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A B S T R A C T   

Bio-based polymers are materials of high interest given the harmful environmental impact that involves the use 
of non-biodegradable fossil products for industrial applications. These materials are also particularly interesting 
as bio-based ligands for the preparation of metal nanoparticles (MNPs), employed as catalysts for the synthesis of 
high value chemicals. In the present study, Ru (0) and Rh(0) Metal Nanoparticles supported on Sodium Car-
boxymethyl cellulose (MNP(0)s-CMCNa) were prepared by simply mixing RhCl3x3H2O or RuCl3 with an aqueous 
solution of CMCNa, followed by NaBH4 reduction. The formation of MNP(0)s-CMCNa was confirmed by FT-IR 
and XRD, and their size estimated to be around 1.5 and 2.2 nm by TEM analysis. MNP(0)s-CMCNa were 
employed for the hydrogenation of (E)-cinnamic aldehyde, furfural and levulinic acid. Hydrogenation experi-
ments revealed that CMCNa is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles allowing 
to obtain high conversions (>90 %) and selectivities (>98 %) with all substrates tested. Easy recovery by liquid/ 
liquid extraction allowed to separate the catalyst from the reaction products, and recycling experiments 
demonstrated that MNPs-CS were highly efficiency up to three times in best hydrogenation conditions.   

1. Introduction 

The growing concern generated by the environmental impact of non- 
biodegradable fossil-based products, is pushing towards the adoption of 
more sustainable biobased feedstocks and products, for different in-
dustrial applications [1–11]. In particular, biobased polymers are 
gaining increasing interest also for the synthesis of metal nanoparticles 
(MNPs) [12,13]. Catalysis by MNPs is of considerable interest both at 
research and industrial level, since these catalysts combine features of 
both heterogeneous and homogeneous catalysts [14–19], allowing easy 
separation of products, catalyst recovery and recycling [20–22]. Addi-
tionally, the use of water soluble and bio-degradable ligands further 
improves the overall environmental sustainability of MNPs, and prod-
ucts derived [23–26]. Natural compounds, such as amino acids, pep-
tides, proteins, sugars, and polysaccharides, have been proven to act as 
ligands for the stabilization of MNPs in aqueous systems [27–45]. The 
development of green and sustainable MNPs catalysts employing ligands 

derived from renewable biomass feedstock and their use for the syn-
thesis of value-added chemicals is currently a very active area of 
research [46,47]. However, difficulties encountered in catalyst recovery 
and recycling restrict their application on an industrial scale. 

In recent years, cellulose has proved to be a suitable biopolymer able 
to produce highly stabilized MNPs giving highly efficient and recyclable 
catalysts [48–55]. Due to its abundance and unique properties, cellulose 
has, in fact, gained a privileged role in the development of environ-
mentally friendly, biocompatible, MNPs acting as efficient matrix for the 
incorporation of a wide range of noble and transition metals [56]. 
Functionalization of the hydroxyl groups present in cellulose is required 
to introduce new functionalities able to anchor MNPs to the cellulose 
matrix [56–58] 

In this context, cellulose derived biomass such as sodium carboxy-
methylcellulose (CMCNa), appears particularly attractive for the stabi-
lization of MNPs due to its high availability, low price and 
biodegradability, but most of all for the large number of carboxyl acid 
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groups and its solubility in water. In fact, CMCNa has been widely used 
for various biological [59–61], packaging [62–67] and other applica-
tions [68–71], but, according to the literature, very few examples of the 
use of CMCNa for the preparation of MNPs are known [72–75]. Starting 
from 2011, first studies were published on the use of Ni(0)-CMCNa for 
the hydrogenation of a number of functionalized nitrobenzenes [72], 
and Pd(0)-CMCNa nanoparticles as catalysts for Mizoroki− Heck re-
actions [73,74]. Only more recently, in 2018, Qu and co-workers [75] 
described the first, and to the best of our knowledge, the only example of 
Ru(0) nanoparticles stabilized by modified CMCNa (methyl laurate- 
CMCNa hereafter LM-CMCNa) and their use as catalysts for hydroge-
nation reactions in aqueous medium. Specifically, the hydrogenation of 
α-pinene in the presence of Ru(0)-LM-CMCNa was studied, reaching 
very high conversions, selectivities in cis-pinane (up to 98 %) and 
excellent recyclability (up to 18 times). 

