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Abstract
The paper presents a risk-driven behavioral biometric-based user authentication scheme for smartphones. Our scheme
delivers one-shot-cum-continuous authentication, thus not only authenticates users at the start of the application sign-
in process but also, throughout the active user session. The scheme leverages the widely used PIN/password-based
authentication technology by giving flexibility to users to enter any random 8-digit alphanumeric text, instead of pre-
configured PIN/Passwords. Internally, the scheme exploits two behavioral biometric traits, i.e., touch-timing-differences of
the entered strokes and the hand-movement gesture recorded during the random text entry, to authenticate users. And, for the
entire user session, the scheme continuously authenticates the user by computing the risk-score every time the user initiates
a sensitive activity. If the risk-score is higher than the predefined threshold, the current user session terminates. Afterward,
the scheme requests the user to re-authenticate. Thus, our scheme serves three main objectives: Firstly, it offers users the
flexibility to enter an 8 − digit random alphanumeric text as their secret enhancing the usability of PIN/password-based
schemes. Secondly, it strengthens the security of PIN/password-based schemes as verification decision is not binary, and
mimicking the invisible touch-timings and hand-movements simultaneously, could be extremely difficult as our security
analysis determined. Lastly, the scheme does not require any dedicated device (e.g., a smart token for OTP generation)
for 2-factor authentication. The results obtained on 11,400 user-samples (collected by 3 days in-the-wild testing) and user-
experience responses (received from the Software Usability Scale4 survey) of 95 testers demonstrate our scheme as an
accurate and acceptable user authentication scheme.
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1 Introduction

Smart devices offer a large number of security-sensitive
applications, such as mobile banking app, mobile com-
merce app, on-demand ride-booking app, social network-
ing app, to their users enabling anytime, anywhere access
to them. Commonly, these applications have deployed
PIN/password-based user authentication schemes to secure
access despite numerous security and usability issues
present in such schemes [1]. Some of these applications
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have deployed 2-factor authentication schemes by introduc-
ing one-time-passcodes (OTP), smart-tokens, verification-
over-the-call, etc., to address some security issues, however,
they too do not deliver a comprehensive risk assessment of
the active user session but degrade usability in particular [2].

From the security perspective, PIN/password-based
schemes are vulnerable to guessing [3], smudge [4],
shoulder-surfing [3, 5], dictionary-based [6] attacks. Simi-
larly, from the usability perspective, users face difficulty to
manage numerous PINs/passwords [7] and complex pass-
words add cognitive load on users [8, 9]. Additionally, it
is not easy to employ PIN/password-based schemes for
continuous user authentication without affecting the user
experience [10]. Further, it is worth mentioning that these
schemes do not necessarily authenticate the users, but autho-
rize anyone who enters the correct PIN/password [11].
Thus, it becomes requisite to redesign the PIN/password-
based authentication mechanism to overcome their inherent
shortcomings.
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In this paper, we propose a risk-driven behavioral
biometric-based one-shot-cum-continuous user authenti-
cation scheme. Our scheme supplements the existing
PIN/password-based authentication schemes with two
behavioral biometric traits to enhance their usability and
security, i.e., users do not require to remember their PINs, or
passwords and authentication decision is not simply a binary
comparison. Then, throughout the active user session, the
scheme continuously performs risk-assessment to eliminate
the dependency on any dedicated devices (e.g., smart token)
that are typically, required to generate One Time Password
(OTP) to finish critical operations.

The proposed system consists of two independent
modules, i.e., User Authentication (UA) module and Risk
Assessment (RA) module that works in tandem. User
Authentication (UA) module creates unique-identification-
signature by exploiting the touch-timing-differences, and
hand-movement action collected during the course of a
8 − digit random text entry by users. The UA module
grants access - if both behavioral biometric traits of users
match with their stored template. After the successful
sign-in, Risk Assessment (RA) module continuously tracks
client-attributes, such as IMEI number, MAC address, IP
address, transaction value, etc., to perform risk assessment
throughout the entire user session. The RA module
computes the risk-score in terms of the cumulative deviation
of client-attributes, every time users initiate a critical
operation. If the risk-score is higher than the predefined
value, the users’ current session is terminated, immediately
and UA module prompts for re-authentication.

In brief, our main contributions in this paper are:

– The proposal of a bimodal behavioral biometric-based
one-shot-cum-continuous user authentication scheme
that authenticates users based on how they enter
the text instead of what they enter, thus strengthen
username/password-based schemes.

– The introduction of a novel risk-assessment mechanism
that continuously determines the need of user re-
authentication during the active user session, by
computing cumulative deviation of client-attributes.

– The validation of our proposed scheme on a dataset
collected in-the-wild from 95 testers in three different
activities, i.e., sitting, standing, and walking.

– The usability evaluation of our scheme by conducting a
System Usability Scale1 survey.

Paper organization The rest of the paper is organized as
the following: Section 2 discusses security, privacy, and
usability criteria for an authentication scheme together with
classification models and risk-based authentication system

1https://www.usability.gov/how-to-and-tools/methods/
system-usability-scale.html

design. Section 3 discusses the threat model, the working
of our proposed scheme, and architecture of our system. In
Section 4, we discuss the methodology used to design our
one-shot-cum-continuous authentication scheme. Section 5
presents the obtained results. Sections 6 and 7 present the
security and usability analysis of our proposed system.
Section 8 surveys the related approaches proposed over
the years for user authentication. Finally, in Section 9, we
conclude the paper with a summary of the work and the
possible future dimensions.

2 Background

In this section, we briefly discuss security, privacy, and
usability criteria for designing an authentication scheme.
Afterward, an overview to classification model design and
risk-based authentication system is presented.

2.1 Security, Privacy, and Usability Criteria

While designing a user authentication scheme, the attributes
- security, privacy, and usability emerged out to be
orthogonal to each other [12]. Studies have shown that
none of the available authentication schemes can satisfy
these three attributes, simultaneously [13]. For instance,
PIN/password or smart-token-based schemes do not affect
users’ privacy, but they have several security and usability
issues. Whereas, biometric-based schemes can fulfill
security and usability criteria, but affect the privacy of a
user.

