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Abstract

Proteins are the common constituents of all living cells. They are molecular machines that interact

with each other as well as with other cell products and carry out a dizzying array of functions with

distinction. These interactions follow from their native state structures and therefore understanding

sequence-structure relationships is of fundamental importance. What is quite remarkable about pro-

teins is that their understanding necessarily straddles several disciplines. The importance of geometry

in defining protein native state structure, the constraints placed on protein behavior by mathemat-

ics and physics, the need for proteins to obey the laws of quantum chemistry, and the rich role of

evolution and biology all come together in defining protein science. Here we review ideas from the

literature and present an interdisciplinary framework that aims to marry ideas from Plato and Darwin

and demonstrates an astonishing consilience between disciplines in describing proteins. We discuss

the consequences of this framework on protein behavior.
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1 Introduction

Proteins [1, 2, 3, 4] are powerful molecular machines. Small globular proteins fold into their native state

structures rapidly and reproducibly and these folded forms determine their function. The folding of a

globular protein is driven by hydrophobicity, the aversion of the protein backbone and some side chains

to water. This causes a protein to expel the water from within its folded core thereby maximizing the

self-interaction of the backbone. Furthermore, in order to enable diverse functions, one requires many

distinct folded forms. This is elegantly enabled in proteins through their modular structures.

The building blocks of protein structures predicted by Pauling and his collaborators [5, 6] and con-

firmed resoundingly in experiments over the decades allow for literally thousands of ways in which α-helices

and almost planar β-sheets can be assembled to yield putative native state structures of globular proteins.

Form determines function and these proteins interact with each other along with other cell constituents

in an orchestrated manner to enable life.

Our analysis begins with elementary mathematics. Symmetry dictates a tube as a minimalist model

for our protein chain. The space-filling conformation of a discrete tube, whose axis is made up of Cα

backbone atoms, is a helix with a specific pitch to radius ratio and a specific rotation angle. These two

quantities along with the bond length uniquely determine all attributes of the space-filling helix including

the tube radius. Remarkably, the geometries of both anti-parallel and parallel strand arrangements

are predicted mathematically by considering space-filling arrangements of assemblies of zig-zag strand

conformations (which are special two dimensional forms of a helix) of a tube of the same radius. The

helix and the sheet, the modular building blocks of protein structures, are thus predicted by considerations

of mathematics and physics. A zero parameter first principles prediction of the structures of these building

blocks constitutes a re-derivation of Pauling’s classic results without invoking quantum chemistry, the

planarity of the peptide bond, or the nature of the hydrogen bond.

But how are these structures realized here on earth? This is where chemistry enters the picture. We

present two significant results in our paper. The first is the near perfect accord between theory and

experiment. The second is the beautiful fit of the rules of quantum chemistry to the requirements of

mathematics and physics. We then go on to study the complementary roles of the fields of chemistry

and biology in evolution, natural selection (the proteins are the molecular targets of natural selection),

and protein structure and function. Our work here celebrates the marvelous accord between seemingly

distinct and highly complementary approaches to protein science from the fields of mathematics, physics,

chemistry, and biology. More importantly, we hope that our work will provide a new framework and

a fresh unified perspective for understanding proteins. We alert the reader that our work is primarily

concerned with the geometries of the building blocks and not their assembly into the tertiary protein

2



structure.

2 Results and Discussion

2.1 Mathematics and physics

A protein is a chain molecule which provides a natural context for its parts, an essential attribute of a

machine. Thus we can distinguish between one Cα atom and another depending, not just on the identity

of their side chain but, more generally, on their sequential location, say from the N -terminal end. From

a geometrical point of view, it is not possible to model a protein with just a single sphere (Figure 1a).

