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ABSTRACT

Cloud computing has revolutionized how computa-
tional resources are accessed and utilized. However,
the dynamic nature of the cloud computing environ-
ment, which is characterized by a variety of resource
types and capabilities presents challenges for manag-
ing the workload and ensuring the quality of service.
The selection and implementation of queueing policies
can have a major impact on the efficiency of the cloud
environment, and thus on the quality of service expe-
rienced by the end users. Understanding the perfor-
mance metrics of different queueing policies in cloud
computing environments with scalable resource man-
agement is essential for both cloud service providers
and consumers. In response, our work aims to evaluate
the effectiveness of some queueing policies in cloud
environments characterized by dynamic resource allo-
cation with a particular emphasis on their dropping
probabilities. We proposed a simulation approach
that combines the development of an accurate sim-
ulation model of a cloud computing environment with
adaptable resource management, along with a com-
prehensive performance analysis of different queueing
policies including First-Come-First-Serve and Priority
queueing. The result revealed that assigning priority
to jobs with longer service times and larger resource
demands has a positive impact on small jobs as well.
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INTRODUCTION

Cloud computing is a way to access a variety of com-
puting resources, like networks, servers, storage, and
applications, over the internet. These resources can
be quickly set up and taken down with little effort.
Cloud computing can make the basic IT resources into
a resource pool that can be freely scheduled, to realize
the on-demand allocation, and to provide customer
services Buyya et al.| (2011))Gong et al.|(2010)Dillon
et al| (2010). In recent years, cloud computing has
become a key part of how we use technology, offering
a flexible and scalable way to access computing power
Einollah Jafarnejad Ghomi and Qader| (2019). Nev-
ertheless, the diverse nature of the cloud computing
environment, with its wide range of resource types and
Communications of the ECMS, Volume 38, Issue 1,
Proceedings, ©ECMS Daniel Grzonka, Natalia Rylko,
Grazyna Suchacka, Vladimir Mityushev (Editors) 2024
ISBN: 978-3-937436-84-5/978-3-937436-83-8(CD) ISSN 2522-2414

capabilities, presents challenges for managing work-
loads and ensuring quality of service. At present, the
cloud computing field is mainly facing the following
problems: (a) Resource service scheduling, (b) Task
segmentation, (c) Network transmission, and (d) Real-
world task application. Besides this, due to the variety
of resources in the cloud and the different needs of
various applications, finding the optimal scheduling
strategy can be challenging, see, e.g.,|/Alhaidari et al.
(2023) Belgacem|(2022) and Raviv and Leshem! (2018])
for some recent works on the field. Improving the reli-
ability of cloud systems can be achieved by carefully
analyzing and modeling key elements such as task
scheduling, service time, the waiting period for these
services, and the likelihood of hardware and software
failures [Einollah Jafarnejad Ghomi and Qader| (2019).

Understanding the performance metrics of different
queueing policies in a scalable cloud computing envi-
ronment is essential for both cloud service providers
and consumers [Duan| (2017). In this work, we have
considered a simple abstraction of a cloud infrastruc-
ture based on the Multi-Server Job Queueing Model
(MJQM). With respect to other research streams in the
field, we have employed the Finite Capacity Queue
(FCQ) rather than an infinite one as in [Wang et al.
(2021)), |Grosof et al.| (2023)), [Olliaro et al.| (2023)).
Queueing models have been extensively applied in
resource-sharing systems like production, communica-
tion, and computer systems.

In a nutshell, the MJQM consists of a set of re-
sources and various classes of jobs. The class deter-
mines the stochastic duration of the job’s service time
and the deterministic amount of resources required to
be served. Jobs that cannot find enough resources to
be served must wait for them in the queue.

Several policies have been defined to address the
problem of how to allocate the resources to the jobs
in the queue that vary according to the information
available to the scheduler. In this work, we assume
that the scheduler knows only the amount of resources
required by each job (and not, e.g., the service time).

