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Abstract. Distortion-based watermarking techniques embed the water-
mark by performing tolerable changes in the digital assets being pro-
tected. For relational data, mark insertion can be performed over the
different data types of the database relations’ attributes. An important
goal for distortion-based approaches is to minimize as much as possible
the changes that the watermark embedding provokes into data, preserv-
ing their usability, watermark robustness, and capacity. This paper pro-
poses a quantile-based watermarking technique for numerical cover type
focused on preserving the distribution of attributes used as mark carri-
ers. The experiments performed to validate our proposal show a signifi-
cant distortion reduction compared to traditional approaches while main-
taining watermark capacity levels. Also, positive achievements regarding
robustness are visible, evidencing our technique’s resilience against sub-
set attacks.

Keywords: Distortion reduction · Numeric distribution · Quantile ·
Robust watermarking · Watermark capacity

1 Introduction

With the easy access and spreading of digital content through the Internet,
data copyright protection faces more and more challenges every day. Digital
watermarking has become a handy tool to deal with false ownership claims
and illegal data copy distribution. The general idea of watermarking techniques
consists of adding hidden content (i.e., the watermark) into the protected data.
Under demands, watermarks can be extracted and used as evidence of rightful
ownership and data tampering, among others. Considering that watermarking
is not based on blocking access or copying data, their portability benefits (e.g.,
allowing data to reach the target communities) are never affected. For the sake
of authenticity and trust, usability and intellectual property of data must be
protected at all costs.

According to the distortion criterion, watermarking techniques can be classi-
fied as distortion-free or distortion-based [2,16]. Distortion-free techniques gen-
erate the watermark from a particular digital asset copy (or embed it into the
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data without performing updates) [14,17]. In contrast, distortion-based tech-
niques perform watermark embedding by modifying the data as long as changes
are permissible and do not compromise their usability [9].

Distortion-based watermarking techniques are characterized by two main
processes: (i) watermark embedding, (ii) and its extraction. The embedding pro-
cess first encodes the watermark and then performs its injection into the data.
If the encoding uses a meaningful source (e.g., an image file, an audio stream,
or a text document) for watermark generation, the watermark is classified as
meaningful. Otherwise, it is classified as meaningless [7]. Instead, the extraction
process detects every mark from the data and then carries out their extraction
to proceed with the watermark reconstruction. Some techniques only perform
the detection phase, stating the presence or absence of the watermark in the
data [4]. Performing both embedding and extraction processes requires at least
one parameter defined as the Secret Key. This parameter must remain secret,
and it has to keep the same value for both processes [1].

In most cases, distortion-based approaches are oriented to ownership protec-
tion and must be resilient against attacks focused on compromising watermark
detection. For this reason, they are classified as robust techniques.

One of the major challenges for distortion-based techniques is guaranteeing
data usability despite the changes performed on them. This is hard to achieve
considering that according to the robustness requirement, a significant number
of marks must be inserted into the data to allow the watermark signal persistence
despite attacks. Then, the higher the number of marks inserted, the higher the dis-
tortion over the data. Thus, the number of marks embedded into the digital assets
(defined as watermark capacity) is inversely proportional to the watermark imper-
ceptibility in the data. Indeed, the imperceptibility requirement is expected to be
accomplished as long as the distortion does not cause degradation of data usability.

Imperceptibility

Robustness Capacity

Fig. 1. Trade-off among robustness, imperceptibility, and capacity requirements [10].

There is a trade-off that watermarking techniques must deal with regarding
robustness, capacity, and imperceptibility requirements (see Fig. 1). The strong
link among them and the equality of their relevance for the technique’s success
is represented as an equilateral triangle. As long as one of them is affected, the
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others will be impacted for better or worst. For example, a common approach
for distortion reduction is to reduce the watermark capacity, negatively affecting
the technique’s robustness. Indeed, it is not possible to significantly increase the
imperceptibility without having a negative influence over robustness.

1.1 Paper Contribution

In this paper, we propose a strategy to benefit watermark imperceptibility in
techniques embedding marks in numerical attributes (a.k.a., numerical cover
type watermarks) of database relations, without affecting watermark capacity.

