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In this paper, we deal with the problem of preserving the copula property by means of a 
transformation called distortion where automorphisms of the real unit interval are involved. A 
new methodological approach is followed by resorting to a special branch of group theory. The 
crucial role of absolute continuity of one-dimensional sections of a distorted copula is illustrated. 
Some necessary and sufficient conditions concerning the automorphisms which preserve the 
copula property for a large class of bivariate copulas are proved. Several examples are presented.

1. Introduction

Copulas have become a widespread tool successfully applied in diverse fields where multivariate dependence is of interest (see 
[9,17,23,26] for a thorough exposition). For this reason, it is desirable to have a large collection of methods able to produce new 
families of copulas. Probably, the most popular family of copulas is that of Archimedean copulas (see e.g. [9]). A 𝑑-dimensional strict
Archimedean copula 𝐶 may be represented in terms of a multiplicative generator ℎ in the form

𝐶(𝑢1,… , 𝑢𝑑 ) = ℎ(Π(ℎ−1(𝑢1),… , ℎ−1(𝑢𝑑 ))),

where ℎ is an automorphism of the real unit interval, ℎ−1 is its inverse and Π is the product copula. A possible way to generalize this 
representation is to replace the product with an arbitrary copula. In other terms, given a copula 𝐶 and an automorphism ℎ, we can 
produce a new function 𝐶ℎ ∶ 𝕀𝑑 → 𝕀 defined as

𝐶ℎ(𝑢1,… , 𝑢𝑑 ) = ℎ(𝐶(ℎ−1(𝑢1),… , ℎ−1(𝑢𝑑 ))).

This type of construction has its origins in the study of distorted probability distribution functions (see [5] and the references therein). 
For this reason, in the literature the function 𝐶ℎ is often referred to as distorted copula (by means of ℎ). The study of distorted copulas, 
almost exclusively devoted to the bivariate case, can boast a long list of contributions: see, among others, [2–4,7,8,11,12,14,18,21].

In this paper, we deal with the problem of determining the set Θ(𝐶) of automorphisms of the real unit interval which ensure that 
the distortion of a fixed copula 𝐶 by means of any ℎ ∈Θ(𝐶) is still a copula. As far as we know, such problem has never received any 
systematic treatment in the literature. We highlight the methodological novelty of using some tools strictly connected to a special 
branch of group theory, illustrated in Section 2. In Section 3, we introduce the notion of distortion with regard to semi–copulas. 
In Section 4, we tackle our problem by employing classical results recalled in Section 2. In Section 5, the problem of the absolute 
continuity of one-dimensional sections of a distorted copula is discussed. Finally, in Section 6, we analyze some properties which 
ensure that the distortion preserves the property of being a copula for a relevant class of bivariate copulas. Particularly, when we 
consider the family of Marshall-Olkin copulas (see, e.g., [23]) and a large subclass of semilinear copulas (see [10,19]), we provide a 
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characterization theorem of the automorphisms by which the distortion preserves the copula property. The proofs of the main results 
may be found in the appendices.

2. Group action

In this section, we recall the notion of group action and some related aspects (see, for instance, [25]). The reader is assumed to be 
acquainted with the basic notions of group and semigroup. We warn the reader that, for any pair (𝐴, 𝐵) of arbitrary sets, the notation 
𝐴 ⊂ 𝐵 means that 𝐴 is a proper subset of 𝐵.

Definition 2.1. Let 𝐺 be a group and 𝑋 a non-empty set. A left action is a function 𝛼 ∶𝐺 ×𝑋→𝑋, denoted by 𝛼(𝑔, 𝑥) = 𝑔 ⋅ 𝑥, such 
that:

(i) 𝑒 ⋅ 𝑥 = 𝑥 for every 𝑥 ∈𝑋, where 𝑒 denotes the identity element of the group 𝐺;
(ii) (𝑔ℎ) ⋅ 𝑥 = 𝑔 ⋅ (ℎ ⋅ 𝑥), for every 𝑥 ∈𝑋 and for any 𝑔, ℎ ∈𝐺, where 𝑔ℎ denotes the product in 𝐺 of the elements 𝑔 and ℎ.

One also says that 𝐺 acts on 𝑋.

In Definition 2.1, the elements of 𝐺 “act” on the left. A right action of 𝐺 on 𝑋 may be defined analogously. In both cases, 𝑋
is called a 𝐺-set. In the following, we shall reserve the symbol 𝑋 exclusively for a 𝐺-set. To avoid a cumbersome notation, we will 
omit the “dot” to denote the image under the action map 𝛼 of a pair (𝑔, 𝑥) and write just 𝑔𝑥 instead. With this “abuse of notation”, 
condition (ii) of Definition 2.1 becomes (𝑔ℎ)𝑥 = 𝑔(ℎ𝑥), which just resembles the “associativity” for the multiplication operation in 
the definition of a group. Be warned however that this simplified notation may in some contexts be ambiguous and confusing.

Definition 2.2. Fixing any 𝑥 ∈𝑋, the stabilizer of 𝑥, denoted by 𝑆𝑡(𝑥), is the subset of 𝐺 given by

𝑆𝑡(𝑥) = {𝑔 ∈𝐺 ∶ 𝑔𝑥 = 𝑥}.

It is not difficult to see that the stabilizer of any 𝑥 ∈𝑋 is a subgroup of 𝐺.

Definition 2.3. Fixing any 𝑥 ∈𝑋, the orbit of 𝑥, denoted by (𝑥), is the subset of 𝑋 given by

(𝑥) = {𝑔𝑥 ∶ 𝑔 ∈𝐺}.

It is well-known that the orbits of 𝑋 form a partition whose associated equivalence relation on 𝑋 is given by 𝑥 ∼ 𝑦 if, and only if, 
𝑦 = 𝑔𝑥 for some 𝑔 ∈𝐺.

The next elementary property concerns the stabilizer of two elements belonging to the same orbit (see, for instance, [25, Exercise 
3.37]).

Proposition 2.4. If 𝑥 ∈𝑋 and 𝑔 ∈𝐺, then 𝑆𝑡(𝑔𝑥) = {𝑔ℎ𝑔−1 ∶ ℎ ∈ 𝑆𝑡(𝑥)}.

Corollary 2.5. If the stabilizer of an element 𝑥 ∈𝑋 is trivial, i.e. it reduces to the identity element, then every 𝑦 ∈(𝑥) has a trivial stabilizer.

As far as we know, the concepts and results below presented are new. In the sequel, let 𝑌 be a non-empty subset of 𝑋.

Definition 2.6. Fixing any 𝑦 ∈ 𝑌 , the 𝑌 -orbit of 𝑦, denoted by 𝑌 (𝑦), is defined as 𝑌 (𝑦) =(𝑦) ∩ 𝑌 .

Remark 2.7. Notice that the family of 𝑌 -orbits is a partition of 𝑌 as a straightforward consequence of the fact that the orbits of 𝑋
form a partition.

We are particularly interested to a special class of subsets of 𝐺 strictly connected to 𝑌 .

Definition 2.8. Given any 𝑦 ∈ 𝑌 , the generalized stabilizer of 𝑦 (with respect to 𝑌 ), denoted by 𝐺𝑌 (𝑦), is the subset of 𝐺 given by

𝐺𝑌 (𝑦) = {𝑔 ∈𝐺 ∶ 𝑔𝑦 ∈ 𝑌 }.

It is immediate to see that

𝑆𝑡(𝑦) ⊆𝐺𝑌 (𝑦) for all 𝑦 ∈ 𝑌 . (2.1)
2

Given any 𝑦 ∈ 𝑌 , let Ψ𝑦 ∶𝐺𝑌 (𝑦) → 𝑌 be defined as Ψ𝑦(𝑔) = 𝑔𝑦. Denote by 𝑅𝑎𝑛(Ψ𝑦) the range of Ψ𝑦.
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Lemma 2.9. Let 𝑦 ∈ 𝑌 . Then, 𝑌 (𝑦) =𝑅𝑎𝑛(Ψ𝑦).

Proof. If 𝑧 ∈𝑌 (𝑦), then, by Definition 2.6, we have that both 𝑧 ∈ 𝑌 and 𝑧 = 𝑔𝑦 for some 𝑔 ∈𝐺, which amounts to 𝑔 ∈𝐺𝑌 (𝑦), and, 
hence, 𝑌 (𝑦) ⊆𝑅𝑎𝑛(Ψ𝑦). The converse is immediate. □

Let 𝐴 be a non-empty subset of 𝐺. Given any 𝑔 ∈𝐺, denote by 𝐴𝑔 the subset of 𝐺 given by 𝐴𝑔 = {𝑎𝑔 ∶ 𝑎 ∈𝐴}.

Proposition 2.10. Let 𝑦 ∈ 𝑌 and ℎ ∈𝐺𝑌 (𝑦). Then, 𝐺𝑌 (ℎ𝑦) =𝐺𝑌 (𝑦)ℎ−1.

Proof. The first step of the proof is the inclusion 𝐺𝑌 (ℎ𝑦) ⊆ 𝐺𝑌 (𝑦)ℎ−1: if 𝑓 ∈ 𝐺𝑌 (ℎ𝑦), then 𝑓 (ℎ𝑦) = (𝑓ℎ)𝑦 ∈ 𝑌 . This means that 
𝑓ℎ = 𝑔 for some 𝑔 ∈ 𝐺𝑌 (𝑦) and, hence, 𝑓 = 𝑔ℎ−1, so closing the first step. Conversely, if 𝑓 ∈ 𝐺𝑌 (𝑦)ℎ−1, then 𝑓 = 𝑔ℎ−1 for some 
𝑔 ∈𝐺𝑌 (𝑦). Thus, 𝑓 (ℎ𝑦) = 𝑔ℎ−1(ℎ𝑦) = (𝑔ℎ−1ℎ)𝑦 = 𝑔𝑦 and the claim now follows from 𝑔 ∈𝐺𝑌 (𝑦). □

Proposition 2.11. Let 𝐴 be a non-empty subset of 𝐺. Suppose that 𝐴 satisfies the following condition:

𝑎−1 ∉𝐴 for every 𝑎 ∈𝐴 such that 𝑎 ≠ 𝑒. (2.2)

Then, for any 𝑦 ∈ 𝑌 there exists at most one 𝑧 ∈𝑌 (𝑦) such that 𝐺𝑌 (𝑧) =𝐴.

