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Abstract 
We show that a symmetric information Rational Expectations Equilibrium (REE) exists 
universally (and not generically), it is Pareto efficient and obviously incentive compatible. 
Agents, in a repeated economy framework, can reach a symmetric information REE (i.e., an 
efficient and incentive compatible equilibrium outcome) by observing the past asymmetric REE 
and also by updating their private information. We also prove the converse result, i.e., given a 
symmetric information REE, we can construct a sequence of approximate asymmetric REE 
allocations that converges to the symmetric information REE. The approximate REE can be 
interpreted as the mistakes that agents make due to bounded rationality, nonetheless, in the 
limit an exact symmetric information REE is reached. In view of the above results, the 
symmetric information REE provides a rationalization for the asymmetric one. 
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1 Introduction

Debreu introduced uncertainty in the standard Walrasian general equilibrium model (see for ex-

ample Chapter 7 of the classical treatise, “Theory of Value”). This is the so called “state contin-

gent”model, where agents’ preferences and initial endowments depend on the states of nature of

the world and agents make contracts ex-ante (before the state of nature is realized) contingent on

the exogenously given states of nature of the world. Once the state of nature is realized the previ-

ously agreed contract is executed and consumption takes place. For this model to make sense there

must be an exogenous enforcer, the government or a court which makes sure that the contract made

ex-ante is fulfilled ex-post, otherwise agents may find it beneficial to renege.

Radner (1968) in a seminal paper introduced asymmetric information into the “state contin-

gent”model by allowing each agent to have in addition to his random initial endowment and ran-

dom utility function, a private information set, which is a partition of the exogenously given state

space. By assuming that the net trades are measurable with respect to the private information of

each individual the asymmetric information was explicitly introduced in the model of uncertainty.

Kreps (1977), Radner (1979) and Allen (1981) introduced one more notion, called the Ratio-

nal Expectation Equilibrium (REE), which is also an extension of the deterministic Arrow-Debreu-

McKenzie model that allows for asymmetric information. According to the REE, each individual

maximizes interim expected utility conditioned on his own private information as well as informa-

tion that the equilibrium prices have generated.

By now it is well-known that in a finite agent economy with asymmetric information, a ratio-

nal expectations equilibrium (REE) may not exist (Kreps (1977)), may not be incentive compatible,

may not be fully or ex-post Pareto optimal and may not be implementable as a perfect Bayesian

equilibrium (Glycopantis and Yannelis (2005) p. 31 and also Example 9.1.1 p. 43). Thus, if the intent

of the REE notion is to capture contracts among agents under asymmetric information, then such

contracts not only they don’t exist universally in well behaved economies (i.e., economies with con-

cave, continuous, monotone utility functions and strictly positive initial endowments), but even if

they exist, they fail to have any normative properties, such as incentive compatibility, Pareto opti-

mality and Bayesian rationality. The main conceptual difficulty that one encounters with the REE

which creates all the above problems is the fact that individuals are supposed to maximize their

interim expected utility conditioned not only on their own private information, but also on the

information that the equilibrium prices generate. Since prices are computed on the basis of agents’

characteristics, then agents must act as knowing all the characteristics in the economy, which is

rather difficult to justify. Perhaps a possible interpretation of the REE concept may be as follows:

agents reports all their characteristics to a central planning authority (CPA), i.e., an auctioneer or

government. The CPA has all the information needed to compute the equilibrium prices and there-

fore announces them to all the agents once they are computed. Agents now proceed by maximizing

their interim expected utilities based on their own private information and the information the an-
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nounced equilibrium prices have generated. This optimization of interim utilities by each agent,

results in optimal consumption bundles which clear the market for every state of nature, i.e., the

sum of the optimal consumption of each agent is equal to their aggregate initial endowment for

each state of nature. One may conjecture that if we repeat this process from period to period the

asymmetric information may disappear after a large repetition, and all agents will have the same

information.

One of our main objectives is to provide a rationalization of the REE which is based on a repeated

interim decision making providing the validity of the above conjecture. Indeed, we will show that

agents by observing in each period the realized REE outcome, they refine their private informa-

tion and as time goes on, they reach the symmetric information REE. This is the best outcome that

agents can reach and may coincide with the state-contingent Walrasian equilibrium which exists,

it is Pareto optimal and clearly incentive compatible.

Furthermore we provide a stability result. We show that any limit symmetric information REE

can be approximated by a sequence of approximate REE outcomes. In other words, we can always

construct a route indicating how agents reached the symmetric REE. One may view the one shot

limit symmetric information REE as a result of the limit of infinitely many repetitions (plays) of

asymmetric REE outcomes.

The above results enable us to conclude that the REE does make sense in a repeated framework

where agents by observing the realized REE outcome and refining their information, learn how

to achieve the limit symmetric information REE. Thus, for all practical purposes we could use the

symmetric REE instead of the asymmetric information one, as the symmetric REE, provides a foun-

dation or rationalization for the asymmetric one. The advantage of adopting the symmetric REE is

that, it exists universally (and not generically), and obviously it is incentive compatible and interim

Pareto optimal, properties that the standard asymmetric information REE fails to have.

The paper proceeds as follows: in Section 2 we describe the model. In Section 3 we give ex-

amples of how asymmetrically informed agents may (or may not) learn from the REE prices and

allocations. In Section 4 we consider a sequence of repeated economies and describe the corre-

sponding limit economy, then we show in Section 5 that the sequence of REE that emerge in the

repetitions approximates a REE in the limit economy. In Section 6 we introduce the non trivial

learning condition which grants that in the limit economy there exists a REE which is efficient, in-

centive compatible and implementable as a perfect Bayesian equilibrium of an extensive form game.

Under the same condition we show in Section 7 that, in the limit economy, every a REE compatible

with the information accumulated in the repetitions is the limit of some sequence of approximated

REE that emerge int he repetitions. Finally, we collect in the Appendix some results useful to the

discussion.
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2 The model

The commodity space is an ordered, separable Banach space𝑌 whose positive cone𝑌+ has a nonempty

interior. There is a finite or countable set Ω of states of nature, whose realization is uncertain.

An asymmetric information economy with commodity space 𝑌 and states of nature in Ω is a

family E = {(F𝑖 , 𝑋𝑖 , 𝑢𝑖 , 𝑒𝑖 , 𝑞𝑖) : 𝑖 ∈ 𝐼 } where 𝐼 is a finite set of agents. For every 𝑖 it assumes that:

1. F𝑖 is a 𝜎-algebra on Ω representing 𝑖’s private information;

2. 𝑋𝑖 : Ω → 2
𝑌+

is an F𝑖-measurable correspondence that indicates agent 𝑖’s consumption set in

each state;

3. for each 𝜔 ∈ Ω, 𝑢𝑖 (𝜔, ·) : 𝑋𝑖 (𝜔) → R+ is 𝑖’s utility function, which depends on the states;

4. 𝑒𝑖 : Ω → 𝑌+ is an F𝑖-measurable function specifying for each state 𝜔 ∈ Ω the initial endow-

ment vector 𝑒𝑖 (𝜔) ∈ 𝑋𝑖 (𝜔) of agent 𝑖;

5. 𝑞𝑖 : Ω → R++ is the prior of agent 𝑖 , normalized to

∑
𝜔 𝑞𝑖 (𝜔) = 1.

An allocation for agent 𝑖 is a summable function 𝑥 : Ω → 𝑌+ with the property that 𝑥 (𝜔) ∈ 𝑋𝑖 (𝜔)
for every 𝜔 ∈ Ω. We write ℓ𝑋𝑖

for the set of allocations for agent 𝑖 . Recall that 𝑥 is summable if:

∥𝑥 ∥1 =
∑︁
𝜔∈Ω

∥𝑥 (𝜔)∥ < ∞

and that ℓ1(Ω, 𝑌 ) denotes the set of all summable functions from Ω to 𝑌 . We refer to Appendix 9

for more on summable functions and related concepts. With this notation, the set ℓ𝑋𝑖
of allocations

for agent 𝑖 is:

ℓ𝑋𝑖
= {𝑥 ∈ ℓ1(Ω, 𝑌 ) : 𝑥 (𝜔) ∈ 𝑋𝑖 (𝜔) for every 𝜔 ∈ Ω} .

Let ℓ𝑋 =
∏

𝑖∈𝐼 ℓ𝑋𝑖
. We refer to any element of ℓ𝑋 as an allocation (for the society) and represent it as

a list 𝑥 = (𝑥𝑖)𝑖 of allocations, one for each agent.

A random price specifies a system of prices for every state of nature. We represent it as a function

𝑝 : Ω → 𝑌 ∗
with values in the symplex Δ =

{
𝑞 ∈ 𝑌 ∗

+ : 𝑞 · 𝑢 = 1

}
, where 𝑢 is a vector in the interior

of 𝑌+. The interpretation is that 𝑝 (𝜔) · 𝑦 gives the worth of the bundle 𝑦 ∈ 𝑌+ at the price 𝑝 , when

the state is 𝜔 . We write ℓ𝑃 for the set of random prices, in formulas:

ℓ𝑃 =
{
𝑝 : Ω → 𝑌 ∗

+ : 𝑝 (𝜔) ∈ Δ for every 𝜔 ∈ Ω
}
.

2.1 Interim expected utility

Let G be a 𝜎-algebra on Ω representing the information of agent 𝑖 in the interim, i.e. after the

publication of the prices and before consumption takes place. For every 𝜔 , we write G(𝜔) for the

smallest element of G that contains 𝜔 .
1

We assume that, when the state 𝜔 realizes, agent 𝑖 cannot

1
If with an abuse of notation G also denotes the partition that generates the 𝜎-algebra G, then G(𝜔) is the unique

element of the partition that contains 𝜔 .
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observe 𝜔 but only G(𝜔). In this case, her conditional probability on the state of nature being any

𝜔 ′
is:

𝑞𝑖 (𝜔 ′ |G(𝜔)) =


0 𝑖 𝑓 𝜔 ′ ∉ G(𝜔)

𝑞𝑖 (𝜔 ′)∑
�̄�∈G(𝜔 ) 𝑞𝑖 (�̄�)

𝑖 𝑓 𝜔 ′ ∈ G(𝜔) .

Therefore, the conditional interim expected utility of agent 𝑖 relative to any 𝑥 : Ω → 𝑌+ is the function

𝑣𝑖 (𝑥 |G) (·) : Ω → R given by:

𝑣𝑖 (𝑥 |G) (𝜔) =
∑︁
𝜔 ′∈Ω

𝑢𝑖 (𝜔 ′, 𝑥 (𝜔 ′)) 𝑞𝑖 (𝜔 ′ |G(𝜔))

whenever this is well-defined
2
.

2.2 Rational expectations equilibrium

A rational expectations equilibrium describes a situation in which agents observe the prices to

update their information and expectations, they maximize their updated expected utility subject to

their budget constraints, and the market clears in every state.

Formally, let 𝜎 (𝑝) denote the smallest 𝜎-algebra for which the random price 𝑝 : Ω → Δ is

measurable. For every 𝑖 ∈ 𝐼 let G𝑖 = 𝜎 (𝑝) ∨ F𝑖 be the join of the 𝜎-algebras 𝜎 (𝑝) and F𝑖 , i.e. the

smallest 𝜎-algebra on Ω that contains both 𝜎 (𝑝) and F𝑖3
. The following definition is that of Kreps

(1977) and Allen (1981).

Definition 2.1 A rational expectations equilibrium (REE) consists of an allocation 𝑥 = (𝑥𝑖)𝑖 and a

random price function 𝑝 that satisfy the following conditions for every 𝑖 ∈ 𝐼 .

1. The function 𝑥𝑖 is G𝑖-measurable;

2. 𝑥𝑖 (𝜔) satisfies the budget constraint 𝑝 (𝜔) · 𝑥𝑖 (𝜔) ≤ 𝑝 (𝜔) · 𝑒𝑖 (𝜔) for every 𝜔 ∈ Ω;

3. for every G𝑖-measurable 𝑦 : Ω → 𝑌+, if 𝑣𝑖 (𝑦 |G𝑖) (𝜔) > 𝑣𝑖 (𝑥𝑖 |G𝑖) (𝜔) for some 𝜔 ∈ Ω then

𝑝 (𝜔) · 𝑦 (𝜔) > 𝑝 (𝜔) · 𝑒𝑖 (𝜔);

4.
∑

𝑗∈𝐼 𝑥 𝑗 (𝜔) =
∑

𝑗∈𝐼 𝑒 𝑗 (𝜔) for every 𝜔 ∈ Ω.