One instead would need an object that is spatially extended to capture the chain topology. A sphere is

a region of space carved around a point, the sphere center. A simple mathematical generalization of a

sphere, resulting in an extended object, is to replace the point by a line and carve out space within a

distance ∆ from the line. One then obtains a tube of radius (or thickness) ∆ (Figure 1b). Helices are

ubiquitous in bio-molecular structures. However, in every day life, we do not see helices often except in

the context of tubes. An example is a garden hose, which is often wound into a helix. We will show below

that a protein can indeed be usefully viewed as a flexible tube.

It is natural to wonder whether, instead of a tube, one might equivalently consider a chain of spheres

with a railway train topology. There are at least two reasons why this is not a satisfactory alternative.

First, from a symmetry perspective, a sphere looks the same when viewed from any direction. It is

isotropic. However a chain is necessarily anisotropic. This is because there is a special tangent direction

at any given location along a chain. An anisotropic chain comprised of isotropic spheres results in a

symmetry clash. A second reason for the inappropriateness of a chain of spheres model is that it becomes

an infinitesimally thin line in the continuum limit, whereas a tube is characterized by a non-zero thickness.

Indeed, one might imagine the tube shown in Figure 1b to be a chain of coins rather than a chain of

spheres in the continuum limit.

We use a bare-bones description of a protein and treat the axis of the protein-tube as a chain of

equally spaced Cα atoms. The latter assumption is a good one because the measured bond length

(over more than 4000 experimentally determined high resolution native state structures) is found to be

(3.81± 0.02)Å [7]. The thickness of the tube can be thought of as being able to accommodate the other

backbone atoms, which we do not explicitly consider in our coarse-grained approach. We will proceed

by making a constructive hypothesis and assessing the consequences of this hypothesis. Our hypothesis

follows from the recognition that the dominant folding mechanism of a protein is the hydrophobicity of its

backbone along with the drive to maximize its self-interaction [1, 2, 3, 4], thereby attaining a space-filling

folded state [8]. Fortunately, for proteins, there is a wealth of experimental data accumulated over the
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decades, which serve to validate our hypothesis.

The rest of this section is a hopefully more accessible summary of the results of recent mathematical

calculations [9]. Remarkably, the theoretical analysis has no further assumptions, no chemistry input,

and no adjustable parameters, and allows us to determine the space-filling conformations of a tube with a

discrete axis with fixed bond length. We predict three secondary structures: a tightly wound space-filling

helix; zig-zag strands packed into almost planar sheets, in two distinct manners corresponding to parallel

and anti-parallel sheets; and hexagonal packing of straight backbone conformations, akin to a compact

assembly of pencils. We do not discuss the third secondary structure in the rest of this paper because

the presence of side-chains, sticking out from the backbone, results in steric clashes thereby ruling out

this structure [10, 11, 12]. The steric clashes are deftly averted in both the helix and in the planar sheet

conformations. These two secondary structures are in fact observed in proteins and, quite remarkably,

have the same quantitative geometry as the α-helix and two kinds of β-sheets, all elegantly predicted

by Pauling and co-workers some seven decades ago [5, 6]. What follows from assembling these modular

building blocks is a library of putative native state folds, each corresponding to a distinct topological

assembly through tight turns.

Figure 2 shows four sketches of a helix. The axis of a continuum helix (a helix, whose axis is continuous)

(Figure 2a) necessarily spans all three dimensions and has just one character. The situation becomes more

interesting, when the axis is discrete (as in a protein). There are now three distinct geometries that a

helix can adopt: a generic helix rotation angle (Figure 2b) results in the Cα atoms spanning all three

dimensions, as in Figure 2a; a helix rotation angle, ε0, equal to π (Figure 2c) leads to the helix axis

becoming a two-dimensional zig-zag strand; and, finally, a rotation angle equal to 2π (Figure 2d) yields a

one-dimensional straight line helical axis, which we will not consider further in our analysis as mentioned

earlier.