Proof. Suppose ab absurdo that there exist 𝑧, 𝑤 ∈ 𝑌 (𝑦) such that 𝑧 ≠ 𝑤 and 𝐺𝑌 (𝑧) = 𝐺𝑌 (𝑤) = 𝐴. By Lemma 2.9, 𝑧 = 𝑔𝑦 and 
𝑤 = ℎ𝑦 for some 𝑔, ℎ ∈ 𝐺𝑌 (𝑦): further, 𝑧 ≠𝑤 implies 𝑔 ≠ ℎ. Therefore, the previous proposition leads to 𝐴 = 𝐺𝑌 (𝑦)𝑔−1 = 𝐺𝑌 (𝑦)ℎ−1
or, equivalently 𝐺𝑌 (𝑦) = 𝐴𝑔 = 𝐴ℎ. Since 𝑔 ∈ 𝐺𝑌 (𝑦), 𝐺𝑌 (𝑦) = 𝐴ℎ implies 𝑔 = 𝑎ℎ for some 𝑎 ∈ 𝐴: observe that 𝑔 ≠ ℎ entails 𝑎 ≠ 𝑒. 
Analogously, ℎ = 𝑏𝑔 for some 𝑏 ∈ 𝐴. Then, 𝑔 = 𝑎𝑏𝑔 and consequently 𝑎𝑏 = 𝑒, so 𝑎 ∈ 𝐴 ⧵ {𝑒} and 𝑎−1 = 𝑏 ∈ 𝐴, which contradicts 
eq. (2.2), so closing the proof. □

If 𝐺𝑌 (𝑦) coincides with a particular subset of 𝐺, we have an interesting result concerning the stabilizer of 𝑦.

Proposition 2.12. Let 𝐴 be a non-empty subset of 𝐺. Assume that 𝐺𝑌 (𝑦) = 𝐴 for some 𝑦 ∈ 𝑌 . Suppose that eq. (2.2) holds. Then, the 
stabilizer of 𝑦 is trivial.

Proof. Suppose ab absurdo that there exists an ℎ ∈ 𝑆𝑡(𝑦) ⧵ {𝑒}. By eq. (2.1) and the assumption 𝐺𝑌 (𝑦) =𝐴, we infer that ℎ ∈𝐴 ⧵ {𝑒}. 
Since 𝑆𝑡(𝑦) is a subgroup, also ℎ−1 ∈ 𝑆𝑡(𝑦) ⧵ {𝑒}, hence, for the above reasons, ℎ−1 ∈𝐴 ⧵ {𝑒}. Consequently, both ℎ and ℎ−1 belong 
to 𝐴 ⧵ {𝑒} in contradiction to eq. (2.2). □

3. Distortion of semi–copulas

The main purpose of this section is to show that the distortion of semi–copulas may be considered as a particular group ac-
tion. We start with some suitable notation and basic definitions. Let 𝕀 = [0, 1]: the symbol 𝕀𝑑 denotes the Cartesian product of 
𝑑 copies of 𝕀, for any 𝑑 ∈ ℕ such that 𝑑 ≥ 2. Let ℕ𝑑 ∶= {1, … , 𝑑}. We will follow the vector notation for any point in 𝕀𝑑 , e.g. 
u = (𝑢1, … , 𝑢𝑑 ). Let u−𝑗 ∶= (𝑢1, … , 𝑢𝑗−1, 𝑢𝑗+1, … , 𝑢𝑑 ) for any u ∈ ℝ𝑑 and any 𝑗 ∈ ℕ𝑑 : clearly, u−𝑗 ∈ ℝ𝑑−1. For brevity, the notation 
u𝑗 (𝑡) ∶= (𝑢1, … , 𝑢𝑗−1, 𝑡, 𝑢𝑗+1, … , 𝑢𝑑 ) will be exclusively adopted for 𝑡 ∈ 𝕀 and for u−𝑗 ∈ 𝕀𝑑−1. If 𝐹 is any real function defined on 𝕀𝑑 , 
let 𝐷𝑘𝐹 (u) be, whenever and wherever it exists, the partial derivative of 𝐹 with respect to the 𝑘-th variable at u ∈ 𝕀𝑑 . The Lebesgue 
measure on the real line will be denoted by 𝜆; it is intended that a zero measure set (or null set) 𝐸 ⊂ℝ verifies 𝜆(𝐸) = 0. Throughout 
the paper, ℎ is an automorphism of the real unit interval, i.e. an increasing bijection from 𝕀 to 𝕀, and denote by ℎ−1 its inverse. 
Given any ℎ and any u ∈ 𝕀𝑑 , let ℎ(u) ∶= (ℎ(𝑢1), … , ℎ(𝑢𝑑 )). Let Θ be the set of automorphisms of 𝕀: notice that Θ, equipped with the 
composition operator, is a group. For the sake of simplicity, the composition 𝑔◦ℎ of two elements 𝑔, ℎ ∈ Θ will be simply denoted 
by 𝑔ℎ, where, as usual, ℎ is acting first: further, 𝑒 is the identity element of Θ. Let Θ𝑐 be the subset of Θ given by the convex 
automorphisms. Let Θ𝑎𝑐 be the subset of Θ given by the absolutely continuous automorphisms. Finally, let Θ∗ be the subset of Θ
such that ℎ ∈Θ∗ if, and only if, both ℎ and ℎ−1 belong to Θ𝑎𝑐 .

Let us recall the notion of semi–copula.

Definition 3.1. A function 𝑆 ∶ 𝕀𝑑 → 𝕀 is called a (𝑑-dimensional) semi–copula if it satisfies the following conditions:

(S1) 𝑆(1, … , 1, 𝑢𝑗 , 1. … , 1) = 𝑢𝑗 for every 𝑗 ∈ℕ𝑑 and 𝑢𝑗 ∈ 𝕀;
(S2) 𝑆 is increasing in each place.

It is easy to see that (S1) and (S2) imply
3

(S3) 𝑆(u) = 0, if 𝑢𝑗 = 0 for some 𝑗 ∈ ℕ𝑑 .
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Let 𝑑 be the class of semi-copulas of dimension 𝑑.

Definition 3.2. Let ℎ ∈ Θ. Let 𝑆 ∈ 𝑑 . We call distortion of 𝑆 (by means of ℎ) the mapping 𝑆ℎ ∶ 𝕀𝑑 → 𝕀 defined by

𝑆ℎ(u) ∶= ℎ(𝑆(ℎ−1(𝑢1),… , ℎ−1(𝑢𝑑 ))).

It is not difficult to see that the distortion preserves both (S1) and (S2) (see, for instance, [7, Theorem 2.2]), hence 𝑆ℎ is always 
a semi–copula. Further, if 𝑆 is continuous, so is 𝑆ℎ.

Now, we show that the distortion of semi–copulas is a particular case of a left action. From now on, unless otherwise stated, we 
identify the group 𝐺 and the set 𝑋 of Definition 2.1 with Θ and 𝑑 , respectively.

Proposition 3.3. The mapping 𝛼 ∶ Θ × 𝑑 → 𝑑 such that 𝛼(ℎ, 𝑆) = 𝑆ℎ is a left action.

Proof. We have to show that the two properties (i)-(ii) given in Definition 2.1 are satisfied by the function 𝛼 above defined. The first 
property is trivial. The second one amounts to (𝑆ℎ)𝑔 = 𝑆𝑔ℎ. According to Definition 3.2, we have that

(𝑆ℎ)𝑔(u) = 𝑔(𝑆ℎ(𝑔−1(𝑢1),… , 𝑔−1(𝑢𝑑 ))) = 𝑔ℎ(𝑆(ℎ−1𝑔−1(𝑢1),… , ℎ−1𝑔−1(𝑢𝑑 )))

and the claim now follows from the fact that ℎ−1𝑔−1 = (𝑔ℎ)−1. □

To the best of my knowledge, in [7] Durante and Sempi were the first to show that the distortion of semi–copulas is a special 
group action: in that case, since the authors adopted a different representation of distortion where the role of the automorphism ℎ
and its inverse is interchanged, they dealt with a right action.

4. Distortion of copulas

In the previous section, we showed that any distorted semi–copula is still a semi–copula. The same does not occur with copulas. 
First of all, let us recall the notion of 𝑑-copula.

Definition 4.1. Let R be the cartesian product [𝑎1, 𝑏1] ×… × [𝑎𝑑, 𝑏𝑑 ] of 𝑑 real intervals contained in 𝕀. Let 𝐹 ∶ 𝕀𝑑 →ℝ. We say that 
the volume of R (with respect to 𝐹 ) is given by

𝑉𝐹 (R) =
∑

c

(−1)𝑆(c)𝐹 (c),

where c = (𝑐1, … , 𝑐𝑑 ) is such that each 𝑐𝑗 is equal to either 𝑎𝑗 or 𝑏𝑗 and 𝑆(c) is the cardinality of the set {𝑗 ∈ℕ𝑑 ∶ 𝑐𝑗 = 𝑎𝑗}.

Definition 4.2. A function 𝐶 ∶ 𝕀𝑑 → 𝕀 is 𝑑-increasing if, and only if, 𝑉𝐶 (𝑅) ≥ 0 for every cartesian product 𝑅 of 𝑑 real intervals in 𝕀.

Definition 4.3. A function 𝐶 ∶ 𝕀𝑑 → 𝕀 is called a (𝑑-dimensional) copula if it is 𝑑-increasing and fulfills the border conditions (S1) and 
(S3).

Let 𝑑 be the class of 𝑑-copulas: it is well-known that 𝑑 ⊂ 𝑑 . It is quite easy to see that a distorted copula 𝐶ℎ is still a copula if, 
and only if, the distortion by ℎ preserves the 𝑑-increasingness property.

Definition 4.4. Let ℎ ∈ Θ. We say that ℎ is 𝑑-copula preserving if

𝐶ℎ ∈ 𝑑 for any 𝐶 ∈ 𝑑 .

In general, the class of 𝑑-copula preserving automorphisms is very restricted. If we consider, for instance, bivariate copulas, we 
have the following result.

Theorem 4.5. (Klement et al. [18]) The class of 2-copula preserving automorphisms is given by Θ𝑐 .

However, this does not exclude that, for a fixed copula, its distortion is still a copula even if we use a non–convex automorphism, 
as we will show in a later example. This crucial remark leads us to weaken the notion of copula preserving automorphism in the 
following way.
4

Definition 4.6. Let 𝐶 ∈ 𝑑 . We say that ℎ is 𝐶 -preserving if 𝐶ℎ ∈ 𝑑 .
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Let 𝐶 be a fixed copula. A natural question arises: what is the subset Θ(𝐶) of Θ, depending on 𝐶 , given by the 𝐶 -preserving 
automorphisms? This was exactly the open problem posed by Durante and Sempi in [7], even if limited to bivariate copulas. What 
does the literature tell us about this problem? First of all, it is trivial to see that every ℎ is 𝑀 -preserving, where 𝑀 is the minimum. 
With regard to bivariate copulas, we have the following results:

(i) ℎ is 𝑊 -preserving if, and only if, ℎ ∈Θ𝑐 , where 𝑊 (𝑢, 𝑣) =𝑚𝑎𝑥{0, 𝑢 + 𝑣 − 1} (see the proof of Theorem 2.4 in [18]);
(ii) ℎ is Π-preserving if, and only if, logℎ−1 is concave (see [3, p. 318]);
(iii) the class of 𝐶 -preserving functions includes the convex ones for every copula 𝐶 (see Theorem 4.5).

Before proceeding with the multivariate case, let us introduce two types of monotonicity for any 𝑓 ∶ 𝐽 →ℝ, where 𝐽 ⊆ℝ is an open 
interval.