The contributions of the proposed work are summa-
rized as follows:

1. Open Source Simulation Model: We designed
a simulator based on OMNeT++] and made the
code open source and available on GitHub (see
Section Availability).

Thttps://omnetpp.org



2. Investigation of the dropping probability in a
simple scenario: We consider two widely applied
scheduling policies without preemption: First-
In-First-Out (FIFO) and a discipline giving hard
priority to larger classes of jobs. We investigate
the dropping probability due to the finite capac-
ity buffer in a scenario consisting only of two
classes. Despite the simplicity of the configu-
ration, we unveil some unexpected (and, in our
view, counter-intuitive) behaviors of the perfor-
mance indices and provide an explanation.

The rest of the paper is organized as follows: Sec-
tion provides the necessary background for employing
various queueing disciplines in the FCQ to evaluate
the relationship between performance and the under-
lying scheduling policy. Section discusses general
problem settings, including types of jobs, their arrival
probabilities, job service times, and other model char-
acteristics like resource and buffer capacities. Section
4 presents the insights derived from the study, com-
paring performance metrics under different scenarios.
Finally, Section 5 concludes the paper, summarizing
key findings and discussing potential avenues for fu-
ture research.

LITERATURE REVIEW

Nowadays, cloud computing is widely used as an ef-
fective and efficient way to integrate resources and ser-
vices, transforming hardware and software resources
into common goods and utilities as needed by end
users. This immense growth has not only increased the
number and diversity of applications but also intensi-
fied the frequency of communications. Consequently,
this rapid increase has made the task of job schedul-
ing and resource allocation even more crucial, as they
now play a pivotal role in meeting the service level
agreements. So to improve the performance of the
server, minimizing the completion time and cost it
is very necessary to schedule the tasks in the cloud
optimally. In|Jena (2017), the authors introduced a
scheduling algorithm optimized for both energy effi-
ciency and processing time, validating their simulation
model through comparisons with existing algorithms
to demonstrate superior effectiveness. The study done
by Ding et al.| (2020) proposed a learning-based ap-
proach to task scheduling, tackling the dual challenges
of energy consumption and the improvement of cloud
services’ efficiency and responsiveness. The study in
Wu et al|(2018) developed a method for virtual ma-
chine allocation that ensures the reliability and timely
completion of workflow applications in cloud services.

The studies in [Terekhov et al.| (2014) and [Ke{
barighotbi and Cassandras| (2011)) have utilized the
FIFO discipline to integrate queueing theory with
scheduling for dynamic system efficiency and to op-
timize profit in cloud services while adhering to ser-
vice level agreements. Several latest studies included
Terekhov et al.| (2014)/Marin and Rossi| (2020), and
Lee et al.[(2022) collectively underscore the versatility

of queue prioritization in enhancing system efficiency
and fairness across different queueing environments,
from optimizing resource allocation in stochastic mod-
els to ensuring unbiased server distribution and prior-
itizing tasks based on size. However, to the best of
our knowledge, there have been no studies reporting
the performance evaluation of FCQ using different
queueing policies.

With respect to these works, our main focus is on
the analysis of the dropping probabilities of finite ca-
pacity systems. The importance of considering finite
capacity systems is due to the fact that, besides in
some simplified scenarios, the stability condition of
MIJQM is not known. Clearly, a finite capacity system
is unconditionally stable but the price to pay is the
dropping of some jobs arriving when the buffer is full.

THE QUEUEING MODEL

One of the prominent characteristics of scheduling in
data centers is the the relatively low utilization (see,
e.g., Scully et al.| (2021)) that they can achieve un-
der FIFO policy. In order to investigate the impact
of this phenomenon on the dropping probabilities in
finite capacity systems, we resort the an MJQM with
the following characteristics: (i) we have N identi-
cal servers; (ii) jobs arrive at the system belonging
to one of two classes, where the first class (small) re-
quires one server, and the second class (big) requires
a larger number of servers; (iii) jobs arrive according
to a time-homogeneous independent Poisson process;
(iv) jobs belong to the small class with probability p
(independent of any other process) and to the other one
with probability 1 — p; (v) each job has a service time
that is exponentially distributed with class-dependent
rate. The scheduler decides which job to fetch from
the buffer whenever there are free computational re-
sources. The queueing system has a finite capacity
buffer shared by two classes of jobs. In the follow-
ing subsection, we describe the FIFO and the Priority
scheduling that we compare using our simulator.