Let us consider a continuum tube (the axis of the tube is continuous) of radius ∆ and ask what its

space-filling conformation is. We know, from our experience with a garden hose, that if we bend it too

tightly (with a local radius of curvature smaller than the tube radius), we get a kink in the tube. So a

tightly wound tube would have a local radius of curvature exactly equal to ∆. The self-interaction of the

tube is maximized by placing successive turns of the helix on top of each other and alongside each other,

while ensuring that there are no self-intersections (Figures 3a and 3c). When viewed from the top, there

is no empty space in the middle of the helix (Figures 3b and 3d). The tight packing fills the space within

the helix and thereby maximizes the self-interaction. Mathematics teaches us that the geometry of such

a space-filling helix is characterized by a universal pitch to radius ratio, P/R, of 2.512 . . . [8]. This is a

very helpful result but it only tells us about a dimensionless characteristic of the space-filling helix. So

how we do make a more tangible (in this case, with actual lengths) connection with real proteins?
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The intrinsic discrete nature of the protein backbone yields the two motifs, the helix and the strand.

Furthermore, there is now the bond length of 3.81Å, which will set our length scale. We take our space-

filling continuum tube wound tightly with the magic dimensionless ratio P/R = 2.512 . . . and discretize

the axis with equally spaced Cα atoms. We then find mathematically [9] that the largest rotation angle,

ε0, which ensures that the helix with the discrete axis remains space-filling, is approximately 99.8◦ (Figure

4). (The procedure is very similar to that employed by Pauling and his colleagues [5, 6], who found the

rotation angle allowing for the coherent placement of hydrogen bonds.) The bond length, the value of

P/R, and the rotation angle completely specify all characteristics of the space-filling helix. Notably, the

tube radius is predicted to be ∆ ∼ 2.63Å.

Armed with these results, we now proceed to an analysis of the second building block of protein

structures, strands assembled into sheets. We consider a zig-zag strand, a discretized helical conformation

of a tube of radius ∆ (now known through the helix analysis to be ∼ 2.63Å) with ε0 = π. A straight tube

axis can be drawn through a strand in two ways – either through the blue points (we will denote this as

a blue tube) or the red points (a red tube) (Figure 2c and Figure 5). A single strand is not space-filling

by itself. In order to maximize self-interactions, we need to pack strands together while ensuring that

the side chains do not clash sterically. There are two distinct ways of doing this packing: the first is a

blue tube alongside a blue tube (or equivalently red next to red); and the second is a blue tube next to

a red tube (or equivalently red next to blue). These two packings yield distinct geometries (Figure 5).

A three dimensional packing of strands is forbidden because of side-chain clashes, but the two types of

assembly into planar sheets are both sterically allowed. One can construct mathematical arguments that

other plausible packings, such as two or three helices twisted together or a helix alongside a strand do

not fill space as efficiently as the unique space filling helix and the two kinds of sheets assembled from

zig-zag strands. Interestingly, a pair of helices of opposite chiralities pack better than those with the

same chirality. However, this is not a factor in protein native state structures because, as is well known

experimentally, there is chiral symmetry breaking in protein α-helices due to the left-handed nature of

the constituent amino acids.

This is the essence of the theoretical analysis [9] that enables a slew of zero-parameter predictions

with the only inputs being the constructive hypothesis entailing the maximization of the self-interaction

of the protein backbone along with setting the characteristic length scale through the bond length of

3.81Å.

2.2 Chemistry provides a good fit to the dictates of mathematics

Table 1 presents a comparison of our theoretical predictions with experimental data. For our analysis, we

used 4416 structures (with complete information pertaining to all backbone atoms) from Richardsons’ Top
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8000 set of high-resolution, quality-filtered protein chains (resolution < 2Å, 70% PDB homology level)

