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Abstract: The coastal environment is vulnerable to natural hazards and human-induced stressors.
The assessment and management of coastal risks have become a challenging task, due to many
environmental and socio-economic risk factors together with the complex interactions that might
arise through natural and human-induced pressures. This work evaluates the combined effect of
climate-related stressors on low-lying coastal areas by applying a multi-risk scenario analysis through
a Bayesian Network (BN) approach for the Venice coast. Based on the available open-source and
remote sensing data for detecting shoreline changes, the developed BN model was trained and
validated with oceanographic variables for the 2015–2019 timeframe, allowing us to understand
the dynamics of local-scale shoreline erosion and related water quality parameters. Three “what-if ”
scenarios were carried out to analyze the relationships between oceanographic boundary conditions,
shoreline evolution, and water quality parameters. The results demonstrate that changes in sea
surface height and significant wave height may significantly increase the probability of high-erosion
and high-accretion states. Moreover, by altering the wave direction, the water quality variables show
significant changes in the higher-risk class. The outcome of this study allowed us to identify current
and future coastal risk scenarios, supporting local authorities in developing adaptation plans.

Keywords: multi-risk assessment; sea level rise; shoreline change; water quality; climate change adaptation

1. Introduction

Coastal regions are distinct and delicate ecosystems, influenced by complex and
dynamic interactions among various physical, ecological, and socio-economic elements at
the boundary between land and sea [1–5]. They are susceptible both to acute and chronic
hazards stemming from climate variability [6–8]. The primary challenges arise from sea
level rises and intensified waves and storm surges. These factors can cause land loss,
coastal erosion, flooding, and changes in the physical–chemical properties of seawater
(temperature, salinity, nutrients, pH, oxygen, etc.), affecting biodiversity and ecosystem
services in coastal waters [9].

Coastal erosion is primarily driven by physical factors, like wave, wind, current, and
subsidence [10–15]. This phenomenon occurs when there is a negative long-term balance
in sediment dynamics, meaning that sediment removal surpasses deposition. Regions with
low elevation and flat topography, such as the Netherlands and the Po Valley in Italy, are
especially vulnerable to these impacts.

In recent years, human activities have significantly escalated the problem related to
coastal erosion [14,16]. Actions along coastlines, like harbor constructions, aquaculture, and

J. Mar. Sci. Eng. 2024, 12, 139. https://doi.org/10.3390/jmse12010139 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12010139
https://doi.org/10.3390/jmse12010139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-0441-3799
https://orcid.org/0000-0002-5423-9696
https://orcid.org/0000-0001-8868-9057
https://doi.org/10.3390/jmse12010139
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12010139?type=check_update&version=1


J. Mar. Sci. Eng. 2024, 12, 139 2 of 20

land reclamation, coupled with activities within river basins, such as river diversions and
damming, as well as offshore actions like seafloor dredging and sand extraction, frequently
intensify coastal erosion.

In some regions, new areas prone to erosion may arise as a consequence of climate
change and the subsequent rise in sea levels [9,17,18]. Sea level rise can lead to the per-
manent flooding of coastal zones, intensifying the repercussions of coastal erosion and
storm-related flooding [19]. Given these challenges, it is essential to have accurate assess-
ments of coastal erosion to inform Integrated Coastal Zone Management (ICZM) strategies
and climate change adaptation measures [20]. Such assessments are necessary to aid inter-
national, national, and local stakeholders and communities in navigating the impacts of
climate change, proactively identifying potential environmental degradation and mitigating
associated financial losses [21].

Accurate assessments of coastal erosion require comprehensive data about historical
and projected shoreline positions. Such information is crucial for devising coastal protection
strategies, evaluating the risks posed by sea level rises and storm surges and fine-tuning
modeling predictions [22]. Nowadays, remote sensing emerges as a pivotal tool for monitor-
ing coastal regions, offering diverse spatial and temporal resolutions [23]. The advantages
of remote sensing data are manifold, encompassing their ability to furnish affordable,
consistent, and precise data, even for inaccessible regions. Within these techniques, the
analysis of satellite imagery stands out as a cost-effective and rapid approach for tracking
shoreline shifts over time [24–27]. In particular, infrared and multi-spectral satellite images
hold significant promise in effectively recognizing the land–water interface [28].