FIFO Scheduler

This policy operates on a First-Come, First-Served
basis, where the server allocates available resources
to jobs in the order of their arrival [Isaac Grosof and
Scheller-Wolf (2020). Consequently, when the job
queue buffer reaches its maximum capacity, any new
jobs arriving are dropped until space becomes avail-
able. However, the FIFO scheduling policy may en-
counter significant performance issues in scenarios
where available resources are insufficient for the next
job in the queue Haji and Onderstal| (2019). In such
cases, the affected job, along with any subsequent
ones in FIFO order, must wait. This situation can
lead to an instance where the buffer has jobs that
could be serviced, but the servers remain idle until all
earlier-arriving jobs have been assigned the required
resources. This phenomenon, known as Head-of-Line
(HOL) blocking, occurs when the first job in the queue,
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Figure 1: FIFO Queueing with HOL blocking

cannot be served due to insufficient resources. As a re-
sult, all subsequent jobs, even those requiring minimal
resources, are blocked (Lee, 2014, Ch. 3)|Olliaro et al.
(2023)).

The implications of HOL blocking in such a system
are multifaceted: It reduces the maximum through-
put by interrupting job processing, increases latency
as jobs are uniformly delayed regardless of their size,
leads to resource under-utilization due to idling while
waiting for the HOL job to be served, and increases
the probability of job drops when the buffer reaches
its maximum capacity in systems with finite buffer
capacities |Pefiaranda et al.|(2017). The HOL blocking
in FIFO is influenced by specific factors such as the
service time required to finish a job and the resource
requirement of big jobs at the head of the queue. As
shown in Figure[I] the FIFO queueing model may ex-
perience the HOL blocking where jobs from Source;
(requiring 64 cores) and Sources (requiring 1 core)
are processed in the order they arrive. HOL blocking
is indicated, showing the delay and under-utilization
caused when large jobs from Source; at the HOL re-
quire more resources than are currently available, re-
sulting in subsequent small jobs having to wait their
turn.

Hard Priority Scheduler

This policy diverges from FIFO by focusing on high-
priority jobs, which, in our case, are the *Big Jobs’.
When resources are available, the server prioritizes
these high-priority jobs, reducing their waiting time
Bali et al.| (2023). This means that if even one ’Big
Job’ is in the queue awaiting resources, ’Small Jobs’
will not receive the service. As for the FIFO policy,
a notable downside of this approach is the potential
occurrence of HOL blocking particularly for lower-
priority jobs which may experience extended delays.
Moreover, these delays tend to be longer in scenar-
ios where the arrival probability or service time of
high-priority jobs is significantly greater than that of
low-priority jobs. The blocking in this approach is
influenced by both the arrival frequency and the ser-
vice time of big jobs. It can lead to prolonged delays
for small jobs if big jobs are frequent and consume
most of the resources. Figure [2] depicts the Priority
queueing model, where Source;’s big jobs are given
precedence over Sourcey s small jobs. HOL blocking
occurs when the queue contains at least one big job
awaiting sufficient resources, holding up the process-

ing of small jobs.
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Figure 2: Priority Queueing with HOL blocking

THE SIMULATION MODEL

We used the OMNet++ simulator (Version 6.0.2) to
simulate the queueing model described in the previous
sections. The parameters for the simulation are:

* )\: jobs arrival rate measured in jobs per second;

* ug: service rate for small jobs, measured in jobs
per second;

* Ly service rate for big jobs, measured in jobs per
second;

* p: probability that a job belongs to the class of
small jobs;

* T': number of servers required by the class of big
jobs;

e N: total number of servers available;

* [B: available positions in the buffer excluding the
jobs in service. Notice that, in the buffer, small
and big jobs occupy only one position.