All this considered, scope of this work is to investigate the prepara-
tion and characterization of CMCNa stabilized Rh(0) and Ru(0) nano-
particles and their use as catalysts for hydrogenation reactions. 
Nanoparticles reported in this work were prepared by simply mixing 
RhCl3xH2O or RuCl3 in an aqueous solution containing CMCNa, fol-
lowed by reduction with NaBH4, in analogy to the protocol previously 
reported by Harrad and coworkers for the preparation of Ni(0)-MNPs 
[72]. Thus, the catalytic activity and selectivity of the Rh(0) and Ru 
(0)-CMCNa nanoparticles was tested in water or water/organic me-
dium for the hydrogenation of different α,β-unsaturated substrates 
commonly employed for the preparation of high value chemicals (cin-
namaldehyde (I), furfural (V), and levulinic acid (VII), (Scheme 1). 
Preliminary hydrogenation reactions in the presence of cinnamaldehyde 
were carried out to find best operational conditions, selectivity of the 
MNPs towards C––C or C––O hydrogenation, compare the efficiency of 
MNPs studied in this work with literature data [76–78]. Furfural and 
levulinic acid, on the other hand, have been chosen for their importance 
as biobased platform chemicals to produce polymers, fine chemicals, 
plasticizers, diols, and green solvents [16,79–88]. Easy recovery by 
liquid/liquid extraction was employed to separate the catalyst from the 
reaction products, and recycling experiments performed. 

Further, MNP(0)s-CMCNa before and after reduction were charac-
terize by XRD and FT-IR, while MNP(0)s-CMCNa before and after hy-
drogenation experiments were characterized by TEM and XRD. 

2. Experimental 

2.1. General remarks 

All commercially available reagents, solvents, and chemicals were 
provided by Sigma Aldrich (ITALY) and used as received. CMCNa 
(90.000 Da) with 70 % carboxylation degree (c = 0.7), was purchased 
from Sigma Aldrich. The catalyst and products were characterized by 
different analytical and spectroscopic analysis such as, TEM, XRD, FT- 
IR, NMR, GC–MS. TEM images were obtained using a Philips 208 

Transmission Electron Microscope. The samples were prepared by 
placing one drop of catalyst dispersion on a copper grid pre-coated with 
a Formvar film and dried in air. FT-IR spectra were recorded on a Bruker 
INVENIO R in the 500–4000 cm− 1 range. The samples were prepared by 
placing one drop of catalyst dispersion and dried on silicon window. 
XRD patterns were collected with a diffractometer in Bragg-Brentano 
geometry (Bruker D8 Advance, Bruker AXS GmbH, Karlsruhe, Ger-
many), provided with a Lynxeye XE-T fast detector, CuKα radiation 
(operative conditions: 40 kV and 40 mA, step size 0.014◦ 2θ, step scan 
10 s). The Bruker DIFFRAC.EVA V5 software equipped with COD data-
base was used for the phase identification. The 1H and 13C NMR spectra 
of the products were registered on a Bruker UltraShield 400 spectrom-
eter operating at 400.0 and 101.0 MHz, respectively. Gas–liquid chro-
matography (GLC) analyses were performed on an Agilent 6850 gas 
chromatograph; gas chromatography–mass spectrometry (GC–MS) an-
alyses were performed on a HP 5890 series II gas chromatograph 
interfaced to a HP 5971 quadrupole mass detector. 

2.2. Preparation of MNP(0)s-CMCNa 

Preparation of Rh(0) and Ru(0) nanoparticles stabilized with vari-
able quantities of CMCNa using NaBH4 as reductant was carried out 
starting from RhCl3x3H2O or RuCl3 respectively. The preparation of 
MNP(0)-CMCNa (CMCNa/M: 1/100 mol/mol) nanoparticles was carried 
out as follows: under nitrogen atmosphere, 2.0 mg (2.22 × 10− 7 mol) of 
CMCNa and 50 mL of distilled water, were introduced into a 150 mL 
flask and left under stirring until a homogeneous solution was formed (1 
h, CMCNa concentration 0.4 g/L). 

