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Abstract

Continuous-flow methodologies offer promising avenues for sustainable processing due to their precise 

process control, scalability, and efficient heat and mass transfer. The small dimensions of continuous-

flow reactors render them highly suitable for light-assisted reactions, as can be encountered in carbon 

dioxide hydrogenations. In this study, we present a reactor system emphasizing reproducibility, 

modularity, and automation, facilitating streamlined screening of conditions and catalysts for these 

processes. The proposed commercially available photoreactor, in which carbon dioxide hydrogenation 

was conducted, features narrow channels with a high-surface area catalyst deposition. Meticulous 

control over temperature, light intensity, pressure, residence time, and reagent stoichiometry yielded 

the selective formation of carbon monoxide and methane using heterogeneous catalysts, including a 

novel variant of ruthenium nanoparticles on titania catalyst. All details on the automation are made 

available, enabling its use by researchers worldwide. Furthermore, we demonstrated the direct 

utilization of on-demand generated carbon monoxide in the production of fine chemicals via various 

carbonylative cross-coupling reactions. 
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Introduction
The rising concentrations of greenhouse gases in our atmosphere, with carbon dioxide as a notorious 

example, have propelled sustainable processing and carbon capture and utilization (CCU) to the 

forefront of both academic and industrial research efforts.1–5 Tackling the carbon footprint challenge 

necessitates a collaborative endeavor across various disciplines. Chemistry and chemical engineering, 

guided by the principles of green chemistry, take on a pivotal role in advancing this overarching goal.6,7 

This entails a fundamental shift away from conventional fossil fuel-based methodologies towards 

sustainable alternatives, exemplified by the emergence of photochemical processes and circular 

chemistry practices.8,9 These approaches leverage milder conditions and, where feasible, harness solar 

energy as a green and renewable driving force for reactions.10–14 Integrating solar-powered or -assisted 

techniques with continuous-flow technologies offers enhanced control, scalability, selectivity, as well 

as superior mass and heat transfer capabilities to processes.15–18

Although carbon dioxide represents an ideal C1 building block, its inert nature has limited widespread 

application in synthetic organic chemistry. Arguably, a more promising approach involves converting 

CO2 into diverse C1 building blocks like methane or carbon monoxide.19 Particularly, carbon monoxide 

serves as an activated C1 building block with abundant associated chemistry. Reduction of CO2 can be 

achieved through hydrogenation reactions, such as the Sabatier reaction and reverse water gas shift 

(RWGS) reaction. These reactions have also been investigated as light-assisted processes in 

photochemical or photothermal systems,20–22 thereby lowering energy consumption and enhancing 

sustainability.23–25 

To date, significant strides have been made in the development and evaluation of catalysts and reactor 

systems for the hydrogenation of carbon dioxide.26–34 A variety of photoreactor systems have been 

proposed to carry out these reactions without the presence of any liquid, usually revolving around non-

refined catalyst deposition on a support without surface area optimization, and one-sided heating. An 

increase in surface area and the suppression of short-circuiting require additional design considerations, 

where packed bed, monolith or optical fiber reactors are potential candidates.22,35–38 The reactor’s 

applicability to catalyst screening is primarily determined by its versatility for adaption to various 

systems and operational flexibility. An additional challenge arises from the preferential use of narrow 

(micro)channels, which are favored for their good heat transfer properties and short diffusion 

lengths.15,39 However, their small dimensions make it challenging to deposit a fine catalyst powder, 

often leading to excessive pressure drops.40,41 Moreover, the direct comparison of the performance and 

efficacy of different catalysts remains challenging due to the absence of standardized operational 

procedures. While standardization methodologies have been effectively employed in batch processes 

for high-throughput screening and continuous-flow liquid systems, their application to light-assisted 

gas-phase reactions over heterogeneous catalysts remains relatively unexplored in this context.42–47
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In this endeavor, we aim to tackle these challenges by introducing an automated, integrated, and 