Definition 4.7. We say that 𝑓 is 𝑑-monotone if

(D1) it is differentiable up to order 𝑑 − 2;
(D2) its derivatives satisfy (−1)𝑘 ⋅ 𝑓 (𝑘)(𝑥) ≥ 0 for all 𝑘 = 0, … , 𝑑 − 2 and every 𝑥 ∈ 𝐽 ;
(D3) (−1)𝑑−2 ⋅ 𝑓 (𝑑−2) is decreasing and convex.

Definition 4.8. We say that 𝑓 is 𝑑-absolutely monotone if

(A1) it is differentiable up to order 𝑑;
(A2) its derivatives satisfy 𝑓 (𝑘)(𝑥) ≥ 0 for all 𝑘 ∈ ℕ𝑑 ∪ {0} and every 𝑥 ∈ 𝐽 .

With regard to multivariate copulas, we have the following results:

(iv) ℎ is Π-preserving if, and only, the function ℎ(𝑒−𝑡) is 𝑑-monotone on ]0, +∞[; (see [20, Theorem 2.2]);
(v) the class of 𝐶 -preserving functions includes the 𝑑-absolutely monotone ones on ]0, 1[ for every copula 𝐶 (see [21, Theorem 

4.7]).

An easy consequence of Definition 4.7 and Definition 4.8 is that if a function 𝑓 is 𝑑-monotone (resp. 𝑑-absolutely monotone) for 
some 𝑑 ≥ 3, it is also 𝑘-monotone (resp. 𝑘-absolutely monotone) for any 2 ≤ 𝑘 ≤ 𝑑.

Remark 4.9. In the bivariate case, (iv) means that ℎ(𝑒−𝑡) is convex on ]0, +∞[ and, hence, (iv) is equivalent to the log-concavity of 
ℎ−1. Moreover, observe that a 2-absolutely monotone function is convex, hence any 𝑑-absolutely monotone function is necessarily 
convex.

Now, we are ready to transpose notions and results of the second part of Section 2 to our setting. To this purpose, from now on 
we will identify the set 𝑌 with 𝑑 . Let us begin with Definition 2.6.

Definition 4.10. Let 𝐶 be a copula. The 𝑑 -orbit of 𝐶 , simply denoted by (𝐶), is the subset of 𝑑 given by

{𝐶ℎ ∶ ℎ ∈Θ} ∩ 𝑑 .

In the sequel, we will refer to the 𝑑 -orbit of 𝐶 simply as orbit of 𝐶 . According to Remark 2.7, any copula belongs to one and 
only one orbit. Based on Definition 2.2, the stabilizer of a copula 𝐶 is the subset of Θ(𝐶) given by 𝑆𝑡(𝐶) = {ℎ ∈ Θ(𝐶) ∶ 𝐶ℎ = 𝐶}. In 
other terms, ℎ ∈ 𝑆𝑡(𝐶) is equivalent to saying that ℎ satisfies the following functional equation in 𝑑 variables:

𝐶(ℎ−1(u)) = ℎ−1(𝐶(u)) for all u ∈ 𝕀𝑑 .

Following Definition 2.8, it is not difficult to see that the generalized stabilizer of a copula 𝐶 is nothing but Θ(𝐶). By Lemma 2.9, for 
any 𝐶 ∈ 𝑑 we have that

(𝐶) = {𝐶ℎ ∶ ℎ ∈Θ(𝐶)}. (4.1)

Now, let us focus on a single orbit and suppose that there exists a representative 𝐶 with the property that we have partial (resp. 
full) knowledge of Θ(𝐶). By means of Proposition 2.10, we can show that we also have partial (resp. full) knowledge of Θ(𝑇 ) for any 
copula 𝑇 belonging to the orbit of 𝐶 .

Proposition 4.11. Let 𝐶 be a copula. Let 𝑇 be a copula belonging to the orbit of 𝐶 . Then, there exists ℎ ∈Θ(𝐶) such that
5

Θ(𝑇 ) = {𝑔ℎ−1 ∶ 𝑔 ∈Θ(𝐶)}.
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Proof. Let 𝑇 be a copula such that 𝑇 ∈ (𝐶). Due to eq. (4.1), there exists ℎ ∈ Θ(𝐶) such that 𝑇 = 𝐶ℎ. The claim is now a 
straightforward consequence of Proposition 2.10. □

Example 4.12. Let 𝑇 ∶ 𝕀2 → 𝕀 be the function defined as

𝑇 (𝑢, 𝑣) = max{0, (
√
𝑢+

√
𝑣− 1)2}

It is easy to see that 𝑇 is the distortion of 𝑊 by means of ℎ(𝑡) = 𝑡2, hence it is a copula belonging to the orbit of 𝑊 by (iii). Since 
Θ(𝑊 ) =Θ𝑐 , owing to Proposition 4.11 we conclude that every 𝑇 -preserving 𝑓 is of the type 𝑓 (𝑡) = 𝑔(

√
𝑡) for any 𝑔 ∈Θ𝑐 .

Example 4.13. Let 𝑇 ∶ 𝕀3 → 𝕀 be the function defined as

𝑇 (𝑢, 𝑣,𝑤) = 8𝑢𝑣𝑤
2 + 2𝑢+ 2𝑣+ 2𝑤+ 2𝑢𝑣+ 2𝑢𝑤+ 2𝑣𝑤− 6𝑢𝑣𝑤

It is only a matter of calculations to check that 𝑇 is the distortion of Π by means of the automorphism ℎ(𝑡) = 𝑡∕(2 − 𝑡). Set 𝜑(𝑡) ∶=
ℎ(𝑒−𝑡) as 𝑡 > 0. Clearly 𝜑 is infinitely differentiable: moreover, after easy computations, one finds that 𝜑′(𝑡) = −2𝑒−𝑡∕(2 − 𝑒−𝑡)2, 
𝜑′′(𝑡) = 2𝑒−𝑡(2 + 𝑒−𝑡)∕(2 − 𝑒−𝑡)3 and finally 𝜑′′′(𝑡) = −2𝑒−𝑡(𝑒−2𝑡 + 8𝑒−𝑡 + 4)∕(2 − 𝑒−𝑡)4. Consequently, according to Definition 4.7, 𝜑 is 
3-monotone and, hence, 𝑇 is a copula belonging to the orbit of Π. Therefore, if we apply Proposition 4.11, we conclude that every 
𝑇 -preserving 𝑓 is of the type

𝑓 (𝑡) = 𝑔
( 2𝑡
1 + 𝑡

)
for any 𝑔 ∈Θ such that 𝑔(𝑒−𝑡) is 3-monotone on ]0, +∞[.

The next definition aims to formalize the notion of indistinguishability between copulas from the point of view of their sets of 
preserving automorphisms.

Definition 4.14. Let 𝐶, 𝑇 ∈ 𝑑 . We say that 𝐶 and 𝑇 are 𝐷-equivalent if Θ(𝐶) =Θ(𝑇 ).

This notion is quite intriguing, because it opens up a series of non-trivial problems. The first one is that, in general, we do not 
know whether a certain copula 𝐶 admits 𝐷-equivalent copulas. For example, a bivariate copula 𝐶 is 𝐷-equivalent to 𝑊 if Θ(𝐶) =Θ𝑐 . 
Is there such a copula? The next theorem provides an affirmative answer: the crucial step of the proof is based upon a characterization 
of convexity for real continuous functions of one variable which is of independent interest.

Proposition 4.15. Let 𝑓 ∶ ]𝑎, 𝑏[→ ℝ be a continuous function, where −∞ ≤ 𝑎 < 𝑏 ≤ ∞. Then, 𝑓 is convex if, and only if, for any 
𝑥1, 𝑥2 ∈ ]𝑎, 𝑏[ such that 𝑥1 < 𝑥2, there exists a 𝛿 = 𝛿(𝑥1, 𝑥2) > 0 such that

𝑓 (𝑥2) − 𝑓 (𝑥1) ≤ 𝑓 (𝑥2 + 𝑡) − 𝑓 (𝑥1 + 𝑡) for all 𝑡 ∈ ]0, 𝛿[.

Proof is in Appendix A
Now, we are ready to formulate the main theorem. Preliminarily, observe that the function 𝐶 1

2 ,
1
2
∶ 𝕀2 → 𝕀 defined as

𝐶 1
2 ,

1
2
(𝑢, 𝑣) = 𝑀(𝑢, 𝑣) +𝑊 (𝑢, 𝑣)

2

belongs to a two-parameter family of copulas due to Fréchet (see, e.g., [23, Exercise 2.4]).

Theorem 4.16. The copula 𝐶 1
2 ,

1
2

is 𝐷-equivalent to 𝑊 .

Proof is in Appendix B
The notion of 𝐷-equivalence, being clearly an equivalence relation on the set of copulas, induces a partition of 𝑑 . An interesting 

problem concerns the relationship between such partition and the one given by the orbits (see Remark 2.7). Particularly, the question 
is: provided that 𝐶 and 𝑇 are D-equivalent, do they necessarily belong to different orbits? This is still an open problem. In some 
cases, the answer is in the affirmative.

Corollary 4.17. Let 𝐶 ≠𝑊 be a copula 𝐷-equivalent to 𝑊 . Then, 𝐶 does not belong to (𝑊 ).

Proof. Since Θ𝑐 =Θ(𝑊 ) =Θ(𝐶), the claim is a direct consequence of Proposition 2.11, with 𝐴 =Θ𝑐 . □
6

The next result is a straightforward consequence of Proposition 4.11, hence the proof will be omitted.



Fuzzy Sets and Systems 484 (2024) 108947R. Ghiselli Ricci

Corollary 4.18. Let 𝐶 and 𝑇 be 𝐷-equivalent copulas. Then, 𝐶ℎ is 𝐷-equivalent to 𝑇ℎ for every ℎ ∈Θ(𝐶).

5. Absolute continuity of sections of distorted copulas

Let 𝐶ℎ be a distorted copula such that the function 𝑡 ↦ 𝐶ℎ(u𝑗 (𝑡)) is invertible on a subdomain of the kind [𝑎, 1] for some 𝑎 ∈ [0, 1[: 
in this section, we are interested in studying the assumptions on ℎ and 𝐶 which ensure that 𝑡 ↦ 𝐶ℎ(u𝑗 (𝑡)) and its inverse are 
absolutely continuous. To this purpose, we need to recall a classical result and a few basic facts on absolutely continuous functions. 
The next theorem is due to M. A. Zarecki (see, e.g., [22]).

Theorem 5.1. Let 𝑓 ∶ [𝑎, 𝑏] → [𝑐, 𝑑] be an increasing bijection that maps [𝑎, 𝑏] onto [𝑐, 𝑑]. Then, 𝑓−1 is absolutely continuous if, and only 
if, 𝜆({𝑥 ∈ [𝑎, 𝑏] ∶ 𝑓 ′(𝑥) = 0}) = 0.

Remark 5.2. Let 𝑓 ∶ [𝑎, 𝑏] →ℝ be an absolutely continuous function and 𝑔 ∶ [𝑐, 𝑑] → ℝ be an absolutely continuous function, with 
𝑓 ([𝑎, 𝑏]) ⊆ [𝑐, 𝑑]. If 𝑓 is monotone, then the composite function 𝑔◦𝑓 is absolutely continuous (see, e.g., [27, Problem 13.12]).

