in AQUATOX is based 

on the Steele formulation for light limitation, which is represent by Eq. 3.13: 
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𝐿𝑡𝐿𝑖𝑚𝑖𝑡 = 0.85 ∙
𝑒∙𝑃ℎ𝑜𝑡𝑜𝑝𝑒𝑟𝑖𝑜𝑑∙(𝐿𝑡𝐴𝑡𝐷𝑒𝑝𝑡ℎ−𝐿𝑡𝐴𝑡𝑇𝑜𝑝)∙𝑃𝑒𝑟𝑖𝑝ℎ𝑦𝑡𝐸𝑥𝑡

𝐸𝑥𝑡𝑖𝑛𝑐𝑡∙(𝐷𝑒𝑝𝑡ℎ𝐵𝑜𝑡𝑡𝑜𝑚−𝐷𝑒𝑝𝑡ℎ𝑇𝑜𝑝)
 Eq. 3.13 

where LtLimit is the light limitation (unitless), e is the base of natural logarithms (2.71828), 

Photoperiod is the fraction of the day with daylight (unitless), Extinct is the total light extinction 

(1/m), DepthBottom is the maximum depth or depth of bottom (m), DepthTop si the depth of 

top of layer (m), LtAtDepth is the limitation due to insufficient light (unitless), LtAtTop is the 

limitation of algal growth due to light, and PeriphytExt is the extinction due to periphyton (only 

affects periphyton and macrophytes, unitless). 

Nutrient limitation in AQUATOX is modeled, for each individual nutrient, using the Michaelis-

Menten equation: 

𝑃𝐿𝑖𝑚𝑖𝑡 =  
𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠

𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠+𝐾𝑃
 Eq. 3.14 

𝑁𝐿𝑖𝑚𝑖𝑡 =  
𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛

𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛+𝐾𝑁
 Eq. 3.15 

𝐶𝐿𝑖𝑚𝑖𝑡 =
𝐶𝑎𝑟𝑏𝑜𝑛

𝐶𝑎𝑟𝑏𝑜𝑛+𝐾𝐶𝑂2
 Eq. 3.16 

where PLimit is the limitation due to phosphorus (unitless), Phosphorus is the available soluble 

phosphorus (gP/m3), KP is the half-saturation constant for phosphorus (gP/m3), NLimit is the 

limitation due to nitrogen (unitless), Nitrogen is the available soluble nitrogen (gN/m3), KN is the 

half-saturation constant for nitrogen (gN/m3), CLimit is the limitation due to inorganic carbon 

(unitless), Carbon is the available dissolved inorganic carbon (gC/m3), KCO2 is the half-saturation 

constant for carbon (gC/m3). The Michaelis-Menten equation is evaluated for each nutrient, and 

the factor for the nutrient that is most limiting (minimum limiting nutrient) at a particular time is 

used. The overall nutrient limitation in AQUATOX is calculated as follows (Eq. 3.17): 

𝑁𝑢𝑡𝑟𝐿𝑖𝑚𝑖𝑡 = min (𝑃𝐿𝑖𝑚𝑖𝑡, 𝑁𝐿𝑖𝑚𝑖𝑡, 𝐶𝐿𝑖𝑚𝑖𝑡) Eq. 3.17 

where NutrLimit is the reduction due to the limiting nutrient (unitless). 

Because Chlorphyll-a (Chl-a) is commonly used as an index of water quality, AQUATOX converts 

phytoplankton biomass into approximate values for Chl-a. The ratio of carbon to Chl-a (C:Chl-

a) exhibits a wide range of values depending on the nutrient status of the algae (Harris 1986). 

AQUATOX adopts values of 45 μgC/μgChl-a. 
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3.3.2 Data input for the AQUATOX model applied to PDC 

AQUATOX requires a series of inputs for describing the abiotic and biotic state of the system. 

In this section, the data collected and implemented into AQUATOX to simulate PDC are 

described. Time-series from the SWAT model of the ZRB (i.e. freshwater discharge, nutrient 

loadings) and monitored observations (e.g. water temperature) were implemented into 

AQUATOX at a monthly time-step. The list of data implemented in the model is presented in 

Table 3.12.  

 

Table 3.12 – Summary of principal AQUATOX required input data for the modelling of PDC. 

Required Input Source 

Morphology Length, Average width, 
Average Depth, Maximum 
Depth 

Guerzoni & Tagliapietra (2006) 

Hydrology Inflows and outflows of water, 
Water volume, Evaporation 

SWAT model; Zuliani et al. (2005) 

Climate Latitude, Wind, Light, Water 
Temperature 

ARPAV – Servizio Meteorologico 

Water physico-chemical properties pH, DIC, Nutrients, Detritus, 
Inorganic solids  

SAMANET; MELa project  

Biota Time-varying biomasses of 
phytoplankton (chlorophyll a) 

SAMANET and scientific literature 
(Comaschi et al. 1995; Comatti et al. 
2006). 

 

Morphology 

Implementing correct data of the morphology of the area is necessary for simulating the 

hydrology of the system. Necessary data, mean depth (Zmean in Eq. 3.5) and max depth (Zmax 

in Eq. 3.5) were computed from bathymetry maps of the lagoon of Venice for the year 2002 

(Guerzoni and Tagliapietra 2006) using the GIS software ARCGIS. Delimitation of the surface of 

PDC was defined assuming the lagoon channels and the salt-marshes contouring PDC as the 

borders of the water body. No data were available for site length, and surface area, so they 

were calculated using the GIS software ArcGIS. 
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Hydrology 

Freshwater loadings (Inflow in Eq. 3.4) were obtained from the SWAT application of the ZRB. 

No data were available for the volume of PDC. Therefore, volume was calculated as follows 

(Eq. 3.18): 

𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 ∙ 𝑀𝑒𝑎𝑛𝐷𝑒𝑝𝑡ℎ  Eq. 3.18 

Surface (m2) and mean depth (m) were computed from geographic and bathymetry maps 

(Guerzoni and Tagliapietra 2006) using the GIS software ArcGIS.  

Climate 

Average latitude of PDC was computed using the GIS software ArcGIS by calculating the 

latitude at its centroid. Time series of both variables were obtained from the weather station 

“Venezia – Istituto Cavanis” provided by ARPAV for the period 2007-2012. Water temperature 

is at the basis of several processes in AQUATOX. Daily time series of water temperature were 

obtained from the station Ve-7 of the SAMANET monitoring network. 

Water physico-chemical properties 

The use of site-specific physico-chemical parameters allows to simulate biotic and abiotic 

processes correctly. Values of pH and Total Organic Carbon (TOC) were obtained from the 

station 1-B of the MELa project. Dissolved inorganic carbon (DIC) values were computed using 

the software CO2SYS (Robbins et al. 2010), by using values of alkalinity, pH and atmospheric 

CO2 provided by the monitoring station VE-1B (MELa project) over the period 2007-2009. Daily 

values of salinity were obtained from the monitoring station Ve-7 SAMANET monitoring station 

Ve-7. In AQUATOX, two nitrogen compartments, ammonia and nitrate, are modeled, while 

phosphorus is present in the system as phosphate (PO4
3-). Dynamic inflow loadings of NH4

+, 

NO3
-, and PO4

3- were obtained from the SWAT model of the ZRB. Seasonal values of nutrients 

for the period 2007-2009 were used to evaluate the performance of the model and were 

obtained from the monitoring station Ve-1B of the MELa project. Turbidity caused by 

suspended solids affects light penetration and photosynthesis processes. As turbidity is an 

important factor in marsh environments it was decided to implement inorganic sediment 
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concentrations into the model. Average values of turbidity were obtained from Guerzoni & 

Tagliapietra (2006). 

Biota 

Observed data of phytoplankton were retrieved from SAMANET, station Ve-7. The parameter 

chlorophyll-a (Chl-a) was analysed as a proxy for phytoplankton, as explained in Section 3.3.1. 

Phytoplankton composition of the Venice lagoon was obtained from scientific literature (Facca 

et al. 2004). Zooplankton was implemented in the simulation as a predator of phytoplankton 

in order to regulate its dynamics and avoid exponential growth. Its average concentration 

values to evaluate model performance were obtained from Comaschi et al. (1995) and Comatti 

et al. (2006). 

 

3.3.3 Implementation of AQUATOX 

Parameterization of the model 

This section of the dissertation describes the parameterization of the AQUATOX model of PDC. 

To parameterize the model, AQUATOX provides a “wizard” that allows to the user to insert 

initial condition values and time-series for the simulation period for each state and driving 

variable. This section follows the steps suggested by the wizard of the software. 

 

Simulation type: The environment of PDC was simulated in AQUATOX with the simulation type 

“Reservoir”. AQUATOX integrates an “estuary” sub-model, which was not implemented in the 

study as it was decided to not consider the effects of the tide in the system. The fundamental 

reason behind this choice was that the “estuary” sub-model, considered as exploratory by the 

developers (Park and Clough 2009), was not able to model the complex hydrodynamics of the 

lagoon of Venice. Therefore, in order to avoid introducing further complexity and uncertainty 

in the system, the “estuary” sub-model was discarded. 

Simulation time period: the system was run for 6 years (2007-2012) with a warm-up period of 

two years (2005-2006). 



102 
 

Nutrients: initial concentrations of nutrients were input into the model. The values obtained 

from the measurement performed in the MELa project were used. The averages of the 

measurements of January for the year 2007-2009 were selected. The following concentrations 

have been used: 

 

▪ N-NH4
+: 0.16 mg/l 

▪ N-NO3
-: 0.90 mg/l 

▪ P-PO4
3-: 0.03 mg/l 

▪ DIC: 133.25 mg/l 

▪ O2: 10.45 mg/l 

 

AQUATOX does not simulate silica (Si), and therefore it was not possible to parameterize this 

aspect. This adds further uncertainty to the results of the study, as Si is required by diatoms, 

the dominant group in the phytoplankton of PDC. 

Detritus in sediment bed and in water column: as no information was available for detritus in 

sediment bed, both initial conditions were set to 0. The warm-up period was used to bring the 

system to the steady-state. Initial values of detritus in the water column were obtained from 

values of total organic carbon (TOC) available from the MELa1 project. The average of the 

measurements of January for the years 2007-2009 was selected as initial condition for the 

variable. Initial conditions of TOC were set as 3.0 mg/l. AQUATOX automatically transformed 

TOC values in organic matter (mg/l). 

Phytoplankton: nine phytoplankton compartments were added to represent the possible 

evolutions of phytoplankton biomass and composition in present and future conditions. It was 

decided to implement only the species of phytoplankton of the lagoon of Venice that are 

already present in the AQUATOX database. Phytoplankton implemented in the system belongs 

to two main-groups: diatoms (D) and cyanobacteria (CB). Initial concentrations were set to 0 

mg/l for each species, and the warm-up period was used to bring the species to equilibrium. 

Moreover, AQUATOX uses “seeds” of phytoplankton, very small concentrations (1E-05 mg/l 

dry) that are added into the system on a daily basis for preventing the extinction of the species. 
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Table 3.13 indicates the species of phytoplankton added to the system of PDC in AQUATOX. 

See Appendix B for details on phytoplankton in AQUATOX. 

 

 

 

Table 3.13 – Phytoplankton compartments added to the system. 

N. Species Optimal T (°C) N Half-sat K P Half-sat K 

D1 Navicula ssp. 15 0.01 0.002 

D2 Cyclotella nana 20 0.011 0.017 

D3 Cyclotella nana (High nutrient waters) 20 0.117 0.055 

D4 Fragilaria spp. (low nutrient waters) 26 0.0154 0.001 

D5 Cyclotella nana (warm waters) 25 0.011 0.017 

D6 Cyclotella nana (extremely warm waters) 30 0.011 0.017 

D7 Cyclotella spp. (high nutrient and warm waters) 25 0.117 0.055 

D8 Fragilaria spp. (high nutrient and cold waters) 8 0.117 0.05 

CB1 Microcystis spp. 30 0.4 0.03 

 

Zooplankton: the species Acartia clausi was selected as representative of zooplankton in PDC. 

Initial concentrations were set to 0 mg/l, and the warm-up period was used to bring the species 

to equilibrium. Moreover, AQUATOX uses “seeds” of zooplankton, very small concentrations 

(1E-05 mg/l dry) that are added into the system on a daily basis for preventing the extinction 

of the species. Table 3.13 indicates the species of phytoplankton added to the system of PDC 

in AQUATOX. 

Table 3.14 - Zooplankton compartments added to the system. 

N. Species Optimal T (°C) Maximum Consumption (g/g  d) Half-saturation feeding (mg/l) 

Z1 Acartia Clausi 20-25 2.5 2 

 

Site characteristics: Site length and width values were set at 4.5 km and 0.8 km. Surface area 

was set at 3.6 km2. Mean depth and Maximum depth were set respectively at 0.8 m and 3 m. 

Evaporation was assumed as in balance with direct precipitation over the lagoon. As the two 



104 
 

variables tend to cancel each other out (Zirino et al. 2014), evaporation in the model was set 

constant to the value of 0 inches/year. The latitude was set at 45°3’N. 

Water volume data: the water volume of PDC was assumed as constant (3.8x106 m3). The 

effects of seepage of underground water from the watershed was described by increasing the 

flowrate of freshwater from the ZRB by a multiplicative factor of 1.5. This multiplicative factor 

was implemented to obtain an acceptable water retention time in PDC. A mean retention time 

of 15 days was considered as acceptable for the area of PDC (Cucco and Umgiesser 2006). 

Water temperature: temperature was computed in AQUATOX as observed time-series. Daily 

measurements obtained from the SAMANET monitoring network, VE-7 station, were 

implemented into AQUATOX. Statistics show a mean water temperature of 16°C, and 

maximum and minimum values of, respectively, 28°C and 3°C. 

Wind loading: wind was computed in AQUATOX as dynamic loading (Section 3.3.1, Climate) 

despite the availability of wind speed time-series from the weather station “Venezia – Istituto 

Cavanis”. The rationale behind this choice is that, in this study, wind statistics were not 

considered as changing over the 21st century in this study. As a result, no wind projections 

were available. Through the dynamic loading options, AQUATOX computed a 365-day wind 

speed time-series from the mean value over the period 2007-2012, which was set at 1.5 m/s. 

The value was obtained from the time series of the weather station “Venezia – Istituto Cavanis”. 

Statistics obtained with the dynamic loading method show a mean value of 1.5 m/s, a 

maximum of 6.5 m/s and a minimum of 0 m/s. 

Light loading: light was computed in AQUATOX as dynamic loading (Section 3.3.1, Climate). The 

rationale supporting this choice is that, in this study, solar radiation statistics were considered 

as constant throughout the 21st century. As a result, no solar radiation projections were 

available. Average annual light intensity and annual range light intensity were calculated from 

solar radiation time series obtained from the weather station “Venezia – Istituto Cavanis” for 

the period 2007-2012. Their value was set respectively to 332 Ly/day and 559 Ly/day. With 

these values AQUATOX automatically calculated mean daily value of solar radiation. 
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pH of water: the pH of PDC is characterised by low variability. For this reason, it was decided 

to use a constant value into AQUATOX for both present and future time periods. The value was 

obtained from the monitoring data of the MELa project. A pH value of 7.9 was chosen and it 

was obtained from the average of available data of the MELa monitoring for the years 2001-

2003. 

Salinity: salinity is an important factor in PDC, as it is strongly influenced by the influx of 

freshwater from the watersheds of the Zero and Dese rivers. As a result, daily salinity variations 

are significant, featuring maximum daily values over 30 ppt and minimum values below 10 ppt.  

Daily values of salinity were obtained from the SAMANET monitoring station VE-7, and 

implemented into AQUATOX as monthly averages, as the study focuses on the long-term 

effects of climate change. 

Inorganic sediments: it was decided to implement inorganic sediment concentrations into the 

model as a constant. AQUATOX can calculate inorganic solids from total suspended sediments 

(TSS) and organic carbon values. The constant value of TSS was set at 6.5 mg/l. 

Non-point source loadings: nutrient loadings obtained with SWAT were implemented into 

AQUATOX for the period 2007-2012. 

 

Evaluation of model performance 

After parameterization, the model performance was evaluated. Developers of AQUATOX do 

not suggest the adoptions of stringent goodness of fit measures (Park and Clough 2009). As a 

result, a weight-of-the evidence approach was suggested to measure the appropriateness of 

the model. First, it was assessed if the model was behaving reasonably. Second, data have 

been visually inspected by comparing the model plots with the observation points. Third, the 

overlap between data and model distribution based on relative bias (rB) and variance (F) was 

performed. Relative bias indicates the correspondence of central tendencies, where rB=0 

implies the same mean. The variance ratio or F test (F), describes the similarities in variability 

between modeled and observed data. Accordingly, F=1 indicates that the variability of the two 

datasets are the same. Test results with rB close to 0 and F close to 1 indicate models with 
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good fitness to observed data (Fig. 3.20). The equations to calculate rB and F are illustrated by 

Eq. 3.19 and Eq. 20: 

𝑟𝐵 =
(𝑀𝑜𝑑̅̅ ̅̅ ̅̅ ̅− 𝑂𝑏𝑠̅̅ ̅̅ ̅̅ )

𝑆𝑜𝑏𝑠
 Eq. 3.19 

𝐹 =
𝑆𝑀𝑜𝑑

2

𝑆𝑂𝑏𝑠
2  Eq. 3.20 

where rB is relative bias,  𝑀𝑜𝑑̅̅ ̅̅ ̅̅  is the mean of predicted (modeled) results, 𝑂𝑏𝑠̅̅ ̅̅ ̅ is the mean of 

measured observations, Sobs is the standard deviation of observations, F is the F test, S2
Mod is 

the variance of predicted results, and S2
Obs is the variance of monitored observations. Results 

of the model performance are presented in Section 4.3.1 of this dissertation. 

 

 

Fig. 3.20 – Relative bias and F test to compare means and variances of observed data and predicted results with AQUATOX. 
Isopleths indicate the probability that the predicted and observed distributions are the same, assuming normality. (Park and 
Clough 2009). 

 

Future climate scenarios in AQUATOX 

After assessing model performance, nutrient loadings from the SWAT model of the ZRB for 

each climate scenario were implemented into AQUATOX. Climate scenarios did not provide 

values for water temperature, salinity, and DIC, which are required by AQUATOX to simulate 
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PDC. For this reason, they were computed indirectly through regression equations. The air 

temperature measured by the weather station “Mogliano” (ARPAV – Servizio Meteorologico) 

and the water temperature measured by the station Ve-7 (SAMANET) for the period 2007-

2012 were analysed and a relation among monthly means was drawn. As a result, the linear 

regression equation y = 1.0462x + 1.5382 (R2 = 0.99) was computed to predict water 

temperature in PDC from projected air temperature of Mogliano for each climate scenario (Fig. 