modular reactor system, using an oil tank for homogeneous heating. We propose a straightforward 

catalyst immobilization strategy to maximize surface area, flexibility and reproducibility, while at the 

same time minimizing the pressure drop.48–50 The standardized reactor system is equipped with 

automated control over crucial parameters such as temperature, light intensity, pressure, residence time, 

and reagent stoichiometry, enabling the execution of gas-phase chemistry in a robust and reproducible 

manner. The automatization uses either commercially available, benchmarked equipment or 

inexpensive in-house developed devices and control, facilitated by a custom-built, open-source code, 

accessible for use in any facility worldwide. The precise control and modularity of this system facilitate 

the continuous light-assisted production of carbon dioxide hydrogenation products, which can be 

seamlessly integrated into downstream units. In this study, we leverage the generated carbon monoxide 

as a reagent in a diverse array of palladium-catalyzed carbonylative cross-coupling reactions, 

demonstrating the versatility and utility of our approach. 

Results and Discussion: 

Design of the automated, modular continuous-flow photoreactor setup

We initiated our research by developing a reactor assembly tailored to evaluating catalysts for high-

temperature light-driven processes, particularly relevant for light-assisted carbon dioxide 

reduction.20,51,52 This assembly features a heated stainless steel tank with a quartz window for 

irradiation, which can house glass microchannel photoreactors. A transparent silicon oil was employed 

to ensure efficient and uniform heat transfer between the tank and the reactor. The reflective properties 

of stainless steel, combined with the high refractive index of the oil and quartz, optimize photon 

utilization within the reactor unit. Moreover, the oil-filled tank offers versatility by having the 

possibility of accommodating various reactor types, resulting in a highly modular system (Figure 1a). 

Our investigation primarily focused on commercially available microchannel photoreactors, well-suited 

for continuous-flow reactions within our experimental framework.53,54 These reactors were filled with 

an immobilized catalyst, where the catalyst powders were easily and uniformly coated onto glass beads 

(Figure 1b, Supplementary Information section S1 and S5), creating a packed-bed system with precise 

amounts of active catalyst.50,55 This configuration facilitated a large irradiation area and ensured 

reproducible packing, enhancing the reliability of our experimental setup. 

Utilizing automation to precisely regulate and adjust reaction parameters aligns with the modularity and 

continuous-flow nature of our system. The labor-intensive process of screening various conditions and 
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benchmarking catalysts can be streamlined into a reproducible and automated procedure. All monitored 

reaction parameters are under electronic control, coordinated by a computer interface that enables users 

to modify and monitor each parameter as needed. The flow rate of individual reagents is precisely 

controlled by mass flow controllers (MFCs), while the temperature of the silicon oil is maintained by a 

proportional–integral–derivative (PID) controller connected to a heating element and thermocouple 

within the oil tank. Reaction pressure is monitored and regulated by a sensor at the reactor outlet, with 

adjustment facilitated by a mechanical back pressure regulator (BPR). To enable electronic pressure 

control, a closed-loop system was established between the pressure sensor and a motor controlling the 

BPR. Furthermore, the intensity of the light emitting diode (LED) light source is adjusted through an 

electronically controlled LED power supply. Both pressure and light control devices were custom-

designed and manufactured using cost-effective electronic components and sensors, and are operated 

by Arduino microcontrollers (UNO boards). Overall, centralized control over reagent stoichiometry, 

residence time, oil temperature, pressure, and light intensity is managed by a Python script running on 

a dedicated computer (Figure 1c). An intuitive graphical user interface (GUI) has been developed to 

facilitate automation of reaction conditions, as well as real-time adjustment and monitoring of all 

parameters, without requiring advanced scripting knowledge. This control code, along with detailed 

construction specifications and firmware for the in-house developed devices, is provided as open-source 

software, facilitating systematic experiment reproducibility and adaptation for similar automation 

setups. 

