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Abstract
This paper studies the effects that connectivity and centralisation have on the response
of interbank networks to external shocks that generate phenomena of default conta-
gion. We run numerical simulations of contagion processes on randomly generated
networks, characterised by different degrees of density and centralisation. Our main
findings show that the degree of robustness-yet-fragility of a network grows progres-
sively with both its degree of density or centralisation, although at different paces. We
also find that sparse and decentralised interbank networks are generally resilient to
small shocks, contrary to what so far believed. The degree of robustness-yet-fragility
of an interbank network determines its propensity to generate a too-many-to-fail prob-
lem. We argue that medium levels of density and high levels of centralisation prevent
the emergence of a too-many-to-fail issue for small and medium shocks whilst drasti-
cally creating the problem in the case of large shocks. Finally, our results shed some
light on the actual robustness-yet-fragility of the observed core-periphery national
interbank networks, highlighting the existing risk of systemic crises.
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1 Introduction andmotivation

In this paper, we investigate the relation between the degrees of density and cen-
tralisation of interbank networks1 and the scope of counterparty default contagion
induced in these networks by exogenous shocks of different magnitude. Networks of
interbank obligations arise in several contexts—such as payment systems, trading in
risk-sharing assets (e.g. CDS, CDO, etc.), cross-holding of liquid positions meant to
provide liquidity coinsurance, etc.While, on the one hand, these interbank claims stem
from lucrative trading opportunities and risk-sharing activities, on the other hand, they
become channels of direct balance-sheet contagion in case of bankruptcy of one or
more banks.2 The scale of the default cascade, if any, occurring in an interbank net-
work following an insolvency shock depends on both the topology of the network and
the magnitude of the shock. No network topology is the most resilient to all possible
shocks. Densely connected interbank networks, and highly centralised ones, appear
robust-yet-fragile to shocks. They are capable of absorbing small shocks, inducing
no contagion at all, while they cause exhaustive systemic crises (complete default
contagion) if hit by large enough shocks. Conversely, the decentralised and minimally
connected ring networks display the opposite feature; they are vulnerable-yet-resilient
to shocks.3 Ring networks are exposed to episodes of contagion of limited scope if
hit by small shocks, while they appear resilient to systemic crises, even in case of
large shocks. These properties have been established, with analytical methods, for the
stylised complete,4 star and ring interbank networks.5 The rationale of these results
is that, in both the complete and the star networks, the losses that defaulting banks
transmit to their creditors are evenly spread among all banks in the network. In this
way, the capacity of each bank to absorb losses is fully exploited; hence either all
banks survive, or they all default together in the wake of a shock. The opposite occurs

1 The density of a network is the ratio between the number of links existing in the network and the
maximum possible number of links that the network can have (i.e., n(n − 1) in a network with n nodes).
The centralisation of a network is usuallymeasured by theFreemangraph centralization index, that expresses
the degree of inequality or variance in the centrality of nodes in a network as a percentage of that of a perfect
star network of the same size.
2 Direct balance-sheet contagion, also known as counterparty contagion, results from the transmission of
losses from defaulting banks to creditor banks. It is considered one of the primary sources of systemic risk,
along with asset commonality and price-mediated contagion due to fire sales.
3 In a ring interbank network (also known as ‘circle’) each bank is unilaterally connected to just two
neighbours, forming a circular network.
4 In a complete interbank network, each bank is directly connected to every other bank. A star network
consists of a centre bank and a set of peripheral banks, where the bank at the centre is connected with all
peripheral banks while the latter are not connected among themselves. See Sect. 3 for the formal definitions
of complete, ring and star interbank networks.
5 See Acemoglu et al. (2013, 2015a, 2015b), Cabrales et al. (2017), Castiglionesi and Eboli (2018) and
Eboli (2019), that are briefly discussed in Sect. 2.
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in ring networks, in which the losses coming from the default of a bank are borne
directly by its sole creditor neighbour.

The robustness-yet-fragility of complete and star networks, and the vulnerability-
yet-resiliency of ring networks, are formally revealed by their contagions thresholds.
The contagion threshold associated with an episode of contagion is the magnitude of
the smallest exogenous shock that causes that contagion.6 The first contagion threshold
of an interbank network, for instance, is equal to the value of the smallest external
shock capable of generating a secondary default, i.e. the bankruptcy of a bank that
is not hit by the exogenous shock directly and defaults because of the losses received
by its defaulting neighbours. The second contagion threshold is the smallest shock
capable of inducing two secondary defaults, and so on up to the final threshold of
contagion. The latter is the value of the smallest shock capable of causing the default
of all banks in the network. Both complete networks and star networks (when the
centre bank is in default) have a unique contagion threshold, i.e. their first and last
contagion thresholds coincide. Conversely, ring networks display a large gap between
the first and the last contagion threshold.

The responses to shocks of complete and star networks suggest that the effects
that connectivity and centralisation have on such stylised networks are also present
in more generic interbank networks. We run numerical simulations to investigate the
extent to which the robust-yet-fragile behaviour of an interbank network emerges and
grows as we progressively increase its degree of connectivity or centralisation. We
test the effects of connectivity by simulating contagion processes on a set of randomly
generated regular networks, with null centralisation, obtained starting from a ring
network and progressively adding links to it up to a complete network configuration. To
look at the effects of centralisation, we similarly build another set of networks; starting
again from a ring network, we progressively transform it into a star network, keeping
its connectivity at the minimum.We then perturb each of these network configurations
with the entire range of possible exogenous shocks, starting from the smallest possible
one (the value of a single asset held by a bank) to the largest one, i.e. the entire external
assets7 of the network as a whole. In so doing, we record the values taken on by
the sequence of contagion thresholds, that is, the values of the progressively larger
shocks that cause progressively larger clusters of secondary defaults in the networks
at hand. Finally, we evaluate the degree of robustness-yet-fragility of the networks
using twomeasures of the obtained distributions of their contagion thresholds: the gap
between the first and the last thresholds and the dispersion of the distribution of the
thresholds. The smaller the gap between first and last contagion thresholds and the
more concentrated the distribution of the thresholds, the more the network is robust-
yet-fragile to shocks. The results we obtain show that the robustness-yet-fragility of
interbank networks grows in a markedly progressive fashion both with density and
with centralisation, but at rather different paces.

The contextual occurrence of clusters of banks’ defaults can create the known
‘too-many-to-fail’ problem. When the number of jointly failing banks is significant,

6 The characterisation of contagion thresholds to evaluate the stability of interbank networks is customary
in the literature. See, inter alia, Acemoglu et al. (2013, 2015a, 2015b), Cabrales et al. (2017), Glasserman
and Young (2015), Tanna et al. (2020), Castiglionesi and Eboli (2018).
7 As opposed to the intra-networks assets and liabilities, cross-held by the banks in a network.
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authorities cannot allow liquidations or arrange bail-ins, and costly public bail-out’s
become unavoidable and foreseeable. The predisposition of an interbank network to
cause a ‘too-many-to-fail’ problem through direct contagion, under different shock
scenarios, depends on its degree of robustness-yet-fragility. The latter determines the
amplification of the defaults, if any, due to contagion following a shock. If the scope of
contagion—i.e., the number of secondary defaults—is sufficiently large with respect
to the ‘seeds’ of contagion—the primary defaults—then the authorities face a ‘too-
many-to-fail’ problem. The amplification in the number of defaulting banks forces
the authorities to prevent contagion, bailing out the banks directly hit by the exoge-
nous shock (primary defaults). We use the ratio between the secondary and primary
defaults obtained in our simulations to measure the increase in bankruptcies due to
contagion in different network configurations and shocks. Looking at this ratio, we
shed some light on the conditions under which direct contagion in interbank networks
can generate a ‘too-many-to-fail’ situation depending on their degrees of connectivity
and centralisation.

Finally, our results shed some light on the actual degree of robustness-yet-fragility
of the cores of the observed core-periphery interbank networks formed by national
banking systems. According to several empirical estimates, the latter resemble regular
networks with medium/high density. Our simulations show that such a density is
sufficient to render the observed cores highly robust-yet-fragile. We discuss the policy
implications that stem from this finding.

Our contribution presents some novelties with respect to the existing literature on
financial contagion in interbank networks. We are the first to evaluate the degree of
robustness-yet-fragility of interbank networks and, in so doing, we are the first to
run simulations of contagion processes that control for all possible magnitudes of
an exogenous shock. Second, we are among the first who investigate the effects that
different degrees of centralisation of interbank networks have on their exposure to
contagion. Third, our results shed some light on the vulnerable-yet-resilient response
to shocks of bilateral ring networks and of sparse regular networks, an issue so far
neglected in the literature.8 Moreover, we are among the first to look at the too-
many-to-fail issue from the viewpoint of counterparty contagion, whereas most of the
literature focused so far on the strategic choice of portfolio similarities, on the part of
banks, that can increase the likelihood of public bail-outs.

