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ABSTRACT In concurrent transactional systems, a phantom read occurs when a transaction retrieves a
set of data, and simultaneously, new data is inserted, updated, or removed from that set by one or more
other transactions, leading to unexpected data being read. In Hyperledger Fabric (HF), a popular enterprise-
grade framework for developing permissioned blockchain platforms, phantom reads are detected during
the transaction validation phase. It inspects the values from read operations and checks their consistency,
also re-executing some domain-specific read operations called range queries. However, being HF based on
an optimistic concurrency control model, managing an excessive number of conflicts related to phantom
reads could result in sudden system slowdowns. Additionally, some kind of range queries are not considered
in the validation and verification process. For the latter, the re-execution is not performed and checks are
not provided leading to undetected phantom reads when the values returned from them are written to the
ledger. Hence, the burden of implementing phantom read-free applications (i.e., smart contracts) is on the
developers, who need to correctly manage the read instructions in the code and use automatic verification
tools to detect any unsafe implementations leading to system slowdowns and undetectable phantom reads.
In this paper, we explore the phantom reads detection problem at the smart contract level and demonstrate
how a verification approach through formal methods can identify possible bottlenecks caused by phantom
reads and mitigate range query risks, outperforming the current state-of-the-art and state-of-the-practice for
their detection. Our approach is implemented with GoLiSA, a semantic static analyzer based on abstract
interpretation for Go applications.

INDEX TERMS Smart contracts, blockchain, hyperledger fabric, static analysis, formal verification,
phantom reads detection.

I. INTRODUCTION
Over the last decade, there has been a growing interest
in blockchain-based ledgers among businesses. However,
popular permissionless blockchains such as Ethereum [1],
[2] cannot meet strict and solid industrial requirements for
confidentiality, scalability, and flexibility. In this context,
HF [3], [4] stands out as one of the most widely adopted
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frameworks, even by leading cloud providers such as
AWS, Azure, IBM, Google, and Oracle [5]. HF is an
open-source platform hosted by the Linux Foundation. It is
designed for developing custom permissioned blockchain
ledgers and tailored for enterprise applications offering a
modular architecture and features that align with the unique
requirements of business-oriented applications.

Among its several features, HF introduces a new transac-
tion architecture based on a simulate-order-validate-commit
model (also known as the execute-order-validate model)
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[6], [7]. This models employs an optimistic concurrency
control strategy for parallel transaction processing, increasing
throughput and scalability. This approach assumes that
transactions are likely to be conflict-free, allowing for
the concurrent execution of transactions during the execu-
tion/simulation and ordering phases, under the assumption
that they do not read and write to common states, thus
avoiding conflicts such as phantom reads [8], [9], [10].
This assumption is optimistic, since conflicts may occur
but are expected to be not frequent. Indeed, conflicts
are handled in the subsequent validation phase, where
performance bottlenecks can arise if too many conflicts are
detected [10]. In this phase, all detected conflicts are resolved
by rejecting one or more of the conflicting transactions.
The rejected transactions become invalid and their effects
do not persist, while and non-conflicting transactions are
committed to the blockchain. Clients are then responsible
for submitting new transactions incorporating the necessary
changes from previously rejected transactions. Moreover,
developers must be aware of potential race conditions and
design their smart contracts to minimize conflicts, ensur-
ing transactions execute correctly and avoiding potential
bottlenecks [10].
Although HF detects most conflicts, some data query

instructions are not taken into account during the validation
phase, leading to hidden phantom reads (also known as
range query risk). Developers must take measures to detect
these occurrences, enhancing their development pipeline with
tools or architectures capable of identifying such phantom
reads.

The novel contributions of this paper can be summarized
as follows:

• a comprehensive summary of the issues related to
phantom reads in HF;

• an investigation of the state-of-the-art in detecting
phantom reads and range query risk in HF;

• the design and implementation of an analysis for detect-
ing phantom reads and range query risk using static
analysis through abstract interpretation [11], [12], i.e.
providing formal guarantees and ensuring the detection
of phantom reads for all possible program execution
paths.

To the best of our knowledge, this is the first analysis based
on formal methods for detecting phantom reads and range
query risk at the smart contract level in HF.
Paper Structure: Section II introduces background con-

cepts related to HF. Section III discusses phantom reads in
HF. Section IV presents related work. Section V describes
the adopted methodology to address phantom read detection
and a comparison of our approach with the state-of-art
tools. Section VI, Section VII, and Section VIII provide our
core contribution’s design and implementation details for
detecting phantom reads, and discuss the proposed approach
also with a practical example. Section IX concludes the
paper.

II. HYPERLEDGER FABRIC FEATURES
This section provides a detailed and comprehensive overview
of the key concepts of HF, essential for understanding the
content and terminology used throughout this paper.

A. BLOCKCHAIN-BASED LEDGER OF HF
In HF, the blockchain-based ledger [13] consists of two
distinct, though related, components (see Figure 1):

• World state, a database that maintains the current
values of a set of ledger states, typically implemented
through LevelDB or CouchDB [14]. The world state
enables programs to directly access the current state
values without needing to calculate them by traversing
the entire transaction log. By default, ledger states are
represented as versioned key-value pairs. The world
state can change over the time, as states can be added,
updated, and deleted.

• Blockchain, a transaction log collection that records all
the changes that define the world state. Transactions
are grouped into blocks, which are then appended
to the blockchain. This allows for the history of
state changes leading to the current world state to
be accurately recorded. Unlike the world state, the
blockchain structure is immutable; it is a permanent
sequence of blocks, each containing a set of ordered
transactions.

In HF’s distributed ledger technology, the ledger is
distributed across a decentralized network, where redundant
copies of the ledger are maintained by the peers. Its
distribution is managed through a consensus mechanism,
enabling peers to reach an agreement on the complete trans-
action process, from proposal and endorsement to ordering,
validation, and finally, the commitment of transactions.

B. SMART CONTRACTS IN HF
Smart contracts are computer programs stored on a
blockchain-based ledger that can be executed through
transactions. In HF, smart contracts are implemented through
a type of logic called chaincode [15], which use specific APIs
to read and write the ledger and are mainly written in Go
for efficiency reasons [16]. In this paper, we use the more
specific term chaincode, but can be interpreted simply as
smart contract.