Remark 5.3. An absolutely continuous function maps null sets into null sets (see, e.g., [27, Theorem 13.8]).

Lemma 5.4. Let 𝑓 ∶ [𝑎, 𝑏] → [𝑐, 𝑑] be an increasing bijection that maps [𝑎, 𝑏] onto [𝑐, 𝑑] and suppose that 𝑓−1 is absolutely continuous. Let 
𝑔 ∶ [𝑐, 𝑑] → [𝑔(𝑐), 𝑔(𝑑)] be an increasing bijection. Then, the chain rule

(𝑔◦𝑓 )′(𝑡) = 𝑔′(𝑓 (𝑡)) ⋅ 𝑓 ′(𝑡)

holds for almost all 𝑡 ∈ [𝑎, 𝑏]. If 𝑔−1 is absolutely continuous, then (𝑔◦𝑓 )′ > 0 almost everywhere.

Proof. First of all, observe that both 𝑓 and 𝑔 have finite derivative almost everywhere. Let 𝑍 be the subset of [𝑐, 𝑑] where 𝑔′ does 
not exist or it is equal to ∞: as above remarked, 𝑍 is a null set. Observe that 𝑓 (𝑡) ∈ 𝑍 if, and only if, 𝑡 ∈ 𝑓−1(𝑍): according to 
Remark 5.3, we have 𝜆(𝑓−1(𝑍)) = 0. This immediately implies that the chain rule for the derivative of the composite function 𝑔◦𝑓
may be applied. Finally, under the assumption that 𝑔−1 is absolutely continuous, we obtain that 𝑓−1◦𝑔−1 is absolutely continuous 
(see Remark 5.2) and, hence, by Theorem 5.1 we obtain that (𝑔◦𝑓 )′ > 0 almost everywhere. □

For the sake of convenience, we adopt the alternative notation 𝜇𝑆,𝑗,u(𝑡) = 𝑆(u𝑗 (𝑡)), where 𝑆 is any semi–copula. First of all, 
𝜇𝑆,𝑗,u(0) = 0 by (S3); secondly, 𝜇𝑆,𝑗,u is increasing as a consequence of (S2), whence its derivative 𝜇′

𝑆,𝑗,u
(𝑡) exists for almost all 𝑡 ∈ 𝕀

and it coincides with 𝐷𝑗𝑆(u𝑗 (𝑡)). Henceforth, to avoid a cumbersome notation, we shall simply write 𝜇𝑆,u instead of 𝜇𝑆,𝑗,u unless 
ambiguity arises.

Remark 5.5. Let 𝐶 ∈ 𝑑 . Then, we emphasize that 𝜇𝐶,u is 1-Lipschitz and, hence, absolutely continuous for every 𝑗 ∈ ℕ𝑑 and every 
u−𝑗 ∈ 𝕀𝑑−1 (see, for instance, [9]).

Given any automorphism ℎ, from Definition 3.2 it follows that

𝜇𝑆ℎ,u
= ℎ◦𝜇𝑆,ℎ−1(u)◦ℎ

−1. (5.1)

By the above remark, it is clear that a necessary condition for ℎ to be 𝐶 -preserving is that 𝜇𝐶ℎ,u is absolutely continuous for every 
𝑗 ∈ℕ𝑑 and every u−𝑗 ∈ 𝕀𝑑−1. This is easy to show when both ℎ and ℎ−1 are absolutely continuous (ℎ ∈Θ∗, in symbols).

Lemma 5.6. Let 𝐶 ∈ 𝑑 . Assume that ℎ ∈Θ∗. Then, 𝜇𝐶ℎ,u is absolutely continuous for every 𝑗 ∈ℕ𝑑 and every u−𝑗 ∈ 𝕀𝑑−1.

Proof. In view of Remark 5.5, taking into account Remark 5.2, we infer that the composite function 𝜇𝐶,ℎ−1(u)◦ℎ−1 is absolutely 
continuous. Since 𝜇𝐶,ℎ−1(u)◦ℎ−1 is clearly increasing, by virtue of eq. (5.1) we may repeat the above argument with ℎ◦(𝜇𝐶,ℎ−1(u)◦ℎ−1), 
hence the claim is established. □

Let us introduce a special form of strict monotonicity for semi–copulas.

Definition 5.7. A semi–copula 𝑆 is said to be 𝑗-strictly monotone if, for any u−𝑗 ∈ 𝕀𝑑−1 and any 𝑡 ∈ ]0, 1[ such that 𝑆(u𝑗 (𝑡)) > 0, there 
holds 𝑆(u𝑗 (𝑡)) < 𝑆(u𝑗 (𝑡′)) for every 𝑡′ ∈ ]𝑡, 1]. A semi–copula 𝑆 is said to be jointly strictly monotone if it is 𝑗-strictly monotone for 
every 𝑗 ∈ℕ𝑑 .

Fix a semi–copula 𝑆 and let Γ𝑗 (𝑆) = {u−𝑗 ∈ 𝕀𝑑−1 ∶ 𝑆(u𝑗 (1)) > 0}. Evidently, owing to (S1), Γ𝑗(𝑆) is not empty. In general, Γ𝑗(𝑆)
is a strict subset of ]0, 1]𝑑−1 even if 𝑆 is a copula: consider for example the copula 𝐶(𝑢, 𝑣, 𝑤) =𝑊 (𝑢, 𝑣) ⋅𝑤 (see, e.g., [9, Remark 
7

1.5.3]). In this case, any (𝑢, 𝑣) ∈ 𝕀2 such that 𝑢 + 𝑣 ≤ 1 does not belong to Γ3(𝐶). Given any u−𝑗 ∈ Γ𝑗 (𝑆), let
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𝑎𝑆 (u−𝑗 ) ∶= inf{𝑡 ≤ 1 ∶ 𝑆(u𝑗 (𝑡)) > 0}.

It is trivial to see that 𝑎𝑆 (u−𝑗 ) ∈ [0, 1[ when 𝑆 is continuous. Moreover, 𝑆(u𝑗 (𝑡)) = 0 for every 𝑡 ∈ [0, 𝑎𝑆 (u−𝑗 )].

Remark 5.8. Observe that a continuous semi–copula 𝑆 is 𝑗-strictly monotone if, and only if, for any u−𝑗 ∈ Γ𝑗 (𝑆) we have that 𝜇𝑆,u
is an increasing bijection from [𝑎𝑆 (u−𝑗 ), 1] to [0, 𝜇𝑆,u(1)]. In this case, we denote its inverse from [0, 𝜇𝑆,u(1)] to [𝑎𝑆 (u−𝑗 ), 1] by 𝜇−1

𝑆,u
.

Let 𝑆 be a continuous, 𝑗-strictly monotone semi–copula and fix any u−𝑗 ∈ Γ𝑗 (𝑆): in the sequel, when we say that 𝜇𝑆,u is absolutely 
continuous, it is intended that the domain of 𝜇𝑆,u is [𝑎𝑆 (u−𝑗 ), 1]. Let 𝐶 be a 𝑗-strictly monotone copula: in view of Remark 5.5, we 
know that 𝜇𝐶,u is absolutely continuous for any u−𝑗 ∈ Γ𝑗 (𝐶). Now, the question is: when does the same property hold for 𝜇−1

𝐶,u
? The 

next result is completely based upon Theorem 5.1, so we can omit the proof.

Corollary 5.9. Let 𝐶 be a 𝑗-strictly monotone copula. Then, for every u−𝑗 ∈ Γ𝑗 (𝐶), 𝜇−1𝐶,u is absolutely continuous if, and only if, 𝜇′
𝐶,u

> 0
almost everywhere.

Let 𝐶 be a 𝑗-strictly monotone copula and consider the distorted copula 𝐶ℎ: due to eq. (5.1), it is easy to see that u−𝑗 ∈ Γ𝑗 (𝐶ℎ)
implies ℎ−1(u−𝑗 ) ∈ Γ𝑗 (𝐶). This leads to the following lemma.

Lemma 5.10. Let 𝐶 be a 𝑗-strictly monotone copula. Then, 𝐶ℎ is 𝑗-strictly monotone and 𝑎𝐶ℎ (u−𝑗 ) = ℎ(𝑎𝐶 (ℎ−1(u−𝑗 ))) for every u−𝑗 ∈
Γ𝑗 (𝐶ℎ)

Proof. Due to eq. (5.1), we deduce that 𝜇𝐶ℎ,u(𝑡) > 0 if, and only if, ℎ−1(𝑡) > 𝑎𝐶 (ℎ−1(u−𝑗 )) and this easily leads to 𝑎𝐶ℎ (u−𝑗 ) =
ℎ(𝑎𝐶 (ℎ−1(u−𝑗 ))). As a consequence, if we consider the restriction of ℎ−1 to the subdomain [𝑎𝐶ℎ (u−𝑗 ), 1], we infer that the composite 
function 𝜈 ∶ [𝑎𝐶ℎ (u−𝑗 ), 1] →ℝ given by 𝜈 = 𝜇𝐶,ℎ−1(u)◦ℎ−1 is well defined and strictly increasing, hence the claim is established. □

The main result of this section shows that, provided that 𝐶 is 𝑗-strictly monotone, the absolute continuity of 𝜇−1
𝐶,u

ensures the 
absolute continuity of 𝜇−1

𝐶ℎ,u
. A crucial step of the proof is the fact that the chain rule for differentiation may be applied in eq. (5.1)

or, in other terms, that the following property holds for some 𝑗 ∈ ℕ𝑑 , for every u−𝑗 ∈ Γ𝑗 (𝐶ℎ) and for almost all 𝑡 ∈ [𝑎𝐶ℎ (u−𝑗 ), 1]:

𝜇′
𝐶ℎ,u

(𝑡) = ℎ′(𝜇𝐶,ℎ−1(u)(ℎ
−1(𝑡))) ⋅ 𝜇′

𝐶,ℎ−1(u)(ℎ
−1(𝑡)) ⋅ (ℎ−1)′(𝑡). (5.2)

Proposition 5.11. Let 𝐶 be a 𝑗-strictly monotone copula. Assume that 𝜇−1
𝐶,u

is absolutely continuous for any u−𝑗 ∈ Γ𝑗 (𝐶). Let ℎ ∈ Θ∗. 
Then, 𝜇−1

𝐶ℎ,u
is absolutely continuous for every u−𝑗 ∈ Γ𝑗 (𝐶ℎ).