The paper is organised as follows. In the next section, we review of the literature
related to the present work. In Sect. 3, we introduce the network model used in this
paper and describe the analytic results concerning the contagion thresholds of com-
plete, star and ring financial networks. In Sect. 4 we present the methodology and the
results of the numerical simulations that we run to investigate the relation between
the degree of connectivity and centralization of interbank networks and their degree
of robustness-yet-fragility. Section 5 discusses the ‘too-many-to-fail’ issue arising
from interbank financial obligations and its relation with the robustness-yet-fragility

8 As discussed in the next section, the existing computational simulations that study contagion in sparse
regular networks—e.g., Nier et al. (2007) and Lorenz et al. (2009)—do not control for shocks of different
size, hence they miss their vulnerable-yet-resilient nature. The analytic studies of contagion that highligth
this feature of ring networks—e.g.,Acemoglu et al. (2015a, b) andEboli (2019)—focus only on the unilateral
ring, because of the untractability of the bilateral ring and of other sparse regular networks.
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property of interbank networks. In Sect. 6, we consider the robustness-yet-fragility of
the national core-periphery banking networks and discuss some policy implications.
Conclusions are drawn in Sect. 7.

2 Related literature

The present paper is related to the many works on systemic risk in financial networks
that consider the effects that the density of a network has on the dynamics of contagion.
The early literature on financial contagion achieved contrasting results on this issue.
Allen and Gale (2000) argue that a complete interbank network is more robust than
an incomplete network, i.e., a network in which not all banks are directly connected.
Similarly, Freixas et al. (2000) show that diversified lending in the interbank market
(that generates a densely connected network) renders the system more resilient to
shocks and less exposed to ‘market discipline’, which is the failure of a bank that
would be insolvent without interbank lending. Giesecke and Weber (2006) also find
that the higher the density of a network, the smaller the risk of contagion. Conversely,
Brusco and Castiglionesi (2007) achieve opposite results. These authors argue that the
complete network structure bears the largest risk of contagion, while an incomplete
cycle-shaped structure increases the banking system’s stability. Nier et al. (2007) run
numerical simulations of contagion scenarios varying the connectivity of a network
and find a non-monotonic effect of density on contagion. They obtain an ‘M-shaped’
curve of bankruptcies: for low levels of connectivity, contagion increases as density
increases, then contagion decreases for high levels of connectivity. Lorenz et al. (2009)
obtain the opposite result; they show that the scope of contagion is minimal when the
level of density is intermediate.

The main limitation of these early contributions lies in the fact that they did not
control for the possibility that the response of a network to a shock can depend on the
size of the shock. Andrew Haldane was the first to raise this issue, with his known
conjecture: “[...] interconnected networks exhibit a knife-edge, or tipping point, prop-
erty. Within a certain range, connections serve as a shock-absorber. The system acts
as a mutual insurance device with disturbances dispersed and dissipated. Connec-
tivity engenders robustness. Risk-sharing—diversification—prevails. But beyond a
certain range, the system can flip the wrong side of the knife-edge. Interconnections
serve as shock-amplifiers, not dampeners, as losses cascade. The system acts not
as a mutual insurance device but as a mutual incendiary device. Risk-spreading—
fragility—prevails.” [Haldane (2009), page 5]. Ladley (2013) is the first to embed this
view in a numerical investigation of contagion in interbank networks. The author finds
that the ‘optimal’ degree of connectivity, i.e. the one that minimises contagion, varies
with shock size. As the author says: “For small shocks a more highly connected mar-
ket reduces bankruptcies, limiting the spread of contagion by spreading the impact of
failures. In contrast for larger shocks the pattern is reversed, more sparsely connected
markets are less susceptible to contagion. For intermediate shock sizes, moderately
connected markets may be the most vulnerable.” [Ladley (2013), page 1398]. This
author evaluates the contagious effects of a limited range of exogenous shocks, i.e.
from 0.01 to 0.17 probability of failure of each project (asset) funded by the banks in
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the network. In this respect, our work is different; our simulations take into account
all possible values that an exogenous solvency shock can take on. Nonetheless, our
results resonate with the ones obtained by Ladley (2013).9

Haldane’s conjecture about the robust-yet-fragile nature of highly dense networks
has been proved by Acemoglu et al. (2013, 2015a, 2015b) and Eboli (2019) with
analytical methods. These authors show that a complete network has a phase-transition
point: for shocks of magnitude up to a certain threshold, this type of network is capable
to absorb the shock inducing no default contagion at all while, for shocks larger that
such a threshold, all the banks in this network go bankrupt together. These authors
also show that ring networks behave in the opposite way. They are vulnerable with
respect to episodes of local contagion, caused by relatively small shocks, while they
are less exposed than complete networks to the risk of a complete system melt down.
Similar results are obtained by Cabrales et al. (2017), who compare the stability of
network structures composed of completely connected components or, alternatively,
ring components.

While the effects of connectivity on contagion have been largely studied, the same
cannot be said about the effects of the degree of centralisation of a financial network
on its exposure to systemic risk. Eboli (2019) and Castiglionesi and Eboli (2018) show
that star networks also display robust-yet-fragile behaviour in response to exogenous
shocks.

The present paper is the first to study the contagiousness of interbank networks with
varying degrees of centralisation, investigating the effects of the transition from the
vulnerable-yet-resilient ring networks to the robust-yet-fragile star networks. The only
other paper that uses numerical simulations to evaluate the stability of networks with
different degrees of centralisation is Gofman (2017). This author studies efficiency
and stability of core-periphery interbank networks with (seven) different degrees of
the centrality of the core banks, i.e. with caps to the number of peripheral banks that
can be connected to a single core bank.10 The author finds that as the core-periphery
connections of core banks are progressively limited, a core-periphery networkbecomes
more stable at first and then rapidly less stable.

3 The interbank network and its contagion thresholds

This section presents the interbank network model that we use in our experiments
and the analytic results concerning the contagion thresholds of complete, star and ring
networks.

9 A direct comparison is hindered by the fact that the two papers adopt different methodologies. For his
simulations, Ladley uses a partial equilibrium model with heterogeneous banks, borrowers and depositors
in which banks interact through an inter-bank market.
10 Gofman (2017) intends to evaluate the effects of policies that aim to improve financial stability by
imposing limits in terms of the number of connections in the interbank market.
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3.1 The interbank network and the contagion process

As is customary, wemodel an interbank network as a connected, directed andweighted
graph N := (�,�), where the node ωi (i = 1, 2, ..., n) in � represents a bank and
the links in � ⊆ �2 represent the interbank deposits that connect the members of �

among themselves. The liabilities of a bank ωi in � comprise customers (households)
deposits, hi, interbank deposits, di = ∑

j di j , where di j is the sum that bank ωi owes
to bank ω j , and its own equity ei . On the asset side, a bank ωi holds long-term assets,
ai , which are liabilities of agents that do not belong to �, and interbank deposits
ci = ∑

j ci j . The budget identity of a bank is: ai + ci = hi + di + ei . A link li j ∈ �

represents the interbank obligations, and its direction goes from the debtor bank ωi to
the creditor bank ω j . The weight of the link li j is equal to the amount of money c ji
that bank ω j has deposited in bank ωi .

To model the process of financial contagion in an interbank network, we perturb
the network with an exogenous shock that consists of a loss of value of some of the
external exposures ai . Let δi ∈ [0, 1] be a parameter that measures the fraction of
the value of the asset ai which is lost upon the occurrence of shock. If δi > 0, then
the bank ωi suffers a loss equal to δi ai . An exogenous shock is a vector of scalars
[δi ai ], i ∈ �, where at least one δi > 0, and its magnitude is σ = ∑

� δi ai .
The propagation across N of the losses caused by an exogenous shock is governed

by the rules of limited liability, debt priority and pro-rata reimbursement of creditors.
When a bank suffers a loss, this loss is first absorbed by its net worth ei . Only the
residual loss, if any, is passed over to its creditors. The losses that are offset by the
equity of the banks in � are born by households, in their capacity as shareholders.
This property is represented by an absorption function

βi (λi ) = min

(
λi

ei
, 1

)

(1)

associated to each bank in �,where λi is the total loss born by the i-th bank, received
from source nodes and/or from other banks in �. The variable βi ∈ (0, 1) measures
the share of net worth lost by a bank. If a bank ωi receives a positive flow of losses, it
absorbs an amount of losses equal to βi ei .