3.21). 

 

Fig. 3.21 – Relationship between Air Temperature in Mogliano (ARPAV – Servizio Meteorologico) and Water Temperature in 
PDC (SAMANET). 

Water temperature increases notably in the future projections. In the mid-term period, 

temperatures are on average 2-3°C higher than the control period in both RCP4.5 and RCP8.5 

(Fig. 3.22). For the long-term period, differences between the control period and RCP8.5 

increase, with differences of 5 to 7 °C over the year (Fig. 3.23).  
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Fig. 3.22 – Differences in the 30-year monthly temperature between the control period (1983-2012) and mid-term projections 
(2041-2070) of RCP4.5 and RCP 8.5. 

 

Fig. 3.23 - Differences in the 30-year monthly average temperature between the control period (1983-2012) and long-term 
projections (2071-2100) of RCP4.5 and RCP 8.5. 

 

Freshwater loadings computed by SWAT for the ZRB and salinity measured by the station Ve-

7 (SAMANET) for the period 2007-2012 were analysed and a relation among monthly means 

was drawn. As a result, the linear regression equation y = -1.8143x + 27.798 (R2 = 0.6) was 

computed to predict salinity in PDC from projected freshwater discharge from the ZRB for each 

climate scenario (Fig. 3.24). Salinity was also used to compute alkalinity, a parameter used to 

determine the future concentrations of DIC in the waters of PDC through the use of the 

software CO2SYS. The linear regression equation y = -43.216x + 4474.7 (R2 = 0.4) was 

computed to predict monthly alkalinity from projected monthly salinity for each climate 
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scenario associated to the area of PDC (Fig. 3.25). Monthly values of alkalinity, together with 

monthly values of salinity (ppt), temperature (°C), pressure (dbars), and atmospheric CO2 

(µatm), were implemented into the software to compute projected DIC values for each climate 

scenario. 

 

 

Fig. 3.24 – Relationship between Freshwater loadings from the ZRB and Salinity of PDC. 

 

 

Fig. 3.25 – Relationship between Salinity and Alkalinity in PDC (Station 1B, Mela Project). 
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As explained above in this section, statistics for wind and light loadings were left unchanged 

over the 21st century, and daily values were computed automatically by AQUATOX. Finally, it 

was decided to not consider the effects of sea level rise on PDC and its lagoon of Venice. The 

rationale behind this choice is the lack of high resolution scenarios and hydrologic models able 

to simulate the effects of sea-level rise on PDC in an appropriate way. In order to avoid adding 

additional complexity and uncertainty, sea-level rise was discarded from the study. 

Each scenario was forced by two Representative Concentration Pathways (RCPs), RCP 4.5 and 

RCP 8.5, and propagated for two time periods: a mid-term scenario (2041-2070) and a long-

term scenario (2071-2100). Results of future scenarios of nutrient concentrations and 

phytoplankton biomasses are presented in Section 4.3.2 of this dissertation. 
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4 RESULTS 

4.1 Climate change scenarios for the Zero river basin 

4.1.1 Bias correction of future climate change scenarios 

As a result of the bias correction, here are presented the future conditions for precipitation 

and temperature. For simplicity, only the results corresponding to the GCM/RCM 1 (CMCC-

CM/COSMO-CLM) for the weather station of Castelfranco Veneto are presented. The method, 

was able to improve the mean of monthly precipitation (Fig. 4.1a,b) and temperature (Fig. 

4.2a,b) while it did not improve the standard deviation (Fig. 4.1c, Fig. 4.2c).  

 

 
Fig. 4.1 – Bias correction of the GCM/RCM 1 for the variable Precipitation in the ZRB. (a) Differences in the 20-year monthly 
mean between observed, raw-data and corrected-data precipitation values for the correction period (1993-2012). (b) Relative 
difference in the 20-year monthly mean between raw-data and corrected-data. (c) Relative difference in the 20-year monthly 
standard deviation between raw-data and corrected-data. 
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Fig. 4.2 – Bias correction of the GCM/RCM 1  for Max Temperature in the ZRB. (a) Differences in the 20-year monthly mean 

between observed data, raw-data and corrected-data for the correction period (1993-2012). (b) Relative difference in the 20-

year monthly mean between raw-data and corrected-data. (c) Relative difference in the 20-year monthly standard deviation 

between raw-data and corrected-data. 
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Fig. 4.3 – a) Annual precipitation for the control period (1983-2012) and the mid-term (2041-2070) and long-term (2071-2100) 
projections for the GCM/RCM 1 in the ZRB. b) differences in the 30-year monthly average between the control period (1983-
2012) and the mid-term (2041-2070) and long-term (2071-2100) projections for the RCP4.5 scenario. c) differences in the 30-
year monthly average between the control period (1983-2012) and the mid-term (2041-2070) and long-term (2071-2100) 
projections for the RCP8.5 scenario. 
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Fig. 4.4 - a) Annual average temperature for the control period (1983-2012) and the mid (2041-2070) and long (2071-2100) 
term projections in the Zero river basin, Italy. b) Differences in the 30-year monthly average between the control period (1983-
2012) and the mid (2041-2070) and long-term (2071-2100) projections for the RCP 4.5 scenario. 
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4.2 Climate change impacts on hydrology and nutrient loads of the 

ZRB 

4.2.1 Calibration and Validation of the SWAT model for the ZRB 

The behavior of the Zero river basin in terms of response to stream flow and nutrient loadings 

was evaluated by identifying the most sensitive parameters, indicated in Table 3.10. 

Calibration and validation were performed using observed stream flow and nutrient loadings 

data (Section 3.2.2). Calibration of the SWAT model for the ZRB was performed at a monthly 

time step for the 2007-2009 period, following an initial 3-year warm-up (2004-2006). 

Calibration was possible for the streamflow, nitrate and ammonium loads. The inorganic form 

of phosphorus was also attempted despite the scarcity of data available. 

Calibration for a monthly time step for the 2007-2009 period produced “satisfactory” results 

(Moriasi et al. 2007) for flow rate (NSE=0.64, R2=0.67), nitrate (NSE=0.59, R2=0.73) and 

ammonium (NSE=0.51, R2=0.56), as shown in Fig. 4.5, Fig. 4.6, and Fig. 4.7. Validation was 

performed for the period 2010-2012 and resulted in lower NSE for flow rate (NSE=0.20, 

R2=0.60) and nitrate (NSE=0.25, R2=0.64). This result can be related to an extreme 

precipitation event occurred in the area of study at the turn of October and November 2010, 

and an underestimation of flow rate during the 2011-2012 autumn-winter period, 

characterised by very low precipitations (Fig. 4.8 and Fig. 4.9). The low performance (NSE=-0.1, 

R2=0.28) of ammonium during validation period (Fig. 4.10) are attributed to underestimated 

flow rate during the 2011-2012 autumn-winter period. Moreover, ammonium loadings are 

also subject to the effect of punctual source of pollution (WWTPs, industrial discharges, direct 

sewer discharges) which were modeled as constant throughout the calibration and validation 

periods as no direct observation measures were available. The adoption of methodologies 

such as the one described in Azzellino et al. (2006) would help to better estimate the loadings 

of point-source pollution in rain weather conditions. 
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Fig. 4.5 – Mean flow-rate calibration for the period 2007-2009 (NSE=0.64, R2=0.67). 

 

 
Fig. 4.6 – Nitrate (NO3

-) loadings calibration for the period 2007-2009 (NSE=0.59, R2=0.73). 

 

 
Fig. 4.7 – Ammonium (NH4

+) loadings calibration for the period 2007-2009 (NSE=0.51, R2=0.56). 
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Fig. 4.8 – Mean flow rate validation for the period 2010-2012 (NSE=0.15, R2=0.60). 

 

 
Fig. 4.9 - Nitrate (NO3

-) loadings validation for the period 2010-2012 (NSE=0.25, R2=0.65). 

 

 
Fig. 4.10 – Validation of ammonium (NH4

+) for the period 2010-20 (NSE=-0.10, R2=0.25). 
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Phosphorus calibration (NSE=-0.4, R2=0.1) and validation (NSE=-0.6, R2=0.2) were not 

satisfying (Fig. 4.11 and Fig. 4.12). The reason behind these results is probably due to the scarce 

monitoring data available for inorganic phosphorus. The use of the software LOADEST for the 

computing of potential monthly observed values does not guarantee the validity of the 

measures.  

 

Fig. 4.11 – Calibration of phosphate (PO4
3-) for the period 2007-2009 (NSE=-0.40, R2=0.12). Observed values were computed 

with the software LOADEST (USGS 2012). 

 

Fig. 4.12 – Validation of phosphate (PO4
3-) for the period 2010-2012 (NSE=0.13, R2=0.29). Observed values were computed 

with the software LOADEST (USGS 2012). 
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indicated in Table 4.1 shows that observed and modeled distributions are similar, assuming 

normality (Fig. 4.13). Moreover, the order of magnitude of the average yearly values are in 

agreement with previous studies on the VLW (Collavini et al. 2005; Giupponi et al. 2012) and 

support the acceptability of these results for the purposes of this study which focuses on the 

long-term changes due to the impacts of climate change. 

 

Table 4.1 – Statistical comparison of means and variances between virtual observed phosphorus values computed by LOADEST 
and phosphorus values modeled by SWAT. 

Period Mean 
SWAT 

Mean 
LOADEST 

St. Dev. 
LOADEST 

Variance 
SWAT 

Variance 
LOADEST 

rb F 

2007-2009 498.49 646.52 264.07 51496.89 69730.59 -0.56 0.74 

2010-2012 603.78 593.42 315.62 110629.46 99617.3 0.03 1.11 

 

 

 

Fig. 4.13 - Relative bias and F-test to compare means and variances of virtual observed values of phosphorus computed with 
LOADEST and modeled values of phosphorus modeled with SWAT. Isopleths indicate the probability that the predicted and 
observed distributions are similar, assuming normality. 
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4.2.2 Impacts of climate change on the ZRB 

The calibrated and validated SWAT model was run with the precipitation and temperature data 

of each GCM/RCM combination. In this section, only the results relative to the GCM/RCM 1 

(CMCC-CM/COSMO-CLM) are presented, in order to illustrate synthetically the results of the 

integrated modelling approach. The effects climate change were evaluated by comparing the 

30-year monthly average of the control period (1983-2012), with the mid-term (2041-2070) 

and long-term (2071-2100) projections. Projections do not show any change in the annual 

average, with 30-year yearly mean stable at 2 m3/s. However, an increase in the late autumn-

winter flow, and a marked decrease in the months of July and August for both RCP 4.5 and RCP 

8.5 scenarios can be observed (Fig. 4.14a,b). These results agree with the future climate 

projections of the GCM/RCM, which indicate an increase of precipitation in winter and a 

marked reduction in summer, coupled with an increase in summer evapotranspiration due to 

the higher temperatures.  

 
Fig. 4.14 – Flow rate differences in the 30-year monthly average of the control period (1983-2012), mid-term period (2041-
2070) and long-term period (2071-2100) for scenarios RCP 4.5 (a) and RCP 8.5 (b) of the GCM/RCM 1. 

The capability of the ZRB to export nutrients is controlled by water discharge, which in turn is 

a function of climate, morphology, soil properties and geology of the basin. Changes in climate 

and water flow consequently affect the loads of nutrients. Projections of nitrate loadings for 

both RCP4.5 and RCP 8.5 show an increase in the average yearly loadings over the 21st century, 

with values that increase of up to 5% by the end of the century. Projections show an increase 

in winter consequently with projected increased precipitations. The nitrate loads in summer 
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are influenced mainly by a reduction in precipitation and, therefore, in the water discharge 

(Fig. 4.15a,b). 

 
Fig. 4.15 – Nitrate loadings differences in the 30-year monthly average of the control period (1983-2012), mid-term (2041-
2070) and long-term (2071-2100) future projections for scenarios RCP 4.5 (a) and RCP 8.5 (b). 

 

The loads of Ammonium show marked differences in the magnitude of changes between 

RCP4.5 and RCP8.5. RCP4.5 for both mid-term and long-term period show a slight increase in 

spring and autumn and a reduction of loadings in summer, while RCP8.5 differentiates for the 

marked increase in the autumn-winter period. Also, it is possible to observe a change in the 

seasonal pattern between the mid-term and the long-term projection period of RCP8.5. In the 

mid-term period, loadings are concentrated in the months of April and November, while in the 

long-term period peaks are concentrated in the winter months, while the peak of April is 

reduced (Fig. 4.16a,b). Yearly averages show an increase of loadings the mid-term period and 

a following reduction in the long-term period, that brings loadings closer (RCP4.5) to the 

average of the control period, or only slightly higher (RCP8.5). The cause is probably related to 

the higher temperatures reached in the long-term period. Nitrogen transformation processes, 

such as mineralization, nitrification and volatilization are influenced by temperature and 

available water, and reach their optimal values within a range of temperature and humidity in 

the soil. 
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Fig. 4.16 - Ammonium loading differences in the 30-year monthly average of the control period (1983-2012), mid-term (2041-
2070) and long-term (2071-2100) future projections for scenarios RCP 4.5 (a) and RCP 8.5 (b). 

 

Changes in phosphorus were also observed. Results indicate marked changes in the magnitude 

of the winter loads in both RCP4.5 and RCP8.5. Both scenarios show an increase in inorganic 

phosphorus loadings in winter independently of the trend of the water flow (Fig. 4.17a,b), 

illustrating  a probable enrichment of the topsoil in inorganic phosphorus due to an 

accelerated remineralization, in conjunction with increased leaching and erosion processes 

caused by increasing precipitations in the autumn-winter period (Jennings, 2009; Pierson et 

al., 2010). Moreover, drier conditions in the summer might exacerbate the erosion of soil in 

the autumn season, and consequently increase the runoff of sediments and adsorbed mineral 

forms of phosphorus. 

 

Fig. 4.17 – Inorganic phosphorus loading differences in the 30-year monthly average of the control period (1983-2012), mid-
term (2041-2070) and long-term (2071-2100) future projections for scenarios RCP 4.5 (a) and RCP 8.5 (b). 
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4.3 Climate change impacts on PDC 

4.3.1 Performance evaluation of the AQUATOX model for PDC 

Model performance was evaluated by comparing simulation results to SAMANET monitoring 

data from 2007 to 2011 and MELa monitoring data from 2007 to 2009, both visually and 

statistically. Wind speed, solar radiation, DO, DIN and DIP concentrations, and Chl-a 

concentrations were used to evaluated the performance of the AQUATOX model of PDC. Table 

4.2 and Fig. 4.13 summarise the outcomes of the overlap test through the computed values of 

relative bias (rb) and F-test (F). This section of the dissertation discusses the performance of 

the AQUATOX model for PDC in detail. 

Table 4.2 – Values of relative bias and F-test for the considered parameters. 

Parameter Mean 
AQUATOX 

Mean 
Observations 

St. Dev. 
Observations  

Variance 
AQUATOX 

Variance 
Observation 

rb F 

Sol. Rad 327.00 334.65 211.06 40325.78 44545.23 -0.03 0.91 

Wind 1.38 1.69 0.83 1.67 0.78 -0.38 2.14 

DO 8.56 8.16 2.5 2.58 6.25 0.16 0.17 

DIN 0.96 0.86 0.69 0.20 0.48 0.14 0.18 

DIP 0.03 0.02 0.013 0.00011 0.00017 0.76 0.44 

DIN:DIP 30.07 45.35 22.3 303.37 528.9 -0.66 0.34 

Chl-a  
(2007-2011) 

3.44 3.5 5.58 35.7 31.09 -0.01 1.32 

Chl-a 
(2007-2012) 

4.15 3.1 5.17 61.12 26.74 0.2 5.2 

 

Fig. 4.18 – Overlap between modeled data and observed data, based on relative bias (rB) and variance (F). Isopleths indicate 
the probability that the predicted and observed distributions are the same, assuming normality. 
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Daily dissolved oxygen (DO) levels modeled by AQUATOX are in good agreement with the 

monitoring observation retrieved from the monitoring station VE7 of the SAMANET network 

Fig. 4.19. Modeled DO concentrations show less variability over the year compared to 

observations. On average, winter peaks reach 12 mg/l and summer lows 6 mg/l, while the 

range of observations goes from 15 mg/l to 5 mg/l. This justifies the low value in the F-test 

(0.17).

 

Fig. 4.19 – Relationship between DO modeled by AQUATOX and observations from the station VE-7 of the SAMANET network.  

Modeled Dissolved inorganic nitrogen (DIC) shows daily values in good agreement with the 

observations obtained from the monitoring station 1B of the MELa project (Fig. 4.20). As for 

DO, fluctuations around the mean are less marked for modeled values than observations. 

However, the scarcity of available observations might not picture the real variability of data. 

 

Fig. 4.20 – Relationship between DIN modeled by AQUATOX and observations from the MELa monitoring station 1B. 
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Daily values of dissolved inorganic phosphorus (DIP) show marked differences between 

modeled data and observations. The model shows a constant overestimation over the year 

compared to observed data. This justifies the value of relative bias (0.76) in the overlap test. A 

plausible explanation may be the difficulty of AQUATOX in modeling the dynamics of nutrient 

between sediment and water column, specifically the removal of phosphate. Zirino (2016b) 

describes a mechanism suggested by Di Toro (2001) and Joye et al. (2009) whereby the N:P 

ratio can increase during the remineralization process that occurs at the bottom of the lagoon: 

primary production in the water column results in organic particles containing N, P, and other 

elements necessary for life, most of which settle to the seafloor where they are quickly buried 

and covered by more production. As a consequence of remineralization of organic detritus 

settled to the bottom of the lagoon, nitrogen and phosphorus diffuse across the sediment 

interface into the water where they are re-oxidized: NH4
+ to NO3

- and, P to PO4
3−. Nitrate is not 

adsorbed and is returned to the water column, while a portion of phosphate is adsorbed by 

hydrated iron oxide. This cause the increasing in the N:P ratio in the water column. Finally it 

was observed a slight anticipation from the increase of phosphorus concentrations in the 

autumn period Fig. 2.25. In AQUATOX, phosphorus concentrations begin to rise in August, a 

month in advance. This is probably due to the remineralization of detritus generated by the 

phytoplankton bloom of June, which works as internal sink of phosphorus. Given the high 

water retention time of the summer period, detritus is not removed by the currents. 

 

Fig. 4.21 – Relationship between DIP modeled by AQUATOX and observations from the MELa monitoring station 1B. 
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The DIN:DIP ratio show good agreement between modeled and observed data (Fig. 4.22). It 

can be observed that AQUATOX underestimates the ratio in the summer months. The reason 

behind this lies in the overestimation of phosphorus. However, it is possible to observe that 

AQUATOX portrays the seasonality of the DIN:DIP  ratio correctly, with highs in the cold period 

and lows in the summer. 