* Scheduling policy: the policy used by the system
to decide who is the next job to be served.

Once the parameters are specified, the simulator auto-
matically executes the model until the predetermined
simulation time limit is reached. In this work, to ac-
count for variability, each simulation consists of 30
independent experiments. Then, confidence intervals
can be built based on the experiment’s outcomes. The
nature of simulation in the current study is a single-
threaded fashion where the events are processed one
at a time in a sequential manner. Currently, the model
can process approximately 6,000,000 events within
360,000 seconds when executed on a MacBook Air
with an M1 chip.

RESULTS

In this section, we study the impact of the arrival rate
and the mixture of small and big jobs on the probabil-
ity of dropping. The analysis methodically quantifies
the average frequency of dropped jobs, the average
number of jobs in service, and the average number of
jobs waiting in the buffer.

Notice that the following proposition holds:
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Table 1: System Parameters

Buffer Capacity B 512
Service Rate pp, s [j/s] | 0.1, 1.0
Available Servers N 256

Size of big jobs T 64
Repetitions 30
Sim-Time Limit 5000000s

Proposition 1 The dropping probability is the same
for small and big jobs.

Proof. Since jobs arrive according to an indepen-
dent Poisson process and they belong to the small
or big class according to an independent Bernoulli
experiment with p probability of success, by the split-
ting property of the Poisson process, the streams
of big/small jobs are independent Poisson processes.
Now, a dropping occurs at the arrival of a job in the
saturated system. Recall that by the Poisson Arrivals
See Time Averages (PASTA) property, the customer
arriving according to a Poisson process sees the state
of the system seen by a random observer |Harrison and
Patel| (1992). Therefore, both big and small jobs see,
at their arrival epoch, the same statistics on the system
state and share the same dropping probability.

Hereafter, we use the parameterization of the model
shown in Table[I]

Figure 3| shows the job-dropping probability for the
two considered disciplines. The data is segmented
based on the allocation of arrival probabilities with a
split of 40%-60% (p = 0.6) and 10%-90% (p = 0.9)
for big and small jobs respectively, thereby offering
a comparative overview of the queueing performance
under varied workload distributions.

First of all, notice that, as stated by Proposition
the dropping probability for big and small jobs is the
same, and we consider this step as a sanity check for
the simulator. The data presented here reveal that
assigning priority to jobs with higher resource and
service demands has a positive impact on the dropping
probability of jobs with lesser resource and service
demands in moderate and heavy load, while FIFO
turns out to be the best choice in low load.

Insight 1 Our first observation is that we waste re-
sources when the discipline forces the system to serve
a big job after a sequence of small ones. Homogeneous
sequences of small (or big) jobs do not cause a waste
of resources. Therefore, ideally, a discipline should
limit the changes of the phases of services between
small and big jobs to improve resource utilization.

Insight 2 The comparison between FIFO and Priority
is quite interesting, revealing that there is no discipline
that is better than the other in all scenarios. In low
load conditions, FIFO scheduling behaves better than
Priority (in terms of dropping probability) because
the switching between small job service sequences to
big ones is less frequent. Indeed, under Priority, a

big job entering at the tail of the queue will cause a
HOL blocking if there are not enough resources while
FIFO would continue to serve the small jobs already
in the buffer. On the other hand, Priority serves the
big jobs one after the other, regardless of their arrival
order. Therefore, since in heavy load, it is likely to
find more than one big job in the buffer, this reduces
the frequency of switching between big and small jobs
service phases (and, hence, also the opposite).

The average occupancy at the system for Big and
Small jobs is shown in Figures and [b] @dl
respectively. Recall that the average occupancy is
strictly connected to the expected response time.