Our main goal is to preserve the numerical distribution of the columns used
as carriers as much as possible, avoiding some values from moving from quan-
tiles defined to control the distribution. When the new value containing the
mark changes quantile after the embedding, the marking should not be rolled
back since this would reduce the watermark capacity. Instead of allowing val-
ues changes between quantiles, we propose a mechanism for performing mark
embedding in other carriers’ distributions allowed regions.

The experiments performed show a significant enhancement of impercepti-
bility once numerical distribution is kept as similar as possible with respect to
the original unwatermarked columns. We used scatter statistical metrics to com-
pare the effects of watermark embedding of our approach vs. conventional embed-
ding. Also, we applied the Kullback-Leibler divergence to measure the relative
entropy between the distribution of the original data and the one resulting from the
watermark embedding. Since the watermark capacity is not affected, robustness
improves, making it more difficult for attackers to compromise watermark signal
detection.

1.2 Paper Structure

The rest of the paper is organized as follows. Section 2 offers details of the
theoretical background, presenting commonly used notations in the relational
data watermarking research field. Also, in this section, the related work (mostly
focused on approaches oriented to distortion-reduction) is given. Section 3
presents our proposal, depicting the benefits and downsides of each strategy of
quantile-based numerical distribution preservation. Section 4 presents the exper-
imental results, mainly oriented to show the behavior of robustness, capacity,
and imperceptibility watermark requirements. Section 5 concludes.

2 Theoretical Background

Contrary to multimedia data, effects of the watermark (WM) embedding into
relational data are not perceived directly by human systems (e.g., human visual
system, human auditory system). Instead, a Middle Coded-based Layer (MCL)
composing management information systems processes the data and delivers it
to users in more suitable formats such as digital reports. This has an important
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consequence. Indeed, WM imperceptibility does not depend on human systems
limitations but on the processes implemented by MCL, which are often based on
business rules. Following that principle, it may appear that WM capacity bene-
fits from the inability of direct human perception over relational data changes.
Nevertheless, as long as digital systems generate outputs from the watermarked
data (having others using them as inputs), the slightest changes will drive drastic
consequences.

Among their classification criteria, relational data watermarking defines the
technique type according to the data type of attribute selected in the relation R
to perform the WM embedding (also known as mark carriers). Some techniques
use textual attributes, being classified as textual cover type approaches (e.g.,
Al-Haj & Odeh [3], Pérez Gort et al. [6]). Others are focused on numerical cover
types (e.g., Rani et al. [12], Hou & Xian [8], Zhao et al. [18]), etc. For numerical
cover type approaches, it is very common to perform WM embedding by inserting
each mark in one position selected from a given range of less significant bits (lsb)
of the carrier attribute numerical value binary representation.

Even if just the first lsb is changed, the impact at column level could be higher
compared to at attribute-value level. Also, depending on the MCL implemented
processes, changes might not be tolerable if a general description of the behavior
of the data is used for decision making. Some changes at single-value level might
appear tolerated, but the effects over the whole set of data might contradict
database purposes.

2.1 Related Work

In 2002, Agrawal & Kiernan [2] highlighted for the first time the need for water-
marking relational data for ownership protection and formalized the so-called
AHK watermarking algorithm. Precisely, based on the condition that some
attribute’s values can tolerate changes (as long as data usability is preserved),
they proposed to mark only numeric columns. Embedding is performed at bit
level, where carriers are pseudo-randomly selected according to a Secret Key
(SK). However, this technique has proved to be vulnerable to simple attacks
(e.g., bit flipping and updates attacks) due to the meaningless of WM informa-
tion (i.e., bit pattern). Usability control is based on the number of lsb available
for marking in an attribute and the number of marked tuples, while constraints
deployed over the database are ignored.

Statistic metrics describing the numerical distribution featuring the attribute
selected for WM embedding are a good reference to appreciate the general
changes performed compared to the distribution before the embedding.

