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ABSTRACT
Statistical tools are crucial for a variety of hydrological applications, whether to model processes and 
enhance understanding and knowledge or to design infrastructure systems. Given the rapid evolution of 
statistical methods and the need for a solid theoretical foundation for their correct application, a multi-
disciplinary community STAtistics in HYdrology Working Group (STAHY-WG) aggregated under the 
International Association of Hydrological Sciences (IAHS) umbrella to contribute to this research field. 
Now, more than 15 years since its inception, this paper summarizes the main achievements of this 
productive community collaboration in four (of many) branches of statistical hydrology: extreme value 
analysis, multivariate analysis, time series analysis, and regionalization. The aim is to provide an overview of 
recent developments, offer practical suggestions (e.g. software packages), and outline future challenges to 
support scientists and practitioners in their endeavours within the realm of statistical hydrology studies.
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1 Introduction

Statistical methods for analysis, synthesis, and modelling of 
hydrological data have a long history and continue to be a topic 
of intense research. Such tools have proved to be very effective 
and useful in numerous applications. The effectiveness of the 
statistical description of hydrological processes reflects the

enormous complexity of hydrological systems, which often 
makes a purely deterministic description ineffective 
(Koutsoyiannis 2021); indeed, all hydrological processes reflect a 
combination of both deterministic and stochastic elements (Vogel 
1999). A clear exemplification is provided by Farmer and Vogel 
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(2016), who document systematic bias in the estimation of design
events, droughts and floods, when a strictly deterministic 
approach based on watershed simulation models is employed.

In the last few decades, the number of available statistical 
tools, approaches, and procedures in several scientific fields 
has been increasing faster than before. The correct application 
of classical, updated, and new methods has always been funda-
mental for hydrological applications; moreover, for a single 
hydrological application, there are many potential statistical 
approaches available. As a consequence, in 2007 the 
“STAtistics in HYdrology” (STAHY) Working Group of the 
International Association of Hydrological Sciences (IAHS) was 
launched as a virtual common space aimed at synthesizing the 
enormous amount of information and number of resources 
present in the literature and beyond. The mission of this group 
was to coordinate, optimize and concentrate resources with the 
aims for statisticians to understand hydrological applications, 
for hydrologists to understand and appropriately apply statis-
tical tools and understand what is the correct or best approach, 
and for statistical hydrologists (who have peculiar expertise in 
the application and development of statistical methods for 
hydrological data) to easily be updated on recent advances in 
their research field. Thus, the working group contributed to 
advancing and promoting hydrological sciences worldwide, in 
line with the IAHS mission.

The STAHY Working Group successfully promoted and 
organized several initiatives towards the above directions. 
Contributions included several sessions at IAHS or 
International Union of Geodesy and Geophysics (IUGG) 
General Assembly, annual STAHY Workshops, and several 
summer schools and short courses contributing to the develop-
ment of new generations of statistical hydrologists; STAHY also 
collected recent scientific studies on statistical hydrology and 
awarded yearly the best ones (STAHY Best Paper Award). 
During the XXV IUGG General Assembly held in Melbourne 
Australia in 2011, the STAHY Working Group was transformed 
into the International Commission on Statistical Hydrology 
(ICSHIAHS) to permanently give its contribution to the scien-
tific community. Ever since, ICSH has brought together people 
who wanted to actively collaborate by sharing knowledge, infor-
mation, papers, data, and numerical routines. Up to the begin-
ning of 2023, more than 200 researchers from about 60 
countries, from six continents, have joined the commission.

The operational idea of ICSH was to focus attention on and 
gather people around some main topics, emerging from the 
interests of or explicitly suggested by the involved community. 
The most frequently discussed subjects in the ICSH-STAHY 
community from the very beginning are: (i) extreme value 
analysis, (ii) multivariate analysis, (iii) single or multiple time 
series analysis and modelling, and (iv) regionalization. Extreme 
events are important hydrological phenomena with serious 
societal consequences; their probability of being exceeded (or 
not) is determined in a univariate (i) or a multivariate (ii) 
framework, depending on the specific conditions. However, 
for general hydrological purposes, the statistical prediction of 
the magnitude and occurrence of extreme events may not be 
sufficient, and we need to model the temporal (iii) or spatial (iv) 
evolution of the entire hydrological process, considering its 
correlation structure. Obviously, these are only some of the

topics of interest to the statistical hydrology community. 
Providing a comprehensive compendium of all or at least major-
ity of the research areas related to or derived from those 
described here is far beyond the scope of this work.

Moreover, the ICSH-STAHY community actively contri-
butes to many of the questions listed in the Unsolved Problems 
in Hydrology (UPH) community initiative (Blöschl et al. 
2019a), and, among them, the following ones are directly 
linked to ICSH-STAHY activities (even if almost all questions 
require the application of statistical tools); note that the ques-
tions are reported here with reference to their number in the 
UPH list.

(1) Time variability and change: 1. Is the hydrological cycle 
regionally accelerating/decelerating under climate and 
environmental change, and are there tipping points 
(irreversible changes)?

(2) Space variability and scaling: 6. What are the hydrolo-
gical laws at the catchment scale and how do they 
change with scale?

(3) Variability of extremes: 9. How do flood-rich and 
drought-rich periods arise, are they changing, and if 
so why?

(4) Measurements and data: 16. What is the relative value 
of traditional hydrological observations versus soft data 
(qualitative observations from lay persons, data mining 
etc.), and under what conditions can we substitute 
space for time?

(5) Modelling methods: 20. How can we disentangle and 
reduce model structural/parameter/input uncertainty 
in hydrological prediction?

(6) Interfaces with society: 21. How can the (un)certainty in 
hydrological predictions be communicated to decision 
makers and the general public?

Now, 15 years since its establishment, the ICSH-STAHY 
community, represented by the authors of this work, aims to 
summarize the current state of the art in the aforementioned 
topics. Hence, the objective of this paper is to offer a critical 
review of the progress in the past 15 years, present standar-
dized methods and procedures for various applications, and 
propose insights for the future advancement of statistical 
hydrology. Note that the authors of this work are past and 
current officers of the ICSH-STAHY, as well as some members 
of the commission who were actively involved in the organiza-
tion of recent initiatives. We are aware that the present work 
cannot be exhaustive, nor do we pretend to cover all relevant 
issues, of which there are many. However, we will mention, 
when relevant, some other topics or emerging areas of research 
that are more or less closely related to those discussed here 
(such as Bayesian methods, stochastic rainfall–runoff model-
ling, machine learning, etc.). Cross-cutting, emerging issues 
may be discussed in detail in a possible future development of 
this work (a series of manuscripts dedicated to specific issues).

The remainder of this paper is organized according to the 
four main topics mentioned above; the following sections are 
each dedicated to one of the four research areas. For each of 
them, we present a brief state of the art, the milestones for 
driving practical applications, and the main open problems
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following the vision of the ICSH-STAHY community, in the 
eyes of the group of people authoring this work. Finally, each 
section providesa table with some of the most popular Matlab® 
and R (R Core Team 2020) packages for statistical analysis and 
modelling. Such packages can be accessed and downloaded 
either from The Comprehensive R Archive Network 
(CRAN), i.e. the official Rproject package archive, or from 
other open-access repositories.

2 Extreme value analysis

When an extreme event occurs, key questions arise: Is it going 
to happen again? How often? Can information from past 
events help with the prediction of the chance of future 
extremes? Answering these questions has led to significant 
advances in probability theory over the past century (see e.g. 
Coles 2001, Koutsoyiannis 2021). Indeed, human history has 
been shaped by and evolved also in response to natural dis-
asters. In addition, anthropogenically induced change is 
expected to amplify the magnitude, frequency and effects of 
extreme events in the future.

The probability of an event (here, extreme flood, rainfall, 
drought) with a given magnitude can be broadly defined as the 
chance that the process of interest can exceed a certain high 
value (see Koutsoyiannis 2021 and references therein). 
Contemporary frequency analysis in hydrology, as it is 
known today, started with Hazen in 1930 and was popularized 
by Gumbel (1958). The study on the concept of probability led 
to developing many distribution functions and answering sev-
eral basic scientific and applied questions (Kelley 1994, Hald 
2005). Hydrological frequency analysis broadly encompasses a 
set of statistical methods and techniques to link the magnitude 
of an extreme event to its frequency or chance of exceedance 
through a probability distribution function (see e.g. Stedinger 
et al. 1993, El Adlouni et al. 2010, Camuffo et al. 2020), 
including distributions with an upper limit of the population, 
which corresponds to the concept of the probable maximum 
precipitation (PMP) or the probable maximum flood (PMF) 
(e.g. the recent Salas et al. 2020).

Extreme value analysis is well established in the literature and 
has a long history in hydrological theory and practice, as recalled 
above. Notwithstanding this, continued advances of hydrologi-
cal knowledge incessantly open new questions, requiring inno-
vative statistical tools to address them. In the following sections 
we briefly recall the most common approaches to extreme value 
analysis and focus on the latest open problems.

2.1 Common methodological approaches for extreme 
events frequency analysis

Typically, extreme value analysis involves the following five 
steps (e.g. Rao and Hamed 2019, Katz et al. 2002):

● Exploratory analysis. Since hydrological data are generally 
asymmetric and the interest is in the distribution tail 
(where extremes occur), skewness and kurtosis are of 
particular interest in exploratory data analyses. For exam-
ple, being a good indicator of a distribution’s shape, the 
skewness is useful to guide the selection of a representative

distribution. It is relevant to mention that it is generally 
more convenient to use L-moments, L-skewness and L- 
kurtosis, instead of ordinary moments, for this scope, as 
demonstrated in the seminal paper by Hosking (1990), as 
well as the comparative assessment in Vogel and Fennessey 
(1993). Another interesting approach is that recently pro-
posed by Koutsoyiannis (2021) based on the so-called 
knowable moments. On the other hand, outliers can nega-
tively affect the selection of an appropriate distribution 
(see e.g. Lamontagne et al. 2016). For a summary of both 
parametric and nonparametric methods for exploratory 
data analysis, the reader is referred to Helsel and Hirsch 
(1992) and Helsel et al. (2020).

● Testing assumptions. This step is important to ensure the 
validity of the subsequent steps. A number of homoge-
neity and stationarity testing methods are available in the 
literature; readers are referred to Naghettini (2017) for a 
review of the methods and to Serinaldi et al. (2018), 
among others, for a discussion on trend tests (as briefly 
discussed in Section 4.3).

● Modelling by probability distribution functions. Fitting a 
probability distribution function to the observed data is 
perhaps the most developed step in hydrology and statis-
tical theory literature; the remainder of this section is 
indeed dedicated to pointing out the most common 
modelling approaches.

● Quantile and return period estimation. The notions of 
quantile and return period (e.g. Fernández and Salas 
1999, Veneziano et al. 2007, Langousis et al. 2009, Volpi 
2019) for hydrological events are commonly used to 
describe the severity of extremes for a wide range of 
applications including hydraulic infrastructure design 
and risk assessment (e.g. Singh and Strupczewski 2002, 
Vogel and Castellarin 2017, among others).

● Uncertainty estimation. The evaluation of the uncertainty 
bounds (see e.g. Coles 2001), which depends on the 
length of the observed data and on modelling choices, is 
of paramount importance to understand and quantify the 
reliability for subsequent risk assessment and design. 
Note, however, that additional uncertainty components 
with respect to uncertainty bounds are generally needed 
for risk-based decision making (see e.g. Vogel and 
Castellarin 2017).

The fundamental theory of distributions for hydrological 
frequency analysis of extreme events relies on the early work of 
Maurice Fréchet who showed in 1927 the asymptotic distribu-
tions of sampled extremes, which are typically selected as the 
annual maxima. After Fisher’s and Tippett’s work in 1928, and 
Gnedenko’s work in 1943, the Fréchet, Gumbel, and Weibull 
probability distributions emerged as limiting distributions of 
extremes (maxima sampled from fixed-length sequences of 
independent random variables, referred to also as block max-
ima). The combination of Fréchet, Gumbel, and Weibull 
resulted in the generalized extreme value (GEV) distribution 
(Coles 2001), which is characterized by the location, scale, and 
shape parameters; the latter determines not only the shape but 
also the tail behaviour of the GEV distribution. As previously 
mentioned, in environmental applications, the most
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commonly applied approach is composed of maxima extracted 
from each Elena Volpi-year-long block of data, simply named 
annual maxima (AM). This assumption is a commonly 
accepted compromise in order to retain a reasonable number 
of observations free of seasonal and dependence biases.

Under a different framework aiming to enlarge the sample 
dimension, but with some analogies to the asymptotic proper-
ties of GEV, it can be proved that the generalized Pareto (GP) 
is the expected asymptotic distribution of the rescaled excee-
dances above high enough thresholds, namely the peaks-over- 
threshold (POT), regardless of the distribution of the under-
lying process (Coles 2001). The more complex POT approach 
requires the proper definition of a high enough threshold to 
filter the data and calculate the frequency of the rescaled 
excesses (e.g. Deidda 2010, Langousis et al. 2016a). The POT 
approach makes use of the GP distribution, which is ruled by 
the threshold, scale parameter, and, similarly to GEV, shape 
parameter; again, the latter controls the tail behaviour of the 
distribution.

A large number of studies apply the GEV and GP distribu-
tions to analyse extremes (see e.g. Coles 2001, El Adlouni et al. 
2007, Katz 2013, Tyralis et al. 2019, Emmanouil et al. 2020 
among many others). In particular, Martins and Stedinger 
(2000) introduce the generalized maximum likelihood (ML) 
estimation for the GEV model; Hosking and Wallis (1987) 
provide seminal analyses and comparisons of both parameter 
estimation and quantile estimators for the GP model. 
Stedinger et al. (1993) (see also Madsen et al. 1997) summarize 
the various rigorous and classical studies, at that time, which 
led to the recommendation of POT over AM approaches when 
the arrival rate for the POT is large enough (1.65 events/year 
for Poisson arrivals with exponential exceedances). In such 
instances, POT analyses would yield more accurate estimates 
of extreme quantiles. O’Shea et al. (2023) argue that the POT 
series is better characterized using the four-parameter Kappa 
(or the combination of the GP and binomial) for the estima-
tion of rare to veryrare design extremes. Along with GEV and 
GP, many other distribution functions are used for frequency 
analysis of extremes, like Log-Pearson Type III (e.g. Griff and 
Stedinger 2007), Burr type (e.g. Zaghloul et al. 2020) or kappa 
distributions (see e.g. Hosking and Wallis 1997 or Kjeldsen et 
al. 2017).

Frequency models can nevertheless differ not only in the 
choice of the shape of the distribution function, but also in the 
choice of the estimation method used to fit the model to the 
observed data. For a comprehensive review of the topic, 
including several examples of flood and rainfall extreme 
events, readers are referred to Nerantzaki and Papalexiou 
(2022).

It is noteworthy that there are no theoretical reasons that 
justify the apriori assumption of a single specific distribution 
under non-asymptotic conditions; thus, the adoption of a 
specific model is generally motivated by its ability to robustly 
represent the available observed data (see e.g. Laio 2004, El 
Adlouni et al. 2008, Calenda et al. 2009, orLaio et al. 2009for 
possible examples of model selection criteria). Note that even 
in the case of high accuracy in reproducing the observed data 
(which in fact hardly ever happens), any adopted model pro-
vides only uncertain, and possibly biased estimates of higher

extremes (e.g. in extrapolation) because the limited length of 
the available samples provides only poor information about 
rare events (Klemeš 2000a, 2000b). Special attention should be 
paid to the tail behaviour (large or small extreme events) of the 
modelling distribution (El Adlouni et al. 2008, Kochanek et al. 
2020; see also Merz et al. 2022 and references therein). In 
addition to parametric models, which can be easily applied in 
extrapolation, a wide range of distribution-free, non-para-
metric, semi-parametric or kernel-based methods have also 
been developed in the literature (see e.g. Lall 1995, Rao and 
Hamed 2019, Banfi et al. 2022).

Finally, Table 1 reports a selected list of packages already 
available for extreme events frequency analysis, mainly (but 
not only) R packages available from the R Core Team (2020).