C. QUERY IN HF
HF defines a query as a chaincode function that reads from
the current world state, potentially targeting specific keys or
a range of keys on the ledger. HF also accommodates rich
queries, which can return data values in addition to keys,
provided the underlying database (e.g., CouchDB) supporting
such functionality.

III. THE PHANTOM READ PROBLEM
Phantom reads are a common problem in data collection
systems concerning transaction contexts and simultaneous
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FIGURE 1. Blockchain ledger architecture of HF [13].

data access, which also affects HF. Generally, a phantom read
can occur when one or more transactions write a state (such
as insertion, updating, or removal) that another transaction,
or more than one transaction, reads. Consequently, the
transaction performing the read might encounter ‘‘phantom’’
data that was either missing at the beginning of the transaction
or present at the beginning and then absent, leading to
possible inconsistencies.

A. PHANTOM READS IN HF
In HF, when a transaction for a chaincode execution is
received by the network, peers simulate the code execution,
collecting all the read and write operations acting on the
blockchain into read-write sets [17]. At the end of the
simulation, these sets are inspected and verified against
phantom reads during the validation phase of the consensus
mechanism. As reported by the official HF documenta-
tion [17], a transaction is considered valid if the version
of each key present in the read set of the transaction
matches the version for the same key in the world state,
assuming all the preceding valid transactions are committed
(including the preceding transactions in the same block);
in simple terms, a valid transaction does not contain any
inconsistencies in the data it reads. An additional check
is performed if the read-write sets contain one or more
information from queries to ensure that no key has been
added, deleted, or updated in the super range (i.e., the union
of the ranges) of the results captured in the information from
queries. In other words, the queries are re-executed during
the validation phase to ensure that the result set has not
changed since transaction endorsement. If the check detects
phantom reads, the transaction fails with the status code
PHANTOM_READ_CONFLICT.

However, this re-execution does not cover all query
methods during the validation phase. From version1.x to the
current 2.x of HF, some of these methods are deliberately
omitted by HF, as reported in the API documentation [18].
Table 1 provides the complete list of query functions,
as of the latest public version v2.5.5, showing which are
re-executed or not in relation to phantom reads. Moreover,
as reported by the documentation [18], for the queries not re-
executed during the validation phase, phantom reads are not
detected. This means that other committed transactions could
have added, updated, or removed keys affecting the result set,
and these changes would not be detected at validation/commit
time. Therefore, chaincodes using these query functions
should not use the returned values of queries to update the
ledger but should only perform read-only operations. These
types of phantom reads are also known as range query
risk [8], [9].
Summarizing the issues, phantom reads in HF can lead to:
• a degradation of the performance and scalability of
the system based on HF [10], due to the optimistic
concurrency model’s inefficiency in handling runtime
conflicts from excessive phantom reads;

• inconsistencies, especially due to range queries that are
not re-executed.

This implies that the burden of preventing phantom reads
is left to chaincode developers, who need to employ proper
program verification to avoid such vulnerabilities.

IV. RELATED WORK
In this section, we investigate the current state-of-art and
state-of-practice to highlight the main shortcomings of
various approaches. Then, we explain in detail how our novel
solution addresses them in Section V.
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TABLE 1. List of query functions in HF. The superscript ′+′ denotes rich queries.

A. LITERATURE REVIEW
In the literature, the problem of phantom read detection for
HF is addressed on two different levels: (i) system level and
(ii) smart contract level.

System-level solutions can offer several benefits, not only
impacting phantom reads decreasing the number of invalid
transactions but also mitigating other conflicts, such as
multi-version concurrency control read conflicts (indicated
by the status code MVCC_READ_CONFLICT). A taxonomy
of state-of-the-art approaches for preventing transaction con-
flicts at the system-level is provided by Debreczeni et al. [7].
For instance, Sharma et al. [6] and Ruan et al. [19] describe
how to combine transaction reordering and early abort of
transaction. In a nutshell, during the ordering phase, their
architectures inspect transaction semantics and arrange the
transactions in a way such that the number of serialization
conflicts is drastically reduced; then, it removes transactions
that have no chance to commit anymore, as early as
possible from the pipeline. However, to the best of our
knowledge, we have not found any system-level solution
dealing with range query risks, which currently still allows
hidden and unhandled phantom reads. Moreover, applying
these solutions in enterprise environments poses significant
challenges. Indeed, they often require an extensive rework
involving the entire or a portion of the HF architecture,
which may discourage IT companies from adopting these
system-level solutions. Such companies typically require
high degrees of software maturity, including stable and
long-term supported versions.

On the other hand, smart contract level solutions focus
on designing chaincode that inherently avoids phantom
reads. This is made possible by verification tools that
detect these issues during development, i.e., analyzing the
chaincode application software. Compared to the system-
level approaches, this method only requires developers
to analyze and make minor changes to the chaincode
upgrading it [20], thus without affecting any component of
the HF architecture and keeping the official HF frameworks
unchanged. Currently, only a few verification tools are
available for HF [8], [9], [21], [22] and these tools typically
do not offer formal assurances regarding their results and
findings, due to the complexity of developing such tools from
scratch or adapting existing formal verification libraries [23].

B. TOOL REVIEW
To prevent phantom reads at the smart contract level,
it is required to detect phantom reads during development,

i.e., analyzing the chaincode application software using
verification tools. In general, commercial verification tools
such as SonarQube [24], CodeSonar [25], and Julia [26] were
widely adopted to detect security issues and program bugs of
software. Smart contracts have been a focus of several works
in this field [27], [28], [29]. However, although several studies
investigate issues related to HF [8], [9], [10], [30], [31], there
are currently only a few analyzers able to detect phantom
reads, with even fewer being publicly available.

One initial solution is to limit the program’s expressiveness
by blacklisting the queries that lead to the phantom reads.
Chaincode Analyzer [21] adopts this approach, inherently
limiting API usage and significantly reducing the benefits
of adopting HF queries, even when the code does not pose
any harm (read-only) to the blockchain ledger. Chaincode
Analyzer employs syntactic checks on the an abstract syntax
tree (AST) representation to verify the function’s signatures
within the program. If they match the signatures of a
blacklisted query, an alarm is issued. However, this check
is limited to the signature and does not verify whether the
return value of the query is involved in write operations
(e.g., PutState, PutPrivateData). Regarding the
blacklisted instructions, Chaincode Analyzer does not cover
the full list of possible instructions leading to phantom
read issues, missing GetPrivateDataQueryResult
(see Table 3).