In 2004, Sion et al. [15] proposed a numerical cover type technique performing
embedding of marks at bit level. For this case, usability maintenance is done by
data statistics preservation. Also, the marking of selected tuples is performed
according to database constraints and an error range allowed for data, using the
Mean Squared Error (MSE) as reference. Nevertheless, this proposal requires
tuple ordering to define subsets identifying some tuples as group bounds, being
vulnerable to subset reverse order, tuple updates, and deletion attacks.
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In 2010, Sardroudi & Ibrahim [13] proposed a new watermarking technique
using as WM source a binary image. Given a relation, their schema embeds
marks only in one numerical attribute, focusing on guaranteeing robustness and
minimizing data variation by flipping the first lsb depending on the value of the
mark embedded. This technique shows good results against subset reverse order
attacks. Nevertheless, capacity is often affected by the partial embedding of the
watermark, making it vulnerable to other malicious operations such as subset
update attacks.

Pérez Gort et al. [11], in 2017, proposed a technique extending Sardroudi
& Ibrahim’s scheme, where the embedding is performed over more than one
attribute per tuple according to one parameter defined as Attribute Fraction
(AF). In this case, distortion reduction at bit level is also performed, but flipping
all lsbs to the right of the one selected for mark embedding, depending on their
values and the value of the mark. Nevertheless, reducing distortion at the bit
level does not always benefit the numerical distribution of the carrier column.
In that sense, WM embedding is performed blindly and the general quality of
data could be compromised.

Techniques based on the AHK [2] algorithm select ω ≈ η/γ tuples to mark
out of the η stored in the relation R, being γ ∈ [1,η] the Tuples Fraction (TF)
representing the inverse of the marking density. For each tuple selected, an
attribute (out of ν attributes) is chosen and the binary representation of the
contained value is used for inserting the mark. Sardroudi & Ibrahim’s [13] tech-
nique increases the link between the watermark source and R. To this aim, each
pixel pseudo-randomly selected from the binary image used as WM source is
xored with one of the most significant bits (msb) of a range given as parameter
(denoted as β) of the value where the mark will be embedded. Finally, the lsb
position is selected from a given number of bits available for marking (denoted
as ξ), and the mark generated is embedded into it. Considering the approaches
just mentioned embed only one mark per tuple, Pérez Gort et al. [11] extends
the embedding to more than one attribute by defining AF (denoted as δ ∈ [1, ν]),
where δ = 1 forces all attributes of the selected tuples to be marked.

3 Proposed Approach

Note that none of the approaches discussed in the previous section analyzes
the distortion caused by WM embedding from a numerical distribution point of
view. This is a critical issue since, depending on the distribution variation, data
can result useless after the embedding, according to the data owner’s goals. In
this work, besides taking care of the distortion from the binary level perspective,
also different proposals are presented to preserve each attribute’s distribution.
Our main goal is to maintain as similar as possible the resulting distributions
after WM embedding with respect to the one each attribute had before R being
distorted.

Formally, let us denote by Di the distribution of the attribute i before the
WM embedding, and D'

i after the embedding. If we denote by ≡ the equivalence
relation between distributions, we aim to achieve the following condition:
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∀i ∈ [0, ν − 1] : Di ≡ D'
i (1)

We start by fragmenting each distribution Di in g quantiles (see Fig. 2a))
to prevent the distribution from suffering high variations during the WM
embedding.

Fig. 2. Numerical distribution split into 4 quantiles (known as quartiles).

Besides the number of quantiles g, also a threshold to control the set of values
restricted to be marked in the limits of the quantile (denoted as k) is considered
in order to prevent distribution variations (see Fig. 2b)).

The main lines of action followed in this work are: (i) reversing the embedding
and preventing the value from being marked, (ii) performing the embedding by
assigning values to other distributions as long as quantile changes are not carried
out. Each one of these alternatives is detailed below.

3.1 First Action: Mark Embedding Cancellation

Once a value v is selected to be marked, its quantile is located according to
[ql, qu] = Q(Di, v,g), where Q is the function returning the quantile boundaries
in the distribution Di, split in g fragments. Also, ql and qu corresponds to the
lower and upper quantile bounds, respectively. Then, the embedding of the mark
m is performed according to E(m, v) = v', being E the embedding function given
in [11], and v' the resulting distorted value. Finally, if v' /∈ [ql + k, qu − k],
embedding is rolled back and the algorithm proceeds checking the rest of R.