The rapid evolution and deployment of satellite imagery in recent decades have
empowered the scientific community to devise innovative methodologies for harnessing
remote sensing data to their fullest potential. In this context, Machine Learning (ML) ap-
proaches have become increasingly utilized for environmental studies in different contexts
and applications, such as forecasting and modeling, characterization of hazards, detection
of potential exposure and vulnerability, and risk assessment [29]. Among ML methods,
sophisticated probabilistic-based methods, known as Bayesian Networks (BNs), have been
developed, allowing for integration into a single model of heterogeneous information (e.g.,
remote sensing data, physical, chemical data, ecosystem services, and expert judgment),
providing useful insights for managers and decision makers in designing adaptation strate-
gies [30–32]. Several reviews on the application of the BN models highlighted the increased
use of this probabilistic model for environment risk assessment due to their capability
to cooperate joint probability distribution to examine the potential impacts of numerous
risk factors and stressors for assessment endpoints under baseline conditions and future
projections [32–34]. In particular, BN applications have been implemented to assess coastal
risk, linked to specific stressors, including storm surges’ vulnerability against environmen-
tal and human receptors [35]. On the other hand, BNs have also been designed for risk
management and assessment to appraise the effectiveness of adaptation or management
strategies to understand the level of risk or adverse conditions. For instance, Ref. [36] inte-
grated the assessment of adaptation measures and prediction of the SLR-induced coastal
erosion into the GIS-based BN model.

Building upon the stated objective, this research centered on evaluating the risk
of coastal erosion for the coastal line of Venice (hereafter refer to as Venice case study),
including Pellestrina, Lido, and Cavallino. To reach this aim, the Bayesian Network
approach was implemented to assess the effect of sea level rises on coastal erosion and
water quality risks under different “what-if ” scenarios related to extreme oceanographic
conditions (i.e., sea level, wave, wind wave height, and direction).

2. Materials and Methods
2.1. Case Study

The Venice case study encompasses the coastline of two islands, namely Pellestrina,
Lido, and the coast of Cavallino peninsula (Figure 1). Spanning approximately 90 km, this
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coastline is characterized by gentle-sloping and shallow sandy littorals where sediments
originate from Tagliamento, Piave, Sile, Brenta, and Adige rivers [37]. This coast acts as a
barrier to separate the Venice Lagoon and the Adriatic Sea.

Figure 1. The Metropolitan City of Venice littoral, including Pellestrina, Lido, and Cavallino. The
length of the transects was increased for better visualization.

Since the study area is situated at the land–sea boundary, it is particularly vulnerable
due to its diverse morphological features, including straight coastlines, lagoon barrier
islands, spits, river estuaries [38–40], and numerous human-induced stressors. Additionally,
anthropogenic activities, like the construction of coastal defenses, breakwaters, and the
construction of the Experimental Electromechanical Module—MoSE project [41,42], have
further impacted the morphology of the Venice coastline [37,43,44]. Furthermore, the Venice
shoreline is particularly vulnerable to extreme sea levels due to various factors, such as
astronomical tides, storm surges, and relative sea level rises [18,45–47]. Particularly, waves
primarily originate from two prevailing wind directions, namely, southeast (Sirocco wind)
and northeast (Bora wind). Significant wave height demonstrated a yearly cycle with a
peak from November to March (e.g., from 2 to 4 m in the winter months) [48]. The wave
direction is mainly determined by bora wind (northeast to southwest) while the peak waves
are found more frequently with the sirocco regime (southeast to northwest) [48].