2.2 Incorporating additional information: historical 
events, seasonality and time dependence of the 
underlying process

Besides the two classical approaches for considering extreme 
events in hydrology mentioned in the previous section 
(Section 2.1), namely AM and POT, several extensions exist 
that aim at increasing the information incorporated in the 
samples. Indeed, both these classical approaches lead to for-
mulations neglecting a significant proportion of the observa-
tions, discarding the information contained in the bulk of the 
parent distribution along with most of the observations. The 
bulk of the distribution may add information on the extreme 
events assuming that they pertain to the same process (as in 
GEV and POT derivations). In addition, extreme events may 
be differentiated by the season they occur in (see e.g. Baratti et 
al. 2012, Kochanek et al. 2012, Strupczewski et al. 2012 for 
applications in flood frequency analysis, and Mascaro 2018 for 
extreme rainfall events). Another development is the use of 
flood-type-specific samples that are considered in a joint mix-
ture model (as in Hirschboek 1987, Fischer 2018, Fischer and 
Schumann 2021). These subsamples are assumed to be identi-
cally distributed and more homogeneous than the annual or 
partial duration series since the events can be assumed to have 
a common genesis.

In general, any additional information about the process of 
interest notably improves return period estimates. In the last 
few decades, several researchers have evaluated the possibility 
of extending the data to past, non-systematically recorded 
events, leading to a significant increase in the length of the 
available datasets, with benefits towards the frequency analysis 
of hydrological extremes. This non-systematic data can have 
two different sources: historical and palaeoflood information. 
The use of historical information in the estimation of flood 
quantiles was first described by Benson (1950) and Leese 
(1973). Techniques for obtaining information from palaeo-
floods were first introduced by Costa (1978) and Kochel and 
Baker (1982).

Stedinger and Cohn (1986), Cohn and Stedinger (1987) and 
Frances et al. (1994) systematized the use of these types of 
information and demonstrated their enormous advantage in 
reducing the uncertainty of the estimated quantiles. This has 
led to the development of historical hydrology (see e.g. Benito 
et al. 2004, Macharo et al. 2015), that involves the use of
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historical–archival methods, of hydrological modelling and 
stochastic frequency analysis (from Stedinger and Cohn 1986 
to e.g. Francés et al. 1994, Naulet et al. 2005, Reis and Stedinger 
2005, Calenda et al. 2009, Botero and Francés 2010, Blöschl et 
al. 2020, Saint Criq et al. 2022, Ostrowski et al. 2023, and many 
more).

A promising technique for improving the reliability of high 
return period quantiles is based on a better understanding of 
the emergence of extreme events from the bulk of the distribu-
tions, as suggested by Marani and Ignaccolo (2015) and 
Zorzetto et al. (2016) or differently by Volpi et al. (2019). 
This might require relaxing the asymptotic hypothesis or the 
underlying, common hypothesis of independence of sample 
data used for inference and projection. The extension of fre-
quency analysis and return period estimate for time-depen-
dent data was recently discussed by Volpi et al. (2015), 
Serinaldi and Kilsby (2016, 2018) and Serinaldi and 
Lombardo (2020) and references therein.

In particular, the metastatistical extreme value (MEV) 
approach by Marani and Ignaccolo (2015) relies on the 
assumption that the extreme events are block maxima among 
a finite and stochastically variable number of ordinary events 
from an underlying and possibly time-varying parent distribu-
tion. Then, the MEV approach relaxes the limiting assump-
tions of the classical extreme value theory by considering as 
random variables the parameters defining the number of 
ordinary events and the probability distribution of event mag-
nitudes. This allows the use of the entire observational set to 
infer the distribution of extremes and significantly reduce the 
estimation uncertainty (see e.g. Marra et al. 2023).

Another way to increase the information acquired from 
samples of limited length is to apply statistical models that 
simultaneously incorporate information from a wide range of 
spatiotemporal scales. Under this setting, during the last four 
decades, scaling representations of hydrological processes have 
attracted much attention, with particular emphasis on extreme

estimation under asymptotic (e.g. Veneziano and Langousis 
2005a and the review in Veneziano et al. 2006) and pre- 
asymptotic (e.g. Langousis et al. 2013, Emmanouil et al. 2020, 
2022, 2023, Grimaldi et al. 2022) conditions.

Stochastic models (see Section 4) have also been used to 
extract information from samples of limited lengths. The idea 
is to calibrate a model that is capable of generating replicas of 
observed time series, therefore obtaining multiple realizations of 
the considered stochastic process. These models were pioneered 
by the contributions of Andrey Markov (1856–1922) and then 
widely used by hydrologists since the second half of the 20th 
century (see e.g. Thomas and Fiering 1962). The use of stochas-
tic models for inferring extreme values has been problematic for 
the complexity associated with the simulation of the distribution 
tails of non-Gaussian processes. However, recent scientific con-
tributions opened promising doors for resolving such limita-
tions (Papalexiou and Serinaldi 2020; see also Section 4). In 
particular, stochastic streamflow models are needed for risk- 
based hydrological management methods because such models 
can generate the ensembles needed for such planning exercises. 
Vogel (2017, section 2) gives a historical perspective on the 
application of such models in hydrology and provides argu-
ments regarding the need for a new generation of stochastic 
watershed models for generating such streamflow ensembles, 
particularly when purely statistical/machine learning models are 
inadequate to the task, because they may not be able to incor-
porate explicitly the impact of anthropogenic influences.

2.3 Changing extremes: stationarity versus non- 
stationarity

A fundamental assumption for the extreme value analysis is 
that the random variable of interest should be independently 
and identically distributed (i.i.d.). Note that, as discussed in the 
previous section, while the independence assumption can be 
relaxed, the identical distribution implies that the statistical

Table 1. Packages for extreme events frequency analysis and modelling (see also the CRAN task view: hydrological data and modelling https://cran.rproject.org/web/ 
views/Hydrology.html).

Name Brief description Repo. Link Authors

ProNEVA Process-informed nonstationary extreme value 
analysis

UCI.edu https://amir.eng.uci.edu/software.php AghaKouchak et al.

NEVA Nonstationary extreme value analysis UCI.edu https://amir.eng.uci.edu/software.php AghaKouchak et al.
MEV Modelling of extreme values CRAN https://cran.r-project.org/package=mev Belzile et al.
UKFL UK flood estimation CRAN https://CRAN.R-project.org/package=UKFE Hammond
PeakFQ Flood frequency analysis based on US Bulletin 17C USGS http://water.usgs.gov/software/PeakFQ/ US Geological Survey 

(USGS)
Afins Unbounded and bounded distributions with 

nonsystematic information
UPV http://lluvia.dihma.upv.es/EN/software/software. 

html
Botero and Francés

GAMLSS Generalized additive models 
for location, scale and shape

CRAN https://cran.R-project.org/package=gamlss Stasinopoulos et al.

extRemes General functions for performing extreme value 
analysis

CRAN https://cran.R-project.org/package=extRemes Gilleland

lmom Functions related to L-moments: computation of 
L-moments and trimmed L-moments of 
distributions and data samples; parameter 
estimation

CRAN https://CRAN.R-project.org/package=lmom Hosking

LMoFit Advanced L-moment fitting of distributions CRAN https://CRAN.R-project.org/package=LMoFit Zaghloul et al.
LMOMCO L-moments, censored L-moments, trimmed  

L-moments, LCo-moments, and many 
distributions

CRAN https://CRAN.R-project.org/package=lmomco Asquith

USGSR/smwrStats R functions to support statistical methods in water 
resources

CRAN https://rdrr.io/github/USGS-R/smwrStats/ USGS
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properties of the historical data, i.e. the relationship between 
the magnitudes and return periods based on frequency analysis 
of data, should be invariant and thus representative of future 
events. The longer the observed data series, the higher the 
chance that historical extremes represent a reasonable sample 
for what is expected to occur in the future (Klemeš 2000a, 
2000b). However, if the statistics of future extremes are 
expected to significantly vary from the past, return periods 
and occurrence probabilities estimated based on historical 
observations may not be representative of the future scenarios.

While hydrological extremes are expected to show signifi-
cant natural variability, anthropogenic activities including 
greenhouse gas emissions and land use–land cover changes 
are expected to alter the magnitude and severity of extreme 
events (e.g. Milly et al. 2008, 2015, Chiang et al. 2021b). Over 
the past two decades, numerous studies have pointed to more 
intense and frequent extreme rainfall events (e.g. Alexander et 
al. 2006, Westra et al. 2014, Fischer and Knutti 2016, 
Mallakpour and Villarini 2017, Ragno et al. 2018, Farris et al. 
2021, Emmanouil et al. 2022, 2023), changes in the mean and 
variability of river flows (e.g. Blöschl et al. 2017, 2019b, 
Hodgkins et al. 2017), and sea level rise with implications for 
severe coastal flooding (e.g. Vermeer and Rahmstorf 2009, 
Wahl et al. 2015). As for floods, changes in both hydroclima-
tology and land use showed a strong impact; as an example, in 
a comparative national assessment on the magnification of 
floods, Vogel et al. (2011) found that urbanization impacts 
were at that time more severe (led to higher magnification 
factors) and obvious (common) than impacts due to climate 
change.

Current operational procedures, risk assessment methods 
and design guidelines are based on the so-called “stationarity” 
assumption, which implies invariant properties of hydrological 
extremes from historical records. In other words, a stationary 
approach assumes that the properties of the underlying sto-
chastic model (i.e. all finite-dimensional distributions, includ-
ing the statistics of extremes) do not change significantly 
relative to time or another physically-based variable. Indeed, 
change in the observed data does not necessarily imply a 
nonstationary underlying process; and stationarity is also 
related to ergodicity, which in turn is a prerequisite for making 
inferences from data (Cohn and Lins 2005, Koutsoyiannis and 
Montanari 2015). Furthermore, a nonstationary framework 
cannot be generally inferred from the observed data alone, i. 
e. without a broad a priori discussion about the physical 
reasons and the expected change (Serinaldi and Kilsby 2015, 
Koutsoyiannis 2016, Luke et al. 2017).

A non-stationary assumption corresponds to the changing 
properties of the hydrological extremes over time in response 
to a physically-based process. It is generally suggested to use as 
covariates for change the forcings of that change through 
climate, land use and/or reservoir indices instead of time 
(Villarini et al. 2009b, Katz 2013, López and Francés 2013, 
Ragno et al. 2019). Following a popular publication on the 
“death of the stationarity assumption” due to significant 
human activities (Milly et al. 2008), a lively debate emerged 
in the literature on the validity of the stationary and non- 
stationary approaches (Lins and Cohn 2011, Matalas 2012, 
Koutsoyiannis and Montanari 2015, Milly et al. 2015,

Serinaldi and Kilsby 2015, Luke et al. 2017, Ragno et al. 
2019). Some key questions are:

● Is the commonly used stationary method (or alternative 
versions still based on the same fundamental assump-
tions) sufficient for analysis of future extremes?

● Do we need a new paradigm for analysis of changing 
extremes?

● How can we confidently decide whether the statistics of 
extremes have changed or not?

● Is non-stationarity a property of the natural system 
(including human interactions) or simply a property of 
a numerical model?

● Do we have sufficient observations to test and develop 
nonstationary models for analysis of hydrological 
extremes?

● What is the predictability power of a nonstationary 
framework?

This is not an exhaustive list of all the questions; on the 
contrary, the list of relevant questions and concerns is long and 
still growing (e.g. Koutsoyiannis 2020). The purpose of this 
section is not to take a position regarding which approach is 
more justified in a changing environment. Instead, we high-
light that this area of research still deserves more in-depth 
exploration and model development. Regarding the methods 
for change analysis of the observed data, we refer the reader to 
Section 4.3.

The non-stationary assumption is typically implemented 
through changing one or more parameters of the correspond-
ing extreme value distribution with respect to an underlying 
physical process driving change. Time is often used as a sur-
rogate for other drivers, but the use of appropriate physically- 
based covariates instead of time alone should be preferred, as 
previously mentioned. In the case of GEV, for example, one 
can allow the location, scale and/or shape parameters to vary as 
a (e.g. linear) function of one or more covariates. The shape 
parameter is the most sensitive one and it is difficult to esti-
mate accurately when the availability of observations is limited 
(see e.g. Coles 2001, El Adlouni et al. 2007, Papalexiou and 
Koutsoyiannis 2013, Strupczewski et al. 2016, Deidda et al. 
2021). Ouarda and Charron (2019) showed that the shape 
parameter can evolve as a function of time and low-frequency 
climate oscillation indices and that its evolution affects con-
siderably the estimates of extreme events. The appropriateness 
of the non-linear function and its validity in the future are 
among the major sources of uncertainty (Koutsoyiannis 2020). 
As pointed out by Prosdocimi and Kjeldsen (2021), combining 
time-varying parameters can lead to counterintuitive beha-
viour in the extreme quantiles of interest for hydrological 
design. Hence, a broad discussion on what types of changes 
can be apriori expected under different conditions is necessary 
to clarify what parameter model structures are more apt to 
capture the expected changes (see e.g. Sharma et al. 2018, 
Hecht and Vogel 2020).

Regardless of the choice of parameter model structure, the 
outcome will be a distribution function that changes over time 
due to varying parameters. Ouarda et al. (2020) presented a 
comparison of the uncertainties in stationary and non-
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stationary extreme rainfall models and formulated words of 
caution about the use of nonstationary models with relatively 
small-size data samples. In recent studies, Prosdocimi et al. 
(2015) and Bertola et al. (2019) among many others showed 
how physical processes can be integrated into regional and at- 
site nonstationary analysis of extremes such as changes in 
flooding as a function of land use change, increases in tem-
perature as a function of CO2 concentration in the atmo-
sphere, and changes in rainfall and snowmelt patterns, 
providing a deterministic justification for non-stationary 
statistics.

Despite progress in this area (summarized broadly bySlater 
et al. 2021b), in most places around the world, official codes 
and guidelines do not consider changing extremes. For the first 
time, the American Society of Civil Engineers (Committee on 
Adaptation to a Changing Climate 2018) published a manual 
of practice including a guideline for considering the observed 
and projected changes in extreme precipitation events assess-
ment based on Ragno et al. (2018) for design and risk. To avoid 
assumptions associated with changing trends in the future (e.g. 
Koutsoyiannis 2020), the guideline recommends using a wide 
range of future projections to update historical precipitation 
intensity–duration–frequency (IDF) curves. This approach, 
presented here as an example, allows for quantifying the 
changes in the frequency of past events (or return period of a 
historical event), when historical and projected IDF curves are 
available. Figure 1 displays a historical IDF curve (blue line) 
and the projected IDF curves derived from a wide range of 
climate model simulations (red ensemble) in San Francisco, 
California (USA), as presented in Ragno et al. (2018). Given

that this method is based on a wide range of models, one can 
derive the 5th and 95th percentiles as a measure of uncertainty 
(Fig. 1). Needless to say, when comparing the expected value 
from future projections and historical observations, the most 
conservative one should be considered for design and risk 
assessment. Given the uncertainties associated with future 
projections, the difference between future projections and 
historical observations can be very large.

Ouarda et al. (2019) proposed an IDF model in which the 
parameters depend on time and low-frequency climate oscilla-
tion indices and are estimated with the maximum composite 
likelihood method. Results indicated that the non-stationary 
IDF framework provides a better fit to the data and leads to 
more robust estimates. Other well-known approaches dealing 
with the assumption of non-stationarity are the effective return 
level (Katz et al. 2002) and the expected waiting time (Salas and 
Obeysekera 2014). The effective return level (or effective 
design value), proposed by Katz et al. (2002), is the quantile 
expressed as a function of a given covariate (i.e. time or 
physical). The expected waiting time, proposed by Salas and 
Obeysekera (2014), is the non-stationary return period of an 
event of interest derived as the expectation of a geometric 
distribution in which the probability of the first occurrence 
of the event of interest changes over time. Compared to other 
approaches, the expected waiting time is consistent with the 
definition of the return period in the stationary case.

To summarize, the extrapolation of non-stationary beha-
viours to the future should be done with caution, and only if 
the future can be predicted by using additional prior physical 
knowledge of the process (e.g. Prosdocimi et al. 2015, Serago

Figure 1. IDF curves together with their confidence intervals (C.I.) from multi-model climate simulations of the future (red) relative to the IDF curves from historical 
observations (blue): (a) intensity as function of the duration for T ¼ 50 years; (b) 1-day precipitation as function of the return period; (c) expected return period 
according to climate simulation of the 1-day precipitation for T ¼ 50 years (historical).
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and Vogel 2018, Bertola et al. 2019, Ouarda et al. 2020). The 
additional information justifies the reduction of uncertainty 
that might result from explaining part of the variability in 
deterministic terms (Koutsoyiannis and Montanari 2015); 
otherwise, the effect would be that of introducing an additional 
source of uncertainty (Serinaldi and Kilsby 2015). Detailed 
discussion on the stationarity issue can be found in Vogel 
and Castellarin (2017) and Salas et al. (2018). Depending on 
the available information, different approaches can be applied, 
stationary and non-stationary; in any case, results should be 
evaluated in terms of both accuracy and uncertainty. In Table 1 
some packages for non-stationary frequency analysis are listed.