The main downside of this action is the WM capacity reduction (if WM
length is too high with respect to η) due to rolling back the embedding of some
marks. Nevertheless, WM recognition will be carried out as long as the number
of tuples in R is higher than WM length.

3.2 Second Action: Change the Target Distribution

The second action is focused on saving those marks rolled back from the embed-
ding in the previously described action (cf. Sect. 3.1). The attributes in the
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selected tuple will be presented as a cyclic structure where Aν−1 will precede
A0 (being Ai the ith attribute of R). Then, if the value v' for Ai is out of its
quantile, the embedding is rolled back, and the attribute A(i+1) is selected for
the embedding. Moreover, attribute values in the ranges [ql, ql+k] and [qu−k, qu]
are not considered for the embedding since it is very likely that v' will belong to
the same range.

Finally, values of ξ and k are selected according to k ≥ [ξ]10 (being [ξ]10 the
decimal notation of the number of lsbs). This way, high pseudo-random embed-
ding (which increases the difficulty for attackers to compromise WM detection)
and a significant distortion reduction (with respect to methods not fragmenting
Di in quantiles) will be achieved. Precisely, capacity is maintained while distor-
tion resulting from WM embedding is reduced both at the binary level of v' (by
applying the strategy given in [11]) and at the statistical distribution level of
each attribute used as carrier.

4 Experimental Results

In the following, we present the experimental evaluation of the quantile-based
watermarking actions for distortion reduction formalized in Sect. 3. Moreover,
we discuss their benefits and downsides.

4.1 Experimental Setup

The data set used to perform the embedding and extraction of the water-
mark was Forest Cover Type [5], consisting of 581,012 tuples with 54 numer-
ical attributes. Each one of the actions discussed in Sect. 3 was implemented
based on a client/server architecture. The client layer was developed with Java
1.8 programming language and Eclipse Integrated Development Environment
(IDE) 4.20. For the server layer was used Oracle Database 18C engine with Ora-
cle SQL Developer 20.4 as Database Management System (DBMS) IDE. The
runtime environment was a 2.11 GHz Intel i5 PC with 16.0 GHz of RAM with
Windows 10 Pro OS.

We compare our results with a technique developed by Pérez Gort et al.
[11] based on the AHK algorithm [2] and Sardroudi & Ibrahim’s approach [13].
As mentioned in Sect. 2, the watermarking technique discussed in [11] uses a
binary image to generate the watermark being embedded into R, and extends
marks embedding to multiple attributes per tuple without considering numerical
distortion preservation.

Figure 3 depicts the watermark sources we used, which are the binary images
of the Chinese character Dáo (20 × 21 pixels) and of the character E (10 × 10
pixels), respectively. Despite being binary images, missed pixels due to partial
embedding, benign updates or attacks were highlighted using the red color for a
clearer appreciation of the damage caused to the watermark.
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a) Chinese character Dào
(20 x 21 pixels)

b) E character
(10 x 10 pixels)

Fig. 3. Binary images used as watermark sources.

The metrics to analyze the quality of the extracted watermark with respect
to the original image used for the WM generation were the correction factor
(CF)1 and the Structural Similarity Index (SSIM)2 defined in [6].

M = |μ − μ'| (2)

Σ = |σ − σ'| (3)

The amount of distortion caused over each numerical attribute was mea-
sured by comparing the values of the mean μ and the standard deviation σ of
the unwatermarked columns’ numerical distribution with respect to the ones of
the new distribution resulting from the embedding, denoted by μ' and σ', respec-
tively. Note that WM embedding allowing absolute distribution preservation is
achieved when M = 0 and Σ = 0.

Furthermore, for cases when two different distributions present similar values
of μ and σ we used the Kullback-Leibler divergence (DKL), as depicted in Eq.
(4), where PDi

and PD'
i

represent the discrete probability distributions of the
columns Di and D'

i respectively, and X indicates the probability space on which
the distributions are defined.

DKL(PDi
||PD'

i
) =

∑

x∈X
PDi

(x) log
(

PDi
(x)

PD'
i
(x)

)
(4)

4.2 Watermark Capacity Variations

The first requirement analyzed, featuring WM, is the capacity. A distortion
reduction can be achieved by embedding fewer marks, which is not recommended
since this will also reduce robustness.