The foremost security criterion in designing an authenti-
cation scheme is the selection of modalities that can reliably
verify users. Biometrics naturally fits this purpose as it
can establish the identity of individuals based on their
distinctive physical or behavioral traits [14]. Moreover, bio-
metric authentication systems are not binary in execution
like conventional authentication systems [15]. Biometric-
based authentication schemes are more resilient to attacks
that are essential for security-sensitive systems [16]. Behav-
ioral biometric-based schemes can function without active
input, user cooperation, or knowledge that the underly-
ing authentication engine is acquiring unlike conventional
systems [17].

Recent privacy regulation laws like General Data
Protection Regulation (GDPR) [18] or California Consumer
Privacy Act (CCPA) [19] set guidelines for using and
storing biometric data. GDPR enlisted biometric data
that allow or confirm the unique identification of an
individual as a special category of personal data under
Art. 9 [20]. Therefore, conformance for users’ privacy to
be addressed by incorporating adequate measures (e.g.,
template protection and template storage location) [21].
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We also recommend hardware-level encryption on client
devices to establish trust between users and businesses as
a part of the privacy-first approach to employ behavioral
biometric-based schemes for users’ authentication.

Biometric-based authentication schemes have shown
higher usability acceptance in contrast to knowledge- and
token-based authentication schemes, thus, meeting usability
criteria [22]. Further, they do not add cognitive load on users
unlike conventional authentication schemes [23]. Usability
evaluation can determine user experiences, challenges,
skills, and attitudes in designing a particular authentication
scheme.

Many security-sensitive sectors, e.g., banking and
finance, transport, smart-offices, etc., enforce user authen-
tication to maintaining and safeguarding themselves from
adversaries. And, at the same time, consolidate the secu-
rity, privacy, and usability criteria of their systems. Thus,
a trade-off between security, privacy, and usability is a
viable option for designing biometric-based authentication
schemes. Eventually, usable security can overcome the inad-
vertent (or even deliberate) undermining of security by
end-users.

2.2 ClassificationModel Design

The machine-learning (ML) enables to derive a precise
mapping function to design appropriate classification
models as per the use cases [12]. The classification model
can learn from the labeled dataset (training data) to predict
labels of new data, which is termed as supervised learning.
The training process continues until the model achieves
the desired level of accuracy on the training data set.
Mathematically, the classification process can defined using
Eq. 1.

RA =
{

M if CM(CI , CT ) is ≥ T

NM if CM(CI , CT ) is < T
(1)

Where, CM is the classification model that receives
the claimant’s input (CI ) and claimant’s templates (CT ) to
measure the similarity between them for a given threshold
(T ). The authentication result (RA) is set to Match (M) or
Not Match (NM) according to the score obtained from
classification model [24].

Typically, classification models can be divided into
multi-class classification and one-class classification to
address various user authentication scenarios. Multi-class
classification models are best suited for multiple user
authentication scenarios. Smart applications (apps), such
as online banking, online-shopping, ride-booking, are used
by multiple users. Therefore, multi-class classifiers can
be exploited to classify more than two classes (users).
However, it is expected that classes must be mutually

exclusive to each other and each new instance belongs to
one of the classes. Whereas, the one-class classification
model is suitable for scenarios like user authentication for
accessing single-handled devices. The main purpose of a
one-class classification is to detect an anomaly or a state
other than the one characteristically shown by the target
class (legitimate user). Therefore, information regarding
other classes (illegitimate users) is not required while
training a one-class classification model. This model is
often called outlier (or novelty) detection.

We recommend following guidelines prescribed in [25]
to implement and evaluate biometric-based authentication
schemes under design for high-quality outcomes and wider
user acceptance.

2.3 Risk-based Authentication

Risk-based authentication utilizes the concept of explicit,
implicit and continuous authentication mechanisms to make
user verification process frictionless as much as possible.
Such that, the system can tailor the authentication schemes
according to the risk calculated at runtime, to maximize the
security and usability requirements [26].

Generally, the existing risk-based authentication system
uses a risk-score to estimate the risk associated with
user’s activities including the sign-in attempt, in a user
session [27]. A user-session can be characterize by using
historical and contextual attributes such as transactions
pattern, user’s geographic location, access-time, IMEI
number, MAC and IP address of registered devices, user’s
typing speed and so on, collectively can be defined as
client-attributes.

Risk-based user authentication can be applied from
two different perspectives, i.e., proactive or reactive.
When applied proactively, risk-based authentication can be
implemented as continuous authentication spanning across
the entire user session. The goal is to anticipate the genesis
of potential attacks, failures, or any kind of security issues,
and to enforce the appropriate response plans. In contrast,
reactive risk-based authentication complementary to the
proactive risk-based authentication, in which, some risks
might be accepted without being eliminated. However, if
any risk is detected during the session the re-authentication
may be imposed.

3 Risk-driven Bimodal Behavioral
Biometric-based User Authentication
Scheme

This section presents the assumed threat model. Followed
by, the working of our one-shot-cum-continuous authentica-
tion system and it’s system architecture.
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3.1 Threat Model

We considered physical attacks, where (i) the adversary
accidentally finds an unlocked smartphone, (ii) the adver-
sary is a friend or colleague (who possibly knowing
user’s PIN/Passwords), and (iii) the adversary records users
while they interact with their smartphones. Eventually, the
adversary exploits the weaknesses of PIN/password-based
authentication schemes to gain access to sensitive resources
(data and applications) residing on users’ smartphones.

Prior studies [10, 28] also indicated that the above-
discussed scenarios are quite apparent, as users use their
smartphones at commons places like offices, homes,
meeting rooms, or streets, which may give opportunities
to adversaries to target their smartphones, easily. As a
consequence, smartphone users can be a victim of monetary
frauds, identity thefts, or similar unfavorable incidents.

3.2 HowOur SchemeWorks?

Figure 1 illustrates the model of our one-shot-cum-
continuous authentication scheme explaining how it
addresses security and usability issues in existing user/
password-based, and 2-factor authentication schemes.

