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Abstract—Over the last decade, 5G and forthcoming 6G ar-
chitectures have undergone extensive standardization and prepa-
rations for the future. The literature in this field is saturated
with studies on predicting mobile trajectories in cellular systems
and guaranteeing quality of service and an adequate user
experience in these environments. The current study aims to
bridge mobility prediction and 5G/6G predictive approaches and
demonstrate that the intrinsic paradigm of femto-cell and nano-
cell deployment (based on very small radio coverage radii) for
5G provides the means to obtain more accurate time series
data on user mobility and thus enable predictive models (e.g.,
machine learning) as suitable technologies for integration with
6G standards. This field is therefore an important avenue of
research.

Index Terms—6G, Mobility Prediction, Machine Learning,
Deep Learning, Femto-cells, Nano-Cells, Vehicular Networks.

I. INTRODUCTION

Since the advent of first and second generation (2G) cellular
systems [1] several decades ago, researchers have increasingly
studied mobility management in cellular networks, and as the
latest system (5G) [2], [3] is deployed, this trend is likely to
accelerate. Foreknowledge of host behavior allows researchers
and engineers to enhance overall system and network quality
in a range of key aspects, for example service continuity [4],
Quality of Service (QoS) and Quality of Experience (QoE)
[5], resource management [6], cellular and vehicular network
integration [7], and others [8].The evolution of cellular sys-
tems has been prodigious, and by 2030, it is expected that
6G technology will be commercially available and provide
users with an unprecedented telecommunications experience
[9], [10]. The current study examines 6G architecture access
layers in relation to currently proposed 6G wireless and
cellular communications technologies (e.g., global coverage,
full applications, all digital, all spectra, all senses, strong
security) and aims to demonstrate that it is already easier
to predict host movements between coverage cells in 5G
and beyond architectures, given that their coverage radii are
much smaller than in the past. The current study attempts
to demonstrate that, in theory, the smaller the radii of the
system cell coverage the greater the prediction accuracy (in-
dependently of the predictive model). At first glance this may
seem intuitive, but given the varying character of areas covered

by cellular networks, (urban, suburban, rural), irregularity in
coverage shape, and the range of reasons for which users travel
roads with active mobile devices (e.g., holidaying, commuting,
walking), predicting movements as a function of the size of
a coverage cell presents a complex task. The current study
therefore investigates how the evolution of wireless cellular
system generations and coverage radii potentially impact the
performance of mobility prediction approaches. The remainder
of the paper is organised as follows: Section II describes recent
works on mobility prediction and the latest research results for
beyond-5G technologies; Section III introduces a predictive
model and its related assumptions; Section IV discusses nu-
merical results in relation to the proposed coverage structure;
Section V summarizes conclusions and outlines future work.

II. RELATED WORK AND CELLULAR COVERAGE TREND

This section reviews related work on current predictive
models for mobile cellular networks and describes the main
features of coverage cells in 5G and beyond environments.

A. Predictive Models for 5G/6G Cellular Networks in 2023

Continual advances in wireless technologies have raised
consumer expectations for seamless connectivity in cellular
networks and high QoE levels from Internet Service Providers
(ISPs). A long-term study [8] attempts to solve mobility issues
in wireless networks (e.g., resource and handover manage-
ment, location updating, channel degradation) by predicting
user movement either along a trajectory or at the cell level.
Several recent works based on mobility prediction (both
trajectory and cell patterns) explore enhancements to system
performance at several levels, for example traffic throughput
and mitigation of interference, spectrum optimization in Cog-
nitive Radio Networks (CRNs) according to user preference
and demand [11], optimization of handover procedures to
reduce latency [12], prediction of traffic to optimize Base Sta-
tion (BS) resource management [13], energy-aware mobility
prediction to manage Remote Radio Head (RRH) activation
in 5G Cloud Radio Access Networks (CRANs) [14], and
optimization of Cache Hit Ratio (CHR) using knowledge
of future trajectories [15]. It is clear that knowledge of the
host’s future position (or conditions, more generally) affords



architectural benefits for a wide range of applications; referred
to as Native Intelligence (NI), this is one of the main objectives
behind future 6G networks [16]. If architecture provides a
separation between the control plane and the data plane (e.g.,
from 3G/4G to 6G), mobility prediction can be exploited to
manage handover optimization and obtain huge savings in
signaling overhead and Call Blocking Probability (CBP) [17].
In [18], the authors propose an accurate trajectory prediction
algorithm for pre-configuring radio resources in cells that
experience a future mobile host trajectory, resulting in a
enhanced communication efficiency. The studies in [19], [20]
implement Markov Chain (MC) predictive models. In the
first study, the authors introduce the concept of a transition
matrix for an MC, where spatial and temporal information
are separated for outdoor environments to reduce correlation
loss. In the second study, the authors use an MC for indoor
mobility prediction, where mmWave coverage (e.g., 5G) is
assumed, and attempt to reduce handover latency. Another
work [21] extends the classic MC model using the Hidden
Markov Model (HMM) to optimize power consumption while
maintaining QoS. It also demonstrates that HMMs enhance
prediction accuracy while reducing information loss, albeit at
the cost of greater computational complexity. In [22], [23],
the authors propose prediction algorithms based on Machine
Learning (ML) approaches. In the first study, the authors
compare four ML approaches and evaluate the benefits of
these models in terms of prediction accuracy; the XGBoost
ML scheme achieved a greater than 98% accuracy, the highest
among the proposed models. In the second paper, the authors
investigate the Support Vector Machine (SVM) to predict
the trajectories of mobile vehicular nodes and ensure service
continuity. In [24], [25], other ML models are applied in
Long Short Term Memory (LSTM) networks to solve mo-
bility prediction issues and to investigate extensions of LSTM
networks for correct handover prediction management in 5G
networks. In a previous work [26], the present author analyzes
the relationship between next-cell prediction errors and the
number of in-advance reserved coverage areas, demonstrating
theoretically how to detect the trade-off between prediction
error and resource wastage.

B. From kbps to Gbps: Reduction in Cellular Coverage Extent

This sub-section examines the evolution of digital cellu-
lar architectures in relation to coverage radius. Since the
early 1990s, BS coverage has decreased for several rea-
sons, which include spectrum efficiency, bandwidth/channel
limitations, frequency reuse, QoS/QoE demand, and greater
required throughput. Referring to the work in [8] concerning
high throughput connections, it is clear when digital cellular
communications (2G) were deployed, the coverage radius of
a BS would reach a maximum extent of 35 km, with a
channel capacity of around 200 kHz. With 3G technology,
the maximum radio coverage reduced to 8km, with a channel
capacity of 5 MHz. Starting with the fourth generation (4G),
the coverage radius reduced drastically to a maximum of 2–
3km. With 5G, the coverage radius depends on the carrier

frequency which is used: for the low and mid-band spectrum
(below the 3.7 GHz C-band), the achievable coverage radius
is 4–5km; for the mmWave spectrum band (24 GHz to 47
GHz), with a good Line-of-Sight (LoS) connection, the range
is instead 0.0015–0.6 km. Figure 1 illustrates the trend in
average radius per cell over the years. The concept of the

Fig. 1: Trend in average coverage radius per cell over the
years/network generations (uplink and downlink).