Table 1 compares the capacity values obtained when the watermarking tech-
nique described in [11] is applied to the chosen data set, and when the same
technique is enhanced by our actions. In particular, NoQuant captures the
capacity when the quantile-based approach to watermark is not used, NoEmb

1 CF ∈ [0, 100] where 0 means total lack of correlation, and 100 the exact match
between the extracted image with the original one.

2 SSIM ∈ [0, 1] where 0 represents the lack of similarity between the embedded and
the extracted images, and 1 the presence of perfect similarity.
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refers to the capacity obtained when mark embedding is canceled if quantile
changes occur (cf. Sect. 3.1), and Redist to the capacity gained when distorted
values are adjusted to prevent them from changing quantiles (cf. Sect. 3.2). For
each case, the image of the synchronized WM and the correspondent SSIM and
CF values are given.

Table 1. Watermark capacity varying γ.

γ NoQuant
Proposals

NoEmb Redist

1
0.99 0.99 0.99 0.99 0.99 0.99

99.76 99.00 99.76 99.00 99.76 99.00

5
0.99 0.99 0.99 0.99 0.99 0.99

99.76 99.00 99.76 99.00 99.76 99.00

10
0.99 0.99 0.99 0.99 0.99 0.99

99.76 99.00 99.76 99.00 99.76 99.00

20
0.99 0.99 0.97 0.99 0.99 0.99

99.76 99.00 99.04 99.00 99.76 99.00

40
0.96 0.99 0.93 0.99 0.96 0.99

97.14 99.00 95.71 99.00 97.14 99.00

The parameters’ values for watermark synchronization were set as SK =
s3cur1ty2021, δ = 5, β = 3, and ξ = 1. Also, for the approaches fragmenting
numerical distribution in quantiles we used q = 4 and k = 1. The experiments
were carried out under a subset of Forest Cover Type data set composed by the
first 30.000 tuples and 10 attributes.3

3 The subset selection was done to establish comparisons with other published results.
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From the data reported in Table 1, can be concluded that: (i) The watermark
capacity is not compromised when quantile-based embedding is performed (even
for the line of action based on canceling mark insertion) , and (ii) by using high γ
values, the distortion caused by embedding is reduced without compromising the
watermark recognition (especially for cases of watermark with small lengths).

In general, results achieved by canceling marks embedding experience a slight
WM capacity reduction but, in terms of distortion, this strategy becomes highly
recommended (especially when ξ > 1).4 Nevertheless, for preventing WM capac-
ity reduction, the embedding of canceled marks in NoEmb is carried out in other
locations on R by the strategy depicted in column Redist.

4.3 Imperceptibility Improvements

Regarding imperceptibility, by using ξ = 1 and k = 1 when applying the actions
proposed in this work, there is evidence of a reduction of the distortion caused
by the embedding in terms of M, preserving benefits and downsides in terms
of Σ. Table 2 shows the values registered for M and Σ of each column of R,
highlighting in blue color the results depicting lower distortion and in red color
the ones causing more changes with respect to the approach not using quantiles.

Table 2. Distortion caused by WM embedding (γ = 1, ξ = 1, k = 1).