3 Multivariate frequency analysis

Univariate frequency analysis deals with only one variable or 
feature of a hydrological phenomenon (e.g. drought intensity 
or flood peak); however, hydrological events are often char-
acterized by several features that might be interrelated, e.g. 
flood peak, volume and duration, drought severity and dura-
tion, storm precipitation, intensity and duration, fluvial and 
oceanic floods, heatwave duration and severity, extreme dis-
charge in two (or more) rivers in the same catchment. A 
multivariate frequency analysis framework may involve jointly 
modelling two or more features of the extreme events (e.g. 
flood volume and peak), or multisite analysis of extremes 
across space (e.g. flood peaks at several locations) or com-
pound extreme events.

In the last two decades, multivariate frequency analysis has 
attracted increasing attention focusing on the joint treatment 
of different variables mainly using multivariate distributions 
(e.g. Yue et al. 1999) or copulas (e.g. Salvadori and De Michele 
2004, Chebana 2022). In recent years, several studies, review 
papers and books have discussed multivariate hydrological 
frequency analysis methodologies and applications (e.g. Favre 
et al. 2004, Zhang and Singh 2006, 2019, Genest and Favre 
2007, Salvadori et al. 2007, Ashkar and Aucoin 2011, Joe 2014, 
Genest and Chebana 2017). Some previous studies highlight 
the limitations of the univariate framework and justify the 
adoption of an alternative multivariate framework in hydro-
logical applications (see Salvadori and De Michele 2004, Kao 
and Govindaraju 2007). This is particularly important for 
compound and cascading hazards and other interrelated 
hydrological extremes (e.g. Sadegh et al. 2018, Zscheischler et 
al. 2018, AghaKouchak et al. 2020).

The application of multivariate models in hydrology is not a 
new topic and numerous previous studies have employed 
multivariate normal, gamma and exponential distribution 
functions, among others, to understand and model the rela-
tionship among different variables. However, multivariate dis-
tributions have several limitations. For example, they require 
the marginal distributions of associated random variables to be 
within the same class, leading to only a limited number of the 
common distributions being extendable to a multivariate set-
ting (e.g. Hao and Singh 2016). To overcome this drawback, in 
some cases a multivariate distribution can be derived analyti-
cally based on the nature of the process under investigation, e. 
g. for the case of droughts (Cancelliere and Salas 2010). An 
alternative and more general approach employs copula

functions for hydrological frequency analysis to avoid the 
drawbacks of classical multivariate models (Nelsen 2006). In 
fact, copulas can model the dependence structure indepen-
dently of the marginal distributions, making it possible to 
build multivariate distributions with different margins.

The literature on copulas and their application to hydrology 
is already substantial (for recent reviews see Hao and Singh 
2016, Genest and Chebana 2017, Zhang and Singh 2019). 
Copulas are increasingly used in multivariate analysis, such 
as for precipitation (e.g. Grimaldi and Serinaldi 2006a, Sharma 
and Mujumdar 2019, Xu et al. 2020), droughts (e.g. Serinaldi et 
al. 2009, Vazifehkhah et al. 2019), floods (e.g. Grimaldi and 
Serinaldi 2006b, Durocher et al. 2016), river discharge esti-
mates (e.g. Ragno et al. 2022), reservoir routing for dam design 
and safety assessment (Requena et al. 2013, Volpi and Fiori 
2014), heatwaves (Mazdiyasni et al. 2019), storms and 
extremes (e.g. Corbella and Stretch 2013, Han et al. 2020) 
and multi-index drought assessment (e.g. Hao and 
AghaKouchak 2014). Copulas are also used for the joint mod-
elling of extreme river temperature and low-flow conditions 
which can be harmful to aquatic life (Latif et al. 2023). They are 
also useful for multisite analysis (e.g. Serinaldi 2009).

In this section, we refer to the common methodological 
approaches used for multivariate frequency analysis based on 
copula functions. Considering multivariate hydrological fre-
quency analysis also involves some challenges and issues (e.g. 
variable selection, choice of dimension, event selection, and 
dealing with more parameters), as it may require different 
definitions of a given statistical concept (e.g. return period) 
depending on the application, and often needs large data series 
compared to univariate analysis, as described in the last part of 
this section. Typically, multivariate frequency analysis involves 
the same four steps already described for the univariate setting 
in Section 2. Karahacane et al. (2020) is one of the rare papers 
dealing with most of these aspects simultaneously. We recall 
here some issues that are specific to multivariate analysis.

● Exploratory analysis. In a multivariate setting, Chebana 
and Ouarda (2011a) investigated this step and offered 
guidelines on how to explore the data prior to modelling. 
In addition, at this step, missing data and ties (if applic-
able) should also be treated (e.g. Ben Aissia et al. 2017), as 
well as sample dimension. There is no general recom-
mendation concerning the minimum number of pairs or 
triplets for multivariate analysis; however, it is reasonable 
to avoid bivariate analysis with only 30–40 pairs.

● Testing assumptions. A number of multivariate homogene-
ity and stationarity testing methods are available in the 
literature. Specifically, multivariate trend tests can be 
found in Chebana et al. (2013), whereas multivariate shift 
testing (homogeneity) is discussed by Chebana et al. (2017) 
and Salvadori et al. (2018). A pivotal requirement, often not 
verified, is the serial independence condition that can easily 
be preliminarily checked on the autocorrelation structure of 
each sample (Chebana et al. 2013).

● Modelling by probability distribution functions. A large 
number of studies have focused on copula fitting and 
parameter estimation for a wide range of hydrological 
applications (e.g. Zhang and Singh 2006, Salvadori and
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De Michele 2007, Kao and Govindaraju 2008, Requena et 
al. 2016). Given their importance, copulas are described 
in more detail in the following sections.

● Multivariate quantile and return period analysis. For 
multivariate return period analyses, one can refer, for 
instance, to Salvadori et al. (2007), Gräler et al. (2013), 
Serinaldi (2015), or Salvadori et al. (2016), whereas mul-
tivariate quantiles are investigated by Chebana and 
Ouarda (2011b). In summary, the multivariate return 
period is different from the univariate one, because in 
the multivariate setting the bijective relationship between 
return period and return level (or quantile) does not hold 
anymore. Volpi and Fiori (2012, 2014) treated design 
event selection, as a practical aspect, in the multivariate 
return period and quantile framework for risk assessment 
or infrastructure design. Note that the return period of 
structural failure does not necessarily match that of the 
hydrological load in a multivariate setting (see also 
Cipollini et al. 2021).

● Uncertainty estimation. As discussed below for the case of 
copula-based multivariate frequency analysis, uncer-
tainty estimation in a multivariate setting still requires 
additional developments and implementations of practi-
cal applications (see e.g. Serinaldi 2013).

3.1 Copula functions

Copulas are an ingredient for constructing multivariate dis-
tributions with margins from different families. Basically, a 
copula is a multivariate distribution function with uniform 
margins. An attractive advantage of copulas is that the depen-
dence between variables can be modelled separately from their 
marginal distributions (e.g. Nelsen 2006, Joe 2014). Another 
interesting feature is that multivariate analysis based on copu-
las can use all the common tools of univariate analysis.

In the following, we consider the bivariate case for simpli-
city even though the majority of the material presented below 
is available in higher dimensions. According to Sklar’s theorem 
(Sklar 1959), the joint probability distribution of two random 
variables can be decomposed into two marginals as well as a 
copula to describe the dependence structure between the vari-
ables. The copula is unique when the marginals are continu-
ous, which is a common assumption in hydrology. The copula 
captures the dependence structure between variables, and pro-
vides more information beyond descriptive dependence mea-
sures (e.g. Kendall’s tau and Spearman’s rho, defined below).

The Archimedean, meta-elliptical, and extreme value 
copula families are of particular interest in statistics as well as 
in hydrology. Lists and properties of different copulas can be 
found, for instance in Nelsen (2006), Salvadori et al. (2007), Joe 
(2014), and Zhang and Singh (2019); we recall in the following 
the main properties of some of the copulas.

● Archimedean copulas. This class is widely used in hydrol-
ogy because: (i) its members are easy to construct and the 
parameter estimation is straightforward; (ii) this family 
includes a diverse set of copulas with different properties 
applicable to a wide range of data; and (iii) mathemati-
cally, they are elegant to treat. Archimedean copulas are

based on a generator function, including Ali-Mikhail- 
Haq, Clayton, Frank, Joe and Gumbel-Hougaard, 
among others. Multi-parameter Archimedean copulas 
are also available and can be found in Joe (2014) in the 
general statistical context and e.g. in Sadegh et al. (2018) 
for hydrological applications. In hydrology and in multi-
variate analysis, the Archimedean copula family is prob-
ably the most widely used among different options (see, 
among many others, Kao and Govindaraju 2007, 
Chebana and Ouarda 2011b, Liu et al. 2020). Several 
studies have explored using Archimedean copulas at 
higher dimensions such as three and four (e.g. Grimaldi 
and Serinaldi 2006a, Zhang and Singh 2007a, 2007b); 
however, care should be taken in high-dimensional appli-
cations as the performance of most Archimedean copulas 
decreases as the dimension increases (Joe 2014). Finally, 
asymmetric (also called nested) versions of Archimedean 
copulas have been introduced and used in hydrology to 
model joint distributions of more than two random vari-
ables (e.g. Grimaldi and Serinaldi 2006b, Ma et al. 2013).

● Extreme-value copulas. This class is particularly attractive 
for block maxima data (i.e. annual maximum series of 
daily flows) – see e.g. Salvadori and De Michele (2011). 
Extreme-value copulas are defined on the basis of a 
dependence function, known as the Pickands depen-
dence function, which plays a similar role for extreme- 
value copulas to generators for Archimedean copulas. 
Among the well-known copulas in this class, one can 
find Galambos, Hüsler-Resiss, Tawn and Gumbel 
(which is also Archimedean). Extreme-value copulas 
have been used in numerous multivariate hydrological 
studies, such as investigating floods and droughts (e.g. 
Zhang and Singh 2006, Salvadori and De Michele 2011, 
Sharma and Mujumdar 2019). See Genest and Chebana 
(2017) for the mathematical expressions in d-dimensions 
and Genest and Nešlehová (2012) for a review and more 
technical details.

● Meta-elliptical copulas. Meta-elliptical copulas are 
derived from elliptical distributions (e.g. Kotz and 
Nadarajah 2000). Convenience and flexibility are the 
key characteristics of meta-elliptical copulas (Genest et 
al. 2007). The normal and multivariate Student t copulas 
are among the most used copulas of this class in the 
hydrology literature including droughts, floods, and 
extreme rainfall analysis (e.g. Zhang and Singh 2019, 
table 7.1, Salvadori et al. 2007, Ma et al. 2013, 
Tosunoglu and Singh 2018). For more details and math-
ematical formulation, the interested reader is referred, for 
instance, to Genest and Chebana (2017) and Chebana 
(2022).

● Other classes of copulas. Even though the above classes of 
copulas are the most developed and used, a number of 
other classes are also available, such as the Farlie- 
Gumbel-Morgenstern (FGM), Plackett, entropy, Vine 
copula, flipped copula and others. Even though the 
FGM copula imposes moderate dependence, it is attrac-
tive because of its simplicity, and hence has been used in a 
number of hydrological studies (e.g. Papaioannou et al. 
2016). The Plackett copula has also been used in
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hydrology in a number of studies, such as Kao and 
Govindaraju (2008) and Papaioannou et al. (2016). 
Despite their significant potential, only limited hydrolo-
gical applications have explored entropy copulas (e.g. 
Piantadosi et al. 2012). Given their flexibility, especially 
for high-dimensional analysis, vine copulas have recently 
received a great deal of attention in hydrology (e.g. 
Tosunoglu and Singh 2018). The nonparametric copula 
framework is also receiving increasing attention in the 
field of hydrology because of its flexibility and its capacity 
to adapt to any mutual dependence structure (e.g. Latif et 
al. 2024). Finally, it is worth mentioning the framework 
for the construction of multivariate non-Gaussian distri-
butions presented by Bárdossy (2023); the framework can 
represent monotonic dependence but also dependencies 
with changing character, for example negative depen-
dence for small values and positive dependence for high 
values.

3.2 Dependence measures, correlation and tail 
dependence

Dependence measure coefficients that summarize the degree 
of association between two or more variables are widely used 
in hydrology. The Pearson’s ρP, Kendall’s τK and Spearman’s 
ρS correlation coefficients, and the upper–lower tail depen-
dence coefficients, are the most commonly used measures of 
dependence (e.g. Nelsen 2006, Joe 2014). The Pearson correla-
tion coefficient has several limitations, including linearity, and 
is not margin-free (Barber et al. 2020).

The population versions of τK and ρS can be obtained in 
terms of copula as explicit relations or through numerical 
approximations (for many Archimedean copulas see Zhang 
and Singh 2019). These relations are the basis of the method 
of moments for copula parameter estimation. Considering 
these coefficients is useful in preliminary copula selection as 
the values of τK and ρS for some copula families are restricted.

Tail dependence coefficients (upper λc
u and lower λc

l ) can be 
used to detect and quantify the presence of extremal depen-
dence. Tail dependence plays an important role in analysing 
dependent hydrological extremes (e.g. Poulin et al. 2007, Lee et 
al. 2013, Genest and Chebana 2017). Expressions of λc

u and λc
l 

can be obtained with respect to the parameters or generators of 
some common copulas (e.g. Salvadori et al. 2007, Joe 2014). 
Important differences between copulas can be revealed by 
investigating their λc

u and λc
l coefficients. As an example, the 

normal copula exhibits no tail dependence (null coefficients), 
whereas the Studentt copula offers substantially strong tail 
dependence (strictly positive coefficients). Hence, the former 
can potentially lead to an underestimation of joint extremes 
when considering multiple related hazards (e.g. McNeil et al. 
2015). Estimators for tail dependence coefficients, developed 
by Capéraà et al. (1997) and Frahm (2006), have already been 
used in the hydrology literature (e.g. Requena et al. 2013). 
Lekina et al. (2015) considered different tail dependence mea-
sures in hydrology and recommended considering more than 
one, primarily because the upper tail dependence measure 
could fail to discriminate between the degrees of relative

strength of dependence in asymptotically independent 
variables.

3.3 Multivariate inference with copulas

Selecting the most appropriate multivariate distribution for a 
given dataset is crucial. According to Sklar (1959), the selection 
of the joint distribution is equivalent to the selection of a 
copula and the margins. In this section, we focus on the key 
steps to select the copula since the process of choosing the 
margins aligns with the approach used in the univariate frame-
work (e.g. Laio et al. 2009).

After transforming the margins into uniform margins, dif-
ferent copula models should be considered to find the best one 
for characterizing the dependence structure of the variables in 
hand. When selecting the appropriate copula, several issues 
need to be considered including the type of dependence struc-
ture, parameter estimation method, goodness-of-fit tests, 
selection criteria, and tail dependence (e.g. Genest and 
Chebana 2017).

● Preliminary step. A preliminary exploratory step can 
guide copula selection by, for instance, excluding some 
copulas that cannot describe the empirical dependence. 
This evaluation can start computing dependence mea-
sures (τK , ρS, and λc) to select potentially applicable 
copula candidates since not all copulas support all corre-
lation coefficient and tail dependence values (e.g. Poulin 
et al. 2007, Michiels and Schepper 2008). Graphical tools 
(e.g. rank plots, rankit and K-plot, empirical copulas) can 
also provide interesting information about the depen-
dence structure and hence help to select potential copula 
candidates through some characteristics such as depar-
tures from bivariate normality, presence of heavy tails, 
symmetry or asymmetry, strength of dependence, and 
extreme value.