 

 

Fig. 4.22 - Relationship between DIN:DIP ratio modeled by AQUATOX and observations from the MELa monitoring station 1B. 

 

The visual comparison of observed against simulated Chl-a was good. Predicted concentrations 

were slightly higher in summer and lower in winter Fig. 4.23. The years from 2007 to 2011 are 

in good agreement with observations, while the year 2012 shows substantial differences. 

While observed data indicate a low production of phytoplankton over the year, AQUATOX 

features a high peak in the month of June. The peak is caused by high water retention time in 

the winter months at the turn of 2011 and 2012. This period is characterised by low 

precipitation and consequent low freshwater discharge from the ZRB. Water retention time is 

modeled by AQUATOX based on freshwater loadings, and extremely low discharges cause 

higher water retention times. However, these events are rare and were not cable of affecting 

long-term (30 years) statistics. The integration of hydrodynamic models able to better simulate 
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study it was not possible to implement another model. The validity of the model is confirmed 
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by the statistics obtained for the 2007-2011 period, where relative bias (-0.01) and F-test (1.32) 

indicate strong similarities in the distributions of modeled and observed values. 

 

 

Fig. 4.23 - Relationship between Chl-a modeled by SWAT and observations from the station VE7 of the SAMANET program. 
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4.3.2 Impacts of climate change and nutrient loadings on PDC 

The AQUATOX model for PDC was run with all 10 climate scenarios. Here, only the results 

relative to the GCM/RCM Number 1 (CMCC-CM/COSMO-CLM) are presented. The effects of 

future scenarios were evaluated by comparing the 30-year average by month of the control 

period (1983-2012), and the mid-term (2041-2070) and long-term (2071-2100) periods. In this 

dissertation, results relative to nutrient concentrations and ratio, chlorophyll-a and abundance 

of phytoplankton species are presented. 

Dissolved Oxygen (DO) concentrations indicate a decrease in both RCP4.5 and RCP8.5 . As 

expected, the DO decrease in summer, from 7mg/l to 4.5 mg/l, is more marked than in winter. 

The model does not capture the high excursion that take place in PDC and lagoon of Venice 

between day and night. As a result, a similar decrease in 30-yr monthly averages might imply 

an increase in hypoxic conditions. 

  

Fig. 4.24 - Differences in the 30-year DO monthly mean between the control period (1983-2012), and the mid-term and long-
term projections for RCP4.5 (a) and RCP8.5 (b). 

Future projections of DIN concentrations in water don’t show substantial changes from the 

control period (Fig. 4.25a,b). Both RCPs indicate a general decrease of DIN in the summer 

months and stability over the winter period. This suggests that the surplus of DIN is assimilated 

by phytoplankton and higher trophic levels of the system (i.e. zooplankton). 
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Fig. 4.25 – Differences in the 30-year DIN monthly mean between the control period (1983-2012), and the mid-term and long-
term projections for RCP4.5 (a) and RCP8.5 (b). 

 

Differently than DIN, DIP concentrations reflect better the changes in phosphorus loadings 

from the ZRB. It is possible to observe a substantial increase of phosphorus concentrations in 

the spring and winter period, while summer concentrations keep the same values of the 

control period (Fig. 4.26). 

 

 

Fig. 4.26 - Differences in the 30-year DIN monthly average concentrations between the control period (1983-2012), and mid-
term and long-term projections for RCP4.5 (a) and RCP8.5 (b). 
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don’t show substantial changes. The higher availability of phosphorus in the winter reduce 

noticeably the DIN:DIP ratio. However, the same trend of present conditions is still observable 

also in future projections. As a result, given the overestimation of phosphorus in the model, 

the complexity of the dynamics of the Venice lagoon, and the limits of the model itself, these 

results do not allow the forecast of any changes in the limiting conditions of PDC. 

 

Fig. 4.27 – Differences in the 30-year DIN:DIP monthly mean between the control period (1983-2012), and the mid-term and 
long-term projections for RCP4.5 (a) and RCP8.5 (b). 

30-year averages of Chl-a concentrations were also observed (Fig. 4.28). The RCP4.5 scenario 

does not indicate marked changes, where only an increase in the summer months is observed. 

RCP8.5 show more marked differences both in concentration and seasonality. Yearly average 

concentrations rise from 66.44 µg/l (control period) to 67.7 µg/l (2041-2070) and 89.48 µg/l 

(2071-2100). It is also observable an evident shift in the peak of Chl-a, from June to August. It 

is important to consider the fact that Chl-a values are representative of the phytoplankton 

composition in the system and they cannot model adaptation or addition of new, more 

tolerant species. 
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Fig. 4.28 - Differences in the 30-year monthly average Chl-a concentrations between the control period (1983-2012), and mid-
term (a) and long-term (b) projections (2071-2100) of RCP4.5 and RCP8.5. 

 

Marked differences are also observable in the composition of phytoplankton (Fig. 4.29 to Fig. 

4.33). In the control period, phytoplankton is mainly composed of D1, D2, D5, and D8  

(representative of the spring bloom in PDC). The major changes happen in the summer months, 

where the abundances of Cyanobacteria (CB1) and diatoms adapted to warmer temperatures 

(D6) increase noticeably. Another observation is that Navicula (D1), a common diatom in PDC 

and other areas of the lagoon of Venice, tend to disappear in every future scenario. This results 

show how different climate condition will promote the growth of species which are more 

resistant to warm temperatures, and inhibit the growth of some of the current species. Change 

in the composition and seasonality of phytoplankton, due to increased water temperature will 

also lead to changes in the food-web structure. Warmer temperatures might also trigger a 

switch from dominance of aquatic macrophytes to phytoplankton (Heino, Virkkala, and 

Toivonen 2009). Substantial stability in the DIN:DIP ratio does not promote growth of algae 

with different nutrient ratios, such as D3, D6 and D7. These results indicate that major changes 

in the phytoplankton community will be caused by higher temperatures, while changes in 

nutrient loadings will not generate substantial alterations. 
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Fig. 4.29 – Abundance of different species of phytoplankton in the control period (1983-2012).  

 

 

Fig. 4.30 - Abundance of different species of phytoplankton in the mid-term period (1983-2012) for RCP4.5. 

 

 

Fig. 4.31 - Abundance of different species of phytoplankton in the mid-term period (1983-2012) for RCP8.5.  
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Fig. 4.32 - Abundance of different species of phytoplankton in the long-term period (2071-2100) for RCP4.5.  

 

Fig. 4.33 - Abundance of different species of phytoplankton in the long-term period (2071-2100) for RCP8.5.  
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noticeably in summer, as expected from future projections of freshwater loadings described 

above. This changes increase substantially the water retention time of PDC (>20 days). 

However, it is important to recall that in this study the effects of the tide, sea level rise, and 

human infrastructure (i.e. MOSE project) have been neglected.  
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Fig. 4.34 - Differences in the 30-year monthly average water retention time between the control period (1983-2012), and mid-
term (a) and long-term (b) projections (2071-2100) of RCP4.5 and RCP8.5. 

 

 

4.4 Assessment of the variability of results 

Different GCMs and RCMs have been developed by a number of research groups. Renowned 

examples of research groups working with GCM/RCM scenarios are the Danish Meteorological 

Institute (DMI), the Swedish Meteorological and Hydrological Institute (SMHI), the Met Office 

Hadley Centre (MOHC), and Euro-Mediterranean Center on Climate Change (CMCC).  In this 

study, an ensemble of ten different climate scenarios and two emission trajectories were 

adopted, as described in Section 3.1. The motivation behind the use of multiple models in 

climate change research is to cover different sources of uncertainties. Moreover, reducing the 

model ensemble one also reduces the information about the uncertainty in the projections 

and the ensembles (Wilcke and Bärring 2016). The application of an ensemble of climate 

scenarios provides a spectrum of possible outcomes related to the effects of climate change 

on the ZRB and PDC, and the basis for further studies on the uncertainty that can be generated 

from the application of different climate scenarios. To analyse the variability of parameters, 

the median and the interquartile and interdecile ranges for each month of the 30-year 

averages have been analysed. Finally, as the bias correction has been calibrated for a period 

of 20-years, also the control period shows differences between scenarios. This is the result of 
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the different length of the period (30 years). This indicates that differences among GCM/RCM 

scenarios are marked even for present periods, and not only for future periods. This section 

follows the structure of the modelling approach. First, climate variability is described. Second, 

effects of climate variability on the freshwater discharge and nutrient loadings from the ZRB 

are discussed. Finally, variability of biological and physico-chemical parameters of PDC are 

illustrated. 

Climate 

Fig. 4.33 shows the variability of temperature for different time periods and RCPs. It is possible 

to observe that temperature variability is not wide and future projections have all the same 

seasonality. All climate scenarios project the same temperature over the year during the 

control period (A). The biggest differences are shown in RCP 8.5 where one climate scenarios 

(GCM/RCM 5) projects lower temperatures in spring and higher temperatures in autumn-

winter. The interquartile and interdecile never move away from the median value. Additional 

details on climate projections can be found in Appendix C. 
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Fig. 4.35 – Variability of air temperature within the GCM/RCM ensemble adopted in the study. (A) Control period (B) RCP4.5 – 
2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 

 

Differently, precipitation features a more marked variability in all scenarios shown in Fig. 4.36. 

It is important to note the increase of variability along the century. All 10 GCMs/RCMs generate 

very similar statistics for the control period, while they provide different outcomes along the 

century, especially in the winter period. This validates the widely recognized fact that climate 

change will increase the variability and the uncertainty related to climate and weather events 

in the future (Thornton et al. 2014). However, it is possible to observe that the interquartile 

range (the middle 50% of monthly values) are very close to each other and only the MAX and 

min monthly values of the ensemble differ noticeably. 
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Fig. 4.36 - Variability of precipitation within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) RCP4.5 – 
2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 

 

Hydrology and nutrient loadings of the ZRB 

Hydrology of ZRB is influenced by changes in climate conditions. As a result, nutrient loadings 

in the Zero river are also affected. Here, variability of water flow-rate and nutrient loadings are 

analysed. The water flow-rate in the current period shows a low degree of variability, with 

GCM/RCMs projection in agreement with each other (Fig. 4.37). RCP4.5 shows the highest 

degree of variability in water-flow for both medium- and long-term periods. RCP8.5 show a 

high level of agreement between climate scenarios. The interquartile and interdecile range 

overlap each other and do not differ significantly from the median. 
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Fig. 4.37 - Variability of water flow-rate within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) RCP4.5 – 
2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 

 

 

Variability of water flow-rate is reflected in nutrient loadings, especially of nitrate (Fig. 4.38). 

The control period does not show any significant variability both in magnitude and seasonality. 

Variability increases noticeably in the RCP4.5 scenarios, with the highest differences between 

models in spring and winter. For example, the MAX value of the month reaches 20 t/month, 

while the min value is less than 5 t/month. However, the interquartile range does not differ 

significantly from the median value, with the only exceptions of November in the mid-term 

period (Fig. 4.38E). RCP8.5 scenarios show a significantly less marked variability, with 

interquartile and interdecile completely overlapping each other and not differing noticeably 

from the median monthly values. 
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Fig. 4.38 - Variability of nitrate (NO3
-) loadings within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) 

RCP4.5 – 2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 

 

 

Variability of ammonium over the modeled time period is marked for both RCP4.5 and RCP8.5 

(Fig. 4.39). The mid-term scenario for the RCP4.5 features the highest degree of variability 

between models, especially in the months of April and May. 50% of the models (interquartile 

range) do not differ significantly from the median monthly value in every scenario. Differently, 

the interdecile range shows more marked differences. 
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Fig. 4.39 - Variability of ammonium (NH4
+) loadings within the GCM/RCM ensemble adopted in the study. (A) Control period, 

(B) RCP4.5 – 2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 

 

 

Orthophosphate loadings show clear variability, especially in autumn and winter, the time of 

the year when loadings increase the most Fig. 4.40. Highest variabilities are observed in the 

RCP4.5 scenarios, where autumn and early-winter projections cover a wide range that goes 

from 0.5 to 3 t/month in the mid-term period, and from 0.5 to 4 t/month in the long-term 

period. As with the other nutrients, RCP8.5 scenarios show a less marked variability, even in 

winter and autumn. However, in this case interquartile and interdecile show noticeable 

variation from the median monthly value. Additional details can be found in Appendix D. 
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Fig. 4.40 - Variability of orthophosphate (PO4
3-) loadings within the GCM/RCM ensemble adopted in the study. (A) Control 

period, (B) RCP4.5 – 2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 
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Physico-chemical and ecological parameters of PDC 

Parameters of the AQUATOX model of PDC are subjected to the variability of SWAT outputs 

and the variability of climate scenarios (i.e. water temperature) (Fig. 4.41). Dissolved oxygen 

concentrations (DO) do not show any marked variability in simulated scenarios. Both 

magnitude and seasonality overlap each other, with the only exception of the month of August 

where minimum differences are shown. 
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Fig. 4.41 - Variability of DO within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) RCP4.5 – 2041-2070, 
(C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 
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DIN concentrations reflect the low variability of nitrate loadings from the ZRB. All scenarios 

indicate low variability and a clear trend. The biggest differences can be observed in the RCP8.5 

scenarios where the MAX value for each month differs noticeably from the 9 remaining values. 

It can be observed that no simulations project sensible changes in DIN concentrations over the 

21st century. 
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Fig. 4.42 - Variability of DIN within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) RCP4.5 – 2041-2070, 
(C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 
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DIP concentrations show marked variability, which reflect the variability of phosphate loadings 

from the ZRB. In the control period, all simulations are in good agreement with each other, 

with only slight variations in winter, especially in December. The highest variability can be 

observed in the months of September, October and November. This is due to the different 

magnitude of loadings simulated by SWAT. 
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Fig. 4.43 - Variability of DIP within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) RCP4.5 – 2041-2070, 
(C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 
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Water retention time is directly influenced by water flow-rate from the ZRB. Therefore, its 

variabilities reflect those of the inflow loads of freshwater. This can be deduced by observing 

the variability in the summer months, which are extremely critical as the freshwater loadings 

from the ZRB are low (Fig. 4.44). The control period does not show any marked difference, 

even in the summer months, where differences are in the order of 7-10 days. The other 

scenarios show similar variability with the only exception the RCP8.5 long-term scenario. Here, 

variability in the months of July and August is marked, and the interquartile and interdecile 

ranges differ noticeably from the median monthly value. 
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Fig. 4.44 - Variability of Water Retention Time within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) 
RCP4.5 – 2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 
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As no significant differences in temperature are identified, the observed variability in Chl-a Fig. 

4.45) can be attributed mostly to changes in nutrient concentrations, especially in DIP. 

Variability in the control period is limited and all simulations are in good agreement with each 

other, both in magnitude and seasonality. Variability is marked in summer, as winter months 

feature a low abundance of phytoplankton. The interquartile and interdecile ranges differ 

noticeably from the median value and their limits are closer to the MAX and min monthly 

values. The RCP8.5 long-term scenario features the highest variability, both in the spring and 

summer periods. 
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Fig. 4.45 - Variability of Chl-a concentration within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) RCP4.5 
– 2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 
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Here below, the variability of one phytoplankton compartment, the Cyanobacteria Microcystis 

(CB1), is illustrated . CB1 was chosen because of its ecological importance and the observable 

changes in concentration between the control period and the long-term period. It is possible 

to observe that all simulations show the same seasonality for the CB1’s bloom. However, 

differences in concentrations can be observed. Both RCP4.5 and RCP8.5 long-term periods 

show the highest variability in summer. In the RCP4.5 long-term period, the interquartile and 

interdecile ranges cover the whole spectrum of monthly values, while in the RCP8.5 the MAX 

and min values differ slightly. Additional details can be found in Appendix E. 
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Fig. 4.46 - Variability of CB1 concentration within the GCM/RCM ensemble adopted in the study. (A) Control period, (B) RCP4.5 
– 2041-2070, (C) RCP4.5 2071-2100, (D) RCP8.5 – 2041-2070 (E) RCP8.5 2071-2100. 
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5 SUMMARY AND DISCUSSION 

This dissertation describes the development and application of an integrated modeling 

approach aiming at assessing the impacts of climate change on nutrient loadings and the 

potential consequent effects on coastal aquatic ecosystems over the 21st century. The overall 

aim of this study is to develop an approach for assessing potential long-term effects of climate 

change on the productivity and community structure of coastal phytoplankton at a catchment 

scale. Phytoplankton is responsible for a large share of photosynthesis and primary production 

of coastal areas, and plays an important role in several biogeochemical cycles such as carbon, 

nutrient and oxygen cycles. Furthermore, it is at the base of every aquatic food web, and 

changes in its processes, dynamics and composition have repercussions on both the 

environment and higher trophic levels. Finally, phytoplankton can be the cause of several 

water quality problems in coastal aquatic environments. In particular, eutrophication events 

can generate elevated biomass, harmful algal blooms (HABs), loss of biodiversity, hypoxic and 

anoxic conditions, all symptoms that reduce the quality of coastal waters.  Therefore, the study 

of the impacts of climate change on the factors that regulate the dynamics and composition 

of phytoplankton in coastal areas (i.e. water temperature, nutrient loadings from the 

hinterland, water retention time, etc.) can help to better represent and understand the 

underlying processes and interactions between climate, abiotic and biotic factors that will 

regulate phytoplankton over the 21st century. In this context, the integration of climate, 

hydrologic, and ecosystem models provides a means to deal with the complex and interrelated 

nature of recent global environmental change problems, and help to explain, explore, and 

predict environmental responses to natural and human-induced stressors. 

The developed integrated modelling approach is made of 3 components: an ensemble of high-

resolution climate projections used to describe the future climate conditions, the hydrological 

model Soil and Water Assessment Tool (SWAT) to evaluate the impacts of climate change on 

the hydrology and nutrient loadings of coastal watershed, and the ecological model AQUATOX 

to assess the combined impacts of climate change and nutrient loadings on the aquatic 

ecosystems of coastal waters. 