femtocell introduced with 5G and IEEE802.11ac/ax (WiFi6,
6E) [27] will still be still applied in 6G, however each user
will also be served simultaneously by more than one cell [28].
The results of the present study are therefore discussed with
relevance to 6G cellular technology, but not the proposed cell-
less (CL) architecture. The use of small cells in 6G networks
relates to carrier frequencies, especially THz communications
[29], where interactions with the atmosphere will have a heavy
affect on transmitted signals. The spectrum band at 600–
800 GHz experiences environmental attenuation of up to 200
dB/km, therefore it is not feasible, whereas at distances up to
0.1 km the typical attenuation is between 10 dB and 20 dB.
The work in [29] describes several experiments in which THz
transmissions achieve a coverage radius of about 0.02 km (up
to 10 THz in the spectrum band). The present study offers a
deep theoretical analysis of the relationship between coverage
radius and the trajectory or next-cell prediction error in future-
generation cellular systems; to the best of the present author’s
knowledge, this analysis is novel. The study also attempts to
demonstrate the suitability of ML approaches for use with 6G
networks by heavily exploiting the the small cell concept. In
summary, a very general model is applied to demonstrate that
mobility prediction errors relate to the coverage radii of cells
and can be decreased in smaller areas of coverage.

III. SYSTEM MODEL, CONCEPTS AND PROPOSAL

This section discusses the proposed model for the rela-
tionship between the coverage area and the underlying road
topology as a function of the coverage radius. Table I reviews
the notation used in the article.

A. Basic Definitions, Geometric/Analytic Road Modeling
This sub-section presents the basic concepts and analytical

definitions in the study.



TABLE I: Notation used in this work.

Symbol or notation Meaning
Basic definitions

pi generic geometric point i in R2 expressed as a coordinate pair xi and yi
s(pi, pj) segment between two points pi and pj

ys algebraic equation associated with segment s, defined in the domain Ds = [xi, xj ]
s1 < s2 segment s1 is a sub-segment of s2 (same ys but smaller domain)

GA geographic area (GA) described by R2

GGA =< V, V ∗, E,E∗, Q∗ > graph associated with the roads in the GA, where V is the set of vertices, E is the set of edges
V ∗ set of vertices expressed as points =⇒ vi ≡ pi
E∗ set of edges expressed as segments =⇒ ej ≡ s(pj1, pj2)
Q∗ set of equations ys associated with each edge in E∗

RD set of roads ri, each road being expressed as a set of edges in GGA

ERD set of edges associated with the roads in RD
Geometric definitions

C circumference of radius r covering a part of the GA
s ⊆ C segment s is fully contained in C
s ⊂∼ C segment s is partially contained in C

s
ch
⊆ C segment s is a chord on C

s /∈ C segment s is external to C

ri
C
⊗ rj two roads ri and rj are connected in C (by definition, roads are connected if they share at least one point)

|rj |C length of road rj in C
|RD|C average length of roads in RD with respect to C

Vehicle model definitions
LC number of roads in RD covered by C

θCi (t) road ri occupancy (in terms of % of space occupied by vehicles) at time t with respect to the coverage of C
xC
i (t) number of vehicles in ri at time t with respect to the coverage of C
Γ average vehicle length

MC(t) mobility time variant matrix, with LC rows and LC columns
mi,j(t) (i, j)-th element of MC(t), i.e., the probability of moving from road ri to road rj at t under the coverage of C
tabsi (t) absorption time for road ri, i.e., the time spent by a user to travel the entire road ri
vavgi (t) average speed on road ri at time t

vmin
i , vmax

i minimum observed speed and maximum permitted speed on road ri
∆roadi length increase of covered road ri after extension of the coverage radius of C from r to R, where R=r +∆r

Def. 1: Given two points p1 = (x1, y1) and p2 = (x2, y2),
where p1, p2 ∈ R2, the length of the line segment connecting
p1 and p2, s(p1, p2) represents the Euclidean distance between
p1 and p2, expressed as:

s(p1, p2)
def
=
√

(x1 − x2)2 + (y1 − y2)2, (1)

where s(p1, p2) ∈ R. It can also be expressed in compact form
as s, where the two endpoints p1 and p2 are not required.

Def. 2: A line segment s(p1, p2) analytically described by
the function ys(x) = ms · x+ qs is expressed as:{

ys(x1) = ms · x1 + qs = y1

ys(x2) = ms · x2 + qs = y2,
(2)

where p1 = (x1, y1), p2 = (x2, y2) and x ∈ [x1, x2].
Def. 3: Given the line segment s(p1, p2), its function ys(x)

and the range [x1, x2], then ys(x) is said to be defined in its
domain Ds

def
= [x1, x2].

Def. 4: Given two line segments s1(p1, p2) and s2(q1, q2),
s1 is said to be a sub-segment of s2 (s1 < s2) such that{

ys1 = ys2 ⇒ (ms1 = ms1) ∧ (qs1 = qs1)

Ds1 ⊂ Ds2 .
(3)

Given these definitions, we describe the first part of the
modeling approach for the considered mobility scheme. First,

a graph must be associated with a set of interconnected roads
belonging to a generic geographic area (GA). Thus, given a
graph GGA =< V,E >, then V is the set of nodes (where
|V |=n), E is the set of edges (where |E|=m), and ei ∈ E
is a generic edge composed of nodes vi1 , vi2 ∈ V , where
ei = (vi1 , vi2). The edges have no direction, and given a set
of interconnected roads RD = r1, ..., rk, a generic road rj ∈
RD can be modeled as a sequence of edges Erj ∈ E, each
including a number of nodes. Thus, the complete road structure
can be modeled as ERD = {Er1 , ..., Ern}, where

⋃k
j=1 Erj =

E and Erj

⋂
Erl = ∅, ∀Erj , Erl ∈ E, with j ̸= l.

Fig. 2: Example of a graphic approximation of a GA.



Figure 2 represents a small area of the city of Rome
(approximately 420 x 230 m2). We observe that

• V = {v1, .., v30}, |V | = n = 30;
• E = {(v1, v2), ..., (v6, v7), (v2, v8), ... , (v10, v11),

(v2, v12), v12, v13), (v4, v14), ..., (v17, v18), (v5, v19),
..., (v20, v21), (v6, v22), ..., (v23, v24), (v7, v25), ...,
(v29, v30)}={e1, ..., e29}, |E| = m = 29;

• RD = {r1, ..., r7};
• Er1={e1, e2, e3, e4, e5, e6} = {(v1, v2), (v2, v3), (v3, v4),

(v4, v5), (v5, v6), (v6, v7)};
• Er2={e7, e8, e9, e10}={(v2, v8), (v8, v9), (v9, v10), (v10,

v11)};
• Er3 = {e11, e12}={(v2, v12), (v12, v13)};
• Er4 = {e13, e14, e15, e16, e17}={(v4, v14), (v14, v15),

(v15, v16), (v16, v17), (v17, v18)};
• Er5 = {e18, e19, e20} = {(v5, v19), (v19, v20),

(v20, v21)};
• Er6 = {e21, e22, e23}={(v6, v22), (v22, v23), (v23, v24)}
• Er7 = {e24, e25, e26, e27, e28, e29}={(v7, v25), (v25, v26),