● Parameter estimation. Several methods of copula para-
meter estimation are available in the literature, including 
the inference function of margins (IFM), maximum 
pseudo-likelihood (MPL), method of moments (MM), 
and Bayesian parameter estimation (see e.g. Hofert et al. 
2012, Sadegh et al. 2018; for additional details the reader 
is referred to Genest and Chebana 2017). In the IFM 
method, the joint likelihood function is maximized in 
two steps (Joe 2014): first, the marginal log-likelihood is 
maximized, leading to an estimate of the margin para-
meters; then the latter is plugged into the joint likelihood 
function to obtain a log-likelihood function for the 
copula parameter. The obtained copula parameter esti-
mator is consistent and asymptotically normal. By max-
imizing the pseudo-likelihood (MPL), the obtained 
estimator of the copula parameter is not affected by 
marginal misspecifications. The MPL estimator is con-
sistent and asymptotically normal under reasonable con-
ditions; however, it is generally less efficient than the full 
ML estimator when the margins are properly specified, 
except at independence. Overall, the MPL method is 
shown to have good performance, is considered the best
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option, and is widely applied to one-parameter and 
multi-parameter copulas (e.g. Kim et al. 2007, 
Kojadinovic and Yan 2010). As indicated above, for 
some copulas, their parameter can be expressed as a 
function of Kendall’s K or Spearman’s S; hence, a direct 
MM estimate of the copula parameter is obtained by 
estimating τK or ρS, respectively. Given their simplicity, 
MM estimators can provide reliable starting values for 
numerical (pseudo) likelihood maximization. Compared 
to IFM- or MPL-based estimators, the MM-based esti-
mators are generally less efficient and may need to be 
adjusted to remain within the possibly limited range of 
the parameters. Further, moment-based methods have 
limitations in characterizing the underlying uncertain-
ties; for this reason, Bayesian methods and global opti-
mization approaches have gained attention for inferring 
copula parameters (Kwon and Lall 2016, Sadegh et al. 
2018). For example, Sadegh et al. (2017) introduced a 
hybrid Markov chain Monte Carlo (MCMC) simulation 
within a Bayesian framework for estimating a wide range 
of copula families with one to three parameters. The 
MCMC simulations estimate the posterior distribution 
of each copula parameter value, which can be translated 
into uncertainty ranges for return periods and probability 
isolines.

● Copula goodness-of-fit testing. It is important and neces-
sary to proceed with a formal goodness-of-fit testing of 
the preliminarily selected copula to ensure the model is 
representative. A number of goodness-of-fit tests for 
copulas have been proposed in the statistical literature 
(e.g. Zhang and Singh 2019). After a comprehensive 
assessment based on large simulations by Genest et al. 
(2009) and Berg (2009), it is deemed that goodness-of-fit 
testing based on empirical copula performs particularly 
well. Hence, a widely used goodness-of-fit test is based on 
the deviation between the empirical and the theoretical 
copula where the copula parameter is estimated on n 
pseudo-observations (such as the MPL estimator). One 
of the most powerful, easy to apply, general and widely 
used goodness-of-fit tests is based on the Cramér-von 
Mises statistics (Genest and Nešlehová 2012b).
○ Tests based on the Rosenblatt transformation or on 

nonparametric estimates of the copula density are 
among other goodness-of-fit tests available in the lit-
erature. These tests are general and conceptually valid 
for any copula. However, specific tests have been 
developed for specific dependence structures such as 
Clayton copula, Gaussian copula, and even extreme- 
value and Archimedean copula classes (see e.g. Genest 
and Nešlehová 2012b). Goodness-of-fit tests for a spe-
cific but large class of copulas are also emerging, for 
instance the class of bivariate exchangeable copulas, 
spatial copulas and multi-parameter copulas. Given 
the importance of the Archimedean and extreme- 
value copula classes in hydrological and other applica-
tions, specific goodness-of-fit tests are available (see 
Genest and Nešlehová 2012b or Genest and Chebana

2017 and the references therein). The p-value approx-
imation of all the above tests (excluding Bayesian- 
based methods) can be obtained using a parametric 
bootstrap framework (Genest and Rémillard 2008). 
However, computational costs can be high, especially 
when the sample size increases. Based on the multi-
plier central limit theorems, Kojadinovic et al. (2011) 
proposed a faster and more efficient procedure for 
large samples; yet, for such samples, it is hard to find 
a copula that passes the above goodness-of-fit tests.

● Selection criteria for copulas. For a given dataset, the 
goodness-of-fit test can lead to more than one accepted 
model. Then, several selection criteria can be used to help 
identify the most appropriate copula from the set of 
acceptable ones (e.g. Zhang and Singh 2006, Requena et 
al. 2013, Genest and Chebana 2017). Among the popular 
criteria are the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). The general AIC 
formulation is based on the ML of a given model. 
However, for copula parameters, the MPL is preferred 
and the corresponding AIC becomes more precise than 
the one based on ML (similarly for BIC). MPL formula-
tion is employed in several studies (see Joe 2014 and 
references therein). In addition to AIC and BIC, one 
can use the cross-validation copula information criterion. 
However, based on comparison in a bivariate simulation 
study, AIC and cross-validation are found to be overall 
very similar. For theoretical developments related to 
model selection for copulas, the interested reader is 
referred to Grønneberg and Hjort (2014).

● Uncertainty assessment. While uncertainty assessment is 
routinely implemented in univariate analysis, it is seldom 
addressed in the multivariate context. Uncertainty may 
affect copula parameter estimation, copula selection, and 
return period estimation. The relevance of dealing with 
uncertainty for reliable multivariate quantile estimation 
is analysed in several studies (e.g. Serinaldi 2013, Dung et 
al. 2015), where the usual lack of long data records for 
multivariate analysis is underlined. Lately, Bayesian 
approaches have been proposed to account for uncer-
tainty in model parameters and return period estimations 
in the multivariate framework (e.g. Kwon and Lall 2016, 
Sadegh et al. 2018, Liu et al. 2020).

Several packages are available for the free software R (R 
Core Team 2020) for addressing copula-based frequency ana-
lysis; some of the most relevant ones are listed in Table 2.

3.4 Challenges and open problems

As described above, a significant contribution to multivariate 
hydrological frequency analysis using copulas has been pro-
duced in the last two decades. In this subsection, we highlight 
some additional aspects of multivariate analysis that are emer-
ging or still require efforts from researchers.

A warning emerging from the literature is that analysts too 
often limit their attention to a few copula functions, typically
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Archimedean, while, as shown here, the possible options are 
diverse, offering the opportunity to reach a better modelling 
outcome for the data sample. Furthermore, apart from the 
copula families mentioned above, it is important to mention 
multi-parameter copulas. Although multi-parameter copulas 
have not been fully explored, they are attracting more attention 
in recent years (e.g. Salvadori and De Michele 2010, Joe 2014, 
Requena et al. 2016, Sadegh et al. 2017, Ben Nasr and Chebana 
2019). In principle, most estimation methods are valid for 
multi-parameter copulas, but most applications in the hydrol-
ogy literature are limited to one-parameter copulas. Brahimi 
and Necir (2012) extended the MM-based method to multi- 
parameter copulas, whereas Brahimi et al. (2015) proposed a 
multivariate L-moment method. The latter has some interest-
ing features for the case of small sample sizes such as in 
frequency analysis. Note, however, that using multi-parameter 
copulas when one-parameter copulas would suffice generally 
implies an increased estimation uncertainty. Bayesian 
approaches are also used to estimate the parameters of multi- 
parameter copulas and their underlying uncertainty.

By analogy with the univariate setting, the stationarity 
assumption could fail in the multivariate framework due to 
changes in urbanization, land use/cover or climate. Hence, to be 
more realistic and for an accurate risk estimation, multivariate 
non-stationarity modelling should be considered. This is a recent 
and emerging topic in statistical hydrology with a growing num-
ber of studies, including Chebana and Ouarda (2021) for floods, 
Jiang et al. (2015) for low-flow series, Kwon and Lall (2016) for 
droughts, and Feng et al. (2020) for flood coincidence risk. 
Conversely, the relaxation of the independence hypothesis that 
allows researchers to incorporate additional data for inference in 
the univariate setting still requires additional theoretical develop-
ments in the multivariate one. Indeed, as mentioned at the 
beginning of Section 3 (testing assumptions), the serial indepen-
dence condition is a requirement for multivariate analysis.

4 Time series analysis and simulation

The rationale for time series modelling and simulation in hydrol-
ogy is to resemble and reproduce the characteristics of a variable 
of interest for simulation and forecasting applications. This is 
typically performed by describing the historical evolution of the 
variable in time. Thus, records can be usefully extended using 
synthetic data generated by stochastic models, which is known as 
synthetic hydrology (Benson and Matalas 1967, Matalas 1967). 
Artificial datasets of adequate length are created from the char-
acteristics of existing observations (which are insufficiently long 
for a reliable design or assessment of water systems), potentially 
providing a huge number of random sequences with the observed 
statistical characteristics; readers are referred to Table 3 for a list of 
R packages (R Core Team 2020) available for hydrological simu-
lation. The stationarity hypothesis is the major assumption, which 
presumes a future with a non-dynamic behaviour in terms of 
statistical moments and correlation with the past.

Time series modelling of hydrological variables has a 
history of about a century and continues to evolve with 
intense research. Markov chains (MCs) were proposed at 
the beginning of the 20th century for streamflow simulation; 
then, with the introduction of the autoregressive (AR) mod-
els by Thomas and Fiering (1962) and Yevjevich (1963), the 
formal development of stochastic modelling has started. 
Literature reviews of these early studies clarify the historical 
development of time series modelling in hydrological stu-
dies; readers are referred to Mejia et al. (1972), Rodriguez- 
Iturbe et al. (1972), Lawrance and Kottegoda (1977), and 
references therein.

The historical focus on stochastic streamflow models (i.e. 
Thomas and Fiering 1962, Matalas 1967) was to enable hydrol-
ogists to evaluate the reliability, vulnerability and resilience of 
future water resource systems. Such computational tools and 
principles also enabled a more complete integration of uncer-
tainty into water management decision making and have been

Table 2. Packages for multivariate, copula-based frequency analysis and modelling.

Name Brief description Repo. Link Authors

Copula Multivariate dependence with copulas CRAN https://CRAN.R-project.org/package=copula Hofert et al.
VineCopula Statistical inference of vine copulas CRAN https://CRAN.R-project.org/package=VineCopula Nagler et al.
MvCAT Multivariate copula analysis toolbox UCI.edu https://amir.eng.uci.edu/MvCAT.php AghaKouchak et al.
MhAST Multihazard scenario analysis toolbox UCI.edu https://amir.eng.uci.edu/MhAST.php AghaKouchak et al.
MSDI Multivariate standardized drought index (MSDI) CRAN https://CRAN.R-project.org/package=drought Zengchao
corTESTsrd Significance testing of rank cros-correlations under SRD CRAN https://CRAN.R-project.org/package=corTESTsrd Lun et al.

Table 3. Packages for time series analysis and modelling.

Name Brief description Repo. Link Authors

LPM Linear parametric models applied to 
hydrological series

CRAN https://CRAN.R-project.org/package= 
LPM

Tallerini and Grimaldi

CoSMoS Complete stochastic modelling solution CRAN CoSMoS R | Complete Stochastic  
Modelling Solution (rproject.org)

Papalexiou et al.

MMM and MRD Multisite Markov model (MMM) for rainfall 
generation, and its extension using 
exogenous predictor variables for 
downscaling (MRD)

UNSW https://www.unsw.edu.au/research/ 
hydrology-group/our-resources/ 
multisite-rainfall-downscaling-mrd 

Mehrotra et al.

SAMS2007 Stochastic analysis, Modelling and simulation USBR http://www.sams.colostate.edu/ Sveinsson et al.
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in common use by several agencies worldwide for over 50 years 
(see Vogel 2017 for a brief review). Although the variable of 
interest is the discharge in a river cross-section, the continuous 
synthetic simulation methodology based on a stochastic model 
of precipitation and other meteorological variables, called a 
weather generator, is increasingly used. Many studies can be 
found in the literature that follow this approach, with different 
nuances. Among the more modern approaches, it is relevant to 
mention the stochastic weather generators by Steinschneider et 
al. (2019) for multivariate/multisite weather variables (i.e. 
rainfall and temperature) which can capture low-frequency 
climatic variability for use in water resource vulnerability 
assessments.

In a pioneering work, Cameron et al. (1999) combined a 
modification of the also pioneering weather generator devel-
oped by Eagleson (1972) with a semi-distributed hydrological 
model. This formed the basis for the development of stochastic 
watershed modelling. Stochastic watershed models (SWMs) 
are deterministic watershed models implemented using sto-
chastic meteorological series, model parameters and model 
errors, to generate ensembles of streamflow traces that repre-
sent the variability in possible future streamflow. By combin-
ing deterministic watershed models, which are ideally suited to 
account for anthropogenic influences, with recent develop-
ments in uncertainty analysis and principles of stochastic 
simulation, SWMs are promising tools to accommodate cli-
mate, land use or other forms of change (see Vogel 2017 for a 
comprehensive discussion), and will certainly be the focus of 
future works. However, the remainder of this section is dedi-
cated to purely stochastic modelling approaches, that were of 
main interest among the STAHY community in recent years.

Through this journey, there are several divisions in time 
series modelling. The basic classification is deterministic (like 
trends or jumps, periodicity, and seasonality) and stochastic 
(based on stationarity and ergodicity) components. Further, 
the modelling is extended to a single site and variable (uni-
variate) or multiple sites and variables (multisite and multi-
variate). In addition, depending on the state of the variable, the 
modelling is divided into discrete, continuous and mixed 
types. Finally, the most basic classification in terms of stochas-
tic modelling is into parametric and non-parametric 
approaches. The parametric approaches range from models 
such as AR to models based on machine learning algorithms. 
The nonparametric methods typically consist of kernel density 
and bootstrap techniques. Subsequent sections provide details 
only about the statistical parametric models, being aware of the 
recent impressive development and of the potentiality of 
machine learning and data science tools, which may be the 
subject of ongoing work in the ICSH.

The introduction of the Hurst phenomenon further 
advanced stochastic modelling (Hurst 1951), yet it was (and 
probably still is) controversial during the early stages (Klemeš 
1974) among hydrologists. Though Hurst introduced these 
phenomena in the early 1950s, Kolmogorov introduced the 
same concept mathematically in the early 1940s. Long-term 
persistence and fractional Gaussian noise models were mainly 
popularized by Mandelbrot and Wallis (1968) and, later, by 
Beran (2017) in hydrology. In view of extensive arguments 
related to the interpretation of Hurst phenomena and

uncertainties in the estimates of the Hurst exponent, simple 
models such as autoregressive moving average (ARMA) mod-
els capable of reproducing simple statistics were used by early 
hydrologists (Salas et al. 1980). Subsequently, several models 
have been proposed, such as the fractional Gaussian noise 
models, mixture models such as ARMA-Markov models, frac-
tionally autoregressive moving average (FARMA) or autore-
gressive fractionally integrated moving average (ARFIMA) 
models, disaggregation models, models for intermittency, 
and general mixture models (Montanari et al. 1997).

4.1 Single-site modelling

In the following we provide a state-of-the-art review on para-
metric approaches, focusing on discharge and rainfall 
simulation.

4.1.1 Streamflow simulations
The first approach for modelling hourly and daily streamflow 
time series was the AR models. Thomas and Fiering (1962) 
introduced a streamflow generation model which is an AR 
model for generating monthly streamflow for the Clearwater 
River (USA). After that, several models have been developed 
for hydrological time series modelling. These models consider 
that a variable value at a specific time instant is related to the 
corresponding value at the previous instant(s). Streamflow at 
larger scales (week, month, season) can be described by sta-
tionary stochastic models after being seasonally standardized. 
The low-order AR and ARMA have been the most popular 
models for annual streamflow simulation (Box and Jenkins 
1976). Hirsch (1979) compared six single-site data generation 
mechanisms and concluded that the ARMA model was super-
ior to the AR model. Box and Jenkins (1976) proposed multi-
plicative models, in which the trend and seasonal components 
are multiplied and then added to the error component, to 
capture seasonal and annual statistics. However, these did 
not include parameters for the periodicity. When a periodic 
structure is present, the periodic autoregressive (PAR) or the 
periodic autoregressive moving average (PARMA) model 
(Salas and Obeysekara 1992) is more suitable. The latter has 
a more flexible correlation structure and preserves seasonal 
and annual statistics, at the expense of the number of para-
meters. The need to transform the time series into a normal 
one is a restraint of the PARMA and its multiplicative version. 
To overcome this limitation, a model with periodic correlation 
structure and periodic gamma marginal distribution, i.e. the 
PGAR(1) model, has been proposed (Fernandez and Salas 
1986). Other versions, modifications, and developments of 
these models are the autoregressive integrated moving average 
(ARIMA) model and the ARFIMA or FARMA models 
(Oliveira and Maia 2018).