If the loss λi suffered byωi is larger than its net worth, i.e. larger than its absorption
capacity, then this bank is insolvent and sends the residual loss, λi −ei , to its creditors.
For each bank in �, let

bi (λi ) = max

(

0,
λi − ei
hi + di

)

(2)

be its loss-given-default function. The variable bi ∈ [0, 1]measures the fraction of the
i-th bank’s debt that is not recovered through liquidation, i.e., the loss-given-default
ratio. It is equal to zero if the i-th bank is solvent, while it assumes a strictly positive
value if the bank defaults. In this case, the assets of the insolvent bank are liquidated
and its creditors get a pro-rata refund.When the i-th bank defaults, households receive
a loss equal to bi hi , while a bank ω j which is a creditor of bank ωi receives from the
latter a loss equal to bidi j . The loss λi born by a bank in � is the sum of the losses, if
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any, received through its external and internal exposures:

λi = δi ai +
∑

j
b j d ji .

Upon the occurrence of a shock, a flow of losses enters into the system. The above-
defined absorption and loss-given-default functions map the propagation of these
losses across the network by assigning a positive amount of losses to each link in
N . In so doing, they define the contagion function in N , i.e. the mapping that asso-
ciates to an external shock σ the consequent propagation of losses and defaults across
N . Formally, a contagion in a network N is a map f : (L�, L A, LT , LH ) → R

+
such that: f (lki ) = bkaki , f (li j ) = bidi j , f (liH ) = bi hi , f (liT ) = βi ei .

In our numerical simulations, we compute f with the following algorithm. Let us
add a superscript t = 1, 2, 3, ... to the variables involved in the computation—namely
λti , b

t
i , β

t
i—to indicate the value taken on by these variables at each iteration of the

algorithm. Let
[λi ]1×n = [δi ai ]1×n + [

b j
]
1×n

[
d ji

]
n×n

be the vector of the losses born by the banks in � and let �− = {ωi |λi − ei > 0} be
the set of defaulting banks, if any. Then:

1. For a given value assignment of the vector [δi ], compute [λti ] = [δi ai ] +[
bt−1
j

] [
d ji

]
, starting with t = 1 and setting b0j = 0;

2. compute [β t
i ] = [βi (λ

t
i )] and [bti ] = [bi (λti )] according to (1) and (2);

3. if
∑

� β t
i ei + ∑

� bti hi <
∑

� δi ai , then start again from point 1; if
∑

� β t
i ei +∑

� bti hi = ∑
� δi ai , then compute |�−| and stop.

The algorithm stops when the amount of losses endured (absorbed) by shareholders
and debtholders of defaulting banks equals the value of the initial shock. It is so because
we have neither bankruptcy costs nor fire sales of assets in our model, i.e. no further
injections of losses into the network beyond the exogenous shock. Consequently, the
circulation of losses among the banks in N stops when the shock σ is absorbed entirely
by the portfolios of debtholders and final claimants of the banks in N .

For our purposes, we distinguish the defaulting banks in�− in two groups. We call
primary defaults the banks that default because of the exogenous loss of value of their
assets ai , i.e. the banks in the set�−

p = {ωi |δai − ei > 0} .We call secondary defaults
the banks that default because of the endogenous loss of value of their intra-network
assets ci , i.e. the banks in the set �−

s = �−\�−
p .

Formally, given an interbank network N and an episode of contagion in N , defined
as a non empty set of secondary defaults �−

s , the corresponding contagion threshold
is the smallest exogenous shock σ that is capable of causing this set of secondary
defaults.
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3.2 First and final contagion thresholds of complete, star and ring networks

We now briefly present a set of analytic results that establish the robust-yet-fragile
nature of complete and star networks and the vulnerable-yet-resilient nature of circular
networks.11

In a complete interbank network, each bank places a deposit in every other bank:
�c = {

li j |i �= j; i, j = 1, ..., n
}
.Let Nc = {�,�c}be a complete interbanknetwork

where all the links in �c have the same weight di j . In other words, each bank in Nc

receives interbank deposits equal to di j form each other bank in the network, and
evenly allocates its own interbank deposits among all other banks in the network.
We have that in a complete network Nc the first threshold and the final threshold of
contagion coincide and are equal to

τ c = nei + ei
hi
di j

= E + (n − 1)ei
hi
di

= E

(

1 + 1

φ

)

− ei
1

φ
. (3)

where E = ∑n
i=1 ei is the total equity of the banks in �, and φ = di/hi is the ratio

between the interbank debt and the external debt of a bank. This result shows that
the complete network, on one hand, is entirely resilient to relatively small shocks,
i.e. faces no defaults for shocks smaller than τ c. On the other hand, for large enough
shocks—larger than or equal to τ c—this network induces a complete system melt
down. The same principle applies to the star network, as we now show.

A star interbank network consists of a centre bank, ωc, that places a deposit in
each of the n − 1 peripheral banks which, in turn, place their deposits in ωc and
exchange no deposits among themselves. Let Ns = {�,�s} be a star interbank
network, i.e. �s = {lic, lci |i ∈ �\ωc}, in which all links in �s have the same weight,
i.e., dcp = dpc = dp. Let ec and ep be the amount of equity, and hc and h p be
the amount of customer deposits, held by the centre bank and a peripheral bank,
respectively. In this network, the contagion thresholds depend on how the exogenous
shock is allocated between the centre and the periphery of the network. We have three
possible cases:

(1) the shock is idiosyncratic and hits only the centre bank ωc. In this case, the first
and the final thresholds of a star network Ns coincide and are equal to:

τ s = (n − 1)ep + ec + ep
hc
dp

= E + ep
hc
dp

. (4)

(2) the shock σ is borne by ωc, for an amount σc < τ s, and by some peripheral nodes.
Also in this case the first and the final thresholds of the network at hand coincide
and are equal to:

τ̃ s =
[

(n − 1)ep + ec + ep
hc
dp

] (

1 + h p

dp

)

− σc
h p

dp

11 These results are demonstrated by Castiglionesi and Eboli (2018) and Eboli (2019).
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= τ s + (τ s − σc)
h p

dp
= τ s

(

1 + 1

φ

)

− σc
1

φ
. (5)

(3) the shock is borne by peripheral nodes only. In this case, the first and the final
thresholds of contagion in a star network Ns are, respectively, equal to

τ s1 = mep + ec

(

1 + 1

φ

)

(6)

where m is the minimum number of peripheral defaults capable of inducing the
default of the centre bank,12 and

τ s2 = τ sf =
[

(n − 1)ep + ec + ep
hc
dp

] (

1 + h p

dp

)

= τ s
(

1 + 1

φ

)

. (7)

Note that, in this case, the second contagion threshold (i.e. the smallest shock,
larger than τ s1 , that can cause further defaults) is equal to the final threshold. Thus,
in this network, the first and final contagion thresholds coincide, if the centre bank
is in the set of primary defaults. In the opposite case, the second and the final
thresholds coincide. Of course, this implies that all other intermediate contagion
thresholds are equal to the final one.

The first contagion threshold shows that a small shock, σ ≥ τ s1 , is sufficient to
induce the default of the centre bank, ωc. Thus, a star network is exposed to a limited
default contagion for relatively small shocks borne by the peripheral banks. On the
other hand, Ns has a robust-yet-fragile response to large shocks. During a contagion
process, the centre bank in Ns acts as a hub and distributes losses among the peripheral
banks in an even fashion. Hence, either all the peripheral banks default together—if
σ is larger than or equal to τ s , τ̃ s or τ s2—or all the peripheral banks, that are not in
the set of primary defaults, remain solvent.

The response to external shocks of a ring network is rather different from the ones
displayed by complete and star networks. In a ring network (also known as a unilateral
circle orwheel), each bank is linked to one creditor andonedebtor bank.A ring network
is formed by a chain of obligations that forms a closed path in which the start node
and the final node are the same. Formally, a ring network No = {�,�o} is such that
L� = {

li j |i = 1, 2, ..., n; j = i + 1 for i = 1, ..., n− 1, and j = 1 for i = n} . The
ring network has an entire range of final thresholds of contagion because the latter
depend on the allocation of external shocks among the banks in the network. Due to
problems of tractability, only the smallest and the largest possible final thresholds of
this network can be characterised, besides its first threshold of contagion. We have
that, in a ring network No, (i) the first threshold of contagion is equal to

τ o1 = ei

(

2 + hi
di

)

, (8)

12 In a star networkwhere the centre bank is as large as a peripheral bank,we havem = 1.More generally,m

is the smallest integer such that:m ≥ ε+εφ(n−1))
1−ε

1+φ
φ

= n
[

ε(1+φ)
1−ε

]
+ ε(1−φ2)

φ(1−ε)
, where ε is the equity/total

assets ratio, ε = ei /(ai + ci ).
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whereas (ii) the smallest possible final threshold is equal to

τ of = ai · n/k, (9)

and (iii) the largest possible final threshold is equal to

τ̂ of = ai (n − k̂ + 1), (10)