Another approach is the one implemented by ReviveˆCC
[22], that inspects the syntax tree of the program to
perform a symbolic data flow analysis. It checks whether
the same variable name is used to receive the value from a
critical query and a state write operation. ReviveˆCC only
checks read operations related to range query risks and
also misses GetPrivateDataQueryResult. Moreover,
it only considers PutState as write state operation,
omitting several others, as reported in Table 3. Moreover,
ReviveˆCC’s analysis is intraprocedural, namely if the write
operation is located in a function to which a value of a range
query has been passed as a parameter, the analysis will not
detect the potential phantom read. In addition, ReviveˆCC
merely tracks variables named identically. However, there
is no assurance that variables named identically contain the
same query value or a derivative of it, especially in the Go
languages which allows developers to declare a variable with
the same name in an inner block [32].

Other tools exist for verifying phantom reads, but
they are not publicly accessible, making it challenging
to fully understand their functioning from the scientific
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literature only. However, these tools are significantly
influenced by Chaincode Analyzer and ReviveˆCC. In par-
ticular, Yamashita et al. [8] and Penghui et al. [9] claim
to detect range query risks on GetHistoryForKey,
GetQueryResult, and GetPrivateDataQuery
Result. However, Yamashita et al. [8] do not pro-
vide information on how the check is performed, while
Penghui et al. [9] describe a blacklisting approach on
reachable statements considering the call paths from the
Invoke function, which is a typical entry point for
chaincodes.

V. METHODOLOGY
In this work, we focus on detecting potential conflicts at
the smart contract level, i.e., without impacting the official
HF architecture. Then, the developers can detect these issues
and change their code [20] to avoid range query issues
(hence, data inconsistencies) and conflicts (hence, invalid
transactions and bottlenecks).

To propose a novel solution that improves the state of the
art, we investigated in depth the existing tools proposed above
and we highlighted three main critical shortcomings: (i) the
incomplete instruction coverage, (ii) a partial detection of
phantom reads written in the ledger, (iii) the lack of formal
guarantees.

Our core contribution is the design and implementation
of an analysis that fills these shortcomings. In particular,
in Sections VI and VII, we describe our solution based
on information flow analysis for detecting phantom reads
and range query risk using static analysis through abstract
interpretation [11], [12]. As far as we know, this is the first
information flow analysis applied to HF for the detection of
this type of issue.

In a nutshell, the idea is to have complete coverage for the
detection of instructions that can lead to phantom reads and
all instructions that allow one to write the ledger. Then, the
information flow analysis, starting from the instructions that
can generate phantom reads, checks if their values do end
up in the ledger’s write instructions leading to the phantom
read issues.We also choose to adopt a program representation
based on Control Flow Graphs [33] (CFGs) instead of ASTs,
because ASTs focus on representing the structure of the
code based on its syntax, while CFGs focus on representing
the execution paths within the code. Moreover, basing the
analysis on abstract interpretation, our approach can consider
program semantics improving the precision compared with
syntactic checks of existing tools and also cover all possible
program execution paths, formally ensuring the detection of
phantom reads.

Specifically, our approach does not suffer from the
limitations of blacklisting, i.e. the complete removal of
every instruction that can generate phantom reads, as it
only alerts when there is the possibility that phantom read
values may be written in the ledger. In addition, Reviveˆ
CC-like approaches do not provide formal guarantees about
their findings, which, consequently, can lead to several

false positives, or, in worst-case scenarios, false negatives.
Instead, our approach offers several mathematical guarantees
based on formal methods, such as the absence of false
negatives (discussed in Section VII-A) as well as being
interprocedural, i.e., examines the behavior of a program
across multiple methods and functions calls, analyzing how
the different interactions between them affect the overall
behavior of the program. Therefore, this allows one to achieve
full program coverage during the analysis considering also
the peculiarities of languages such as multiple variable
declarations in different inner blocks.

Tables 2 and 3 propose a summary view of tool compar-
ison and instruction coverage, respectively, comparing our
approach with the tools mentioned above. Note that, the
notation ′n.d .′ means that no data are available for that entry,
while ‘−′ symbol indicates not applicable. Specifically, for
tools that use blacklisting, only read operations are taken
into account, and write operations are not included in the
analysis. As shown in Table 2, our approach is the only one
that performs analysis based on program statement semantics
providing a comprehensive understanding of chaincode
behaviors allowing it to be more precise in terms of analysis
as well as is one of the few to perform an interprocedural
analysis. Furthermore, our approach seems to be currently
the only one to cover issues from both re-executed and not
re-executed statements (see Section III), i.e., it can prevent
the bottlenecks due to the optimistic concurrency model’s
inefficiencies and avoid data inconsistencies, respectively.
Regarding Table 3, our approach currently covers all related
instructions that can perform phantom reads and also
instructions that can write values to the HF ledger.

VI. DETECTION OF PHANTOM READS BY INFORMATION
FLOW ANALYSIS
Program verification can be applied from the very begin-
ning of the chaincode implementation. In the blockchain
context, this aspect is particularly relevant as it allows for
code verification before deployment, i.e., before the code
becomes difficult to patch. In particular, static analysis can
automatically verify the properties of computer programs
without executing the code [34], thereby reducing the burden
on developers for bug fixing and giving them the chance
to fix issues and code smells at an early stage [35]. In this
section, we address the problem of detecting phantom reads
using static analysis and formal methods, specifically through
abstract interpretation [36] and information flow analysis.
In a nutshell, abstract interpretation allows one to reason

about program semantics by computing its abstract seman-
tics, sacrificing precision to gain computability. Properties
proved in the abstract semantics are guaranteed to hold in the
concrete (i.e., actual) semantics, enabling the verification of
correctness and safety.

Information flow analysis [37], [38] examines how infor-
mation moves through a program or system. Typically, it is
used to identify if private input (such as sensitive data or
untrusted data) flows explicitly (i.e., through assignments) or
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TABLE 2. Smart contract’s analysis tool comparison.