The set of rational expectations equilibria in the economy E is 𝑅(E).

The REE is an interim concept, since agents maximize their conditional expected utility based on

their own private information, as well as to the information disclosed by the equilibrium random

price. A REE is: (𝑖) full revealing if 𝜎 (𝑝) = 2
Ω

, (𝑖𝑖) non-revealing if 𝜎 (𝑝) = {∅,Ω}, and (𝑖𝑖𝑖) partially
revealing if {∅,Ω} ⊂ 𝜎 (𝑝) ⊂ 2

Ω
.

2
In order for 𝑣𝑖 (𝑥 |G) (𝜔) to be defined, it must be that the function𝜔 ′ ↦→ 𝑢𝑖 (𝜔 ′, 𝑥 (𝜔 ′)) is summable when𝜔 ′

ranges

in G(𝜔). In the next sections we will introduce additional assumptions under which this summability condition is always

met for every 𝑥 ∈ ℓ𝑋𝑖
and 𝜔 ∈ Ω. See also Lemma 9.4.

3
The 𝜎-algebra of events discernable by every agent is the coarse 𝜎-algebra

∧
𝑖∈𝐼 F𝑖 , which is the largest 𝜎-algebra

contained in each F𝑖 . While, agents by pooling their information discern the events in the fine 𝜎-algebra

∨
𝑖∈𝐼 F𝑖 , which

denotes the smallest 𝜎-algebra containing all F𝑖 .
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It is by now well known that a REE may only exist in a generic sense and not universal. More-

over, an REE may fail to be fully Pareto optimal and incentive compatible, and it may not be imple-

mentable as a perfect Bayesian equilibrium; see Glycopantis and Yannelis (2005) and Glycopantis,

Muir, and Yannelis (2009). The most problematic aspect of the notion of REE is that it requires that

agents maximize their interim expected utility conditioned also on the information that the equilib-

rium prices generate, and the resulting equilibrium allocations are measurable with respect to the

private information of each individual and with respect to the information generated by the equi-

librium prices. As Kreps (1977)’s example demonstrates, the measurability condition on allocations

is what creates the non-existence of the REE equilibrium (see De Castro, Pesce, and Yannelis (2020)

for an elaboration of this point)
4
.

3 Examples

This section presents some examples that explain how agents can learn from a rational expecta-

tions equilibrium if they are involved in a dynamic learning setting. In each case we assume that

agents reach a specific equilibrium, and then we ask the following question: if agents could repeat

the trades taking in consideration the new information they acquired, how would they behave?

Basically, after the realization of a rational expectations equilibrium (REE) we allow agents to re-

fine their private information by observing the REE price and allocation. In a subsequent period,

agents repeat the trades with their refined information and reach another (possibly different) REE

equilibrium. The same trading situation keeps repeating, but the information that agents have in

each period keeps track of the past REE equilibria.

The first example shows a REE in which prices are full revealing, meaning that agents become

fully informed in the interim stage. The equilibrium allocation is risk-sharing and represents the

best outcome possible. If agents could learn from this equilibrium and had the chance to trade again

in the same situation, they would reach the same equilibrium. This is because the learning process

stops already in the second period when agents become fully informed and nothing else can be

learnt.

Example 3.1 Consider an asymmetric information economy with two agents 𝑖 = 1, 2, three states

Ω = {𝑎, 𝑏, 𝑐} and two goods. For every 𝑖 ∈ 𝐼 and 𝜔 ∈ Ω, we set 𝑋𝑖 (𝜔) = R2

+ and 𝑞𝑖 (𝜔) = 1

3
. The

private information of each agent in period 𝑡 is:

F 𝑡
1
= 𝜎

(
Π𝑡

1

)
with Π𝑡

1
= {{𝑎, 𝑏}, {𝑐}} and F 𝑡

2
= 𝜎

(
Π𝑡

2

)
with Π𝑡

2
= {{𝑎, 𝑐}, {𝑏}}.

The endowments of agents 𝑖 = 1, 2 in period 𝑡 are the functions 𝑒𝑡𝑖 (𝜔) defined as follows:

𝑒𝑡
1
=

(
𝑒𝑡

1
(𝑎), 𝑒𝑡

1
(𝑏), 𝑒𝑡

1
(𝑐)

)
= ((1, 3), (1, 3), (2, 2)) ,

𝑒𝑡
2
=

(
𝑒𝑡

2
(𝑎), 𝑒𝑡

2
(𝑏), 𝑒𝑡

2
(𝑐)

)
= ((3, 1), (2, 2), (3, 1)) .

4
Recently, De Castro, Pesce, and Yannelis (2020) introduced a new notion of REE by allowing for ambiguity in agents’

consumption choices and by not imposing that optimal allocations fulfill the measurability condition.
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Both agents have the same utility function 𝑢 (𝜔, 𝑥,𝑦) = √
𝑥𝑦 for each 𝜔 ∈ Ω, where 𝑥,𝑦 denote the

amounts of the two goods assigned to the agent in the state 𝜔 .

In this example the information disclosed by the price is the algebra generated by one of the

partitions {Ω}, Π𝑡
1
, Π𝑡

2
or Ω. Computations show that the only possible REE corresponds to price

𝑝 that is full revealing, i.e. such that 𝜎 (𝑝) = 2
Ω

, given by:

𝑝𝑡 =
(
𝑝𝑡 (𝑎), 𝑝𝑡 (𝑏), 𝑝𝑡 (𝑐)

)
=

(
𝑝𝑡𝑦 (𝑎)
𝑝𝑡𝑥 (𝑎)

,
𝑝𝑡𝑦 (𝑏)
𝑝𝑡𝑥 (𝑏)

,
𝑝𝑡𝑦 (𝑐)
𝑝𝑡𝑥 (𝑐)

)
=

(
1,

3

5

,
5

3

)
,

where 𝑝𝑡𝑥 (𝜔) (resp. 𝑝𝑡𝑦 (𝜔)) is the price of the first (resp. the second) good in state 𝜔 , and 𝑝𝑡 (𝜔) is

the relative price of the second good with respect to first one in state 𝜔 . At these prices, the REE

allocation 𝑥𝑡 =
(
𝑥𝑡

1
, 𝑥𝑡

2

)
is:

𝑥𝑡
1
=

(
𝑥𝑡

1
(𝑎), 𝑥𝑡

1
(𝑏), 𝑥𝑡

1
(𝑐)

)
=

(
(2, 2),

(
7

5

,
7

3

)
,

(
8

3

,
8

5

))
,

𝑥𝑡
2
=

(
𝑥𝑡

2
(𝑎), 𝑥𝑡

2
(𝑏), 𝑥𝑡

2
(𝑐)

)
=

(
(2, 2),

(
8

5

,
8

3

)
,

(
7

3

,
7

5

))
,

where 𝑥𝑡𝑖 (𝜔) is the allocation for agent 𝑖 in state 𝜔 .

Suppose now that agents were to trade again in the same economy, only that now they have

observed the REE

(
𝑝𝑡 , 𝑥𝑡

)
and have learned from it. Being 𝑝𝑡 fully revealing, agents are now fully in-

formed and their updated private information algebra is the whole power set 2
Ω

. This new situation

is described as a repeated asymmetric information economy E𝑡+1 =
{(
F 𝑡+1

𝑖 , 𝑋𝑖 , 𝑢𝑖 , 𝑒
𝑡+1

𝑖 , 𝑞𝑖
)

: 𝑖 ∈ 𝐼
}
,

where superscript 𝑡 + 1 refers to the subsequent period.

F 𝑡+1

𝑖 = F 𝑡
𝑖 ∨ 𝜎

(
𝑝𝑡 , 𝑥𝑡

)
= 2

Ω

for every 𝑖 ∈ 𝐼 . Here, 𝜎
(
𝑝𝑡 , 𝑥𝑡

)
denotes the smallest 𝜎-algebra on Ω making each function 𝑝𝑡 and

𝑥𝑡 measurable. We ask what REE emerges in this second economy.

If we assume that agents’ initial endowment has not changed, i.e. that 𝑒𝑡+1

𝑖 = 𝑒𝑡𝑖 , then the

only equilibrium in the repeated economy is exactly the one they obtained in the original one, i.e.(
𝑝𝑡+1, 𝑥𝑡+1

)
=

(
𝑝𝑡 , 𝑥𝑡

)
, which is Pareto-optimal. With the same argument, in any further repetition

of the economy, if agents endowments do not change then the only possible REE is

(
𝑝𝑡 , 𝑥𝑡

)
.

Suppose, on the contrary, that the endowments of agents changes in each repetition, and that

it evolves as a martingale. For example, assume that the endowments in the repeated economy are:

𝑒𝑡+1

1
= ((0, 4), (2, 2), (2, 2)), 𝑒𝑡+1

2
= ((4, 0), (2, 2), (2, 2)) .

The interpretation is that the finer information that agents have in period 𝑡 +1 allows them to learn

more about their true endowment. In this case, there is only one REE

(
𝑝𝑡+1, 𝑥𝑡+1

)
which is given by:

𝑝𝑡+1

𝑦 (𝜔)
𝑝𝑡+1

𝑥 (𝜔)
= 1, 𝑥𝑡+1

1
(𝜔) = (2, 2), 𝑥𝑡+1

2
(𝜔) = (2, 2)
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for every state𝜔 ∈ Ω. In this REE, agents receive a higher ex-ante utility than in that of the previous

period.

Notice that this second REE is non-revealing in the sense that the algebra it generates is the

trivial one. In symbols: 𝜎 (𝑝𝑡+1, 𝑥𝑡+1) = {∅,Ω} ⊂ 2
Ω = 𝜎 (𝑝𝑡 , 𝑥𝑡 ). The equilibrium at time 𝑡 is

therefore more informative than the one in the subsequent period 𝑡 +1. We conclude that repeating

the interaction with more information does not imply that agents can learn more from the new REE

than from the old ones. ♦

The second example below is similar to the first one, in that agents become fully informed after

observing the rational expectations equilibrium. However, while in the first example agents acquire

all information in the interim stage by looking at the prices, in this example prices are non-revealing

and agents learn how to discern the states only by looking at the equilibrium allocation. This is in

contrast with Fama’s efficient market hypothesis, according to which it is the prices alone that

reflect all available information about future values. See Malkiel (2016).

Example 3.2 Consider an asymmetric information economy with three agents 𝑖 = 1, 2, 3, three

states of nature Ω = {𝑎, 𝑏, 𝑐} and two goods. For every 𝑖 and 𝜔 , we set 𝑋𝑖 (𝜔) = R2

+ and 𝑞𝑖 (𝜔) = 1

3
.

The initial endowment and the private information of each agent are given by:

𝑒1 = (𝑒1(𝑎), 𝑒1(𝑏), 𝑒1(𝑐)) = ((2, 1), (2, 1), (3, 1)) , and F1 = 𝜎 ({{𝑎, 𝑏}, {𝑐}}) ,

𝑒2 = (𝑒2(𝑎), 𝑒2(𝑏), 𝑒2(𝑐)) = ((1, 2), (2, 2), (1, 2)) , and F2 = 𝜎 ({{𝑎, 𝑐}, {𝑏}}) ,

𝑒3 = (𝑒3(𝑎), 𝑒3(𝑏), 𝑒3(𝑐)) = ((3, 1), (2, 1), (2, 1)) , and F3 = 𝜎 ({{𝑎}, {𝑏, 𝑐}}) .

The utility that agent 𝑖 receives in sate 𝜔 when consuming an amount 𝑥 of the first commodity and

an amount 𝑦 of the second commodity is given by the function 𝑢𝑖 (𝜔, 𝑥,𝑦), defined as follows:

𝑢1(𝑎, 𝑥,𝑦) =
√
𝑥𝑦, 𝑢1(𝑏, 𝑥,𝑦) = log (𝑥𝑦) , 𝑢1(𝑐, 𝑥,𝑦) =

√
𝑥𝑦,

𝑢2(𝑎, 𝑥,𝑦) = log (𝑥𝑦) , 𝑢2(𝑏, 𝑥,𝑦) =
√
𝑥𝑦, 𝑢2(𝑐, 𝑥,𝑦) =

√
𝑥𝑦,

𝑢3(𝑎, 𝑥,𝑦) =
√
𝑥𝑦 𝑢3(𝑏, 𝑥,𝑦) =

√
𝑥𝑦 𝑢3(𝑐, 𝑥,𝑦) = log (𝑥𝑦) .