The integer k is the largest number of defaults that an idiosyncratic shock hitting a
bank ωi in No, i.e. σ = ai , generates in this network.13 The worst case scenario, i.e.
the smallest possible final contagion threshold in No, is achieved when the primary
defaults—the seeds of contagion—are disposed along the ring at regular intervals of
length k. This disposition maximises the scope of contagion of each single primary
default. If this most contagious disposition of primary defaults occurs, n/k primary
defaults are sufficient to induce the default of all other banks in the network.14

The integer k̂ − 1, in turn, is the largest number of secondary defaults induced in
No by a chain (of any length) of primary defaults. 15 This best case scenario, i.e. the
largest possible final contagion threshold in No, occurs when the primary defaults
form an uninterrupted sequence (a chain) along the ring network. k̂ − 1 is the largest
possible number of secondary defaults induced by this type of shock, independently
of the length of the chain of primary defaults. In this scenario, the cardinality of the
set of primary defaults must be n − k̂ + 1 to induce the default of the remaining k̂ − 1
banks.16

Concerning large shocks, the ring is the most resilient network among the three
considered here.We have the following ranking in terms of final thresholds: τ s ≤ τ c ≈
τ̃ s < τ sf < τ of < τ̂ of . That is, both the smallest and the largest final contagion threshold
of No are larger than the final thresholds of the complete and the star networks.
Therefore, a ring network is vulnerable-yet-resilient in as much as it is exposed to
episodes of local contagion if hit by relatively small shocks while being less exposed
than the star and the complete networks to the risk of a complete system meltdown.

13 k is the largest integer such that

k + 2(k − 1)

[(

1 + hi
di

)k−1
− 1

]

≤ ai
ei

= 1 − ε

ε (1 + φ)
+ 1.

14 The scope of contagion of a single ‘seed’ in the ring network is rather limited. In a highly contagious
scenario with large interbank exposures, φ = 1, and a low equity/asset ratio, ε = 0.05, we have k = 2. We
have k = 3 for φ = 1 only with an equity/asset ratio as small as ε = 0.03.
15 k̂ is the largest integer such that

k̂ + 2(̂k − 1)

[(

1 + hi
di

)k̂−1
− 1

]

≤ ai + di
ei

= 1

ε
.

16 In a scenario with large interbank exposures, φ = 1, and a low equity/asset ratio, ε = 0.05, we have
k̂ = 3, whereas k = 2. It can be computationally checked that k̂ > k for all pairs (ε, φ). It follows that
τ̂o2 > τo2 for n > 4.
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Finally, it is worth remarking that the gap between the minimum and the maximum
possible final threshold of a ring network is far from negligible and is growing in n. In
other words, the analytic results do not help much in predicting the average magnitude
of the final threshold of a ring network.Moreover, these results refer to the ring network
only, i.e. the unilateral circle in which each bank is connected to its neighbours by one
incoming link and one outgoing link. No analytic results are available for the bilateral
circle, in which each bank cross-holds liquid positions with both its neighbours. Thus,
the numerical simulations on ring networks that we present shed light on the expected
responseof these networks to a randomly allocated exogenous shock and their exposure
to the risk of a systemic crisis.17

4 The numerical simulations

The analytic results presented in the previous section lead us to conjecture that the
robust-yet-fragile feature arises in an interbank network to the extent that it depends
on its degrees of density and centralisation. To characterise the scope of a network’s
robust-yet-fragile response to shocks, we look at its contagion thresholds. Indeed,
the degree of robustness-yet-fragility of a network depends on the distribution of its
contagion thresholds. As discussed in Sects. 4.1 and 4.2—and shown in 2, 5 and 8—the
more the distribution of the contagion thresholds is concentrated around a mean, the
more robust-yet-fragile the network. Equally, the more dispersed such distribution, the
more vulnerable-yet-resilient the network is. In our numerical experiments, we run a
set of Monte Carlo simulations M for each network configuration and record all the
contagion thresholds obtained with progressively increasing shocks, from first to last.
Then, we consider two measures of the dispersion of the thresholds’ distribution for
our purposes. First, we measure the mean gap between the first and the last contagion
thresholds as follows:

gapτ = 1

|M|
∑

i∈M
(τ f )i − (τ1)i (11)

The cardinality of the simulation set |M| indicates the numbers of simulation runs per
network configuration, while (τ f )i − (τ1)i is the threshold gap for the i-th simulation
run. Second, we survey the (weighted) standard deviation of the dispersion of the
distributions. The smaller the gap gapτ and the smaller the standard deviation of
thresholds obtained with a network configuration, the more the network is robust-yet-
fragile with respect to shocks.

To investigate these properties of financial networks in a neat fashion, we isolate
the effects of connectivity from the effects of centralisation and run two separate
experiments. In the first experiment, we simulate processes of default contagion in
networks with different degrees of connectivity, keeping the centralisation of these
networks at its minimum, i.e. zero. That is, we explore the response to shocks of the
class of regular networks, starting from the least dense one, the ring, and progressively
moving towards the densest member of this class, the complete network. In the second
set of experiments, we simulate default contagion in networks with different degrees

17 The ring network is the initial network configuration in the connectivity experiment presented in Sect. 4.1.
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of centralisation, keeping the density of these network at its minimum. In this case,
we record the behaviour of the contagion thresholds as we progressively transform a
ring network into a star network while keeping constant (and minimal) the number of
links in the networks.

We use a simulation engine specifically developed for the experiments at hand.18

The engine performs twodistinct tasks. First, it randomly generates interbank networks
according to a set of parameters that define: (i) the balance-sheet values of the banks
in the network, in particular, the capitalisation ratio, ε = ei/(ai + ci ); and the ratio
between the intra-network and the external liabilities of a bank, i.e. φ = di/hi ; and
(ii) the set of weighted links that connect the banks, i.e. the topology of the networks.
Second, the engine perturbs the randomly generated networks with an increasing
exogenous shock and records the defaults induced in each network by each magnitude
of the shock. We run the experiments with networks composed of 64 banks. In all
experiments we set the capitalisation ratio ε equal to 0, 1, while we run simulations
with four different values of the ratio φ-namely 0.2; 0.4; 0.6 and 0.8.19

4.1 The connectivity experiment

In this experiment, we test the effects of different degrees of density of a network
on its response to solvency shocks. To model increasing density, we start from a
ring network No and progressively transform it into a complete network Nc. The
former has the lowest degree of connectivity in the class of regular and connected
networks—n links connecting n nodes—while the latter is the densest network, with
n(n − 1) links for n nodes. This transformation is done in 63 steps. At each step, the
simulation engine increases of one unit the in-degree and the out-degree of each bank
in the network, adding n links to it and keeping it regular.20 In so doing, we ensured
that the centralisation of the randomly generated networks is kept null.21 Then the
simulation engine proceeds with the random allocation, among the sixty-four banks,
of a progressively increasing number of solvency shocks. This is done by randomly

18 The code of the simulation engine is available on request at https://github.com/bulentozel/SimFinNet.
See Ozel et al. (2018) for a detailed description of this device.
19 Empirical evidence shows that the capital ratio of banks, in different countries and across different
types of banks, is highly concentrated around a mean equal to 0.1. The Basel II accords recommend that
banks hold capital at least as large as 8% of its risk-weighted assets. Caccioli et al. (2014) collect data on
a large sample of U.S. commercial banks and find that “On average, the variable Capital is 10%, and its
standard deviation is 5.2%”. This finding is supported by the data collected by the World Bank, https://
data.worldbank.org/indicator/FB.BNK.CAPA.ZS?view=chart, that reports the average equity/asset ratios
of banks in all ‘Countries and Economies’.
Conversely, the empirical evidence on the magnitude of interbank exposures, hence on the values of the
ratio φ, is not as neat and abundant. Perillo and Battiston (2020), who use data from the European Central
Bank Statistical Warehouse, find that euro area financial institutions’ assets comprise a 33% of reported
intra-network assets. This value, coupled with an equity/asset ratio of 0.1, indicates a φ ratio roughly equal
to 0.4. We also control for φ equal to 0.2; 0.6 and 0.8 because the accuracy of this datum, based on reported
claims only, is only a proxy for the partly unobservable interbank financial obligations.
20 A directed graph is regular if all nodes have the same degree and the indegree and outdegree of each
node are equal to each other.
21 We did so by generating networks that are distance regular. In the class of distance-regular graphs, all
nodes have the same degree of centrality, by any measure of centrality.