Proof. Let u−𝑗 ∈ Γ𝑗 (𝐶ℎ). If we adopt the notation introduced in the proof of Lemma 5.10, let 𝜈 be the increasing bijection from 
[𝑎𝐶ℎ (u−𝑗 ), 1] to [0, 𝜇𝐶,ℎ−1(u)(1)] given by 𝜈 = 𝜇𝐶,ℎ−1(u)◦ℎ−1. Note that both 𝜇𝐶,ℎ−1(u) and ℎ−1 are increasing bijections and, by as-
sumption, their inverse functions are absolutely continuous. Thus, Lemma 5.4 applies and one finds that

𝜈′(𝑡) = 𝜇′
𝐶,ℎ−1(u)

(ℎ−1(𝑡)) ⋅ (ℎ−1)′(𝑡) > 0

almost everywhere on [𝑎𝐶ℎ (u−𝑗 ), 1]. It is easy to see that 𝜈−1 = ℎ◦𝜇−1
𝐶,ℎ−1(u)

is absolutely continuous, hence eq. (5.2) is a straightfor-

ward consequence of Lemma 5.4 applied to ℎ◦𝜈, which is nothing but 𝜇𝐶ℎ,u by eq. (5.1). Moreover, since ℎ ∈ Θ∗, Lemma 5.4 also 
implies that 𝜇′

𝐶ℎ,u
> 0 almost everywhere on [𝑎𝐶ℎ (u−𝑗 ), 1]. Therefore, the claim is a direct consequence of Corollary 5.9. □

6. The bivariate case

The main purpose of this section is to establish a general method able to enlarge the class of bivariate copulas whose associated 
set of preserving automorphisms is (at least partially) known. Throughout the section, 𝑆 is a bivariate continuous semi–copula and 
𝐶 is a bivariate copula. Given any 𝑢 ∈ 𝕀, we have that 𝜇𝑆,1,𝑢(𝑡) = 𝑆(𝑡, 𝑢) and 𝜇′

𝑆,1,𝑢(𝑡) = 𝐷1𝑆(𝑡, 𝑢) (and analogously for 𝜇𝑆,2,𝑢). For 
brevity, without loss of generality, in this section we will exclusively deal with 𝜇𝑆,1,𝑢, simply denoted by 𝜇𝑆,𝑢 in the sequel. Note 
that for any 𝑢 ∈ 𝕀 we shall write 𝑎𝑆 (𝑢) instead of 𝑎𝑆 (u−1); recall that 𝑎𝑆 (𝑢) = inf{𝑡 ≤ 1 ∶ 𝑆(𝑡, 𝑢) > 0} for any 𝑢 > 0 and 𝑎𝑆 (0) = 1. 
Moreover, 𝜇𝑆,𝑢 is a bijection from [𝑎𝑆 (𝑢), 1] to [0, 𝑢]. Eventually, note that Γ1(𝑆) = ]0, 1] independently of 𝑆 .

Definition 6.1. Let 𝐹 be a real function defined on some nonempty subset 𝐷 ⊆ 𝕀2. We say that 𝐹 is increasing in the second place

almost everywhere if for any 𝑢1, 𝑢2 ∈ 𝕀, 𝑢1 < 𝑢2, and any interval 𝐽 ⊆ 𝕀 such that (𝑡, 𝑢𝑖) ∈𝐷 for almost all 𝑡 ∈ 𝐽 and for 𝑖 = 1, 2, there 
8

holds 𝐹 (𝑡, 𝑢1) ≤ 𝐹 (𝑡, 𝑢2) for almost all 𝑡 ∈ 𝐽 .
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Remark 6.2. Observe that, for any 𝑢1, 𝑢2 ∈ 𝕀 with 𝑢1 < 𝑢2, the increasing monotonicity of the mapping 𝑡 ↦ 𝑆(𝑡, 𝑢𝑖) on 𝕀 for 𝑖 = 1, 2
entails the existence of both 𝐷1𝑆(𝑡, 𝑢1) and 𝐷1𝑆(𝑡, 𝑢2) for almost all 𝑡 ∈ 𝕀. Therefore, the increasingness of 𝐷1𝑆 in the second place 
almost everywhere amounts to the following property: for any 0 ≤ 𝑢1 < 𝑢2 ≤ 1 the inequality 𝐷1𝑆(𝑡, 𝑢1) ≤𝐷1𝑆(𝑡, 𝑢2) holds for almost 
all 𝑡 ∈ 𝕀. Note that we can always assume 𝑢1 > 0, because 𝐷1𝑆(𝑡, 0) = 0 for every 𝑡 ∈ 𝕀 as a consequence of (S3). Moreover, it is easy 
to see that 𝑎𝑆 (𝑢1) ≥ 𝑎𝑆 (𝑢2). Finally, we can limit ourselves to consider only 𝑡 > 𝑎𝑆 (𝑢1), because 𝐷1𝑆(𝑡, 𝑢) = 0 when 𝑎𝑆 (𝑢1) > 0 and 
0 ≤ 𝑡 < 𝑎𝑆 (𝑢1).

The next result is a simplified version of a characterization theorem of the 𝑑-increasingness property ([16, Theorem 2.14]) for 
real bivariate functions defined on 𝕀2, hence we can omit the proof.

Theorem 6.3. Let 𝐹 ∶ 𝕀2 →ℝ be such that 𝑡 ↦ 𝐹 (𝑡, 𝑣) is absolutely continuous for every fixed 𝑣 ∈ 𝕀. Assume that 𝐹 satisfies (S1) and (S3). 
Then, 𝐹 is a copula if, and only if, 𝐷1𝐹 is increasing in the second place almost everywhere.

Proposition 6.4. Assume that ℎ ∈ Θ∗. Suppose that 𝐷1𝐶ℎ is increasing in the second place almost everywhere. Then, ℎ ∈Θ(𝐶).

Proof. As remarked in Section 4, the distortion preserves (S1) and (S3): moreover, by Lemma 5.6, we have that 𝑡 ↦ 𝐶ℎ(𝑡, 𝑣) is 
absolutely continuous for every fixed 𝑣 ∈ 𝕀. Then, the claim directly follows from Theorem 6.3. □

Now, our purpose is to exploit the previous result in order to find a sufficient condition for an automorphism ℎ to be 𝐶 -preserving. 
We shall act on two fronts by introducing two crucial functions associated with 𝐶 and ℎ, respectively. The first one is 𝜓𝐶 ∶= 𝐷1𝐶

𝐶
. 

We emphasize that, by the celebrated Rademacher’s theorem (see [24]), the domain of 𝜓𝐶 is the set 𝐿𝐶 = {(𝑢, 𝑣) ∈ 𝕀2 ∶ 𝐶(𝑢, 𝑣) > 0}
up to a (possibly empty) subset Ω ⊂𝐿𝐶 such that 𝜆2(Ω) = 0, where 𝜆2 stands for the two-dimensional Lebesgue measure.

Remark 6.5. Observe that for any 𝐶 we have 𝐿𝐶 ⊆ 𝐿∗, where 𝐿∗ ∶= 𝕀2 ⧵ ({(𝑥, 0) ∶ 𝑥 ∈ 𝕀} ∪ {(0, 𝑥) ∶ 𝑥 ∈ 𝕀}).

Let 𝜎ℎ be the function defined as 𝜎ℎ =
ℎ−1

(ℎ−1)′ . In the sequel, it is implicitly intended that 𝜎ℎ is defined almost everywhere on 𝕀: 
this is equivalent to saying that the associated automorphism ℎ is absolutely continuous (see Theorem 5.1).

The stage is now set for the main result of the section. Let 1 denote the subclass of (bivariate) 1-strictly monotone copulas 
such that 𝜇−1

𝐶,𝑢
is absolutely continuous for any 𝑢 > 0 and 𝜓𝐶 is increasing in the second place almost everywhere. Observe that, in 

view of Remark 6.2, the increasingness of 𝜓𝐶 in the second place almost everywhere amounts to the following property: for any 
0 < 𝑢1 < 𝑢2 ≤ 1, the inequality 𝜓𝐶 (𝑡, 𝑢1) ≤ 𝜓𝐶 (𝑡, 𝑢2) holds for almost all 𝑡 > 𝑎𝐶 (𝑢1).

Theorem 6.6. Let 𝐶 ∈ 1. Let ℎ ∈Θ∗. Assume that 𝜎ℎ is increasing. Then, ℎ ∈Θ(𝐶).

Proof is in Appendix C
Theorem 6.6 allows us to address the problem of determining a family of automorphisms preserving a certain class of copulas by 

separating the subclass 1 of considered copulas and the required kind of automorphisms. Let us begin with some distinguished exam-
ples belonging to 1. Preliminarily, recall that 𝐶 is exchangeable when 𝐶(𝑢, 𝑣) = 𝐶(𝑣, 𝑢) for all (𝑢, 𝑣) ∈ 𝕀2: obviously, an exchangeable 
copula is 1-strictly monotone if, and only if, it is jointly strictly monotone.

Example 6.7. Given any 𝑓 ∶ 𝕀 →ℝ, let 𝐶 be defined as

𝐶(𝑢, 𝑣) =𝑀(𝑢, 𝑣) ⋅ 𝑓 (max{𝑢, 𝑣}). (6.1)

According to the results presented in [13], 𝐶 is an exchangeable copula, called Marshall copula or semilinear copula, (see [19,10]), if, 
and only if, 𝑓 satisfies the following properties:

(P1) 𝑓 (1) = 1;
(P2) 𝑓 is increasing;
(P3) 𝑓 is absolutely continuous;
(P4) 𝑓 (𝑡) ≥ 𝑡𝑓 ′(𝑡) for almost all 𝑡 ∈ 𝕀.

We shall call 𝑓 a generator if, and only if, it fulfills (P1) − (P4) and 𝐶 as in eq. (6.7) is the generated copula. Note that (P3) and (P4)
imply that the mapping 𝑓 (𝑡)∕𝑡 is decreasing on ]0, 1], hence a generator 𝑓 satisfies the condition 𝑡 ≤ 𝑓 (𝑡) ≤ 1 for all 𝑡 ∈ 𝕀. It is easy to 
see that a generated copula 𝐶 is jointly strictly monotone if, and only if, the generator 𝑓 is strictly increasing. In this case, 𝑓 admits 
an inverse function 𝑓−1 ∶ [𝑓 (0), 1] → 𝕀, with 𝑓 (0) ∈ [0, 1[: moreover, for any 𝑢 > 0 we have

−1

{
𝑡∕𝑓 (𝑢), if 𝑡 ∈ [0, 𝑢𝑓 (𝑢)];
9

𝜇
𝐶,𝑢

(𝑡) =
𝑓−1(𝑡∕𝑢), if 𝑡 ∈ [𝑢𝑓 (𝑢), 𝑢].
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Consequently, it is not difficult to show that 𝜇−1
𝐶,𝑢

is absolutely continuous for any 𝑢 > 0 if, and only if, 𝑓−1 is absolutely continuous. 
A strictly increasing generator 𝑓 whose inverse is absolutely continuous will be called a strong generator and a copula generated by 
a strong generator will be called a strong semilinear copula. Let 𝐶 be a strong semilinear copula: after some computations, for any 
(𝑢, 𝑣) ∈𝐿∗ one finds that

𝜓𝐶 (𝑢, 𝑣) =

{
1∕𝑢, if 𝑢 < 𝑣;
𝑓 ′(𝑢)∕𝑓 (𝑢), for almost all 𝑢 > 𝑣.