TABLE 3. Instruction coverage of smart contract’s analysis tools for range query risk.

implicitly (i.e., through control flow) to a public output (like
unauthenticated web views or SQL query execution routine).
Over the last forty years, this analysis and its generalizations
have produced significant scientific and industrial outcomes.
However, analyses that track both implicit and explicit
information flows have seen limited industrial application,
mostly due to the false positives associated with implicit
flows and challenges with scalability [39]. For this reason,
taint analysis [36, Section 47.11.8] is often preferred over
traditional information flow analysis. Taint analysis is an
instance of information flow analysis that focus on detecting
if tainted information explicitly flows from specific sources
to critical program points, traditionally called sinks, without
any intermediate sanitization. Program variables, denoted
by V, are partitioned into tainted variables, denoted by T,
and clean variables, denoted by C, where V = T ∪ C
and T ∩ C = ∅. Tainted variables may contain values
coming from sources, while clean variables are assured to be
free from tainted values across all program executions. The
analysis identifies information flows (in the form of value
propagations) fromT toC variables, focusing only on explicit
flows to reduce false positives. In our approach, we use one
level of taintedness (that is, data can be only taint or clean)
to improve performance and scalability. Taint analysis has
proven to be effective in identifying vulnerabilities across
various real-world applications [39], [40], [41], [42], [43],
[44], [45]. Additionally, taint analysis can also be applied
with formal method frameworks to achieve soundness.

A. PHANTOM READ DETECTION AS TAINTNESS PROBLEM
The phantom reads problem can also be seen as a taintness
problem. Specifically, since values returned from a query are
intended to be read-only, detecting explicit flows of these
values to a write state operation, can identify a phantom
read conflict or a range query risk, depending on the query
statement involved. We can consider the query functions
(refer to Table 1) as sources, and the write state operations

TABLE 4. List of write state functions in HF.

(refer to Table 4) as sinks. Consequently, variables in T are
those that may contain phantom values coming from query
statements, while variables in C are guaranteed not to contain
phantom values across all possible program executions. For
the sake of clarity, we have treated all range queries as
sources. However, it is possible to conduct two distinct
taint analyses while keeping the same sinks but splitting
the sources into two different sets: one comprising the
re-executed queries and the other including non-re-executed
ones. This solution enables analyses to differentiate between
phantom reads detected by HF, which lead to performance
slowdowns, and those related to range query risks, which
result in inconsistencies, respectively.

VII. IMPLEMENTATION IN GOLISA
We implemented a static taint analysis for detecting phantom
reads in GoLiSA,1 an open-source static analyzer for Go
applications [43], [46]. It provides a frontend to parse and
manage Go applications, and its analysis engine relies on
LiSA [23], [47] (Library for Static Analysis), a modular
framework for developing static analyzers based on abstract
interpretation. A high level overview of the GoLiSA architec-
ture is reported in Figure 2.

After GoLiSA has successfully parsed a Go chaincode of
interest and built a program representation based on CFGs,
the taint analysis begins by identifying source statements
within the program. This is achieved through matching the
signatures of the program’s query methods against those

1Available at https://github.com/lisa-analyzer/go-lisa

80692 VOLUME 12, 2024



L. Olivieri et al.: Detection of Phantom Reads in Hyperledger Fabric

FIGURE 2. High-level overview of the GoLiSA architecture.

listed in Table 1. From these identified sources, the analysis
propagates the information throughout the program. For each
program point, GoLiSA determines whether each variable
contains information originating from sources (i.e., whether
it is tainted) or not (i.e., whether it is clean/untainted). The
LiSA analysis engine then executes a program-wide fixpoint
by computing each CFG’s fixpoint and considering abstract
semantics of each instruction.

At the end of the information propagation phase, GoLiSA
checks if tainted variables flowed into a sink. If so, an alert
is issued to indicate that tainted information has reached a
critical program point. It is important to highlight that the
analysis performed by GoLiSA is interprocedural, meaning it
analyzes the program across different procedures or function
calls, ensuring a thorough examination of the program’s
behavior.

A. APPROXIMATIONS, ABSTRACTIONS, AND SOUNDNESS
Abstract interpretation allows one to formalize a notion of
soundness. An analyzer is sound concerning a property of
interest if it examines all possible program executions of
a target program, ensuring definite guarantees about the
property. Consequently, if it does not raise any alarms,
the property is ensured to be upheld in every execution.
In other words, sound analyzers have no false negatives
(i.e., the property holds in at least one concrete execution,
but the analyzer does not detect it and no alarm is issued).
To pursue soundness, we employ over-approximations of
abstract semantics of instructions in GoLiSA. This ensures
that our static taint analysis conservatively assumes that
properties might hold, as it considers a broader spectrum of
executions than concrete ones.

FIGURE 3. A fragment of chaincode leading to a range query risk.

Our proposed taint analysis follows a fully static approach.
The main limitation lies in the inability to accurately
capture runtime behaviors and context-specific informa-
tion due to the lack of dynamic information. Further-
more, taint analysis tracks as abstract values only binary
information (tainted/clean) and not all the possible val-
ues readable from the sources. Consequentially, over-
approximating program behaviors and values, this approach
does not exclude the presence of false positives. How-
ever, it allows users to scales with different codebases,
making it suitable for projects of various sizes and
complexities.

VIII. ANALYSIS IN THE PRACTICE
In this section, we assess our analysis through a simple yet
expressive example scenario, highlighting the effectiveness
and the practical implications of our approach.

VOLUME 12, 2024 80693



L. Olivieri et al.: Detection of Phantom Reads in Hyperledger Fabric

FIGURE 4. Example of phantom read in HF [13].

FIGURE 5. Explicit flow leading to range query risk in Figure 3.

A. EXAMPLE OF PHANTOM READ
Let us consider the fragment of chaincode reported in
Figure 3. The main idea of this chaincode is to, given an
arbitrary query queryString (written using the syntax
of the underlying state database), retrieve the query results
from the current world state using the GetQueryResult
statement (line 2), iterate over the query result contained in
resultsIterator (lines 10 − 11), extract the values of
query records, and sum them in a variable sum (line 15), i.e.,
sum the values of keys matching that query in the current
world state. Then, the computed sum value is stored using
PutState in the world state at the end of the computation
(line 18).