Then, MCl3 (2.20 × 10− 5 mol), where added to the solution and after 
2 h further 20 mg (5.3 × 10− 3 mol) of NaBH4, dissolved in 30 mL of H2O, 
where added. The resulting black solution was kept under stirring for 24 
h under inert atmosphere and portions of the solution used for catalytic 
reactions. 

2.3. General procedure for the hydrogenation of model substrates with 
MNP(0)s-CMCNa 

Hydrogenation experiments were carried out in a magnetically stir-
red stainless steel autoclave (total volume 150 mL) connected to a 
thermostatic bath in order to maintain the reaction temperature con-
stant within ±1 ◦C. The same experimental protocol was used for hy-
drogenation reactions and recycling experiments with all different 
substrates tested, unless otherwise stated. 

For example, the procedure for the hydrogenation of cinnamalde-
hyde (I) is reported (entry 8, Table 1). Under inert atmosphere, in a 50 
mL vial equipped with a small magnetic bar were introduced 4 mL of a 
water/THF solution (1/1 vol/vol), 0.05 mL (0.397 mmol) of (I), 1.8 mL 
of the Rh(0)-CMCNa solution (prepared as described above, Substrate/ 
Rh = 500) and 23.5 mg (0.15 mmol, CMCNa/M 1/100 mol/mol, 
COONa/M 3.2 mol/mol) of n-undecane as internal standard. Then, the 
vial was placed in a pre-purged 150 mL autoclave and 10 atm of H2 were 
added. The autoclave was then heated at 60 ◦C and kept under constant 
magnetic stirring for 4 h, then the autoclave was cooled to room tem-
perature and the residual gas vented off. The reaction mixture was 
extracted with 5 mL × 2 aliquots of diethyl ether, and the organic phase 
dried with MgSO4, filtered, and analysed by GC. Further the organic 
solvent was evaporated, and products characterized by GC–MS, FT-IR 
and 1H, 13C NMR and data compared to literature data [22,89–94]. 
The water solution was kept under nitrogen and used for recycling ex-
periments. All experiments were performed in triplicate. All recycling 
experiments were carried out in the same reaction conditions as first 
run, unless otherwise specified. 

Scheme 1. Hydrogenation of the substrates tested in the work.  

S. Paganelli et al.                                                                                                                                                                                                                               



International Journal of Biological Macromolecules 270 (2024) 132541

3

3. Results and discussion 

3.1. Preparation of MNP(0)s-CMCNa 

The MNP(0)s-CMCNa nanoparticles were easily prepared by adding, 
at room temperature, RhCl3x3H2O or RuCl3 catalyst precursor (Scheme 
2, A) to an aqueous solution of CMCNa, followed by reduction with 
NaBH4 (Scheme 2) [72,75,95]. The resulting dark colour solution con-
taining the nanoparticles was stored under nitrogen and used for hy-
drogenation reactions without further purification (see Table 1). 

This approach appears particularly appealing also for industrial ap-
plications since very mild conditions are employed to prepare the 
catalyst solution which is used without any work up. 

Different batches of Rh(0) and Ru(0)-CMCNa were prepared at var-
iable CMCNa/M wt/wt ratios (0.20, 0.40, 0.80, 1.2, 1.6 g/L) was 
investigated since, according to the literature, the stability of MNP(0)- 
CMCNa nanoparticles is influenced by the concentration of the 
CMCNa solution [72–75]. Interestingly, previous literature works 
neglect to study the influence of the COONa/M mol/mol ratio between 
the metal and the -COONa functional groups present in CMCNa [72–75]. 
Since, metal complexation is known to be assisted by carboxylic func-
tional groups present in CMCNa [74] (Scheme 3), in this paper the in-
fluence of both CMCNa/M wt/wt and COONa/M mol/mol ratios was 
investigated (see below). 

COONa/M mol/mol ratios were calculated as follows: molecular 

formula of the carboxymethyl cellulose monosaccharide units is [C6H7O 
(OH)3-x(OCH2COONa)x]n where x is the substitution degree and n the 
polymerisation degree. Consequently, the average molecular weight of 
CMCNa used in this work (c = 0.7) is PMm = 202. This implies that 
CMCNa contains approximately 446 monosaccharide units (90.000/ 
202), 312 of which are carboxylated and 134 are not. This in mind, 
different quantities of metal precursors were used in order to prepare 
nanocatalysts with CMCNa/M mol/mol ratios of 1/400, 1/200 and 1/ 
100 corresponding respectively to a COONa/M mol/mol ratio of 0.8, 1.6 
and 3.2 respectively (see Table S1). These ratios were selected in order 
to verify metal stability in the presence of -COONa mmoles above and 
below stoichiometric ratio as compared to the mmoles of transition 
metal catalyst precursor used. 