Given any 0 < 𝑣1 < 𝑣2 ≤ 1, it is immediate to see that 𝜓𝐶 (𝑢, 𝑣1) = 𝜓𝐶 (𝑢, 𝑣2) for all 0 < 𝑢 < 𝑣1 and for almost all 𝑢 > 𝑣2, while the 
inequality 𝜓𝐶 (𝑢, 𝑣1) ≤ 𝜓𝐶 (𝑢, 𝑣2) reduces to (P4) when 𝑣1 < 𝑢 < 𝑣2. In conclusion, any strong semilinear copula 𝐶 belongs to 1.

Example 6.8. The two parameters family of copulas given by

𝐶𝛼,𝛽 (𝑢, 𝑣) =

{
𝑢1−𝛼𝑣, if 𝑢𝛼 ≥ 𝑣𝛽 ;
𝑢𝑣1−𝛽 , otherwise,

where 0 < 𝛼, 𝛽 < 1, is known as the Marshall-Olkin family (see, e.g., [23]). Note that 𝐶𝛼,𝛽 is generally not exchangeable. It is easy to 
see that 𝐶𝛼,𝛽 is jointly strictly monotone. Moreover, for any 𝑢 > 0 we have

𝜇−1
𝐶𝛼,𝛽 ,𝑢

(𝑡) =

{
𝑡 ⋅ 𝑢𝛽−1, if 𝑡 ∈ [0, 𝑢𝜌];
(𝑡∕𝑢)1∕(1−𝛼), if 𝑡 ∈ [𝑢𝜌, 𝑢],

where 𝜌 = 𝜌(𝛼, 𝛽) = 1 − 𝛽 + 𝛽∕𝛼, hence 𝜇−1
𝐶𝛼,𝛽 ,𝑢

is evidently absolutely continuous for any 𝑢 > 0. After some computations, for any 
(𝑢, 𝑣) ∈𝐿∗ one finds that

𝜓𝐶𝛼,𝛽
(𝑢, 𝑣) =

{
1∕𝑢, if 𝑢 < 𝑣𝛽∕𝛼 ;
(1 − 𝛼)∕𝑢, if 𝑢 > 𝑣𝛽∕𝛼.

Given any 0 < 𝑣1 < 𝑣2 ≤ 1, it is immediate to see that 𝜓𝐶𝛼,𝛽 (𝑢, 𝑣1) = 𝜓𝐶𝛼,𝛽 (𝑢, 𝑣2) for all 0 < 𝑢 < 𝑣𝛽∕𝛼1 and for all 𝑢 > 𝑣𝛽∕𝛼2 , while the 

assumption 𝛼 > 0 forces 𝜓𝐶𝛼,𝛽 (𝑢, 𝑣1) < 𝜓𝐶𝛼,𝛽 (𝑢, 𝑣2) for all 𝑣𝛽∕𝛼1 < 𝑢 < 𝑣𝛽∕𝛼2 . In conclusion, any copula of this family belongs to 1.

Example 6.9. The one parameter family of exchangeable copulas given by

𝐶𝑎(𝑢, 𝑣) = 𝑢𝑣+ 𝑎𝑢𝑣(1 − 𝑢)(1 − 𝑣),

where −1 ≤ 𝑎 ≤ 1, is known as the Farlie-Gumbel-Morgenstern family (see, e.g., [23]). A simple calculation shows that 𝐷1𝐶𝑎(𝑢, 𝑣) =
𝑣(1 + 𝑎(1 − 𝑣)(1 − 2𝑢)) for all (𝑢, 𝑣) ∈ 𝕀2: this ensures at the same time that 𝐶𝑎 is jointly strictly monotone and that 𝜇−1

𝐶𝑎,𝑢
is absolutely 

continuous for all 𝑢 > 0 (the last conclusion is due to Theorem 5.1). After some computations, for any (𝑢, 𝑣) ∈ 𝐿∗ one finds that

𝜓𝐶𝑎
(𝑢, 𝑣) = 1

𝑢
− 𝑎 1 − 𝑣

1 + 𝑎(1 − 𝑢)(1 − 𝑣)
.

An elementary calculation shows that 𝜕𝜓𝐶𝑎∕𝜕𝑣 = 𝑎∕(1 + 𝑎(1 − 𝑢)(1 − 𝑣))
2, hence 𝜓𝐶𝑎 is increasing in the second place for every 𝑢 > 0

when 𝑎 ≥ 0. In conclusion, any copula of this family belongs to 1 for 𝑎 ≥ 0.

Note that in Example 6.7 and in Example 6.8, the function 𝜓𝐶 does not depend on the second variable when the first variable 
belongs to a certain interval. This strong form of increasingness in the second variable almost everywhere of 𝜓𝐶 forces 𝜎ℎ to be 
increasing in order for ℎ to be 𝐶 -preserving. Before proceeding to the next theorem, we need some preliminary results concerning 
the set of 1-strictly monotone copulas.

Let 𝐶 be 1-strictly monotone. Given any 𝑏 ∈ ]0, 1[, define 𝜁𝑏 ∶ [𝑏, 1] → 𝕀 as 𝜁𝑏(𝑥) = 𝜇−1𝐶,𝑥(𝑏). Observe that 𝜁𝑏 is well-defined, since 
the domain of 𝜇−1

𝐶,𝑥
is [0, 𝑥] for any 𝑥 > 0. Moreover, it is easy to see that

𝜇𝐶,𝑥(𝜁𝑏(𝑥)) = 𝑏 = 𝐶(𝜁𝑏(𝑥), 𝑥) (6.2)

for any 𝑥 ∈ [𝑏, 1]. We will show that the mapping 𝜁𝑏 fulfills the following properties:

(E1) 𝜁𝑏(𝑏) = 1;
(E2) 𝜁𝑏 is decreasing;
(E3) 𝜁𝑏 is continuous.

The first property follows from 𝑏 = 𝐶(𝜁𝑏(𝑏), 𝑏) = 𝐶(1, 𝑏) and the 1-strict monotonicity of 𝐶 . With regard to the second property, 
given any 𝑥 < 𝑥′ suppose ab absurdo that 𝜁𝑏(𝑥) < 𝜁𝑏(𝑥′): this implies 𝑏 = 𝐶(𝜁𝑏(𝑥), 𝑥) ≤ 𝐶(𝜁𝑏(𝑥), 𝑥′) < 𝐶(𝜁𝑏(𝑥′), 𝑥′) = 𝑏, which is a 
10

contradiction. Finally, for any sequence {𝑥𝑛} ⊂ [𝑏, 1] such that 𝑥𝑛 → 𝑥, by the monotonicity of 𝜁𝑏 there holds 𝜁𝑏(𝑥𝑛) → 𝑙 for some 
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𝑙 ∈ 𝕀. Consequently, we get 𝑏 = 𝐶(𝜁𝑏(𝑥𝑛), 𝑥𝑛) → 𝐶(𝑙, 𝑥), hence 𝑙 = 𝜁𝑏(𝑥) by definition, so showing (E3). Evidently, 𝜁𝑏 is a decreasing 
bijection from [𝑏, 1] to [𝑏, 1] under the assumption that 𝐶 is jointly strictly monotone: in this case, we will denote by 𝜁−1

𝑏
its inverse.

Finally, we need a simplified version of a necessary condition required by the 𝑑-increasingness property ([16, Proposition 2.2], 
[15, Proposition 2.2]) for real 2-increasing functions defined on 𝕀2 (the proof is omitted).

Theorem 6.10. Let 𝐹 ∶ 𝕀2 → ℝ be 2-increasing. Let 𝑡 ∈ 𝕀 and 0 ≤ 𝑢1 < 𝑢2 ≤ 1 be such that both 𝐷1𝐹 (𝑡, 𝑢1) and 𝐷1𝐹 (𝑡, 𝑢2) exist. Then, 
𝐷1𝐹 (𝑡, 𝑢1) ≤𝐷1𝐹 (𝑡, 𝑢2).

Theorem 6.11. Let 𝐶 be jointly strictly monotone and such that 𝜇−1
𝐶,𝑢

is absolutely continuous for any 𝑢 > 0. Assume that there exists a null 
set 𝐸 ⊂ 𝕀, a mapping 𝑓 ∶ ]0, 1] → ]0, 1] continuous at 1, with 𝑓 (1) = 1, and a function 𝜅 ∶ ]0, 1] → ]0, ∞[ such that

𝜓𝐶 (𝑢, 𝑣) = 𝜅(𝑢) for any (𝑢, 𝑣) ∈ ]0,1] ⧵𝐸× ]0, 𝑓 (𝑢)[. (6.3)

Suppose that 𝜁−1
𝑏

is absolutely continuous for any 𝑏 > 0. Let ℎ ∈Θ∗. If ℎ ∈Θ(𝐶), then 𝜎ℎ is increasing.

Proof is in Appendix D
Let us show that Theorem 6.11 applies to any strong semilinear copula. Indeed, in this case, after some computations, it is possible 

to see that

𝜁−1
𝑏

(𝑥) =

{
(𝑓−1◦𝛾𝑏)(𝑥), if 𝑥 ∈ [𝑏,𝜑−1(𝑏)];
(𝛾𝑏◦𝑓 )(𝑥), if 𝑥 ∈ [𝜑−1(𝑏),1],

where 𝛾𝑏(𝑥) ∶= 𝑏∕𝑥 and 𝜑(𝑥) ∶= 𝑥𝑓 (𝑥), hence 𝜁−1
𝑏

is absolutely continuous for any 𝑏 ∈ ]0, 1[, because it is clearly absolutely contin-

uous on both the subdomains [𝑏, 𝜑−1(𝑏)] and [𝜑−1(𝑏), 1] (see Remark 5.2 and [27, Problem 13.2]). Let 𝐸 be the subset of 𝕀 where 𝑓 ′

does not exist or it is ∞ or zero: by Theorem 5.1, we know that 𝐸 is a null set and we get 𝜓𝐶 (𝑢, 𝑣) = 𝜅(𝑢), where 𝜅(𝑥) = 𝑓 ′(𝑥)∕𝑓 (𝑥), 
for all (𝑢, 𝑣) ∈ ]0, 1] ⧵𝐸×]0, 𝑓 (𝑢)[, with 𝑓 (𝑥) = 𝑥. The same conclusion may be drawn for any Marshall-Olkin copula: in fact, in this 
case, a simple calculation shows that