To assess the efficacy of each catalyst across diverse reaction conditions, the gas mixture exiting the 

reactor is analyzed using an online gas chromatograph equipped with both a thermal conductivity 

detector and a flame ionization detector. The automated system was deployed to optimize the 

hydrogenation of carbon dioxide, targeting a range of hydrogenation products, including carbon 

monoxide. This compound can be generated ex-situ and directly utilized as a feedstock in carbonylative 

cross-coupling reactions, relevant for the synthesis of various fine chemicals, pharmaceuticals and 

agrochemicals (Figure 1d).56,57 The benefits of the system were leveraged in the parametric screening, 

catalyst selection and operation for subsequent reactions. 
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Figure 1 a) Principles of the modular system, including the heating and the photoreactor. b) Schematic representation of the 

catalyst loading on glass beads, with a cross section and SEM image. c) Overview of the automated control system for the 

individual flow rate, light intensity, pressure and temperature. d) Scheme for the production of fine chemicals from carbon 

dioxide and hydrogen.
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Light-assisted hydrogenation of carbon dioxide

The platform's versatility was demonstrated through the light-assisted hydrogenation of carbon dioxide, 

where this stable compound was transformed into gaseous reduction products, such as methane and 

carbon monoxide, using heat and light. To comprehensively assess the impact of key variables, we 

conducted systematic experiments across a range of heterogeneous catalysts (See Supplementary 

Information section S6 for details). Among these catalysts, commercially available cobalt(II,III) oxide 

(Co3O4) was selected as a benchmark, providing a well-established reference for comparative analysis 

with other catalysts.58 Figure 2a illustrates the selectivity, conversion, and productivity of the reaction 

under various operational conditions. Notably, the cobalt oxide catalyst exhibited remarkable selectivity 

towards methane production, with its formation increasing with rising reaction temperatures. 

However, this benchmark catalyst was surpassed by another, namely ruthenium nanoparticles on 

titanium dioxide (Ru/TiO2, details on the characterization are available in Supplementary Information 

section S3), achieving nearly complete conversion with 100% selectivity towards methane. This novel 

catalyst was synthesized by introducing RuCl3 into an aqueous dispersion of TiO2 P90, a commercially 

available blend of rutile and anatase. This process led to the formation and deposition of ruthenium(III) 

oxide hydroxide species onto the TiO2 surface, which were subsequently reduced to ruthenium 

nanoparticles. Analysis by inductively coupled plasma–atomic emission spectroscopy revealed a 

ruthenium content of 5.5% w/w, corresponding to a ruthenium yield of 96%. Transmission electron 

microscopy examination demonstrated a uniform distribution of spherical ruthenium nanoparticles on 

the TiO2 surface, with an average particle size of 1.79 ± 0.51 nm (lognormal distribution). Notably, the 

productivity of this catalyst could be further enhanced to 127 mmol gcat
-1 h-1 by increasing the flow rate.

Control experiments confirmed that the targeted compounds were exclusively generated from the 

catalyst-mediated transformation of the feedstock (See Supplementary Information section S6.2 for 

details). Furthermore, the versatility and adaptability of our screening platform were underscored by 

seamlessly transitioning to alternative catalyst systems. For instance, a catalyst comprising ruthenium 

(oxide) nanoparticles supported on strontium titanate (STO, Ru/STO) exhibited varying selectivity in 

carbon monoxide production (approximately ranging between 40% and 70%), depending on the specific 

reaction conditions and duration of operation. Previous studies had reported high methane selectivity 

for a similar catalyst, suggesting that the observed variance could be attributed to the catalyst's 

preparation and exposure to distinct reaction environments.59 Contrarily, another catalyst consisting of 

gold nanoparticles dispersed on titanium dioxide (Au/TiO2 3.1% w/w gold on anatase, with spheroidal 

gold particles averaging 1.70 nm in diameter, lognormal distribution) consistently yielded carbon 

monoxide as the primary product across all investigated conditions. This catalyst achieved 

productivities of up to 9.5 mmol gcat
-1 h-1, showcasing its robust performance under diverse reaction 