Together with storm surges and sea level rise, the subsidence of the territory con-
tributes to the increased frequency of flooding events (i.e., so-called “acqua alta” in Italian)
such as recorded flood events in 1966 and 2019. The subsidence in the North Adriatic region
results from both natural (e.g., tectonics, glacio-isostasy, and compaction of alluvial fine-
material deposits) and anthropogenic factors, notably groundwater extraction, acting at
different time scales [49,50]. Combining both subsidence and the impacts of climate change,
the relative sea level rise has been increasing in this region at a rate of 1.2 mm.year−1 for
the timeframe 1872–2019 [46,51], and this is expected to keep rising in the future [18,47,52]

Given these compounding stressors, the case study area is projected to suffer an
increased risk of flooding and shoreline retreatment [53], losses, and potential alter-
ations to barrier islands like Lido and Pellestrina, thus exacerbating flood threats to
Venice’s historic center and its surrounding lagoon [54]. Several solutions have been
implemented to cope with these problems, such as beach nourishment in Pellestrina
and Cavallino-Treporti, rubble-mound seawalls, and submerged breakwater along the
coast [55]. Moreover, some nature-based solutions have been carried out during the LIFE
SeResto (http://www.lifeseresto.eu/, accessed on 17 December 2022) and LIFE ReDune

http://www.lifeseresto.eu/
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(http://www.liferedune.it/, accessed on 17 December 2022) projects to expand dune vege-
tation, wetlands, and seagrasses in the Venice lagoon, aiming at restoring increasing the
resilience of coastal-lined lagoon habitats to flooding and erosion [56]. However, further
actions are needed to better understand, prepare for, and manage climate risks and help
accelerate the adoption of comprehensive adaptation plans and approaches at the regional
to local scale, as required by the EU Adaptation Strategy 2021 [57].

2.2. Input Data

For better understanding and managing coastal risks, including those related to climate
change such as shoreline erosion and water quality variations, it is necessary to collect
heterogeneous data concerning the territorial and environmental features of the study
area (e.g., satellite images, tide levels, water quality parameters) and the oceanographic
drivers (e.g., wave and wind characteristics) acting on the coast. Conceptually, the BN
application requires data for the causal nodes (or parent nodes) at the top of the model and
the effect nodes (or child nodes) at the bottom of the model [58]. In this application, the
parent nodes contain the main stressor or cause variables, such as wave, wind-wave, and
current parameters, while the child nodes or effect nodes are the final assessment endpoints,
namely water quality and shoreline change. All the above-mentioned data were collected
from freely available data sources, including the Copernicus Marine Service (CMEMS) and
the Earth Explorer platform (https://earthexplorer.usgs.gov/, accessed on 19 August 2022).
Based on the availability of these open data, the timeframe 2015–2019 was selected as the
study period since the satellite images from Sentinel-2 data were released in June 2015.
A list of selected variables, together with their abbreviations used in this work and their
metadata, is reported in Table 1.

The selected variables are divided into 3 main groups, namely, oceanographic pa-
rameters, water quality, and shoreline change. The first 2 groups were obtained from the
CMEMS platform, while the shoreline evolution (SEV), representing the historical trend of
the coastline (i.e., accretion, stability, and erosion), was taken from [59].

Regarding the CMEMS dataset, oceanographic and water quality data were retrieved
to identify the main stressors of coastal erosion processes and to identify potential targets.
These data were obtained in the NetCDF format with different resolutions, i.e., about 6 km
for the variables related to the current and about 4 km for the ones related to wave, wind,
and water quality. As highlighted in many works, the shoreline changes are driven by both
cross-shore and longshore processes [60,61]. The former is mainly governed by the wave
parameters (i.e., direction, period, and height), while the latter is controlled primarily by
the current and its velocity [61]. Therefore, the set of data obtained from CMEMS provides
a wide range of variables to understand the evolution of the shoreline, the associated
sediment transport process, and, consequently, water quality parameters.