123

https://github.com/bulentozel/SimFinNet
https://data.worldbank.org/indicator/FB.BNK.CAPA.ZS?view=chart
https://data.worldbank.org/indicator/FB.BNK.CAPA.ZS?view=chart


M. Eboli et al.

(a) (b)

Fig. 1 Thresholds in the case of the connectivity experiment

setting to zero the value of the external assets held by a bank, two banks, three banks
and so forth up to the entire stock of external assets held by the network as a whole. In
other words, in each simulation, the engine randomly selects a set of primary defaults
and progressively increases the cardinality of this set of one unit, from 1 to 64. To
obtain a sufficiently large sample, the engine produces 1000 different seeds of random
shocks for each pair (network configuration, shock magnitude). The results shown
here and in the rest of this section are obtained setting φ = 0.4. Figure 1a depicts the
distribution, yielded by this procedure, of the first and final contagion thresholds of
the 64 network configurations.22

The vertical axe of Fig. 1a measures the magnitude of the shock in terms of per-
centage of the total external assets A. The horizontal axe reports the 63 steps of the
transformation from ring (first column) to complete networks (last column). The first
column shows that the range of final contagion thresholds of the ring network lies
well above the unique contagion threshold of the complete network (where the latter
corresponds to 30 primary defaults). In the case at hand, with ε = 0.1 and φ = 0.4, we
have k = 2 and τ of = ai ·n/2, which means that the smallest final threshold of the ring
network corresponds to 32 primary defaults. In this experiment such a lower bound
is never achieved and the median final contagion threshold of the ring corresponds to
58 primary defaults out of 64 banks. This finding reinforces the conclusion drawn on
the basis of the analytic results shown in Sect. 3: the ring network is indeed highly
resilient to large shocks.

Figure 1a shows that the first and final thresholds of contagion converge in a neatly
progressive fashion as the density of the networks increases. The gap between these
two thresholds (Fig. 1b), computed as in Eq. (11), diminishes rapidly in the low range
of density, as the in-degree and out-degree of the nodes in the networks grow from 1
to 20 (out of a maximum of 63). Conversely, the gap declines at a slow pace in the
medium and high range of density. This shows that the robust-yet-fragile response
to shocks of a regular network becomes noticeable starting from medium levels of
connectivity.

22 As is customary in boxplots, the bottom and top of the boxes plot the first and third quartiles of the
distribution, while the band inside the box is the median, i.e. the second quartile. Outliers are depicted as
dots.
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Fig. 2 Distributionof the contagion thresholds for eachnetwork configuration in the connectivity experiment

We now look at the distribution of all the contagion thresholds, from first to final,
of the randomly generated networks. Figure 2 shows in three dimensions the distri-
bution of the (average) increments in secondary defaults induced by an increment
of the exogenous shock, for each network configuration. On the horizontal axes we
have the magnitude of the shock (number of primary defaults) and the steps of the
transformation of the ring network into the complete one, steps corresponding to 64
different degrees of connectivity. The vertical axe measures the growth of the scope
of contagion (in terms of average number of secondary defaults), if any, generated in
correspondence to a pair (shock, configuration). In other words, the vertical coordinate
measures the marginal contribution to default contagion that a given shock yields in
a given network configuration. Thus, the figure plots the distribution of the contagion
thresholds for each network configuration, starting from the ring network (degree of
connectivity 1) to the complete network (degree of connectivity 64).

The information contained in this plot is best explained taking the first network
configuration, the ring, as an example. The plot of its contagion thresholds appears as
a straight line, with a negative slope, that starts from a vertical coordinate equal to one.
The rationale for this result is the following. In the ring network, with φ = 0.4, all
random shocks consisting of a single primary default induce one secondary default.
Shocks composed of two randomprimary defaults not adjacent to one another generate
two secondary defaults. Conversely, these shocks yield just one secondary default if the
two primary defaults are adjacent.23 Thus, the average growth of secondary defaults,
obtained by enlarging the cardinality of the random sets of primary defaults from one
to two, is smaller than unity. This average growth is the value of the vertical coordinate

23 In a chain of primary default of length two in a ring network, the losses of the first bank in the chain are
partially absorbed by the external financers of the second bank in the chain. For this reason, with φ = 0.4,
two adjacent primary defaults cause no more than one secondary default.

123



M. Eboli et al.

Fig. 3 Standard deviation of the contagion thresholds obtained with each configuration of the networks in
the connectivity experiment

of the pair (shock 2, configuration 1). Similarly, shocks consisting of three primary
defaults induce three secondary defaults only if the random primary defaults do not
happen to be adjacent; otherwise, they induce just one secondary default. Hence, the
average increment of secondary defaults obtained perturbing the ring network with
shocks of size three is smaller than the one obtained with shocks of size two. By
the same token, in the case at hand, progressive augments of the shock size deliver
progressively smaller increments in the scope of contagion. This response to shocks,
however, is a peculiarity of the unilateral ring networks. We shall see in Sects. 4.2.1
(Fig. 5) and 4.2.2 (Fig. 8) that bilateral circular networks behave like the second
configuration in Fig. 2, i.e. they display the more general hill-shaped distribution of
thresholds. Moreover, and most importantly, Fig. 2 displays a clear and progressive
reductionof the dispersionof contagion thresholds associatedwith the growingdegrees
of density of the networks. Figure 3 shows the standard deviation of the contagion
thresholds obtained with each configuration of the networks.

The growth of the density of the networks progressively reduces the dispersion
of their contagion thresholds; the latter become closer to one another and finally all
collapse on the value of the single contagion threshold of the complete network, Nc.
As for the gap between the first and final thresholds, the plot is convex and decreases
markedly in correspondence of the initial, low levels of connectivity. Most of the
reduction of the standard deviation of the contagion thresholds occurs as the degree
of the banks in the networks grows from 1 to 30 (out of a maximum of 63).

4.2 The centralisation experiment

In this section, we present simulations of the response to solvency shocks of networks
characterised by different degrees of centralisation. In this experiment, we start from
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a bilateral ring (also known as a bilateral circle) and progressively transform it into a
star network, keeping connectivity minimal and constant. A bilateral ring network is
composed of a circle of banks in which every bank lends to and borrows from each
of its two neighbours. In other words, each pair of adjacent banks in this network
is bilaterally linked by a cross-holding of deposits (as it is in the complete and star
interbank networks defined in Sect. 3.2). The simulation engine transforms a bilateral
ring network into a star network in 63 steps. At each step of this process, a bank in the
ring is detached from its two neighbours and is linked to the (designated) centre bank,
becoming a pendant node of the latter, whereas its two neighbours become linked
directly to one another. This procedure delivers networks composed of a star-shaped
part and a circular part, where the centre bank belongs to both parts. At each step of the
re-wiring process, a bank exits the ring part and becomes a peripheral bank in the star
part of the network. At the k-th step, we have a network made of a star part, composed
of a centre node and k pendant nodes, and a circular part, composed of n − k nodes.
In so doing, and up to the 62nd iteration, the number of links in the networks is kept
equal to 2n and becomes equal to 2(n − 1) at the last step of this procedure, the step
that generates a star network.

In the centralisation experiment, we run two sets of simulations. In the first we
transform a ring network into a star network, in which the centre bank has the same
amount of assets, equity and customer deposits as a peripheral bank, while holding
an amount of interbank deposits equal to n − 1 times the ones held by a peripheral
bank.We call this the homogeneous star network. In the second set of simulations, we
transform a ring network into a star network in which the assets, equity and customer
deposits of the designated centre bank grow progressively as the number of its pendant
banks grows. We call this the concentrated star network, and in this test we study the
joint effects of concentration and centralisation, Finally, in the following simulations,
we focus on the second threshold of contagion rather than the first one. The behaviour
of the first contagion threshold reveals little information about the robust-yet-fragile
behaviour of the networks at hand. In both the star and the circular part of the generated
networks, one primary default is sufficient, in many cases, to induce one secondary
default. Hence, in these tests, the median of the first default contagion appears close
to a straight line in all the network configurations. Conversely, the comparison of the
trends of the second and final thresholds of contagion captures the rate of convergence
of all contagion thresholds (but the first).

4.2.1 From ring networks to homogeneous star networks

Like in the connectivity experiment, we perturb the networks with a sequence of
shocks consisting of the deletion of a progressively growing number of randomly
external assets. Figure 4a depicts the distribution of the second and final contagion
thresholds, corresponding to the 64 network configurations. The vertical axe measures
the magnitude of the shock whereas the horizontal axe marks the 63 steps of the
transformation from ring (first column) to star networks (last column).

This plot shows that the convergence between the second and final thresholds of
contagion becomes noticeable in the last twenty steps of the re-wiring procedure, i.e.
only for relatively high levels of centralisation. The graph in Fig. 4b, representing the
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(a) (b)

Fig. 4 Thresholds in the case of the centralisation (homogeneous star) experiment

Fig. 5 Distribution of the contagion thresholds for each network configuration in the centralisation (homo-
geneous star) experiment

gap between these two thresholds is indeed concave and drops sharply starting from
networks in which the star part comprises 44 banks out of 64.