(v26, v27), (v27, v28), (v28, v29), (v29, v30)}.
For the road topology in Figure 2, it is simple to verify that⋃7

j=1 Erj = E and Erj

⋂
Erl = ∅ ∀Erj , Erl ∈ E, i ̸= j. At

this point, we extend the classic graph modeling approach by
adding three extra sets:

• V ∗ = {v∗j = (vjx , vjy )}, where vjx and vjy are the Carte-
sian coordinates of vj ∈ V and vjx , vjy ∈ GA ⊂ R2, i.e.,
each v∗j ∈ V ∗ represents the point in GA ⊂ R2 where
vj ∈ V is situated;

• E∗ = {s∗i (v∗i1 , v
∗
i2
)/ei = (vi1 , vi2) ∈ E}, i.e., each

s∗i ∈ E∗ represents the segment associated with ei ∈ E,
connecting nodes vi1 , vi2 ∈ V , situated at in v∗i1 and v∗i2 ;

• Q∗ = {y∗si(x)/s
∗
i ∈ E∗}, i.e., each element of Q∗

represents the equation of the associated edge ei ∈ E.
Therefore, based on the above definitions, a physical length
and an equation can be assigned to each edge composing the
graph G associated with GA, GGA, since for each s∗i ∈ E∗

the related length and y∗si(x) are easily evaluated.

B. Geometric/Analytic Modeling of Roads and Coverages
The shape of a generic cell is assumed to be circular, without

loss of generality; the present study does not consider real
shapes but demonstrates the result of changing the coverage
area.

Def. 5: Given a circumference C of radius r centered
at (x0, y0), then a segment s(p1, p2) defined in [x1, x2] is

completely contained in C, s
def
⊆ C, if and only if the system

(x− x0)
2 + (y − y0)

2 ≤ r2

y = ms · x+ qs

x1 ≤ x2

(4)

can be solved; for x ∈ [x1, x2], it is equivalent to

(1 +m2
s) · x2 + 2 ·ms · qs · x+ q2s ≤ r2 (5)

The length of a segment that is completely contained in C
(s ⊆ C) is easily solved with Equation (1).

Def. 6: Given a circumference C of radius r centered
at (x0, y0), then a segment s(p1, p2) defined in [x1, x2] is

partially contained in C, s
def
⊂∼ C , if and only if a value

x ∈ [x1, x2] exists for which the relation expressed in Equation
(5) is verified only for x ∈ [x1, x] or for x ∈ [x, x2]. In order
to evaluate the length of the segment partially contained in C,
Equation (1) can be modified to

s =
√
(x− xc)2 + [ys(x)− yc]2, (6)

where (xc, yc) are the coordinates of the end-point of s
contained in C, i.e., (x1, y1) or (x2, y2).

Def. 7: Given a circumference C of radius r centered at
(x0, y0), then a segment s(p1, p2) defined in [x1, x2] is a chord

in C, s
ch
⊆ C, if and only if two values x1, x2 ∈ [x1, x2] exist

such that x1 < x1 < x2 < x2 for which the relation expressed
in Equation (5) is verified only for x ∈ [x1, x2]. In order to
evaluate the length of part of the segment contained in C,
Equation (1) can be modified to

s =
√
(x1 − x2)2 + [ys(x1)− ys(x2)]2, (7)

Def. 8: Given a circumference C of radius r centered at
(x0, y0), if a segment s(p1, p2) defined in [x1, x2] is neither
completely/partially contained in C nor a chord, then s is said

to be external to C: s
def
/∈ C.

Fig. 3: Possible configurations for a road and several segments
with respect to C.

Figure 3 illustrates all the conditions expressed by Defini-
tions 5–8 for a segment s with respect to circumference C.
Figure 3 also shows (in grey) that, for given a generic road
rj ∈ RD, we can write rj ⊆ C if s∗j ⊆ C∀s∗j ∈ E∗

rj , where
j = 1..|E∗

rj |, i.e., a road rj ∈ RD is completely contained
in C if and only if all the segments belonging to rj are
completely contained in C. Similarly, rj /∈ C (rj is external
to C) if s∗j /∈ C ∀s∗j ∈ E∗

rj , where j = 1..|E∗
rj |. The road



rj ∈ RD is partially contained in C, if ∃s∗j ∈ E∗
rj / s∗j ⊂∼ C

or ∃s∗j ∈ E∗
rj / s∗j

ch
⊆ C.

Def. 9: Given two roads ri, rj ∈ RD, they are connected

in C (ri
C
⊗ rj) if ∃s∗i ∈ Eri ∧ ∃s∗j ∈ Erj / ei = (vi1 , vi2),

ej = (vj1 , vj2) and (vi1 = vj1 = vc ∨ vi2 = vj2 = vc) ∧ vc =
(xc, yc), where (xc − x0)

2 + (yc − y0)
2 ≤ r2, i.e., two roads

are connected in C if they share at least one node that is
contained in the area covered by C. Figure 4 shows an example
of four road intersections under the coverage of C, respecting
Definition 9.

Fig. 4: Example of road intersections inside C.

Applying the concepts introduced in the previous sub-
sections, it is now possible to evaluate the length of a road for
only the part that belongs to a circular generic coverage cell C.
Given a road rj ∈ RD, it is described by the sets Erj (edges),
E∗

rj (segments) and Vrj (nodes). Examining Figure 3 again, it
is clear that the relations |Erj | = |E∗

rj | = |Vrj | − 1 = tj − 1
are always verified ∀j = 1, ..., k. If |rj | represents the length
of rj , we write

|rj | =
tj−1∑
i=1

s∗i ⇒ |rj |C =

IC∑
i=1

s∗i +

JC∑
j=1

s∗k +

KC∑
k=1

s∗k, (8)

where the quantity |rj |C represents the length of rj composed
of segments that are completely/partially contained, external,
or represent a chord on circumference C. For Equation (8),
the following relations remain valid: s∗i ⊆ C,∀i = 1, ..., IC ,

s∗j ⊂∼ C,∀j = 1, ..., JC , s∗k
ch
⊆ C,∀k = 1, ...,KC ,

s∗i , s
∗
j , s

∗
k ∈ E∗

rj , IC + JC +KC ≤ tj − 1. Equation (8) thus
allows us to evaluate only the completely/partially contained
segments and chords, where the external segments contribute
nothing to the length of rj inside the given shape. Therefore,
the value IC + JC +KC (total completely/partially contained
segments and chords) could be also less than the total number
of edges tj − 1 (potential external segments are ignored).

Def. 10: For the set of roads RD that can be modeled with
GGA =< V,E >, the average length of the roads belonging
to the coverage area C can be expressed as

|RD|C =
1

LC

LC∑
l=1

 IlC∑
i=1

s∗li +

JlC∑
j=1

s∗lj +

KlC∑
k=1

s∗lk

 , (9)

where LC is the total number of roads that share at least
one segment with C, sli is the i-th segment of rl completely
contained in C, slj is the j-th segment of rl partially contained
in C and slk is the k-th chord of rl.

C. Modeling Vehicle Traffic Evolution

This sub-section presents a model of the vehicular environ-
ment and the derived probabilistic approach for calculating
the probability of traveling from road ri to road rj under
the coverage of C. By observing the number of vehicles
passing along a road, traffic evolution can be incorporated
by using a discrete time dynamic system to analyze mobile
host behaviors. In particular, we define a square LCxLC

time variant matrix MC(t), for which each element mC
i,j(t)

represents the probability of passing from road ri to road
rj in the time interval [t, t + 1]. It is important to recall
that LC = |RD| and that each road is completely/partially
contained or a chord on the coverage circumference C.