161 
 

In order to demonstrate its applicability, the approach was applied to a local case study: the 

Zero river basin (ZRB) and the receiving coastal waters of Palude di Cona (PDC), a shallow-

water area located in the northern basin of the lagoon of Venice. An ensemble of 10 GCM/RCM 

combinations, forced by two emission trajectories (RCP4.5 and RCP8.5), was selected for 

simulating future conditions of climate (temperature and precipitation). While the number of 

scenarios is consistent and able to represent the whole range of projected changes in climate 

(Jacob et al. 2014), it is only a partial sample of the climate scenarios available to the scientific 

community. For this reason, the obtained results are highly dependent on the assumptions of 

the selected GCM/RCM combinations. Climate scenarios are only a plausible projection of how 

the climate might unfold over the 21st century, and there is no guarantee that the climate 

conditions and consequent effects described in this study will manifest in the same form. To 

reduce the biases intrinsic to GCMs and RCMs, a bias correction methodology, the linear 

scaling method, was applied. The methodology consistently improved the statistics of 

precipitation and temperature for the calibration period (1993-2012). The approach was able 

to perfectly match the monthly mean of corrected values with that of observed ones while it 

did not reduce the difference in standard deviation (Lenderink et al. 2007). Overall, the 

number of selected climate scenarios, their spatial resolution (8km and 12km), and the 

application of one of the most adopted bias correction methods are the current best available 

approach to limit as much as possible the uncertainty of climate projections. 

A SWAT model for the ZRB was constructed. The calibration process provided good results for 

the objective functions NSE and R2. Validation results show lower performances but were 

considered acceptable for the purpose of the study. Every objective function used to assess 

the performance of models should reflect the objectives of the study (Arnold et al. 2012; Diskin 

and Simon 1977). NSE is very sensitive to peak differences, and less to the long-term trends, 

which makes it a good indicator for single event modelling studies (i.e. flood events). The 

coefficient R2, with few exceptions for ammonium and orthophosphate loadings, always 

indicated good agreement between observed and modelled results. Moreover, numerous 

dynamics taking place in the ZRB were not modeled by SWAT because of missing data or limits 

of the model, and assumptions had to be taken. Specifically, the influence of external 
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groundwaters, irrigation channels, and infrastructure for flooding events were considered as 

constant throughout the simulation period. Also, agricultural management practices and 

nutrient dry and wet deposition were considered as constant. Finally, the quality of the 

available observed data, which in some cases was characterised by several missing values, 

might have affected the quality of the modelling performance. 

The seasonal changes over the 21st century observed in the hydrology and nutrient loadings 

due to changes in temperature and precipitation are in agreement with previous studies on 

the Venice Lagoon Watershed (Solidoro et al. 2010). Results indicate an increase of freshwater 

discharge and nutrient loadings into the lagoon of Venice in the winter, and a decrease in 

summer. These results indicate that climate change may have important effects on the quality 

of waters of the Zero river, as the most dramatic changes happen during periods characterised 

by agricultural activities that influence the quality of waters (e.g. manure application in the 

fields during the winter period). The AQUATOX model was used to simulate the phytoplankton 

of PDC. It was possible to assess the performance of the model through several physico-

chemical parameters. Results indicate that, despite the complexity of the system of PDC and 

the limitations of the model (e.g. the effect of tide on the hydrodynamics of the water body 

was neglected) AQUATOX is able to simulate with good approximation nutrient and 

phytoplankton concentrations. 

Obtained results regarding changes over the 21ste century are in agreement with previous 

studies (Solidoro et al. 2010). Projected Chl-a concentrations suggest slight changes in yearly 

concentrations of phytoplankton. However, a marked variation is highlighted in the seasonality 

of phytoplankton blooms, which are projected to be higher during the summer months. It is 

also evident the pronounced change in the composition of phytoplankton, with diatoms 

adapted to warmer waters and cyanobacteria substituting the current species of 

phytoplankton (e.g. Navicula). From the outcomes of this study it is possible to conclude that 

changes in nutrient loadings will not have substantial effects on phytoplankton, as nutrient 

concentration in the warmer months change only slightly. The increase in water temperature 

seems to be the factor that triggers substantial change in the composition and concentration 

of phytoplankton in PDC. However, also changes in nutrient concentrations might have 
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significant effects. For example, the higher availability of phosphorus in the water column 

might reduce the abundance of phytoplankton to the advantage of other primary producers 

such as macro-algal species (Conley 2000). Additionally, low N:P ratio conditions may favor the 

promotion of harmful algal blooms (HAB) and cyanobacteria (Cugier et al. 2005; GEOHAB 

2001). 

The adoption of a number of climate scenarios and emission trajectories resulted in a spectrum 

of outcomes for the different parameters analysed in the study. The general conclusion that 

can be drawn from the assessment of the variability of results is that the selection of climate 

scenarios is a decision of immense importance as the selection of a more extreme climate 

scenario will produce more extreme results, and vice versa. The selection of more scenarios 

can help reducing this risk and indicates that climate change impact assessment studies are 

always accompanied by a certain degree of uncertainty. The adoption of more scenarios can 

allow the identification of most sensitive variables of the system under exam. 

To generate more informed and useful decisions regarding the management of water 

environmental issues, the outcomes of this and other similar integrated modeling approaches 

should be thoroughly analysed and included in a wider decision-making context. 

The modeling approach could be further improved to provide more reliable results. First, an 

underground water modeling tool could be integrated to better model the current and future 

effects of external and internal groundwaters that affect the hydrology of the ZRB. Second, 

land-use change and agricultural management practices scenarios responding to changes in 

climate could be jointly simulated. Furthermore, likely events such as the anticipated shortage 

of P in coming decades (Glibert et al. 2014) should be take into account in next studies. Third, 

a hydrodynamic model should be integrated in AQUATOX in order to correctly simulate 

hydrologic parameters such as water retention time and the effect of tides, which can have 

profound effects on nutrient and phytoplankton concentrations. Fourth, sea-level rise 

scenarios could be implemented. Finally, the effects of climate change on silica (Si) could be 

further explorer and integrated in the approach. Si is required by diatoms, the dominant group 

in the phytoplankton composition of PDC and lagoon of Venice. Changes in Si loadings might 
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reduce the abundance of diatoms, with profound effects on energy flows and harmful algal 

bloom events (Cloern 2001). 

Modelling approaches should not be ends in themselves. They should be included in a broader 

decision-making context in order to provide real and effective benefits. Similar results could 

be very useful for decision managers that need to develop long-term strategies to protect the 

quality of water resources. More tools able to provide plausible projections of the future are 

needed as aquatic ecosystems will have a limited ability to adapt to climate change. Being able 

to “forecast” possible scenarios and therefore anticipate the possible outcomes might reduce 

the likelihood of negative events to happen. In relation to future eutrophication events, 

specific adaptation countermeasures could be adopted at the local and regional level. First, 

climate policies should be enacted as soon as possible. Addressing climate change is the first 

and most important measure to reduce the threat to water resources. Second, water 

management should not only focus on water quantity but also on water quality. Nutrient 

pollution reduction strategies should be updated and be flexible in order to be consistent with 

projected future climate change scenarios. A strong consensus claims that eutrophication 

events in costal ecosystems can be controlled and limited through controls on nitrogen inputs 

(Boesch 2002; Howarth and Marino 2006). However, as environmental conditions might 

change, it is important that “N-control” strategies are applied in conjunction with “P-control” 

strategies, as conveyed in the EU Water Framework Directive (Chave 2015).   

Third, adaptation measures should be considered to reduce the unavoidable impacts of 

climate change.  Climate change is expected to increase hydrological extremes such as 

droughts and floods. These events, could be critical for delicate aquatic environment such as 

coastal lagoon, which are characterised by shallow waters and high water retention times. The 

worsening of their environmental conditions could cause serious water eutrophication issues. 

In similar cases, the application of technological measures able to change the hydrodynamic 

of the water bodies could dilute the concentration of nutrient loads and restrain the growth 

of algae and improve the water oxygenation of waters. Finally, local governments should invest 

in the application of water treatment and water protection technologies, strengthen 

monitoring networks and implement stricter controls at the source of water pollution (e.g. 
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agricultural activities). In fact, the correct management of freshwater from upstream 

watersheds of coastal systems can generate benefits to water quality of coastal ecosystems 

(Howarth and Marino 2006). 

Although water eutrophication modeling studies considering the effects of climate change 

have increased and have gained more attention from international researchers in the last 

decades, more scientific work is needed. This study highlights the fact that there could be 

significant changes in water environmental quality due to climate change in the waters of the 

lagoon of Venice. The proposed formulation of combined models might serve as a "blueprint" 

for other coastal environments and can assist environmental managers in their decisions. 

However, a great deal of uncertainty concerning the impact of climate change still exists and 

further studies are needed. Future studies should focus on improving and expand the 

integration of modeling tools as well as improving monitoring practices, in order to develop 

methods that allows the integration of knowledge from different disciplines and provide a 

synthetic outcome that could lead to a better management of the Earth’s natural resources. 

 



APPENDIX A – AGRICULTURAL MANAGEMENT PRACTICES 

FROM SWAT, TABLES 

CORN 

Date (mm/dd) Operation kg 

01/01 Auto Irrigation initialization  

02/15 Tillage operation  

03/19 Tillage operation  

03/20 Fertilizer application (18-46-00) 200 

03/20 Plant/begin. Growing season  

05/01 Tillage operation  

05/01 Fertilizer application (Urea) 300 

05/17 Fertilizer application (Urea) 300 

05/17 Tillage operation  

10/10 Harvest  

10/15 Manure application (Cow) N: 60 P: 20 

11/15 Manure application (Cow) N: 60 P: 20 

12/15 Manure application (Cow) N: 60 P: 20 

 

SOY 

Date (mm/dd) Operation kg 

01/01 Auto Irrigation initialization  

02/15 Tillage operation  

05/01 Fertilizer application (Elemental P) 96 

05/01 Fertilizer application (Elemental N) 32 

05/02 Plant/begin. Growing season  

10/10 Harvest  

10/15 Manure (cow) application N: 60 P: 20 

11/15 Manure (cow) application N: 60 P: 20 

12/15 Manure (cow) application N: 60 P: 20 

 

WINTER WHEAT 

Date (mm/dd) Operation kg 

01/01 Auto Irrigation initialization  

01/15 Tillage operation  

01/15 Fertilizer application (33-00-00) 200 

06/10 Harvest  

06/15 Tillage operation  

09/15 Manure (cow) application N: 60 P: 20 

10/30 Fertilizer application (18-46-00) 200 

10/31 Tillage operation  

11/01 Plant/begin. Growing season  

11/15 Manure (cow) application N: 60 P: 20 

12/15 Manure (cow) application N: 60 P: 20 
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APPENDIX B – PHYTOPLANKTON IN AQUATOX, TABLES 

Diatom, Navicula 

Saturating light (Ly/d) 58 

P Half-saturation (mg/L) 0.01 

N Half-saturation (mg/L) 0.002 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 15 

Maximum T (°C) 39 

Minimum T (°C) 10 

Max. Photosynthetic rate (1/d) 1.6 

Photorespiration coefficient (1/d) 0.05 

 

Diatom, Cyclotella nana 

Saturating light (Ly/d) 22.5 

P Half-saturation (mg/L) 0.017 

N Half-saturation (mg/L) 0.011 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 20 

Maximum T (°C) 35 

Minimum T (°C) 2 

Max. Photosynthetic rate (1/d) 3.4 

Photorespiration coefficient (1/d) 0.026 

 

Diatom, Cyclotella (High-nutrient) 

Saturating light (Ly/d) 22.5 

P Half-saturation (mg/L) 0.055 

N Half-saturation (mg/L) 0.117 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 20 

Maximum T (°C) 35 

Minimum T (°C) 2 

Max. Photosynthetic rate (1/d) 1.87 

Photorespiration coefficient (1/d) 0.026 
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Diatom, Fragilaria (Low-nutrient, warm waters) 

Saturating light (Ly/d) 56 

P Half-saturation (mg/L) 0.001 

N Half-saturation (mg/L) 0.0154 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 26 

Maximum T (°C) 39 

Minimum T (°C) 2 

Max. Photosynthetic rate (1/d) 1.4 

Photorespiration coefficient (1/d) 0.02 

 

Diatom, Cyclotella nana (Warm waters) 

Saturating light (Ly/d) 22.5 

P Half-saturation (mg/L) 0.017 

N Half-saturation (mg/L) 0.011 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 25 

Maximum T (°C) 39 

Minimum T (°C) 2 

Max. Photosynthetic rate (1/d) 3.4 

Photorespiration coefficient (1/d) 0.026 

 

Diatom, Cyclotella nana (Very warm waters) 

Saturating light (Ly/d) 22.5 

P Half-saturation (mg/L) 0.017 

N Half-saturation (mg/L) 0.011 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 30 

Maximum T (°C) 39 

Minimum T (°C) 2 

Max. Photosynthetic rate (1/d) 3.4 

Photorespiration coefficient (1/d) 0.026 
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Diatom, Cyclotella (High-nutrient, warm waters) 

Saturating light (Ly/d) 22.5 

P Half-saturation (mg/L) 0.055 

N Half-saturation (mg/L) 0.117 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 25 

Maximum T (°C) 35 

Minimum T (°C) 2 

Max. Photosynthetic rate (1/d) 1.87 

Photorespiration coefficient (1/d) 0.026 

 

Diatom, Fragilaria (High-nutrient, cold waters) 

Saturating light (Ly/d) 20 

P Half-saturation (mg/L) 0.055 

N Half-saturation (mg/L) 0.117 

C Half-saturation (mg/L) 0.054 

Optimum T (°C) 8 

Maximum T (°C) 20 

Minimum T (°C) 2 

Max. Photosynthetic rate (1/d) 3 

Photorespiration coefficient (1/d) 0.02 

 

Cyanobacteria, Microcystis 

Saturating light (Ly/d) 150 

P Half-saturation (mg/L) 0.03 

N Half-saturation (mg/L) 0.4 

C Half-saturation (mg/L) 0.024 

Optimum T (°C) 30 

Maximum T (°C) 50 

Minimum T (°C) 5 

Max. Photosynthetic rate (1/d) 3.9 

Photorespiration coefficient (1/d) 0.01 

 

 



APPENDIX C – CLIMATE SCENARIOS 

Monthly Mean Temperature (°C) ZRB– Control period (1983-2012) 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 2.97 2.99 3.32 3.20 2.88 2.89 3.09 2.85 2.83 3.28 3.32 2.98 2.83 3.20 3.28 

Feb 3.97 4.01 4.39 4.33 4.22 4.28 4.21 3.93 4.21 4.50 4.50 4.22 3.93 4.33 4.39 

Mar 8.43 8.46 8.42 8.69 8.50 8.67 8.65 8.58 8.61 8.78 8.78 8.59 8.42 8.67 8.69 

Apr 12.73 12.62 12.72 12.69 12.49 12.64 12.69 12.73 12.65 13.10 13.10 12.69 12.49 12.73 12.73 

May 18.29 18.18 18.07 18.20 18.12 17.96 18.42 17.96 18.28 18.28 18.42 18.19 17.96 18.28 18.29 

Jun 21.78 21.66 20.92 21.44 21.97 21.43 21.78 21.56 21.51 21.90 21.97 21.61 20.92 21.78 21.90 

Jul 23.21 23.25 22.99 23.49 23.64 23.45 23.26 23.20 23.73 23.49 23.73 23.36 22.99 23.49 23.64 

Aug 23.54 23.29 23.27 23.11 23.66 23.35 23.17 23.30 23.27 23.42 23.66 23.29 23.11 23.42 23.54 

Sep 18.66 18.65 18.58 18.84 18.66 18.75 18.92 18.63 18.39 18.90 18.92 18.66 18.39 18.84 18.90 

Oct 13.64 13.76 13.65 13.65 13.96 13.98 13.65 13.79 13.91 14.10 14.10 13.78 13.64 13.96 13.98 

Nov 8.32 8.61 8.09 8.62 8.52 8.43 8.61 8.21 8.46 8.31 8.62 8.44 8.09 8.61 8.61 

Dec 3.90 3.85 3.68 3.97 3.70 4.01 3.99 3.60 3.81 4.32 4.32 3.88 3.60 3.99 4.01 
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Monthly Mean Temperature (°C) ZRB– RCP4.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 5.06 5.03 4.49 4.67 4.27 4.02 4.42 5.18 4.55 3.52 5.18 4.52 3.52 5.03 5.06 

Feb 4.95 6.26 6.15 5.11 5.67 5.13 5.05 6.59 5.35 5.24 6.59 5.29 4.95 6.15 6.26 

Mar 9.76 9.65 10.02 9.83 9.43 9.51 9.70 10.35 9.59 9.83 10.35 9.73 9.43 9.83 10.02 

Apr 14.18 14.52 13.84 13.27 13.47 13.32 13.33 14.69 13.51 14.32 14.69 13.67 13.27 14.32 14.52 

May 19.91 19.73 20.09 18.72 19.73 18.82 18.95 19.11 19.71 19.71 20.09 19.71 18.72 19.73 19.91 

Jun 24.02 23.58 23.35 22.93 24.06 23.30 23.50 23.15 22.98 23.83 24.06 23.43 22.93 23.83 24.02 

Jul 26.35 25.69 25.15 24.58 25.47 25.41 24.83 25.60 24.92 24.57 26.35 25.28 24.57 25.60 25.69 

Aug 26.90 25.12 25.59 24.56 25.94 25.29 24.74 25.20 25.08 24.62 26.90 25.16 24.56 25.59 25.94 

Sep 21.04 21.54 20.54 19.63 20.51 19.53 19.86 21.14 20.16 20.37 21.54 20.44 19.53 21.04 21.14 

Oct 15.34 16.01 15.33 14.34 15.68 14.88 14.42 16.07 15.28 15.46 16.07 15.33 14.34 15.68 16.01 

Nov 10.21 9.66 8.78 10.10 9.71 9.79 9.85 9.70 9.34 9.52 10.21 9.71 8.78 9.85 10.10 

Dec 5.90 5.75 4.22 5.31 4.71 5.01 4.87 6.50 5.56 4.96 6.50 5.16 4.22 5.75 5.90 

Monthly Mean Temperature (°C) ZRB– RCP4.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 6.02 5.44 5.85 5.18 4.47 4.46 4.97 6.16 4.25 4.54 6.16 5.08 4.25 5.85 6.02 

Feb 5.83 6.06 6.14 6.04 6.30 5.96 6.19 6.45 5.51 6.38 6.45 6.10 5.51 6.30 6.38 

Mar 10.57 10.01 10.30 10.27 10.11 9.65 10.30 10.57 9.93 11.28 11.28 10.28 9.65 10.57 10.57 

Apr 14.64 14.88 14.20 13.78 13.88 13.49 13.86 14.90 13.06 14.77 14.90 14.04 13.06 14.77 14.88 

May 20.73 20.92 19.81 19.75 19.41 18.98 19.51 20.50 19.58 20.16 20.92 19.78 18.98 20.50 20.73 

Jun 23.85 24.24 23.77 23.12 24.00 23.21 23.52 23.63 22.40 23.93 24.24 23.70 22.40 23.93 24.00 