3.2. Characterization of MNP(0)s-CMC by FT-IR, XRD and TEM 

3.2.1. FT-IR analysis 
The Ru(0) and Rh(0) MNP(0)s-CMCNa nanoparticles were charac-

terized by FT-IR before and after reduction with NaBH4. The FT-IR 
spectra of RhCl3 + CMCNa and Rh(0)-CMCNa catalysts are shown in 
Fig. 1(a,b). In the FT-IR spectrum, characteristic absorptions of − COOH 
and − COONa of CMCNa were observed at 1600–1640 cm− 1 and 
1400–450 cm− 1 [62,96], while adsorptions at approximately 2920 cm− 1 

are attributed to the − CH stretching of the − CH2 and − CH3 groups. At 
1325 cm− 1 a sharp band corresponds to the − OH bending vibration 
while the broad absorption band between 3200 cm− 1 and 3600 cm− 1 is 
characteristic of the stretching frequency of the − OH groups. Observing 
the position of the maxima of the bands corresponding to the stretching 
vibrations of the residual non-carboxylated hydroxyl groups for Rh 
containing species, a shift from 3440 cm− 1 to lower values can be seen 
upon reduction with NaBH4. This suggests that the Rh3+ cation is 
initially complexed with − OH functional groups while after reduction 
the shift to lower values indicates the absence of Rh3+ complexes. Ab-
sorption at 1030 cm− 1 is characteristic of the carboxymethyl ether. 

Analogous patterns were observed in the RuCl3 + CMCNa and Ru(0)- 
CMCNa (Fig. 1c,d), except for the fact that in this case the shift around 
3400 cm− 1 was not appreciable. Since FT-IR analysis were insufficient to 
give exhaustive evidence of MNPs formation, further characterizations 
were carried out in order to gain evidence of MNP(0)s-CMCNa 
formation. 

3.2.2. XRD analysis 
The XRD patterns of Rh(0) and Ru(0)-CMCNa nanoparticles after 

reduction with NaBH4 are reported in Fig. 2. In particular, XRD patterns 
show the characteristic peaks of Rh(0): 40◦, 46◦ and 54◦ (JCPDS No. 88- 
2334) and Ru(0): 38.3◦, 42.1◦, 44.0◦ and 58.3◦ (JCPDS No. 70-0274) 
respectively, confirming complete reduction of the MNPs. Moreover, 
the intensity of the peaks both of the Rh(0) and Ru(0)-CMCNa nano-
particles, reflect the high dispersion and the nanostructure of metal 
particles formed, in agreement with the literature [75,97,98]. 

3.2.3. TEM analysis 
It is with TEM images that the formation of Rh(0)-CMCNa and Ru(0)- 

Table 1 
Hydrogenation of Cinnamaldehyde (I) in the presence of MNP(0)s-CMCNa.  

Entrya MNPs- 
CMCNa 

T 
(◦C) 

p(H2) 
(atm) 

t 
(h) 

Conv. 
(%)b 

(II) 
(%)b 

(IV) 
(%)b 

1c Rh(0)- 
CMCNa  

80  10  24 100 98 2 

2d Rh(0)- 
CMCNa  

80  10  24 100 97 3 

3c Ru(0)- 
CMCNa  

80  10  24 62e 44 11 

4d Ru(0)- 
CMCNa  

80  10  24 64e 43 13 

5 Rh(0)- 
CMCNa  

80  10  24 100 
100 

98 
100 

2 
0 5r1

f 

6 Ru(0)- 
CMCNa  

80  10  24 63e 44 11 

7 Rh(0)- 
CMCNa  

80  5  1 96 
38 

96 
38 

0 
0 7r1

f 

8 Rh(0)- 
CMCNa  

60  10  4 100 98 2 
8r1

f 74 67 7 
8r2  24 100 96 4 
8r3  24 100 97 3  

a Reaction conditions: Substrate (I) 4.0 × 10− 5 mol; Solvent: H2O/THF 1/1 v/ 
v (4 mL); Rh or Ru: 8 × 10− 7 mol; CMCNa/M 1/100 (mol/mol); COONa/M 3.2 
(mol/mol); 23.5 mg (0.15 mmol) n-undecane. 

b Data determined by GC–MS (%) using n-undecane internal standard. 
c COONa/M 0.8 (mol/mol). 
d COONa/M 1.6 (mol/mol). 
e 7 % of (III) was also formed. 
f r = recycling experiment. 