The scheme enables users to enter any random 8 −
digit alphanumeric text to access the application to
enhance the usability of existing PIN/Password-based one-
shot authentication schemes. Further, the scheme verifies
the users’ identity based on timing differences between
the entered keystrokes and their hand-movement in 3
dimensional space instead of just a binary comparison, to
enhances security.

After the successful sign-in, the scheme continuously
monitors client-attributes and computes the risk-score at
the instant users initiate critical activities. Based on the
risk score, it permits users to perform that activity,
otherwise, scheme prompts for re-authentication. Thus, our

scheme is capable of detecting any anomalies in the users’
usage pattern throughout the life-cycle of a typical user
session and apparently, 2-factor authentication can be safely
disregarded.

3.3 System Architecture

The system adopts a client-server architecture [2] as shown
in Fig. 2. The client consists of a data acquisition (DA) mod-
ules that can be added to existing smartphone applications,
seamlessly. The DA collects the two behavioral biometric
traits along with client-attributes and transfers the encrypted
data to the server at runtime for further processing.

The server includes two independent modules, i.e., the
User Authentication (UA) and the Risk Assessment (RA)
module. The UA module performs user authentication
based on features extracted from touch-typing and hand-
movements behavioral traits, as explained in Section 4.2.
The RA module, using the Runtime-Risk-Assessor (RRA)
inside the Risk Engine (RE), computes the risk score at
run time, as explained in Section 4.6, each time a critical
operation is performed. The RE then, notifies the Session
Manager (SM) if the computed risk score is higher than
the predefined threshold. Afterward, the SM sends the
command to the UA module for re-authentication.

4Methodology

In this section, we explain the steps taken to design and
validate the proposed authentication scheme.

4.1 Data Collection

We develop a prototype application (app) that can be
installed on any Android devices having OS version 4.4.x
or higher. To conduct our experiment, we collaborated with

Figure 1 Our
one-shot-cum-continuous
authentication scheme model.
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Figure 2 System architecture.

UBERTESTERS2 - a crowdsourcing software testing plat-
form. Testers were certified quality assurance engineers or
experienced software developers and they were rewarded
on an hourly basis. Complete instructions to use our pro-
totype application, the installation/uninstallation procedure
and the user consent were provided to testers. Each tester
signed the consent form before they download and install
our application.

The app enables testers to perform the experiment for
approximately, an hour that spans over 3 days with 1 session
per day, i.e., 3 sessions in 3 days. During each training
session, testers can interact with the app for 15 minutes
in 3 different activities, i.e., sitting, standing, and walking.
On the third day, the testers can also test the app with 30
testing samples in any activity of their choice. Afterward,
the testers performed the SUS survey, and they filled their
demographic information presented in Appendix A.

We recruited 100 testers conduct the experiment. Each
tester tested our prototype application on their own
smartphones under the real-life conditions. However, we
discard the data from 5 testers for reasons like their
smartphones did not support the required sensors or Internet
connectivity was too slow to transfer the data in real-time to
our server. Table 1 summarizes the demographics of testers
selected to participate in our experiment.

Overall, we collected 11,400 samples with 120 samples
from each tester (30 samples in each of the 3 different
training activity and 30 samples during testing) and received
95 SUS responses in this experiment. Thus, we evaluated
our scheme on a collected dataset of 95 users having a total
of 11,400 samples.

2https://ubertesters.com/

4.2 Feature Extraction

We used the touchscreen sensor and seven 3-dimensional
motion sensors (i.e., the accelerometer, the high-pass
sensor, the low-pass sensor, the orientation sensor, the
gravity sensor, the gyroscope, and the magnetometer) to
collect raw data for touch-stroke and hand-movement,
respectively [29]. The high-pass and low-pass sensory data
is computed mathematically, by applying High-Pass (HP)
and Low-Pass (LP) filters as shown in Eqs. 2 and 3.

V alueHP = V alueGravity×α+V alueAccelerometer×(1−α)

(2)

V alueLP = V alueAccelerometer − V alueGravity (3)

Where, V alueHP , V alueLP , V alueAccelerometer , and
V alueGravity represent the value of the high-pass, low-pass,

Table 1 User demographics (M = Male, F = Female, R = Right, L =
Left).

Parameter Description

No. of Users 95

Sample Size Sitting - 2,850 (95 × 30)

Standing - 2,850 (95 × 30)

Walking - 2,850 (95 × 30)

Testing - 2,850 (95 × 30)

Devices Android Smartphones having OS 4.4.x
version or above

No. of Sessions 3

Password 8-digit free-text

Gender 75(m), 20(f)

Handedness 89(R), 6(L)

Age Groups 90 (20 − 40), 5 (41 − 60)
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Figure 3 Touch-typing features
for 8-keys entry [30].

accelerometer, and gravity sensor, respectively at a time t .
We set α to 0.1 that was determined, empirically.

As shown in Fig. 3, touch-typing features consist of 8
Type0 (timing difference between each key release and key
press), 7 Type1 (timing difference a key press and previous
key release, 7 Type2 (timing difference two successive keys
release), 7 Type3 (timing difference two successive keys
press), and 1 Type4 (timing difference between last and
first key press). Thus, we extracted 30 touch-typing features
from the 8-digit random-text entry.

Similarly, a user’s hand-movement is modelled in terms
of 3-D data streams, i.e., X, Y and Z, from each motion
sensor. In addition, we computed the 4th dimension,
Magnitude (M), by using Eq. 4.

V alueM =
√

(V alue2
x + V alue2

y + V alue2
z ) (4)

Where, V alueM is the Magnitude and V aluex, V aluey
and V aluez are the values of X, Y and Z value of a sensor,
at a time t .

We obtained 4 data streams from each of the
seven motion sensors with the delay set at SEN-
SOR DELAY GAME [29]. Then, from each data stream, we
extracted 4 statistical features, namely Mean (μ), Standard
Deviation (σ ), Skewness (s), and Kurtosis (k), that gives 16
statistical features per sensor as shown in Table 2.