Jul 26.58 26.25 26.01 24.96 25.37 26.27 24.79 25.07 25.17 24.92 26.58 25.27 24.79 26.25 26.27 

Aug 27.85 25.87 26.05 23.87 26.10 26.03 24.30 25.44 25.17 24.96 27.85 25.66 23.87 26.05 26.10 

Sep 22.27 21.68 22.32 20.40 20.76 20.67 20.78 21.57 19.66 20.70 22.32 20.77 19.66 21.68 22.27 

Oct 16.53 16.15 15.98 14.70 16.20 15.54 14.46 16.56 15.57 15.52 16.56 15.78 14.46 16.20 16.53 

Nov 10.78 10.87 9.68 10.42 9.75 10.07 10.30 10.77 9.52 10.19 10.87 10.25 9.52 10.77 10.78 

Dec 6.31 6.64 5.20 5.77 4.79 4.85 5.80 7.44 5.20 6.03 7.44 5.79 4.79 6.31 6.64 
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Monthly Mean Temperature (°C) ZRB– RCP8.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 6.42 5.19 5.55 5.02 4.93 4.35 4.80 5.75 4.64 3.80 6.42 4.97 3.80 5.55 5.75 

Feb 6.12 6.16 6.39 6.01 4.89 6.28 6.05 6.67 5.48 5.77 6.67 6.09 4.89 6.28 6.39 

Mar 10.89 10.22 10.40 10.49 7.50 10.11 10.54 10.91 10.20 10.34 10.91 10.37 7.50 10.54 10.89 

Apr 14.32 14.92 14.58 13.82 11.71 14.12 13.46 14.77 14.01 14.98 14.98 14.22 11.71 14.77 14.92 

May 20.52 20.52 20.30 19.38 15.90 19.40 19.38 20.20 19.74 19.14 20.52 19.57 15.90 20.30 20.52 

Jun 24.56 24.17 24.10 22.94 21.45 23.66 22.86 24.52 22.75 23.42 24.56 23.54 21.45 24.17 24.52 

Jul 26.53 26.17 26.68 24.36 26.08 26.24 24.65 25.95 25.13 25.22 26.68 26.02 24.36 26.24 26.53 

Aug 27.50 26.24 26.67 24.44 27.00 26.20 24.75 26.38 25.27 25.59 27.50 26.22 24.44 26.67 27.00 

Sep 21.82 22.07 22.30 20.10 24.54 21.27 20.17 21.98 20.10 20.98 24.54 21.55 20.10 22.07 22.30 

Oct 16.14 16.66 16.11 15.01 19.36 16.11 15.05 16.91 15.94 15.59 19.36 16.11 15.01 16.66 16.91 

Nov 10.84 10.78 10.25 10.48 14.24 10.40 10.49 10.80 9.72 10.19 14.24 10.48 9.72 10.80 10.84 

Dec 6.26 6.03 5.36 5.86 8.42 4.91 5.86 7.18 5.91 5.03 8.42 5.89 4.91 6.26 7.18 

Monthly Mean Temperature (°C) ZRB– RCP8.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 8.41 7.04 6.73 6.41 6.34 6.41 6.30 7.70 6.06 6.21 8.41 6.41 6.06 7.04 7.70 

Feb 8.04 7.58 8.20 7.45 6.60 7.72 7.48 8.60 6.93 7.93 8.60 7.65 6.60 8.04 8.20 

Mar 12.30 11.65 12.06 11.38 8.12 11.40 11.05 12.63 11.16 12.44 12.63 11.53 8.12 12.30 12.44 

Apr 16.25 16.21 15.84 15.27 12.56 15.43 14.74 16.67 14.86 16.34 16.67 15.63 12.56 16.25 16.34 

May 22.50 22.57 22.35 20.68 17.31 20.86 20.72 22.09 20.76 20.85 22.57 20.86 17.31 22.35 22.50 

Jun 26.57 27.59 26.70 24.66 22.75 25.37 24.47 26.49 24.78 25.39 27.59 25.38 22.75 26.57 26.70 

Jul 30.26 29.01 29.23 26.90 27.56 28.95 26.16 28.41 27.04 27.40 30.26 27.99 26.16 29.01 29.23 

Aug 31.32 28.40 29.07 26.08 29.23 28.70 26.02 28.96 26.87 27.42 31.32 28.55 26.02 29.07 29.23 

Sep 24.17 24.75 24.74 21.84 27.23 23.03 21.59 24.80 21.87 23.13 27.23 23.65 21.59 24.75 24.80 

Oct 18.59 18.79 17.67 16.05 21.43 17.12 15.65 19.22 17.31 17.51 21.43 17.59 15.65 18.79 19.22 

Nov 13.26 12.52 11.54 11.85 15.87 11.95 11.84 13.01 11.00 11.93 15.87 11.94 11.00 13.01 13.26 

Dec 8.96 8.25 6.66 7.28 9.77 7.09 7.42 9.46 7.14 6.88 9.77 7.35 6.66 8.96 9.46 
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Monthly Mean Precipitation (mm) ZRB– Control period (1983-2012) 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 44.10 43.38 51.20 48.48 42.45 39.33 48.66 44.16 44.08 40.05 51.20 44.09 39.33 48.48 48.66 

Feb 50.32 37.58 46.19 44.29 46.63 38.94 46.20 38.34 52.90 42.57 52.90 45.24 37.58 46.63 50.32 

Mar 47.93 42.56 67.55 55.15 48.03 57.59 53.54 44.59 55.63 49.25 67.55 51.39 42.56 55.63 57.59 

Apr 76.36 78.38 105.79 89.73 79.91 81.83 98.25 76.64 82.52 99.52 105.79 82.18 76.36 98.25 99.52 

May 92.64 86.48 91.81 88.65 92.21 94.06 87.30 90.68 86.70 93.70 94.06 91.24 86.48 92.64 93.70 

Jun 91.82 88.31 126.02 96.88 84.43 90.74 90.65 96.13 101.47 87.42 126.02 91.28 84.43 96.88 101.47 

Jul 75.04 70.37 78.57 77.42 73.72 72.24 74.81 72.46 65.59 73.43 78.57 73.57 65.59 75.04 77.42 

Aug 66.32 65.95 67.83 81.79 69.27 74.02 76.86 62.86 78.46 82.05 82.05 71.65 62.86 78.46 81.79 

Sep 108.42 121.11 113.03 99.66 108.60 115.68 101.10 113.25 129.74 113.49 129.74 113.14 99.66 115.68 121.11 

Oct 92.33 93.77 94.32 89.37 120.62 115.01 96.45 98.65 103.61 107.82 120.62 97.55 89.37 107.82 115.01 

Nov 108.00 122.16 92.74 107.11 122.38 103.15 107.96 113.70 94.62 119.90 122.38 107.98 92.74 119.90 122.16 

Dec 92.55 68.94 85.31 71.12 91.03 78.55 70.41 69.94 88.31 76.20 92.55 77.38 68.94 88.31 91.03 
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Monthly Mean Precipitation (mm) ZRB– RCP4.5 mid-term (2041-2070) 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 39.37 45.26 50.19 60.00 68.77 42.70 51.65 43.45 57.50 39.67 68.77 47.72 39.37 57.50 60.00 

Feb 53.76 62.64 61.54 46.72 58.78 36.46 50.12 48.71 79.19 46.73 79.19 51.94 36.46 61.54 62.64 

Mar 41.68 37.14 51.35 59.24 44.80 65.83 45.00 39.91 65.92 52.49 65.92 48.17 37.14 59.24 65.83 

Apr 77.35 90.54 102.90 80.46 82.75 86.75 85.19 88.92 88.94 81.72 102.90 85.97 77.35 88.94 90.54 

May 77.94 100.87 67.38 97.91 95.81 78.68 93.13 92.66 87.98 86.94 100.87 90.32 67.38 95.81 97.91 

Jun 48.39 75.52 91.55 104.07 69.04 84.33 75.39 95.28 98.79 84.72 104.07 84.53 48.39 95.28 98.79 

Jul 34.28 89.69 79.81 92.16 66.36 78.89 71.44 73.80 66.12 91.91 92.16 76.34 34.28 89.69 91.91 

Aug 44.45 57.07 65.81 90.04 48.82 63.79 77.80 66.39 51.65 73.83 90.04 64.80 44.45 73.83 77.80 

Sep 132.08 108.23 118.25 108.63 100.62 114.12 122.09 104.98 118.77 140.56 140.56 116.19 100.62 122.09 132.08 

Oct 122.58 98.58 81.05 80.98 156.92 131.87 101.24 91.34 89.11 97.42 156.92 98.00 80.98 122.58 131.87 

Nov 123.42 127.56 91.48 132.79 128.36 144.76 106.40 114.85 73.35 82.79 144.76 119.14 73.35 128.36 132.79 

Dec 107.26 59.83 130.85 70.47 64.33 85.38 49.43 64.63 93.37 56.27 130.85 67.55 49.43 93.37 107.26 

Monthly Mean Precipitation (mm) ZRB– RCP4.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 62.18 55.86 67.16 55.17 57.43 36.85 50.51 58.15 62.09 33.36 67.16 56.65 33.36 62.09 62.18 

Feb 63.84 67.80 56.48 49.89 60.80 37.46 49.08 64.87 96.77 54.11 96.77 58.64 37.46 64.87 67.80 

Mar 49.71 44.27 78.37 68.97 63.32 53.64 59.21 39.33 58.81 70.71 78.37 59.01 39.33 68.97 70.71 

Apr 77.13 93.77 142.79 76.42 74.48 72.79 74.18 72.69 99.48 90.14 142.79 76.77 72.69 93.77 99.48 

May 76.99 77.78 75.87 86.94 106.75 99.33 108.29 99.47 96.45 91.94 108.29 94.20 75.87 99.47 106.75 

Jun 72.38 108.02 82.25 120.23 97.56 97.83 92.29 131.81 136.09 95.86 136.09 97.69 72.38 120.23 131.81 

Jul 44.23 87.32 72.24 88.09 74.95 53.02 96.56 108.13 64.73 87.95 108.13 81.14 44.23 88.09 96.56 

Aug 37.76 61.21 64.68 100.63 57.32 76.68 82.12 72.35 89.21 84.66 100.63 74.52 37.76 84.66 89.21 

Sep 94.83 134.49 99.02 118.32 117.48 112.08 109.92 109.05 128.42 129.86 134.49 114.78 94.83 128.42 129.86 

Oct 116.77 94.21 76.31 90.87 164.87 119.78 93.68 83.91 110.17 130.61 164.87 102.19 76.31 119.78 130.61 

Nov 147.96 153.73 117.30 140.79 123.28 112.83 152.82 120.08 88.31 109.91 153.73 121.68 88.31 147.96 152.82 

Dec 102.61 46.71 128.82 74.42 63.92 83.89 71.69 57.19 86.76 74.96 128.82 74.69 46.71 86.76 102.61 
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Monthly Mean Precipitation (mm) ZRB– RCP8.5 mid-term (2041-2070) 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 61.49 58.04 55.37 75.90 37.92 43.02 70.41 50.74 44.67 41.56 75.90 53.05 37.92 61.49 70.41 

Feb 45.08 56.64 43.24 42.42 56.00 36.25 54.37 46.92 66.23 40.47 66.23 46.00 36.25 56.00 56.64 

Mar 45.46 57.49 80.92 54.50 60.56 60.79 45.92 56.14 68.01 67.31 80.92 59.02 45.46 67.31 68.01 

Apr 91.69 91.10 115.34 84.51 64.65 75.58 77.74 106.40 87.49 90.55 115.34 89.02 64.65 91.69 106.40 

May 78.65 103.12 71.50 85.07 102.07 92.31 89.51 90.84 114.70 112.26 114.70 91.58 71.50 103.12 112.26 

Jun 51.70 105.55 100.91 113.49 59.78 104.69 99.08 109.67 99.59 93.92 113.49 100.25 51.70 105.55 109.67 

Jul 34.89 88.83 68.30 88.15 64.76 63.15 86.87 92.82 85.44 76.93 92.82 81.19 34.89 88.15 88.83 

Aug 42.50 63.90 65.70 94.78 70.08 62.32 75.43 70.06 83.75 67.62 94.78 68.84 42.50 75.43 83.75 

Sep 112.93 97.83 68.59 96.15 119.25 114.11 132.62 98.00 124.11 127.71 132.62 113.52 68.59 124.11 127.71 

Oct 111.64 107.62 71.05 88.67 173.99 149.10 96.13 104.42 96.68 105.73 173.99 105.07 71.05 111.64 149.10 

Nov 134.54 139.49 119.89 110.86 167.87 126.18 137.60 110.05 109.67 136.52 167.87 130.36 109.67 137.60 139.49 

Dec 132.96 46.84 135.42 75.79 84.95 72.98 69.53 63.20 121.38 59.84 135.42 74.39 46.84 121.38 132.96 

Monthly Mean Precipitation (mm) ZRB– RCP8.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 76.77 48.40 48.52 49.86 73.75 60.18 43.29 40.57 46.18 57.84 76.77 49.19 40.57 60.18 73.75 

Feb 80.03 48.00 43.24 42.66 51.16 51.38 43.53 54.64 89.81 45.16 89.81 49.58 42.66 54.64 80.03 

Mar 44.52 47.14 72.60 63.98 47.36 67.68 54.84 47.09 73.97 69.16 73.97 59.41 44.52 69.16 72.60 

Apr 69.57 84.08 114.45 74.49 70.95 66.80 79.41 99.95 82.84 85.62 114.45 81.13 66.80 85.62 99.95 

May 67.09 73.68 60.94 91.34 91.94 68.08 94.43 84.28 88.68 103.20 103.20 86.48 60.94 91.94 94.43 

Jun 44.87 72.16 67.08 107.46 53.25 95.24 93.96 93.77 98.49 84.58 107.46 89.18 44.87 95.24 98.49 

Jul 25.43 70.62 63.18 89.23 49.64 51.45 89.62 75.52 65.96 57.65 89.62 64.57 25.43 75.52 89.23 

Aug 23.48 74.78 57.98 104.80 56.74 64.26 108.00 47.36 82.78 63.93 108.00 64.09 23.48 82.78 104.80 

Sep 92.30 94.23 83.14 95.83 71.48 116.47 128.70 113.73 102.03 140.96 140.96 98.93 71.48 116.47 128.70 

Oct 115.57 133.42 85.56 77.31 157.28 117.88 100.36 84.31 86.28 118.64 157.28 107.97 77.31 118.64 133.42 

Nov 116.86 192.43 150.66 128.84 101.57 123.29 121.88 153.43 104.68 143.14 192.43 126.06 101.57 150.66 153.43 

Dec 178.78 74.37 126.35 84.82 64.64 79.73 66.22 88.30 111.45 63.73 178.78 82.28 63.73 111.45 126.35 

 



APPENDIX D – SWAT OUTPUT 

Monthly mean water discharge, Q (m3/s) – Control period (1983-2012)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 2.42 2.24 2.46 2.41 2.42 2.42 2.46 2.37 2.35 2.44 2.46 2.42 2.24 2.44 2.46 

Feb 2.42 2.21 2.32 2.27 2.43 2.26 2.37 2.32 2.42 2.37 2.43 2.34 2.21 2.42 2.42 

Mar 2.07 1.94 2.29 2.10 2.10 2.12 2.16 1.99 2.30 2.08 2.30 2.10 1.94 2.16 2.29 

Apr 1.99 1.99 2.42 2.12 2.14 2.03 2.27 1.87 2.18 2.21 2.42 2.13 1.87 2.21 2.27 

May 1.76 1.71 2.03 1.71 1.84 1.86 1.72 1.68 1.81 1.89 2.03 1.78 1.68 1.86 1.89 

Jun 1.54 1.57 2.12 1.57 1.52 1.64 1.56 1.51 1.68 1.57 2.12 1.57 1.51 1.64 1.68 

Jul 1.04 0.76 1.15 0.96 0.88 0.93 0.88 0.90 0.83 0.92 1.15 0.91 0.76 0.96 1.04 

Aug 0.93 0.82 0.91 0.97 0.81 0.89 0.93 0.84 0.91 0.94 0.97 0.91 0.81 0.93 0.94 

Sep 1.77 1.93 1.98 1.70 1.96 1.73 1.67 1.80 2.09 1.94 2.09 1.86 1.67 1.96 1.98 

Oct 2.23 2.30 2.31 2.03 2.70 2.54 2.16 2.33 2.53 2.52 2.70 2.32 2.03 2.53 2.54 

Nov 2.86 3.04 2.82 2.83 3.20 2.88 2.85 2.96 2.63 3.12 3.20 2.87 2.63 3.04 3.12 

Dec 2.91 2.59 2.74 2.69 3.10 2.73 2.64 2.72 2.84 2.98 3.10 2.73 2.59 2.91 2.98 
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Monthly mean water discharge, Q (m3/s) – RCP4.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 2.46 2.24 2.59 4.03 2.31 2.49 3.42 2.27 2.07 2.55 4.03 2.47 2.07 2.59 3.42 

Feb 2.36 2.53 2.44 2.75 1.85 2.35 2.45 2.25 3.77 2.78 3.77 2.44 1.85 2.75 2.78 

Mar 1.94 1.83 2.10 2.66 1.51 1.78 2.09 1.81 2.36 2.59 2.66 2.02 1.51 2.36 2.59 

Apr 1.76 1.96 2.40 2.81 0.96 2.26 1.82 1.88 1.37 4.73 4.73 1.92 0.96 2.40 2.81 

May 1.52 1.80 1.58 1.95 0.65 1.82 1.21 1.71 0.90 2.64 2.64 1.65 0.65 1.82 1.95 

Jun 1.00 1.39 1.36 1.43 3.62 1.52 0.89 1.46 4.54 2.23 4.54 1.44 0.89 2.23 3.62 

Jul 0.41 1.03 0.77 0.39 0.55 1.64 0.56 0.93 1.23 1.89 1.89 0.85 0.39 1.23 1.64 

Aug 0.49 0.80 0.73 0.55 0.30 0.69 0.27 0.88 0.71 2.79 2.79 0.70 0.27 0.80 0.88 

Sep 1.53 2.08 2.00 2.03 0.67 1.93 1.55 1.97 1.99 3.79 3.79 1.98 0.67 2.03 2.08 

Oct 2.53 2.31 2.05 1.48 1.04 2.15 2.66 2.17 3.23 3.96 3.96 2.24 1.04 2.66 3.23 

Nov 3.03 3.23 2.44 3.65 3.88 3.47 3.04 3.08 1.80 2.56 3.88 3.06 1.80 3.47 3.65 

Dec 3.19 2.53 3.64 2.79 2.83 3.46 2.53 2.53 3.75 2.66 3.75 2.81 2.53 3.46 3.64 

Monthly mean water discharge, Q (m3/s) – RCP4.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 2.85 2.57 2.93 1.64 3.09 1.56 1.92 2.53 2.94 3.01 3.09 2.71 1.56 2.94 3.01 