Scheme 2. Preparation of MNP(0)s-CMCNa, M = Ru(0) or Rh(0).  

S. Paganelli et al.                                                                                                                                                                                                                               



International Journal of Biological Macromolecules 270 (2024) 132541

4

Scheme 3. Proposed scheme of MNPs formation by coordination of the Metal to -COONa groups.  

Fig. 1. Comparison between FT-IR spectra of Rh catalyst before and after reduction (a, b), and Ru catalyst before and after reduction (c, d).  
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CMCNa nanoparticles after the reduction was evident. The size of Rh(0)- 
CMCNa was estimated to be around 2.2 nm (Fig. 3a) while Ru(0)- 
CMCNa gave smaller nanoparticles of an average size of 1.5 nm 
(Fig. 3c). Comparison of TEM images of Rh(0)-CMCNa nanoparticles 
registered before and after the hydrogenation of (I), show that no ag-
gregation phenomena occur during the catalytic reaction as the size of 
the nanoparticles is unaffected (Fig. 3a,b). On the contrary, TEM images 
of Ru(0)-CMCNa before and after the hydrogenation of (V) show that the 
distribution of the size of the nanoparticles is spread over a wider size 
range after the reaction (Fig. 3d) and aggregation of MNPs is evidenced 
by the increase in size of the Ru(0)-CMCNa nanoparticles from 1.5 to 2.5 
nm due to aggregation phenomena (compare Fig. 3c and 3d). This ag-
gregation phenomena, as shown by the hydrogenation experiments re-
ported below (Table 2), does not have any consequences on the 
performance of Ru(0)-CMCNa upon recycling. 

3.3. Catalytic hydrogenation in the presence of MNP(0)s-CMCNa 

To study the activity of MNP(0)s-CMCNa and optimize hydrogena-
tion reaction conditions, preliminary experiments were carried out 
using (E)-cinnamaldehyde (I) as model substrate in reaction conditions 
comparable with the literature (80 ◦C, p(H2) 10 atm, (I)/Rh 500, for 24 
h) [16,72,75], at different CMCNa concentrations (between 0.2 and 1.6 
g/L). 

The presence of a C––C double bond and a C––O double bond in (I) 
allows to evaluate both the activity and the selectivity of the Rh(0) and 
Ru(0) catalytic systems under study. In fact, hydrogenation of cinna-
maldehyde (I) for the production of either hydro cinnamaldehyde (II) or 
cinnamyl alcohol (III) is challenging due to the possible formation of 
several products [99–102] (Scheme 1), thus selective hydrogenation of 
(I) is often chosen as model reaction considering both its scientific and 
industrial relevance [103–107]. 

Preliminary experiments, as mentioned above, were devoted to 
verifying the influence on the activity and selectivity of Rh(0) and Ru 
(0)-CMCNa prepared employing variable concentrations of CMCNa. 
From these experiments CMCNa concentrations of 0.40 g/L appeared to 
be sufficient in both cases (from RhCl3x3H2O or RuCl3) to achieve stable 
and recyclable MNP(0)s-CMCNa nanoparticles. In agreement with the 
literature, concentrations <0.40 g/L led to catalyst precipitation after 
the reaction, whereas CMCNa concentrations >0.4 g/L gave no signifi-
cant advantages, thus 0.4 g/L was chosen for further hydrogenation 
experiments under aqueous conditions [72,74,95,108]. 