[13]. The protein PDB codes are listed in the Supplementary Information of Škrbić et al. [7]. Hydrogen

bonds were identified using DSSP [14] to extract 3595 helices, 8473 antiparallel pairs, and 4639 parallel

pairs. Helices were defined to be 12-residue segments with intra-helical hydrogen bonds (NiH • • •Oi−4

and Oi •••HNi+4) at each residue. Antiparallel strand pairs were identified by three inter-pair hydrogen

bonds at (i, j), (i+ 2, j − 2), and (i− 2, j + 2), i ∈ strand 1, j ∈ strand 2. To avoid possible end effects,

only (i, j) residue pairs were used. Parallel strand pairs were identified by four inter-pair hydrogen bonds

between (i, j − 1), (i, j + 1), (i + 2, j + 1), and (i − 2, j − 1), i ∈ strand 1, j ∈ strand 2, and only the

i− th residue was considered. Table 1 shows the excellent accord between the mathematical predictions

and experiments.

Let us begin with the α-helix. Our central predictions [9] are the rotation angle of around 99.8◦, the

tube radius ∆ of around 2.63Å, and the pitch to radius ratio of 2.512 . . . It is straightforward using these

predictions to deduce a host of other quantities pertaining to the space-filling helix including the bond

angle θ ∼ 91.8◦ and the dihedral angle µ ∼ 52.4◦ (Figures 6c and 6d and Table 1). It is interesting to note

that the experimental helix is slightly squished compared to the theoretical prediction. The experimental

mean value of the dihedral angle, µ, is about 5% smaller than that predicted by theory, while the mean

experimental distance between the (i, i + 3) Cα atoms is about 3% less than that predicted by theory.

(All these quantities nevertheless are equal to the predicted values within error estimates.) This helix

squishing can be rationalized in two ways. Qualitatively, the atomic nature of the protein chain allows for

space-filling to be accentuated by squeezing the helix more tightly. Quantitatively, this can arise because

of the partial covalent bond character of a hydrogen bonded donor-acceptor pair allowing for a mutual

distance a bit smaller than the sum of the van der Waals radii.

The two triangles (i− 1, i, i + 3) and (i, i + 3, i + 4) are predicted to be congruent (Figure 6b). The

sides (i − 1, i) and (i + 3, i + 4) are both equal to the bond length. The side (i, i + 3) is common to

both triangles. And the angles (i− 1, i, i+ 3) and (i, i+ 3, i+ 4) are both equal to 90◦. Theory predicts

that the two triangles do not lie in a plane but rather that the planes of the triangles make an angle of

approximately 215.5◦ with each other in excellent accord with the experimental data of (213.1± 5.9)◦.

We now turn to the pairing of two strands. Unlike in a helix, the pairing of strands is necessarily non-

local. As noted earlier, the chain topology of a protein naturally provides a context for the location of a

Cα atom. There is a distinction between whether two paired strands are parallel to each other (meaning

proceeding in the same direction) or are antiparallel to each other. As pointed out by Pauling, there

are two distinct hydrogen bonding patterns for parallel and antiparallel sheets. The two distinct pairing

patterns emerge from the simple tube picture as well without invoking any chemistry. The distances

required by the tube constraints of being placed parallel and alongside each other (but with the correct
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choice of the tube axes) are very well satisfied experimentally (see Table 1).

2.3 Biology and chemistry

Our discussion so far has been limited to the backbone atoms, common to all proteins, and to the

secondary structures that are the modular building blocks of protein folds [15, 16, 17, 18]. So what of

the amino acids and their side-chains? Amino acid sequences play a major role in facilitating amazing

functionalities [1, 2, 3, 4]. To illustrate a concrete example, let us consider the enzymatic function of

enhancing reaction rates. The rate enhancement often arises by a lowering of the free energy of the

transition state of the reaction through specific binding of the enzyme to the substrate or the reactant(s).

The native state fold of the enzyme (selected from the predetermined library) has an active site, where

just a few amino acids are responsible for the catalytic activity. The binding to the substrate is of course

highly specific. Proteases, which are responsible for the degradation of proteins through the hydrolysis of

peptide bonds, undergo convergent evolution (e.g. the digestive enzyme chymotrypsin and subtilisin, an

enzyme made by soil bacteria) using distinct native state folds from the pre-sculpted library but having

the same catalytic triad due to sequence design. The catalytic triad in both cases comprise three amino

acids, serine, histidine, and aspartate, bound to each other by hydrogen bonds, resulting in the proton

being moved away from the serine along with the creation of a reactive alkoxide ion.