A REE in this economy is given by:

(𝑝𝑥 (𝑎), 𝑝𝑦 (𝑎)) =
(
1, 3

2

)
𝑥1 (𝑎) =

(
7

4
, 7

6

)
𝑥2 (𝑎) =

(
2, 4

3

)
𝑥3 (𝑎) =

(
9

4
, 3

2

)
(𝑝𝑥 (𝑏), 𝑝𝑦 (𝑏)) =

(
1, 3

2

)
𝑥1 (𝑏) =

(
7

4
, 7

6

)
𝑥2 (𝑏) =

(
5

2
, 5

3

)
𝑥3 (𝑏) =

(
7

4
, 7

6

)
(𝑝𝑥 (𝑐), 𝑝𝑦 (𝑐)) =

(
1, 3

2

)
𝑥1 (𝑐) =

(
9

4
, 3

2

)
𝑥2 (𝑐) =

(
2, 4

3

)
𝑥3 (𝑐) =

(
7

4
, 7

6

)
,

where 𝑝𝑥 (𝜔), 𝑝𝑦 (𝜔) are respectively the prices of the first and second commodity in state 𝜔 , and

𝑥𝑖 (𝜔) denotes the allocation of agent 𝑖 in state 𝜔 .

The equilibrium price 𝑝 = (𝑝𝑥 , 𝑝𝑦) is constant across the states, and so it is non-revealing (in

symbols, 𝜎 (𝑝) = {∅,Ω}). This implies that in the interim stage agents do not acquire any new

information and G𝑖 = F𝑖 ∨ 𝜎 (𝑝) = F𝑖 . At the same time, the algebra 𝜎 (𝑥) on Ω generated by the
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allocation 𝑥 = (𝑥𝑖)𝑖 is the power set 2
Ω

, meaning that 𝑥 reveals the finest information possible.

We conclude that, after having observed the equilibrium (𝑝, 𝑥), agents become immediately fully

informed in any repetition of the economy. Thus, in this example agents learned nothing by observ-

ing the equilibrium prices, but they became fully informed by observing the equilibrium allocation.

♦

The last example describes a situation in which the only REE is constant across the states of

nature, meaning that neither the price nor the allocation reveal any new information. In this case

agents don’t learn and remain partially and asymmetrically informed in every repetition of the

economy.

Example 3.3 Consider an asymmetric information economy with three agents 𝑖 = 1, 2, 3, three

states of nature Ω = {𝑎, 𝑏, 𝑐} and two commodities. For every 𝑖 and 𝜔 , we set 𝑋𝑖 (𝜔) = R2

+ and

𝑞𝑖 (𝜔) = 1

3
. Agents have the same utility function 𝑢 (𝜔, 𝑥,𝑦) =

√
𝑥𝑦 for any 𝜔 ∈ Ω and 𝑥,𝑦 ≥ 0.

Their endowments and information algebras are given by:

(𝑒1(𝑎), 𝑒1(𝑏), 𝑒1(𝑐)) = ((1, 3), (2, 2), (1, 3)), and F1 = 𝜎 ({{𝑎, 𝑐}, {𝑏}}) ,

(𝑒2(𝑎), 𝑒2(𝑏), 𝑒2(𝑐)) = ((3, 1), (2, 2), (3, 1)), and F2 = 𝜎 ({{𝑎, 𝑐}, {𝑏}}) ,

(𝑒3(𝑎), 𝑒3(𝑏), 𝑒3(𝑐)) = ((2, 2), (2, 2), (2, 2)), and F3 = 𝜎 ({{𝑎, 𝑏, 𝑐}}) .

Notice that for each 𝑖 ∈ 𝐼 , F𝑖 = 𝜎 (𝑒𝑖 , 𝑋𝑖). The allocation 𝑥𝑖 (𝜔) = (2, 2) for all 𝑖 ∈ 𝐼 and all 𝜔 ∈ Ω

is a REE allocation with respect to the price system (𝑝𝑥 (𝜔), 𝑝𝑦 (𝜔)) = (1, 1) for all 𝜔 ∈ Ω. Then,

𝜎 (𝑝, 𝑥) = {∅,Ω}.
The equilibrium (𝑝, 𝑥) does not reveal any new information to the agents, whose private infor-

mation algebras strictly contain all the events disclosed by the equilibrium. Any repetition of the

economy would then generate the same REE, since agents don’t acquire any new information from

the previous equilibria and so they remain asymmetrically informed. ♦

The next sections consider a condition, called non trivial learning, which implies that in at least

one of the repetitions there is an agent who learns something from the REE. Clearly, this example

violates the non trivial learning condition.

4 Infinitely repeated rational expectations equilibria

This section considers an asymmetric information economy in a dynamic setting. Agents engage

repeatedly in the same trading situation, and each time they reach a REE they learn from it and

update their private information. This process generates a sequence of repeated economies, one

per period, and a corresponding sequence of REE’s.

Time is discrete and indexed by the set𝑇 of positive integers. Let E1 =
{(
F 1

𝑖 , 𝑋𝑖 , 𝑢𝑖 , 𝑒𝑖 , 𝑞𝑖
)

: 𝑖 ∈ 𝐼
}

denote the initial asymmetric information economy, and let

(
𝑝1, 𝑥1

)
be a REE in E1

. We define re-

cursively the sequence of economies and REE’s generated from E1
. Precisely, suppose you have

defined the economy E𝑡
at time 𝑡 and that

(
𝑝𝑡 , 𝑥𝑡

)
is an REE in E𝑡

. In the next period, the economy
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is E𝑡+1 =
{(
F 𝑡+1

𝑖 , 𝑋𝑖 , 𝑢𝑖 , 𝑒𝑖 , 𝑞𝑖
)

: 𝑖 ∈ 𝐼
}
, where F 𝑡+1

𝑖 is defined recursively as:

F 𝑡+1

𝑖 = F 𝑡
𝑖 ∨ 𝜎

(
𝑝𝑡 , 𝑥𝑡

)
and 𝜎

(
𝑝𝑡 , 𝑥𝑡

)
is the 𝜎-algebra generated by the REE in the previous period. F 𝑡

𝑖 ∨𝜎
(
𝑝𝑡 , 𝑥𝑡

)
is the join

(i.e. the coarsest 𝜎-algebra containing both F 𝑡
𝑖 and 𝜎

(
𝑝𝑡 , 𝑥𝑡

)
) and represents the information that 𝑖

held in the previous step, updated with that revealed by the random price 𝑝𝑡 and the allocation 𝑥𝑡 .

Once the economy E𝑡+1
is defined, we take a REE

(
𝑝𝑡+1, 𝑥𝑡+1

)
in E𝑡+1

.

The limit full information economy is E∗ =
{(
F ∗
𝑖 , 𝑋𝑖 , 𝑢𝑖 , 𝑒𝑖 , 𝑞𝑖

)
: 𝑖 ∈ 𝐼

}
, where agent 𝑖’s limit

information algebra is:

F ∗
𝑖 =

∞∨
𝑘=1

F 𝑘
𝑖 .

We refer to any REE (𝑝∗, 𝑥∗) in E∗
as a limit rational expectations equilibrium.

Definition 4.1 Let
{
E𝑡

: 𝑡 ∈ 𝑇
}
be a sequence of repeated economies. A limit rational expectations

equilibrium consists of an allocation 𝑥∗ and a random price 𝑝∗ that satisfy the following conditions for

every 𝑖 ∈ 𝐼 .

1. The consumption bundle 𝑥∗𝑖 is G∗
𝑖 -measurable, where G∗

𝑖 denotes the interim information algebra

F ∗
𝑖 ∨ 𝜎 (𝑝∗) of agent 𝑖 ;

2. 𝑥∗𝑖 (𝜔) satisfies the budget constraint 𝑝∗(𝜔) · 𝑥∗𝑖 (𝜔) ≤ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔) for every 𝜔 ∈ Ω;

3. for every G∗
𝑖 -measurable 𝑦 : Ω → 𝑌+, if 𝑣𝑖

(
𝑦 |G∗

𝑖

)
(𝜔) > 𝑣𝑖

(
𝑥∗𝑖 |G∗

𝑖

)
(𝜔) for some 𝜔 then 𝑝∗(𝜔) ·

𝑦 (𝜔) > 𝑝∗(𝜔) · 𝑒𝑖 (𝜔);

4.
∑

𝑗∈𝐼 𝑥
∗
𝑗 (𝜔) =

∑
𝑗∈𝐼 𝑒 𝑗 (𝜔) for every 𝜔 ∈ Ω.

We make a few considerations. The first one is that each repetition E𝑡
differs from the initial econ-

omy only in the private information of agents, and hence in their interim expected utility functions.

In particular, for every 𝑖 and period 𝑡 we have:

F 𝑡
𝑖 ⊆ F 𝑡+1

𝑖 ⊆ F 𝑡+2

𝑖 ⊆ · · · ⊆ F ∗
𝑖

which we interpret as a learning process for agent 𝑖 . In particular, if G𝑡
𝑖 denotes the interim in-

formation algebra of agent 𝑖 in the period 𝑡 (i.e. the algebra F 𝑡
𝑖 ∨ 𝜎

(
𝑝𝑡

)
) then it must be that

F 𝑡
𝑖 ⊆ G𝑡

𝑖 ⊆ F 𝑡+1

𝑖 for each 𝑡 . This does not mean that equilibria become more and more informative,

for it is possible that 𝜎
(
𝑝𝑡 , 𝑥𝑡

)
⊃ 𝜎

(
𝑝𝑡+1, 𝑥𝑡+1

)
in some period 𝑡 . This eventuality is described in

Example 3.1.

Our second observation is that we can write the information of an agent 𝑖 in period 𝑡 in the

form:

F 𝑡
𝑖 = F 1

𝑖 ∨
(
𝑡−1∨
𝑘=1

𝜎

(
𝑝𝑘 , 𝑥𝑘

))
9



where each

(
𝑝𝑘 , 𝑥𝑘

)
is the equilibrium realized in the 𝑘-th repetition of the economy. This means

that the private information of agent 𝑖 has two components: the first is her initial information F 1

𝑖 ,

which is private and contributes to the information asymmetry in E𝑡
; the second one is generated

by all the REE’s obtained in the previous steps and it is common to all agents (because they all

observe and remember every past equilibria).

Last, we stress that the expression “full information” does not mean “complete information”. In

the limit full information economy, in fact, agents may still have partial and differential information.

This happens, for instance, when the sequence of REE’s does not reveal any new information to the

agents, i.e. when 𝜎
(
𝑝𝑡 , 𝑥𝑡

)
⊂ F 1

𝑖 for every 𝑖 and every 𝑡 . In this situation agents don’t learn from

the process and that the limit economy E∗
coincides with the initial one E1

.
5

This is precisely the

case in Example 3.3. In this paper, we refer to E∗
as the limit “full” information economy simply

because the F ∗
𝑖 ’s represent everything that agents can learn in the specific process

{
E𝑡

: 𝑡 ∈ 𝑇
}

by

looking at the corresponding sequence of REE’s.

In the following we fix a sequence of economies

{
E𝑡

: 𝑡 ∈ 𝑇
}

generated through the infinite

repetition process described here. We refer to this as a sequence of repeated economies and write

E∗
for the corresponding limit full information economy. For every agent 𝑖 , we let F 𝑡

𝑖 denote her

information at time 𝑡 and F ∗
𝑖 her information in the limit full information economy. A sequence{(

𝑝𝑡 , 𝑥𝑡
)

: 𝑡 ∈ 𝑇
}

of price-allocation pairs generates the sequence of repeated economies if, for every

𝑡 , the pair

(
𝑝𝑡 , 𝑥𝑡

)
is the REE in E𝑡

that generates E𝑡+1
, i.e. if F 𝑡+1

𝑖 = F 𝑡
𝑖 ∨ 𝜎

(
𝑝𝑡 , 𝑥𝑡

)
for every 𝑖 .

5 The convergence of the rational expectations equilibria

This section studies the asymptotic behavior of the REE’s obtained in a sequence of repeated economies.

Its main result provides conditions under which a subsequence of the REE’s converges to an equi-

librium in the limit full information economy.

We require the following assumptions on the initial economy.