For analyzing shoreline changes, several ML techniques were employed. Specifically,
Logistic Regression [62], Neural Networks [63], and Random Forest [64] algorithms were
utilized to detect the shoreline (i.e., the delineation between land and sea), based on
the selected satellite images in the reference scenario 2015–2019 [59]. Then, the Digital
Shoreline Evolution System (DSAS) was utilized to estimate the annual changing rate
(i.e., Net Shoreline Movement—NSM) for all transects along the coast (i.e., perpendicular
segments intersecting each shoreline at regular spatial distance, as shown in Figure 1).
Nevertheless, the collection of satellite images to carry out the shoreline evolution analysis
was limited due to the availability of data related to the spatial resolution, cloud cover, and
the consistency in tidal level, which does not allow for the seasonal assessment. Considering
the spatial coverage of the case study, transects were established at distance of 100 m to
ensure comprehensive coverage while maintaining a manageable calculation time. The
outcomes of this analysis are maps of yearly shoreline changes for the timeframe 2015–2019
with a spatial resolution of 100 m along the coast.

http://www.liferedune.it/
https://earthexplorer.usgs.gov/
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Table 1. Available dataset for the implementation of the coastal erosion risk assessment methodology in the Venice case study.

Variable Abbreviation Unit Spatial Domain Spatial
Resolution

Timeframe
Available

Data
Format Reference/Link

Sea surface height above
the geoid SSH m Mediterranean Sea 0.0625 degrees 1987–2023 NetCDF

https://doi.org/10.25423/CMCC/MEDSEA_
MULTIYEAR_PHY_006_004_E3R1 (accessed

on 19 August 2022)

Eastward sea
water velocity ESV m s−1 Mediterranean Sea 0.0625 degrees 1987–2023 NetCDF

Northward sea
water velocity NSV m s−1 Mediterranean Sea 0.0625 degrees 1987–2023 NetCDF

Wave direction from WAD degree Mediterranean Sea 0.042 degrees 1993–2023 NetCDF

https://doi.org/10.25423/cmcc/medsea_
multiyear_wav_006_012 (accessed on

19 August 2022)

Significant wave height WAH m Mediterranean Sea 0.042 degrees 1993–2023 NetCDF

Sea surface wave
mean period WAP s Mediterranean Sea 0.042 degrees 1993–2023 NetCDF

Wind wave direction WID degree Mediterranean Sea 0.042 degrees 1993–2023 NetCDF

Significant wind
wave height WIH m Mediterranean Sea 0.042 degrees 1993–2023 NetCDF

Sea-surface wind wave
mean period WIP s Mediterranean Sea 0.042 degrees 1993–2023 NetCDF

Absorption coefficient CDM m−1 Global 4 km 1997–2023 NetCDF

https://doi.org/10.48670/moi-00280 (accessed
on 19 August 2022)

Diffuse attenuation KD m−1 Global 4 km 1997–2023 NetCDF

Particulate backscattering BBP m−1 Global 4 km 1997–2023 NetCDF

Reflectance RRS sr−1 Global 4 km 1997–2023 NetCDF

Secchi transparency ZSD m Global 4 km 1997–2023 NetCDF

Suspended
particulate matter SPM g m−3 Global 4 km 1997–2023 NetCDF

Shoreline evolution SEV m yr−1 Venice case study - 2015–2019 Shapefile [59]

https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1
https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1
https://doi.org/10.25423/cmcc/medsea_multiyear_wav_006_012
https://doi.org/10.25423/cmcc/medsea_multiyear_wav_006_012
https://doi.org/10.48670/moi-00280
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2.3. Methodological Approach

This section presents the Bayesian Network approach adopted for the analysis of
coastal risks for the Venice littoral in the reference scenario 2015–2019. In particular, the
dynamic evolution of the shoreline leads to cascading effects on both human (i.e., lives,
activities, and infrastructure) and natural systems (e.g., water quality deterioration due to
the rising of turbidity) [65,66].

As emerged from recent literature reviews, BN models are increasingly being used
for environmental risk assessment [32–34] for different assessment endpoints (e.g., water
quality, biological invasion, ecological status, coastal erosion) and purposes (e.g., impact
assessment, scenario analysis) in various environmental domains, such as freshwater,
marine, terrestrial, and urban area. For this kind of application, most of the BN studies are
expert systems. Moreover, the model structure typically evolves a synthesis of pre-existing
models, combined with insights from experts and stakeholders [34].