Divergent evolution also occurs in proteins whose native state structure and the catalytic triad are

the same, yet the nature of the binding site is not. A notable example is the family of proteins including

chymotrypsin (which hydrolyses the peptide bonds on the carboxyl side of aromatic or large hydrophobic

amino acids such as Trp, Tyr, Phe, Met, and Leu), trypsin (a digestive protein made in the pancreas which

cleaves after positively charged amino acids lysine and arginine), elastase (made both in the pancreas and

by white blood cells, which specifically targets elastin, a building block of blood vessel walls), thrombin

(which cleaves proteins only at arginine-glycine linkages and helps curb bleeding by creating a blood clot),

plasmin (an enzyme which cleaves proteins after lysine and arginine and dissolves blood clots), cocoonase

(which also cleaves after lysine and arginine in the silk strands of the cocoon facilitating the emergence

of the silk moth), and acrosin (which creates a hole in the protective sheath around the egg to allow

sperm-egg contact). Key functional sites of proteins exhibit a high degree of conservation [19, 20] and

coevolutionary analysis has been helpful in identifying protein-protein interactions [21, 22, 23, 24].

In accord with our findings, experiments have shown that not only can the topology of the native state

be preserved on significantly changing the amino acid sequence [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44], but also the rate of protein folding does not change appreciably. Indeed,

there is evidence from experiments [38, 39, 41, 42, 45, 46] that the structures of the transition states do

not change much for proteins with similar native state structures. Experiments have shown that many
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protein sequences can have the same native state conformation [47, 48, 49, 50]. Interestingly, the same

fold (e.g. the TIM (Triose phosphate IsoMerase) barrel) can facilitate multiple distinct functionalities

[51, 52, 53]. Also, the protein structure prediction method of threading [54] relies on the notion that a

given protein does not fashion its own native state fold but rather selects from a predetermined library

of folds.

Evolution, along with natural selection, allows nature to use variations on the same theme to perform

myriad tasks in the living cell. Note that molecular evolution would not be able to work in this manner if

protein structures changed continuously and were themselves subject to evolution. If protein structures

were themselves to evolve and were also directly implicated in function, as we know they are, the structures

of two interacting partners would have to co-evolve harmoniously so as not to disrupt function. Such an

unlikely scenario would thwart evolution, as we know it. Our derivation of the building block geometries

of protein structures from first principles provides proof that the menu of folds is in fact immutable. The

mutation of a single amino acid at a time results in a random walk that forms a connected network in

sequence space. However there is no similar continuous variation in structure space [55, 56].

3 Conclusion

Here we have shown that, while mathematics alone is able to quantitatively predict the building blocks

of protein structures, the results of chemistry and biology are remarkably consilient with the constraints

placed by mathematics and physics. There have been many hints over the years that this might be true.

More than eight decades ago, Bernal [57] highlighted the common characteristics of all proteins. Some

seventy years ago, Pauling [5, 6], the master of quantum chemistry, founded the field of molecular biology

by predicting the geometries of the building blocks of protein structures using just the backbone atoms.

Several years later, Ramachandran and his colleagues [10] showed that the same building blocks were

selected for by following quantum chemistry rules (without the need to invoke hydrogen bonds) while

carefully avoiding steric clashes. As the number of protein sequences with known structure is growing

enormously, the number of distinct protein folds is not. All this suggests that, even as Darwin’s evolution

is a major player in determining protein behavior, there is great simplicity in the protein problem, because

Plato’s ideas of the preeminence of geometry and symmetry are still very relevant when it comes to the

library of putative native state folds.