Assumption 5.1 For each 𝑖 ∈ 𝐼 , the correspondence 𝑋𝑖 : Ω → 2
𝑌
+ is such that:

(𝑖) 𝑋𝑖 (𝜔) is a nonempty, convex, norm compact set for every 𝜔 ∈ Ω;

(𝑖𝑖) it is summably bounded in the sense that there exists a 𝑓 ∈ ℓ1(Ω) such that ∥𝑥 ∥ ≤ 𝑓 (𝜔) for
every 𝜔 ∈ Ω and 𝑥 ∈ 𝑋𝑖 (𝜔).

Assumption 5.2 For each 𝑖 ∈ 𝐼 , the utility function 𝑢𝑖 is such that

(𝑖) for each 𝜔 ∈ Ω, 𝑢𝑖 (𝜔, ·) : 𝑋𝑖 (𝜔) → R is continuous;

(𝑖𝑖) 𝑢𝑖 is uniformly summably bounded on allocations, in the sense that there exists a 𝑔 ∈ ℓ1(Ω) such
that |𝑢𝑖 (𝜔, 𝑥) | ≤ 𝑔(𝜔) for every 𝜔 ∈ Ω and 𝑥 ∈ 𝑋𝑖 (𝜔);

5
When there are infinitely many states, it is also possible that every REE reveals new information to the agents,

and still the asymmetry of information does not vanish in the limit. This is because one can define a sequence

(
F 𝑡

)
of

𝜎-algebras on Ω, each strictly larger than the former, with the property that

∨
𝑡 F 𝑡 ≠ 2

Ω
.
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(𝑖𝑖𝑖) for each 𝜔 ∈ Ω, 𝑢𝑖 (𝜔, ·) : 𝑋𝑖 (𝜔) → R is monotone in the sense that 𝑥 ≫ 𝑦 ⇒ 𝑢𝑖 (𝜔, 𝑥) >

𝑢𝑖 (𝜔,𝑦);

(𝑖𝑣) for each 𝜔 ∈ Ω, 𝑢𝑖 (𝜔, ·) : 𝑋𝑖 (𝜔) → R is concave.

Assumption 5.3 For each 𝑖 ∈ 𝐼 , the endowment 𝑒𝑖 is such that the set {𝑧 ∈ 𝑋𝑖 (𝜔) : 𝑞 · 𝑧 < 𝑞 · 𝑒𝑖 (𝜔)}
is nonempty for every 𝜔 ∈ Ω and 𝑞 ∈ Δ.

Theorem 1 Suppose that the sequence
{
E𝑡

: 𝑡 ∈ 𝑇
}
of repeated economies satisfies Assumptions 5.1,

5.2(i)-(ii) and 5.3. Let
{(
𝑝𝑡 , 𝑥𝑡

)
: 𝑡 ∈ 𝑇

}
be the REE in each economy E𝑡 . Then we can extract a subse-

quence
{(
𝑝𝑡𝑛 , 𝑥𝑡𝑛

)
: 𝑛 = 1, 2, . . .

}
of REE with the following properties:

1. 𝑥𝑡𝑛
𝑖

converges to some 𝑥∗𝑖 ∈ ℓ𝑋𝑖
in norm, for every 𝑖 ;

2. 𝑝𝑡𝑛 converges to some 𝑝∗ ∈ ℓ𝑃 in the weak∗-topology;

3. (𝑝∗, 𝑥∗) is a limit REE in the limit economy E∗.

In addition, 𝑥∗𝑖 is measurable with respect to F ∗
𝑖 for every 𝑖 ∈ 𝐼 .

The convergence of the REE’s suggests that, after sufficiently many repetitions, acquiring additional

information does not change drastically the equilibrium outcome. The failure of this result would

have significant implications on the robustness of the equilibrium concept, for it would imply that

small perturbations of the information structure would have profound effects on the REE outcome.

The last claim of the Theorem states that the limit equilibrium 𝑥∗ is measurable with respect to

all the information accumulated in the repetitions. This ensures that the price 𝑝∗ does not disclose

any new information that is relevant to the realization of 𝑥∗ in the limit full information economy.

5.1 Proof of Theorem 1

The proof consists of several steps. First we show that the set ℓ𝑝 × ℓ𝑋 of all price-allocations pairs

is compact, and use this result to find a subsequence of the REE’s that converges to some (𝑝∗, 𝑥∗).
Second, we show that 𝑥∗𝑖 is F ∗

𝑖 -measurable for every 𝑖 . Last we prove that each 𝑥∗𝑖 maximizes the

interim expected utility of agent 𝑖 subject to the measurability and budget constraints imposed by

𝑝∗. This will show that (𝑝∗, 𝑥∗) is a REE and conclude the proof.

We split the proof in lemmata.

Lemma 5.4 There exist a subsequence
{(
𝑝𝑡𝑛 , 𝑥𝑡𝑛

)
: 𝑛 = 1, 2, . . .

}
and a (𝑝∗, 𝑥∗) ∈ ℓ𝑝 × ℓ𝑋 such that

𝑝𝑡𝑛 → 𝑝∗ in the weak∗-topology and 𝑥𝑡𝑛 → 𝑥∗ in the norm topology.

Proof. First we show that the set ℓ𝑝 × ℓ𝑋 is a compact set when ℓ𝑝 is considered with the weak
∗
-

topology and ℓ𝑋𝑖
with the norm one. The set ℓ𝑝 , seen as a subset of [ℓ1(Ω, 𝑌 )]∗, is weakly

∗
closed and

bounded, and so it is weakly
∗

compact by Alaoglu’s Theorem. We show that ℓ𝑋𝑖
is norm-compact

for every 𝑖 . This, in fact, will imply that ℓ𝑋 is compact too.

Every function𝑥 : Ω → 𝑌+ such that𝑥 (𝜔) ∈ 𝑋𝑖 (𝜔) is dominated by a 𝑓 ∈ ℓ1(Ω) (Assumption 5.1,

(𝑖𝑖)) and so it is summable and belongs to ℓ𝑋𝑖
. It follows that the set ℓ𝑋𝑖

is closed, it is bounded and
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has equismall tails (because it is summably bounded, see Appendix 9), and it is such that {𝑥 (𝜔) : 𝑥 ∈
ℓ𝑋𝑖

} coincides with the compact set 𝑋𝑖 (𝜔). An application of Ascoli-Arzelà Theorem for summable

functions gives that ℓ𝑋𝑖
is a compact set (see Fact 9.2, or Leonard (1976), Theorem 5.1).

We conclude that

{(
𝑝𝑡 , 𝑥𝑡

)
: 𝑡 ∈ 𝑇

}
is a sequence in the compact space ℓ𝑝 × ℓ𝑋 and so it has a

subsequence converging to a (𝑝∗, 𝑥∗).
The next lemma proves that (𝑝∗, 𝑥∗) satisfies condition (1) in Definition 2.1.

Lemma 5.5 For every 𝑖 ∈ 𝐼 , the allocation 𝑥∗𝑖 is measurable with respect to F ∗
𝑖 .

Proof. Fix an agent 𝑖 and consider the sequence

{
𝑥𝑡𝑖 : 𝑡 ∈ 𝑇

}
. By assumption, 𝑥𝑡𝑖 is the allocation

that 𝑖 receives in equilibrium in period 𝑡 , and so it is measurable with respect to the interim infor-

mation algebra G𝑡
𝑖 = F 𝑡

𝑖 ∨ 𝜎
(
𝑝𝑡

)
. This, in turn, is a subset of F ∗

𝑖 . It follows that every 𝑥𝑡𝑖 is an

element in the set:

ℓ∗𝑋𝑖
=

{
𝑥 ∈ ℓ1(Ω, 𝑌 ) : 𝑥 is F ∗

𝑖 -measurable and 𝑥 (𝜔) ∈ 𝑋𝑖 (𝜔) for every 𝜔 ∈ Ω
}

which is closed in the norm topology. But 𝑥∗𝑖 a limit point of the sequence

{
𝑥𝑡𝑖 : 𝑡 ∈ 𝑇

}
, and so it

belongs to ℓ∗
𝑋𝑖

as well.

We now prove that (𝑝∗, 𝑥∗) satisfies conditions (2) and (4) in Definition 2.1.

Lemma 5.6 Let 𝜔 ∈ Ω. Then
∑

𝑗∈𝐼 𝑥
∗
𝑗 (𝜔) =

∑
𝑗∈𝐼 𝑒 𝑗 (𝜔), and 𝑝∗(𝜔) · 𝑥∗𝑖 (𝜔) ≤ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔) for every

𝑖 ∈ 𝐼 .

Proof. Since 𝑝𝑡𝑛 → 𝑝∗ in the weak
∗

topology and 𝑥𝑡𝑛 → 𝑥∗ in the norm topology, it must be that∑
𝑗 𝑥

𝑡𝑛
𝑗
(𝜔) → ∑

𝑗 𝑥
∗
𝑗 (𝜔), and that 𝑝𝑡𝑛 (𝜔) ·𝑥𝑡𝑛

𝑖
(𝜔) → 𝑝∗(𝜔) ·𝑥∗𝑖 (𝜔) and 𝑝𝑡𝑛 (𝜔) ·𝑒𝑖 (𝜔) → 𝑝∗(𝜔) ·𝑒𝑖 (𝜔)

for every 𝑖 ∈ 𝐼 (Aliprantis and Border (2005), Theorem 6.40). The claim follows from the fact that,

for every 𝑛, the pair

(
𝑝𝑡𝑛 , 𝑥𝑡𝑛

)
is a REE in the economy E𝑡𝑛

and so it satisfies

∑
𝑗 𝑥

𝑡𝑛
𝑗
(𝜔) = ∑

𝑗 𝑒 𝑗 (𝜔)
and 𝑝𝑡𝑛 (𝜔) · 𝑥𝑡𝑛

𝑖
(𝜔) ≤ 𝑝𝑡𝑛 (𝜔) · 𝑒𝑖 (𝜔) for every 𝑖 ∈ 𝐼 .

Our last Lemma proves that (𝑝∗, 𝑥∗) satisfies condition (3) in Definition 2.1, from which we

conclude that it is a REE. To this end, recall that, for every 𝑖 ∈ 𝐼 , G𝑡
𝑖 = F 𝑡

𝑖 ∨ 𝜎
(
𝑝𝑡

)
for every 𝑡 ∈ 𝑇 ,

and G∗
𝑖 = F ∗

𝑖 ∨ 𝜎 (𝑝∗).

Lemma 5.7 Suppose that, for 𝑖 ∈ 𝐼 , 𝑦 ∈ ℓ𝑋𝑖
is a G∗

𝑖 -measurable function such that 𝑣𝑖
(
𝑦 |G∗

𝑖

)
(𝜔) >

𝑣𝑖
(
𝑥∗𝑖 |G∗

𝑖

)
(𝜔) for some 𝜔 ∈ Ω. Then 𝑝∗(𝜔) · 𝑦 (𝜔) > 𝑝∗(𝜔) · 𝑒𝑖 (𝜔).

Proof. For every 𝑡 ∈ 𝑇 , define 𝑦𝑡 = 𝐸
[
𝑦
��G𝑡

𝑖

]
. Since 𝑦 is measurable with respect to G∗

𝑖 , Lemma 9.2

gives that 𝑦𝑡 → 𝑦 in norm. We can therefore apply Lemma 9.5 to the sequences of the 𝑦𝑡 ’s and of

the G𝑡
’s and obtain that:

lim

𝑡
𝑣𝑖

(
𝑦𝑡 |G𝑡

𝑖

)
(𝜔) = 𝑣𝑖

(
𝑦 |G∗

𝑖

)
(𝜔) . (1)

Similarly, applying Lemma 9.5 to the 𝑥
𝑡𝑛
𝑖

’s gives:

lim

𝑡
𝑣𝑖

(
𝑥
𝑡𝑛
𝑖
|G𝑡𝑛

𝑖

)
(𝜔) = 𝑣𝑖

(
𝑥∗𝑖 |G∗

𝑖

)
(𝜔) . (2)
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Equations (1) and (2), combined with the fact that 𝑣𝑖
(
𝑦 |G∗

𝑖

)
(𝜔) > 𝑣𝑖

(
𝑥∗𝑖 |G∗

𝑖

)
(𝜔) by assumption,

imply that 𝑣𝑖
(
𝑦𝑡𝑛 |G𝑡𝑛

𝑖

)
(𝜔) > 𝑣𝑖

(
𝑥
𝑡𝑛
𝑖
|G𝑡𝑛

𝑖

)
(𝜔) for 𝑛 sufficiently large. But then 𝑦𝑡𝑛 is an allocation

G𝑡𝑛
𝑖

-measurable, that gives an interim expected utility higher than the equilibrium allocation 𝑥
𝑡𝑛
𝑖

,

and so it must be that 𝑝𝑡𝑛 (𝜔) · 𝑦𝑡𝑛 (𝜔) > 𝑝𝑡𝑛 (𝜔) · 𝑒𝑖 (𝜔). Taking it to the limit, we must have that:

𝑝∗(𝜔) · 𝑦 (𝜔) ≥ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔) .

We show that it cannot be that 𝑝∗(𝜔) · 𝑦 (𝜔) = 𝑝∗(𝜔) · 𝑒𝑖 (𝜔). Let 𝑧 ∈ ℓ𝑋𝑖
be such that 𝑝∗(𝜔 ′) ·

𝑧 < 𝑝∗(𝜔 ′) · 𝑒𝑖 (𝜔 ′) for every 𝜔 ′ ∈ Ω (such 𝑧 exists because of Assumption 5.3). For every 𝑛, set

𝑧𝑛 = 2
−𝑛𝑦 + (1 − 2

−𝑛) 𝑧 and observe that: 𝑧𝑛 ∈ ℓ𝑋𝑖
(because ℓ𝑋𝑖

is convex by Assumption 5.1(i));

𝑝∗(𝜔) · 𝑧𝑛 (𝜔) < 𝑝∗(𝜔) · 𝑦 (𝜔); and 𝑧𝑛 converges to 𝑦 in norm. Therefore, 𝑣𝑖
(
𝑧𝑛 |G∗

𝑖

)
(𝜔) converges

to 𝑣𝑖
(
𝑦 |G∗

𝑖

)
(𝜔). For 𝑛 sufficiently large it must be that:

𝑣𝑖
(
𝑧𝑛 |G∗

𝑖

)
(𝜔) > 𝑣𝑖

(
𝑥∗𝑖 |G∗

𝑖

)
(𝜔) .

Apply the same argument above, replacing 𝑦 with 𝑧𝑛 . We obtain that 𝑝∗(𝜔) ·𝑧𝑛 (𝜔) ≥ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔).
But since 𝑝∗(𝜔) · 𝑦 (𝜔) > 𝑝∗(𝜔) · 𝑧𝑛 (𝜔), we conclude that 𝑝∗(𝜔) · 𝑦 (𝜔) > 𝑝∗(𝜔) · 𝑒𝑖 (𝜔).

6 The limit symmetric information REE

In Section 4 it was noted that in the sequence of repeated economies it is possible that the pro-

gression of equilibrium prices and allocations may not reveal all the information privately held by

agents. In these situations, the learning process fails and agents remain incompletely and asymmet-

rically informed even in the limit full information economy. This is the case of Example 3.3, in which

agents learn nothing from the REE’s and so they maintain the same initial private information in

every repetition, as well as in the limit economy.

This section focuses on those situations in which the learning process is effective and resolves

the asymmetry of information in the limit economy. This requires that at least an agent learns some-

thing in at least one period, and that in the limit the public information revealed by the equilibria

prevails over individuals’ private information. We refer to this condition as non trivial learning and

formalize it as follows:

(𝑁𝑇𝐿) F 1

𝑖 ⊆ 𝐺∞ =

∞∨
𝑘=1

𝜎 (𝑝𝑘 , 𝑥𝑘 ) for all 𝑖 ∈ 𝐼 .

The NTL condition states that, in the limit economy, the pooled information generated by all the

past equilibria is at least as fine as the initial private information of any agent. The sequence of

REE’s gradually reveals the information held privately by the agents to the point that, in the limit

full information economy, no agent knows something that is not disclosed in some repetition. The

NTL condition is violated in Example 3.3.

Notice that the NTL is a condition on the whole sequence of repetitions, and not on the single

economies. The condition, in fact, depends on agents characteristics as well as on the specific se-

13



quence of equilibria that emerge in each repetition, which is typically unpredictable. Knowing the

state of the economy after 𝑡 repetitions does not allow to anticipate what information the endoge-

nous equilibria are going to generate, and hence to verify if the NTL condition will hold. It is only

in the limit full information economy, when all past equilibria are observable, that we can certainly

tell whether the NTL condition is met or not.

Under the NTL condition, in the limit full information economy every agent has the same infor-

mation algebra𝐺∞
, which corresponds to what one can learn by looking at the REE’s that emerged

in each repetition. The asymmetry in the information disappears, and so any limit symmetric in-

formation REE is immediately incentive compatible and implementable as a perfect Bayesian equi-

librium of an extensive form game. In addition to that, our next theorem shows that the limit

symmetric information REE exists (universally and not generically) and is efficient.

Theorem 2 Let
{
E𝑡

: 𝑡 ∈ 𝑇
}
be a sequence of repeated economies that satisfies the NTL condition,

and Assumptions 5.1, 5.2 and 5.3. Then there exists a limit REE (𝑝∗, 𝑥∗) in E∗ such that:

1. 𝑝∗ is measurable with respect to F ∗
𝑖 for every 𝑖 ∈ 𝐼 ;

2. there exists no 𝑦 = (𝑦𝑖)𝑖 and 𝜔 ∈ Ω such that
∑

𝑖∈𝐼 𝑦𝑖 (𝜔) =
∑

𝑖∈𝐼 𝑒𝑖 (𝜔) and, for every 𝑖 ∈ 𝐼 , 𝑦𝑖 is
F ∗
𝑖 -measurable and 𝑣𝑖

(
𝑦𝑖 |F ∗

𝑖

)
(𝜔) ≥ 𝑣𝑖

(
𝑥∗𝑖 |F ∗

𝑖

)
(𝜔), with a strict inequality for at least a 𝑖 ∈ 𝐼 .

Condition (1) ensures that the equilibrium price 𝑝∗ does not reveal any new information to agents,

who maintain in the interim stage the same private information they had ex-ante. This implies that

each equilibrium allocation 𝑥∗𝑖 is itself measurable with respect to F ∗
𝑖 , and so it is compatible with

the information that agents accumulate through the repetitions. This condition is consistent with

Theorem 1, which shows that the limit REE’s have the same property. Condition (2) corresponds to

a form of state-wise efficiency of the REE allocation 𝑥∗ in the interim stage: if in a state 𝜔 there is

an allocation 𝑦 at which every agent receives at least the same interim conditional expected utility

of 𝑥 and someone a strictly higher one, then either 𝑦 is not compatible with agents’ information or

𝑦 is not feasible.

6.1 Proof of Theorem 2

By the NTL condition, in the limit full information economy every agent has the same private

information, which coincides with the 𝜎-algebra𝐺∞
. Let {𝐴𝑛

: 𝑛 = 1, 2, . . . } be the family of atoms

that generate the algebra 𝐺∞
. The idea of the proof is to define for every 𝑛 an auxiliary exchange

economy E∗
𝑛 that captures agents’ behaviour when they learn that a state in 𝐴𝑛

has realized, but

they still don’t know which one. Fix a 𝑛 and a generic 𝜔𝑛 ∈ 𝐴𝑛
. The economy E∗

𝑛 is given by:

E∗
𝑛 =

{
𝑌, 𝐼,

(
𝑋𝑛
𝑖 , 𝑒

𝑛
𝑖 ,𝑈

𝑛
𝑖

)
𝑖

}
where 𝑌 is the commodity space and 𝐼 the set of agents. For every 𝑖 ∈ 𝐼 , 𝑋𝑛

𝑖 = 𝑋𝑖 (𝜔𝑛) is agent’s

consumption set, 𝑒𝑛𝑖 = 𝑒𝑖 (𝜔𝑛) is her initial endowment. The utility that 𝑖 receives from consuming

a 𝑥 ∈ 𝑋𝑛
𝑖 is 𝑈 𝑛

𝑖 (𝑥) = 𝑣𝑖 (𝑥 |𝐺∞) (𝜔𝑛), where 𝑥 : Ω → 𝑌 is the constant function equal to 𝑥 . Notice

that E∗
𝑛 is indifferent on how one chooses 𝜔𝑛

in 𝐴𝑛
.
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Each E∗
𝑛 is an economy that satisfies the assumptions of the Auxiliary Theorem in Khan and

Yannelis (1991), pg. 239, and so there exists a Walrasian equilibrium
6 (𝑝𝑛, 𝑥𝑛) in E∗

𝑛 . For every

𝜔 ∈ Ω, define:

𝑝∗(𝜔) = 𝑝𝑛, 𝑥∗𝑖 (𝜔) = 𝑥𝑛𝑖

where 𝑛 is the only number such that 𝜔 ∈ 𝐴𝑛
. We claim that (𝑝∗, 𝑥∗) is the desired REE in E∗

.

First observe that 𝑝∗ and 𝑥∗ are constant on each atom in the algebra 𝐺∞
, and so they are

measurable with respect to it. This implies that F ∗
𝑖 ∨𝜎 (𝑝∗) = 𝐺∞

for every 𝑖 and so the measurability

of the equilibrium allocations is satisfied. Second, notice that in every state 𝜔 the allocation 𝑥∗𝑖
maximizes the interim expected utility of agent 𝑖 conditional on𝐺∞

subject to the budget constraints

imposed by 𝑝∗(𝜔), and the market clears. We conclude that (𝑝∗, 𝑥∗) is a REE in E∗
.

We show that the REE (𝑝∗, 𝑥∗) satisfies the conditions (1) and (2) in the claim. The measurability

condition (1) follows immediately from the way 𝑝∗ was constructed. We focus only on condition

(2). Fix a 𝜔 and let 𝑦 ∈ ℓ𝑋 be a 𝐺∞
-measurable allocation such that

∑
𝑖∈𝐼 𝑦𝑖 (𝜔) =

∑
𝑖∈𝐼 𝑒𝑖 (𝜔). If 𝐴𝑛

is the atom that contains 𝜔 , then 𝑦𝑖 (𝜔 ′) is constantly equal to some 𝑦𝑖 ∈ 𝑌 on 𝐴𝑛
, and 𝑦 = (𝑦𝑖)𝑖 is

a feasible allocation in the auxiliary economy E∗
𝑛 . By contradiction, assume that 𝑣𝑖 (𝑦𝑖 |𝐺∞) (𝜔) ≥

𝑣𝑖 (𝑥𝑖 |𝐺∞) (𝜔) for every 𝑖 ∈ 𝐼 , with a strict inequality for at least one 𝑖 . It follows that:

𝑈 𝑛
𝑖 (𝑦𝑖) = 𝑣𝑖 (𝑦𝑖 |𝐺∞) (𝜔) ≥ 𝑣𝑖 (𝑥𝑖 |𝐺∞) (𝜔) = 𝑈 𝑛

𝑖

(
𝑥𝑛𝑖

)
for every 𝑖 ∈ 𝐼 , with a strict inequality for at least one 𝑖 . But this implies that 𝑦, seen as an alloca-

tion in the auxiliary economy E∗
𝑛 , Pareto dominates the Walrasian allocation 𝑥𝑛 , violating the first

welfare Theorem.

7 The stability of limit rational expectations equilibria

This section considers a sequence of repeated economies and studies the stability of the REE’s in

the corresponding limit economy. Precisely, it asks when an equilibrium in the limit can be ap-

proximated with the REE’s that emerge in the repetitions. We provide an answer to this question

in terms of approximated REE outcomes.

An approximate (or 𝜀-) REE describes a situation similar to that of a standard REE, if not that

agents maximize their interim conditional expected utility within a small error 𝜀 > 0 in every state,

with few exceptions. The interpretation is that agents have bounded rationality.

Definition 7.1 Given 𝜀 > 0, an 𝜀-rational expectations equilibrium (𝜀-REE) consists of an allocation

𝑥 = (𝑥𝑖) and a random price function 𝑝 that satisfy the following conditions for every 𝑖 ∈ 𝐼 .