Then, the influence of the reduction by NaBH4 on Rh and Ru nano-
particles was investigated. Thus, a set of experiments were performed 

employing metal/CMCNa solutions prepared with and without the use 
of NaBH4, referred to as Rh(0)-CMCNa, Rh(II)-CMCNa, Ru(0)-CMCNa, 
Ru(II)-CMCNa respectively. At 80 ◦C and p(H2) 10 atm in the presence 
of Rh(0)-CMCNa total conversion of (I) was achieved in 24 h (entry 1, 
Table 1) and 98 % in (II), while Rh(II)-CMCNa gave lower substrate 
conversions (<75 %) and reduced selectivities in (II) (<50 %). A similar 
reduction of activity and selectivity was observed also employing Ru(0)- 
CMCNa and Ru(II)-CMCNa. Interestingly, recycling experiments showed 
that nanoparticles prepared without pre-reduction with NaBH4 totally 
lost catalytic activity, adversely to pre-reduced MNPs-CMCNa (see 
below). Although it could be summoned that hydrogen employed during 
the catalytic reaction would reduce the metal and thus generate “in situ” 
the MNPs(0)-CMCNa, recycling experiments clearly show that this is not 
the case and that pre-reduction with NaBH4 is determinant to achieve 
highly active MNPs(0)-CMCNa nanocatalysts. 

Further experiments were devoted to study the influence of COONa/ 
M mol/mol ratio on the efficacy and stability of MNP(0)s-CMCNa 
nanoparticles. Hydrogenation of (I) at 80 ◦C and p(H2) 10 atm, was 
performed with a COONa/M mol/mol ratio of 0.8, 1.6 and 3.2 for 24 h 
(entries 1–6, Table 1). Although conversions of (I) and selectivity in (II) 
were not affected by the different COONa/M mol/mol ratio, catalyst 
precipitation was observed after the reaction when COONa/M of 0.8 and 
1.6 mol/mol ratios were used, probably due to an insufficient amount of 
COO− functional groups stabilizing the catalyst and negatively influ-
encing the stability of the nanoparticles. It is interesting to note that 
these results clearly confirm the role of the COO− groups in stabilizing 
the nanoparticles and underline the importance of the COONa/M mol/ 
mol ratio, generally not considered in previous literature work 
[74,75,109]. Further experiments were thus carried out with COONa/M 
3.2 mol/mol corresponding to CMCNa/M 1/100 mol/mol. 

Data reported in Table 1 (compare entries 5 and 6) clearly highlight a 
strong difference in the activity and selectivity of the two nanocatalysts 
for the hydrogenation of (I). In fact, at 80 ◦C and p(H2) 10 atm in the 
presence of Rh(0)-CMCNa total conversion of (I) was achieved in 24 h 
with very high selectivities towards carbon‑carbon double bond hy-
drogenation (entry 5, Table 1). On the contrary, when Ru(0)-CMCNa 
was used in the same reaction conditions both conversion of (I) (63 
%) and selectivity in (II) were significantly depressed since together 
with cinnamaldehyde (II) also (III) and hydrocinnamyl alcohol (IV) 
were formed respectively in 11 % and 7 % (entry 6, Table 1). 

Additional experiments to optimize reaction conditions were carried 
out only with best performing Rh(0)-CMC, at different temperatures, p 
(H2) and times (entries 7, 8, Table 1). At 60 ◦C and p(H2) 10 atm by 4 h 
Rh(0)-CMCNa allowed to achieve total substrate conversion and 97 % 

Fig. 2. XRD diffraction pattern of (a) Rh(0)-CMCNa and (b) Ru(0)-CMCNa.  
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Fig. 3. TEM images of Rh(0)-CMCNa and Ru(0)-CMCNa nanoparticles, (a, c) before and (b, d) after hydrogenation.  
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selectivity in (II) after three recycling experiments. 
Recycling experiments were carried out as follows at the end of the 

reaction the product was separated from the catalyst phase by extraction 
with diethyl ether, fresh (E)-cinnamaldehyde was added to the catalytic 
aqueous solution and hydrogenation repeated under the same reaction 
conditions as entry 8 of Table 1. Activity of Rh(0)-CMCNa moderately 
decreases upon recycling (entry 8r1, Table 1), but prolonging reaction 
times to 24 h, total conversion of (I) and high selectivity in (II) (96–97 
%) could be achieved after two more recycling experiments (entries 8r2 
and 8r3, Table 1). 