Finally, we concatenate 30 touch-stroke features and 112
hand-movements features to create a feature vector of size
142. Here, we prefer to choose the feature level fusion over
the sensor level fusion because sensory data could have
inconsistent and/or unusable data that may affect classifiers
accuracy [31].

Table 2 Statistical features per sensor for a hand-movement behavior.

No. Hand-movement Features

1-4 μX μY μZ μM

5-8 σX σY σZ σM

9-12 sX sY sZ sM

13-16 kX kY kZ kM

4.3 Feature Selection

The primary purpose of any feature selection scheme is
to filter out the redundant and less productive features to
determine the most productive features [15]. This improves
the performance of a classifier as processing smaller
feature vectors would be computationally faster. We applied
Information Gain Attribute Evaluator (IGAE) for feature
selection. This scheme evaluates the worth of a feature by
computing its information gain with respect to the class. We
obtained the threshold for feature selection by dividing the
number of users (95) by the total number of features (142).
And, top 66% of 142 feature are selected for designing
classification model as illustrated in Fig. 4.

4.4 Classifier Selection

The classifier selection depends on various parameters, such
as data size, data characteristics and training time, etc.
We selected simple, yet effective state-of-the-art classifiers:
Naive Bayes (NB), NeuralNet (NN), and Random Forest
(RF) classifiers.

Bayesian classifiers, such as Belief Networks and Naive
Bayes employ the probabilistic technique for the classifica-
tion tasks. The Naive Bayes method starts with a strong but
“naı̈ve” assumption that the features are independent of each
other. It works perfectly well if this condition holds true.
Furthermore, it is widely used because of its super simplic-
ity, faster learning capability, elegance, and robustness [32].

NN classifier belongs to the Artificial Neural Network
(ANN) family. These models represent many interconnected
network elements designed essentially to classify different
patterns. These models have been shown to be quicker and
accurate [33]. We used the Levenberg-Marquardt trained
feed-forward neural network as the classifier in our analysis.

RF has been considered as an accurate and efficient
classifier in recent years [34]. The reasons for their
popularity include: (i) its accuracy among the current
algorithms even without any optimization, (ii) it generally
does not overfit, (iii) it efficiently handles the missing
data, and (iv) its effectiveness on small as well as for
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Figure 4 Features vs. Weights
plots using Information Gain
Attribute Evaluation (IGAE)
method.

a b c

large datasets, etc. We preferred this classifier because of
its effectiveness in the previous studies [35]. RF classifier
works on the principle of growing many classification trees
and to classify, it puts the query sample down to each of
the trees in the forest. Each tree classifies that sample and
“vote” for a particular class. The final decision chosen by
the forest is based on the higher number of votes (over all
the trees in the forest).

4.5 Classifier Training & Testing

We consider remote-user-authentication to access security-
sensitive applications on smartphones as a multiclass classi-
fication problem. We construct a classification model and va-
lidated users in two scenarios, (i) a verifying legitimate user
scenario, and (ii) a zero-effort attack scenario. We evaluate
the classification model by partitioning the dataset into trai-
ning and testing set. We trained selected classifiers with 5, 10
and 15 samples and used the remaining samples for testing.

4.6 Risk Assessment Model

According to ISO 9000:2015 [36], risk is the “effect of
uncertainty on objectives” and an effect can be a positive
or negative deviation from what is expected. An objective
can be strategic, tactical, or operational. Generally, the
existing risk-driven authentication system uses a risk-score
to estimate the risk associated with the user’s activities
including the sign-in attempt, in a typical user session [27].
A user-session can be characterized by using historical and
contextual attributes, such as transactions pattern, user’s
geographic location, access-time, IMEI number, MAC and
IP address of registered devices, the user’s typing speed and
so on, collectively can be defined as the client-attributes.

The risk-score can be computed by determining cumula-
tive uncertainty (degree of deviation) associated with each
client-attribute. By using a mathematical formula or expres-
sion, the degree of deviation can be easily determined
to establish a relationship between the present value, and
previously recorded values (where the objectives achieved
successfully) of client-attributes.

In our system, the Risk Engine (RE) configures a client
profile of each customer by using contextual and historical
data, e.g., transactions patterns, location, access-time, IMEI

number, MAC and IP address of registered devices,
operating system, applications installed, and stylometry,
etc., as client-attributes.

To create the user’s client profile, RE initially assigns a
unique weight (natural value) to each client-attribute as per
the user’s preferences.

CAi = V ALUE

{
∀ i ∈ M

V ALUE ≥ 1
(5)

Equation 5 describes the weight assignment process
to each of the M client-attributes. RE assigns a higher
value to the client-attribute based on the user preference
order. For example, if a user has given more importance
to Smartphone IMEI over access time than will be
CAIMIE > CAAccessT ime. Two client-attributes can have
a common integer value. However, the model can reassign
the weights by analyzing the user’s usage pattern, thus,
updates the client-profile, automatically.

Table 3 presents the structure of a user’s client-profile.
Each row comprises of a client-attribute, its weight, and val-
ues of the current session, i.e., SessionN to all the N − 1th

previous sessions. Frequency of Non-occurrence
(FNOi) and Impact of Non-occurrence (INOi).

To obtain Frequency of Non-occurrence
(FNOi) and Impact of Non-occurrence (INOi),
we first calculate Frequency of Occurrence (FOi)
as follows:

The Frequency of Occurrence (FOi) is an
estimate of how often the current client-attribute value
(V alueiN ) has occurred in previous N − 1 sessions [37],
which is determined using Eq. 6.

Oi =
N−1∑
j=1

[V alueiN = V alueij ] ∀ i ∈ M − 1, and

FOi = Oi

N − 1
∀ i ∈ M − 1 (6)

Where, Oi is the occurrence of V alueiN of a ith client-
attribute. The value of FOi towards ≈ 1 indicates lower
risk, whereas towards ≈ 0 indicates higher risk.

Subsequently, Frequency of Non-occurrence
(FNOi) and Impact of Non-occurrence (INOi)
are measured at runtime using Eqs. 7 and 8, respectively.