Insight 3 Although giving priority to big jobs does
not improve the probability of dropping with respect to
small jobs, Big jobs have a lower occupancy under the
Priority policy w.r.t. to FIFO. This is well supported
by the intuition. The situation is more intriguing for
what concerns the small jobs. In fact, we notice that
under moderate load (\ = 3.6 j/s) the average occu-
pancy of small jobs is lower under Priority than FIFO;
however, also the dropping probability is lower for
priority and this means that the throughput of small
jobs is higher. In conclusion, we can state that for
A = 3.6 j/s both big and small jobs have a smaller
expected response time under Priority than FIFO. This
seems quite counter-intuitive but can be explained by
the better resource utilization obtained by the Priority
policy under moderate and heavy loads.

Figures [5a] and [5b| show the distribution of jobs in
service with p = 0.6. Under the FIFO policy, the prob-
ability distribution is smoother and increases steadily
as the arrival rate increases. Here, the Priority policy
heavily favors big jobs, which can lead to resource star-
vation for small jobs, especially at high arrival rates.
As the system’s arrival rate increases, the difference
in the treatment of big and small jobs becomes more
drastic under the Priority policy. The notable transient
spikes at a regular interval of the small jobs in service
in figure[5b]depict the difference between the resources
required by big jobs and small jobs which is 64 vs. 1
in our case.

Figures [5c| and [5d] show the buffer state as a func-
tion of arrival rate. Here, it can be seen that Priority
scheduling heavily favors big jobs, leading to a signifi-
cant number of small jobs accumulating in the buffer,
especially as the system’s arrival rate increases. How-
ever, for big jobs, Priority scheduling minimizes their
waiting time in the buffer, which is ideal if big jobs are
less delay tolerant.

Furthermore, figures [6a] and [6b] show the probability
of the average number of jobs in service when the
arrival probability of big and small jobs are in the
ratio of 10%-90%. The insight that can be drawn
from these plots is that the Priority model strongly
favors big jobs and big jobs do not often wait in service
while Small jobs, despite their high arrival rate and
low resource requirements, are at a disadvantage in the



Priority model, as their service is postponed whenever
big jobs are present.

Similar observations can be drawn from Figures
and [6d] considering the scenario with p = 0.1.

CONCLUSION

In this paper, we propose a simulation study of the
Multiserver-Job Queueing Model with finite capacity
and employing two different scheduling disciplines.
Since, in open models, it is not trivial to determine the
stability region of the queueing system with infinite
capacity, employing finite queues can help to over-
come this problem. However, in this case, the analysis
of the impact of the buffer size on the percentage of
dropped requests becomes a crucial aspect to address.
The simulator handles an arbitrary number of classes
and resources, but this investigation was limited to
the simplest scenario involving two job classes: Small
Jobs and Big Jobs. The Big Jobs require 64 resources
for 10 seconds each, whereas the Small Jobs need just
1 resource for 1 second. Additionally, our study was
constrained by the consideration of only a single type
of resource, with every incoming job requiring the
same resource type.

Our simulations show some counter-intuitive effects
of the priority scheduling (i.e., serving Big Jobs with
priority with respect to the Small ones) that reveal
that the introduction of this feature allows for a lower
dropping probability of both Big and Small Jobs in
moderate and heavy load conditions. Even for the
expected response time, giving priority to Big Jobs
allows for a smaller expected response time for Small
ones thanks to the better utilization of the resources
produced by the serialization of the service of big
jobs. Future works include trying our simulator on
real-world traces with numerous sources and resources
types and implementing other service policies.

SIMULATOR AVAILABILITY

The complete source code and evaluation results for
our models, including FIFO and Priority queueing poli-
cies, are publicly accessible in our GitHub repository.
This repository includes detailed files such as the code-
base, network descriptions, configurations, and result
files. For further information and to access these re-
sources, please visit our GitHub page: FCQ Repository
on GitHub.
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