As in Fig. 2, the three-dimensional plot in Fig. 5 shows the distribution of all the
contagion thresholds, from first to final, of the randomly generated networks. One
of the horizontal axes marks the steps of the centralisation procedure, whereas the
variables measured on the other two axes are the same as in Fig. 2, i.e. the number of
primary defaults and the average increase of secondary defaults.

This plot shows that the concentration of the contagion thresholds grows with the
degree of centralisation of the randomly generated networks. The first configurations,
starting from the bilateral ring, show a highly dispersed distribution of contagion
thresholds. In the final configuration, the star network, all the contagion thresholds
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Fig. 6 Standard deviation of the contagion thresholds obtained with each configuration of the networks in
the centralisation (homogeneous star) experiment

fall within the range [̃τ s, τ sf ], i.e. between the final thresholds corresponding to the
case in which the centre bank is in the set of primary defaults and to the opposite
case.24 Figure 6 shows the (weighted) standard deviation of the thresholds obtained
for each network configuration.

Starting from the first network configuration, the bilateral ring, we see that the
dispersion of the contagion thresholds is maximal and substantially stable in the first
ten steps of the re-wiring procedure (apart from a small, negligible increase in the first
five steps) and then progressively diminishes as the degree of centralisation increases.
Starting from the tenth network configuration, the (weighted) standard deviation of
the contagion thresholds decreases in a monotonic and slightly concave fashion.

4.2.2 From ring networks to concentrated star networks

In this set of simulations, we test the effects of centralisation on contagion along with
the implications of having a large bank at the centre of the star parts of the generated
networks. The setting of this experiment differs from the previous one in two aspects.
First, at each step of the re-wiring procedure, half of the assets, equity and customer
deposits of the bank that becomes a pendant node of the centre bank are transferred to
the latter. In other words, as a bank is moved from the ring part to the star part of the
network, its size is halved, and half of its external assets and liabilities are transferred
to the designated centre bank. For modelling convenience, each bank in the starting
configuration, the ring, is endowed with two assets (rather than one), for a total of 2n

24 The two peaks visible in the distribution of thresholds of the ring configuration correspond to these
two final thresholds. In the case at hand, the default of the centre bank alone is never capable of causing a
systemic crisis. Thus, the threshold τ s cannot be achieved.
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(b)(a)

Fig. 7 Thresholds in the case of the centralisation (concentrated star) experiment

external assets. 25 This means that, at the k-th step of the transformation from ring
to star networks, we have k pendant banks in the star part endowed with one asset,
n − k banks in the ring part endowed with two assets, and the centre bank endowed
with k+2 assets. The final network configuration is a star network composed of n−1
peripheral banks and a bank at the centre that is n − 1 times larger, in terms of the
balance sheet items, than a peripheral bank. Second, in this test a shock consists in
the erasure of the value of a randomly selected set of assets (instead of a selection of
primary defaults).

With the progressive growth of the designated centre bank, we intend to mimic one
facet of the known process of concentration that occurred in the banking industry since
the mid-nineties. The available evidence indicates that this process generated two-
tiered banking sectors connected through sparse core-periphery interbank networks.
The cores appear composed of few large banks connected among themselves, whereas
each of these large banks is at the centre of a star (money centre) network with a large
number of much smaller peripheral banks.26 The emergence of these large and highly
connected banks poses questions about their impact on system stability. They are ‘too
big and too connected’ to fail, creating moral hazard problems for regulators and
authorities. However, our simulations show that having a large bank at the centre of
a star network, instead of a small bank, does not noticeably change the response to
shocks of this class of networks.

The boxplot of Fig. 7a displays the second and final contagion thresholds, showing
that, like in the previous case, the convergence is progressive and it occurs mostly in
the last steps of the transformation from ring to star networks.

In thefinal configuration, the second andfinal contagion thresholds coincide (as they
should), and the distribution of this threshold is characterised by a large dispersion.
The lower bound of this distribution is equal to τ s , i.e. the (smallest) final contagion
threshold of a star network, that corresponds to the case in which the entire exogenous
shock is allocated to the centre bank. The upper bound of the distribution is the final

25 To keep the simulation coherent with the previous ones, we set the value of each of these assets equal to
half the value of the assets held by the banks in the previous simulations.
26 See Craig and von Peter (2014) and the literature cited therein.
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Fig. 8 Distribution of the contagion thresholds for each network configuration in the centralisation (con-
centrated star) experiment

threshold τ sf , that obtains in the opposite case, when the shock hits peripheral banks
only. The final thresholds obtained in the 1000 seeds of simulation lie within this range
and depend on the random allocation of the shock between centre and periphery of
the star network. The pattern of the gap between the second and final thresholds, in
Fig. 7b, is concave and sharply drops in the last ten iterations of the centralisation
procedure.

The three-dimensional plot of the contagion thresholds, shown in Fig. 8, indicates
that the convergence of all the contagion thresholds starts at medium values of the
centralisation process and grows rapidly only in the last steps of the re-wiring proce-
dure.

This pace of convergence is confirmed by looking at Fig. 9, displaying the plot of
the standard deviations of the thresholds distributions for each network configuration.

The figure shows that the dispersion of the contagion thresholds is relatively stable
in the first 30 steps of centralisation and that most of the reduction of the standard
deviation occurs in the last twenty steps of the ring-to-star transformation.

4.3 The effects of the size of intra-network exposures

We run experiments with different values of the intra-network liabilities of banks, di .
We do so by setting the ratio between internal and external debts of banks, φ = di/hi
equal to 0.2; 0.4; 0.6 and 0.8 in the numerical simulations presented in Sects. 4.1
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Fig. 9 Standard deviation of the contagion thresholds obtained with each configuration of the networks in
the centralisation (concentrated star) experiment

(a) (b) (c)

Fig. 10 Distributions of the medians of the contagion thresholds in the three experiments

and 4.2.27 The relevance of this ratio is in the fact that it governs the allocation of
losses among creditors of defaulting banks. The larger the φ, the larger the amount of
losses that defaulting banks transmit to other banks in the network. Thus, the larger
the φ, the larger the scope of the contagion process induced by a shock. Indeed, all the
contagion thresholds defined in Sect. 3.2 are decreasing in φ. The boxplots in Fig. 10
depict the distributions of the medians of the contagion thresholds obtained in the
three experiments with the four different settings of φ.

Increasing φ from 0.2 to 0.4 and 0.6 worsens the exposure to a contagion of all
networks, as shown by the lowering of the medians of the contagion thresholds in all
three tests. Interestingly, augmenting from 0.6 to 0.8 we obtain almost no effect on
the medians of the thresholds. Intra-network liabilities equal to 0.6 of extra-network
liabilities are sufficient to carrymost of the contagious losses that can cross an interbank
network.

27 The results presented in Sects. 4.1 and 4.2—concerning the entire distributions of the contagion
thresholds—obtained with ‘phi’ equal to 0.2; 0.6 and 0.8 are available from the authors upon request.
The corresponding plots can be found in the online appendix of the paper.
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Besides these differences, the response to shocks obtained with these different set-
tings of φ delivered results that are similar to the ones obtained with φ = 0.4. With
all these values of parameter φ we obtain increasing concentrations of the contagion
thresholds of the generated networks, as connectivity or centralisation increase. More-
over, we obtain the same difference between the connectivity and the centralisation
experiment described in Sects. 4.1 and 4.2: the robust-yet-fragile response of regular
networks takes place starting from medium-low levels of density, whereas the anal-
ogous consequence of centralisation produces its effects only in highly centralised
networks. The high resiliency of ring networks to large shocks is also confirmed with
φ equal to 0.2; 0.6 and 0.8. Even in the most contagious setting, i.e. φ = 0.8, the
exposure of ring networks to a systemic crisis remains limited.