conditions. The carbon dioxide conversions obtained with catalysts targeting carbon monoxide were 
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generally lower than those with methane producing catalysts, as illustrated in Figure 2a. This could be 

attributed to the relatively low temperatures employed, combined with the endothermic nature of the 

reverse water gas shift reaction.60,61

Figure 2 a) An overview of the evaluated catalysts in the hydrogenation of carbon dioxide, presenting the total carbon dioxide 

conversion against the productivity towards the desired compound (at steady-state). The overall selectivity is given in the data 

labels. The point in the origin represents the control experiment in which no hydrogenation products where observed. The 

feed ratio between CO2:H2 is equal to 1:4 for reactions targeting methane and 1:1 for reactions targeting carbon monoxide. 

b) Results of the parametric screening of the gold nanoparticles on titanium dioxide (Au/TiO2) in the formation of carbon 

monoxide.

Precise automated control over the oil temperature, light intensity, and individual flow rates facilitated 

systematic condition screening for all investigated catalysts, with selected results depicted in Figure 2b 

(all results can be found in the Supplementary Information section S6.1). The irradiation of the reactor 

system notably enhanced carbon monoxide production when employing the Au/TiO2 catalyst. However, 

the flow rate exhibited a dual influence, with productivity and conversion showing a trade-off 

relationship, likely attributable to decreased residence time at higher throughputs. Furthermore, the 

reaction temperature emerged as a critical determinant of both conversion and productivity. Particularly 

noteworthy is the observation that significant carbon monoxide production only occurred at 

temperatures exceeding 160 °C, underscoring the necessity for thermal heating or robust light sources 

to supply the requisite thermal energy for catalyst-driven reactions. In general, a comparable 

dependency of the investigated parameters on methane production was observed for the Ru/TiO2 

catalyst. Remarkably, this catalyst maintained a methane production of 3.5 mmol gcat
-1 h-1 at 160 °C, 

highlighting its potential to produce value-added compounds under these conditions. The parametric 

screening process furnishes invaluable insights into optimizing reaction conditions to meet predefined 

criteria, like purity or throughput, thereby enabling on-demand production of carbon monoxide or 

methane from carbon dioxide.

Ru/TiO2
100% CH4

Ru/TiO2
100% CH4

Co3O4
97% CH4

Au/TiO2
100% CO

Ru/STO
42% CO

Ф = 12.5 mln/min

Ф = 1 mln/min

Lights ON
Toil = 250 °C

Ф = 5 mln/min

Ф = 0.5 mln/min

● Lights ON
+ Lights OFF

Ф = 1 mln/min

Toil
250 °C
200 °C
160 °C

Au/TiO2 catalysta) b)
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On-demand supply of carbon monoxide in carbonylation reactions

The generated carbon monoxide serves as a crucial precursor in subsequent reactions, showcasing the 

seamless integration of our light-assisted process with synthetically valuable cross-coupling reactions.62 

This integration was demonstrated through the successful execution of carbonylative Suzuki coupling, 

alkoxycarbonylation, and aminocarbonylation reactions using on-demand carbon monoxide directly 

from our automated photoreactor platform (Figure 3). Carbonylation reactions hold particular 

significance due to the versatility imparted by the carbonyl functional group, a key constituent of 

numerous biologically active molecules and pharmaceuticals.63–65 Traditionally, achieving selective 

carbonylation reactions necessitates high pressures and temperatures.66–68 However, the reactions 

conducted in this study proved compatible with the continuous supply of carbon monoxide, requiring 

only low pressures and moderate temperatures. This underscores the potential of our carbon dioxide 

upgrading approach to facilitate efficient and sustainable synthesis routes for diverse carbonylation 

reactions.