Attribute NoQuant Proposals

NoEmb Redist

M Σ M Σ M Σ

ATTR 01 8.50 × 10−3 5.26 × 10−3 8.20 × 10−3 5.50 × 10−3 8.23 × 10−3 5.38 × 10−3

ATTR 02 4.13 × 10−3 5.01 × 10−4 3.17 × 10−3 1.08 × 10−3 2.80 × 10−3 6.33 × 10−4

ATTR 03 7.00 × 10−3 3.83 × 10−3 1.19 × 10−2 5.41 × 10−3 2.90 × 10−3 3.16 × 10−3

ATTR 04 4.82 × 10−2 1.25 × 10−2 4.92 × 10−2 1.46 × 10−2 4.92 × 10−2 1.46 × 10−2

ATTR 05 4.93 × 10−3 4.64 × 10−3 5.50 × 10−3 3.81 × 10−3 4.53 × 10−3 4.12 × 10−3

ATTR 06 2.16 × 10−2 9.56 × 10−3 2.15 × 10−2 9.57 × 10−3 2.15 × 10−2 9.62 × 10−3

ATTR 07 2.56 × 10−2 1.18 × 10−2 1.64 × 10−2 5.03 × 10−3 1.84 × 10−2 7.42 × 10−3

ATTR 08 2.86 × 10−2 1.42 × 10−2 2.28 × 10−2 8.11 × 10−3 1.86 × 10−2 9.31 × 10−3

ATTR 09 8.30 × 10−3 2.89 × 10−3 7.60 × 10−3 2.13 × 10−3 6.93 × 10−3 1.97 × 10−3

ATTR 10 1.19 × 10−2 2.34 × 10−3 1.21 × 10−2 2.50 × 10−3 1.20 × 10−2 2.53 × 10−3

The presence of higher variation in some values of Table 2 is mainly due to
the use of ξ = 1, which causes less distortion with respect to k = 1. Nevertheless,
these values make the techniquesvadjust vulnerable against bit flipping attacks,

4 The effect of the considered watermarking approaches over data distortion is dis-
cussed in Sect. 4.3.
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being a perfect option for attackers to achieve WM removal without compromis-
ing data quality. Table 3 shows results by increasing the value of both ξ and k
according to the recommendation given in Sect. 3. In this case, the robustness of
our watermarking actions improves, whereas distortion experiments a significant
reduction.

Table 3. Distortion caused by WM embedding (γ = 1, ξ = 3, k = 4).

Attribute NoQuant Proposals

NoEmb Redist

M Σ M Σ M Σ

ATTR 01 1.16 × 100 1.00 × 101 2.18 × 10−2 9.96 × 10−3 2.17 × 10−2 1.00 × 10−2

ATTR 02 6.85 × 10−1 9.94 × 10−2 2.77 × 10−3 3.13 × 10−3 4.33 × 10−3 1.85 × 10−3

ATTR 03 0 0 0 0 0 0

ATTR 04 6.16 × 10−2 8.31 × 10−2 6.23 × 10−3 5.47 × 10−3 6.23 × 10−3 5.47 × 10−3

ATTR 05 4.47 × 10−3 9.87 × 10−3 4.47 × 10−3 9.87 × 10−3 4.47 × 10−3 9.87 × 10−3

ATTR 06 3.08 × 100 4.32 × 100 2.30 × 10−2 7.15 × 10−3 2.28 × 10−2 7.08 × 10−3

ATTR 07 1.31 × 10−1 1.37 × 100 1.45 × 10−2 1.49 × 10−2 1.30 × 10−2 1.19 × 10−2

ATTR 08 5.49 × 10−2 1.21 × 100 1.17 × 10−2 9.58 × 10−3 1.10 × 10−2 1.03 × 10−2

ATTR 09 6.17 × 10−2 2.56 × 10−1 1.19 × 10−2 7.52 × 10−3 1.19 × 10−2 7.25 × 10−3

ATTR 10 6.57 × 10−1 1.00 × 100 2.27 × 10−2 7.29 × 10−3 2.30 × 10−2 7.57 × 10−3

Table 4. Registered values of DKL for experiments of Table 2.

Attribute NoQuant Proposals

NoEmb Redist

ATTR 01 1.40× 10−2 1.39× 10−2 1.38× 10−2

ATTR 02 3.57× 10−3 3.54× 10−3 3.40× 10−3

ATTR 03 1.08× 10−3 1.78× 10−3 5.61× 10−4

ATTR 04 9.61× 10−2 9.09× 10−2 9.09× 10−2

ATTR 05 3.24× 10−3 3.29× 10−3 3.14× 10−3

ATTR 06 4.98× 10−2 4.98× 10−2 4.98× 10−2

ATTR 07 3.22× 10−3 1.99× 10−3 1.59× 10−3

ATTR 08 3.18× 10−3 2.80× 10−3 1.80× 10−3

ATTR 09 1.70× 10−3 1.88× 10−3 1.52× 10−3

ATTR 10 4.61× 10−2 4.60× 10−2 4.60× 10−2
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Table 5. Registered values of DKL for experiments of Table 3.