The code reported in Figure 3 includes the GetQuery-
Result statement, which can lead to a potential phantom
read or, more specifically, to a range query risk as it is
not subject to re-execution, as reported by Table 3. High-
throughput is a critical application requirement in industrial
settings, meaning that chaincodes are required to handle
transactions in a concurrent environment where the world
state can change multiple times and quickly.

Let us now consider Figure 4. Transaction A proposes
the execution of the chaincode described in Figure 3, while
transaction B proposes the execution of a chaincode that

removes a key-value pair from the world state. If the
two transactions occur concurrently, and since there is no
re-execution for transaction A during the validation phase,
an inconsistency could arise, leading to different sum values
if the transactionB removes a key-pair value in the world state
simultaneously.

B. RUNNING THE ANALYSIS
Analyzing the chaincode reported in Figure 3, GoLiSA
successfully identifies the flow leading to a range query risk,
which originates from GetQueryResult and reaches the
write state instruction PutState, as shown in Figure 5.
Specifically, at line 2, GetQueryResult instruction may
return a value containing phantom data. This data is
propagated through resultsIterator to the variable
queryResult at line 10, reaching the PutState instruc-
tion throughgetValue(queryResult) at line 15, where
it is written in the world state.

Specifically, at line 2, GoLiSA identifies GetQuery
Result as a tainted source because it yields a value from a
query function that is not re-executed. Then, this tainted data
propagates through the program, according to the abstract
semantics of the instructions. At the end of the propagation
phase, GoLiSA returns the analysis results as a set of CFGs
enriched with the abstract post-state computed for each
instruction, as reported in Figure 6. Note that sum ∈ C
after instruction n + 5, while sum ∈ T after instruction
n + 6; this is due to the fixpoint computation of the for
loop taking into account both incoming values (i.e., n+5 and
n + 10 instructions) to ensure over-approximation of the set
of variables that may be tainted. These results are processed
by a checker that inspects them to detect program points
containing sinks and whose values come from variables
contained in the taint set. Finally, an alert is issued on line 15,
because the second parameter of PutState is flagged as
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FIGURE 6. CFG containing information of taint analysis.

a sink by the analysis, the statement []byte{sum} yields
the value from sum, and sum ∈ T in that program point
(instruction n+ 11).

An additional graphical representation of the analysis
related to the example is depicted in Figure7. The black text
box indicates the sources, while the red text box indicates the
sinks for the taint analysis. The complete propagation of the
flow is highlighted in yellow.

IX. CONCLUSION
In blockchain-based contexts, software verification plays a
key role, as when the software runs in a distributed and
decentralized network where patching and fixing code is
not always easy to do, and data is stored in the blockchain,

FIGURE 7. Graphical representation of taint analysis.

it becomes immutable. Therefore, it is necessary to detect,
investigate, and fix issues early in software development
to avoid network slowdown and the unexpected or wrong
storage of immutable data. Moreover, particular attention
must be paid to data management within smart contracts
to remain compliant with regulations such as the recent
European Data Act [48].

Regarding HF, verification tools are few and, although
formal software verification has a long history in computer
science, these tools cannot provide guarantees about their
findings, as they mostly apply syntactic checks. However,
in recent years, the scientific community has become very
aware of these issues, andwith the advent of new frameworks,
such as LiSA [23], Mopsa [49], or Goblint [50], it has
made these technologies more accessible to developers and
practitioners.

Regarding phantom reads, we provide a solution based
on taint analysis for their detection advances the current
state-of-the-art for HF, considering the semantics of the
instructions and providing formal guarantees, thanks to the
abstract interpretation framework.

Future work will investigate techniques to improve the
results and help developers during the bug-fixing phase to
understand the root cause of issues, such as introducing a
backflow analysis to reconstruction taint graphs [51], as well
as investigating techniques for making the analysis config-
urable by automatically discovering sources and sinks [52].
Although increasing precision means degrading analysis

performance, smart contracts are typically minimal programs
with low complexity. Then, it could increase the precision
without excessively impacting the analysis performance.

Moreover, given the multi-language nature of LiSA [47],
once the frontends of interest are supported, we will be in
the position to support the detection of phantom reads and
range query risks for other chaincode languages (such as Java
and JavaScript) without changing the taint analysis engine of
LiSA.

REFERENCES
[1] G. Wood, ‘‘ETHEREUM: A secure decentralised generalised transaction

ledger,’’ Ethereum, Zug, Switzerland, Yellow Paper, pp. 1–32, 2014.

VOLUME 12, 2024 80695



L. Olivieri et al.: Detection of Phantom Reads in Hyperledger Fabric

[2] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and Dapps. Sebastopol, CA, USA: O’Reilly, 2018.

[3] E. Androulaki et al., ‘‘Hyperledger fabric: A distributed operating system
for permissioned blockchains,’’ in Proc. 13th EuroSys Conf. New York,
NY, USA: Association for Computing Machinery, Apr. 2018, pp. 1–15,
doi: 10.1145/3190508.3190538.

[4] Hyperledger Fabric. Hyperledger Fabric Documentation—What is
Hyperledger Fabric? Accessed: May 2024. [Online]. Available: https:
//hyperledger-fabric.readthedocs.io/en/release-2.5/blockchain.html#what-
is-hyperledger-fabric

[5] IBM. (2023). Hyperledger Achieves Huge Milestone: Introducing
Hyperledger Fabric 2.0. Accessed: Dec. 2023. [Online]. Available:
https://www.ibm.com/blog/hyperledger-achieves-huge-milestone-
introducing-hyperledger-fabric-2-0/

[6] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich, ‘‘Blurring the
lines between blockchains and database systems: The case of hyperledger
fabric,’’ in Proc. Int. Conf. Manage. Data. New York, NY, USA:
Association for Computing Machinery, Jun. 2019, pp. 105–122, doi:
10.1145/3299869.3319883.

[7] M. Debreczeni, A. Klenik, and I. Kocsis, ‘‘Transaction conflict con-
trol in hyperledger fabric: A taxonomy, gaps, and design for con-
flict prevention,’’ IEEE Access, vol. 12, pp. 18987–19008, 2024, doi:
10.1109/ACCESS.2024.3361318.