The main aim now is to observe the trend of the average
number of mobile hosts on different roads and to derive an
expression for the L2

C elements mC
i,j(t). Many optimization

approaches that describe the state equation introduced above
can be applied [30], but for the aims of the current study, the
system is modeled according to typical traffic/user parameters.
A mobile user changes its current road according to local rules
(e.g., the congestion level of adjacent roads), without involving
system variables, and is distant from the current mobile host’s
position. In the proposed model, the non-diagonal elements

mC
i,j(t), i ̸= j, are non-zero if and only if ri

C
⊗ rj (obviously,

a mobile host cannot choose a road not connected to the
current road unless they intersect, i.e. a crossroad). To evaluate
the expression mi,j(t), i ̸= j, we introduce a probabilistic
approach that examines mobile host behavior in the proximity
of crossroads and determines the probability of the mobile
host changing roads. Generally, drivers prefer roads that are
more convenient and less congested. If θCi (t) represents the
road occupancy on rCi ∈ RD, it can be expressed as

θCi (t) =
xC
i (t) · Γ
|ri|C

, (10)

where xC
i (t) is the number of vehicles on ri under the

coverage of C and Γ is the average length of a vehicle (the
numerator is always less than the denominator due to curves,
minimum distance between vehicles, etc.), and the possible
values belong to [0,1).

Figure 5 graphs the effect of road length (|ri|C) and the
number of vehicles (the value of xC

i ) at a particular time on
the occupancy of a general road ri ∈ RD, in strict relation to
Equation (10) such that |ri|C >> Γ. For an average vehicle



Fig. 5: Graphical representation of the trend of θi(t) for
different road lengths and vehicle numbers, for an avergae
vehicle length Γ = 4.5 m.

length Γ = 4.5, road occupancy demonstrates an increasing
trend for greater numbers of vehicles and a decreasing trend
for greater lengths.

Therefore, the probability of changing to road rj from road
ri, ri, rj ∈ RD, i ̸= j, is related to 1− θCi (t) and expressed
as

mi,j(t)
def
=

1− θCi (t)∑Ki

l=1[1− θCl (t)]
, i ̸= j, (11)

where Ki is the number of roads rj ∈ RD, such that ri
C
⊗ rj

and i ̸= j.

Fig. 6: Trend of mC
3,1(t) versus the function of θC1 (t) and

θC2 (t) for the set of roads described in Figure 4 (fixed time).

For the four roads described in Figure 4, Figure 6 shows
the probability of changing from road r3 to road r1, where

r1, r2, r3, r4 ∈ RD, r3
C
⊗ r1, and r3

C
⊗ r2, versus the

function θC1 (t) and θC2 (t) for traffic occupancy. It is assumed
that |r1| = |r2| = |r3| = 200 m. The illustrated curves
reflect the behavior of the mobile hosts always selecting a
road with lower density; therefore when r1 is under-loaded,
MC assumes high values (a transition from r3 to r1 is more
probable). By contrast, the probability of changing to road r1
is low and increases only if r2 also becomes denser. Once

mC
i,j(t), i ̸= j, is calculated, then we examine the diagonal

elements of MC(t), with mi,i(t), which indicates the probabil-
ity of remaining on the same road at each discrete observation
time. These values depend on the length of the road ri ∈ RD
within the circumference |ri|C and on the average mobile
host traveling speed vi(t) [31]. The resulting quantities are
inversely proportional to the average of the defined absorption
time tabsi (t) spent by a mobile host traveling along ri, taking
into account traffic conditions and congestion [31] (extreme
situations when a road ri ∈ RD is completely congested, i.e.,
tabsi (t) → ∞, are not considered). It follows that [31]:

mC
i,i(t)

def
=

vavgi (t)

|ri|C
def
=

1

tabsi (t)
, (12)

since the greater the traveling time, the greater the probability
that a mobile host will change to a more viable road (having
a lower probability of staying on the current road). It also
follows that, in the case of the mC

i,i(t) elements, the road
occupancy θCi (t) and traveling speed can be expressed as
a convex combination of the minimum and maximum road
speeds, vmin

i and vmax
i , respectively, which depend on the

main structural road parameters [30], [32]:

vavgi (t) =[1− θCi (t)] · vmax
i + θCi (t) · vmin

i =

=vmax
i + θCi (t) · [vmin

i − vmax
i ].

(13)

Fig. 7: Typical trend of mC
i,i versus |ri|C and xC

i (t).

Figure 7 plots the probability of remaining on the same
road ri ∈ RD, on the basis of road length and the number
of vehicles on the road (fixed time). Recalling the explanation
for the previous curves, in this case we observe the higher
tendency of the mobile host to change roads if the current
road is congested (higher values of xC

i (t)); by contrast, the
probability of remaining on the same road is also greater
if the road is shorter. This last concept is also theoretically
demonstrated below. At this point, for a final definition of the
elements of MC(t), we recall the expressions from Equations
(10) to (13), and define the following:



mC
i,j(t) =



1

|ri|C
·
[
vmax
i − θCi (t) · (vmax

i − vmin
i )

]
, i = j

[
(1−mC

i,i(t)
]
·

1− θCj (t)∑Ki

k=1 1− θCi (t)
, i ̸= j, ri

C
⊗ rj

0 else.
(14)

Figure 8 plots the relationship between the maximum permit-
ted speed vmax

i , road density θCi and road length |ri|C . As
expressed by the previous equations, it is clear that the lower
the road density, the higher the probability of remaining on the
same road, whereas for longer roads the probability of remain-
ing on them decreases (higher probability of crossroads). We
observe that the maximum permitted speed (and, hence, the
average speed) plays an important role in mobility dynamics:
when a host is able to move at a higher speeds, it is less willing
to execute a turn and change roads, therefore the term mC

ii(t)
increases.

Fig. 8: Trend of mC
i,i(t) for different values of |ri|C , θCi (t)

and vmax
i .