Sequences and even functionalities evolve in order to fit within the constraints of these geometric

structures, which are determined by mathematics and physics and are Platonic and not subject to Dar-

winian evolution. One cannot but marvel at the interplay of sequence, structure, and function of proteins

and celebrate the consilience of mathematics and the sciences in shaping the field of protein science.
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Understanding the fit between sequence and structure in a precise mathematical manner remains an

outstanding challenge.

We are delighted to dedicate this perspective to a dear friend Nitant Kenkre - an erudite scholar and a

marvelous gentleman. We have all read his papers and one of us (JRB) has experienced the great pleasure

of joyously interacting with Nitant. His knowledge of philosophy and mathematics and his humanity are

inspiring.

4 Materials and Methods

The PDB codes of the proteins used for our analysis are presented as Supplementary Information in

Škrbić et al. [7].
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Figure 1: Sketches of two simple geometries. a) A sphere of radius ∆. The generalization of a sphere
is b) a tube of radius ∆. The green point at the center of the sphere is generalized to the green line,
which is the axis of the tube. In a), the sphere encloses a region of length scale ∆ around the green point,
whereas, in b), the tube encloses a region of length scale ∆ around the green line. A garden hose is a
tube and is often curled into a helical conformation.
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Figure 2: Sketches of four helices. a) The axis of a continuum helix with a rotation angle between
successive Cα atoms, ε0 → 0, spans all three dimensions as does the axis of b) a discrete helix with a
generic rotation angle ε0. c) depicts the axis of a discrete helix with a rotation angle ε0 = π. The axis is
a zig-zag strand spanning two dimensional space. Alternate points along the strand are colored blue and
red, so that a straight line can be drawn through either the set of blue dots or the set of red dots. d)
shows the axis of a discrete helix with a rotation angle ε0 = 2π. The helix axis is now a one dimensional
straight line.
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Figure 3: Sketches of two continuum space-filling helices, one with tube radius ∆1 and the other with
tube radius ∆2. a) and c) show the side views of the two helices whereas b) and d) show the top views.
The pitch-to-radius ratio takes on the universal value[8, 9] P/R = 2.512 . . . for both helices. This value
can be derived straightforwardly by imposing the tight-most local bending of the tube and by requiring
that successive turns of the helix lie on top of each other and alongside each other. These conditions lead
to the length scales shown in a) and c) being equal to the tube diameter (of the respective tubes) and
all four angles shown in a) and c) being equal to 90◦. These geometrical conditions will be adapted for
determining the characteristics of the discrete space-filling helix. Note the continuum calculation predicts
the dimensionless P/R ratio but has nothing to say about absolute length scales such as the tube radius
∆.
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Figure 4: Sketch illustrating the derivation of the geometry of a space-filling discrete helix. The axis
of a space-filling continuum helix with pitch to radius ratio P/R = 2.512 . . . is decorated with equally
spaced Cα atoms of bond length of 3.81 Å, with a constant rotation angle ε0. The value of ε0, the bond
length, and the P/R ratio uniquely specify the geometry of the space-filling discrete helix and the tube
radius ∆. Just as Pauling determined ε0 by allowing the coherent placement of hydrogen bonds, here we
determine the largest ε0 of around 99.8◦ to ensure three space-filling conditions (for all i) adapted from
the continuum calculations: the (i, i+3) distance between Cα atoms is 2∆, and the two angles subtended
by (i− 1, i, i+ 3) and (i, i+ 3, i+ 4) Cα atoms are both equal to 90◦.
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Figure 5: Sketches illustrating the pairing of zig-zag strands. A zig-zag strand can be thought of as
representing one of two tubes of radius ∆, whose value is determined from the helical analysis. Mj