As presented in Figure 2, the assessment builds on the results of the shoreline evolution
trend analysis of satellite images and the data obtained from CMEMS, as summarized
in Table 1, and follows a stepwise approach that allows for estimating risk scenarios for
the three assessment endpoints, namely, shoreline evolution (SEV), suspended particulate
matter (SPM), and diffuse attenuation (KD).

Figure 2. Bayesian Network model for the risk assessment related to coastal erosion and water quality.
Abbreviation: SEV—shoreline evolution; WQ—water quality; CMEMS—Copernicus Marine Service.

Specifically, after the preliminary data collection and pre-processing (Phase 0), the
correlation analysis and variable selection (Phase 1) were carried out to reduce the com-
plexity of the BN model by identifying high-correlated variables in three different settings:
(i) correlation among selected variables; (ii) sub-matrix including SEV against its physical
oceanographic drivers; (iii) sub-matrix including the SEV and water quality variables. Then,
the development of the BN model (Phase 2) followed different steps, including (i) model
design and parameterization; (ii) model validation; (iii) sensitivity analysis; and (iv) the
baseline scenario analysis.

2.3.1. Phase 0: Data Collection and Pre-Processing

As shown in Figure 2, the main goal of this initial phase is to elaborate and homogenize
the grid-based dataset (i.e., oceanographic and water quality data) retrieved from the
Copernicus CMEMS portal and the transect-based data (i.e., shoreline evolution). Moreover,
the input data have different temporal resolutions, i.e., hourly records for oceanographic
variables and monthly data for the sea surface height, current, and water quality parameters
(i.e., KD and SPM). Therefore, to be implemented into the BN model, input data were pre-
processed in Climate Data Operators (CDOs) [67], calculating a yearly mean value, as well
as the maximum value only for certain variables (i.e., WAH and WIH) to capture extreme
events through the investigated timeframe. Given the diverse formats and spatiotemporal
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resolutions of the input data, they are uniformly converted into a yearly basis and extracted
at the central point of the shoreline transects to build a comprehensive table to train the
BN model. This integration strategy served the purpose of homogenizing the data, thereby
mitigating the potential inconsistencies and biases that could influence the final findings.
The resulting table is composed of 12 columns, where each of them represents a selected
variable, including the final assessment endpoints in the last 3 columns.

2.3.2. Phase 1: Correlation Analysis and Variable Selection

Once the pre-processing phase was completed, the correlation analysis was carried
out to identify the high-correlated variables of the collected dataset whilst reducing the
complexity of the BN model. Specifically, the correlation table and the plot report the
relationships and possible dependencies among shorelines, water quality, and oceano-
graphic variables. The ‘PerformanceAnalytics’ package from the open-source R program was
selected to perform the statistical analysis and obtain the graphical outputs, facilitating the
understanding of the results. The resulting outcome is a matrix with a dimension equal to
the number of variables considered in the data pre-processing phase (see Table 1) and will
be discussed in Section 3.1. The correlation matrix reports the correlation coefficient, with
−1 denoting a perfectly negative correlation between the considered variables, 0 signifying
no correlation between the variables, and 1 indicating a perfect positive correlation between
the variables.

2.3.3. Phase 2: Bayesian Network Model

The final phase of the assessment concerns the development of a BN model, which
involves a four-step implementation process, as shown in Figure 2. Specifically, the model
started with the model design and parameterization for the investigated case study (Step
1), model validation (Step 2) the sensitivity analysis (Step 3) for the reference scenario
(2015–2019), and, finally, three different “what-if ” scenarios considering extreme events,
such as sea level, wave and wind wave height, and direction (Step 4).

• Step 1: Model design and parametrization

The first methodological step for the implementation of the BN is the model design,
where the links between variables are detailed to build a causal structure. With the main aim
of analyzing the dynamics that naturally occur in the investigated coastal area, the shoreline
change (i.e., SEV), water quality parameters (i.e., SPM and KD), and selected variables were
converted into a “boxes and arrows” diagram (i.e., initial expert-based BN model), where
“arcs” (i.e., casual correlation) connect to the “nodes” (i.e., variables), building a directed
acyclic graph. The initial expert-based BN conceptual model is translated into a computer
model using R language (Version 3.6.2).