Since no data are available in the literature on the hydrogenation of 
(I) with CMCNa nanoparticles, in order to evaluate the efficiency of Rh 
(0)-CMCNa tested in this work, comparison with heterogeneous Rh(0) 
catalysts supported on carbon reported in the literature has been carried 
out. According to a very recent work by Patil and co-workers [99], re-
sults achieved with Rh(0)-CMCNa for the hydrogenation of (I) with Rh 
(0)-CMCNa emerge to be particularly interesting since in most cases 
heterogeneous catalysts reported in the literature have modest activity 
and selectivity, requiring harsh conditions [99] (100 ◦C, 20 atm pH 2) 
and environmentally unfriendly organic solvents [44,110]. For example, 
Liu reported the use of Rh@MIL-101 (Cr) a metal–organic framework 
(MOF) with high surface area and porosity, for the hydrogenation of (I). 
At 30 ◦C, p(H2) 10 atm, with a (I)/Rh molar ratio of 400, in ethanol as 
solvent conversions of up to 98 % of (I) were achieved by 5 h, with 
selectivity in (II) of 99 %. In analogous reaction conditions Rh/C gave 
significantly lower conversions (53 %) and selectivity in (II) (89 %). 
Although Rh@MIL-101 (Cr) can be recycled up to two times with almost 
no change in activity and selectivity, its sustainability is low considering 
that MIL is synthesized using toxic chemicals such as N, N-dime-
thylformamide (DMF) or hydrofluoric acid (HF) [111]. Alternatively Rh 
porphyrins have been used for the hydrogenation of (I), but with modest 
selectivities in (II) (≤ 80 %). Additionally, toluene was used together 
with water as reaction solvent and NEt3 had to be added to promote the 

solubility in water of the Rh porphyrin complex [110]. 
To widen the scope of the reaction, further hydrogenation reactions 

of furfural (V) and levulinic acid (VII) (Scheme 1) were performed with 
Rh(0)-CMCNa and Ru(0)-CMCNa and results reported in Table 2. The 
development of efficient protocols for the valorisation of bio-based 
feedstocks is gaining increasing interest to produce sustainable build-
ing blocks in alternative to fossil-based ones. In fact, in the last decade 
scientists and the industry have developed many alternative methodol-
ogies for the valorisation of biobased platform chemicals such as furfural 
and to produce polymers, fine chemicals, plasticizers, diols, green sol-
vents, among others [16,79–87]. Specifically, many different homoge-
neous and heterogeneous catalysts have been tested, using noble and 
non-noble metals for the selective hydrogenation of (V) to produce 
furfuryl alcohol (VI) [112–116] and levulinic acid (VII) for the synthesis 
of γ-valerolactone (VIII) [48,117–121]. 

Hydrogenation of (V) and (VII) with Rh(0)-CMCNa and Ru(0)- 
CMCNa were initially carried out in best reaction conditions defined 
for (I) (entry 8, Table 1), but gave modest to no conversion. Thus, hy-
drogenation of (V) was replicated at moderately higher p(H2) or tem-
perature (entries 1 and 2, Table 2) and good conversions and total 
selectivity in (VI) was obtained both with Rh(0)-CMCNa and Ru(0)- 
CMCNa. It is interesting to note that at 100 ◦C, p(H2) 60 atm by 24 h 
with a M/S mol/mol ratio of 500, higher conversions of (V) (92–95 %, 
entries 2 and 4, Table 2) and total selectivity were achieved with both Rh 
(0)-CMCNa and Ru(0)-CMCNa nanoparticles. 

Hydrogenation of (VII) carried out in the presence of Rh(0)-CMCNa 
gave very unsatisfying results, while with Ru(0)-CMCNa at optimised 
conditions for (I), allowed to recover (VIII) with total yields and selec-
tivity in (VIII) also after recycling (entries 5, 5r1, Table 2). Moreover, at 
p(H2) 20 atm, temperature could be lowered down to 30 ◦C reaching 
total conversion of (VII) and selectivity in (VIII) by 6 h, also after 
recycling (entries 8 and 8r1, Table 2). 

As for (V) data achieved for the hydrogenation of levulinic acid (VII) 

Table 2 
Hydrogenation of V and VII substrates in the presence of MNP(0)s-CMCNa.  