FNOi = 1 − FOi ∀ i ∈ M (7)
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INOi = FNOi × CAi ∀ i ∈ M (8)

Where, FOi is defined as the frequency of occurrence,
which can be calculated using Eq. 6, CAi is the weight
of each client-attribute and M is the number of client-
attributes. The value of FNOi towards ≈ 0 indicates lower
risk, whereas towards ≈ 1 indicates higher risk.

For example, a customer has accessed her banking app
from X location ±10KM in the previous 10 sessions.
But, in the current session, the access location is found
to be Y so the frequency of its occurrence (FOlocation =
0
10 ) becomes 0. Therefore, the frequency of its non-
occurrence (FNOlocation) becomes 1, which is calculated
using Eq. 7. As described in Eq. 8, multiply FNOlocation

with CAlocation to calculate INOlocation, which gives a
positive number. Similarly, the impact of non-occurrence of
other client-attributes can be calculated.

Finally, the risk-score is computed using Eq. 9, which can
be defined as the sum of all the impact-of-non-occurrence
of each client-attribute. Higher the number means higher the
risk.

Risk Score =
M∑
i=1

INOi (9)

Where, M is number of client-attributes.
The risk score is computed and matched with the

threshold before any of the critical operations is performed.
If the risk-score is higher than the predefined value (e.g.,
average of the risk-scores in previous N − 1 sessions),
re-authentication is exercised leveraging the proposed
behavioral biometric-based bimodal authentication scheme.

Thus, our authentication scheme utilizes the concept of
one-shot and continuous authentication mechanisms driven
by risk assessment, as explained in Section 3.2, offering a
user friendly verification mechanism.

5 Experimentation Results

5.1 Success Metric

We report our achieved results using the following metrics:

– True Acceptance Rate (TAR): The rate of correctly
accepted attempts of the valid user.

– False Rejection Rate (FRR): The rate of falsely
rejected attempts of the valid user. It can be estimated
by computing 1 − T AR.

– False Acceptance Rate (FAR): The rate of falsely
accepted attempts of an adversary.

– True Rejection Rate (TRR): The rate of correctly
rejected attempts of an adversary. It can be estimated by
computing 1 − FAR.

– Receiver Operating Characteristics (ROC): ROC is
the graphical representation of classifier performance.
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The curve is typically plotted between TAR on the
y-axis and False Acceptance Rate (FAR) on the x-
axis. The curve starts from (0,0) and ends at (1,1)
coordinates. The curve closer to (0,1) shows the better
performance.

5.2 Authentication Results

We report the results of all of our chosen classifiers in terms
of TAR and FAR, on full features, in Table 4. TAR of all the
chosen classifiers increases with the increase in the number
of training patterns (see Table 4), i.e., for NB classifier
TAR increased from 72.72% (on 5 training samples) to
87.58% (on 15 training samples) in sitting activity. NN
classifier did not work well possibly because of the limited
number of training samples as it generally requires more
training samples. RF classifier performed consistently well
across all the activities and for the different number of
samples. We achieved a TAR of 80.51% (in sitting), 82.91%
(in standing), and 81.38% (in walking), on just 5 training
samples, and this TAR increased up to 91.79%, 91.58%,
and 86.95%, on 15 training samples. The highest achieved
TAR by RF is 91.79% (at just 0.04% FAR), on 15 training
samples.

Afterward, we present the results of all the classifiers on
IGAE selected features (see Table 5). The results of all the
classifiers improved, significantly, over the extracted IGAE
features except for NB in standing and walking activities,
over 5 training samples. NN performed comparatively well
on the smaller feature vectors. RF classifier improved the
authentication results on IGAE features, i.e., from 88.04%
to 89.10%, 92.88% to 95.18% and 94.87% to 96.00%
for three activities, on 5, 10, and 15 training samples,
respectively. It is evident that our scheme is very robust
against the zero-effort attacks, i.e., TRR is much higher and
FAR is very low.

We also plot the results of RF classifier in terms of ROC
curves (see Fig. 5). We show an average ROC of all the
users obtained through Vertical Averaging (VA) [38]. In
this averaging, the averages of the TAR rates are plotted
against the researcher-defined fixed FAR. Due to the space
limitations, we illustrate ROC curves for best performing
classifier, i.e., for RF, for all the activities and all the training
sample scenarios. Figure 5 reflects RF classifier as very
productive and accurate classifier throughout.

RF classifiers outperformed both NB and NN classifiers
because of its ability to reduce the variances and its most
unlikeliness to over-fitting. NB classifier requires Gaussian
distributed data, which might not be true in the dataset,
hence it failed to address the problem of concept-drift.
The NN classifier failed because of the limited number
of training samples. It generally requires more training
samples to learn well.
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Figure 5 The ROC curves of RF classifier on full and IGAE features for different activities, i.e., (i) Sitting (a - c), (ii)Standing (d - f), and (iii)
Walking (g - i).

5.3 Discussion on Results

A comparison between Tables 4 and 5 exhibits that
classifiers performance enhanced on selected features.
Thus, the feature selection process improves the system’s
accuracy and improve the performance (as the processing of
smaller feature vector may incur less computational cost and
processing, making decision time comparatively shorter).
Overall, the average training (up to 15 samples) and testing
time for our proposed scheme is ≈ 3.0 to 5.5 seconds and
≈ 200 to 300 milliseconds, respectively. However, these
timings data are required to be benchmark in more standard
lab setting environment.

Further, Appendix C shows the distribution of TAR (per
user) for sitting, standing, walking activities, obtained on
just 5 training samples for RF classifier performed since
it performs better with both the full and IGAE features in
all the activities. Due to space limitations, we show such
comparison for 5-samples training scenario, only. It is worth
reminding that, in this scenario, the classifier was trained on
the first 5 samples and tested with the remaining 25 samples

of the same user to obtain TAR and the process was repeated
for each user. It is evident from Fig. 7 that the TAR for most
of the users increased on IGAE features, i.e., all 25 samples
of 41 users were correctly accepted compared to just 13,
on full features (see Fig. 8a) in sitting activity. Similarly,
for standing and walking activities, 44, and 38 users were
correctly accepted (with 100% TAR), compared to 25 and
23, respectively (see Figs. 8b and 8c).