After the model design, the parameter learning process was carried out to assign
the states to each variable included in the network. The states were classified based on
(i) quantitative numerical values, to characterize the oceanographic forcing (i.e., discretized
into three equal interval classes) and the WQ assessment endpoints; (ii) qualitative estimate
of risk (categorizing the risks), to identify shoreline evolution trends (i.e., “accretion”,
“stability”, “erosion”). Moreover, the assessment endpoints (i.e., KD, SPM, and SEV) were
manually classified into five classes to have a better visualization of the outputs’ classes
following the literature review [68].

Several structure learning techniques were applied to enhance the expert-based BN
model by considering new relationships among the variables [69]. Structure learning
approaches aim to identify potential limitations or links between variables that could be
dismissed with respect to the initial expert-based conceptualization. Nevertheless, these
connections require further consideration of expert judgment for defining the final BN
structure [30].

• Step 2: Model validation
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Model validation is a crucial step in the BN model implementation, as it evaluates the
accuracy and reliability of the model, as well as defining the consistency of the results if
compared to observations or similar models. As emerged from the recent review, major
BN applications still did not validate their models or used expert/stakeholder opinion in
model development without reporting the validation measure [34]. To implement this task,
two approaches can be carried out: (i) data-based evaluation, which calculates the predictive
accuracy of the BN model by analyzing the misclassification rate of the predicted nodes
(e.g., assessment endpoints) against a set of independent observed data; (ii) qualitative
evaluation, where expert knowledge is applied to analyze the outcomes according to peer-
reviewed scientific publications, as well as other similar models to verify the final logic of
the model outputs [34].

• Step 3: Sensitivity analysis

Sensitivity analysis allows for testing the sensitivity of model results to the changes in
the model’s input [70]. For the BN model, sensitivity analysis helps to examine the system
behavior and understand the degree of changes in the outcome to various configurations of
the input variables, identifying the relevant causal paths between the variables. Therefore,
to find the most dominant variables that have the greatest impact on assessment endpoints,
the strength of relationships from input nodes to the model output (i.e., net shoreline
movement, suspended particulate matter, diffuse attenuation) is analyzed. The analysis
was accomplished by changing the input variables one at a time, and changes related to the
output parameters were observed [71–73].

• Step 4: Baseline scenario analysis

Once the model was conceptualized and validated, the baseline scenario analysis
was performed in order to simulate potential “what-if ” scenarios representing extreme
weather and oceanographic conditions observed in the reference period for the parent
nodes or the effect of their potential co-occurrence. The baseline scenario analysis can be
performed in two ways: (i) analyzing the relative changes in the response variables, related
to changes in the stressor variables (prognostic inference); (ii) querying the state of the
stressor variables to obtain the desired outcome in the response variable (i.e., diagnostic
inference). A common way to foster scenarios using BN is to “set evidence” for one or more
nodes by assigning a 100% probability to a specific state, thus allowing the information to
propagate throughout the nodes that are connected by the Conditional Probability Table
(CPT) within the network [70]. Building on the prognostic inference method, the three
selected “what if” scenarios are summarized as follows:

First Scenario. The first scenario was set up by applying 100% probability of the
highest classes of maximum and mean significant wave height variables, corresponding to
the higher states of MWAH [0.398, 0.438]m and WAH [5.03,6.55]m, respectively. Based on
the prognostic inference, the defined evidence representing extreme wave height conditions
observed in the reference scenario is transmitted from the parent node to its child nodes,
focusing the analysis on the linked changes in terms of shoreline evolution and water
quality parameters.

Second Scenario. In the second scenario, a 100% probability of the value related to
the wave and wind wave directions (i.e., the angle from North) was set with the value of
normalized scores ranging [132, 135]◦ N for WAD and [114, 123]◦ N for WID, respectively.
In fact, these waves in the northern Adriatic region are among the main drivers of extreme
storm surge events induced by the Sirocco wind, whose coming direction varies between
the selected values, and the blowing direction ranges within a 50◦ wide sector, specifically
[295, 345]◦ N [74–77].