Other approaches were developed to account for short-term 
physical characteristics of flow (ascension and recession curve) 
together with the long-term statistical characteristics (mean, 
variance, lag-one, and higher lag correlation coefficients); see 
Claps et al. (2005). Among them, the shot noise models are 
based on overlapping pulses which represent the autocorrela-
tion structure and are mostly used for variables with a strong 
and repetitive autocorrelation; the shot noise model has been
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used because of its ability to reproduce the physical behaviour 
and hydrological aspect of the streamflow process.

Streamflow processes depict an intermittent behaviour 
(similar to rainfall records) when the contribution of the 
hydrological basin to the river is significantly reduced due to 
lowered groundwater levels and no substantial snowmelt dur-
ing the rainless season. Intermittency is effectively felt in arid 
and semi-arid regions (Salas and Fernandez 1993). Yevjevich 
(1984) summarizes the approaches used for modelling inter-
mittent time series as (i) spell process, (ii) truncated process, 
and (iii) 1-0 approach. Another kind of model used for the 
daily streamflow is based on transition probabilities to under-
stand the state of the stream (whether it has flow or not on a 
particular day, and whether it increases or decreases); a trans-
fer function model using a wet/dry MC was proposed by 
Treiber and Plate (1977), where a pulse is assigned on a wet 
day by using a modification of the exponential distribution.

Annual, monthly, and daily multisite streamflow simulation 
is also achieved by parametric disaggregation models (Kumar 
et al. 2000) and nonparametric disaggregation models (Lee et 
al. 2010, Nowak et al. 2010). Other examples include a semi-
parametric model for daily streamflow by Srinivas and 
Srinivasan (2005), a parametric multisite stochastic simulation 
framework for the generation of seasonal timeseries reprodu-
cing sub-annual statistics, short-term memory and long-term 
persistence (i.e. over year scaling of annual averages) by 
Langousis and Koutsoyiannis (2006), wavelet methods 
(Keylock 2012), entropy methods (Srivastav and Simonovic 
2014), empirical decomposition methods (Lee and Ouarda 
2012), copula methods (Chen et al. 2019), moving block boot-
strap (Srinivas and Srinivasan 2005) and k-nearest neighbour 
bootstrap (Lall and Sharma 1996).

Simulation models grow in complexity as temporal resolu-
tion increases; i.e. a daily streamflow simulation model is 
expected to be more demanding than an annual model. This 
is not only because of the increasing amount of data involved 
when temporal resolution increases, but also because of the 
emergence of finer detail upon closer examination of the 
physical process. By delving into the time interval, a critical 
understanding of the temporal asymmetry (or time irreversi-
bility; see Carsteanu and Langousis 2020, Koutsoyiannis 2021) 
in the rising and falling limbs of the daily streamflow hydro-
graph emerges. This is due to the physics behind the stream-
flow process which has different physical drivers for the 
ascension and recession curves of the hydrograph at a daily 
time step. It is therefore necessary to conserve the temporal 
asymmetry in the streamflow generation models (Serinaldi and 
Kilsby 2016). This is particularly important as a simulation not 
only replicates the statistical measures but also regenerates the 
physical structure of the daily streamflow process.

4.1.2 Rainfall simulation
Rainfall can be modelled by considering the process to be 
continuous (point process and cluster models), by using 
approaches of cumulative precipitation over non-overlapping 
time intervals aggregating rainfall at the desired time scale (i.e. 
hourly, daily, monthly), or by using mixed-type distributions 
to transform Gaussian time series to preserve marginal distri-
bution and correlations. Typical examples are the MC and

alternating renewal models. Multifractal simulation techniques 
are also a popular tool for temporal rainfall disaggregation of 
rainfall data (see e.g. Veneziano and Langousis 2010 for a 
review).

One of the first theories in modelling precipitation as a 
continuous process is the point process theory (e.g. Cox and 
Isham 1980). Based on this, the number of storms, the arrival 
rate and the rainfall amount for each storm are considered and 
simulated as independent random variables. This Poisson 
approach was modified to consider rainfall to have a random 
duration and intensity, independent from one another and 
usually exponentially distributed (Poisson rectangular pulse 
models); the storms may overlap so that the cumulative process 
is autocorrelated. The Poisson-based model, although flexible 
for a particular level of aggregation, presents limitations when 
studying a range of time scales (Rodriguez-Iturbe et al. 1987). 
The clustered point process-based models, where a cluster of 
activities starts at every point of a point process, offer more 
realistic representations of rainfall and can represent multiple 
timescales at once. Two such models are the Neyman-Scott and 
Bartlett-Lewis; the Poisson cluster process-based models are 
common structures for the generation of sub-daily rainfall 
time series, as rectangular profiles are flexible in approximating 
discrete rainfall which is aggregated over time intervals of 1 h or 
more (see e.g. Cowpertwait et al. 2007). Subsequently, several 
studies (e.g. Velghe et al. 1994, Kilsby et al. 2007, Kim and Onof 
2020) investigated the performance of both models and pro-
vided modified versions better able to catch (for example) the 
autocorrelation, skewness, extreme values, etc., at different time 
scales. Among the available models, we recall the RainSim rain-
fall simulator based on the generalized Neyman-Scott rectangu-
lar pulses developed by Cowpertwait in 1995, that was used for 
single-and multisite applications, and later improved by Burton 
et al. (2008). Both rectangular pulse models, either in their 
original form or with modifications, were found to satisfactorily 
represent rainfall processes for a range of time scales for the UK, 
Scotland, Belgium, Switzerland, Spain, Australia, New Zealand, 
Ireland, South Africa, Greece, Italy, and the USA (Kossieris et al. 
2018).

The MC model (or Markov process) describes a sequence of 
events whereby the present condition depends only on the 
antecedent state. The MC model is characterized by the transi-
tions, which are the changes of state, and the transition prob-
abilities. In the first-order MC, the probability of daily rainfall 
is conditioned on the status (wet or dry) of the previous day. 
The most substantial advantage of the model is the fact that it 
identifies the seasonality in daily rainfall occurrence, which 
can be described adequately by the process (Stern and Coe 
1984), although the model has failed to fit the observed data in 
some cases. Some studies have noted that the method under-
estimates the dry spells (Wilks and Wilby 1999, Sharma and 
Mehrotra 2010). Usually, MC models of higher orders can 
overcome these issues (Wilks 1999, Hayhoe 2000). Higher- 
order MC models are based on wet-day probabilities of a few 
consecutive days, thus improving the model’s “memory.” The 
number of transition probabilities/parameters required 
increases exponentially as the order increases. Although these 
models improve the representation of inter-annual variance 
they still do not always manage to represent climatic variability
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(Sharma and Mehrotra 2010). To improve the simulation of 
dry spells, the use of “hybrid-order” Markov models is pro-
posed, where the “memory” extends further back in time but 
only for the dry spells (Wilks and Wilby 1999); to better 
represent rainfall clustering in time, the multi-state MC 
model is used to simulate both rainfall occurrence and the 
number of different precipitation bands (Haan et al. 1976). 
These models require a large number of parameters and long 
data records. Finally, non-stationary Markovian dependence is 
provided by the modified Markov model, which allows for the 
preservation of rainfall statistics up to the decennial scale, by 
conditioning the MC parameters on the number of past wet 
days (see e.g. Oriani et al. 2018 and references therein). Over 
the past few decades, several stochastic rainfall generators have 
been proposed based on MC models for the rainfall occurrence 
combined with a parametric probability distribution for the 
rainfall amount on a wet day; see, among others, Weather 
GENerator (WGEN) by Richardson (1981), and versatile sto-
chastic daily weather generator (WeaGETS) by Chen et al. 
(2012).

Another category of rainfall time-series simulation models 
uses a simple renewal process to describe the alternation of wet 
and dry conditions. The term “renewal” implies independence 
between wet and dry period lengths. For the representation of 
wet and dry spells, logarithmic series, the truncated negative 
binomial distribution, the truncated geometric distribution, 
and other semi-empirical distributions have been proposed 
(Wilks and Wilby 1999). Another probability distribution 
describes the rainfall amount. The approach allows for the 
direct estimation of composite precipitation events but cannot 
depict the seasonality of the rainfall occurrence (Srikanthan 
and McMahon 2001).

As early as the mid-1960s, researchers identified the fractal 
behaviour of time series, according to which an object can be 
subdivided into reduced-size copies of the whole (Mandelbrot 
1982). Based on the multifractal theory, fluctuations at a given 
scale can provide information on those at other scales via scale 
invariance. Statistical moments are associated with a scale 
parameter through a log–log linear relationship; thus, multi-
fractal models are preferred for their ability to correctly repro-
duce the strongest events. The underlying idea of this 
framework is that these fields are the result of an underlying 
random multiplicative cascade process (Schertzer and Lovejoy 
1987). Multiplicative cascade models can be used for temporal 
rainfall disaggregation of daily data to generate rainfall time 
series of high temporal resolution. First introduced by Yaglom 
(1966), they appeared to be promising and therefore have 
received significant attention ever since (e.g. Menabde et al. 
1997, Deidda 2000, Veneziano and Langousis 2005b, 2010, 
Gaume et al. 2007, Langousis and Veneziano 2007). 
Multifractal approaches can be pulse-based, non-pulse-based 
using wavelet decompositions, and non-pulse-based using dis-
crete or continuous multiplicative cascades (Flores 2004). 
Other works related to time series fractality in hydrology 
(Adarsh et al. 2020) include double trace moments (Tessier 
et al. 1996), wavelet transform modulus maxima (WTMM) 
(Kantelhardt et al. 2003), extended self-similarity (ESS) 
(Dahlstedt and Jensen 2005)and arbitrary order Hilbert spec-
tral analysis (AOHSA) (Huang et al. 2009), to mention a few.

Recent approaches in univariate, multivariate, random field 
simulations of rainfall have focused on generating time series 
or random fields that explicitly preserve any desired marginal 
distribution at different locations and seasons, as well as any 
desired correlation structure (Papalexiou 2018, Papalexiou and 
Serinaldi 2020, Papalexiou et al. 2021). The scheme comprises 
five steps, as graphically demonstrated in Fig. 2; it is clearly 
generic and allows simulation of time series having any mar-
ginal distribution and autocorrelation and can be used for 
many different hydroclimatic processes such as relative 
humidity, wind speed, river streamflow, or any process having 
discrete and binary marginal distributions such as the number 
of extremes per year or wet–dry sequences (for more details see 
Papalexiou 2018).

Recently, the development of continuous hydrological 
modelling has made rainfall simulation models more impor-
tant, as they constitute the input in this promising approach 
(Grimaldi et al. 2022). However, a unique approach that is 
easy to apply is still not available to the community. A 
challenge for the near future is to identify the best rainfall 
simulation approaches for specific hydrological applications 
providing user-friendly tools applicable without a restrict-
ing statistical background. This is a subject of current inter-
est of the ICSH that will be addressed in future publications.

In addition to the parametric approach, it is worth men-
tioning that the nonparametric methods offer attractive alter-
natives since they can capture non-linear and non-normal data 
characteristics. Nonparametric regression refers to a group of 
approaches that are used to fit a curve when little a priori 
knowledge exists about its shape (Altman 1992). Running 
averages have been used since the late 19th century for deter-
mining time series trends by De Forest. Later, local location 
estimators like the kernel (e.g. Parzen 1962) and the nearest- 
neighbour regression estimators (e.g. Cover and Hart 1967) 
were introduced. The conditional kernel density estimation 
derives a probability density function from histogram data. 
The technique allows the creation of a smooth curve (empirical 
probability density estimate) given a set of data. In the kernel 
density estimation for discrete random variables such as rain-
fall (Lall 1995), wet and dry spell lengths are considered as an 
integer number of days and the sample relative frequencies are 
estimated. These relative frequencies are then smoothed with a 
kernel estimator. The kernel method is superior to the ML 
estimator which yields the relative frequency directly, as it 
allows the extrapolation of probabilities to spell lengths, and 
has higher mean square error efficiency (Rajagopalan and Lall 
1995). Some kernel estimators are the geometric estimator, the 
maximum penalized likelihood estimator, the estimator by 
Hall and Titterington, and the discrete kernel estimator (see 
Rajagopalan et al. 1997 and references therein).

When a model is applied at a time interval shorter than a 
year or month; e.g. week or day, parameterization becomes 
computationally costly, because the seasonality emerges more 
effectively. This brings the problem that one single value of a 
parameter cannot be applicable over the year; i.e. monthly, 
weekly, or even daily parameterization is needed. This is a big 
burden for the modelling approach that can be overcome by 
fitting a seasonal function to the parameters such as the 
Fourier series (Aksoy and Bayazit 2000).
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4.2 Multisite modelling

4.2.1 Multisite streamflow generation
It is quite common for river flows in the same basin or 
nearby basins to exhibit significant cross-correlations 
among their tributaries since they receive runoff from the 
same parent rainfall. Therefore, multisite models which pre-
serve cross-correlation between sites are logical (Matalas 
1967). Some of the models mentioned above can be extended 
to multiple sites, i.e. the multivariate AR(1) and ARMA(1,1) 
are usually adequate for the annual time scale. Multivariate 
ARMA models often result in complex parameter estimation 
and model simplifications have been suggested such as the 
contemporaneous ARMA (CARMA) (Salas et al. 1980). 
ARIMA models have also been applied for the multisite 
case. The Markov cross-correlation pulse model has been 
used to extend single-site streamflow generation to multiple 
sites, preserving high daily cross-correlations (Xu et al. 
2003). A hybrid seasonal MC model was also used at multi-
ple sites by Szilagyi et al. (2006). The model used shot noise 
models in an MC-based framework, along with a conceptual

model for flow recession, managing to generate long time 
series of daily flow which preserves long-term statistics. 
Medda and Bahr (2019) provide a list of models used for 
the multisite case, such as the hybrid stochastic model of 
Srinivas and Srinivasan (2005) with a parsimonious periodic 
parametric model and moving block bootstrap for resam-
pling of the residuals, and the models found in Wang and 
Ding (2007), Hao and Singh (2013), and Srivastav and 
Simonovic (2014).

4.2.2 Multisite rainfall generation
Numerous studies have dealt with the spatial dependence 
of precipitation in space-time stochastic models under 
parametric (Papalexiou and Serinaldi 2020, Papalexiou et 
al. 2023), semiparametric, and non-parametric frame-
works (Sharma and Mehrotra 2010). Multisite rainfall 
generation models can be broadly categorized into condi-
tional models (hidden Markov models), extensions of MC 
models, and random cascade models (Srikanthan and 
McMahon 2001).

Figure 2. Step-by-step graphical demonstration of stochastic simulation that preserves explicitly a desired marginal distribution and correlation structure. (a, b, c) 
Observed precipitation time series and the fitted parametric distribution and autocorrelation structure; (d) transformation of Gaussian values to the desired mixed-type 
fitted distribution and (e, f) the corresponding correlation transformation function (CTF) and estimated autocorrelation structure of the Gaussian process; (g, h, i) 
generated Gaussian time series, its marginal and correlation structure; (j) final simulated time series that indeed have (k, l) the desired marginal distribution and 
autocorrelation structure.
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In the hidden Markov models, the multisite rainfall is simu-
lated conditional on the weather states and/or atmospheric 
circulation patterns so that the effects of large-scale atmospheric 
circulation are incorporated into local weather (Zucchini and 
Guttorp 1991, Hughes and Guttorp 1994). In the hidden 
Markov model of Zucchini and Guttorp (1991) the climate 
process follows anMC. Other versions of the model are those 
of Bárdossy and Plate (1992), Wilson et al. (1992), and Charles 
et al. (1999). Wilks (1998) extended the first-order MC with the 
two states and a mixed exponential distribution for the simulta-
neous generation of rainfall at multiple locations by having 
individual models fitted to each site and using spatially corre-
lated random numbers to introduce spatial dependence. 
Jothityangkoon et al. (2000) introduced a space-time model 
with a temporal first-order, four-state MC and a spatial model 
based on a non-homogeneous random cascade process, for the 
generation of daily rainfall. The model manages to reflect the 
spatial patterns of the long-term mean of all timescales, the 
spatial distribution of the wet fraction, the statistical character-
istics of storm arrivals and interarrival times, and the excee-
dance probabilities of rainfall but underestimated the mean 
number of wet days and the mean wet spell lengths during 
winter months. To avoid the use of discrete weather states in 
continuous rainfall generation, Langousis and Kaleris (2014) 
and Langousis et al. (2016b) proposed and applied a scheme 
for stochastic simulation of daily rainfall conditional on upper- 
air predictor variables. While the scheme didnot involve any 
type of seasonal modelling, it was found to accurately reproduce 
several rainfall statistics at seasonal and annual time scales (wet 
day fractions, the alternation of wet and dry intervals, the dis-
tributions of dry and wet spell lengths, the distribution of rain-
fall intensities in wet days, short-range dependencies, the 
distribution of yearly rainfall maxima, among other), as well as 
the dependence of rainfall statics on the observation scale.