D. Geometric Relationships Between Coverage Areas, Road
Lengths and Crossroads Probabilities

Although an intuitive concept, let us now demonstrate that
for each road rl ∈ RD (partially contained in C), a variation
of the coverage radius from r to R, where R = r+∆r, results
in an increase ∆road of the road length inside the coverage
region C, where ∆road >0. For simplicity, we refer to Figure
9 and the road segment sli(p1, p2) of road rl and its related
equation ysli = msli

x+ qsli . Without loss of generality, only
the first quadrant of the Cartesian plane is considered, and
hence, α ∈ (0, π/2], where α = tan−1(msli

). Beginning with
a coverage area equal to Cr (the notation indicates a coverage
area C with radius r), it is clear that the sub-segment (p1, B)
represents the contained part of the segment sli . When the cov-
erage radius is extended to R, then the sub-segment contained
in CR is (p1, D). In this case, the obtained increase in the
segment length is |(p1, D)| − |(p1, B)| = BD = ∆segment.
In a demonstration of this concept, it is important to note that:

∆segment · sin(α) + r · sin(α1) = R · sin(α2), (15)

Fig. 9: Geometrical representation of the main relations be-
tween coverage region and segment length.

where α1 and α2 are the angles with the x-axis determined by
segments OB and OD, respectively. Given that α ∈ (0, π/2],
the relation α2 ≥ α1 is always satisfied, and subsequently, α2

= α1 +∆α, where ∆α ≥ 0. Therefore,

∆segment =
R · sin(α1 +∆α)− r · sin(α1)

sin(α)
. (16)

Given that the quantity sin(α) is greater than or equal to 0
in (0, π/2], ∆segment is positive if and only if the following
relation is satisfied:

sin(α1 +∆α)

sinα1
>

r

R
. (17)

However, the first ratio is always greater than 1 since the sin
function increases in the range (0, π/2], while the second ratio
is always less than 1 since r < R. The relation in Equation
(17) is therefore always satisfied, and the term ∆segment
is always positive. The result obtained in Equation (17) is
demonstrated for one segment only, but it can be generalized
to an entire road or a set of roads. Clearly, considering all the
combinations illustrated in Figure 3, a coverage radius that
increases from r to R may not necessarily affect all segments
of the roads on the example map. In fact, if a road ri is
completely contained in C, the variation of the coverage range
will not affect |ri|C . In other cases (ri is partially contained
or is a chord), the variation might not affect all road segments,
but for at least one segment the relation expressed in Equation
(17) will be valid. In the latter case, where ri is external to
C, the variation may result in adding ri to the coverage of C.
This is valid for all roads contained within the coverage area



C. Therefore, for a given road ri ∈ RD, we use the following
the notation in Equations (8) and (9):

∆roadi
def
=

JC∑
j=1

∆segmentj +

KC∑
k=1

∆segmentk, (18)

and

∆roadC
def
=

1

LC

LC∑
l=1

∆roadl, (19)

where, ∆roadi represents the increase in |ri|C when the
coverage radius increases by δr, JC is the number of segments
of rl partially contained in Cr, and KC is the number of
segments of ri that are chords on Cr. Equation (19) calculates
the average increase for all roads. At this point, beginning
with the expression in Equation (14), we examine the effects
of increasing the coverage radius from r to R = r + ∆r on
mC

i,i(t) elements and the consequent increase in length ∆roadi
for ri. Examining mC

i,i(t) from Equation (14), it follows that
for any road ri covered by Cr, it is valid to write (neglecting
the modulus symbol to indicate the length of ri):

mCr
i,i (t)−mCR

i,i (t) =
1

|ri|Cr

·

·

[
vmax
i − xCr

i (t) · Γ · (vmax
i − vmin

i )

|ri|Cr

]
+

− 1

|ri|CR

·

[
vmax
i − xCR

i (t) · Γ · (vmax
i − vmin

i )

|ri|CR

]
.

(20)

Consequently, where ∆vi = vmax
i − vmin

i (independently of
the extended coverage radius), R = r +∆r (from Equations
(16), (18)), xCR

i (t) = γ ·xCr
i (t) (where γ ≥1 is a magnifying

factor), and |ri|Cr
= rCr

i (for simplicity of notation), Equation
(20) becomes:

vmax
i

rCr
i

− xCr
i (t) · Γ ·∆vi

(rCr
i )

2 − vmax
i

rCr
i +∆r

+
γ · xCr

i (t) · Γ ·∆vi

(rCr
i +∆r)

2 =

= vmax
i ·

(
1

rCr
i

− 1

rCr
i +∆r

)
+ xCr

i (t) · Γ ·∆vi·

·

[
γ

(rCr
i +∆r)2

− 1

(rCr
i )2

]
.

(21)

All the quantities in Equation (21) are positive, except for
the difference in the square parentheses; therefore, under
the above-mentioned assumptions and notations, mCr

i,i (t) −
mCR

i,i (t) >0 if and only if, from Equation (21):

vmax
i

xCr
i (t) · Γ ·∆vi

>
2 · rCr

i +∆r

rCr
i · (rCr

i +∆r)
− (rCr

i )2 · (γ − 1)

∆r · (rCr
i +∆r) · rCr

i

.

(22)
To simplify the expression in the inequality (22), the increase
in radius can be expressed as a percentage of the starting

coverage radius r, i.e, ∆r = β ·r, with 0 < β < 1. Substituting
into (22) and simplifying the second member, we write

vmax
i · rCr

i

xCr
i (t) · Γ ·∆vi

>
β + 2

β + 1
+

1− γ

β · (β + 1)
. (23)

One of the most important observations from the present study
is that if this relationship is satisfied, then the probability
of remaining on the same road ri (mC

i,i(t)) decreases if the
coverage is extended. By contrast, if the coverage radius is
reduced (i.e., shortening the length of the roads in question),
then the evaluated probability of remaining on the current road
under the coverage of C increases. Before it is assumed that
the inequality (23) is always satisfied, some analysis must be
done. Recalling that ∆r = β · rCr

i , where (0 < β < 1), and
xCR
i (t)=γ·xCr

i (t), where γ ≥1 =⇒ ∆xi(t) = xCr
i (t)·(γ−1),

it is easy to verify that the relationship between γ and β derives
from

∆r

r
·
[
∆r · θCr

i (t)
]
= (γ − 1) · xCr

i (t), (24)

where the ratio (∆r)/r is the probability of finding new cars
on the new road segment under coverage, ∆r · θCr

i (t) is the
number of probable vehicles on the new road segment, and
(γ − 1) · xCr

i (t) is the increase in vehicle numbers. The latter
expression can be simplified to

β2 =
γ − 1

γ
, or γ =

1

1− β2
, (25)

which concurs with the definitions of α and β. Substituting
the expression of γ into (23), it becomes

vmax
i · rCr

i

xCr
i (t) · Γ ·∆vi

>
1

β + 1
·
[
β2 · (β + 2)− 2

β2 − 1

]
. (26)

By indicating the second member of inequality (26) with the
Lower Bound (LB(β)), we observe that limβ→0+ LB(β) = 2
and limβ→1− LB(β) = −∞. Figure 10 illustrates the trend

Fig. 10: Trend of the second member in inequality (26).

of LB(β), where the left and right limits are respected, the
function is concave, and the trend is decreasing (zero is
reached for β = 0.839282, then the function assumes negatives
values). Now, the first member of inequality (26) must be
evaluated. A preliminary view of the effect on the trend of



the first member of the inequality (26) is given in Figure 11,
and a deeper analysis is presented in Section IV. Figure 11

Fig. 11: Trend of the first member of the inequality (26), for
rCr
i =1km and max{θCr

i = 0.9}.

shows the values of LB(β) in the function of β (red dotted
lines) and the values of the first member of (26) for different
values of xCr

i and ∆vi (the graph is magnified on the y axis
for easier readability), for a fixed value of (rCr

i ) of 1 km
(Γ = 4.5 m). At a lower ∆vi, the first member is always
greater than LB(β), independently of the increasing radius
parameter β. For denser roads, the trend of the first member
is decreasing, becoming significant at a higher ∆vi (e.g., ri is
not properly straight). When the road is highly populated with
vehicles and ∆vi is high, the probability of changing roads
increases (independently of the considered parameters).