The initial conditions for the experiments were established in batch for the palladium-catalyzed Suzuki 

coupling between 4-iodoanisole, carbon monoxide and 4-fluorophenylboronic acid. Various headspace 

compositions were analyzed to optimize the reaction and evaluate its compatibility with hydrogen and 

carbon dioxide, present in the mixture (see Supplementary Information section S7). A decrease in 

reactivity was noted, possibly due to the formation of an inactive palladium precipitate in the presence 

of hydrogen.69,70 To address this, a combination of Pd(OAc)2 and XantPhos was employed. For the 

carbonylative Suzuki coupling, a fed-batch approach was adopted, with the boronic acid added 

dropwise to the reactor flask while continuously purging the photoreactor’s gaseous outlet through the 

reaction mixture. Similarly, in alkoxycarbonylation and aminocarbonylation, the limiting reagents 

([1,1'-biphenyl]-4-yl trifluoromethanesulfonate and (E)-1-iodooct-1-ene, respectively) were 

continuously added to the reaction medium to maintain their presence throughout the reaction (see 

Supplementary Information section S1.2). This strategy resulted in excellent selectivity towards the 

desired carbonylated products, facilitated by the low relative concentration of the added reagent and the 

continuous replenishment of carbon monoxide. The products of the carbonylative Suzuki coupling, 

alkoxycarbonylation, and aminocarbonylation reactions were isolated in good yields (79%, 61%, and 

72%, respectively). These findings highlight the adaptability of fine chemical production to specific 

carbon dioxide sources, with potential for scalability through a numbering-up or sizing-up strategy to 

adjust the carbon monoxide production accordingly.71,72
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Figure 3 Carbon monoxide generated by the photoreactor is subsequently used as a reagent in the (i) carbonylative Suzuki 

coupling (7.5 mol% of Pd(OAc)2 and Xantphos, 3 eq. of K2CO3, in dioxane:THF (after addition, 98:2 volume ratio), addition 

over 6 hours, reaction for 7 hours at 80 °C), (ii) an alkoxycarbonylation (5 mol% of Pd(OAc)2 and dppp, 3 eq. of TEA, in 

dioxane, addition over 6 hours, reaction for 6.5 hours at 70 °C) and (iii) an aminocarbonylation reaction (10 mol% of 

Pd2(dba)3 and tpp, 3 eq. of K2CO3, in dioxane, addition over 5 hours, reaction for 5.5 hours at 80 °C).

Outlook & conclusion

In this work, we introduced a modular and automated photoreactor system designed to facilitate the 

light-assisted hydrogenation of carbon dioxide. The integration of automation and modularity 

standardized the screening of diverse catalysts and reaction conditions. Employing a packed-bed 

approach, wherein the catalyst is deposited on glass beads, offered several advantages, including 

providing extensive irradiation areas, ensuring reproducible loading, and optimizing catalyst utilization.

The platform’s versatility enables the evaluation of novel catalysts under tightly controlled reaction 

parameters, addressing a critical need in the scientific community for a standardized system to assess 

and compare catalysts in both thermal and light-assisted heterogeneous-catalyzed gas conversion 

processes. The production of one of the most encountered reduction products, namely methane, by a 

commercially available cobalt(II,III) oxide catalyst, was used to validate the system.22,73,74 Moreover, 

the automated system enables temperature-controlled, light-assisted reactions, facilitating swift 

mechanistic studies on photothermal reaction pathways.75 Leveraging commercially available 

components alongside open-source code establishes a framework for future advancements in 

automation within the field.

Furthermore, the integrated flow system allows for seamless integration of downstream units, enabling 

immediate utilization of generated products from carbon dioxide. The methane produced to validate the 

system can serve as building block for fine chemical synthesis.76,77 However, direct methane activation 
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is challenging due to its high bond dissociation energy, other reduction products like carbon monoxide 

create possibilities for carbonylations.19,78 This integration is exemplified by the on-demand production 

of carbon monoxide for various carbonylative cross-coupling reactions. Tailoring the catalyst and 

operation conditions enabled stable carbon monoxide production required for these purposes. 