Other approaches used for multisite rainfall generation 
include generalized linear models (GLMs) (Chandler and 
Wheater 2002), reshuffling approach-based models (Clark et 
al. 2004), models that preserve exactly the marginal distribu-
tions and correlations (Papalexiou 2018, Papalexiou and 
Serinaldi 2020), nonparametric models like the k-nearest 
neighbour approach (Buishand and Brandsma 2001), and 
semi-parametric models that parameterize the rainfall occur-
rence generation process while using nonparametric methods 
to characterize rainfall amounts (Mehrotra and Sharma 2007). 
Fu et al. (2018) provide a comparison among four multisite 
weather generators: (1) the generalized linear model for daily 
climate time series, based on generalized GLMs, (2) the sto-
chastic climate library which uses a first-order two-state MC, 
(3) the multisite precipitation generator, based on the 
approach of Wilks (1998), and (4) the multisite auto-regressive 
weather generator based on the theory of vector auto-regres-
sive models. They note that all models reproduce the daily, 
monthly, and annual rainfall, extremes, and dry/wet spell 
lengths reasonably but also simulate a large range of variability.

4.3 Change detection in hydrological time series

As premised in Section 2.3, stationarity may be questionable, at 
least for some hydrological time series (Milly et al. 2008, 2015).

However, non-stationarity is hard to detect, and often false 
assumptions on the underlying process can lead to falsely 
rejected hypotheses for non-stationarity tests (see e.g. Lins 
and Cohn 2011 and Serinaldi and Kilsby 2015). In the follow-
ing we review some recent techniques for non-stationary ana-
lysis and simulation, emphasizing explicitly the high 
uncertainty when dealing with non-stationarity in short time 
series.

For change analysis, the detection of irregularities, jumps, 
changes, and trends is of the highest importance. For many 
stochastic models, non-stationarity – when detected – has to 
be removed before application, while recently developed sto-
chastic models are able to include it in the model structure; 
either way, it is essential to know the time of occurrence of 
non-stationarities. To reliably differentiate non-stationarities 
from simple random effects in time series, statistical tests are 
applied that do or do not reject the hypothesis of stationarity 
(the null hypothesis) according to a given significance level, 
typically 5%. This corresponds to Type I error, which is the 
probability of detecting a change when it does not exist 
(societal over-preparedness). Type II error, related to statis-
tical power, is the probability of missing the change when it 
exists; even though it informs us about the probability of 
under-preparedness, which is a fundamental issue for society, 
it is rarely considered in the analysis (Vogel et al. 2013). See 
also Prosdocimi et al. (2014) for a discussion on the impor-
tance of correctly specifying the null and alternative hypoth-
eses in non-stationarity testing and how this relates to 
statistical power.

Common tests can be categorized according to some of 
their properties, such as whether they are parametric or non- 
parametric (i.e. if an assumption on the data distribution is 
made), and how conservative, powerful, efficient, or robust 
they are. The dependence structure for which the test was 
constructed must also be differentiated. Most tests can be 
applied for the case of i.i.d. data. However, if short- or long- 
range dependence occurs, the limit distributions and the test 
statistics have to be extended (see e.g. Serinaldi et al. 2018). 
Classical examples of short-range dependent (SRD) processes 
are mixing processes or Markovprocesses. Long-range depen-
dence (LRD) is much harder to detect with respect to the 
short-range case, especially when the sample analysed spans 
a short observation period, as is often the case for hydro- 
meteorological records. However, many studies argue that 
flood and precipitation processes are characterized by long- 
range dependence in terms of long-term cyclic behaviour 
(Szolgayova et al. 2014, Koutsoyiannis 2021), yet other studies 
in long streamflow records do not verify the existence of long- 
range dependence (Markonis et al. 2018; see also the discus-
sion in the introduction to Section 4).

Non-stationarities in time series are basically differentiated 
into two categories: change points and trends. The first cate-
gory, change points, applies to the case where an abrupt 
change in the distribution of the random variables occurs at 
one point in time. The second category, trends, applies to 
continuous and monotone changes in the distribution. An 
in-depth introduction to the statistical methods for the detec-
tion of non-stationarity can be found in Helsel and Hirsch 
(1992).
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Many distribution properties can change abruptly at any 
given point in time, e.g. due to the impact of some exogenous 
factors or a change in the measuring of the process: change 
point tests aim to detect these possible changes. Time points 
where changes take place are called change points; the interval 
included between two change points is a segment, and the 
procedure by which the segments of a time series are deter-
mined is called segmentation. Segmentation of a time series 
simply means dividing a given number of observations into 
subseries with statistical characteristics that are similar within 
each subseries and different between subseries (Salas et al. 
1980, Helsel and Hirsch 1992). This is also called jump analysis 
and can be considered a change point detection problem for 
which statistical tests and Bayesian procedures are available 
(Pettitt 1979, Alexandersson 1986, Seidou et al. 2007). Many 
segmentation methods and a very extensive bibliography are 
presented in Basseville and Nikiforov (1993); additionally, 
recent segmentation procedures are available in the literature 
(Hubert 2000, Kehagias 2004, Kehagias et al. 2006, Gedikli et 
al. 2010). The simplest case is segmentation with regression- 
by-constant in which the aim is to determine the change points 
or boundaries where the average of the current segment is 
statistically different than the average of the next segment as 
well as that of the previous one. This shift or jump may be 
either positive or negative. Not only segmentation with regres-
sion-by-constant but also segmentation with regression-by- 
lines or higher-order polynomials can be used (Kehagias et 
al. 2006).

Common change-point tests focus on changes in mean, 
variance, and correlation. Corresponding change points can 
be identified at the time when the test statistic reaches its 
maximum. Change points in the mean refer to abrupt changes 
in the mean value of the underlying distribution. The simplest 
test statistic is based on the cumulative sums (CUSUM) of the 
series values before and after the change point. CUSUM tests 
for a change in mean exist for i.i.d., SRD, and LRD time series. 
Many CUSUM tests are non-parametric and efficient, but not 
robust. To overcome this problem, the robust Wilcoxon 
(Mann-Whitney) test was developed. Again, statistical theory 
for this test exists for i.i.d., SRD and LRD time series (see 
Dehling et al. 2013 and references therein). Another robust 
test for a change in the mean is the Pettitt (1979) test, usually 
applied for i.i.d. data. Changes in variance are less often inves-
tigated in hydrology. Common tests are the parametric 
CUSUM test (Inclan and Tiao 1994) which can be applied to 
i.i.d., SRD and LRD data and the robust, non-parametric test 
based on Gini’s mean difference which can be applied to i.i.d. 
and SRD data (Gerstenberger et al. 2020). To test for a change 
in the correlation structure, tests based on correlation coeffi-
cients like Spearman’s rho or the Pearson coefficient are 
applied. These tests apply to independent and weakly depen-
dent time series (Wied and Galeano 2013, Dehling et al. 2017). 
Note that detecting a change in e.g. the mean does not imply 
that it is the only statistic that changes over time; as pointed 
out in Section 2.3, a thorough preliminary analysis is necessary 
to understand which structure is most appropriate to model 
change.

In contrast to change points, trends assume a monotonic, 
continuous change in the central tendency (often taken to be

the mean) of the time series. The most common trend tests are 
the Mann-Kendall test and the Cox-Stuart test: both these tests 
are non-parametric and therefore can be applied to data series 
without assuming that they follow specific distributions. The 
Mann-Kendall test can be applied to independent data as well 
as weakly dependent data (Cabilio et al. 2013) or the special 
case of seasonally impacted data (Zhang et al. 2016). Note that 
the Mann-Kendall test corresponds to computing the Kendall 
correlation coefficient for the record under study and the time 
index. The Cox-Stuart test (e.g. Rutkowska 2013) typically 
requires longer observation records than the Mann-Kendall 
test and has less power. Moreover, the presence of autocorrela-
tion limits the application of this test. Pre-whitening often 
reduces the power of trend tests or falsely raises their Type I 
error rates (Bayazit and Önöz 2007, Wang et al. 2015). Either 
ignoring the effect of autocorrelation or dealing with it without 
choosing adequate methods will result in inaccurate detection 
results. A robust trend detection strategy should involve the 
investigation of the autocorrelation structure of the data and 
the selection of the corresponding method that keeps a balance 
between maintaining a low Type I error and a relatively strong 
power of trend detection (e.g. O’Brien et al. 2020). Trend tests 
can be informative on whether a change in the mean of the 
time series has occurred, but cannot quantify the actual 
change. They are therefore often coupled with the Theil-Sen 
slope which provides a robust estimate to quantify the change 
which occurred over time in the mean of the time series (e.g. 
Yilmaz and Tosunoglu 2019). Note that a change in the mean 
can have an impact on the results of a trend test and vice versa.

At large scales, the detected trends identified at several sites 
could be statistically non-significant at a regional scale, where 
several distinct issues can be investigated. The most thor-
oughly studied is field significance: when a test is repeated 
with a given significance level on several locations, the aim is 
to determine the minimum number of locally significant 
trends to conclude, with a regional significance level, that the 
changes are not all due to chance. The second aspect involves 
the consistency of changes detected within a given region. 
Exploiting the concept of regionalization may be a step for-
ward, as presented in Section 5. Furthermore, the spatial cor-
relation between time series should be considered. See for 
example Renard et al. (2008) or Yue et al. (2003) for 
approaches to trend testing in a large region.

In addition, identifying the cause or physical underpinning 
of detected trends is often the main objective. There is a wide 
range of methods for the detection and attribution of changes 
designed for individual and compound hazards (Easterling et 
al. 2016, Chiang et al. 2021a, Slater et al. 2021b, Chiang et al. 
2022). The partial Mann-Kendall test (PMK), for instance, can 
be used to test whether a detected trend in a hydrological time 
series is significant after removing its correlation with a cov-
ariate variable (Libiseller and Grimvall 2002).

If a distribution can be assumed for the data, it is possible to 
construct change point and trend tests within a parametric 
framework. If, for example, one wishes to test whether an 
abrupt change occurs in a given year in the location parameter, 
it is possible to compare the goodness of fit of two models: one 
in which the location parameter is assumed to be constant and 
another in which the location takes different values before and
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after a specified changeyear. The comparison might use good-
ness-of-fit criteria such as AIC or be based on a likelihood 
ratio test between the two nested models (Kundzewicz and 
Robson 2004). Katz et al. (2002) offer an introduction to this 
type of parametric models with applications for hydrological 
extremes. Similar approaches can be employed to construct 
trend tests and investigate whether changes can be detected in 
one or, as expected, more parameters of the parametric mod-
els, for example scale and location. Parametric approaches 
can also be further extended to allow for not only linear or 
monotonic changes in the parameters. For example, Villarini 
et al. (2009a) and Slater et al. (2021a) applied the generalized 
additive models for location, scale and shape (GAMLSS) to 
investigate possible changes in extremes. See also Debele et al. 
(2017) for a discussion on the usability of GAMLSS in the 
analysis of hydrological extremes.

Detection of changes in hydrology is a difficult task. The 
often skewed or zero-inflated data with unknown dependence 
structure and distribution require a detailed a priori analysis 
(Kundzwicz and Robson 2004) and cross-correlation has to be 
considered if spatial datasets are evaluated (Douglas et al. 
2000). The test statistics with correct assumptions on depen-
dence and distribution of the data have to be selected from a 
pool of available tests. When detecting a change point, it is 
necessary to determine its origin. Without attribution, i.e. the 
clarification of the deterministic causes, a change-point detec-
tion is of little value for hydrological purposes. Moreover, 
evidence supports the significance of the findings. For exam-
ple, changes in mean in discharge data can be related to 
anthropogenic impacts like the building of dams (Seibert and 
McDonnel 2010). Often, changes in discharge time series can 
also be related to changes in climatological time series (Zhang 
et al. 2014), e.g. for changes in flood type frequencies (Fischer 
et al. 2019).

Trends and change points can be generated by different 
sources: (i) meteorological drivers, such as changes in extreme 
precipitation patterns; (ii) climatic drivers that can modify soil 
moisture contents in catchments, such as changes in tempera-
ture, annual precipitation or evapotranspiration; (iii) drivers 
that modify rainfall–runoff processes at the catchment scale, 
such as changes in land uses; and (iv) stream drivers that 
modify flood propagation processes, such as river training 
(Vorogushin et al. 2012). Therefore, time series recorded at 
catchments that are either natural or near-natural have to be 
used to identify climate-driven flood trends, avoiding the 
anthropogenic effects on catchment response. As an example, 
Bertola et al. (2021) propose a new framework for attributing 
flood changes to the potential drivers of extreme precipitation, 
antecedent soil moisture, and snowmelt, as a function of the 
return period, in a regional context. Timeseries collected by 
reference hydrological networks can be useful in hydrological 
change analyses (Burn et al. 2012, Whitfield et al. 2012).

For trend tests, such a relation between statistical results and 
hydrological evidence is even more important, since trends are 
often extrapolated into the future (see Iliopoulou and 
Koutsoyiannis (2020) on the possible issues connected to extra-
polating trends). Changes in climate or anthropogenic changes 
like land-use can be the origin of such trends (Prosdocimi et al. 
2015, Blöschl et al. 2019b, Bertola et al. 2021). However, cyclic 
behaviour or so-called flood-rich and flood-poor periods (Lun et 
al. 2020, Fischer et al. 2023) in the time series can have an impact 
on the significance of the results (Koutsoyiannis 2003). 
Depending on what observation period is considered, trends 
and change points can be significant or not (Kundzewicz et al. 
2005, Serinaldi et al. 2018). As an example, Fig. 3 depicts varying 
significant linear trends of the mean (continuous coloured lines) 
detected for 30-year time windows of the annual maximum 
discharge series (AMS) at the Cologne/Rhine gauge (Germany).

Figure 3. Example of varying significant trends detected for 30-year time windows of the annual maximum discharge series (AMS) at the Cologne/Rhine gauge; 
continuous coloured lines show the linear trends of the mean as emerging from the series.
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Also, the time resolution of the data can have an impact on 
the results (Mangini et al. 2018). Several trends in hydrological 
time series around the world, like discharge or precipitation, 
have been detected in recent years, but not all of them can be 
confidently explained with evidence (Madsen et al. 2014). For 
example, precipitation time series may show a significant 
increasing trend while the corresponding flood time series do 
not (see also Sharma et al. 2018). Evidence of deterministic 
causes must be present for the incorporation of non-stationa-
rities in hydrological models and especially for the extrapola-
tion to the future.

5 Regionalization

The understanding and modelling of hydrological variability 
in space and the possibility of transferring hydrological knowl-
edge and information from one region/catchment to another 
are central issues in hydrology for several scientific research 
areas and operational problems about water resources man-
agement and hydroclimatic risk assessment and mitigation; see 
e.g. the predictions in ungauged basins (PUB) initiative 
(Blöschl et al. 2013, Hrachowitz et al. 2013) and UPH 
Question 5 of 23 (Blöschl et al. 2019a).

This section addresses the state of the art, milestones, and 
future research avenues in the broad area of statistical regio-
nalization of hydrological information by looking primarily at 
the prediction of rainfall and streamflow in ungauged loca-
tions. In particular, we look at the spatial interpolation of 
rainfall characteristics and frequency regimes, with a specific 
focus on rainfall extremes, and regionalization of streamflow 
regimes and flood frequency, looking primarily at (geo)statis-
tical interpolation and regional frequency analysis. We also 
consider the related question of streamflow prediction in 
ungauged locations using rainfall–runoff models with regio-
nalized parameters.