E. Next Cell Prediction Error and Coverage Radius: What
Happens in Small Cells?

From the above, we now derive the final and possibly
most useful relationship regarding the qualitative analysis of
mobility prediction errors in cellular networks. Using the
equations above, we derive the LCrxLCr matrix MCr (t∗)
for each time instant t∗ and where each element mCr

i,j (t
∗)

represents the probability of passing from road ri to road rj
in the time interval [t∗, t∗ +∆t] (∆t << 0). Let us examine
the i-th row of MCr (t∗), MCr

i (t∗), at the time instant t∗.

Fig. 12: Example of the best/worst prediction scenario.

Figure 12 illustrates the best and worst cases of the com-
position of ri ∈ RD in relation to the probability of changing
roads. In the best (ideal) case, only one element of the i-th row
is different from zero (ideally, only mCr

i,i (t
∗) = 1 ̸= 0), namely

each vehicle remains on a particular road (i.e., roads are not
reachable from ri). In the worst case, there is no preferred
direction of movement, and the choice of road is random (i.e.,
a discrete uniform distribution is obtained for each element of
the row; LCr

=5 in the illustration). To calculate the probability
of an error in predicting the next road/cell, independently of
any predictor for determining the future directions of a moving
host inside a cell [8], [9], we recall the general expression of
the variance σ2

i for the elements of MCr
i (t∗):

σ2
i (t

∗) =
1

LCr − 1
·
LCr∑
j=1

[
µi(t

∗)−mCr
i,j (t

∗)
]2

, (27)

where

µi(t
∗) =

1

LCr

·
LCr∑
j=1

mCr
i,j (t

∗) =
1

LCr

, (28)

since
∑LCr

j=1 mCr
i,j (t

∗) = 1 by definition, ∀i = 1, ..., LCr (Eq.
(14)). It is clear that in the best case, σ2

i = 1/LCr
, while in the

worst case, σ2
i = 0 (the row elements are all the same). In the

best case, the prediction error is null (i.e, only one possibility
to exit the coverage cell on the same road). In the worst case,
the prediction error reaches its maximum since all possible
events have the same probability (i.e., uniform distribution). To
derive and analyze the trend of σ2

i (in addition to the prediction
error), we assume that (among all the possible combinations)

MCr
i (t∗) =[
∆LC

LCr
− 1

,
∆LC

LCr
− 1

, ..., 1−∆LC ,
∆LCr

LC − 1
, ...,

∆LC

LCr
− 1

]
,

(29)

where 0 ≤ ∆LC ≤ 1 − 1/LCr
. Therefore, when

∆LC → 0+, σ2
i (t

∗) → 1/LCr
and when ∆LC → (1 −

1/LCr )
−, σ2

i (t
∗) → 0. Using the structure of MCr

i (t∗) in (29),
Equation (27) becomes

σ2
i (t

∗) =
1

LCr · (LCr − 1)
·
{
[1− LCr · (1−∆LC)]

2
+

+
1

LCr
· (LCr

− 1)
· [LCr

· (1−∆LC)− 1]
2

}
.

(30)

Figure 13 illustrates the trend as a function of ∆LCr and
LC , and notably, the shape is always the same (independent
of LCr

) and the limits are reached, as with Equation (30). At
this point, the qualitative trend of the next-cell prediction error
can be defined as a function of σ2

i (t
∗):

Perr

[
σ2
i (t

∗)
] def
=

LCr − 1

LCr

·
[
1− LCr · σ2

i (t
∗)
]
. (31)

Figure 14 illustrates the results for different values of σ2
i (t

∗)
and LCr

.
For the second main contribution of the current study, it

is demonstrated that if the radius of Cr extends to R, where
R = r+∆R, then the prediction error under certain conditions
also increases.



Fig. 13: Trend of MCr
i (t∗) variance as a function of LCr

and
∆LC (best case to worst case).

Fig. 14: Next-cell prediction error trend versus σ2
i (t

∗) and
LCr

.

Theorem 1 Let us generalize the results obtained from (29)
and (30). Given a coverage cell Cr, the set of RD of |RD| =
LCr

covered roads (LCr
≥ 1), a time instant t∗, and the values

of Perr[σ
2
i (t

∗)] defined in (31), where i = 1, ..., LCr , then an
extension of the coverage radius from r to R, where R =
r + ∆R and assuming that LCr

does not change, implies a
decrease in the diagonal elements mCr

i,i (t
∗) of MCr (t∗) and a

consequent increase of Perr[σ
2
i (t

∗)] if the relationship in (26)
is respected and if

∆Mi <
mCr

i,i (t
∗)

2
∀i = 1, ..., LCr

, (32)

where ∆Mi is the increase in the i-th diagonal element of
MCr (t∗) on row MCr

i (t∗).
Demonstration of Theorem 1: Satisfaction of the inequality

(26) implies that mCr
i,i (t

∗) > mCR
i,i (t

∗), i.e.,

mCr
i,i (t

∗) = mCR
i,i (t

∗) + ∆Mi, ∀i = 1, ..., LCr
, (33)

0 < ∆Mi < 1; but
∑LCr

j=1 mCr
i,j (t

∗) = 1 from (14), therefore
if

MCr
i (t∗) = [mCr

i,1(t
∗),mCr

i,2(t
∗), ..,mCr

i,i (t
∗), ..,mCr

i,LCr
(t∗)],

(34)

then

MCR
i (t∗) = [mCr

i,1(t
∗) + fi,1(∆Mi),m

Cr
i,2(t

∗) + fi,2(∆Mi), ...

...,mCr
i,i (t

∗)−∆Mi, ...,m
Cr

i,LCr
(t∗) + fi,LCr

(∆Mi)],

(35)

and

LCr∑
j=1,j ̸=i

fi,j(∆Mi)−∆Mi = 0, (36)

where the functions fi,j(·): (0, 1) → (0, 1), j =
1, ..., LCr

, j ̸= i, are strictly related to the road topology
under the coverage of Cr. Now, to evaluate the trend of
variances before and after extension of the radius, referring to
the definition in Equation (27) and assuming that the theorem
is valid, we write

σ2
i (t∗)

∣∣
Cr

− σ2
i (t∗)

∣∣
CR

> 0, (37)

which translates into

1

LCr
− 1

·
{[

1

LCr

−mCr
i,i (t

∗)

]2
+

+

LCr∑
j=1,j ̸=i

[
1

LCr

−mCr
i,j (t

∗)

]2}
>

1

LCr
− 1

·
{[

1

LCr

+

− (mCr
i,i (t

∗)−∆Mi)

]2
+

LCr∑
j=1,j ̸=i

[
1

LCr

+

− (mCr
i,j (t

∗) + fi,j(∆Mi))

]2}
.