6 Security Analysis

We performed additional experiments to replicate random
attack and mimic attack scenarios for evaluating the
robustness of our proposed system.

6.1 Mimic Attack

We recruited 8 testers to carry out the mimic attack. Each one
of the 8 testers trained the prototype application installed on
a smartphone, which is closely observed by the remaining 7
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02 testers to learn the holding and typing patterns. In each tes-

ter’s training session 30 observations (10 per 3 postures, i.e.,
sitting, standing, and walking) are collected. Then, the remai-
ning 7 testers tried 10 times to carry out the mimic attack.

A multi-class classification model for 8 testers is
generated by using RF classifier with 30 training samples
per class, i.e., a total of 240 training samples. Subsequently,
we tested this classification model with 8 sets of 70 mimic
attack samples collected from the remaining 7 testers (10
samples per tester), labeling each set from 1 to 8.

Table 6 presents the result for each class in terms of True
Acceptance (T A) and False Rejection (FR). Higher the FR

better the robustness of the system. Thus, the overall robus-
tness of the proposed system against mimic attack is 98.75%.

6.2 RandomAttack

To carry out the random attack, we asked each of the 8
testers to test the application 10 times in any of the 3 post-
ures. Then, we tested the classification model robustness
with 70 random attack samples (excluding the samples of a
legitimate user) 8 times by assigning labels from 1 to 8.

Table 7 presents the random attack results for each class
in terms of T A and FR. None of the 240 random attack
attempts were successful. Thus, the overall robustness of the
proposed system against random attack is 100%.

7 Usability Analysis

Secure yet usable user authentication mechanism is a pre-
requisite to balance between security and usability goals.
This section presents a detailed usability evaluation of our
proposed scheme.

7.1 Methodology

System Usability Scale (SUS) [39] is considered as a
standard tool to record user experience related to the
usability of a system and has been extensively used in

Table 6 Mimic attack results.

Class True Acceptance False Rejection Robustness(%)

1 0 70 100
2 0 70 100
3 0 70 100
4 1 69 98.57
5 0 70 100
6 0 70 100
7 2 68 97.14
8 0 70 100

3 237 98.75
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Table 7 Random attack results.

Set True Acceptance False Rejection Robustness(%)

1 0 70 100
2 0 70 100
3 0 70 100
4 0 70 100
5 0 70 100
6 0 70 100
7 0 70 100
8 0 70 100

0 240 100

the context of smartphone user authentication [40, 41].
The user’s response to each question is recorded on a 5-
point scale ranging from “Strongly Disagree” to “Strongly
Agree”. The output is computed as a score between 0 - 100.
The higher the score more usable the system.

We replaced the word “system” with “mechanism” in the
SUS questionnaire as done in the previous studies [40, 42].
We added an open, subjective but optional question (“Do
you have any feedback you like to share with us?”), as
question 11, to get the participant’s feedback on our scheme.

7.2 Responses

Figure 6 illustrate the SUS questionnaire and the collected
responses from all the 95 participants.

Overall, our scheme achieves the SUS score of ≈ 73
which is significantly above the standard average score of
68 [43]. As per the recorded feedback, the majority of the
users looked satisfied describing our proposed scheme as
a simple, extremely convenient, user-friendly and intuitive.
In response to question 3, i.e., “I thought Touch-type
mechanism was easy to use”, 80 users (≈ 81%) agreed or

strongly agreed with the point that our scheme is easy to
use in contrast to just 6 (≈ 5%) who disagreed or strongly
disagreed. Similarly in response to Question 10, i.e., “I
needed to learn a lot of things before I could get going with
Touch-type mechanism” 74 users (≈ 75%) were disagreed
or strongly disagreed in contrast to just 8 (9%) who agreed
or strongly agreed to consider our scheme as difficult and
would require to learn the scheme.

We also received some negative responses related mainly
to the number of digits (8) and the number of training
samples. Most of the testers suggested using less number of
samples, i.e., 5 (46.5%), 10 (22.7%) as setting up a PIN or
registering the face requires less training. We are agreed to
the suggestion of less number of samples and also to reduce
the number of digits. The same scheme, if reduced to 4,
could be used for smartphone unlocking. However, reducing
the number of digits is not viable in social networking
and mobile banking scenarios, as their existing app require
8-digit fixed alphanumeric passcode.

Overall most of the testers seem comfortable and
confident about our scheme mainly because of the flexibility
of typing any combination of 8-digit text. Experimental
results confirm our scheme as usable, practical and would
be widely acceptable.

8 RelatedWork

In this section, we present the most relevant schemes
proposed over the years.

8.1 Behavioral Biometric-based User Authentication

Behavioral biometrics offers a simple way to implement a
frictionless user authentication schemes, which are suitable

Figure 6 SUS questionnaire and
Users responses.
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for continuous authentication. This is possible due to
the advantages associated with behavioral biometrics: 1)
transparent collection, 2) no special hardware requirements,
and 3) cost effective deployment [44].

Behavioral data, such as gait, grip, swipe, pick-up,
touch, and voice can be collected, unobtrusively, due
to the availability of sensors, particularly accelerometer,
gyroscope, magnetometer, proximity sensor, soft keyboards,
touch screens and microphone in smartphones and have
become widely researched subject these days.

In this section, we survey various behavioral authenti-
cation schemes proposed for user authentication over the
years. Our emphasis will be on the (i) novel behaviors, (ii)
the work which uses smartphone sensory data and/or (iii)
which require minimal user effort.

8.1.1 Keystroke/Touch based authentication:

The concept of augmenting keystroke/touch-based behav-
ioral biometrics to PIN or password is predicated on the
understanding that users need a better way to prove their
identities. The musculoskeletal structure in human pro-
duces unique finger movements resulting in distinguishable
keystrokes or touch-points which can be utilized in anchor-
ing an extra layer of security for user authentication.