denotes the mid-point of sites j − 1 and j + 1. The two candidate tubes are the red tube whose straight
line axis goes through the red points or the blue tube whose axis passes through the blue points (see
Figure 2c). A space-filling pairing of strands can naturally happen in two different ways with distinct
geometric constraints – a red (blue) tube alongside a red (blue) tube or a red (blue) tube alongside a
blue (red) tube. These arrangements are shown in the two panels and lead to predictions amenable to
experimental validation.
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Figure 6: Sketches of quantities presented in the table for the space-filling discrete helix. a) illustrates
the rotation angle ε0, the rise per residue p, the pitch P , and the helix radius R for the space-filling
discrete helix. b) denotes a prediction pertaining to the dihedral angle between the planes defined by two
congruent triangles defined by the triplets of Cα atoms (i− 1, i, i+ 3) and (i, i+ 3, i+ 4). Mathematics
predicts this angle to be 215.5◦ whereas chemistry (experimental data) yields the result (213.1 ± 5.9)◦.
c) and d) show the definitions of the bond angle θ and the dihedral angle µ between the planes formed
by two successive triplets of Cα atoms (i, i+ 1, i+ 2) and (i+ 1, i+ 2, i+ 3), respectively.
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Continuum tube diameter from theory 2∆ = 5.26 . . .Å
Quantity Theory PDB data

HELIX

Rotation angle ε0 [◦] 99.8 99.1 ± 3.4
Number of residues per turn 3.61 3.63 ± 0.13
Helix radius R [Å] 2.27 2.30 ± 0.07
Helix pitch P [Å] 5.69 5.47 ± 0.49
Pitch to radius ratio c = P/R 2.51 2.37 ± 0.29
∠(π(i− 1, i, i+ 3), π(i, i+ 3, i+ 4)) [◦] 215.5 213.1 ± 5.9
d(i, i+ 3) [Å] 2∆=5.26 5.12 ± 0.16
θ [◦] 91.8 91.3 ± 2.2
µ [◦] 52.4 49.7 ± 3.9

SHEET

Parallel β-sheet
θ [◦] flexible 121 ± 10
µ [◦] ∼180 191 ± 17
d(i,Mj) [Å] 2∆=5.26 5.26 ± 0.16
d(j,Mi) [Å] 2∆=5.26 4.90 ± 0.31
Antiparallel β-sheet
θ [◦] flexible 127 ± 10
µ [◦] ∼180 186 ± 20
d(i, j) [Å] 2∆=5.26 5.26 ± 0.20

Table 1: A quantitative comparison of the mathematical predictions and experimental data from protein struc-
tures. The angle ∠(π(i − 1, i, i + 3), π(i, i + 3, i + 4)) is the dihedral angle between the two planes formed by the
sites (i− 1, i, i+ 3) and (i, i+ 3, i+ 4), as shown in Figure 6b. Mj denotes the mid-point of sites j − 1 and j + 1

(see Figure 5b). The anti-parallel β-sheet has a ladder-like hydrogen bond structure with a close pair of hydrogen
bonds connecting symmetric sites (i, j) (and (i − 2, j + 2) and (i + 2, j − 2)). The parallel β-sheet, on the other
hand, has an array of zig-zag hydrogen bonds with, for example, i connected to j − 1 and j + 1 by a wide pair of
hydrogen bonds but with j not hydrogen bonded with i+ 1 or i−1. This breaking of symmetry between i and j is
reflected in distinct mean experimental values of d(i,Mj) and d(j,Mi). The inputs to the theoretical predictions
are one constructive hypothesis that the building blocks of protein structures are space-filling and the mean bond
length (the average distance between adjacent Cα atoms) is 3.81Å. The predictions are parameter-free and do not
have any chemistry input. The quantities studied are illustrated in Figures 5 and 6. The excellent accord between
theory and experiment confirm the validity of the hypothesis that self-interactions are maximized in the building
blocks of protein native state structures.

18


	1 Introduction
	2 Results and Discussion
	2.1 Mathematics and physics
	2.2 Chemistry provides a good fit to the dictates of mathematics
	2.3 Biology and chemistry

	3 Conclusion
	4 Materials and Methods