5 Robustness-yet-fragility and the too-many-to-fail problem

The exposure of interbank networks to risk of balance-sheet default contagion has
relevant implications for the so-called ‘too-many-to-fail’ problem. When an event of
default contagion involves a substantial number of banks, the intervention of cen-
tral banks and monetary authorities—that aim to keep the stability of the financial
systems—becomes problematic. Isolated failures of banks occur through time with-
out endangering the stability of banking systems, unless they regard ‘systemically
important financial institutions’, i.e. banks that are “too-big-to-fail”.28 The authorities
usually deal with the idiosyncratic bankruptcy of a bank, or of a few small banks,
arranging a private resolution of the crisis—such as an acquisition or a bail-in involv-
ing the claimants of the defaulting bank—or, more rarely, letting the bank in default
to be liquidated.29 Conversely, the contextual and simultaneous bankruptcy of a non-
negligible number of banks poses a significant threat to the stability of banking systems
and forces central banks and monetary authorities to resort to costly public bail-outs.
In this type of scenarios, it is difficult to resort to the options of acquisition, bail-
in or liquidation: the authorities face a “too-many-to-fail” problem.30 First and most
important, the contextual liquidation of several bankswould inflict substantial negative
externalities to the rest of the economy, welfare losses that can be larger than the cost
of a public bail-out. At the same time, private bail-ins become difficult to implement
because when the number of banks in default is large, the number of healthy banks
in the sector diminishes and the overall liquid resources available for the acquisition
of troubled banks within the banking sector can result insufficient.31 Moreover, and
perhaps most important, if the welfare losses in case of no intervention are larger
than the cost of a bail-out, then the ‘no bail-out’ threat on the part of the authorities

28 See, inter alia, Nurisso and Prescott (2017) and the literature cited therein on the ‘too-big-to-fail’ problem
faced by regulators and central banks.
29 See, inter alia, Hoggarth et al. (2004) who review the resolution policies adopted by central banks in 33
systemic crises occurred over the period 1977–2002.
30 The “too-many-to-fail” issue has been brought to the foreground by a few economists, such as Mitchell
(2001), Acharya and Yorulmazer (2007), Wagner (2010) and Brown and Dinc (2011). The latter provide
empirical evidence of the occurrence of too-many-to-fail scenarios.
31 See, inter alia, White and Yorulmazer (2014) and Acharya and Yorulmazer (2007, 2008).
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Fig. 11 The ratio between secondary defaults and primary defaults in the connectivity experiment, for
different degrees of connectivity and for all shocks

is not credible. In this case, the authorities are in a strategically weak position that
hinders the arrangement of a bail-in (Bernard et al. 2022). In this type of scenarios,
the authorities are forced to implement public bail-outs, as happened in 2008 during
the subprime crisis, notwithstanding the fiscal costs and the moral hazard problems
they entail. Thus, as Acharya and Yorulmazer (2007) point out, the “too-many-to-fail”
issue creates a time inconsistency in the policy of regulators: while it is ex-ante optimal
not to bail-out banks in default, the bail-out becomes ex-post optimal if there are many
banks in default.

In sum, a ‘too-many-to-fail’ scenario arises if the overall losses due to contagion,
in case of no intervention, are larger than the cost of bailing out the initially troubled
banks, i.e. the primary defaults. The occurrence of such a scenario, in the case of an
exogenous shock, depends on the scope of the consequent contagion compared to the
size of the initial shock, i.e. the amplification of defaults due to contagion. We exam-
ine the ratio between secondary and primary defaults to measure such amplification.
Charting such a ratio, we show that the more robust-yet-fragile a network is, then (i)
the less it increases the number of defaults through contagion in case of small shocks,
preventing a ‘too-many-to-fail’ scenario, and (ii) the more it amplifies the number
of defaults in case of large shocks, generating in such cases the problem at hand.
Interestingly, we show that the opposite does not generally hold for vulnerable-yet-
resilient networks-to wit, sparse and decentralised networks. Apart from the unilateral
ring’s limiting case, sparse and decentralised networks are not sufficiently vulnerable
to small shocks to generate a ‘too-many-to-fail’ problem for such shocks, whilst they
might do so for shocks of medium magnitude.

Figure 11 plots the values taken on by the ratio between secondary and primary
defaults in our connectivity experiment, for networks with different degrees of con-
nectivity and for all shocks.
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The unilateral ring, i.e. a regular network of degree 1, nearly doubles the number of
defaults for small and medium shocks. In this network, even in case of small shocks
that cause a small number of defaults, contagion can render the cost of no intervention
larger than the cost of bail-out and generate a ‘too-many-to-fail’ problem. This feature,
however, belongs only to the limiting case of the unilateral ring, it cannot be taken
as representative of a larger class of sparse and decentralised networks. Indeed, the
plot of the default amplification ratio for regular networks of degree 2 (density 0.03)
already shows a different response to shocks: the ratio at hand reaches values larger
than 0.7 only for shocks larger than one third of total assets. This robustness to small
shocks grows rapidly in the degree of connectivity, as shown by the plot concerning
the regular networks of degree 5 (density 0.08). As density reaches 0.5 (degree 32), the
network becomes rather robust to small/medium shocks, with no secondary defaults
for shocks smaller than 35% of total assets, and highly fragile to shocks larger than
45% of total assets. A response to shocks quite close to the tipping point displayed by
the complete networks. Thus, as far as connectivity is concerned, we have that medium
levels of connectivity are sufficient to hinder the emergence of a ‘too-many-to-fail’
scenario in case of small/medium shocks, while the opposite holds for sufficiently
large shocks.

Bernard et al. (2022) run a similar numerical experiment on default amplification
in complete and ring networks.32 In their simulations, these authors calibrate the
networks on the balance-sheet data of the banks regarded in the 2018 EBA stress test.
Although these authors control for a limited range of possible shocks, their results
strongly resonate with the results we obtain for the unilateral ring and the complete
networks. Nonetheless, their interpretation differs from ours. Bernard et al. (2022)
consider the behaviour of the ring network as representative of the class of sparse and
decentralised networks. Moreover, they take the linear combination of the response of
ring and complete networks to shocks as a proxy for the response of regular networks
with varying degrees of density. Our results do not support this view.

Focusing now on the effects of centralisation, we obtain the patterns of default
amplification presented in Fig. 12.

The results obtained in the ‘ring to homogeneous star’ experiment, depicted in
Fig. 12a, show that: (1) the bilateral ring (first configuration, null centralisation) has a
response to shocks very close to the one of the regular networks of degree 2; (2) the
resiliency to small/medium shocks (< 0.4), along with the marked default amplifica-
tion for medium/large shocks(≥ 0.45), becomes visible starting from medium/high
degrees of of centralisation (i.e., from the fortieth out of sixty-three steps of rewiring).
The ‘ring to concentrated star’ experiment, in Fig. 12b shows similar patterns of default
amplification for low levels of centralisation, as expectable. Conversely, in this experi-
ment, we have that the containment of the scope of contagion for small/medium shocks
occurs only for high levels of centralisation (starting from the fiftieth step of rewiring)
and for small shocks (< 0.3). This difference between the two experiments reflects the
‘too-big-to-fail’ problem in having a large bank at the centre of a star network. Both
experiments show that centralisation can prevent the occurrence of a ‘too-many-to-

32 See Bernard et al. Bernard et al. (2022), Sect. 6.
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(a) (b)

Fig. 12 The ratio between secondary defaults and primary defaults in the centralisation experiments, for
different steps of rewiring and for all shocks

fail’ problem for small/medium shocks only if the periphery is sufficiently numerous
to absorb the losses coming from and through the centre bank.

6 Policy implications

In the last three decades, national banking systems in all advanced countries have
undergone a remarkable concentration and consolidation process. As a result, two-
tiered banking systems have emerged, composed of a limited number of large banks
and a large number of small banks. There is a large consensus and evidence that
these two-tiered banking systems generated networks of interbank claims that appear
similar to the stylised core-periphery network (hereafter CP) defined by Craig and von
Peter (2014). Such a ‘perfect’ CP network consists of a fully connected core of banks,
where each of the latter is connected to a set of periphery banks that are not connected
among them but to a single core bank. To wit, a complete network of banks (the core),
in which each core bank is the centre of a star network.33

Numerous authors34—such as, inter alia, in ’t Veld et al. (2014), Craig and von Peter
(2014), Bech and Atalay (2010), Langfield et al. (2014), who investigate the interbank
networks of the Netherlands, Germany, USA and UK, respectively, while Gurgone
et al. (2018) and Fricke and Lux (2015) study the italian E-mid liquidity market—
show that the observed national interbank networks display a good fit to the stylised
CP network. In the empirical CP networks, the cores appear composed of a limited
number of large banks—usually classified as SIFI’s—densely connected among them,
whilst the peripheries consist of small banks connected with one or few core banks and

33 Theoretical contributions provide different explanations for the emergence of CP interbank networks,
all based on some heterogeneity among banks, e.g. in investment opportunities and skills (Farboodi 2021),
size and trade surplus (in ’t Veld et al. 2020), in the riskiness of investments (Castiglionesi and Navarro
2019). See in ’t Veld et al. (2020) for a review of the banking literature on CP networks formation.
34 There is a long list of contributions that study the structure of national interbank networks. They all
find substantial similarity between the latter and the stylised CP network. See Tanna et al. (2020) and the
literature cited therein.
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sparsely connected (if at all) among them.35 More precisely, the cores of these national
networks display a density roughly comprised in the range [0.55, 0.65]. Craig and von
Peter (2014) find that the density of the core of the German system is 0.66. According
to Fricke and Lux (2015), the density of the core in the Italian interbank liquidity
market oscillates through time between 0.55 and 0.65. These findings align with the
measures of fitness of the observed systems to the stylised CP put forward by several
authors, e.g. Langfield et al. (2014), who find a fitness equal to 0.672. In other words,
the cores of the observed national CP networks are similar to regular networks with
medium/high density. Our results indicate that the density of such cores is sufficient
to generate a high degree of robustness-yet-fragility. This implies that the observed
CP networks are robust-yet-fragile to insolvency shocks. In these networks, systemic
contagion can only occur across the core, given the scarcity of links among peripheral
banks.36 The observed core-periphery pairs, on their part, appear close to a perfect
star with a large bank at the centre. A network configuration that implies resilience to
small (peripheral) shocks and fragility to large (central) shocks.