Touch-biometrics have been studied for both one-shot
and continuous user authentication on smartphones. Touch
dynamics refers to user profiling based on touch patterns
(i.e., touch duration and direction, etc.) on a touchscreen. A
touchscreen enables users to interact with the smartphone
by touching different locations on the screen. In [45], a two-
tier user authentication solution involving passphrases and
keystroke dynamics to increase both usability and security.
The scheme exploits the use of passphrases as the first tier
of authentication augmented with a keystroke authentication
algorithm as the second tier of authentication.

The touch-based scheme [46] leverages different touch
features: X and Y coordinates, touch-pressure, the size of
touch and the time offset, generated from different slide
operations to identify a user. Authors report 77% accuracy
(with 19% FRR and 21% FAR) using DTW as the classifier
over a dataset of 48 participants. Feng et al. [47] presented a
finger-gesture based authentication system (called as FAST)
in addition to the digital gloves. Every touch gestures
include 53 features: X & Y coordinates, the direction of
finger motion, the pressure at each sample touch-point, and
the distance between multi-touch points. Digital gloves add
angular values from X, Y and Z direction in addition to roll,
pitch, and yaw values. FAST achieved a FAR of 4.66% and
FRR of 0.13% on a dataset of 40 users using Decision tree,
Random Forest and Bayes net classifiers.

A study by Frank et al. [48] also explores the touchscreen
gestures for continuous smartphone user authentication.

This mechanism exploits the very common navigational
movements (e.g., horizontal/vertical strokes) and shows
their efficacy to authenticate the real user. This study
achieves an EER of 0%, 2 − 3% and <4%, respectively, in
intra-session, inter-session and authentication tests after one
week of enrollment using KNN classifier and SVM - with
Gaussian Radial Basis Function (RBF) kernel, on a dataset
of 41 testers.

Sae-Bae et al. [49] exploit single and multitouch gestures
for user authentication on touch-sensitive devices, i.e., smart-
phones and tablets. On a dataset of 34 participants, they rep-
ort an average EER of 7.88% using a single instance of multi-
touch gesture and an EER of 1.58% with a combination of
three gestures (static counter-clockwise rotation, closed and
opened, with all five fingertips). Authentication solution [50]
profiles simple touch actions, i.e., keystroke, sliding, pinch,
and handwriting and continuously authenticates the smart-
phone user. The scheme leverages multiple features related to
coordinates, pressure, size, etc., and achieves the lowest EER
of 0.75% for sliding gesture and for all other action types,
lower than 10% with SVM classifier using RBF kernel.

8.1.2 Sensors/motion based authentication:

In addition to the touch-based solutions, researchers have
also exploited smartphone’s built-in physical 3-dimensional
sensors, such as accelerometer, gyroscope, orientation,
etc., to profile phone movements, for smartphone user
authentication. The data from these sensors is used to
identify users from their walking patterns [51], general
hand-movement [52–54], special hand-movement (while
entering PIN, password) [55, 56], and hand-movement (how
a user moves the phone to place or answer a call [57] and
profiled gesture models [53], etc.

The study by Shi et al. [54] presents a multi-sensor-based
approach to passively identify a real user. Their system
incorporates the accelerometer, touch screen, voice and
location data for user authentication. They achieve around
97% TPR, using the Naive Bayes as the classifier, from
their dataset of 7 users (three females and four males). The
study [52] explores the role of three sensors: accelerometer,
orientation, and compass in addition to the touch gestures
towards continuous user authentication. This transparent
mechanism profiles finger movements with classical touch-
based features and interprets the sensed data as different
gestures. It then trains the SVM classifier on those gestures
and performs authentication tasks. The paper reports as high
as 95.78% accuracy on a database of 75 users.

The study by Zhu et al. [53] proposes a mobile
framework model Sensec based on the accelerometer,
orientation, gyroscope, and magnetometer, to construct
a user gesture profile. The model then continuously
computes the sureness score and keep the user sign-in.
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By concatenating X, Y, Z values from these sensors, they
identify a valid user with 75% accuracy and an adversary
with an accuracy of 71.3% (with 13.1% FAR) on their
collected dataset of 20 users. However, the study required a
user to follow a script and collects the sensory data for the
entire duration of that interaction.

8.1.3 Sensor-enhanced touch-typing based authentication:

Our scheme is a bimodal system which leverages the timing-
differences from the entered 8-digit “text-independent”
secret and the hand-movements while the user enters the
text to sign-in to the security-sensitive apps, we compare
our work with the closely related works proposed in the
literature, i.e., [35, 58, 59].

Giuffrida et al., [58], proposed sensor enhanced fix-text
scheme for user authentication on Android smartphones.
They reported 4.97% EER on fixed-text passwords and
0.08% on sensor data on a dataset of 20 users. Later, Buriro
et al. [42] modeled sensory readings as hold behavior and
introduced free-text secret the user needs to enter or writes
on the touchscreen. They achieved 1% EER on a dataset of
12 users for touch-typing [55] and ≈ 95% TAR at 3.1% FAR
on the dataset of 30 users.

The papers discussed here implemented a behavioral
biometric-based authentication scheme performed in in-
the-lab supervised settings, and their analysis was based
on a small number of users, e.g., just 12 [55], 20 [58],
and 30 [42]. We evaluated our scheme on a comparatively
larger dataset of 95 users collected in-the-wild. Since the
number of users in previous studies was less and data was
collected in in-lab settings, it is difficult to examine how
their achieved error would have varied if the number of
users was more and data was collected in-the-wild. Also,
we evaluated our data by applying multi-class classification
to replicate a server-based remote client authentication
with the risk-based authentication mechanism. However, the
papers discussed here evaluated their data either using one
class or binary class classification approaches - replicating
authentication only on smartphones.

8.2 Risk-based Authentication Schemes

Most of the systems deploying risk-based authentication
approaches typically generate a risk profile for each of
the users. Based on the risk score, the complexity of the
challenge is determined to authenticate the user, i.e., a
higher risk score leads to stronger authentication, whereas
a risk score below the threshold means minimal or no
authentication requirement [60].

Risk-based authentication approaches based on basic
communication information [61], such as the source-
destination IP addresses, or frequency of transactions,

performed by a user on her devices to determine risk, are
easily exploitable. According to Traore [62], such systems
could be exploited by polling or cloning users’ devices.
Then, the same settings can be replicated on different
machines to access their systems by attackers.