Feb 2.78 2.85 2.70 1.45 2.66 1.81 2.01 2.75 3.10 3.05 3.10 2.72 1.45 2.85 3.05 

Mar 2.24 2.15 2.65 1.60 2.46 1.85 2.07 2.01 3.94 2.18 3.94 2.17 1.60 2.46 2.65 

Apr 2.03 2.21 3.24 1.27 2.46 1.54 1.58 1.97 3.56 1.85 3.56 2.00 1.27 2.46 3.24 

May 1.71 1.78 2.02 0.92 2.07 1.53 0.83 1.85 3.88 1.60 3.88 1.74 0.83 2.02 2.07 

Jun 0.14 1.63 1.53 0.86 1.10 1.05 0.76 1.82 1.38 1.42 1.82 1.24 0.14 1.53 1.63 

Jul 0.69 0.94 0.88 2.19 0.62 0.30 0.54 1.34 0.92 1.64 2.19 0.90 0.30 1.34 1.64 

Aug 0.51 0.84 0.86 2.04 0.23 0.27 0.54 1.28 1.27 0.70 2.04 0.77 0.23 1.27 1.28 

Sep 1.54 2.35 1.79 1.65 1.17 0.75 0.83 2.10 1.79 3.12 3.12 1.72 0.75 2.10 2.35 

Oct 2.38 2.53 2.07 1.57 1.66 1.39 0.73 2.31 3.16 2.40 3.16 2.19 0.73 2.40 2.53 

Nov 3.72 3.87 2.66 2.99 3.14 1.50 2.39 3.40 1.93 2.33 3.87 2.82 1.50 3.40 3.72 

Dec 3.26 2.70 3.46 1.82 1.97 2.37 1.32 2.66 2.13 3.84 3.84 2.52 1.32 3.26 3.46 
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Monthly mean water discharge, Q (m3/s) – RCP8.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 2.86 2.52 2.69 2.81 2.62 2.51 2.76 2.51 2.61 2.49 2.86 2.62 2.49 2.76 2.81 

Feb 2.43 2.58 2.41 2.44 2.56 2.29 2.78 2.38 2.70 2.37 2.78 2.44 2.29 2.58 2.70 

Mar 2.01 2.18 2.44 2.19 2.31 2.10 2.17 2.05 2.36 2.23 2.44 2.19 2.01 2.31 2.36 

Apr 2.03 2.03 2.95 2.07 1.88 1.87 2.00 2.31 2.23 2.23 2.95 2.05 1.87 2.23 2.31 

May 1.71 1.98 1.75 1.68 1.84 1.70 1.69 1.90 2.29 2.14 2.29 1.79 1.68 1.98 2.14 

Jun 1.08 1.94 1.47 1.69 1.25 1.77 1.48 1.75 1.67 1.62 1.94 1.64 1.08 1.75 1.77 

Jul 0.49 1.14 0.78 1.11 0.76 0.79 1.06 1.26 1.03 1.03 1.26 1.03 0.49 1.11 1.14 

Aug 0.50 0.91 0.76 1.07 0.67 0.70 0.86 1.06 1.03 0.93 1.07 0.89 0.50 1.03 1.06 

Sep 1.52 1.80 1.34 1.77 1.95 1.75 2.11 1.91 2.45 2.07 2.45 1.85 1.34 2.07 2.11 

Oct 2.24 2.64 1.76 2.24 3.68 2.91 2.38 2.72 2.59 2.51 3.68 2.55 1.76 2.72 2.91 

Nov 3.25 3.59 2.66 3.01 4.03 3.46 3.31 3.16 2.95 3.61 4.03 3.28 2.66 3.59 3.61 

Dec 3.17 2.62 3.49 2.84 3.21 2.80 2.96 2.84 3.42 2.82 3.49 2.90 2.62 3.21 3.42 

Monthly mean water discharge, Q (m3/s) – RCP8.5 long-term (2071-2100) 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 3.11 2.56 2.52 2.62 2.47 2.50 2.50 2.46 2.40 2.56 3.11 2.51 2.40 2.56 2.62 

Feb 3.21 2.56 2.46 2.32 2.35 2.41 2.37 2.46 3.04 2.41 3.21 2.44 2.32 2.56 3.04 

Mar 2.24 2.11 2.31 2.27 1.83 2.17 2.06 2.04 2.69 2.28 2.69 2.20 1.83 2.28 2.31 

Apr 1.97 1.95 2.56 1.95 1.65 1.77 1.87 2.23 1.96 2.12 2.56 1.96 1.65 2.12 2.23 

May 1.55 1.44 1.62 1.68 1.66 1.36 1.64 1.65 1.82 1.89 1.89 1.64 1.36 1.68 1.82 

Jun 1.08 1.18 1.08 1.57 0.94 1.49 1.34 1.36 1.67 1.50 1.67 1.35 0.94 1.50 1.57 

Jul 0.42 0.67 0.56 1.00 0.46 0.51 0.85 0.92 0.90 0.68 1.00 0.68 0.42 0.90 0.92 

Aug 0.38 0.84 0.56 1.14 0.52 0.72 1.02 0.76 1.07 0.71 1.14 0.74 0.38 1.02 1.07 

Sep 1.24 1.63 1.27 1.70 1.11 1.77 2.10 1.73 1.97 2.37 2.37 1.72 1.11 1.97 2.10 

Oct 2.12 2.84 1.82 2.09 2.57 2.20 2.46 2.05 2.26 2.65 2.84 2.23 1.82 2.57 2.65 

Nov 3.01 4.74 2.99 3.44 2.81 2.98 3.29 3.66 2.62 3.75 4.74 3.15 2.62 3.66 3.75 

Dec 3.94 2.95 3.40 2.83 2.27 2.70 2.80 3.09 3.28 2.75 3.94 2.89 2.27 3.28 3.40 
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Monthly mean N-NO3
- loads (t/mt.) – Control period (1983-2012)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 22.83 18.63 20.61 21.06 19.61 20.33 20.94 20.23 20.42 20.25 22.83 20.37 18.63 20.94 21.06 

Feb 17.82 15.54 17.28 16.25 16.63 16.27 16.97 15.78 15.91 16.81 17.82 16.45 15.54 16.97 17.28 

Mar 16.28 14.41 17.36 16.79 16.89 17.10 16.88 14.69 15.82 16.57 17.36 16.68 14.41 16.89 17.10 

Apr 13.17 11.48 13.64 13.90 13.71 13.48 14.52 11.85 12.43 13.48 14.52 13.48 11.48 13.71 13.90 

May 12.18 9.14 10.93 10.57 10.94 10.56 10.98 9.59 9.52 11.27 12.18 10.75 9.14 10.98 11.27 

Jun 7.82 6.07 8.16 7.05 6.78 6.86 8.15 6.79 6.59 7.88 8.16 6.95 6.07 7.88 8.15 

Jul 4.80 3.87 6.48 4.64 4.31 4.57 5.21 4.88 4.16 5.52 6.48 4.72 3.87 5.21 5.52 

Aug 4.38 3.65 5.38 4.27 3.92 4.33 4.75 4.48 3.92 4.88 5.38 4.35 3.65 4.75 4.88 

Sep 8.41 6.87 7.52 7.51 7.10 7.64 7.55 7.67 7.22 8.10 8.41 7.54 6.87 7.67 8.10 

Oct 16.36 12.50 14.93 13.95 15.49 15.58 15.04 14.28 13.78 15.28 16.36 14.98 12.50 15.49 15.58 

Nov 20.71 21.09 21.60 21.58 22.30 21.37 22.63 21.74 19.39 23.14 23.14 21.59 19.39 22.30 22.63 

Dec 26.60 21.92 23.55 22.60 23.20 21.35 23.04 22.01 22.30 23.13 26.60 22.82 21.35 23.20 23.55 
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Monthly mean N-NO3
- loads (t/mt.) – RCP4.5 mid-term (2041-2070)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 22.73 19.13 20.72 28.53 19.74 21.76 23.83 18.30 16.83 21.58 28.53 21.15 16.83 22.73 23.83 

Feb 17.57 15.37 16.96 17.40 12.71 16.77 17.59 15.04 18.82 17.99 18.82 17.18 12.71 17.59 17.99 

Mar 14.78 13.34 15.44 18.66 11.20 14.58 16.06 13.33 16.67 17.39 18.66 15.11 11.20 16.67 17.39 

Apr 11.53 10.94 12.09 16.58 6.18 14.35 12.35 10.89 10.24 21.58 21.58 11.81 6.18 14.35 16.58 

May 13.06 11.22 9.89 13.11 3.18 10.34 6.84 11.12 6.44 19.99 19.99 10.73 3.18 13.06 13.11 

Jun 4.68 5.71 5.58 7.69 4.62 5.15 4.99 6.51 7.02 12.80 12.80 5.65 4.62 7.02 7.69 

Jul 2.38 3.96 4.37 3.16 3.12 5.70 2.89 4.84 6.82 10.76 10.76 4.17 2.38 5.70 6.82 

Aug 2.37 3.69 3.87 2.93 1.98 4.23 1.87 4.35 4.68 10.53 10.53 3.78 1.87 4.35 4.68 

Sep 6.76 6.18 6.82 9.38 2.68 9.80 4.22 7.11 8.71 13.81 13.81 6.97 2.68 9.38 9.80 

Oct 16.59 12.45 13.09 8.82 4.61 16.65 17.73 13.49 15.02 18.02 18.02 14.25 4.61 16.65 17.73 

Nov 20.79 20.46 19.05 29.27 31.95 28.26 24.90 21.17 9.53 16.14 31.95 20.98 9.53 28.26 29.27 

Dec 28.07 21.67 24.99 24.35 19.67 26.11 21.90 21.46 35.86 23.32 35.86 23.84 19.67 26.11 28.07 

Monthly mean N-NO3
- loads (t/mt.) – RCP4.5 long-term (2071-2100)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 26.36 21.46 22.35 15.90 25.97 12.00 17.26 21.39 21.17 26.81 26.81 21.43 12.00 25.97 26.36 

Feb 18.84 17.16 18.92 9.18 18.40 13.39 14.83 16.73 17.76 21.49 21.49 17.46 9.18 18.84 18.92 

Mar 16.37 15.48 18.30 12.69 18.87 13.53 15.13 14.84 19.99 18.77 19.99 15.93 12.69 18.77 18.87 

Apr 13.00 12.87 15.77 7.61 15.24 8.29 10.68 11.77 18.95 14.06 18.95 12.94 7.61 15.24 15.77 

May 14.57 11.58 13.27 3.98 15.54 7.85 4.64 11.86 20.76 11.47 20.76 11.72 3.98 14.57 15.54 

Jun 6.15 6.17 7.50 2.41 6.14 4.75 2.62 7.42 8.66 7.69 8.66 6.16 2.41 7.50 7.69 

Jul 3.55 4.42 5.48 4.23 4.27 1.85 2.72 6.19 6.69 7.67 7.67 4.34 1.85 6.19 6.69 

Aug 2.82 4.08 4.78 5.23 1.81 1.81 2.45 5.78 6.54 4.54 6.54 4.31 1.81 5.23 5.78 

Sep 7.03 7.53 6.56 8.44 4.56 2.09 2.62 8.17 8.99 13.23 13.23 7.28 2.09 8.44 8.99 

Oct 16.72 14.45 13.31 9.01 10.80 9.70 3.10 13.68 20.81 14.12 20.81 13.50 3.10 14.45 16.72 

Nov 24.13 23.81 23.66 22.26 20.18 17.49 25.25 22.71 11.55 17.51 25.25 22.48 11.55 23.81 24.13 

Dec 29.64 21.26 24.31 10.70 19.82 26.37 9.10 21.14 19.76 32.36 32.36 21.20 9.10 26.37 29.64 
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Monthly mean N-NO3
- loads (t/mt.) – RCP8.5 mid-term (2041-2070)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 25.80 21.00 21.43 28.98 21.46 20.89 21.57 20.12 19.16 20.50 28.98 21.21 19.16 21.57 25.80 

Feb 17.65 16.85 16.62 23.67 17.70 16.03 18.21 15.96 15.87 16.79 23.67 16.82 15.87 17.70 18.21 

Mar 14.90 15.94 17.24 21.57 16.82 15.18 16.34 14.82 15.29 16.41 21.57 16.14 14.82 16.82 17.24 

Apr 12.22 12.56 14.20 17.53 12.19 11.55 13.06 13.69 11.73 12.84 17.53 12.70 11.55 13.69 14.20 

May 14.51 11.93 12.00 14.55 11.73 11.41 12.01 12.84 12.15 13.86 14.55 12.08 11.41 13.86 14.51 

Jun 5.40 6.78 6.35 8.83 5.35 6.22 7.53 7.54 6.71 8.18 8.83 6.75 5.35 7.54 8.18 

Jul 3.04 4.70 4.64 6.45 3.42 4.18 5.21 6.05 4.62 5.89 6.45 4.67 3.04 5.89 6.05 

Aug 2.69 4.31 3.98 6.00 3.26 3.67 4.59 5.11 4.33 5.02 6.00 4.32 2.69 5.02 5.11 

Sep 6.90 7.48 5.66 9.51 6.55 6.87 8.80 8.08 7.72 8.68 9.51 7.60 5.66 8.68 8.80 

Oct 15.38 14.40 12.04 18.10 18.19 15.27 14.56 14.26 13.75 16.41 18.19 14.92 12.04 16.41 18.10 

Nov 22.73 24.12 22.44 31.73 24.35 23.50 24.14 23.36 19.98 25.30 31.73 23.81 19.98 24.35 25.30 

Dec 29.01 20.60 25.55 30.64 25.53 23.03 23.94 22.32 24.45 23.05 30.64 24.19 20.60 25.55 29.01 

Monthly mean N-NO3
- loads (t/mt.) – RCP8.5 long-term (2071-2100)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 27.08 22.25 21.35 26.90 21.22 21.63 20.23 21.88 20.28 22.61 27.08 21.76 20.23 22.61 26.90 

Feb 20.13 18.08 17.79 22.45 17.54 17.46 16.33 17.52 16.90 18.08 22.45 17.66 16.33 18.08 20.13 

Mar 16.83 16.18 17.38 21.50 15.01 16.40 15.15 15.31 16.19 16.71 21.50 16.30 15.01 16.83 17.38 

Apr 16.22 12.80 15.48 17.17 11.28 12.55 12.02 14.10 12.70 14.78 17.17 13.45 11.28 15.48 16.22 

May 11.56 8.78 10.68 14.91 9.89 9.39 11.43 10.25 11.14 12.66 14.91 10.91 8.78 11.56 12.66 

Jun 4.78 4.70 4.92 7.96 3.76 4.65 6.08 5.98 5.62 6.92 7.96 5.27 3.76 6.08 6.92 

Jul 2.64 3.18 3.51 5.26 2.55 2.79 4.18 4.57 3.93 4.37 5.26 3.72 2.55 4.37 4.57 

Aug 2.35 3.38 3.27 5.47 2.40 2.82 4.01 3.96 3.66 3.81 5.47 3.52 2.35 3.96 4.01 

Sep 6.37 6.28 5.44 9.50 4.07 5.93 8.35 7.12 6.27 8.31 9.50 6.33 4.07 8.31 8.35 

Oct 15.90 15.30 11.74 16.74 15.38 13.99 16.36 13.48 13.05 16.31 16.74 15.34 11.74 16.31 16.36 

Nov 21.87 25.32 25.67 33.52 18.84 23.70 23.90 24.98 21.34 27.13 33.52 24.44 18.84 25.67 27.13 

Dec 33.25 24.56 26.24 31.71 20.23 24.30 23.79 24.61 25.85 23.71 33.25 24.58 20.23 26.24 31.71 
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Monthly mean N-NH4
+ loads (t/mt.) – Control period (1983-2012)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.56 0.53 0.58 0.59 0.58 0.58 0.51 0.58 0.64 0.53 0.64 0.58 0.51 0.58 0.59 

Feb 0.55 0.54 0.50 0.54 0.60 0.51 0.50 0.60 0.71 0.53 0.71 0.54 0.50 0.60 0.60 

Mar 0.59 0.59 0.74 0.56 0.56 0.63 0.54 0.63 0.87 0.55 0.87 0.59 0.54 0.63 0.74 

Apr 0.90 0.88 1.25 0.78 0.81 0.73 0.80 0.74 0.92 0.90 1.25 0.84 0.73 0.90 0.92 

May 0.78 1.00 1.32 0.78 0.97 0.89 0.72 0.80 1.02 0.88 1.32 0.89 0.72 1.00 1.02 

Jun 0.63 0.84 1.32 0.76 0.81 0.88 0.57 0.63 1.01 0.61 1.32 0.79 0.57 0.88 1.01 

Jul 0.71 0.58 0.72 0.78 0.71 0.71 0.52 0.59 0.67 0.58 0.78 0.69 0.52 0.71 0.72 

Aug 0.69 0.66 0.55 0.78 0.66 0.66 0.62 0.62 0.79 0.65 0.79 0.66 0.55 0.69 0.78 

Sep 1.03 1.19 1.11 0.87 1.13 0.87 0.77 1.00 1.46 1.09 1.46 1.06 0.77 1.13 1.19 

Oct 1.07 1.26 1.08 0.73 1.64 1.35 0.73 1.10 1.48 1.21 1.64 1.16 0.73 1.35 1.48 

Nov 1.32 1.33 1.12 1.01 1.39 1.07 0.87 1.16 1.00 1.18 1.39 1.14 0.87 1.32 1.33 

Dec 1.02 0.69 0.79 0.80 1.05 0.82 0.61 0.75 0.96 0.87 1.05 0.81 0.61 0.96 1.02 
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Monthly mean N-NH4
+ loads (t/mt.) – RCP4.5 mid-term (2041-2070)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.66 0.59 0.62 0.92 0.57 0.60 0.78 0.58 0.52 0.55 0.92 0.60 0.52 0.66 0.78 