Third Scenario. Finally, the third scenario was established by setting 100% probability
to the highest class of sea surface height (SSH) with respect to the reference ellipsoid and
maximum significant wave height (MWAH), as their combination accounts for most of the
extreme events observed in the investigated area [45]. Specifically, the values of normalized
scores for SSH and MWAH are [−0.355, −0.329] m and [5.03, 6.55] m, respectively.
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3. Results and Discussion

Following the structure in the Methods section, this section presents the results of
the correlation analysis (Section 3.1) and BN model (Section 3.2) applied to detect coastal
erosion and water quality deterioration in the Venice case study.

3.1. Correlation Analysis

As detailed in Section 2.3.2, the correlation analysis is aimed at (i) analyzing the
interrelation among oceanographic, water quality, and shoreline evolution parameters;
(ii) discarding high-correlated variables and, therefore, reducing the complexity of the
designed BN model and computational time required for its implementation; and (iii) se-
lecting the most relevant assessment endpoints to be included in the network.

Figures 3 and 4 show the final output of the correlation analysis (i.e., the correlation
matrix) implemented for the Adriatic coast of the lagoon of Venice for 16 variables reported
in Table 1. In particular, Figure 3 focuses on the shoreline evolution trend and its physical
oceanographic drivers, including winds, coastal currents, and sea level rises, whereas
Figure 4 depicts the relation between shoreline evolution and water quality assessment end-
points.

Figure 3. Correlation matrix focusing on the relation between shoreline evolution and oceanographic
variables. The distribution of each variable is shown on the diagonal. Below the diagonal: the
bivariate scatter plots with a fitted line are displayed. Above the diagonal: the value of the correlation
and the significance level as stars: p-values (0, 0.001, 0.01, 0.05, 0.1, 1) and equivalent symbols (“***”,
“**”, “*”, “.”, “ ”).
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Figure 4. Correlation matrix focusing on shoreline evolution and water quality variables. The
distribution of each variable is shown on the diagonal. Below the diagonal: the bivariate scatter plots
with a fitted line are displayed. Above the diagonal: the value of the correlation and the significance
level as stars: p-values (0, 0.001, 0.01, 0.05, 0.1, 1) and equivalent symbols (“***”, “**”, “*”, “.”, “ ”).

In accordance with the study developed by [77] along the investigated coastal area,
Figure 3 highlights how the evolution trend is mainly related to the maximum values of
significant wave and wind wave height (30%). However, as in the case study of Venice,
the difference between the two wave variables is negligible (>99%), and one can easily
be excluded from the model design to be implemented as the second step in the multi-
risk methodology (Figure 2). The same reason is also applied to the wind wave period,
which is highly correlated to both significant wave and wind wave height (89% and
92%, respectively).

On the other hand, Figure 4 depicts the relation among the assessment endpoints,
both shoreline evolution and water quality parameters. This second correlation analysis
aims to avoid the redundancy of the assessment endpoints by selecting only three of them,
including the shoreline evolution trend (SEV). Moreover, suspended particulate matter
(SPM) represents the only chemical component of the turbidity of the water column, as it
indicates the mass concentration of particulate (inorganic) matter in seawater. Therefore, the
final step of this analysis consists of the identification of the physical element characterizing
turbidity. Among them, diffuse attenuation (KD), which indicates the volume attenuation
coefficient of downwelling radiative flux in seawater, is highly correlated to the other
physical components, providing an overall good indicator of the process. At the same
time, it shows one of the lowest correlation values with the other two selected assessment
endpoints, hence achieving the object of this assessment.
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3.2. Bayesian Network Model

After a short description of the main findings from the BN model design and param-
eterization, the calibration and validation of the model, and the sensitivity analysis, this
section discusses the results of the BN application, including statistics, summarizing the
probability distributions of the selected assessment endpoints under different ‘what if’
scenarios, representing extreme weather and oceanographic conditions for the reference
period 2015–2019.