5.1 State of the art

5.1.1 Rainfall regionalization
Precipitation measurements are point observations usually 
obtained from gauging networks with sensors irregularly dis-
tributed in space. If rainfall is needed for ungauged points or 
areal rainfall is required, as for most hydrological applications, 
precipitation measurements have to be interpolated in space 
(e.g. Koutsoyiannis and Langousis 2011). There are many 
interpolation methods available, which can be mainly sepa-
rated into deterministic/geometric approaches and geostatis-
tical techniques. Deterministic approaches like Thiessen 
polygons or inverse distance weighting (IDW) are simple and 
fast, but do not consider the specific spatial persistence beha-
viour of the rainfall, nor can they use additional information 
sufficiently. Geometric spline interpolation is more advanced 
and can also use additional variables (Hutchinson 1998a, 
1998b). Geostatistical techniques, relying on the concept of 
random functions providing manifold kriging versions, from 
simple stationary approaches with ordinary kriging over indi-
cator kriging for precipitation occurrence interpolation 
(Berezowski et al. 2016) to non-stationary (in space) methods

like co-kriging (Seo et al. 1990a, 1990b) and external drift 
kriging, are the state of the art. The latter especially allows 
easy incorporation of additional information into the interpo-
lation, like elevation (Goovaerts 2000), satellite data (Thiemig 
et al. 2013), or weather radar measurements (Haberlandt 2007, 
Goudenhoofdt and Delobbe 2009).

An accurate estimation of extreme rainfall intensities is 
often needed for the design and assessment of urban infra-
structure to minimize potential damage to society. This may be 
a challenge since records from rainfall gauges are often short 
and there is a need to also account for the effects of climate 
change. If only short records are available the estimation of the 
magnitude of events associated with long return periods is very 
uncertain. By combining information from different stations, i. 
e. by trading space for time, regionalization is a possible 
strategy to reduce the uncertainty in the estimation of design 
events for locations with short records or even ungauged 
locations.

Hence, a fundamental component of the process of setting 
up an interpolation procedure is the assessment of the accu-
racy of prediction in ungauged locations, which is usually done 
with cross-validation or split-sampling and enables the user to 
characterize spatial interpolation errors. Kriging methods are 
unbiased in space and regarded as standard tools for interpo-
lating point rainfall. However, if time series are interpolated in 
space for each time step, the accumulated error for certain 
points can have a temporal bias, which is significant for hydro-
logical applications (Bárdossy and Pegram 2013). A simple 
assessment of uncertainty is provided using estimates and 
estimation variance when the residuals are normally distribu-
ted. If this is not the case, indicator approaches or new inter-
polation methods based on copulas can be used (Bárdossy and 
Li 2008).

Regional frequency analysis of hydrological variables is a 
mature discipline, for which books and manuals exist detailing 
steps, procedures, statistical tests, and tools for setting up and 
testing regional models; a classic example is the textbook 
Regional Frequency Analysis: An Approach Based on L- 
Moments by Hosking and Wallis (1997). Concerning regional 
frequency analysis of rainfall extremes, geographic distance 
and mean annual precipitation (MAP) are generally recom-
mended as similarity measures to be used to pool regional 
information from gauged sites due to the marked spatial nat-
ure of the rainfall extremes frequency regime (e.g. Ball et al. 
2019) and its significant dependence on climate and orogra-
phy, which can be effectively summarized by MAP (see e.g. Di 
Baldassarre et al. 2006, Persiano et al. 2020). Regional fre-
quency analysis of rainstorms may be applied under different 
approaches, such as regional regression relationships (e.g. 
Brath et al. 2003), the index-event approach (e.g. Dalrymple 
1960, Hosking and Wallis 1997, Burn 2014), or hierarchical 
regionalization (e.g. Alila 1999), among others. Some countries 
present official guidelines based on the use of a regional 
approach for rainfall frequency analysis, such as the Flood 
Estimation Handbook in the United Kingdom (Institute of 
Hydrology 1999). In other countries, the application of local 
approaches in which only the rainfall records at a given gauge 
station are used for estimating extreme rainfall events is still a
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common practice, instead (e.g. see Svensson and Jones 2010, 
where a review of nationwide rainfall frequency analysis pro-
cedures is provided considering nine countries).

The temporal resolution of precipitation matters for the 
selection of the optimal interpolation method and regarding 
interpolation performance. Usually, the interpolation error 
increases with increasing temporal resolution (see e.g. fig. 1 
in Berndt and Haberlandt 2018), while topography is only of 
value as additional information for rainfall interpolation if the 
time steps are larger, becoming significant for data with about 
a weekly aggregation level (Bárdossy and Pegram 2013, Berndt 
and Haberlandt 2018).

Most relevant for short-time-step rainfall estimation in 
space are weather radar data. However, these usually have a 
large bias (Krajewski and Smith 2002, Berne and Krajewski 
2013). Merging ground-based point rainfall measurements 
and radar-derived rainfall can provide corrected rainfall esti-
mates with high resolution in space and time. Over the last few 
years several different merging methods have been applied, 
like external drift kriging (Haberlandt 2007, Goudenhoofdt 
and Delobbe 2009), conditional merging (Sinclair and 
Pegram 2005, Berndt et al. 2014, Kim et al. 2016), simple bias 
correction (Thorndahl et al. 2014, Rabiei and Haberlandt 
2015) and Bayesian approaches (Todini 2001). An overview 
and comparison of merging methods especially targeting 
urban hydrological applications are provided by Ochoa- 
Rodriguez et al. (2019).

Finally, many recent developments in regional frequency 
analysis of hydrological variables aim at modelling or detecting 
climate signals and frequency alterations at a regional scale. 
Concerning rainfall events, evidence of the effect of climate 
change on extreme precipitation is found aroundthe world (e. 
g. Westra et al. 2014, Papalexiou and Montanari 2019, 
Persiano et al. 2020, Emmanouil et al. 2022, 2023), hence the 
need for it to be properly considered when estimating extreme 
rainfall intensities.

5.1.2 Streamflow regionalization
Analogously to rainfall, an accurate representation of stream-
flow regime and frequency, from low flows to floods, is of 
paramount importance for various water resources planning 
and management problems that are at the core of the safety 
and growth of societies. Achieving this objective is hampered

by the limited density of stream-gauging networks, which are 
much sparser than rain-gauging ones even in more advanced 
countries (see e.g. Parajka et al. 2015), and often subject to a 
decline in the number of sensors in time due to high main-
tenance costs. For this reason, since the 1960s the hydrological 
scientific community has dedicated huge research attention 
and efforts to the development of tools and procedures for 
transferring hydrological information from streamgauges to 
ungauged river cross-sections. As summarized for instance 
by Blöschl et al. (2013; see e.g. chapters 7 and 9), classical 
approaches adopted for this transfer mainly consisted of sta-
tistical hydrological regionalization (see Fig. 4); these origin-
ally took the form of (log)linear regression of streamflow, low- 
flow, or flood quantiles against climate and geomorphological 
descriptors of gauged river basins, or the index-event approach 
(or “index-flood approach” when referring to flood flows) 
mentioned above.

Regional flood frequency analysis grew massively as a 
research topic from the mid-1980s to the revolutionary late 
1990s and early 2000s when the paradigm of focused pooling 
was introduced (see e.g. Burn 1990, Reed 2002). Focused 
pooling consists of identifying poolinggroups of gauged sites 
from which to transfer the hydrological information by look-
ing at hydrological similarities with the target site where the 
regional prediction is needed; hence, the approach dispenses 
with the delineation of geographically identifiable and hydro-
logically homogeneous regions (see cases a and b in Fig. 4), a 
hypothesis at the basis of the classical index-event approach, 
and adopts flexible pooling-groups of sites that depend on the 
target site (Ouarda et al. 2001; see Fig. 4, case c). A prominent 
example of focused-pooling is the so-called region of influence 
(ROI) approach (Burn 1990). Focusedpooling (e.g. the ROI 
approach) is generally considered the baseline regionalization 
approach and standard practice, to the point that e.g. the ROI 
approach is used in nationwide guidelines such as the 
Australian Rainfall and Runoff (ARR) guideline (Ball et al. 
2019) and the Flood Estimation Handbook in the United 
Kingdom, as well as in nationwide studies (see e.g. Requena 
et al. 2019a in Canada). In some other areas, regression-based 
regional models are indicated as the national reference proce-
dure. Examples are the Guidelines for Determining Flood Flow 
Frequency (Bulletin 17C) in the US, which recommend the 
Bayesian generalized least squares (B-GLS) approach for

Figure 4. Spatial support for statistical regionalization: (a) classical interpretation (fixed and geographically contiguous homogeneous regions); (b) modern 
interpretation (non-contiguous homogeneous regions, resulting from e.g. cluster analysis of catchment descriptors); (c) current interpretation (stream network- 
based regionalization; typical of focused pooling, and more recently geostatistical or physiographic space-based interpolation).
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setting up regional estimation equations (see e.g. Gruber and 
Stedinger 2008).

More recently, the paradigm of focusedpooling further 
evolved into procedures aiming at performing a seamless 
interpolation of streamflow descriptors (e.g. low-flow indices, 
flood quantiles, etc.) along streamnetworks (see Fig. 4, case c), 
therefore reproducing the hydrological continuity of stream-
flow regimes from our fragmented knowledge originating 
from the sparseness of sensors in stream gauging networks. 
Examples are methods that regress streamflow statistics, 
instead of quantiles, against catchment descriptors (Laio et 
al. 2011), or methods that contaminate hydrological regiona-
lization principles with statistical interpolation such as kriging 
(see e.g. Merz and Blöschl 2005, Farmer 2016), either per-
formed over the geographical space (geostatistics in the strict 
sense) or in an n-dimensional space whose coordinates are 
geomorphological and climatic catchment descriptors, which 
is also referred to as physiographic-space-based interpolation 
or canonical kriging in the scientific literature (see e.g. Shu and 
Ouarda 2007).

Topological kriging, or top-kriging, is a prominent example 
of the first category; similar to block-kriging in which the 
support area coincides with the drainage area, top-kriging 
was firstly introduced for regionalizing flood-quantiles (see 
Skøien et al. 2006) and then successfully applied in various 
hydro-climatic contexts for predicting a broad spectrum of 
point streamflow indices, such as lowflows (see e.g. Laaha et 
al. 2014), high flows and floods (Merz et al. 2008), flow dura-
tion curves (FDCs) (Pugliese et al. 2014, 2016, Castellarin et al. 
2018), stream temperature (Laaha et al. 2013), habitat suitabil-
ity indices (Ceola et al. 2018), and daily streamflow series 
(Skøien and Blöschl 2007, Vormoor et al. 2011, de Lavenne 
et al. 2016, Farmer 2016). Physiographic space-based interpo-
lation, sometimes also referred to as canonicalcorrelation 
(Ouarda et al. 2001), proved to be a rather effective regionali-
zation technique, which can be successfully applied for pre-
dicting flood quantiles (Shu and Ouarda 2007), lowflows 
(Castiglioni et al. 2011) and FDCs (Castellarin 2014). 
Recently, artificial intelligence and machine learning-based 
approaches have been gaining popularity due to the easy 
availability of computing power (e.g. Ouali et al. 2017, Desai 
and Ouarda 2021). These approaches need to be used with care 
to ensure that the physical concepts and the hydrological 
phenomena are adequately taken into consideration in the 
modelling effort.

Additionally, a promising regionalization approach 
involves the use of panel regression models, a methodology 
borrowed from the econometrics literature. Panel models 
represent the relationship between a time series of streamflow 
at one watershed and a time series of streamflow and/or time 
series of basin hydroclimatic characteristics at numerous other 
sites within a region. In other words, a panel model is a multi-
variate time series model especially designed for the types of 
regional time series problems encountered in hydrology. The 
economists Croissant and Millo (2008) provide R software for 
the implementation of panel regressions. Multicollinearity and 
omitted-variable bias are major limitations to developing mul-
tivariate (panel) regression models to estimate streamflow 
characteristics in ungauged watersheds (Farmer et al. 2015).

Since the work of Brown et al. (2011) in documenting the 
impact of drought on economic growth, panel models have 
been increasingly used in hydrology for a number of applica-
tions. Panel models have been developed to evaluate the effect 
of urbanization on flood frequency (Blum et al. 2020), the 
impact of rainfall on low streamflow (Bassiouni et al. 2016), 
the prediction of groundwater levels (Izady et al. 2012), resi-
dential water demand modelling (Worthington et al. 2009), 
and determining the impact of urbanization on annual runoff 
coefficients (Steinschneider et al. 2013).

Another interesting approach for streamflow prediction in 
ungauged basins through statistical regionalization is the use 
of rainfall–runoff models with “regionalized” parameter 
values, which enables continuous simulation. This research 
area has been investigated using at least two distinct strategies: 
(i) “direct” regionalization of rainfall–runoff model parameter 
values, and (ii) “indirect” parameter regionalization through 
calibration to regionalized flow signatures. The first strategy 
can be implemented by spatial interpolation of model para-
meters calibrated at gauged locations (e.g. Merz and Blöschl 
2004, Bárdossy and Li 2008, Vogel 2010). Earlier studies esti-
mated rainfall–runoff model parameters at each site followed 
by attempts to relate model parameters to basin characteristics. 
The study by Fernandez et al. (2000) implemented both steps 
concurrently so that the multiple site models are calibrated 
simultaneously. Simultaneous estimation offers a better chance 
to reproduce observed streamflow behaviour across multiple 
sites and, importantly, to obtain more stable relationships 
between rainfall–runoff model parameters and basin charac-
teristics. A significant advance along this research direction 
was achieved in the study by Samaniego et al. (2010), which 
developed detailed transfer functions that link catchment attri-
butes to model parameters and calibrated the “hyper-para-
meters” of these transfer functions at multiple catchments 
across geographically large areas.

The second strategy, which normally yields smoother para-
meter variation in space, can be implemented by estimating 
relationships between flow signatures (e.g. mean and variance 
of flows, baseflow/flashiness indexes, etc.) and catchment attri-
butes (e.g. catchment slope, geology, etc.). Traditionally, these 
relationships have been constructed using multi-linear regres-
sion techniques (e.g. Yadav et al. 2007) and more recently 
using machine learning techniques such as random forest (e. 
g. Snelder et al. 2013, Addor et al. 2018, Prieto et al. 2019). The 
identification of rainfall–runoff model structure under 
ungauged conditions and its impact on streamflow estimation 
has also received attention (Prieto et al. 2022). Regardless of 
the strategy, obvious challenges persist in terms of establishing 
spatial relationships for the pertinent quantities – which are 
essentially the same as the challenges in establishing spatial 
relationships in flood frequency analysis.

More recently, the main objective of regional frequency 
analysis may be properly accounting for non-stationarities 
and changes of frequency regimes at the regional scale (see e. 
g. Cunderlik and Burn 2003, Leclerc and Ouarda 2007, Bertola 
et al. 2020), which may imply using detected alterations and 
trends to form hydrologically similar regions (O’Brien and 
Burn 2014). Alternatively, a few studies aim at improving the 
robustness and reliability of trend detection in annual flood
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sequences by testing for trends at a regional scale (Kjeldsen 
and Prosdocimi 2021). Some non-stationary regional flood 
frequency analysis techniques proposed in the literature have 
been recently compared to each other, yet the body of studies 
in this area is still very limited and worth expanding soon 
(Kalai et al. 2020).

Together with textbooks and guidelines, several packages for 
implementing and testing regional statistical models, including 
geostatistical interpolation models such as top-kriging, have 
been developed under the free and open-source software R (R 
Core Team 2020). Table 4 reports some R packages developed 
and maintained by ICSH-STAHY members.