Feb 0.66 0.72 0.56 0.48 0.44 0.53 0.44 0.57 1.02 0.82 1.02 0.57 0.44 0.72 0.82 

Mar 0.75 0.65 0.69 0.66 0.53 0.49 0.59 0.63 0.65 1.10 1.10 0.65 0.49 0.69 0.75 

Apr 1.12 1.13 1.30 1.30 0.45 1.60 0.76 1.09 0.47 3.48 3.48 1.12 0.45 1.30 1.60 

May 0.80 0.88 0.83 0.96 0.53 1.50 0.90 0.82 0.47 0.79 1.50 0.83 0.47 0.90 0.96 

Jun 0.48 0.59 0.57 0.49 2.17 0.78 0.48 0.57 2.81 0.50 2.81 0.57 0.48 0.78 2.17 

Jul 0.46 0.69 0.53 0.43 0.49 1.18 0.50 0.60 0.69 0.62 1.18 0.56 0.43 0.69 0.69 

Aug 0.50 0.59 0.52 0.48 0.46 0.52 0.45 0.62 0.49 1.47 1.47 0.51 0.45 0.59 0.62 

Sep 0.85 1.08 0.88 0.63 0.46 0.83 0.78 0.94 0.62 1.46 1.46 0.84 0.46 0.94 1.08 

Oct 1.27 1.02 0.78 0.51 0.50 0.71 0.88 0.86 1.24 1.49 1.49 0.87 0.50 1.24 1.27 

Nov 1.41 1.08 0.73 1.62 1.62 1.31 0.68 1.01 0.47 0.49 1.62 1.04 0.47 1.41 1.62 

Dec 1.06 0.69 1.09 0.91 0.80 0.83 0.51 0.66 1.05 0.50 1.09 0.81 0.50 1.05 1.06 

Monthly mean N-NH4
+ loads (t/mt.) – RCP4.5 long-term (2071-2100)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.70 0.61 0.64 0.48 0.51 0.48 0.48 0.56 0.70 0.51 0.70 0.54 0.48 0.64 0.70 

Feb 0.70 0.74 0.57 0.43 0.45 0.51 0.44 0.63 0.63 0.50 0.74 0.54 0.43 0.63 0.70 

Mar 0.81 0.69 0.83 0.56 0.60 0.73 0.57 0.59 1.27 0.49 1.27 0.64 0.49 0.81 0.83 

Apr 1.10 1.02 1.54 0.54 0.89 1.06 0.48 0.90 1.25 0.56 1.54 0.96 0.48 1.10 1.25 

May 0.73 0.76 0.80 0.55 0.69 1.33 0.48 0.77 1.89 0.56 1.89 0.75 0.48 0.80 1.33 

Jun 0.54 0.59 0.54 0.50 0.47 0.57 0.48 0.66 0.47 0.49 0.66 0.52 0.47 0.57 0.59 

Jul 0.49 0.55 0.51 1.26 0.47 0.46 0.51 0.68 0.48 0.63 1.26 0.51 0.46 0.63 0.68 

Aug 0.47 0.54 0.51 0.91 0.44 0.45 0.51 0.66 0.53 0.49 0.91 0.51 0.44 0.54 0.66 

Sep 0.75 0.91 0.71 0.52 0.50 0.49 0.49 0.75 0.57 1.22 1.22 0.64 0.49 0.75 0.91 

Oct 0.94 0.91 0.70 0.49 0.55 0.61 0.48 0.75 1.07 0.58 1.07 0.65 0.48 0.91 0.94 

Nov 1.30 1.16 0.71 0.81 1.10 0.55 0.89 0.93 0.51 0.48 1.30 0.85 0.48 1.10 1.16 

Dec 0.91 0.64 0.83 0.47 0.54 0.70 0.47 0.58 0.50 1.04 1.04 0.61 0.47 0.83 0.91 
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Monthly mean N-NH4
+ loads (t/mt.) – RCP8.5 mid-term (2041-2070)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.88 0.66 0.70 1.10 0.58 0.57 0.60 0.62 0.64 0.54 1.10 0.63 0.54 0.70 0.88 

Feb 0.64 0.70 0.56 0.58 0.59 0.50 0.56 0.57 0.70 0.51 0.70 0.58 0.50 0.64 0.70 

Mar 0.77 0.79 0.92 0.92 0.81 0.73 0.59 0.69 0.84 0.73 0.92 0.78 0.59 0.84 0.92 

Apr 1.33 1.08 1.83 1.18 0.85 0.91 0.74 1.30 1.17 1.09 1.83 1.13 0.74 1.30 1.33 

May 0.98 1.05 0.87 1.02 0.94 0.87 0.75 0.92 1.20 0.99 1.20 0.96 0.75 1.02 1.05 

Jun 0.49 1.02 0.69 1.15 0.67 0.84 0.54 0.75 0.79 0.63 1.15 0.72 0.49 0.84 1.02 

Jul 0.46 0.79 0.54 1.08 0.62 0.56 0.64 0.78 0.77 0.59 1.08 0.63 0.46 0.78 0.79 

Aug 0.51 0.65 0.55 1.08 0.57 0.56 0.57 0.72 0.80 0.58 1.08 0.57 0.51 0.72 0.80 

Sep 0.97 0.86 0.67 1.34 1.09 0.90 0.99 0.93 1.50 1.00 1.50 0.98 0.67 1.09 1.34 

Oct 1.40 1.26 0.74 1.26 2.07 1.54 0.82 1.23 1.25 0.95 2.07 1.25 0.74 1.40 1.54 

Nov 1.94 1.39 0.99 1.94 1.59 1.33 0.99 1.17 1.01 1.16 1.94 1.25 0.99 1.59 1.94 

Dec 1.21 0.76 1.19 1.15 0.83 0.75 0.66 0.83 1.09 0.64 1.21 0.83 0.64 1.15 1.19 

Monthly mean N-NH4
+ loads (t/mt.) – RCP8.5 long-term (2071-2100)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.95 0.69 0.66 0.82 0.78 0.67 0.53 0.61 0.60 0.61 0.95 0.67 0.53 0.78 0.82 

Feb 1.04 0.66 0.62 0.62 0.64 0.60 0.53 0.67 0.89 0.56 1.04 0.63 0.53 0.67 0.89 

Mar 0.76 0.76 0.87 1.05 0.71 0.88 0.67 0.75 1.10 0.87 1.10 0.81 0.67 0.88 1.05 

Apr 0.91 0.93 1.34 1.15 0.83 0.83 0.87 1.12 0.90 1.00 1.34 0.92 0.83 1.12 1.15 

May 0.59 0.64 0.75 0.94 0.80 0.62 0.75 0.68 0.82 0.71 0.94 0.73 0.59 0.80 0.82 

Jun 0.54 0.54 0.51 1.08 0.51 0.78 0.53 0.56 0.81 0.58 1.08 0.55 0.51 0.78 0.81 

Jul 0.44 0.54 0.49 1.15 0.47 0.49 0.55 0.60 0.64 0.52 1.15 0.53 0.44 0.60 0.64 

Aug 0.46 0.63 0.51 1.36 0.53 0.63 0.69 0.60 0.80 0.56 1.36 0.62 0.46 0.69 0.80 

Sep 0.70 0.85 0.69 1.26 0.64 0.95 0.88 0.80 0.91 1.19 1.26 0.87 0.64 0.95 1.19 

Oct 1.21 1.49 0.92 1.20 1.36 1.03 0.77 0.96 0.97 1.07 1.49 1.05 0.77 1.21 1.36 

Nov 0.17 2.02 1.20 3.12 1.19 1.10 0.95 1.40 0.83 1.24 3.12 1.20 0.17 1.40 2.02 

Dec 1.65 0.88 1.14 1.12 0.71 0.79 0.60 0.90 0.97 0.62 1.65 0.89 0.60 1.12 1.14 
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Monthly mean P-PO4
3- loads (t/mt.) – Control period (1983-2012)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.42 0.39 0.43 0.45 0.44 0.42 0.37 0.42 0.49 0.40 0.49 0.42 0.37 0.44 0.45 

Feb 0.38 0.40 0.36 0.39 0.43 0.37 0.36 0.43 0.54 0.38 0.54 0.39 0.36 0.43 0.43 

Mar 0.40 0.42 0.50 0.40 0.40 0.44 0.38 0.44 0.61 0.40 0.61 0.41 0.38 0.44 0.50 

Apr 0.54 0.63 0.81 0.53 0.55 0.49 0.53 0.52 0.72 0.59 0.81 0.55 0.49 0.63 0.72 

May 0.48 0.63 0.86 0.54 0.62 0.61 0.49 0.53 0.68 0.57 0.86 0.59 0.48 0.63 0.68 

Jun 0.51 0.60 0.85 0.50 0.51 0.62 0.40 0.44 0.71 0.43 0.85 0.51 0.40 0.62 0.71 

Jul 0.48 0.41 0.47 0.53 0.45 0.47 0.38 0.41 0.48 0.40 0.53 0.46 0.38 0.48 0.48 

Aug 0.46 0.48 0.39 0.54 0.43 0.45 0.44 0.42 0.52 0.43 0.54 0.44 0.39 0.48 0.52 

Sep 0.65 0.85 0.88 0.60 0.81 0.60 0.52 0.66 0.99 0.72 0.99 0.69 0.52 0.85 0.88 

Oct 0.87 0.98 0.88 0.57 1.36 1.02 0.54 0.84 1.14 0.91 1.36 0.89 0.54 1.02 1.14 

Nov 1.05 1.14 1.07 0.87 1.25 0.89 0.71 0.97 0.89 1.07 1.25 1.01 0.71 1.07 1.14 

Dec 0.81 0.56 0.66 0.67 1.01 0.70 0.47 0.64 0.87 0.76 1.01 0.68 0.47 0.81 0.87 
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Monthly mean P-PO4
3- loads (t/mt.) – RCP4.5 mid-term (2041-2070)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.54 0.48 0.72 1.25 0.41 0.39 0.73 0.49 0.40 0.38 1.25 0.49 0.38 0.72 0.73 

Feb 0.44 0.85 0.44 0.34 0.29 0.33 0.30 0.45 1.09 0.64 1.09 0.44 0.29 0.64 0.85 

Mar 0.40 0.48 0.50 0.43 0.34 0.33 0.38 0.41 0.48 0.60 0.60 0.42 0.33 0.48 0.50 

Apr 0.50 0.86 1.36 0.78 0.31 0.66 0.43 0.77 0.31 2.19 2.19 0.72 0.31 0.86 1.36 

May 0.48 0.84 0.73 0.55 0.33 1.05 0.47 0.64 0.32 0.52 1.05 0.53 0.32 0.73 0.84 

Jun 0.43 0.60 0.60 0.34 3.18 0.85 0.32 0.51 5.03 0.35 5.03 0.56 0.32 0.85 3.18 

Jul 0.31 0.83 0.41 0.29 0.33 1.31 0.34 0.56 0.58 0.52 1.31 0.47 0.29 0.58 0.83 

Aug 0.38 0.58 0.40 0.34 0.31 0.36 0.30 0.60 0.34 1.83 1.83 0.37 0.30 0.58 0.60 

Sep 1.07 2.20 1.55 0.47 0.31 0.88 0.74 1.67 0.56 2.14 2.20 0.97 0.31 1.67 2.14 

Oct 2.28 1.91 1.18 0.35 0.34 0.74 0.92 1.27 2.32 2.15 2.32 1.22 0.34 2.15 2.28 

Nov 2.50 2.31 1.17 3.11 2.82 3.07 0.60 1.87 0.33 0.38 3.11 2.09 0.33 2.82 3.07 

Dec 1.64 0.89 2.85 0.95 0.97 1.14 0.35 0.75 1.91 0.39 2.85 0.96 0.35 1.64 1.91 

Monthly mean P-PO4
3- loads (t/mt.) – RCP4.5 long-term (2071-2100)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.68 0.70 0.84 0.34 0.45 0.33 0.35 0.52 1.40 0.37 1.40 0.49 0.33 0.70 0.84 

Feb 0.59 1.05 0.56 0.30 0.30 0.33 0.33 0.74 0.50 0.35 1.05 0.42 0.30 0.59 0.74 

Mar 0.50 0.63 0.95 0.40 0.37 0.65 0.58 0.41 1.95 0.34 1.95 0.54 0.34 0.65 0.95 

Apr 0.56 1.15 2.52 0.36 0.72 0.69 0.36 0.84 0.99 0.34 2.52 0.71 0.34 0.99 1.15 

May 0.59 0.94 1.10 0.39 0.43 1.01 0.33 0.91 3.28 0.38 3.28 0.75 0.33 1.01 1.10 

Jun 0.55 0.82 0.61 0.34 0.32 0.46 0.33 0.93 0.32 0.35 0.93 0.41 0.32 0.61 0.82 

Jul 0.42 0.60 0.40 2.75 0.32 0.31 0.35 1.08 0.32 0.67 2.75 0.41 0.31 0.67 1.08 

Aug 0.39 0.58 0.50 1.47 0.30 0.30 0.35 1.06 0.43 0.34 1.47 0.41 0.30 0.58 1.06 

Sep 1.36 2.72 1.63 0.41 0.34 0.33 0.34 1.64 0.62 2.60 2.72 0.99 0.33 1.64 2.60 

Oct 2.39 2.22 1.24 0.34 0.45 0.61 0.33 1.45 3.14 0.60 3.14 0.93 0.33 2.22 2.39 

Nov 3.82 3.91 1.48 1.47 2.98 0.47 1.67 2.73 0.51 0.37 3.91 1.57 0.37 2.98 3.82 

Dec 1.84 1.14 2.34 0.32 0.54 0.70 0.33 0.84 0.41 3.00 3.00 0.77 0.32 1.84 2.34 
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Monthly mean P-PO4
3- loads (t/mt.) – RCP8.5 mid-term (2041-2070)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.71 0.59 0.62 0.78 0.46 0.43 0.48 0.53 0.63 0.41 0.78 0.56 0.41 0.63 0.71 

Feb 0.38 0.59 0.40 0.37 0.43 0.33 0.40 0.43 0.67 0.37 0.67 0.40 0.33 0.43 0.59 

Mar 0.42 0.56 0.68 0.55 0.53 0.46 0.37 0.44 0.68 0.49 0.68 0.51 0.37 0.56 0.68 

Apr 0.61 0.63 1.77 0.66 0.46 0.50 0.42 0.77 0.85 0.73 1.77 0.64 0.42 0.77 0.85 

May 0.63 0.87 0.66 0.59 0.68 0.55 0.45 0.68 1.24 0.80 1.24 0.67 0.45 0.80 0.87 

Jun 0.35 0.99 0.58 0.75 0.52 0.80 0.38 0.62 0.75 0.49 0.99 0.60 0.35 0.75 0.80 

Jul 0.31 0.76 0.38 0.68 0.55 0.42 0.50 0.74 0.75 0.44 0.76 0.53 0.31 0.74 0.75 

Aug 0.36 0.57 0.39 0.66 0.45 0.41 0.40 0.65 0.72 0.45 0.72 0.45 0.36 0.65 0.66 

Sep 0.86 0.92 0.59 0.84 1.27 0.91 1.02 0.94 1.96 0.94 1.96 0.93 0.59 1.02 1.27 

Oct 1.56 1.65 0.75 0.78 3.20 2.05 0.78 1.89 1.77 0.98 3.20 1.60 0.75 1.89 2.05 

Nov 2.33 2.24 1.29 1.30 2.47 1.93 1.29 1.61 1.34 1.64 2.47 1.62 1.29 2.24 2.33 

Dec 1.36 0.83 1.89 0.79 0.97 0.72 0.66 0.96 1.57 0.63 1.89 0.89 0.63 1.36 1.57 

Monthly mean P-PO4
3- loads (t/mt.) – RCP8.5 long-term (2071-2100)  

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.81 0.66 0.72 0.62 0.84 0.62 0.37 0.54 0.59 0.54 0.84 0.62 0.37 0.72 0.81 

Feb 1.03 0.63 0.50 0.38 0.52 0.40 0.35 0.59 1.30 0.41 1.30 0.51 0.35 0.63 1.03 

Mar 0.44 0.60 0.73 0.61 0.43 0.55 0.42 0.58 1.51 0.68 1.51 0.59 0.42 0.68 0.73 

Apr 0.53 0.82 1.52 0.63 0.63 0.49 0.47 1.17 0.66 0.84 1.52 0.65 0.47 0.84 1.17 

May 0.49 0.60 0.88 0.63 0.92 0.47 0.55 0.70 0.99 0.74 0.99 0.66 0.47 0.88 0.92 

Jun 0.45 0.46 0.42 0.82 0.41 0.96 0.41 0.50 1.18 0.52 1.18 0.48 0.41 0.82 0.96 

Jul 0.30 0.47 0.34 0.91 0.33 0.38 0.45 0.58 0.72 0.41 0.91 0.43 0.30 0.58 0.72 

Aug 0.33 0.68 0.36 1.06 0.46 0.76 0.75 0.62 1.11 0.47 1.11 0.65 0.33 0.76 1.06 

Sep 0.82 1.28 0.78 1.00 0.68 1.73 1.21 1.18 1.75 2.30 2.30 1.20 0.68 1.73 1.75 

Oct 1.90 3.65 1.53 0.99 2.89 1.53 1.03 1.50 1.67 2.07 3.65 1.60 0.99 2.07 2.89 

Nov 2.84 6.01 2.50 3.08 2.49 2.26 1.78 3.34 1.42 2.61 6.01 2.55 1.42 3.08 3.34 

Dec 3.06 1.37 2.28 0.92 0.91 1.07 0.64 1.56 2.20 0.63 3.06 1.22 0.63 2.20 2.28 

 



APPENDIX D – AQUATOX OUTPUT TABLES 

Monthly mean Dissolved Inorganic Nitrogen, DIN (mg/l) – Control period (1983-2012) 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 1.30 1.32 1.34 1.38 1.29 1.32 1.35 1.34 1.37 1.29 1.38 1.33 1.29 1.35 1.37 

Feb 1.21 1.22 1.26 1.26 1.21 1.25 1.25 1.22 1.22 1.22 1.26 1.22 1.21 1.25 1.26 

Mar 1.14 1.07 1.14 1.16 1.15 1.16 1.14 1.07 1.07 1.14 1.16 1.14 1.07 1.15 1.16 

Apr 0.97 0.84 0.90 0.96 0.94 0.94 0.94 0.89 0.85 0.91 0.97 0.92 0.84 0.94 0.96 

May 0.71 0.64 0.68 0.70 0.70 0.70 0.70 0.66 0.64 0.68 0.71 0.69 0.64 0.70 0.70 

Jun 0.42 0.36 0.43 0.42 0.41 0.40 0.46 0.39 0.38 0.44 0.46 0.42 0.36 0.43 0.44 

Jul 0.32 0.32 0.38 0.33 0.32 0.33 0.35 0.35 0.33 0.38 0.38 0.33 0.32 0.35 0.38 

Aug 0.35 0.35 0.43 0.37 0.36 0.38 0.37 0.38 0.35 0.38 0.43 0.37 0.35 0.38 0.38 

Sep 0.46 0.44 0.48 0.48 0.45 0.47 0.48 0.47 0.44 0.48 0.48 0.47 0.44 0.48 0.48 

Oct 0.73 0.68 0.77 0.77 0.74 0.77 0.79 0.73 0.70 0.75 0.79 0.75 0.68 0.77 0.77 

Nov 1.06 1.05 1.17 1.11 1.08 1.11 1.15 1.10 1.06 1.12 1.17 1.10 1.05 1.12 1.15 

Dec 1.30 1.31 1.37 1.32 1.25 1.25 1.34 1.29 1.26 1.26 1.37 1.29 1.25 1.32 1.34 
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Monthly mean Dissolved Inorganic Nitrogen, DIN (mg/l) – RCP4.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 1.25 1.32 1.29 1.27 1.29 1.28 1.29 1.26 1.24 1.26 1.32 1.28 1.24 1.29 1.29 