[8] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, ‘‘Potential risks
of hyperledger fabric smart contracts,’’ in Proc. IEEE Int. Workshop
Blockchain Oriented Softw. Eng. (IWBOSE), Feb. 2019, pp. 1–10, doi:
10.1109/IWBOSE.2019.8666486.

[9] P. Lv, Y. Wang, Y. Wang, and Q. Zhou, ‘‘Potential risk detection system of
hyperledger fabric smart contract based on static analysis,’’ in Proc. IEEE
Symp. Comput. Commun. (ISCC), Athens, Greece, Sep. 2021, pp. 1–7, doi:
10.1109/ISCC53001.2021.9631249.

[10] J. A. Chacko, R. Mayer, and H.-A. Jacobsen, ‘‘Why do my blockchain
transactions fail? A study of hyperledger fabric,’’ in Proc. Int. Conf.
Manage. Data. New York, NY, USA: Association for Computing
Machinery, Jun. 2021, pp. 221–234, doi: 10.1145/3448016.3452823.

[11] P. Cousot and R. Cousot, ‘‘Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,’’ in Proc. 4th ACM SIGACT-SIGPLAN Symp. Princ. Program.
Lang. New York, NY, USA: Association for Computing Machinery, 1977,
pp. 238–252, doi: 10.1145/512950.512973.

[12] P. Cousot and R. Cousot, ‘‘Systematic design of program analysis
frameworks,’’ inProc. 6th ACMSIGACT-SIGPLAN Symp. Princ. Program.
Lang. New York, NY, USA: Association for Computing Machinery, 1979,
pp. 269–282, doi: 10.1145/567752.567778.

[13] Hyperledger Fabric. (2023). A Blockchain Ledger. Accessed: Dec. 2023.
[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-
2.5/ledger/ledger.html#a-blockchain-ledger

[14] Hyperledger Fabric. (2023). State Database Options. Accessed: Jan. 2024.
[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-
2.5/couchdb_as_state_database.html#state-database-options

[15] Hyperledger Fabric. (2023). Chaincode Terminology. Accessed:
Dec. 2023. [Online]. Available: https://hyperledger-fabric.readthedocs.io/
en/release-2.5/peers/peers.html?highlight=validation#chaincode-
terminology

[16] L. Foschini, A. Gavagna, G. Martuscelli, and R. Montanari,
‘‘Hyperledger fabric blockchain: Chaincode performance analysis,’’
in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6, doi:
10.1109/ICC40277.2020.9149080.

[17] Hyperledger Fabric. (2023). Transaction Simulation and Read-Write
Set. Accessed: Dec. 2023. [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/release-2.5/readwrite.html#transaction-
simulation-and-read-write-set

[18] Hyperledger Fabric. (2023). Hyperledger Fabric GitHub—Intefaces.
Accessed: Dec. 2023. [Online]. Available: https://github.com/hyperledger/
fabric-chaincode-go/blob/9207360bbddd5952479c24154353b82c4
c044677/shim/interfaces.go

[19] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi,
‘‘A transactional perspective on execute-order-validate blockchains,’’ in
Proc. ACM SIGMOD Int. Conf. Manage. Data. New York, NY, USA:
Association for Computing Machinery, Jun. 2020, pp. 543–557, doi:
10.1145/3318464.3389693.

[20] (2023). Upgrade a Chaincode. Accessed: Feb. 2023. [Online].
Available: https://hyperledger-fabric.readthedocs.io/en/release-
2.5/chaincode_lifecycle.html#upgrade-a-chaincode

[21] K. Yamashita and J. Ry. (2020).Chaincode Analyzer. Accessed: Feb. 2024.
[Online]. Available: https://github.com/hyperledger-labs/chaincode-
analyzer

[22] C. Siva. (2021). Revivecc. Accessed: Feb. 2024. [Online]. Available:
https://github.com/sivachokkapu/revive-cc

[23] P. Ferrara, L. Negrini, V. Arceri, and A. Cortesi, ‘‘Static analysis for dum-
mies: Experiencing LiSA,’’ in Proc. 10th ACM SIGPLAN Int. Workshop
State Art Program Anal. New York, NY, USA: Association for Computing
Machinery, Jun. 2021, pp. 1–6, doi: 10.1145/3460946.3464316.

[24] SonarQube. Accessed: May 2024. [Online]. Available: https://www.
sonarsource.com/products/sonarqube

[25] GrammaTech. CodeSonar. Accessed: Feb. 2024. [Online]. Available:
https://www.grammatech.com

[26] F. Spoto, ‘‘The Julia static analyzer for Java,’’ in Static Analysis, X. Rival,
Ed. Berlin, Germany: Springer, 2016, pp. 39–57, doi: 10.1007/978-3-662-
53413-7_3.

[27] M. Almakhour, L. Sliman, A. E. Samhat, and A. Mellouk, ‘‘Verification of
smart contracts: A survey,’’ Pervas. Mobile Comput., vol. 67, Sep. 2020,
Art. no. 101227, doi: 10.1016/j.pmcj.2020.101227.

[28] S. Kim and S. Ryu, ‘‘Analysis of blockchain smart contracts: Techniques
and insights,’’ in Proc. IEEE Secure Develop. (SecDev), Sep. 2020,
pp. 65–73, doi: 10.1109/SecDev45635.2020.00026.

[29] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, ‘‘A survey of smart contract
formal specification and verification,’’ ACM Comput. Surv., vol. 54, no. 7,
pp. 1–38, Sep. 2022, doi: 10.1145/3464421.

[30] S. Brotsis, N. Kolokotronis, K. Limniotis, G. Bendiab, and S. Shiaeles,
‘‘On the security and privacy of hyperledger fabric: Challenges and open
issues,’’ in Proc. IEEE World Congr. Services (SERVICES), Oct. 2020,
pp. 197–204, doi: 10.1109/SERVICES48979.2020.00049.

[31] C. Paulsen, ‘‘Revisiting smart contract vulnerabilities in hyperledger
fabric,’’ M.S. thesis, TU Delft Elect. Eng., Math. Comput. Sci., TU Delft
Intell. Syst., Delft Univ. Technol., Delft, The Netherlands, 2021.