5.2 Challenges and open problems in regionalization

Geostatistical interpolation of point information produces a 
smoothed continuous representation of the point variable of

interest in space (e.g. interpolation of point rainfall via ordin-
ary kriging, but also interpolation of a given streamflow-index 
via top-kriging or physiographic-space-based interpolation). 
One of the main disadvantages of this procedure is the loss 
of variance, i.e. the underestimation of high values and the 
overestimation of low values (see e.g. Castellarin 2014). The 
preservation of variance should be considered when evaluating 
interpolation methods (Berndt et al. 2014). Usually, the assim-
ilation of additional information, especially information deriv-
ing from weather radar for point rainfall, may improve the 
representation of the actual variance of the process. A note-
worthy approach is the “maintenance of variance extension 
methods” (MOVE) introduced by Hirsch (1982). MOVE 
methods have been applied to rainfall, streamflow, and many 
other hydrological records, and extensions were developed to 
ensure that they perform as expected under either augmenta-
tion or extension (Vogel and Stedinger 1985). Augmentation

Table 4. Packages for regionalization analysis and modelling.

Name Brief description Repo. Link Authors

floodnetRfa Package implementing FloodNet 
recommendations for flood frequency analysis

GitHub https://github.com/floodnetProject16/floodnetRfa Durocher et al.

geoFDC Nonsupervised and geostatistically interpolated 
regional FDCs

GitHub https://github.com/alessio-pugliese/geoFDC Pugliese

lmomRFA Functions for regional frequency analysis using the 
methods of Hosking and Wallis (1997)

CRAN https://CRAN.R-project.org/package=lmomRFA Hosking

ncdf4 Interface to Unidata netCDF (Version 4 or earlier) 
format data files

CRAN https://CRAN.R-project.org/package=ncdf4 Pierce

nsRFA A collection of statistical tools for objective (non- 
supervised) applications of the regional 
frequency analysis methods in hydrology

CRAN https://CRAN.R-project.org/package=nsRFA Viglione et al.

pREC Package for quantifying regional information 
content for cross-correlated annual sequences, 
useful for assigning a frequency to regional 
envelope curves

GitHub https://github.com/alessio-pugliese/pREC Pugliese

RMWSPy Python package for conditional spatial random 
field simulation and inverse modelling which 
can be used to simulate rainfall fields 
conditioned on commercial microwave link data

GitHub https://github.com/SebastianHoerning/RMWSPy Hörning

Rtop Geostatistical interpolation of data with irregular 
spatial support such as runoff-related data or 
data from administrative units (to-kriging)

CRAN https://cran.r-project.org/web/packages/rtop/index. 
html

Skøien et al.

TNDTK Repository containing an application example for 
extracting period-of-record (FDCs) from daily 
streamflow series observed at gauged sites and 
computing FDCs at ungauged target sites using 
total negative deviation top-kriging

GitHub https://github.com/SimonePersiano/TNDTK/tree/v1.0.0 Persiano

winfapReader Interact with peak flow data in the United 
Kingdom

CRAN https://cran.r-project.org/web/packages/winfapReader/ 
index.html

Prosdocimi et al.

WREG Develops regional estimation equations for 
streamflow characteristics that can be applied 
at ungauged basins (approaches allowed: 
ordinaryleastsquares, OLS; 
weightedleastsquares, WLS; and 
generalizedleastsquares, GLS)

GitHub https://github.com/USGS-R/WREG Farmer and USGS 
Team

statsmodels Python module that provides classes and functions 
for the estimation of many different statistical 
models, as well as for conducting statistical 
tests, and statistical data exploration

statsmodels. 
org

https://www.statsmodels.org/stable/index.html Seabold and 
Perktold

scipy.stats Python module that contains a large number of 
probability distributions, summary and 
frequency statistics, correlation functions and 
statistical tests, masked statistics, kernel density 
estimation, quasi-Monte Carlo functionality, and 
more

scipy.org https://docs.scipy.org/doc/scipy/reference/stats.html Virtanen et al.

pyMannKendall Python package for non-parametric Mann-Kendall 
family of trend tests

pypi.org https://pypi.org/project/pymannkendall/ Hussain

pyHomogeneity Python package for homogeneity test pypi.org https://pypi.org/project/pyhomogeneity/ Hussain
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refers to the estimation of moments of hydrological records at 
short-record sites by transferring information from nearby 
sites with longer records. Extension refers to filling in the 
observations at the short-record site using the longer record 
site. MOVE methods are in common use by the US Geological 
Survey, as evidenced by their inclusion in the USGS R package 
already mentioned in Table 1. More recently, conditional 
simulation methods have been introduced to preserve the 
variance and provide uncertainty estimation (AghaKouchak 
et al. 2010, Seo et al. 2014, Hörning and Bárdossy 2018). It is 
relevant to mention also the patched-kriging approach pro-
posed by Libertino et al. (2018), dealing with the loss of 
variance due to spatial interpolation of point maxima. 
Notwithstanding these advancements, the preservation of var-
iance represents an interesting open problem for future ana-
lyses (see also Farmer and Vogel 2016). The relatively sparse 
precipitation networks very likely miss the true extremes of an 
event. This causes a serious problem for estimating point and 
areal extremes.

The quality of regionalization is often measured with cor-
relation, Nash-Sutcliffe efficiency, or similar measures; the 
reader is referred to Barber et al. (2020), Lamontagne et al. 
(2020) and Clark et al. (2021)for a discussion on the variability 
of such measures when computed from daily streamflow. 
Unfortunately, in the case of a strong annual cycle, these 
numbers often indicate a much higher skill. Therefore, well- 
known annual cycles should be removed before the evaluation.

Focusing more specifically on point rainfall, it must be noted 
that precipitation is a space-time dynamic process, which is an 
issue also for multisite rainfall generation (Section 4.2.2). 
Therefore, a pure spatial interpolation is not optimal, as it does 
not consider the advection of rainfall fields and their temporal 
persistence, which can be especially relevant for a short-duration 
event. Special interpolation methods, which can account for this 
space-time behaviour, might improve the performance of rain-
fall interpolation (Fitzner and Sester 2015). Also, the interpola-
tion of distribution functions, honoring the spatio-temporal 
aspects, might improve the interpolation performance 
(Lebrenz and Bárdossy 2019) and it is, therefore, worth investi-
gating further. Another important problem is the large portion 
of zero rainfall. The number of dry stations increases with finer 
spatial resolution. This affects both the assessment of spatial 
variability and spatial/space-time interpolation.

Although it has been shown that blending weather radar 
data with raingauge observations generally results in smaller 
interpolation errors relative to using either type of data sepa-
rately, the use of the data merger, e.g. as input for hydrological 
modelling, is not standard practice yet (Berne and Krajewski 
2013). This might be due to the complexity of developing the 
merger products, or too little confidence in radar data pro-
ducts, but also to the specific result of specific scientific 
research projects (Price et al. 2014, Zhu et al. 2014). Research 
initiatives could advance our knowledge, providing valuable 
information for practical applications, including recent 
research activities considering the potential of alternative 
data sources to be used for spatial interpolation of rainfall, 
such as crowdsourced information (Haberlandt and Sester 
2010, de Vos et al. 2019, Bárdossy et al. 2021) or data on the 
attenuation of electromagnetic signals in commercial

microwave links (see e.g. Haese et al. 2017) or recordings of 
video cameras (Allamano et al. 2015). The combination of 
these alternative data sources with conventional raingauges 
shows great potential for improving the spatial interpolation 
of rainfall data and offers interesting opportunities for future 
research on merging techniques.

While, as noted above, the spatial interpolation of point 
rainfall may significantly benefit from information on spatial 
correlation of rainfall fields gathered by weather radar data (or 
commercial microwave links), we are currently lacking reliable 
information sources for improving our representation and 
modelling of spatial correlation (also termed intersite correla-
tion, or cross-correlation) for regional frequency analyses of 
hydrological variables, and particularly so for extreme events 
such as rainstorms, floods, or lowflows.

Intersite correlation is a valuable indicator of hydrological 
similarity that can be effectively exploited in regional flood 
frequency analysis (see e.g. Archfield and Vogel 2010), and 
that is directly modelled and used by top-kriging and GLS for 
producing regional predictions of the hydrological variable of 
interest. Nevertheless, the effects of intersite correlation also 
need to be better understood and quantified as they control the 
actual information content of a regional sample (see e.g. 
Castellarin 2007 and references therein), and consequently 
the uncertainty and accuracy of regional predictions (Guo et 
al. 2021), they also impact statistical tests for assessing the 
regional homogeneity of a pooling group of sites (Castellarin 
et al. 2008, Lilienthal et al. 2018). Improving our understand-
ing and representation of intersite cross-correlation is one of 
the key elements for enhancing the accuracy of regional esti-
mates, bringing regional estimators closer to the unknown true 
theoretical values (Persiano et al. 2021).

Another serious problem is that precipitation and discharge 
are usually regionalized independently, which very often leads 
to inconsistent datasets (Kauffeldt et al. 2013). Therefore, 
methods to regionalize dependent variables simultaneously 
are required. Attempts to do so can be found in Grundmann 
et al. (2019) and Bárdossy et al. (2021).

The choice of distribution of the extreme values is a key 
decision in most regionalization studies. In the stationary case, 
most studies and procedures rely on well-known 2–4-para-
meter models such as the Log Pearson 3 (LP3), GEV or kappa 
distributions (see e.g. Hosking and Wallis 1997). 
Regionalization of, in particular, the shape parameter is often 
challenging due to a combination of high sampling variance of 
the third-order moment and the generally weak link to existing 
catchment descriptors (e.g. Lun et al. 2021). Another challenge 
is the need to select appropriate model structures when mov-
ing from stationary to non-stationary models. For example, 
Prosdocimi and Kjeldsen (2021) showed that extrapolation 
from popular non-stationary models can result in counter-
intuitive estimates of future design floods when the location 
parameter is changing while the scale parameter is kept con-
stant. Instead, they proposed a re-parametrized non-stationary 
version of the GEV model which preserves a constant coeffi-
cient of variation and thus ensures credible extrapolations. The 
challenge of selecting and regionalizing non-stationary models 
needs to be considered carefully to ensure the operational 
value of these models.

1936 E. VOLPI ET AL.



Finally, and more specifically on non-stationarity, quoting 
Faulkner et al. (2020), can we still predict the future from the 
past? Or equivalently, in the face of global environmental 
change (see Visessri and McIntyre 2016), is “trading space 
for time” still a reliable and viable working hypothesis? These 
are still very relevant and fundamental research questions for 
the PUB problem in the field of regional frequency analysis of 
hydrological variables. Our ever-growing computational cap-
abilities combined with currently available cloud-computing 
possibilities and steadily increasing open accessibility to 
high-resolution global-coverage datasets seem to indicate 
regionalization of hydrological models (Guo et al. 2021) and 
continuous rainfall–runoff simulation as a promising way 
forward, one worth investing research efforts and resources 
in. In this context, regional modelling of extreme rainfall 
events, in terms of magnitude, spatial distribution, and fre-
quency, as well as future climate scenarios, assume pivotal 
importance.

Concerning frequency analysis of rainfall extremes, further 
efforts could be dedicated to promoting the use of regional 
approaches for practical application. A global comparative 
assessment of the performance of regional rainfall approaches, 
in a similar way to that carried out for floods and lowflows by 
Salinas et al. (2013), would be beneficial for providing general 
recommendations. Regarding future climate scenarios, and 
focusing in particular on climate model simulations used and 
frequency analysis for estimating regional and continental 
future hydrological extreme events, global initiatives such as 
the Coordinated Regional Climate Downscaling Experiment 
(CORDEX, https://cordex.org) are currently in progress; they 
aim at gathering regional climate downscaled simulations 
from many climate models under similar scenarios, projec-
tions, resolutions, time scales and periods for facilitating their 
use in practice. Considering the wide variety of approaches to 
be used for estimating future extreme rainfall, some studies 
attempt to provide recommendations but the literature is still 
sparse. For instance, bias correction of climate model simula-
tions for their use in extreme rainfall estimation is recom-
mended to be applied to annual maxima under a regional 
approach (Li et al. 2017), using simulations and observations 
with a similar spatial and temporal resolution (Maraun 2013). 
So far, only a few studies deal with the estimation of future 
extreme rainfall by accounting for a regional approach (e.g. 
Ekström et al. 2005, DeGaetano and Castellano 2017, Li et al. 
2017, Requena et al. 2019). Due to the large uncertainty 
involved in future extreme rainfall estimation (e.g. uncertainty 
in climate model simulations, spatial and temporal downscal-
ing methods, re-gridding method, and bias correction meth-
ods, among others), the recurring general recommendation 
consists in considering as many methods as possible, and 
therefore this issue is still wide open for future research 
contributions.

6 Conclusions

In this paper, we provide a summary of the collaborative 
activities undertaken within the STAHY-WG (Statistical 
Hydrology Working Group) and later the ICSH 
(International Commission on Statistical Hydrology) of

IAHS (International Association of Hydrological Sciences). 
The multidisciplinary nature of this community encompasses 
various research fields. However, in this paper, we specifically 
concentrate on four areas that have garnered significant atten-
tion over the past 15 years and we discuss open problems and 
challenges that persist within the domains of extreme value 
analysis, multivariate frequency analysis, time series analysis 
and simulation, and regionalization.

Regarding extreme value analysis, besides extensively 
studying the appropriate distributions such as the common 
GEV and GP functions, a recent promising development has 
emerged. It pertains to the potential to relax the constraint of 
the independence condition (i.e. metastatistical distribution), 
which would enable simplifying the frequency analysis and 
expanding and optimizing the available sample size. 
However, the issue of non-stationarity remains an unresolved 
challenge, despite considerable efforts devoted to its investiga-
tion. It needs to be adequately and comprehensively addressed 
in a general context.

Multivariate analysis, particularly involving the copula 
function, has gained recognition as a best practice. At the 
outset of the collaborative endeavours between STAHY-WG 
and the ICSH, the copula function was introduced in hydrol-
ogy. While it showed great potential, there were several draw-
backs in the inference procedure and limitations in its 
applications. However, through intensive activities such as 
short courses and workshops, significant progress has been 
made. The entire procedure has been reviewed, improved, 
and solidified, enhancing its applicability in hydrology. 
Currently, the multivariate inference procedure is wellestab-
lished, similar to the univariate case. This contribution empha-
sizes certain considerations, such as the importance of 
conducting a preliminary analysis, carefully considering sam-
ple size, and exploring the full range of available copula func-
tions. Looking ahead, a future challenge lies in eliminating the 
requirement for marginal autocorrelation, in alignment with 
the univariate case.

On the topic of time series analysis, in addition to strength-
ening established procedures for streamflow simulation, a 
substantial effort has been dedicated to rainfall simulation 
models, which are crucial for various hydrological analyses. 
One notable challenge is the existence of multiple approaches 
with different theoretical backgrounds, which can be confusing 
for practitioners. We acknowledge that it is impractical to 
identify a single best rainfall simulation model suitable for all 
applications. Therefore, the future challenge lies in two 
aspects. First, it involves establishing a proper classification 
system that links the different models to their specific applica-
tions. This would aid practitioners in selecting the most appro-
priate model for their needs. Second, there is a need to enhance 
the technological transfer process, making the rainfall simula-
tion models more user-friendly for the endusers. By addressing 
these challenges, we can improve the accessibility and usability 
of rainfall simulation models, benefiting the broader commu-
nity of users.

Regarding regional estimation techniques, there is a press-
ing need to consider the multivariate nature of the hydrocli-
matic variables under study (e.g. floods, lowflows, extreme 
rainfall events, droughts). This requires viewing them as
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intertwined elements of a single and complex unicum, and 
correctly representing their relationships and mutual 
constraints.

Undoubtedly, this contribution provides only a limited 
overview, acknowledging that numerous other intriguing and 
critical topics in statistical hydrology warrant similar analysis. 
This review aims to guide and support the future STAHY 
community in identifying the next research challenges in sta-
tistical hydrology, a field currently undergoing a revival driven 
in part by the rise of machine learning, big data, and artificial 
intelligence in hydrology. These are all sub-fields of, or heavily 
reliant on, the fundamental methods of statistical hydrology 
(as pointed out by R.M. Vogel in his review of this paper). 
Therefore, the interpretation of who should be part of the 
future STAHY community should be as broad and inclusive 
as possible.

Additionally, the ICSH recognizes the importance of stimu-
lating the hydrological community to contribute solutions 
through the application of statistical hydrology tools. This 
aligns with the overarching goal of the IAHS to advance the 
field of hydrology and address key challenges through the 
HELPING – Science for Solution initiative in the coming 
decade. By embracing new technological advancements and 
fostering collaboration between data science and statistical 
methods, the hydrological community can strive towards 
innovative solutions and make significant progress in addres-
sing complex water-related issues.
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