1. The consumption bundle 𝑥𝑖 is G𝑖-measurable, where G𝑖 = F𝑖 ∨ 𝜎 (𝑝).

2. There exists a 𝐵𝑖 ⊆ Ω with
∑

𝜔∈𝐵𝑖
𝑞𝑖 (𝜔) ≥ 1 − 𝜀 such that, for every 𝜔 ∈ 𝐵𝑖 :

6
A Walrasian equilibrium in E∗

𝑛 consists of a 𝑝 ∈ Δ and a list 𝑥 = (𝑥𝑖 ) with 𝑥𝑖 ∈ 𝑋𝑛
𝑖

for every 𝑖 , with the property

that, for every 𝑖 ∈ 𝐼 : (i) 𝑝 · 𝑥𝑖 ≤ 𝑝 · 𝑒𝑛
𝑖

, (ii) if𝑈𝑛
𝑖
(𝑦) > 𝑈𝑛

𝑖
(𝑥𝑖 ) for some 𝑦 ∈ 𝑋𝑛

𝑖
then 𝑝 · 𝑦 > 𝑝 · 𝑒𝑛

𝑖
, (iii)

∑
𝑗∈𝐼 𝑥 𝑗 =

∑
𝑗∈𝐼 𝑒

𝑛
𝑗
.
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(i) 𝑥𝑖 (𝜔) meets the approximated budget constraints 𝑝 (𝜔) · 𝑥𝑖 (𝜔) ≤ 𝑝 (𝜔) · 𝑒𝑖 (𝜔) + 𝜀,

(ii) for every G𝑖-measurable𝑦 : Ω → 𝑌 , if 𝑣𝑖 (𝑦 |G𝑖) (𝜔) > 𝑣𝑖 (𝑥𝑖 |G𝑖) (𝜔)+𝜀 then 𝑝 (𝜔) ·𝑦 (𝜔) >
𝑝 (𝜔) · 𝑒𝑖 (𝜔).

3.
∑

𝑗∈𝐼 𝑥 𝑗 (𝜔) =
∑

𝑗∈𝐼 𝑒 𝑗 (𝜔) for every 𝜔 ∈ Ω.

The set of 𝜀-rational expectations equilibria in the economy E is 𝑅𝜀 (E).

It is clear that, for 𝜀 = 0, the definition of 𝜀-REE coincides with the standard definition of REE.

The main result of this section proves that, under mild conditions, if one takes a sequence of

repeated economies and selects a REE (𝑝∗, 𝑥∗) in the limit economy, then there exists a sequence

of approximated REE outcomes, one for each repetition, that converges to (𝑝∗, 𝑥∗). This result, in

a way, constitute a partial converse to Theorem 1, which shows that there exists a REE in the limit

economy to which the sequence of repeated REE’s converges.

The result requires the additional assumption that every agent has the same information about

the total endowment vector, i.e. about the sum of everyones’ endowments. We write

∧
𝑖∈𝐼 F𝑖 to

denote their meet, which is the largest 𝜎-algebra on Ω contained in each F𝑖 .

Assumption 7.2 The endowment vector 𝑒 (𝜔) = ∑
𝑖∈𝐼 𝑒𝑖 (𝜔) is measurable with respect to

∧
𝑖∈𝐼 F𝑖 .7

Theorem 3 Let
{
E𝑡

: 𝑡 ∈ 𝑇
}
be a sequence of repeated economies that satisfies the NTL condition,

and Assumptions 5.1, 5.2(i)-(ii) and 7.2. Let (𝑝∗, 𝑥∗) be a limit REE in E∗ such that 𝑥∗ is measurable

with respect to F ∗
𝑖 for every 𝑖 . Then for every 𝜀 > 0 there exists a sequence of allocations {𝑧𝑡 : 𝑡 ∈ 𝑇 }

such that:

1. 𝑧𝑡 → 𝑥∗ in norm,

2. for 𝑡 ∈ 𝑇 sufficiently large,
(
𝑝∗, 𝑧𝑡

)
is a 𝜀-REE in E𝑡 .

Theorem 3 states that the sequence of repeated economies allows to describe every REE in the limit

economy by means of a converging sequence of approximated equilibria. Therefore, no equilibrium

in the limit economy is extraneous to the learning process. The only restriction on the limit REE

is on the measurability of the equilibrium allocation 𝑥∗ with respect to agents limit information

algebras. Notice that Theorem 1 proves that all the equilibria that are obtained as the limit of the

generating REE’s satisfy this measurability requirement, and so do the REE’s whose existence is

proved in Theorem 2.

7.1 Proof of Theorem 3

Fix a 𝜀 > 0. For every 𝑡 ∈ 𝑇 let F 𝑡
𝐼
=

∧
𝑖∈𝐼 F 𝑡

𝑖 denote the common information at time 𝑡 and let

𝑧𝑡 = (𝑧𝑡𝑖 ) be the allocation defined by:

𝑧𝑡𝑖 = 𝐸
[
𝑥∗𝑖

��F 𝑡
𝐼

]
.

7
Notice that if the initial endowment is constant across the states, this assumption is satisfied.
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Each 𝑧𝑡𝑖 is the expectation of 𝑥∗𝑖 conditional on the algebra F 𝑡
𝐼

, i.e. the common information on 𝑥∗𝑖
that is available at time 𝑡 . We claim that the sequence

{
𝑧𝑡 : 𝑡 ∈ 𝑇

}
satisfies the two conditions of

the Theorem, which we prove separately.

Lemma 7.3 For every 𝑖 ∈ 𝐼 , the sequence 𝑧𝑡𝑖 converges to 𝑥∗𝑖 in norm.

Proof. By the NTL condition, F ∗
𝑖 coincides with the common information algebra F ∗

𝐼
=

∨
𝑡 ∈𝑇 F 𝑡

𝐼
.

Being the allocation𝑥∗𝑖 measurable with respect to F ∗
𝑖 by assumption, it must be that𝑥∗𝑖 = 𝐸

[
𝑥∗𝑖

��F ∗
𝐼

]
.

We apply Lemma 9.2 and obtain lim𝑡 𝑧
𝑡 = lim𝑡 𝐸

[
𝑥𝑡𝑖

��F 𝑡
𝐼

]
= 𝐸

[
𝑥∗𝑖

��F ∗
𝐼

]
= 𝑥∗𝑖 .

We now prove that

(
𝑝∗, 𝑧𝑡

)
is a 𝜀-REE in E𝑡

for all but a finite number of periods 𝑡 . We divide this

part in steps, the first of which proves that the allocations 𝑧𝑡 meet the measurability and feasibility

requirements.

Lemma 7.4 For every 𝑡 ∈ 𝑇 and 𝑖 ∈ 𝐼 the allocation 𝑧𝑡𝑖 is measurable with respect toH 𝑡
𝑖 = F 𝑡

𝑖 ∨𝜎 (𝑝∗).
Furthermore,

∑
𝑗∈𝐼 𝑧

𝑡
𝑗 (𝜔) =

∑
𝑗∈𝐼 𝑒 𝑗 (𝜔).

Proof. The first part of the claim follows directly from the definition of the 𝑧𝑡𝑖 ’s. For the second

part, observe that:

∑︁
𝑗∈𝐼

𝑧𝑡𝑗 =
∑︁
𝑗∈𝐼

𝐸
[
𝑥∗𝑗

��F 𝑡
𝐼

]
= 𝐸

[∑︁
𝑗∈𝐼

𝑥∗𝑗

�����F 𝑡
𝐼

]
= 𝐸

[∑︁
𝑗∈𝐼

𝑒 𝑗

�����F 𝑡
𝐼

]
=

∑︁
𝑗∈𝐼

𝑒 𝑗

where the last equivalence follows from Assumption 7.2.

We are only left to show that

(
𝑝∗, 𝑧𝑡

)
satisfies condition 2 in Definition 7.1 when 𝑡 is sufficiently

large. This requires that, in all but a “small” set of states, the allocations 𝑧𝑡 eventually solve the

approximated utility maximization problems subject to the budget constraints imposed by 𝑝∗. We

do it in three steps.

The first lemma considers the set 𝐶𝑡
𝑖 of all states in which 𝑧𝑡𝑖 violates the approximate budget

constraints in period 𝑡 , then it shows that 𝐶𝑡
𝑖 is “small” for all but a finite number of periods.

Lemma 7.5 For every 𝑖 ∈ 𝐼 and 𝑡 ∈ 𝑇 , let 𝐶𝑡
𝑖 ⊂ Ω be the set:

𝐶𝑡
𝑖 =

{
𝜔 ∈ Ω : 𝑝∗(𝜔) · 𝑧𝑡𝑖 (𝜔) > 𝑝∗(𝜔) · 𝑒𝑖 (𝜔) + 𝜀

}
.

Then
∑

𝜔∈𝐶𝑡
𝑖
𝑞𝑖 (𝜔) < 𝜀/2 for all but a finite number of periods 𝑡 .

Proof. Suppose that this was not the case, and that

∑
𝜔∈𝐶𝑡

𝑖
𝑞𝑖 (𝜔) > 𝜀/2 for infinitely many 𝑡 ’s.

Since

∑
𝜔∈Ω 𝑞𝑖 (𝜔) = 1, this implies that the set:

𝐶∗
𝑖 =

⋂
𝑡 ∈𝑇

⋃
𝑠≥𝑡

𝐶𝑠
𝑖

is nonempty. Notice that 𝐶∗
𝑖 consists of all the 𝜔 ∈ Ω for which there are infinitely many values of

𝑡 for which 𝑧𝑡𝑖 (𝜔) violates the approximate budget constraints.

Let𝜔 ∈ 𝐶∗
𝑖 . Without loss of generality, we may assume that𝜔 ∈ 𝐶𝑡

𝑖 for every 𝑡 ∈ 𝑇 (if this is not

the case, just replace the 𝑡 ’s with a subsequence for which the condition holds). This means that:

𝑝∗(𝜔) · 𝑧𝑡𝑖 (𝜔) > 𝑝∗(𝜔) · 𝑒𝑖 (𝜔) + 𝜀 for every 𝑡 ∈ 𝑇 .
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But the 𝑧𝑡𝑖 ’s converge in norm to 𝑥∗𝑖 , and so they converge pointwise. This implies that:

lim

𝑡
𝑝∗(𝜔) · 𝑧𝑡𝑖 (𝜔) = 𝑝∗(𝜔) · 𝑥∗𝑖 (𝜔) ≤ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔)

which is a contradiction.

The second lemma considers the set 𝐷𝑡
𝑖 of states in which 𝑧𝑡𝑖 is not approximately maximal in

the budget set of period 𝑡 , then it shows that 𝐷𝑡
𝑖 is “small” for all but but a finite number of periods.

Lemma 7.6 For every 𝑖 ∈ 𝐼 and 𝑡 ∈ 𝑇 , let 𝐷𝑡
𝑖 ⊂ Ω be the set:

𝐷𝑡
𝑖 =

{
𝜔 ∈ Ω : ∃𝑦 ∈ ℓ𝑋𝑖

with 𝑣𝑖
(
𝑦 |H 𝑡

𝑖

)
(𝜔) > 𝑣𝑖

(
𝑧𝑡𝑖 |H 𝑡

𝑖

)
(𝜔) + 𝜀 and 𝑝∗(𝜔) · 𝑦 (𝜔) ≤ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔)

}
where H 𝑡

𝑖 = F 𝑡
𝑖 ∨ 𝜎 (𝑝∗). Then

∑
𝜔∈𝐷𝑡

𝑖
𝑞𝑖 (𝜔) < 𝜀/2 for all but a finite number of periods 𝑡 .

Proof. Suppose that this was not the case, and that

∑
𝜔∈𝐷𝑡

𝑖
𝑞𝑖 (𝜔) > 𝜀/2 for infinitely many 𝑡 ’s. By

the same argument used in Lemma 7.5 the set:

𝐷∗
𝑖 =

⋂
𝑡 ∈𝑇

⋃
𝑠≥𝑡

𝐷𝑠
𝑖

is nonempty. Take a 𝜔 ∈ 𝐷∗
𝑖 and assume, without loss of generality, that 𝜔 ∈ 𝐷𝑡

𝑖 for every 𝑡 . This

means that for every 𝑡 ∈ 𝑇 there is a 𝑦𝑡 ∈ ℓ𝑋𝑖
such that 𝑝∗(𝜔) · 𝑦𝑡 (𝜔) ≤ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔) and:

𝑣𝑖
(
𝑦𝑡 |H 𝑡

𝑖

)
(𝜔) > 𝑣𝑖

(
𝑧𝑡𝑖 |H 𝑡

𝑖

)
(𝜔) + 𝜀. (3)

The sequence {𝑦𝑡 : 𝑡 ∈ 𝑇 } ranges in the compact set ℓ𝑋𝑖
, and so it has subsequence (which we don’t

relabel) that converges in norm (and hence pointwise) to a 𝑦∗ ∈ ℓ𝑋𝑖
.