Feb 1.21 1.11 1.19 1.18 1.16 1.20 1.17 1.13 1.09 1.19 1.21 1.18 1.09 1.19 1.20 

Mar 1.09 0.99 1.05 1.05 1.06 1.08 1.05 1.00 0.99 1.09 1.09 1.05 0.99 1.08 1.09 

Apr 0.86 0.80 0.81 0.88 0.88 0.91 0.87 0.81 0.80 0.85 0.91 0.85 0.80 0.88 0.88 

May 0.62 0.63 0.59 0.70 0.67 0.67 0.69 0.65 0.61 0.65 0.70 0.65 0.59 0.67 0.69 

Jun 0.32 0.35 0.33 0.38 0.37 0.35 0.39 0.37 0.35 0.37 0.39 0.36 0.32 0.37 0.38 

Jul 0.24 0.30 0.36 0.33 0.27 0.27 0.29 0.35 0.34 0.32 0.36 0.31 0.24 0.34 0.35 

Aug 0.36 0.37 0.43 0.39 0.39 0.38 0.35 0.40 0.41 0.35 0.43 0.38 0.35 0.40 0.41 

Sep 0.44 0.43 0.45 0.48 0.46 0.48 0.46 0.46 0.45 0.44 0.48 0.46 0.43 0.46 0.48 

Oct 0.67 0.62 0.68 0.73 0.64 0.70 0.74 0.68 0.66 0.72 0.74 0.68 0.62 0.72 0.73 

Nov 1.00 0.98 1.06 1.03 1.01 1.05 1.06 1.03 1.05 1.02 1.06 1.03 0.98 1.05 1.06 

Dec 1.21 1.29 1.26 1.20 1.25 1.24 1.26 1.27 1.26 1.26 1.29 1.26 1.20 1.26 1.27 

Monthly mean Dissolved Inorganic Nitrogen, DIN (mg/l) – RCP4.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 1.26 1.26 1.22 1.23 1.27 1.27 1.24 1.26 1.20 1.25 1.27 1.25 1.20 1.26 1.27 

Feb 1.16 1.11 1.20 1.15 1.16 1.19 1.18 1.11 1.06 1.15 1.20 1.16 1.06 1.18 1.19 

Mar 1.07 1.02 1.06 1.04 1.04 1.06 1.05 1.00 1.00 1.03 1.07 1.04 1.00 1.06 1.06 

Apr 0.87 0.83 0.82 0.89 0.87 0.84 0.89 0.81 0.84 0.83 0.89 0.84 0.81 0.87 0.89 

May 0.63 0.62 0.63 0.66 0.67 0.65 0.70 0.62 0.65 0.67 0.70 0.65 0.62 0.67 0.67 

Jun 0.34 0.35 0.43 0.37 0.35 0.31 0.42 0.35 0.34 0.39 0.43 0.35 0.31 0.39 0.42 

Jul 0.30 0.31 0.39 0.33 0.31 0.31 0.33 0.31 0.37 0.36 0.39 0.32 0.30 0.36 0.37 

Aug 0.43 0.43 0.45 0.39 0.41 0.44 0.36 0.43 0.40 0.39 0.45 0.42 0.36 0.43 0.44 

Sep 0.46 0.45 0.47 0.44 0.48 0.47 0.47 0.47 0.43 0.45 0.48 0.46 0.43 0.47 0.47 

Oct 0.66 0.67 0.70 0.71 0.68 0.68 0.75 0.66 0.66 0.75 0.75 0.68 0.66 0.71 0.75 

Nov 0.99 1.01 1.20 1.05 0.98 1.01 1.09 1.01 1.01 1.03 1.20 1.01 0.98 1.05 1.09 

Dec 1.25 1.19 1.23 1.19 1.21 1.26 1.21 1.17 1.22 1.22 1.26 1.22 1.17 1.23 1.25 
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Monthly mean Dissolved Inorganic Nitrogen, DIN (mg/l) – RCP8.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 1.27 1.30 1.26 1.67 1.28 1.30 1.24 1.23 1.17 1.29 1.67 1.27 1.17 1.30 1.30 

Feb 1.17 1.18 1.17 1.62 1.19 1.19 1.14 1.14 1.06 1.20 1.62 1.18 1.06 1.19 1.20 

Mar 1.05 1.06 1.06 1.43 1.07 1.05 1.06 1.00 0.96 1.07 1.43 1.06 0.96 1.07 1.07 

Apr 0.80 0.85 0.82 1.19 0.88 0.85 0.90 0.85 0.79 0.83 1.19 0.85 0.79 0.88 0.90 

May 0.64 0.64 0.64 0.90 0.67 0.68 0.71 0.69 0.62 0.70 0.90 0.68 0.62 0.70 0.71 

Jun 0.35 0.35 0.38 0.51 0.35 0.36 0.45 0.40 0.34 0.44 0.51 0.37 0.34 0.44 0.45 

Jul 0.32 0.30 0.36 0.41 0.26 0.30 0.33 0.35 0.34 0.37 0.41 0.33 0.26 0.36 0.37 

Aug 0.43 0.41 0.43 0.45 0.37 0.40 0.36 0.41 0.38 0.39 0.45 0.41 0.36 0.43 0.43 

Sep 0.50 0.49 0.48 0.58 0.47 0.47 0.48 0.49 0.45 0.50 0.58 0.48 0.45 0.50 0.50 

Oct 0.71 0.67 0.69 0.92 0.72 0.69 0.72 0.65 0.65 0.76 0.92 0.70 0.65 0.72 0.76 

Nov 1.18 1.03 1.16 1.52 1.01 1.05 1.07 1.08 0.99 1.10 1.52 1.07 0.99 1.16 1.18 

Dec 1.28 1.20 1.27 1.70 1.25 1.27 1.24 1.23 1.16 1.27 1.70 1.26 1.16 1.27 1.28 

Monthly mean Dissolved Inorganic Nitrogen, DIN (mg/l) – RCP8.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 1.31 1.32 1.31 1.61 1.32 1.34 1.24 1.32 1.31 1.33 1.61 1.32 1.24 1.33 1.34 

Feb 1.21 1.22 1.20 1.55 1.26 1.22 1.14 1.22 1.08 1.24 1.55 1.22 1.08 1.24 1.26 

Mar 1.06 1.07 1.07 1.37 1.12 1.08 1.03 1.05 0.95 1.05 1.37 1.06 0.95 1.08 1.12 

Apr 0.85 0.85 0.87 1.15 0.87 0.89 0.85 0.85 0.84 0.88 1.15 0.86 0.84 0.88 0.89 

May 0.56 0.53 0.57 0.85 0.56 0.61 0.66 0.56 0.60 0.66 0.85 0.58 0.53 0.66 0.66 

Jun 0.30 0.32 0.36 0.46 0.31 0.29 0.38 0.36 0.30 0.39 0.46 0.34 0.29 0.38 0.39 

Jul 0.36 0.31 0.37 0.38 0.32 0.33 0.26 0.35 0.32 0.33 0.38 0.33 0.26 0.36 0.37 

Aug 0.60 0.49 0.55 0.52 0.51 0.53 0.36 0.53 0.50 0.50 0.60 0.52 0.36 0.53 0.55 

Sep 0.53 0.53 0.52 0.62 0.53 0.51 0.48 0.52 0.48 0.50 0.62 0.52 0.48 0.53 0.53 

Oct 0.69 0.69 0.68 0.88 0.73 0.72 0.75 0.68 0.64 0.72 0.88 0.70 0.64 0.73 0.75 

Nov 1.21 0.92 1.21 1.48 0.98 1.14 1.07 1.01 1.06 1.09 1.48 1.08 0.92 1.21 1.21 

Dec 1.34 1.23 1.33 1.70 1.24 1.37 1.26 1.23 1.32 1.28 1.70 1.30 1.23 1.34 1.37 
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Monthly mean Dissolved Inorganic Phosphorus, DIP (mg/l) – Control period (1983-2012)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.028 0.028 0.028 0.029 0.029 0.027 0.024 0.028 0.033 0.027 0.033 0.028 0.024 0.029 0.029 

Feb 0.026 0.028 0.026 0.027 0.027 0.026 0.024 0.029 0.032 0.025 0.032 0.027 0.024 0.028 0.029 

Mar 0.028 0.030 0.029 0.027 0.027 0.028 0.025 0.030 0.035 0.027 0.035 0.028 0.025 0.030 0.030 

Apr 0.034 0.035 0.039 0.032 0.030 0.030 0.031 0.035 0.036 0.035 0.039 0.034 0.030 0.035 0.036 

May 0.042 0.050 0.053 0.042 0.044 0.044 0.039 0.043 0.051 0.041 0.053 0.044 0.039 0.050 0.051 

Jun 0.033 0.038 0.044 0.033 0.039 0.039 0.033 0.032 0.042 0.032 0.044 0.036 0.032 0.039 0.042 

Jul 0.040 0.048 0.041 0.043 0.043 0.045 0.037 0.040 0.050 0.040 0.050 0.042 0.037 0.045 0.048 

Aug 0.055 0.063 0.056 0.060 0.056 0.060 0.051 0.056 0.061 0.053 0.063 0.056 0.051 0.060 0.061 

Sep 0.054 0.061 0.055 0.056 0.057 0.054 0.050 0.055 0.062 0.053 0.062 0.055 0.050 0.057 0.061 

Oct 0.052 0.057 0.051 0.045 0.062 0.054 0.040 0.050 0.062 0.050 0.062 0.052 0.040 0.057 0.062 

Nov 0.050 0.054 0.047 0.043 0.056 0.047 0.036 0.047 0.051 0.048 0.056 0.048 0.036 0.051 0.054 

Dec 0.041 0.037 0.037 0.037 0.042 0.037 0.029 0.037 0.042 0.038 0.042 0.037 0.029 0.041 0.042 
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Monthly mean Dissolved Inorganic Phosphorus, DIP (mg/l) – RCP4.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.040 0.037 0.045 0.034 0.042 0.028 0.025 0.034 0.050 0.029 0.050 0.036 0.025 0.042 0.045 

Feb 0.029 0.042 0.031 0.028 0.038 0.023 0.025 0.032 0.046 0.029 0.046 0.030 0.023 0.038 0.042 

Mar 0.029 0.038 0.032 0.031 0.032 0.028 0.027 0.032 0.043 0.031 0.043 0.032 0.027 0.032 0.038 

Apr 0.036 0.052 0.060 0.042 0.043 0.038 0.033 0.047 0.058 0.043 0.060 0.043 0.033 0.052 0.058 

May 0.043 0.058 0.060 0.050 0.054 0.045 0.043 0.052 0.064 0.050 0.064 0.051 0.043 0.058 0.060 

Jun 0.038 0.042 0.039 0.046 0.046 0.045 0.038 0.035 0.055 0.036 0.055 0.040 0.035 0.046 0.046 

Jul 0.039 0.059 0.052 0.058 0.049 0.050 0.041 0.053 0.061 0.043 0.061 0.051 0.039 0.058 0.059 

Aug 0.055 0.065 0.061 0.064 0.062 0.064 0.056 0.064 0.070 0.060 0.070 0.063 0.055 0.064 0.065 

Sep 0.076 0.086 0.078 0.068 0.084 0.079 0.061 0.083 0.085 0.075 0.086 0.079 0.061 0.084 0.085 

Oct 0.099 0.091 0.076 0.060 0.108 0.085 0.057 0.079 0.082 0.072 0.108 0.080 0.057 0.091 0.099 

Nov 0.093 0.085 0.068 0.076 0.094 0.086 0.050 0.077 0.066 0.058 0.094 0.077 0.050 0.086 0.093 

Dec 0.071 0.057 0.075 0.056 0.056 0.054 0.032 0.050 0.062 0.042 0.075 0.056 0.032 0.062 0.071 

Monthly mean Dissolved Inorganic Phosphorus, DIP (mg/l) – RCP4.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.044 0.041 0.046 0.033 0.041 0.035 0.026 0.033 0.046 0.029 0.046 0.038 0.026 0.044 0.046 

Feb 0.033 0.046 0.033 0.028 0.034 0.028 0.023 0.037 0.056 0.026 0.056 0.033 0.023 0.037 0.046 

Mar 0.032 0.042 0.044 0.032 0.035 0.035 0.025 0.033 0.045 0.034 0.045 0.034 0.025 0.042 0.044 

Apr 0.037 0.059 0.084 0.038 0.042 0.046 0.030 0.048 0.054 0.048 0.084 0.047 0.030 0.054 0.059 

May 0.045 0.063 0.071 0.049 0.058 0.058 0.041 0.057 0.075 0.052 0.075 0.057 0.041 0.063 0.071 

Jun 0.041 0.053 0.048 0.048 0.051 0.054 0.036 0.050 0.062 0.040 0.062 0.049 0.036 0.053 0.054 

Jul 0.048 0.054 0.052 0.050 0.058 0.062 0.044 0.061 0.068 0.047 0.068 0.053 0.044 0.061 0.062 

Aug 0.062 0.065 0.056 0.069 0.066 0.069 0.048 0.078 0.086 0.062 0.086 0.065 0.048 0.069 0.078 

Sep 0.082 0.101 0.082 0.080 0.080 0.096 0.057 0.087 0.119 0.084 0.119 0.083 0.057 0.096 0.101 

Oct 0.110 0.108 0.078 0.075 0.123 0.109 0.060 0.082 0.114 0.089 0.123 0.098 0.060 0.110 0.114 

Nov 0.119 0.119 0.077 0.087 0.107 0.110 0.075 0.090 0.091 0.083 0.119 0.090 0.075 0.110 0.119 

Dec 0.083 0.070 0.077 0.060 0.065 0.068 0.048 0.054 0.066 0.052 0.083 0.066 0.048 0.070 0.077 
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Monthly mean Dissolved Inorganic Phosphorus, DIP (mg/l) – RCP8.5 mid-term (2041-2070)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.042 0.035 0.040 0.037 0.030 0.028 0.026 0.033 0.041 0.027 0.042 0.034 0.026 0.040 0.041 

Feb 0.029 0.034 0.028 0.027 0.027 0.024 0.023 0.028 0.036 0.025 0.036 0.027 0.023 0.029 0.034 

Mar 0.029 0.035 0.034 0.031 0.030 0.028 0.024 0.030 0.038 0.029 0.038 0.030 0.024 0.034 0.035 

Apr 0.038 0.043 0.064 0.041 0.034 0.035 0.029 0.042 0.048 0.041 0.064 0.041 0.029 0.043 0.048 

May 0.045 0.052 0.056 0.047 0.045 0.043 0.036 0.048 0.058 0.047 0.058 0.047 0.036 0.052 0.056 

Jun 0.041 0.047 0.040 0.044 0.045 0.044 0.034 0.040 0.042 0.035 0.047 0.042 0.034 0.044 0.045 

Jul 0.036 0.053 0.051 0.051 0.045 0.046 0.041 0.048 0.058 0.044 0.058 0.047 0.036 0.051 0.053 

Aug 0.050 0.058 0.055 0.061 0.053 0.052 0.048 0.057 0.068 0.045 0.068 0.054 0.045 0.058 0.061 

Sep 0.071 0.068 0.063 0.065 0.074 0.066 0.058 0.064 0.086 0.061 0.086 0.065 0.058 0.071 0.074 

Oct 0.083 0.075 0.061 0.054 0.101 0.083 0.052 0.072 0.085 0.058 0.101 0.073 0.052 0.083 0.085 

Nov 0.081 0.077 0.062 0.057 0.086 0.076 0.051 0.064 0.066 0.058 0.086 0.065 0.051 0.077 0.081 

Dec 0.065 0.052 0.063 0.043 0.051 0.045 0.036 0.049 0.059 0.039 0.065 0.050 0.036 0.059 0.063 

Monthly mean Dissolved Inorganic Phosphorus, DIP (mg/l) – RCP8.5 long-term (2071-2100)  
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 MAX Median MIN Interquartile Interdecile 

Jan 0.054 0.043 0.049 0.034 0.047 0.039 0.025 0.040 0.043 0.030 0.054 0.042 0.025 0.047 0.049 

Feb 0.041 0.035 0.033 0.027 0.037 0.029 0.023 0.034 0.051 0.028 0.051 0.034 0.023 0.037 0.041 

Mar 0.032 0.037 0.039 0.034 0.034 0.033 0.027 0.037 0.061 0.035 0.061 0.035 0.027 0.037 0.039 

Apr 0.035 0.050 0.066 0.043 0.047 0.039 0.034 0.055 0.053 0.048 0.066 0.047 0.034 0.053 0.055 

May 0.042 0.052 0.065 0.049 0.060 0.043 0.043 0.055 0.059 0.051 0.065 0.052 0.042 0.059 0.060 

Jun 0.047 0.050 0.049 0.049 0.050 0.056 0.041 0.049 0.059 0.042 0.059 0.049 0.041 0.050 0.056 

Jul 0.042 0.037 0.044 0.058 0.042 0.053 0.035 0.042 0.060 0.045 0.060 0.043 0.035 0.053 0.058 

Aug 0.038 0.042 0.044 0.075 0.052 0.055 0.056 0.045 0.075 0.049 0.075 0.050 0.038 0.056 0.075 

Sep 0.062 0.082 0.069 0.086 0.080 0.092 0.072 0.070 0.094 0.089 0.094 0.081 0.062 0.089 0.092 

Oct 0.103 0.122 0.087 0.069 0.117 0.095 0.064 0.089 0.088 0.094 0.122 0.091 0.064 0.103 0.117 

Nov 0.112 0.151 0.099 0.096 0.108 0.093 0.065 0.108 0.075 0.087 0.151 0.097 0.065 0.108 0.112 

Dec 0.102 0.087 0.086 0.058 0.069 0.065 0.040 0.074 0.069 0.046 0.102 0.069 0.040 0.086 0.087 
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