Attribute NoQuant Proposals

NoEmb Redist

ATTR 01 1.26 × 10−2 1.19 × 10−2 1.18 × 10−2

ATTR 02 2.59 × 10−3 2.37 × 10−3 2.28 × 10−3

ATTR 03 0 0 0

ATTR 04 6.83 × 10−2 6.20 × 10−2 6.20 × 10−2

ATTR 05 1.67 × 10−3 1.67 × 10−3 1.67 × 10−3

ATTR 06 4.91 × 10−2 4.86 × 10−2 4.86 × 10−2

ATTR 07 2.53 × 10−3 1.45 × 10−3 9.87 × 10−4

ATTR 08 2.42 × 10−3 1.18 × 10−3 7.08 × 10−4

ATTR 09 2.19 × 10−3 1.73 × 10−3 1.28 × 10−3

ATTR 10 4.42 × 10−2 4.39 × 10−2 4.39 × 10−2

Tables 4 and 5 show the values of the DKL metric for the experiments of
Tables 2 and 3. The obtained results lead to the conclusion that the distribu-
tions resulting from applying the proposed lines of actions are more similar to
the original data distributions than when the embedding is performed without
considering quantiles.

4.4 Watermark Robustness Impact

Reducing distortion while preserving WM capacity has a positive impact on
robustness. By performing the watermark embedding using γ = 1 and δ = 5, all
approaches guaranteed the WM signal total recovery for subset attacks based
on inserting (or deleting) up to 90% of tuples with respect to the number of
tuples stored in R. Instead, by using γ = 10, resilience against subset attacks
will remain high. Nevertheless, because of WM capacity reduction, detected
WM signal starts depicting small degradation when more than 80% of tuples
are deleted (see Fig. 4).

Fig. 4. Quality of WM detected in R after different degree of subset deletion attacks.
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Another feature of our strategies contributing to resilience against bit-flipping
attacks is the increasing of the pseudo-random nature of WM embedding process.
By selecting different numerical distributions in R, according to values in the
database, and by increasing ξ and k, attackers face additional challenges for
marks detection.

Besides the small variations in terms of robustness against subset deletion
attacks for higher values of γ, a general appreciation in terms of WM capacity
with respect to the distortion caused during WM embedding shows the benefits
of proposed lines of action compared to traditional embedding. Figure 5 depicts
the rate of WM quality (in terms of CF) vs. distortion. Considering that different
attributes change values during the embedding, and that Fig. 5 reflects the whole
distribution for each one of them, MA and ΣA were obtained from the average
of M and Σ of all numeric columns used as carriers for each approach.

Fig. 5. Rate of detected WM quality/embedding distortion by varying γ.

4.5 Benefits of Selecting Meaningful Watermark Sources

Even for the action of rolling back mark embedding when quantile changes
are spotted, WM capacity damages are not critical when WM length is not
high, and meaningful WM sources are used. Table 6 shows the benefits obtained
by considering symmetry criteria and neighboring pixels for the restoration of
the extracted WM signal. Precisely, PrevEnhancement and Enhancement
refers to the signal detected before and after the application of our enhancement
actions, respectively. According to this behavior, by considering meaningful WM
sources, rolling back mark embedding is another strategy worthy of being con-
sidered depending on the number of attributes and tuples being watermarked.
In Table 6, the metric experimenting the increment regularly is the CF, which
perceives the effects of recovering missed marks.
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Table 6. WM signal enhancement (for meaningful WM sources).

γ PrevEnhancement Enhancement

SSIM CF SSIM CF

20 0.97 99.04 0.98 99.28

40 0.93 95.71 0.91 97.14

60 0.81 82.85 0.83 91.66

80 0.78 79.76 0.74 90.23

100 0.59 64.04 0.59 84.52

5 Conclusions

In this paper, we proposed a quantile-based watermarking technique for rela-
tional data oriented to preserve the distribution of numerical attributes selected
for mark embedding. Our approach follows two main lines of action: (i) rolling
back mark embedding that violates quantile value preservation and (ii) seeking
alternative embedding places for those marks causing a marked value chang-
ing quantile. Experimental results validate the relevance of lsb number and
the threshold used for securing quantiles boundaries, for reducing the distor-
tion while performing WM embedding. Furthermore, our technique shows an
improvement in robustness while preserving WM capacity and increasing its
imperceptibility.
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