(38)

Simplifying the terms and expanding the power operations,
we obtain

1

L2
Cr

− 2

LCr

·mCr
i,i (t

∗) + [mCr
i,i (t

∗)]2 +

LCr∑
j=1,j ̸=i

{
1

L2
Cr

+

− 2

LCr

·mCr
i,j (t

∗) + [mCr
i,j (t

∗)]2
}

>
1

L2
Cr

− 2

LCr

· [mCr
i,i (t

∗)+

−∆Mi] + [mCr
i,i (t

∗)−∆Mi]
2 +

LCr∑
j=1,j ̸=i

1

L2
Cr

− 2

LCr

·

[mCr
i,j (t

∗) + fi,j(∆Mi)] + [mCr
i,j (t

∗) + fi,j(∆Mi)]
2,

(39)

and again, simplifying the same terms and expanding the
power operations, we have



2

LCr

·∆Mi − 2 ·mCr
i,i (t

∗) ·∆Mi +∆2Mi −
LCr∑

j=1,j ̸=i

2

LCr

·

fi,j(∆Mi) + 2 ·
LCr∑

j=1,j ̸=i

mCr
i,j (t

∗) · f2
i,j(∆Mi)+

LCr∑
j=1,j ̸=i

f2
i,j(∆Mi) < 0,

(40)

which by Equation (36) becomes

LCr∑
j=1,j ̸=i

f2
i,j(∆Mi) + 2 ·

LCr∑
j=1,j ̸=i

mCr
i,j (t

∗) · f2
i,j(∆Mi) <

< 2 ·mCr
i,i (t

∗) ·∆Mi −∆2Mi.

(41)

Equation (41) can be rewritten as

LCr∑
j=1,j ̸=i

f2
i,j(∆Mi) + 2 ·

LCr∑
j=1,j ̸=i

mCr
i,j (t

∗) · f2
i,j(∆Mi)+

+

 LCr∑
j=1,j ̸=i

fi,j(∆Mi)

2

< 2 ·mCr
i,i (t

∗) ·∆Mi,

(42)

and, because 0 < fi,j(∆Mi) < 1,
∑LCr

j=1,j ̸=i f
2
i,j(∆Mi) <[∑LCr

j=1,j ̸=i fi,j(∆Mi)
]2

and
∑LCr

j=1,j ̸=i m
Cr
i,j (t

∗)·f2
i,j(∆Mi) <∑LCr

j=1,j ̸=i f
2
i,j(∆Mi) <

[∑LCr

j=1,j ̸=i fi,j(∆Mi)
]2

, the first
two terms in Equation (42) can be substituted with[∑LCr

j=1,j ̸=i fi,j(∆Mi)
]2

,
and we obtain LCr∑
j=1,j ̸=i

fi,j(∆Mi)

2

+ 2 ·

 LCr∑
j=1,j ̸=i

fi,j(∆Mi)

2

+

+

 LCr∑
j=1,j ̸=i

fi,j(∆Mi)

2

< 2 ·mCr
i,i (t

∗) ·∆Mi,

(43)

which leads to

4 ·

 LCr∑
j=1,j ̸=i

fi,j(∆Mi)

2

= 4 ·∆2Mi < 2 ·mCr
i,i (t

∗) ·∆Mi,

(44)

and hence,

∆Mi <
mCr

i,i (t
∗)

2
. (45)

IV. EXTENSIVE NUMERICAL ANALYSIS

In this section the theoretic proposal described above is
validated and assessed. To obtain a detailed set of simulations,
the following tasks were performed:

• Several maps were extracted from Open Street Map GUI
[33], exported in XML format, and used in SUMO [34]
to generate real traffic patterns;

• Using a dedicated MATLAB script, all maps were over-
laid with a cellular map of circular cell shapes that can
be configured in relation to the surrounding architecture.
To simplify the readability of the maps and not show cell
overlaps, Figures 15, 16, 17 depict hexagonal instead of
circular shapes;

• The same MATLAB script was extended to evaluate the
number of roads covered in each cell and to determine
the appropriate statistics for road occupancy, variance,
and theoretic prediction error;

• As examples of real predictive approaches, the Direction
Aware Static Predictor (DASP) described in [36] and the
User Mobility Profile with Trace Record Matrix (UMP-
TRM) from [37] were applied to compare the theoretic
and practical results.

The main results are presented below. First, several GAs
were selected from maps of Rome (Italy), New York (USA),
and Melbourne (Australia). Their dimensions were fixed to
approximately 1050 m x 1600 m, which represents almost
1.7 km2 in area. Each city represents a different road topology:
urban (high road density), residential (medium road density),
and suburban (low road density), as well as three coverage
radii r of 50 m, 75 m and 100 m. The coverage system’s
origin is set to the bottom left hand corner.

Figures 15, 16, 17 illustrate the coverage maps (urban cases)
for different values of r. Red cells were not evaluated for
statistics because vehicle movements in these cells do not ter-
minate correctly due to map boundaries. Table II summarizes
the Number of Cells (NCs) and value of LCr

for each cell in
the three maps above.

The summary in Table II indicates that the average number
of roads covered by a cell increases with larger radii: at
a radius of 50 m (Rome), the average LC50

is 1.7682; at
75 m (New York), the average LC75

is 2.4583; at 100 m
(Melbourne), the average LC75 is 2.925. Let us instead ex-
amine the mean LCr values for each map (Rome, New York,
Melbourne) and all possible coverage radii; Figure 18 plots the
LCr

pdfs and indicates that the probability of finding an empty
cell (no roads covered) decreases if the radius is increased
(empty cells, LCr = 0, also evident in the results given in
Table I for r = 50 m). The same trend can be observed in
the probability for only one road covered, while LCr

= 2
(independently of r) demonstrates an almost constant trend;
by contrast, the probability of covering a greater number of
roads (5 or 6) increases with larger radii. To observe the
result when a certain number of vehicles is present in each
GA, SUMO was configured to simulate a varying number
of moving vehicles, using the RandomTrips Python script



Fig. 15: Coverage map of Rome,
r = 50 m.

Fig. 16: Coverage map of New York,
r = 75 m.

Fig. 17: Coverage map of Melbourne,
r = 100 m.

TABLE II: Number of covered roads in each cell: Fig. 15 (Rome, dense, 220 cells, 50 m); Fig. 16 (New York, dense, 66 cells,
75 m); Fig. 17 (Melbourne, dense, 40 cells, 100 m).

Fig. 18: Trend of the LCr
pdf for different r, over the three

considered GAs.

with the attribute maxSpeed equal to 13.9 m/s (50 km/h) for
urban scenarios, 19.4 m/s (70 km/h) for residential scenarios,
and 25 m/s (90 km/h) for suburban scenarios. Simulation time
(per run) was fixed to 600 s (attribute e), and only cars were
tagged as mobile nodes, with the standard attribute vClass
equal to passenger (bitmask 6) and the length attribute set
to Γ = 4.5 m. Figure 19 graphs the distributions of road
lengths (not external to Cr, as in Def. 8, sub-section III-B),
for the three values of r and independently of the mobile
environment (urban, residential, suburban). The Kolmogorov-

Fig. 19: Road length probability densities for different cover-
age extents r.