𝜁𝑏(𝑥) =

{
(𝑏∕𝑥)1∕(1−𝛼), if 𝑥 ∈ [𝑏, 𝑏1∕𝜌];
𝑏𝑥𝛽−1, if 𝑥 ∈ [𝑏1∕𝜌,1],

and the absolute continuity of 𝜁−1
𝑏

follows from the evident fact that 𝜁 ′
𝑏
< 0 almost everywhere. Finally, in this case 𝐸 is the empty 

set and 𝜓𝐶 (𝑢, 𝑣) = 𝜅(𝑢), where 𝜅(𝑥) = (1 − 𝛼)∕𝑥, for all (𝑢, 𝑣) ∈ ]0, 1]×]0, 𝑓 (𝑢)[, with 𝑓 (𝑥) = 𝑥𝛼∕𝛽 .
We conclude this section with some consideration regarding the subclass of Θ given by Θ𝜎 = {ℎ ∈ Θ𝑎𝑐 ∶ 𝜎ℎ is increasing}. We 

assert that if logℎ−1 is concave then ℎ ∈ Θ𝜎 . First of all, we state that the concavity of logℎ−1 entails ℎ ∈ Θ∗. Indeed, given any 
𝑎 ∈ ]0, 1[, the absolute continuity of logℎ−1 on [𝑎, 1] follows from its concavity (see, e.g., [27, Theorem 14.13]) and, hence, ℎ−1 is 
absolutely continuous on [𝑎, 1] since ℎ−1 = exp◦ logℎ−1 (see Lemma 5.2). This implies that ℎ−1 ∈ Θ𝑎𝑐 by the arbitrariness of 𝑎 (see, 
e.g., [27, Problem 13.8]). By the same token, it may be proven that ℎ ∈Θ𝑎𝑐 , in consideration of the fact that the inverse of logℎ−1
from [𝑎, 1] to [logℎ−1(𝑎), 0], given by ℎ◦ exp, is convex for any 𝑎 ∈ ]0, 1[, so closing the statement. If we combine the statement 
with the log-concavity of ℎ−1, we infer that (logℎ−1)′ = 1∕𝜎ℎ is strictly positive almost everywhere and is decreasing, so closing 
the assertion. The converse is easy when ℎ ∈ Θ∗ (the key point of the proof is based upon [27, Theorem 14.14]), but it is generally 
not true for an arbitrary automorphism, even if it is absolutely continuous. Indeed, consider ℎ𝜏 = 𝜑−1, where 𝜑 ∶= (e + 𝜏)∕2 and 𝜏
denotes the Cantor ternary function (see, for instance, [6]). Note that 𝜑′ = 1∕2 almost everywhere, hence ℎ𝜏 is absolutely continuous 
by Theorem 5.1. At the same time, we have ∫ 1

0 𝜑
′(𝑡) 𝑑𝑡 = 1∕2 < 1 = 𝜑(1) −𝜑(0), so that ℎ−1

𝜏
is not absolutely continuous and, hence, 

ℎ𝜏 does not belong to Θ∗. It is immediate to see that 𝜎ℎ𝜏 = e + 𝜏 , so that ℎ𝜏 ∈ Θ𝜎 . However, logℎ−1
𝜏

cannot be concave, because 
otherwise we would get ℎ𝜏 ∈Θ∗. Consequently, ℎ𝜏 does not preserve the product (see (ii) in Section 4) even if 𝜎ℎ𝜏 is increasing: the 
crucial point is just that ℎ𝜏 ∉Θ∗. In general, for any copula 𝐶 ∈ 𝑑 , it seems hard that an automorphism ℎ not belonging to Θ∗ may 
be 𝐶 -preserving: we note in passing that all the preserving automorphisms listed in (i)-(v) in Section 4 belong to Θ∗. Thus, the idea 
is to restrict the family of considered automorphisms to Θ∗: in other terms, the left action given by the distortion of semi–copulas is 
referred to the group 𝐺 = Θ∗. This little loss of generality is motivated by the fact that the excluded automorphisms are somewhat 
negligible, in the sense that any ℎ ∈ Θ ⧵ Θ∗ is essentially a pathological and hardly tractable function (see, for instance, [28] and 
the references therein). Set Θ∗(𝐶) ∶= Θ(𝐶) ∩ Θ∗: as a straightforward consequence of Theorem 6.6 and Theorem 6.11, we obtain a 
characterization of the 𝐶 -preserving automorphisms when 𝐶 is a strong semilinear copula or belongs to the Marshall-Olkin family.

Theorem 6.12. Let 𝐶 be a strong semilinear copula or a Marshall-Olkin copula. Then, ℎ ∈ Θ∗(𝐶) if, and only if, logℎ−1 is concave or, 
equivalently, Θ∗(𝐶) =Θ(Π).

7. Conclusions

In this work, we have focused mainly on the problem of determining the automorphisms which preserve the copula property 
11

under a distortion. Firstly, we have analyzed this issue within the algebraic theoretical framework of the group actions whose basic 
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notions have allowed us to achieve an important result about the connection between the preserving automorphisms of a 𝑑-copula 
𝐶 and every copula belonging to the same orbit of 𝐶 , regardless of 𝑑. We have also introduced the notion of 𝐷-equivalence between 
two copulas in order to formalize the concept of indistinguishability from the point of view of their distortion and we have proved 
that the lower Fréchet-Hoeffding bound admits a 𝐷-equivalent copula. Secondly, we have shown the crucial role of the property of 
absolute continuity of the one-dimensional sections of a distorted copula. Finally, we have established a sufficient condition in order 
for an automorphism to preserve a large family of bivariate copulas under distortion. In particular, we have shown that if we refer 
the distortion to the group 𝐺 = Θ∗, any strong semilinear (or Marshll-Olkin) copula is indistinguishable from the product. Recall 
that the (strict) Archimedean copulas, widely used in the applications, are nothing but distortions of the product, hence they all are 
associative, but so far we have not found any convincing statistical interpretation of associativity (see, for instance, [1, Problem 15]). 
If we replace a (strict) Archimedean copula Πℎ with the distortion 𝐶ℎ of a strong semilinear (or Marshll-Olkin) copula 𝐶 , we are 
sure that 𝐶ℎ is still a copula with the undoubted advantage that 𝐶ℎ does not fulfill the (mysterious) property of associativity.
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Appendix A. Proof of Proposition 4.15

Proof. Suppose first that 𝑓 is convex. Then, for any sufficiently small 𝑡 > 0, we have that 𝑥1 < 𝑥1 + 𝑡 < 𝑥2, thus, according to [27, 
Proposition 14.4], we obtain

𝑓 (𝑥1 + 𝑡) − 𝑓 (𝑥1)
𝑡

≤
𝑓 (𝑥2) − 𝑓 (𝑥1 + 𝑡)
𝑥2 − 𝑥1 − 𝑡

(A.1)

By the same token, we get

𝑓 (𝑥2) − 𝑓 (𝑥1 + 𝑡)
𝑥2 − 𝑥1 − 𝑡

≤
𝑓 (𝑥2 + 𝑡) − 𝑓 (𝑥2)

𝑡
(A.2)

The combination of eq. (A.1) with eq. (A.2) leads to the claim. Conversely, by the continuity of 𝑓 , it suffices to show that for any 
𝑢, 𝑣 ∈ ]𝑎, 𝑏[ we have 𝑓 (𝜉) ≤ (𝑓 (𝑢) + 𝑓 (𝑣))∕2, where 𝜉 ∶= (𝑢 + 𝑣)∕2. Without loss of generality, let 𝑢 < 𝑣: by assumption, there exists a 
𝛿 = 𝛿(𝑢, 𝜉) > 0 such that

𝑓 (𝜉) − 𝑓 (𝑢) ≤ 𝑓 (𝜉 + 𝑡) − 𝑓 (𝑢+ 𝑡) for all 𝑡 ∈ ]0, 𝛿[. (A.3)

Now, set 𝜑(𝑡) ∶= 𝑓 (𝜉 + 𝑡) − 𝑓 (𝑢 + 𝑡) and 𝐸 ∶= {𝑡 > 0 ∶ 𝑓 (𝜉) − 𝑓 (𝑢) ≤ 𝜑(𝜏) for all 0 ≤ 𝜏 ≤ 𝑡}. Note that eq. (A.3) implies 𝑡∗ ≥ 𝛿, where 
𝑡∗ ∶= sup𝐸. We assert that either 𝑡∗ = ∞ if 𝑏 = ∞ or 𝜉 + 𝑡∗ = 𝑏 if 𝑏 is finite. Suppose that the assertion is false: this means that, 
regardless of whether 𝑏 is finite or not, 𝑡∗ is finite and 𝜉 + 𝑡∗ < 𝑏. In this case, obviously, 𝑡∗ belongs to the domain of 𝜑. Remark that 
the continuity of 𝜑 and the fact that 𝑡∗ = sup𝐸 entail 𝑓 (𝜉) −𝑓 (𝑢) = 𝜑(𝑡∗). Again, by assumption, there exists a 𝛿1 = 𝛿1(𝑢 + 𝑡∗, 𝜉+ 𝑡∗) > 0
such that

𝑓 (𝜉 + 𝑡∗) − 𝑓 (𝑢+ 𝑡∗) ≤ 𝑓 (𝜉 + 𝑡∗ + 𝑡) − 𝑓 (𝑢+ 𝑡∗ + 𝑡) for all 𝑡 ∈ ]0, 𝛿1[.

Since 𝑓 (𝜉 + 𝑡∗) − 𝑓 (𝑢 + 𝑡∗) = 𝜑(𝑡∗), due to the above remark the previous equation leads to

𝑓 (𝜉) − 𝑓 (𝑢) ≤ 𝑓 (𝜉 + 𝑠) − 𝑓 (𝑢+ 𝑠) for all 𝑠 ∈ ]0, 𝑡∗ + 𝛿1[,

so contradicting the fact that 𝑡∗ = sup𝐸 and showing the assertion. Accordingly, since 𝜉+(𝑣 −𝑢)∕2 = 𝑣 < 𝑏, we have that (𝑣 −𝑢)∕2 < 𝑡∗
12

and the claim is achieved just applying eq. (A.3) with 𝑡 = (𝑣 − 𝑢)∕2. □
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Appendix B. Proof of Theorem 4.16

Proof. For simplicity of notation, throughout this proof we will denote the copula 𝐶 1
2 ,

1
2

by 𝐶∗. Suppose ab absurdo that there exists 

a non-convex 𝜑 ∈ Θ(𝐶∗). Due to Proposition 4.15, there exist 𝑥1, 𝑥2 ∈ ]0, 1[, with 𝑥1 < 𝑥2, and a sequence {𝛿𝑛} that is decreasing to 
zero such that

𝜑(𝑥2) −𝜑(𝑥1) > 𝜑(𝑥2 + 𝛿𝑛) −𝜑(𝑥1 + 𝛿𝑛) for all 𝑛 ∈ℕ. (B.1)

Now, given any 𝑢1 ∈ ]0, 1[, set 𝑣𝑗 ∶= 𝑥𝑗 + (1 − 𝑢1)∕2 for 𝑗 = 1, 2. Assume that 𝑢1 >max{1 − 2𝑥1, (1 + 2𝑥2)∕3}: in this case, it is easy 
to check that 0 < 𝑣1 < 𝑣2 < 𝑢1 and 𝑣1 + 𝑢1 > 1. Fix a natural number 𝑛 and set 𝑢2 ∶= 𝑢1 + 2𝛿𝑛: if 𝑛 is sufficiently large, one finds that 
𝑢1 < 𝑢2 < 1. In summary, the following properties are satisfied:

0 < 𝑣1 < 𝑣2 < 𝑢1 < 𝑢2 < 1, 𝑣𝑗 + 𝑢𝑖 > 1 for 𝑖, 𝑗 = 1,2.