Given this scenario, we make the following remarks concerning macroprudential
policies pursued by regulators.

1. Both the Dodd-Frank act and the Basel III agreements prescribe policies to
contain the number and size of interbank connections of SIFI’s banks.37 These policies
aim at taming the threat to stability posed by the existence of banks that are too big and
too connected to fail. The cores of the observed CP networks are mostly composed
of SIFI’s banks. Limiting the numerosity and magnitude of the interbank claims of
SIFI’s banks amounts to limiting the number and size of intra-core connections. Our
simulations shed some light on the systemic consequences of such policies, separating
the effects that the density of a network has on contagion from the effects due to the
magnitude of interbank obligations. The results we obtain show that a reduction in
the density of the cores per se does not alter the scenario significantly. As shown in
Fig. 13a, halving the number of links (from 40, density 0.63, to 20, density 0.317), the
default amplification for large shocks diminishes of one-tenth, circa, at the price of a
higher fragility to medium shocks. The picture does not change much even bringing
density down to 0.16, that is one-quarter of the observed density:

Conversely, an upper bound to the size of interbank exposures seems to deliver a
more substantial reduction of systemic risk. Figure 13b displays the default ampli-
fication ratio that we obtain from regular networks with density 0.6 for ratios φ of
intra/extra network obligations equal to 0.2, 0.4 and 0.6. Reducing the φ ratio from
0.6 to 0.4 improves the response to shocks markedly, whilst a further reduction to 0.2

35 Craig and von Peter (2014) find that “[...] only 8.8% of links, accounting for 1.8% of volume, are directly
between periphery banks. Instead, more than 90% of the linkages that periphery banks maintain are with
the 45 core banks.”. Op. Cit., page 332.
36 Tanna et al. (2020) discuss the robust-yet-fragile nature of perfect core-periphery interbank netyworks.
37 The Dodd-Frank Wall Street Reform and Consumer Protection Act, enacted in the U.S. in 2010, pre-
scribes liquidity and capital requirements for large and highly connected financial institutions (sections 115
and 165).Moreover, section 622 of theDodd-Frank act set an upper bound of 10% to the inter-bank liabilities
of SIFI’s banks. Along similar lines, the Basel Committee on Banking Supervision, with its “final standard
on large exposures” published in 2014, imposes monitoring and limiting exposures to counterparties. The
new regime sets a limit of 25% of Tier 1 capital to single interbank exposures and makes it compulsory
reporting by banks of all large exposures to single counterparties or groups of connected. counterparties.
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(a) (b)

Fig. 13 The ratio between secondary defaults and primary defaults in the connectivity experiment, for
a different degrees of connectivity and for b different intra/extra network obligations φ, given a fixed
connectivity

renders the network entirely robust to medium/large shocks, leaving little scope to
default contagion even in case of large shocks.

These results suggest that it is preferable to pursue the containment of systemic
risk, in national CP networks, by limiting the magnitude of intra-core interbank claims
rather than their numerosity. This type of policies, however, comes at a cost. There is a
trade-off between the resilience of interbank networks to insolvency shocks and their
efficiency in covering liquidity risk (Gofman 2017; Castiglionesi and Eboli 2018). In
the case at hand, the fewer and the smaller the intra-core interbank claims, the less
effective the CP networks in re-allocating liquidity among banks, the higher the risk
of fire sales and price-mediated contagion due to idiosyncratic liquidity shortages.38

Our knowledge of the terms of this trade-off between efficiency and stability is still
limited. Further research is required to assess the costs and benefits of this type of
policies.

2. The occurrence of common exogenous shocks due to the overlapping and
correlation of banks’ portfolios is a major source of systemic risk in interbank
networks—along with counterparty default contagion and price-mediated contagion
due to fire sales.39 Common shocks can create “too-many-to-fail” problems to the
robust-yet-fragile national CP banking networks. On the one hand, the robustness to
small shocks makes the CP national banking systems resilient to the default of a single
core bank, creating the grounds for implementing private bail-ins in such cases. On
the other hand, the fragility to large and common exogenous shocks, and the ensuing
default amplification, generates a too-many-to-fail problem that renders the public
bail-out unavoidable in case of such shocks. Thus, the density of the cores of national
CP interbank networks increases (decreases) the likelihood of public bail-outs in case
of joint (single) failures. Moreover, it appears that banks with more similar real expo-

38 The freeze of the interbank market subsequent to the 2008 crisis, when many banks faced difficulties
with refinancing themselves, is a prime reminder of the relevance of its adequate functioning.
39 See, inter alia, Caccioli et al. (2014, 2015), Cai et al. (2018) and the literature cited therein.
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sures tend to lend more to each other.40 For these reasons, regulators should contain
the risk of common shocks among densely connected core banks, discouraging the
cross-holding of claims among core banks with similar portfolios. Regulators can
pursue these goals by introducing capital and liquidity requirements on SIFI’s banks
based not only on their individual risk profile, as it is now, but also on measures of
the correlation of a bank’s portfolio with the portfolios held by the other banks in
the core. The risk-weighted leverage requirement prescribed by Basel II, in which
different risk weights apply to different assets, could be amended in this sense.41 In
this leverage ratio, interbank claims are in the lowest risk class, along with mortgages
and government bonds. This classification should be corrected. The risk associated
with an interbank claim should be based on the correlation of the portfolios of the pair
of banks involved. The so modified risk-weights for interbank loans would reflect, at
least partially, the aggregate systemic risk generated by these assets.

7 Conclusions

Using computational methods, we investigate the relation between the degrees of
density or centralisation of interbank networks and their robustness-yet-fragility to
insolvency shocks. The results show that the robustness-yet-fragility of interbank
networks grows in a neatly progressive fashion both with density and with cen-
tralisation, but at different paces. In (decentralised) regular networks, most of the
risk-sharing effects of interbank cross-holding of financial claims arise from low to
medium levels of connectivity. Starting from themedium level of density, 0.5, we have
a robust-yet-fragile reaction to shocks that appears close to the neat phase transition—
from no contagion to systemic crisis—displayed by complete networks. Conversely, a
minimally connected and progressively centralised interbank network becomes robust-
yet-fragile with high centralisation levels only, i.e. when it is close to a perfect star.
Interestingly, we find that the vulnerable-yet-resilient feature of unilateral ring net-
works indeed belongs to such a stylised network, whilst it does not apply to other
sparse and decentralised networks. These results indicate that, as far as counterparty
default contagion is concerned, no interbank network can create a too-many-to-fail
problem in case of small shocks but the unilateral ring. Sparse and decentralised inter-
bank networks appear sufficiently fragile to generate such a problem in case of shocks
of intermediate magnitude. Finally, medium levels of density and high levels of cen-
tralisation prevent the emergence of a too-many-to-fail issue for small and medium
shocks, whilst creating the problem in a drastic fashion in case of large shocks.

Our results shed some light on the response to insolvency shocks that one can expect
from the observed national banking systems. There is empirical evidence that the cores
of the observed core-periphery national interbank networks resemble regular networks
endowed with densities that range from 0.55 to 0.65. Consequently, and concerning
counterparty default contagion, the observed cores appear highly resilient to small

40 See Elliott et al. (2021) and the literature cited therein.
41 Doubts about the effectiveness of this risk-weighted leverage requirement led the Basel III agreements
to prescribe a second leverage ratio based on total assets. See, inter alia, Georg (2011).
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(idiosyncratic) shocks while being exposed to systemic crises in the case of large
shocks involving a plurality of core banks. As pointed out by several scholars, the
cores at hand are mainly composed of SIFI’s banks that tend to have overlapping and
correlated portfolios. A level of risk-sharing that creates the grounds for the occurrence
of common insolvency shocks. The connectedness of the observed cores drastically
magnifies the scope of contagion in the case of such a shock. Our results indicate that,
in this scenario, a reduction of the magnitude (rather than their numerosity) of the
interbank claims held by core banks would effectively contain the risk of systemic
crises.
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