Smirnov (KS) test [35] was applied to test goodness of fit
and evaluate the correctness of a Normal approximation of
these distributions. In this case, road length samples were
standardized and compared to a standard normal distribution,
always satisfying the test against the null hypothesis. Notably,
the higher the radius, the higher the variance and the lower
the number of different roads covered by a cell, because
if the GA is the same and the radius is increased, then
the probability of finding segments belonging to the same
road covered by different cells decreases. The mean and
standard deviation values for the three Gaussian distributions
are µ50 = 60.126 m, σ50 = 12.269 m, µ75 = 75.126 m,



σ75 = 21.877 m, µ100 = 105.11 m, σ100 = 25.367 m. The

Fig. 20: Average road occupancy after a simulation time of
600 seconds for three different GA categories and different
values of r.

results in Figure 20 assist in determining which arrival fre-
quency to select in SUMO to avoid road congestion, however
this phenomenon is also very important in assessing the
validity of the proposed theoretic model. The information in
Figure 20 indicates when congestion may occur in a typical
GA scenario and coverage extent: while the GA scenario
affects the congestion slope (in terms of road occupancy), the
coverage extent has an almost neutral effect. The RandomTrips
period parameter in SUMO was set to a variable arrival rate,
expressed in vehicles per second [veh/s]. Urban environments
have a more complicated and denser road topology and can
accommodate more vehicles; this capacity decreases in sparser
topologies (e.g., residential or suburban GAs, although the
maximum speed is higher). Using this data, the maximum
arrival rates were set to 3 [veh/s] for residential GAs, 6
[veh/s] for suburban GAs, and 10 [veh/s] for urban GAs. To
verify the theoretic trend of mCr

i,i (t) as defined in Equation
(14), several simulations were compiled for the arrival rate,
and hence also the function of θCr

i (t), and the results were
averaged for the overall set of cells in the system; Figure
21 plots the main trends. It is clear from these results that
the values of mC

i,i(t) are higher for sparser environments
(suburban or residential), and the resulting trends confirm that
travel along longer roads indicates a greater probability of
vehicles changing from those roads. The curves in Figure 20
confirm the expected result that the probability of remaining
on the same road decreases as congestion on the road increases
(high arrival rates), independently of the specific GA. In
addition, in scenarios with denser roads, the probability also
decreases as a consequence of a greater number of connected

roads (as in Definition 9 ri
C
⊗ rj). Regarding the coverage

range, the simulations confirm that mCr
i,i (t) decreases at larger

coverage radii; this suggests that under the selected simulation
parameters, the inequality (26) should be always verified. In
fact, the results in Figure 22 indicate that, by evaluating the
first member of (26) and averaging it over the total cells of the
system, the values of LB(β) are always respected (β = 0.5

Fig. 21: Average mCr
i,i (t) in a simulation time of 600 s for three

different GA categories (urban, vmax
i = 13.9 m/s; suburban,

vmax
i = 19.4 m/s; and residential, vmax

i = 25 m/s) and
different radii

.

Fig. 22: Average trend of the first member of inequality (26)
and related lower bounds (LBs).

for an increase in r from 50 m to 75 m, and β = 0.33 for an
increase in r from 75 m to 100 m). Simulations for a varying
arrival rate [veh/s] were performed based on the GA scenario
and the limits derived from the results in Figure 20. The results
were then normalized for the function θCr

i (t) to adjust each
scenario to a comparable level (according to the simulations,
congestion occurs at different times as a result of the differing
numbers of roads in each GA). Finally, simulations were
performed to analyze the relationship in (45), providing an
important result in the present study. We now examine the
diagonal elements of MCr (t). The averaged results (obtained
from the dynamics of each cell) are clearly shown. In the
graphs, ∆R is set to 15 m; for the GAs, the assumption of
a constant LCr is valid if ∆R < 16.4 m. Figure 23 graphs
the quantities involved in Equation (45), with a change in the
coverage extent from r = 50 m to R = 65 m, i.e., ∆R = 25 m.
Only urban areas were analyzed, with an arrival rate of 1 veh/s
(θ(t) at approx. 0.1 in each of the three GAs, as in the results
in Figure 20). The statistics were classified according to the
function of the number of roads covered (LCr ) by each cell.



Fig. 23: Average trend of the terms in inequality (45), with a
change in the coverage extent from 50 m to 65 m.

The horizontal axis represents the i-th index of the related
diagonal element; for example, LCr = 2 i = 1, 2, for
LCr

= 5 i = 1, 2, 3, 4, 5. It can be seen that the red upper
bounds (mCr

i,i /2) across the average are always respected,
given that the roads are never congested during the simulation
time. For reasons of limited space in the graph, the results for
higher θ(t) are not shown; however, it was observed that if
θ(t) increases to 0.6 (an arrival rate of 5 veh/s), the red upper-
bound is not always respected in the average. A worse trend is
observed when θ(t) increases to 0.85 (arrival rate of 8 veh/s).
For a complete illustration, the worst cases for residential and
suburban GAs are also shown. Figures 24 and 25 indicate

Fig. 24: Average trend of the terms in inequality (45), with a
change in the coverage extent from 50 m to 65 m.

that in all cases the inequality (45) is not respected across the
average. In order to compare the trend of the prediction error
in a real next-cell predictive model with the trend from the
proposed theoretic model, we take into account Equation (31),
in particular, the DASP algorithm of [36], without considering
the features of the NSIS protocol and the MIP service class
[36] and implementing only the algorithm with the aim of
evaluating the next-cell prediction for any active mobile host.
The same simplification was applied to the UMP-TRM (UMP)
of [37], which has implemented for the purpose of comparing
the proposed idea. Only the first handover event is taken into

Fig. 25: Average trend of the terms in inequality (45), with a
change in the coverage extent from 50 m to 65 m.

account, predicting only one cell (Ci1=1 for DASP and UMP).
Figure 26 shows the performance obtained with DASP, UMP
and the proposed model, averaged for the three urban maps
and cells (r = 50 m, 75 m, and 100 m), versus road occupancy
θ(t) (which varies with the vehicle arrival rate from 1 veh/s
to 10 veh/s). It is clear that the prediction error increases with
larger coverage extents and for higher values of θ(t). The
green and blue lines in the graph respectively represent the
DASP and UMP prediction errors for the first handover of the
active mobile hosts; the red lines represent an evaluation of
the quantity Perr (Eq. (31)) during simulation. For complete

Fig. 26: Prediction error for DASP, UMP-TRM, and the
proposed model (urban scenario) versus θ(t) and r.

results, the curves for residential and suburban GAs are also
shown (Figs. 27, 28). The trends in these graphs are the
same as in the graph in Figure 26, but the values generally
decrease because of the sparser topologies of the residential
and suburban scenarios.

V. CONCLUSIONS, DISCUSSION AND FUTURE WORKS

The current study proposes a novel, general model for
analyzing the trend of next-cell prediction errors as a function
of coverage cell extent in 5G and beyond vehicular cellular
networks. Using a theoretic model, the study demonstrated
the relationship between radius extent and prediction error for



Fig. 27: Prediction error for DASP and the proposed model
(residential scenario), versus θ(t) and r.

Fig. 28: Prediction error for DASP and the proposed model
(suburban scenario) versus θ(t) and r.

certain conditions and analyzed simulations of real geographic
areas of different character covered by small-cell network
architectures. The relationship between increasing accuracy
and shorter coverage extent was investigated and described in
detail. The results of the study indicate that proposed model
is suitable for both academic research (the application of ma-
chine learning, artificial intelligence and predictive models in
6G core architecture is a popular research area) and industrial
application (ICT companies can obtain next-cell prediction
accuracy data for road topologies in areas with network
coverage to assist with creating appropriate link budgets for
small-cell deployment and performance optimizations). Future
work will involve modifying the model by removing some
assumptions and incorporating additional traffic parameters,
such as the number of channels allocated to mobile hosts or
the time spent in a cell before handover.
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