Entrya MNP(0)s-CMCNa S M/S 
(mol/mol) 

T(◦C) p(H2) (atm) t(h) Conv.(%)b Product   

(V)      (VI) (%)b 

1 Rh(0)-CMCNa  1/100 80 20 24 75 75 
1r1

c 72 72 
1r2 79 79 
2 Rh(0)-CMCNa  1/100 100 60 24 95 95 
2r1

c 96 96 
2r2 95 95 
3 Ru(0)-CMCNa  1/100 80 20 24 71 71 
3r1

c 65 65 
3r2 55 55 
4 Ru(0)-CMCNa  1/100 100 60 24 92 92 
4r1

c 91 91 
4r2 92 92    

(VII)      (VIII) (%)b 

5 Ru(0)-CMCNa  1/100 60 10 24 100 100 
5r1

c 100 100 
6 Ru(0)-CMCNa  1/100 60 20 2 100 100 
6r1 88 88 
7 Ru(0)-CMCNa  1/100 40 20 4 100 100 
7r1

c 84 84 
8 Ru(0)-CMCNa  1/100 30 20 6 100 100 
8r1

c 100 100 
9 Ru(0)-CMCNa  1/500 60 20 2 72 72 
9r1

c 50 50 
10 Ru(0)-CMCNa  1/500 40 20 4 65 65 
10r1

c 60 60  

a Reaction conditions: Substrate (V) or (VII) 4.0 × 10− 5 mol; Solvent: H2O (4 mL). Rh or Ru: 8 × 10− 7 mol; CMCNa/M 1/100 (mol/mol); COONa/M 3.2 (mol/mol); 
23.5 mg (0.15 mmol) n-undecane. 

b Data determined by GC–MS (%) using n-undecane internal standard. 
c r = recycling experiment. 
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with Ru(0)-CMCNa are extremely interesting. Recently Ndolomingo and 
coworkers reported a comparison between the efficiency of different 
MNP employed for the hydrogenation of (VII) has been reported [21]. 
From this work it emerges that Ru@Meso-SiO2 nanoparticles are highly 
efficient for the hydrogenation of (VII) at moderate p(H2) (10 atm) and 
short times (5 h), yet very high temperatures are required (150 ◦C) and 
dioxane is used as solvent [122]. Also, Ru/SiO2, Ru/Al2O3, Ru/ZnO2 and 
Ru/TiO2 have been reported by Tan for the hydrogenation of (VII) but 
also in this case high temperatures are required [78]. 

4. Conclusions 

In conclusion, in this work, an easy protocol for the preparation of 
highly active Rh(0) and Ru(0)-CMCNa nanoparticles for the hydroge-
nation of important platform chemicals, has been reported. MNP(0)s- 
CMCNa prepared simply by mixing a metal precursor (RhCl3x3H2O or 
RuCl3) and CMCNa in aqueous solution, followed by NaBH4 reduction, 
were characterized before and after reduction by FT-IR, XRD to verify 
formation of the nanoparticles. The influence on the stability of the 
nanocatalysts was investigated at different CMCNa g/L concentration 
and COONa/M mol/mol ratio for the hydrogenation of cinnamaldehyde 
and other platform chemicals such as furfural and levulinic acid 
[76–78]. TEM analysis allowed to determine their size (of the order of 
nanometres) and monitor possible aggregation phenomena after recy-
cling experiments. In fact, TEM analysis showed that the metal nano-
particles have a random distribution within the CMCNa, also confirmed 
by XRD analysis and undergo gradual aggregation after recycling 
experiment which nevertheless does not deplete their activity upon 
recycling, up to three times in best reaction conditions. Rh(0)-CMCNa 
allowed to achieve complete conversions of (I) at 60 ◦C and p(H2) 10 
atm by 4 h, with total selectivity in (II). On the contrary Ru(0)-CMCNa 
was less active for the hydrogenation of (I), but interestingly, this 
catalyst was highly efficient in the selective hydrogenation of (V) and 
(VII) to produce (VI) and (VIII) respectively. Comparison with literature 
data further highlights that MNP(0)s-CMCNa have very high perfor-
mance as compared to best heterogeneous catalysis known for the hy-
drogenation of (E)-cinnamaldehyde, furfural and levulinic acid 
[48,112–121]. 

Further studies implementing chitosan and other water soluble bio-
derived substrates bearing suitable functional groups for the anchoring 
of MNPs are in progress, in order to evaluate and compare their per-
formances in hydrogenation reactions to those of MNPs(0)-CMCNa re-
ported in this work. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijbiomac.2024.132541. 
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