Moreover, a simple computation shows that for any 𝑗 ∈ℕ2 we have

𝑣𝑗 +
𝑢2 − 1
2

= 𝑥𝑗 + 𝛿𝑛 and 𝑣𝑗 +
𝑢1 − 1
2

= 𝑥𝑗 . (B.2)

After the assignments 𝑈𝑗 = 𝜑(𝑢𝑗 ) and 𝑉𝑗 = 𝜑(𝑣𝑗 ) for 𝑗 = 1, 2, owing to the above properties and eq. (B.2), it is not difficult to see that 
the volume of 𝑅 = [𝑉1, 𝑉2] × [𝑈1, 𝑈2] with respect to 𝐶∗

𝜑
is given by

𝑉𝐶∗
𝜑
(𝑅) = 𝜑(𝑥2 + 𝛿𝑛) −𝜑(𝑥1 + 𝛿𝑛) −𝜑(𝑥2) +𝜑(𝑥1).

The assumption 𝜑 ∈Θ(𝐶∗) implies 𝑉𝐶∗
𝜑
(𝑅) ≥ 0 or, equivalently,

𝜑(𝑥2) −𝜑(𝑥1) ≤ 𝜑(𝑥2 + 𝛿𝑛) −𝜑(𝑥1 + 𝛿𝑛),

which clearly contradicts eq. (B.1), so concluding the proof. □

Appendix C. Proof of Theorem 6.6

Proof. Since ℎ ∈Θ∗, by Proposition 6.4 the claim is true if we prove that 𝐷1𝐶ℎ is increasing in the second place almost everywhere. 
Due to Remark 6.2, we have to show that for any 0 < 𝑢1 < 𝑢2 ≤ 1 the following inequality holds for almost all 𝑡 > 𝑎𝐶ℎ (𝑢1):

𝐷1𝐶ℎ(𝑡, 𝑢1) ≤𝐷1𝐶ℎ(𝑡, 𝑢2). (C.1)

Observe that both 𝑢1 and 𝑢2 belong to Γ1(𝐶ℎ) = ]0, 1]. Consequently, we may apply Proposition 5.11 to 𝐶 both for 𝑢 = 𝑢1 and 𝑢 = 𝑢2
and we find that

𝐷1𝐶ℎ(𝑡, 𝑢𝑖) = ℎ′(𝐶(ℎ−1(𝑡), ℎ−1(𝑢𝑖))) ⋅𝐷1𝐶(ℎ−1(𝑡), ℎ−1(𝑢𝑖)) ⋅ (ℎ−1)′(𝑡) (C.2)

and 𝐷1𝐶ℎ(𝑡, 𝑢𝑖) > 0 for almost all 𝑡 > 𝑎𝐶ℎ (𝑢1) and for 𝑖 = 1, 2. This obviously implies that

ℎ′(𝐶(ℎ−1(𝑡), ℎ−1(𝑢𝑖))) > 0, 𝑖 = 1,2, (C.3)

for almost all 𝑡 > 𝑎𝐶ℎ (𝑢1). For the sake of convenience, set 𝑣𝑖(𝑡) ∶= 𝐶ℎ(𝑡, 𝑢𝑖) for 𝑖 = 1, 2: note that ℎ−1(𝑣𝑖(𝑡)) = 𝐶(ℎ−1(𝑡), ℎ−1(𝑢𝑖)) for 
𝑖 = 1, 2. It is easy to see that 0 < 𝑣1(𝑡) ≤ 𝑣2(𝑡) for all 𝑡 > 𝑎𝐶ℎ (𝑢1) or, equivalently,

0 < ℎ−1(𝑣1(𝑡)) ≤ ℎ−1(𝑣2(𝑡)) for all 𝑡 > 𝑎𝐶ℎ (𝑢1). (C.4)

By Theorem 5.1, we know that (ℎ−1)′ > 0 almost everywhere on 𝕀, hence, in view of eq. (C.2), eq. (C.1) is equivalent to

ℎ′(ℎ−1(𝑣1(𝑡)))𝐷1𝐶(ℎ−1(𝑡), ℎ−1(𝑢1)) ≤ ℎ′(ℎ−1(𝑣2(𝑡)))𝐷1𝐶(ℎ−1(𝑡), ℎ−1(𝑢2)). (C.5)

By virtue of eq. (C.3), for 𝑖 = 1, 2 we have that

0 < ℎ′(𝐶(ℎ−1(𝑡), ℎ−1(𝑢𝑖))) = ℎ′(ℎ−1(𝑣𝑖(𝑡))) =
1

(ℎ−1)′(𝑣𝑖(𝑡))
.

Accordingly, eq. (C.5) becomes

𝐷1𝐶(ℎ−1(𝑡), ℎ−1(𝑢1))
(ℎ−1)′(𝑣1(𝑡))

≤
𝐷1𝐶(ℎ−1(𝑡), ℎ−1(𝑢2))

(ℎ−1)′(𝑣2(𝑡))
. (C.6)

Owing to eq. (C.4), we can multiply and divide the left hand-side and the right-hand side of eq. (C.6) by ℎ−1(𝑣1(𝑡)) and ℎ−1(𝑣2(𝑡)), 
respectively: recalling that ℎ−1(𝑣𝑖(𝑡)) = 𝐶(ℎ−1(𝑡), ℎ−1(𝑢𝑖)) for 𝑖 = 1, 2, we get
13

𝜓𝐶 (ℎ−1(𝑡), ℎ−1(𝑢1))𝜎ℎ(𝑣1(𝑡)) ≤ 𝜓𝐶 (ℎ−1(𝑡), ℎ−1(𝑢2))𝜎ℎ(𝑣2(𝑡)).
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Since 𝜎ℎ > 0 and 𝑎𝐶ℎ (𝑢1) = ℎ(𝑎𝐶 (ℎ
−1(𝑢1))) (see Lemma 5.10), the validity of the above equation for almost all 𝑡 > 𝑎𝐶ℎ (𝑢1) follows 

from the assumption of increasingness of 𝜓𝐶 in the second place almost everywhere and the assumption of increasingness of 𝜎ℎ, so 
concluding the proof. □

Appendix D. Proof of Theorem 6.11

Proof. Suppose ab absurdo that there exist 𝑎, 𝑏 ∈ ]0, 1[, with 𝑎 < 𝑏, such that 𝜎ℎ(𝑎) > 𝜎ℎ(𝑏). Remark that this implies

(ℎ−1)′(𝑡) > 0 both at 𝑡 = 𝑎 and 𝑡 = 𝑏. (D.1)

Now, set 𝑞 ∶= ℎ−1(𝑏) and let 𝑍 be the subset where ℎ′ is not strictly positive. By Theorem 5.1, we know that 𝑍 is a null set, thus the 
absolute continuity of 𝜁−1

𝑞
entails 𝜆(𝜁−1

𝑞
(𝐸 ∪ 𝑍)) = 0. Therefore, given a sufficiently small 𝛿 > 0, we can always fix a 𝑤 ∈ 𝐽𝛿 , where

𝐽𝛿 ∶=]𝑞, 𝑞 + 𝛿[⧵𝜁−1
𝑞

(𝐸 ∪ 𝑍).

We assert that 𝜓𝐶 (𝜁𝑞(𝑤), 𝑣) = 𝜅(𝜁𝑞(𝑤)) for any 𝑣 ∈ ]0, 𝑤], provided that 𝛿 is sufficiently small. Indeed, first of all, 𝜁𝑞(𝑤) ∈ ]0, 1] ⧵𝐸: 
moreover, owing to (E1), (E3) and the properties of 𝑓 , it is not difficult to see that 𝑤 < 𝑓 (𝜁𝑞(𝑤)) as 𝛿 → 0, thus eq. (6.3) holds 
with 𝑢 = 𝜁𝑞(𝑤) and 𝑣 ≤ 𝑤, so closing the assertion. Observe that the jointly strict monotonicity of 𝐶 ensures the existence of a 
unique solution of the equation 𝐶(𝜁𝑞(𝑤), 𝑥) = ℎ−1(𝑎) in the variable 𝑥, here denoted by 𝑠𝑤. Obviously, 𝑠𝑤 > 0: moreover, 𝑠𝑤 < 𝑤 is 
a direct consequence of the fact that ℎ(𝐶(𝜁𝑞(𝑤), 𝑠𝑤)) = 𝑎 < 𝑏 = ℎ(𝐶(𝜁𝑞(𝑤), 𝑤)), where the last equality is due to eq. (6.2). Therefore, 
based upon the assertion, we have that 𝜓𝐶 (𝜁𝑞(𝑤), 𝑠𝑤) = 𝜅(𝜁𝑞(𝑤)). We emphasize that from the assertion it directly follows that both 
𝐷1𝐶(𝜁𝑞(𝑤), 𝑤) and 𝐷1𝐶(𝜁𝑞(𝑤), 𝑠𝑤) exist and are strictly positive. Further, we deduce that

ℎ′(𝐶(𝜁𝑞(𝑤),𝑤)) =
1

(ℎ−1)′(ℎ(𝐶(𝜁𝑞(𝑤),𝑤)))
= 1

(ℎ−1)′(𝑏)
,

hence ℎ′(𝐶(𝜁𝑞(𝑤), 𝑤)) exists and is strictly positive by eq. (D.1). The same conclusion may be similarly drawn for ℎ′(𝐶(𝜁𝑞(𝑤), 𝑠𝑤)). 
Finally,

(ℎ−1)′((ℎ◦𝜁𝑞)(𝑤)) =
1

ℎ′(𝜁𝑞(𝑤))
,

hence (ℎ−1)′((ℎ◦𝜁𝑞)(𝑤)) exists and is strictly positive due to the fact that 𝜁𝑞(𝑤) ∉𝑍 . Thus, in summary, we can state that the chain 
rule holds for both 𝐷1𝐶ℎ(𝑡, 𝑢1) and 𝐷1𝐶ℎ(𝑡, 𝑢2) for 𝑡 = (ℎ◦𝜁𝑞)(𝑤), 𝑢1 = ℎ(𝑠𝑤) and 𝑢2 = ℎ(𝑤). Since 𝐶ℎ is a copula, Theorem 6.10
applies and we conclude that 𝐷1𝐶ℎ(𝑡, 𝑢1) ≤𝐷1𝐶ℎ(𝑡, 𝑢2). Now, if we employ the same algebraic manipulations illustrated in the proof 
of Theorem 6.6, taking into account the assertion, it is not difficult to see that the inequality 𝐷1𝐶ℎ(𝑡, 𝑢1) ≤𝐷1𝐶ℎ(𝑡, 𝑢2) goes to

𝜅(𝜁𝑞(𝑤)) ⋅ 𝜎ℎ(𝐶ℎ(𝑡, 𝑢1)) ≤ 𝜅(𝜁𝑞(𝑤)) ⋅ 𝜎ℎ(𝐶ℎ(𝑡, 𝑢2)).

Since 𝐶ℎ(𝑡, 𝑢2) = 𝑏 and 𝐶ℎ(𝑡, 𝑢1) = 𝑎, the previous inequality becomes 𝜎ℎ(𝑎) ≤ 𝜎ℎ(𝑏). The contradiction shows the claim. □
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