The sequence

{
𝑦𝑡 : 𝑡 ∈ 𝑇

}
converges to 𝑦∗ in ℓ𝑋𝑖

, while

{
H 𝑡

𝑖 : 𝑡 ∈ 𝑇
}

is an increasing sequence

of 𝜎-algebras converging (in the order) to F ∗
𝑖 ∨ 𝜎 (𝑝∗). By the continuity of the interim expected

utility (see Lemma 9.5) we have that:

lim

𝑡
𝑣𝑖

(
𝑦𝑡 |H 𝑡

𝑖

)
(𝜔) = 𝑣𝑖

(
𝑦∗ |F ∗

𝑖 ∨ 𝜎 (𝑝∗)
)
(𝜔) .

As the 𝑧𝑡𝑖 converge to 𝑥∗𝑖 (Lemma 7.3) the same argument gives that:

lim

𝑡
𝑣𝑖

(
𝑧𝑡𝑖 |H 𝑡

𝑖

)
(𝜔) = 𝑣𝑖

(
𝑥∗ |F ∗

𝑖 ∨ 𝜎 (𝑝∗)
)
(𝜔).

Combining these two equations with Equation (3), it must be that:

𝑣𝑖
(
𝑦∗ |F ∗

𝑖 ∨ 𝜎 (𝑝∗)
)
(𝜔) ≥ 𝑣𝑖

(
𝑥∗ |F ∗

𝑖 ∨ 𝜎 (𝑝∗)
)
(𝜔) + 𝜀. (4)

We show that this is a contradiction. We know that 𝑦𝑡 (𝜔) → 𝑦∗(𝜔), and so 𝑝∗(𝜔) · 𝑦𝑡 (𝜔) →
𝑝∗(𝜔) · 𝑦∗(𝜔). As every 𝑦𝑡 (𝜔) satisfies the budget constraints imposed by 𝑝∗(𝜔), even 𝑦∗(𝜔) must

do so. However, being (𝑝∗, 𝑥∗) a REE in the limit economy, the fact that 𝑦∗(𝜔) is in the budget
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implies that:

𝑣𝑖 (𝑦∗ |F ∗ ∨ 𝜎 (𝑝∗)) (𝜔) ≤ 𝑣𝑖
(
𝑥∗ |F ∗

𝑖 ∨ 𝜎 (𝑝∗)
)
(𝜔)

in contradiction with Equation (4).

To conclude the proof define, for every 𝑖 ∈ 𝐼 and 𝑡 ∈ 𝑇 , the set:

𝐵𝑡𝑖 = Ω \
(
𝐶𝑡
𝑖 ∪ 𝐷𝑡

𝑖

)
.

By Lemmas 7.5 and 7.6, for all but a finite number of 𝑡 the set 𝐵𝑡𝑖 is such that

∑
𝜔∈𝐵𝑡

𝑖
𝑞𝑖 (𝜔) ≥ 1 − 𝜀.

Furthermore, for every 𝜔 ∈ 𝐵𝑡𝑖 one has: (𝑖) 𝑝∗(𝜔) · 𝑧𝑡𝑖 (𝜔) ≤ 𝑝∗(𝜔) · 𝑒𝑖 (𝜔) (because 𝜔 ∉ 𝐶𝑡
𝑖 ) and (𝑖𝑖)

if 𝑣𝑖
(
𝑦 |H 𝑡

𝑖

)
(𝜔) > 𝑣𝑖

(
𝑧𝑡𝑖 |H 𝑡

𝑖

)
(𝜔) +𝜀 for some 𝑦, then 𝑝∗(𝜔) ·𝑦 (𝜔) > 𝑝∗(𝜔) ·𝑒𝑖 (𝜔) (because𝜔 ∉ 𝐷𝑡

𝑖 ).

We conclude that, for 𝑡 sufficiently large, every 𝑧𝑡𝑖 is a 𝜀-REE in E𝑡
.

8 Conclusions

Our analysis starts from some common arguments against the notion of REE in asymmetric in-

formation economies, which include the fact that it may not exist universally and it may not be

efficient and incentive compatible. We argue that, despite these non-attractive features, the asym-

metric REE can be rationalized by a symmetric one which has nice properties. Thus, for all practical

purposes one can focus on the Bayesian symmetric REE that we know it exists and it is efficient.

Our conclusions are driven by the fact that iterated repetitions of the same trading situation

may reduce the information asymmetry to the point that it vanishes in the limit. When this is the

case, the asymmetric REE that emerge in the iterated repetitions converge to a symmetric REE in

the limit (Theorem 1) which exists, it is Pareto efficient and it is obviously incentive compatible

(Theorem 2). Therefore, the repeated REE become asymptotically similar to a well-behaving REE

in the limit. We also show a partial inverse to this result: given a symmetric well-behaving REE in

the limit we can always construct a sequence of approximated REE in the repeated economies that

converge to it (Theorem 3).

De Castro, Pesce, and Yannelis (2020) showed that the asymmetric REE under ambiguity exists

universally, it is Pareto optimal and it is incentive compatible contrary to the asymmetric Bayesian

REE concept of Kreps (1977), Radner (1979) and Allen (1981) examined in this paper. Similar results

with the ones obtained here, can also be proved for the asymmetric REE under ambiguity and show

that it can be rationalized by a symmetric ambiguous REE. Thus, not only the Bayesian asymmetric

REE that can be rationalized by a symmetric one but the same holds true if allow for ambiguity, i.e.,

we replace the interim Bayesian utility by the Wald interim maxmin utility.

Throughout the paper the set of agents is finite. It is not obvious how one can extend the current

results to a continuum of agents (e.g. Sun and Yannelis (2007)) in order to capture the idea of perfect

competition. At this stage this seems to be an open problem.
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9 Appendix

9.1 Notation and general results

Let 𝑌 be a Banach space. We write 𝑌 ∗
for the topological dual of 𝑌 , i.e. the space of all continuous,

linear functionals on 𝑌 . For 𝑥 ∈ 𝑌 and 𝑝 ∈ 𝑌 ∗
we use both the notations 𝑝 ·𝑥 or ⟨𝑥, 𝑝⟩ to denote the

value of 𝑥 at 𝑝 (the context will make it clear). Seen as a function on𝑌 ×𝑌 ∗
, the evaluation map ⟨·, ·⟩

is jointly continuous when both 𝑌 and 𝑌 ∗
are considered with their norms (Aliprantis and Border

(2005) Theorem 6.37). If 𝐵 ⊂ 𝑌 ∗
is a norm-bounded set, then ⟨·, ·⟩ is jointly continuous on 𝑌 × 𝐵

when 𝑌 is considered with its norm and 𝑌 ∗
with the weak

∗
topology (Aliprantis and Border (2005)

Theorem 6.40).

The following result is known as Alaoglu’s Theorem.

Fact 9.1 (Aliprantis and Border (2005), Theorem 6.10) A subset 𝐾 of the dual space 𝑌 ∗ is com-

pact in the weak∗ topology if and only if it is weak∗-closed and norm-bounded.

A random price is a function 𝑝 : Ω → 𝑌 ∗
with values in the symplex Δ =

{
𝑞 ∈ 𝑌 ∗

+ : 𝑞 · 𝑢 = 1

}
,

where 𝑢 is a vector in the interior of 𝑌+. We write ℓ𝑃 for the set of random prices, i.e.

ℓ𝑃 =
{
𝑝 : Ω → 𝑌 ∗

+ : 𝑝 (𝜔) ∈ Δ for every 𝜔 ∈ Ω
}
.

Notice that, being Δ a weakly
∗
-compact set by Alaoglu’s Theorem (see Fact 9.1, or Jameson (1970)

Theorem 3.8.6), every 𝑝 ∈ ℓ𝑃 belongs to the space ℓ∞(Ω, 𝑌 ∗) of bounded functions from Ω to𝑌 ∗
, and

can be seen as an element in the dual of ℓ1(Ω, 𝑌 ) (see Leonard (1976), pg. 246). The set ℓ𝑃 is then a

closed and bounded subset of a dual space, and so it is weakly
∗
-compact by Alaoglu’s Theorem.

Let Ω = {𝜔𝑛}𝑛 be a finite or countable set and 𝑌 a Banach space. We write ℓ1(Ω, 𝑌 ) for the set

of all functions 𝑥 : Ω → 𝑌 that are summable in the sense that

∥𝑥 ∥1 =
∑︁
𝜔∈Ω

∥𝑥 (𝜔)∥ < ∞

Endowed with the norm ∥ · ∥1, ℓ1(Ω, 𝑌 ) is a Banach space. Notice that ℓ1(Ω, 𝑌 ) coincides with the

space of 𝐿1(𝜇,𝑌 ) of 𝜇-Bochner integrable functions with values in 𝑌 when 𝜇 denotes the counting

measure on Ω. When 𝑌 = R we also write ℓ1(Ω) instead of ℓ1(Ω,R).
The set ℓ∞(Ω, 𝑌 ) denotes the collection of all functions 𝑥 : Ω → 𝑌 that are bounded. Endowed

with the norm ∥𝑥 ∥∞ = sup𝜔 ∥𝑥 (𝜔)∥, the set ℓ∞(Ω, 𝑌 ) is a Banach space. In particular, if 𝑌 ∗
is

the topological dual of 𝑌 then ℓ∞(Ω, 𝑌 ∗) is the dual of ℓ1(Ω, 𝑌 ), see (Leonard, 1976, pg. 246). The

corresponding duality evaluation map is given by:

⟨𝑥,𝑦⟩ =
∑︁
𝜔∈Ω

𝑥 (𝜔) · 𝑦 (𝜔), for 𝑥 ∈ ℓ1(Ω, 𝑌 ) and 𝑦 ∈ ℓ∞(Ω, 𝑌 ).

A subset 𝐾 of ℓ1(Ω, 𝑌 ) is summably dominated if there exists a 𝑔 ∈ ℓ1(Ω) such that ∥𝑥 (𝜔)∥ ≤ 𝑔(𝜔)
for every 𝑥 ∈ 𝐾 and 𝜔 ∈ Ω. The following version of the dominated convergence Theorem holds.
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Lemma 9.1 Let
{
𝑥𝑡 : 𝑡 ∈ 𝑇

}
be a sequence in ℓ1(Ω, 𝑌 ) and 𝑥∗ : Ω → 𝑌 a function such that: (𝑖)

𝑥𝑡 (𝜔) → 𝑥∗(𝜔) for every 𝜔 ∈ Ω; and (𝑖𝑖)
{
𝑥𝑡 : 𝑡 ∈ 𝑇

}
is summably dominated. Then 𝑥∗ ∈ ℓ1(Ω, 𝑌 )

and lim𝑡 𝑥
𝑡 = 𝑥∗ in the ℓ1-norm.

Proof. The sequence of summable, scalar functions

{
∥𝑥𝑡 (·)∥ : 𝑡 ∈ 𝑇

}
converges pointwise to the

function ∥𝑥∗(·)∥ and it is dominated by a 𝑔 ∈ ℓ1(Ω). The scalar version of the dominated con-

vergence Theorem applies (see Aliprantis and Border (2005) Theorem 11.21), proving that ∥𝑥∗(·)∥
(and hence 𝑥∗) is summable and that ∥𝑥𝑡 ∥1 → ∥𝑥∗∥1. Then the claim follows from Theorem 2.1 in

Leonard (1976).

Notice that a summably bounded set 𝐾 is automatically bounded, and has equismall tails in

the following sense: for every 𝜀 > 0 there is a finite 𝐽𝜀 ⊆ Ω (depending only on 𝜀) such that∑
𝜔∉𝐽𝜔

∥𝑥 (𝜔)∥ < 𝜀 for every 𝑥 ∈ 𝐾 . The following result is a version of Ascoli-Arzelà’s Theorem for

summable functions.

Fact 9.2 (Leonard (1976), Theorem 5.1) A set𝐾 ⊆ ℓ1(Ω, 𝑌 ) is compact if and only if: (𝑖) it is closed
and bounded, (𝑖𝑖) it has equismall tails, and (𝑖𝑖𝑖) it is such that 𝐾 (𝜔) = {𝑥 (𝜔) : 𝑥 ∈ 𝐾} is compact

for every 𝜔 ∈ Ω.