[32] Google. (2023). The Go Programming Language Specification—
Declarations and Scope. Accessed: Dec. 2023. [Online]. Available:
https://go.dev/ref/spec#Declarations_and_scope

[33] F. E. Allen, ‘‘Control flow analysis,’’ in Proc. Symp. Compiler Optim.
New York, NY, USA: Association for Computing Machinery, 1970,
pp. 1–19, doi: 10.1145/800028.808479.

[34] X. Rival and K. Yi, Introduction to Static Analysis: An Abstract
Interpretation Perspective. Cambridge, MA, USA: MIT Press, 2020.

[35] B. Chess and J. West, Secure Programming With Static Analysis, 1st ed.
Reading, MA, USA: Addison-Wesley, 2007.

[36] R. Wilhelm, ‘‘Principles of abstract interpretation: By patrick cousot
MIT Press, 2021, ISBN 9780262044905, pp. 1–819. reviewed by reinhard
wilhelm,’’ Formal Aspects Comput., vol. 34, no. 2, pp. 1–3, Jun. 2022, doi:
10.1145/3546953.

[37] D. E. Denning, ‘‘A lattice model of secure information flow,’’
Commun. ACM, vol. 19, no. 5, pp. 236–243, May 1976, doi:
10.1145/360051.360056.

[38] A. Sabelfeld and A. C. Myers, ‘‘Language-based information-flow
security,’’ IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5–19, Jan. 2003,
doi: 10.1109/JSAC.2002.806121.

[39] P. Ferrara, L. Olivieri, and F. Spoto, ‘‘Tailoring taint analysis to GDPR,’’
in Proc. 6th Annu. Privacy Forum, in Lecture Notes in Computer
Science, vol. 11079, Barcelona, Spain. Cham, Switzerland: Springer, 2018,
pp. 63–76, doi: 10.1007/978-3-030-02547-2_4.

[40] M. D. Ernst, A. Lovato, D. Macedonio, C. Spiridon, and F. Spoto,
‘‘Boolean formulas for the static identification of injection attacks in Java,’’
in Proc. 20th Int. Conf. Logic Program., Artif. Intell., Reasoning, Suva,
Fiji, in Lecture Notes in Computer Science, vol. 9450. Berlin, Germany:
Springer, 2015, pp. 130–145, doi: 10.1007/978-3-662-48899-7_10.

[41] P. Ferrara, L. Olivieri, and F. Spoto, ‘‘Static privacy analysis by flow
reconstruction of tainted data,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 31,
no. 7, pp. 973–1016, Jul. 2021, doi: 10.1142/s0218194021500303.

[42] A. K. Mandal, P. Ferrara, Y. Khlyebnikov, A. Cortesi, and F. Spoto,
‘‘Cross-program taint analysis for IoT systems,’’ in Proc. SAC, Brno,
Czech Republic, C. Hung, T. Cerný, D. Shin, and A. Bechini, Eds., 2020,
pp. 1944–1952, doi: 10.1145/3341105.3373924.

[43] L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi,
and F. Spoto, ‘‘Information flow analysis for detecting non-determinism
in blockchain,’’ in Proc. 37th Eur. Conf. Object-Oriented Program., in
Leibniz International Proceedings in Informatics, vol. 263, Dagstuhl,
Germany, K. Ali and G. Salvaneschi, Eds., 2023, pp. 23:1–23:25, doi:
10.4230/LIPIcs.ECOOP.2023.23.

[44] L. Olivieri, T. Jensen, L. Negrini, and F. Spoto, ‘‘MichelsonLiSA: A static
analyzer for tezos,’’ in Proc. IEEE Int. Conf. Pervasive Comput. Commun.
Workshops Affiliated Events (PerCom Workshops), Mar. 2023, pp. 80–85,
doi: 10.1109/PerComWorkshops56833.2023.10150247.

80696 VOLUME 12, 2024

http://dx.doi.org/10.1145/3190508.3190538
http://dx.doi.org/10.1145/3299869.3319883
http://dx.doi.org/10.1109/ACCESS.2024.3361318
http://dx.doi.org/10.1109/IWBOSE.2019.8666486
http://dx.doi.org/10.1109/ISCC53001.2021.9631249
http://dx.doi.org/10.1145/3448016.3452823
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1109/ICC40277.2020.9149080
http://dx.doi.org/10.1145/3318464.3389693
http://dx.doi.org/10.1145/3460946.3464316
http://dx.doi.org/10.1007/978-3-662-53413-7_3
http://dx.doi.org/10.1007/978-3-662-53413-7_3
http://dx.doi.org/10.1016/j.pmcj.2020.101227
http://dx.doi.org/10.1109/SecDev45635.2020.00026
http://dx.doi.org/10.1145/3464421
http://dx.doi.org/10.1109/SERVICES48979.2020.00049
http://dx.doi.org/10.1145/800028.808479
http://dx.doi.org/10.1145/3546953
http://dx.doi.org/10.1145/360051.360056
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1007/978-3-030-02547-2_4
http://dx.doi.org/10.1007/978-3-662-48899-7_10
http://dx.doi.org/10.1142/s0218194021500303
http://dx.doi.org/10.1145/3341105.3373924
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.23
http://dx.doi.org/10.1109/PerComWorkshops56833.2023.10150247


L. Olivieri et al.: Detection of Phantom Reads in Hyperledger Fabric

[45] L. Olivieri, L. Negrini, V. Arceri, T. Jensen, and F. Spoto, ‘‘Design and
implementation of static analyses for tezos smart contracts,’’ Distrib.
Ledger Technol., Res. Pract., pp. 1–24, Jan. 2024, doi: 10.1145/3643567.

[46] L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi,
P. Ferrara, F. Spoto, and E. Talin, ‘‘Ensuring determinism in blockchain
software with GoLiSA: An industrial experience report,’’ in Proc. 11th
ACM SIGPLAN Int. Workshop State Art Program Anal., San Diego,
CA, USA, L. Gonnord and L. Titolo, Eds., Jun. 2022, pp. 23–29, doi:
10.1145/3520313.3534658.