Cognitive fraud detection system by IBM Trusteer [63]
is designed for PCs and laptops. Whereas, IBM’s Tivoli
Federated Identity Manager [64] is designed for web
platform based on policy rules that determine the access
request to be allowed, denied, or challenged at run-time.
However, these are limited to static devices only, e.g., a
personal computer and laptops, etc.

Sepczuk et al. [65] designed the remote-services for
authentication management, which can be registered by the
user either manually or automatically. Manual registration
requires users to fill a form describing their day-to-day
activities, e.g., what they do between 9 a.m. to 5 p.m? or
which network they use at home or workplace. Whereas,
automatic data gathering configures the system to collect
contextual data, spontaneously. However, the solution may
be subjected to insider attacks and lacks transparency, as
service providers could misuse user contextual data, i.e.,
they are aware of an individual’s day-to-day activities.

Generally, the contextual or historical data or both, to
generate a risk profile of a user, is considered more suitable
for risk-based authentication approaches [66, 67]. However,
the existing systems apply simplistic risk management mod-
els or ad-hoc rule-based techniques, which prove to be inef-
fective for risk assessment [68]. Furthermore, they mainly
rely on knowledge-based authentication mechanisms such
as username/password, or multi-factor authentication
(e.g., OTP, token generator) [11], which affects the usability
of a system adversely.

9 Conclusions & FutureWork

The proposed one-shot-cum-continuous user authentica-
tion scheme is a simple, effective, and user-friendly solu-
tion for smartphone security-sensitive applications (e.g.,
social networking app, online mobile banking app, etc.).
The scheme can be seamlessly integrated into the exist-
ing PIN/password-based authentication schemes to enhance
their usability and security. Flexibility to access an appli-
cation by entering any random 8-digit alphanumeric text
makes the sign-in process very convenient for smartphones
users. At the same time, mimicking invisible, and inherently
secure natural human behaviors simultaneously can be an
onerous job for attackers.

With RF classifier, we obtained 96% TAR (at the cost of
0.01% FAR) in sitting activity for 15 samples training-set
with selected features, whereas 95.92% and 94.87% TAR is
achieved in standing and walking activity, respectively. Our
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scheme obtained a SUS score of ≈ 73 out of 100 that can
be considered positive feedback.

We will further improve and fine-tune our prototype
for wider user-acceptability. In future, we will evaluate

performance, i.e., power consumption, computational con-
straints, i.e., CPU and memory overhead, the sample-
acquisition- and decision-making time, in standard lab
environment.

Appendix A: Comparison of user authentication schemes

Study Features Evaluation Participants Performance

[46] Touch features X and Y coordinates, touch-pressure, the size
of touch and the time offset.

DTW 48 FRR: 19% and
FAR: 21%

[47] X & Y coordinates, the direction of finger motion, the
pressure at each sample touch-point, and the distance
between multi-touch points. Digital gloves add angular
values from X, Y and Z direction in addition to roll, pitch, and
yaw values.

Decision tree, Random Forest and
Bayes net classifier.

40 FRR: 0.13% and
FAR: 4.66%

[48] Touchscreen gestures like navigational movements. (e.g.,
horizontal/vertical strokes)

KNN classifier and SVM with
Gaussian Radial Basis Function
(RBF) kernel

41 EER: <4%

[49] Single and multi touch gestures by combining static counter-
clockwise rotation, closed and opened gesture with all five
fingertips).

Ppairwise distance calculation
and score calculation

34 EER: 7.88%
(Single), 1.58%
(Combined)

[50] Simple touch actions, i.e., keystroke, sliding, pinch, and
handwriting to extract features like coordinates, pressure,
size, etc.

SVM classifier using RBF kernel 30 EER: 0.75% (Sliding
gesture)

[54] Extracts finger movements and touch features using
accelerometer, touch screen, voice and location data

Naive Bayes classifier 7 TPR: 95.78%

[52] Extracted touch positions, touch pressure, touch area, mov-
ing direction, distance, duration, average moving direction
and curvature, average curvature distance, average pressure,
average touch-area, max-area portion, min-area portion.

SVM classifier 75 Accuracy: 95.78%

[53] Construct feature vectors from X, Y, Z values acquired from
sensors and clustered them into V classes using K-means
algorithm.

Continuous n-gram lan-
guage model

20 Accuracy: 75%

[58] Extract statistical features for touch dynamics from the raw
data acquired from the sensors.

Distance metrics: Euclidean,
Euclidean normed, Manhattan,
Manhattan scaled.

20 EER: 4.97% (fixed-˙
text passwords), 0.08%
(sensor data)

[63] Static, contextual, and analytically calculated attributes Provides policy rules that deter-
mine whether an acc-
ess request must be permitted,
denied, or challenged.

- Calculates a risk score˙
based on multiple˙
weighted attributes

[67] User location and contextual data are associated with differ-
ent risk assessments and accordingly user authentication was
applied.

Risk-aware Authentication as per
the user location.

- CORMORANT
Framework

[66] Acquire language, color depth, screen resolution, timezone,
platform, plugins, etc. IP address range, time of access,
geolocation, request headers, etc.

Adaptive and dynamic context
fingerprinting based on Hoeffd-
ing trees

- SmartAuth continu-
ously assess the risk
of fraudulent activities
during long-lived user
authenticated session.

Appendix B: Demographic Questionnaire

1. What is your gender?

– Male
– Female
– I don’t want to disclose

– How old you are?

– ≤ than 20 years.
– > 20 years and ≤ 40 years.
– > 40 years and ≤ 60 years.
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– > than 60 years.
– I don’t want to disclose

– Tell us about your nationality.

–
– I don’t want to disclose

– Which hand(s) do you use for interacting with your
smartphone?

– Right
– Left
– Both
– I don’t want to disclose

Appendix C: TAR comparison of RF classifier for individual users in 3 activities

Figure 7 Comparison of RF classifier performance (TAR) on 5-sample training over full and IGAE features.
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