In conclusion, our modular and automated photoreactor system not only advances the understanding 

and exploration of light-assisted gas conversion processes but also lays the groundwork for future 

developments in automation within the field, offering a promising avenue for sustainable chemical 

synthesis. 
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Methods:
Modular reactor system
A glass photoreactor (LTF MR-LAB-V) was immersed into a heated oil reactor casing with a quartz 
window. The backplate of the casing contained ceramic heating rods to heat the oil (CAS 68083-14-7) 
to a set temperature using a PID controller. The pressure was regulated with an automated back pressure 
regulator developed in-house. An overflow tube and vessel are present to prevent pressure buildup in 
the tank. Irradiation was provided by an array of four white chip-on-board LEDs (CXB3590, cool white, 
86 W electrical input power per chip) placed at 2 cm from the window. Gases were supplied through 
mass flow controllers (MFC, Bronkhorst max. 10 mln/min, volume at normal conditions; 0 °C and 1 
atm), connected to a supply at 5 bars, and could be co-fed into the reactor. Stainless-steel Swagelok and 
IDEX fittings in combination with PFA/FEP tubing (OD 1.6 mm) were used to connect the distinct 
parts. The analysis was conducted with a gas chromatograph (see Supplementary Information section 
S2).

Ruthenium on titanium dioxide catalyst
The Ru/TiO2 catalyst was synthesized by a direct chemical reduction method, RuCl3 (Ruthenium (III) 
chloride hydrate, 99.9% (PGM basis), Alfa Aesar) was used as the ruthenium precursor. A 6 mM RuCl3 

solution was prepared with 100 ml ultra-filtered water (Milli‐Q Millipore, 18.2 MΩ cm) in vigorous 
stirring for 5-10 minutes in a three necked round bottom flask. The support TiO2 (1.00 g, AEROXIDE 
TiO2 P90 Evonik) was added to the mixture. The dispersion was left in vigorous stirring for at least 1 
hour at 100 °C. A 0.18 M NaBH4 solution was prepared using demineralized water. 10 ml of this 
solution was added to the previous mixture using a pump with a flow rate of 3 ml/min and the mixture 
was left stirring for an extra 30 minutes. The solid was recuperated by filtration and extensively washed 
with ultra-filtered water. Further characterization details can be found in the Supplementary Information 
section S3.

CO2 hydrogenation
The catalyst was deposited on glass beads (150-212 µm) following a previously published procedure,79 
prior to the placement in the glass reactor. A layer of the catalyst was obtained on the glass beads by 
first grinding the catalyst, followed by mixing with the glass beads. Approximately 1.5 grams of coated 
beads were deposited in the glass reactor (1.0 wt% of catalyst). The catalysts were supplied by partners, 
(produced based on literature30,80), apart from commercially available Co3O4 (Sigma Aldrich). The 
desired parameters for the reaction could be set in the graphical user interface. Samples were taken after 
steady-state was reached.

Carbonylation reactions in batch
Determined amounts of the reagents, catalyst and additives were charged in a Schlenk flask (under 
nitrogen). Before heating, the headspace of the flask was filled with a specific ratio of gases (using a 
balloon and autoclave, see Supplementary Information section S1.2). Hereafter, the Schlenk flask was 
immersed in an oil bath to meet the set temperature. Reactions were performed under continuous 
stirring. Qualitative and quantitative analysis and characterization of reaction mixtures and pure 
products were performed with GC-MS and NMR. 

Carbonylation reactions with on-demand produced carbon monoxide
Determined amounts of the reagents, catalyst and additives were charged in a Schlenk flask (under 
nitrogen). Before heating, gas from the automated system was purged through the solution, to fill the 
headspace with the gas mixture. Hereafter, the Schlenk flask was immersed in an oil bath to meet the 
set temperature. One of the reagents in solution was supplied by a syringe pump at a specific flow rate. 
Reactions were performed under continuous stirring. Qualitative and quantitative analysis and 
characterization of reaction mixtures and pure products were performed with GC-MS and NMR.
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