[47] L. Negrini, P. Ferrara, V. Arceri, and A. Cortesi, LiSA: A Generic
Framework for Multilanguage Static Analysis. Singapore: Springer, 2023,
pp. 19–42, doi: 10.1007/978-981-19-9601-6_2.

[48] L. Olivieri and L. Pasetto, ‘‘Towards compliance of smart contracts with
the European union data act,’’ in Proc. CEUR Workshop, vol. 3629, 2024,
pp. 61–66. [Online]. Available: https://ceur-ws.org/Vol-3629

[49] R. Monat, A. Ouadjaout, and A. Miné, ‘‘Mopsa-C: Modular domains
and relational abstract interpretation for C programs (competition con-
tribution),’’ in Proc. 29th Int. Conf. Tools Algorithms Construct. Anal.
Syst., in Lecture Notes in Computer Science, vol. 13994, Paris, France,
S. Sankaranarayanan and N. Sharygina, Eds. Cham, Switzerland: Springer,
2023, pp. 565–570, doi: 10.1007/978-3-031-30820-8_37.

[50] S. Saan, M. Schwarz, J. Erhard, M. Pietsch, H. Seidl, S. Tilscher,
and V. Vojdani, ‘‘GOBLINT: Autotuning thread-modular abstract
interpretation—(Competition contribution),’’ in Proc. 29th Int. Conf.
Tools Algorithms Construct. Anal. Syst., in Lecture Notes in Computer
Science, vol. 13994, Paris, France, S. Sankaranarayanan and N. Sharygina,
Eds. Cham, Switzerland: Springer, 2023, pp. 547–552, doi: 10.1007/978-
3-031-30820-8_34.

[51] P. Ferrara, L. Olivieri, and F. Spoto, ‘‘BackFlow: Backward context-
sensitive flow reconstruction of taint analysis results,’’ in Proc. 21st Int.
Conf. Verification, Model Checking, Abstract Interpretation, New Orleans,
LA, USA. Berlin, Germany: Springer, 2020, pp. 23–43, doi: 10.1007/978-
3-030-39322-9_2.

[52] P. Ferrara and L. Negrini, ‘‘SARL: OO framework specification for
static analysis,’’ in Software Verification, M. Christakis, N. Polikarpova,
P. S. Duggirala, and P. Schrammel, Eds. Cham, Switzerland: Springer,
2020, pp. 3–20, doi: 10.1007/978-3-030-63618-0_1.

LUCA OLIVIERI received the Ph.D. degree in
computer science from the University of Verona,
with a focus on verifying smart contracts and
blockchain software. He was a Software Engineer
and a Research Scientist for five years in the
industrial field on static analysis based on abstract
interpretation, mainly for Java and C# programs.
Then, he joined the Software and System Ver-
ification (SSV) Group, Ca’ Foscary University
of Venice, where he is currently an Assistant

Professor (non-tenure track) in computer science.

LUCA NEGRINI received the bachelor’s and mas-
ter’s degrees from the University of Verona, Italy,
and the Ph.D. degree in computer science from
the Ca’ Foscari University of Venice, in January
2023, with a focus on multi-language static anal-
ysis. After the master’s degree, he received five
years of industrial experience in the development
and applications of static analysis and abstract
interpretation with the Julia static analyzer. Then,
he joined the Ca’ Foscari University of Venice as a

Research Fellow, where he is currently an Assistant Professor (non-tenure).

VINCENZO ARCERI received the Ph.D. degree in
computer science from the University of Verona,
in May 2020. From September 2019 to September
2021, he was a Postdoctoral Researcher with
the Software and System Verification Research
Group, Ca’ Foscari University of Venice. In Sum-
mer 2016, he was a UROP Student with Imperial
College London, U.K., under the supervision of
Prof. Sergio Maffeis. He is currently an Assistant
Professor (non-tenure track) with the Department

ofMathematical, Physical, and Computer Sciences, University of Parma. His
main research interests include static program analysis, abstract interpreta-
tion, string analysis and verification, blockchain software verification, and,
more generally, formal methods for program security.

BADARUDDIN CHACHAR received the bache-
lor’s degree in computer science from COMSATS
University Lahore, Pakistan, in 2013, and the mas-
ter’s degree in software engineering from Sukkur
IBA University, Pakistan, in 2018. He is currently
pursuing the Ph.D. degree in computer science
with Ca’ Foscari University of Venice, Venice,
Italy. His Ph.D. project focuses on smart contract
vulnerability detection using static analysis under
the supervision of Agostino Cortesi and Pietro

Ferrara. He received a fully-funded national scholarship for science and
engineering from the Ministry of IT, Pakistan.

PIETRO FERRARA is currently an Associate Pro-
fessor with the Ca’ Foscari University of Venice.
Prior to academia, he gained industry experience
bridging scientific research with software devel-
opment and delivery. This included roles, such
as the Head of Research and Development at
JuliaSoft SRL and a Research Staff Member at
IBM Research. He is also an expert in abstract
interpretation-based static analysis, focusing on
identifying security vulnerabilities and privacy
breaches in object-oriented programs.

AGOSTINO CORTESI received the Ph.D. degree.
He is currently a Full Professor of computer
science with the Ca’ Foscari University of Venice,
Italy. He contributed to more than 200 arti-
cles in journals, such as ACM Transactions
on Programming Languages and Systems and
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, and
proceedings of international conferences, such
as ACM POPL, ACM PLDI, and IEEE LICS.
According to Scopus, his current H-index is 23,

with more than 1800 citations. His main research interests include software
engineering and software verification areas, combining theoretical and
applicative approaches. He serves as the Co-Editor-in-Chief for the book
series Services and Business Process Reengineering (SpringerNature).

Open Access funding provided by ‘Università degli Studi di Parma’ within the CRUI CARE Agreement

VOLUME 12, 2024 80697

http://dx.doi.org/10.1145/3643567
http://dx.doi.org/10.1145/3520313.3534658
http://dx.doi.org/10.1007/978-981-19-9601-6_2
http://dx.doi.org/10.1007/978-3-031-30820-8_37
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-031-30820-8_34
http://dx.doi.org/10.1007/978-3-030-39322-9_2
http://dx.doi.org/10.1007/978-3-030-39322-9_2
http://dx.doi.org/10.1007/978-3-030-63618-0_1