If

{
G𝑡

: 𝑡 ∈ 𝑇
}

is a sequence of 𝜎-algebras on Ω, the join

∨
𝑡 ∈𝑇 G𝑡

is the smallest 𝜎-algebra on Ω

that contains all the G𝑡
’s. The meet

∧
𝑡 ∈𝑇 G𝑡

is the intersection of the G𝑡
’s. For a 𝜎-algebra, for

every 𝜔 ∈ Ω we write G(𝜔) for the smallest element of G that contains 𝜔 . The expectation of a

summable function 𝑥 conditional on G is the function 𝐸 [𝑥 |G ] defined by:

𝐸 [𝑥 |G ] (𝜔) =


1

| G (𝜔 ) |
∑

�̄�∈G(𝜔 ) 𝑥 (�̄�) if G(𝜔) is finite,

0 otherwise.

where |G(𝜔) | denotes the cardinality of G(𝜔).

Lemma 9.2 Let
{
G𝑡

: 𝑡 ∈ 𝑇
}
be an increasing sequence of 𝜎-algebras on Ω, and let G∗ =

∨
𝑡 G𝑡 .

Then lim𝑡 𝐸
[
𝑥
��G𝑡

]
= 𝐸 [𝑥 |G∗ ] for every 𝑥 ∈ ℓ1(Ω, 𝑌 ).

Proof. By construction,

{
𝐸

[
𝑥
��G𝑡

]
: 𝑡 ∈ 𝑇

}
is a sequence that converges to 𝐸 [𝑥 |G∗ ] pointwise

and that is summably dominated by 𝑔(𝜔) = ∥𝑥 (𝜔)∥. The claim follows the Theorem of dominated

convergence (Lemma 9.1).

9.2 Joint continuity of the interim expected utility

This appendix shows that the conditional interim expected utility function 𝑣𝑖 (𝑥 |G) (𝜔) is, in a sense,

jointly continuous with respect to 𝑥 and G. Precisely, it shows that: if 𝜔 is fixed, if 𝑥𝑡 converges

(topologically) to a 𝑥∗ and if G𝑡
converges (in the order sense) to a G∗

, then 𝑣𝑖
(
𝑥𝑡 |G𝑡

)
(𝜔) converges

to 𝑣𝑖 (𝑥∗ |G∗) (𝜔).
Some preliminary lemmas are needed.
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Lemma 9.3 Let
{
G𝑡

: 𝑡 ∈ 𝑇
}
be an increasing sequence of 𝜎-algebras on Ω, and let G∗ =

∨
𝑡 G𝑡 .

Then, for every 𝑖 ∈ 𝐼 and 𝜔 ∈ Ω, one has that 𝑞𝑖
(
· |G𝑡 (𝜔)

)
is a function in ℓ∞(Ω), and:

lim

𝑡
𝑞𝑖

(
· |G𝑡 (𝜔)

)
= 𝑞𝑖 (· |G∗(𝜔))

in the ℓ∞-norm.

Proof. The relation 𝑞𝑖 (𝐹 ) =
∑

𝜔∈𝐹 𝑞𝑖 (𝜔) defines a 𝜎-additive probability measure on 2
Ω

, the power

set of Ω. As 𝑞𝑖 (G∗(𝜔)) is strictly positive and finite for every 𝜔 ∈ Ω, and 𝑞𝑖 is summable (and

hence bounded), 𝑞𝑖
(
· |G𝑡 (𝜔)

)
is itself a bounded function.

Let us fix a �̂� ∈ Ω. Since G∗ =
∨

𝑡 G𝑡
, G𝑡 (�̂�) is a decreasing sequence of sets with G∗(�̂�) =⋂

𝑡 G𝑡 (�̂�), and so 𝑞𝑖 (G∗(�̂�)) = inf𝑡 𝑞𝑖
(
G𝑡 (�̂�)

)
. Therefore, for every 𝜀 > 0 there is a 𝑡 ∈ 𝑇 such

that:

|𝑞𝑖 (G𝑠 (�̂�)) − 𝑞𝑖 (G∗(�̂�)) | = 𝑞𝑖 [G𝑠 (�̂�) \ G∗(�̂�)] < 𝜀, for every 𝑠 > 𝑡 .

Take a 𝑠 > 𝑡 . To conclude the proof it is enough to show that

��𝑞𝑖 (𝜔 |G𝑡 (�̂�)
)
− 𝑞𝑖 (𝜔 |G∗(�̂�))

�� <
𝜀

𝑞𝑖 (G∗ (�̂� ) )2
for every 𝜔 ∈ Ω. We prove this by cases.

If 𝜔 ∉ G𝑠 (�̂�), then 𝑞𝑖 (𝜔 |G𝑠 (�̂�)) = 𝑞𝑖 (𝜔 |G∗(�̂�)) = 0 and the condition is satisfied. If 𝜔 ∈
G𝑠 (�̂�) \ G∗(�̂�), then 𝑞𝑖 (𝜔) ≤ 𝑞𝑖 [G𝑠 (�̂�) \ G∗(�̂�)] < 𝜀 and 𝑞𝑖 (𝜔 |G∗(�̂�)) = 0. But then:��𝑞𝑖 (𝜔 |G𝑡 (�̂�)

)
− 𝑞𝑖 (𝜔 |G∗(�̂�))

�� = 𝑞𝑖 (𝜔)
𝑞𝑖 (G∗(�̂�)) <

𝜀

𝑞𝑖 (G∗(�̂�)) ≤ 𝜀

𝑞𝑖 (G∗(�̂�))2

where the last inequality follows the fact that 𝑞𝑖 (𝐹 ) ≤ 1 for every 𝐹 ⊆ Ω. Last, if 𝜔 ∈ G∗(�̂�) then:��𝑞𝑖 (𝜔 |G𝑡 (�̂�)
)
− 𝑞𝑖 (𝜔 |G∗(�̂�))

�� = (
𝑞𝑖 (𝜔)

𝑞𝑖 (G∗(�̂�)) −
𝑞𝑖 (𝜔)

𝑞𝑖 (G𝑠 (�̂�))

)
<

𝜀

𝑞𝑖 (G∗(�̂�))2
.

Lemma 9.4 Under Assumptions 5.1(ii) and 5.2(ii), let 𝑥 : Ω → 𝑌 be such that 𝑥 (𝜔) ∈ 𝑋𝑖 (𝜔) for every
𝜔 ∈ Ω. Then:

1. the function 𝑥 is summable;

2. the function 𝑢𝑖 (·, 𝑥 (·)) is summable;

3. 𝑣𝑖 (𝑥 |G) (�̂�) is well defined for every 𝜎-algebra G on Ω and every �̂� ∈ Ω. Furthermore:

𝑣𝑖 (𝑥 |G) (�̂�) = ⟨𝑢𝑖 (·, 𝑥 (·)) , 𝑞𝑖 (· |G) (�̂�)⟩

where ⟨·, ·⟩ denotes the dual evaluation map between ℓ1(Ω) and ℓ∞(Ω).

Proof. To prove point (1) recall that, by Assumption 5.1(ii), there exists a 𝑓 ∈ ℓ1(Ω) such that

∥𝑥 (𝜔)∥ ≤ 𝑓 (𝜔) for every𝜔 ∈ Ω. Therefore, 𝑥 is summable by the dominated convergence Theorem

(Lemma 9.1).
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Consider now the function 𝑢𝑖 (·, 𝑥 (·)). Assumption 5.2(ii) gives that there is a 𝑔 ∈ ℓ1(Ω) such

that |𝑢𝑖 (𝜔, 𝑥 (𝜔)) | ≤ 𝑔(𝜔) for every𝜔 ∈ Ω. But then, the dominated convergence Theorem (Lemma

9.1) gives that 𝑢 (·, 𝑥 (·)) is summable.

For the last point, fix a �̂� ∈ Ω and observe that 𝑣𝑖 (𝑥 |G) (�̂�) corresponds to the result of evalu-

ating the function 𝑢𝑖 (·, 𝑥 (·)) (as a function in ℓ1(Ω)) at 𝑞𝑖 (· |G(�̂�)) (as a function in ℓ1(Ω)) via the

standard duality map. In fact:

𝑣𝑖 (𝑥 |G) (�̂�) =
∑︁
𝜔

𝑢𝑖 (𝜔, 𝑥 (𝜔)) 𝑞𝑖 (𝜔 |G(�̂�)) = ⟨𝑢𝑖 (·, 𝑥 (·)) , 𝑞𝑖 (· |G(�̂�))⟩ .

where ⟨·, ·⟩ is the standard duality map between ℓ1(Ω) and ℓ∞(Ω).

Lemma 9.5 Under Assumptions 5.1(ii) and 5.2(i)-(ii), suppose that:

•

{
𝑥𝑡 : 𝑡 ∈ 𝑇

}
is a sequence in ℓ𝑋𝑖

that converges to a 𝑥∗ ∈ ℓ𝑋𝑖
in norm,

•

{
G𝑡

: 𝑡 ∈ 𝑇
}
is an increasing sequence of 𝜎-algebras on Ω, and G∗ =

∨
𝑡 ∈𝑇 G𝑡 .

Then
{
𝑣𝑖

(
𝑥𝑡 |G𝑡

)
(·) : 𝑡 ∈ 𝑇

}
converges to 𝑣𝑖 (𝑥∗ |G∗) (·) pointwise.

Proof. Fix a �̂� ∈ Ω. By point (3) in Lemma 9.4, we may write 𝑣𝑖
(
𝑥𝑡 |G𝑡

)
(�̂�) and 𝑣𝑖 (𝑥∗ |G∗) (�̂�) in

the form:

𝑣𝑖
(
𝑥𝑡 |G𝑡

)
(�̂�) =

〈
𝑢𝑖

(
·, 𝑥𝑡 (·)

)
, 𝑞𝑖

(
· |G𝑡

)
(�̂�)

〉
, 𝑣𝑖 (𝑥∗ |G∗) (�̂�) = ⟨𝑢𝑖 (·, 𝑥∗(·)) , 𝑞𝑖 (· |G∗) (�̂�)⟩ (5)

where ⟨·, ·⟩ denotes the dual evaluation map between ℓ1(Ω) and ℓ∞(Ω). We already know that

𝑞𝑖
(
· |G𝑡 (𝜔)

)
→ 𝑞𝑖 (· |G∗(𝜔)) in ℓ∞(Ω) (Lemma 9.4). If we knew that 𝑢𝑖

(
·, 𝑥𝑡 (·)

)
→ 𝑢∗ (·, 𝑥∗(·)) in

ℓ1(Ω), then Equation (5) would give:

lim

𝑡
𝑣𝑖

(
𝑥𝑡 |G𝑡

)
(�̂�) = lim

𝑡

〈
𝑢

(
·, 𝑥𝑡 (·)

)
, 𝑞𝑖

(
·|𝐺𝑡

)〉
= ⟨𝑢 (·, 𝑥∗(·)) , 𝑞𝑖 (·|𝐺∗)⟩ = 𝑣𝑖 (𝑥∗ |G∗) (�̂�)

by the joint continuity of the map ⟨·, ·⟩.
So we only hage to prove that

{
𝑢𝑖

(
·, 𝑥𝑡 (·)

)
: 𝑡 ∈ 𝑇

}
converges to 𝑢∗ (·, 𝑥∗(·)) in ℓ1(Ω). By as-

sumption, 𝑥𝑡 → 𝑥∗ in norm, and hence pointwise. Being 𝑢𝑖 (𝜔, ·) continuous for every 𝜔 ∈ Ω (As-

sumption 5.2(i)), it must be that 𝑢𝑖
(
𝜔, 𝑥𝑡 (𝜔)

)
→ 𝑢𝑖 (𝜔, 𝑥∗(𝜔)). The sequence

{
𝑢

(
·, 𝑥𝑡 (·)

)
: 𝑡 ∈ 𝑇

}
converges pointwise to 𝑢𝑖 (·, 𝑥∗(·)), and it is dominated by a summable 𝑔 ∈ ℓ1(Ω) by Assumption

5.2(iii). An application of the Theorem of dominated convergence (Lemma 9.1) gives that𝑢𝑖 (·, 𝑥∗(·))
is summable and that it is the limit of

{
𝑢

(
·, 𝑥𝑡 (·)

)
: 𝑡 ∈ 𝑇

}
in the ℓ1-norm. This concludes the proof.
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