3.2.1. Model Design and Parametrization

The expert-based BN conceptual model aimed at assessing the coastal erosion risk and
the related effects on water quality is depicted in Figure 5. The parent nodes of the model
are oceanographic variables, including sea surface height (SSH), seawater velocity (i.e., NSV
and ESV), and wind-wave parameters (i.e., WID, WIH, WAD, WAP, WAH, and MWAH).
The selection of these variables was based on the literature review, expert opinions, and
the above correlation analysis. For instance, wind and wave parameters (e.g., height,
period, and direction), sea level, tide level, and water velocity were highlighted as the
most influential factors to the shoreline changes [3,35,68,78]. Then, some of the variables
were discarded to reduce the complexity of the BNs model such as the ones with a high
correlation with other drives, as shown in Figures 3 and 4 (e.g., MWIH vs. MWAH). On the
other hand, the BN models’ child nodes are represented by the three assessment endpoints
of the application (i.e., SEV, SPM, and KD), depicted in the lower part of Figure 5.

Figure 5. Final BN model reporting the marginal distributions in the study period (2015–2019)
associated to all variables included in the network.

By using the discretize command in R, the input data for the baseline period (2015–
2019) were discretized into a set of states to be integrated into the designed BN model. Based
on the natural characteristics of each variable or node (e.g., continuous, Boolean values), the
number of states was defined. Specifically, the oceanographic drivers were discretized into
three equal-interval classes, whilst the assessment endpoint nodes (i.e., SEV, KD, and SPM)
were manually classified into five classes to obtain a better visualization of results following
the literature [68]. For example, SEV was discretized into five classes of “(−Inf, −10],
(−10, −1], (−1,1], (1,12], (12, +Inf)”, where each class corresponds to “high erosion”,
“moderate erosion”, “stable coast”, “moderate accretion”, and “high accretion”, respectively.
Figure 5 shows the marginal distribution of all variables learned from the training data. A
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list of the final selected variables and their states is reported in Supplementary Materials
Table S1.

3.2.2. Model Validation

The performance of the developed BN was evaluated by estimating the prediction
error of the model, in terms of misclassification of unlabeled instances [79,80]. The results
of the final BN model are depicted in Figure 6. Accordingly, the average predictive errors
are 36.65%, 27.18%, and 27.53% for the SEV, SPM, and KD, respectively. This range of
median classification errors is similar to the performance of some other BN applications,
such as 34–45% for multi-sectoral flood damage assessment [81], 31–37% for freshwater
ecosystem service assessment [31], about 29% for coastal vulnerability prediction [68], and
16–29% for estuarine ecosystem assessment [82]. Overall, the developed BN model could
find the right estimation of about 63%, 72%, and 72% for the assessment endpoints; hence,
the model allows one to have a good inference, as also verified by the outcomes of the
validation process.

Figure 6. BN model validation, Boxplot that reports the average BN-model losses in terms of
classification errors of assessment endpoints (i.e., shoreline evolution (SEV), suspended matter (SPM),
and diffuse attenuation (KD)).

3.2.3. Sensitivity Analysis

Sensitivity analysis was performed to provide information on the sensitivity of the
assessment endpoints (i.e., SEV, SPM, and KD) to changes in the explanatory variables and
to identify the most influential variables on the BN model output. Therefore, analysis of
each explanatory node was performed one by one, by setting the probability of its highest
state to 100%, while all other nodes remained constant. Accordingly, the relative change in
the posterior probability of each assessment endpoint was analyzed and compared among
configurations by changing the probability of one variable at a time. Figure 7 shows the
probability of the states of all assessment endpoints in comparison to the prior probability
(PrP). Within the rose charts, the green segments represent the probability of classification
in the states of low turbidity for KD and SPM, with high turbidity highlighted in the red
segments. In the case of SEV, the green segments correspond to shoreline accretion, the
yellow segments represent a stable shoreline, and the red represents an eroding shoreline.
Compared to the prior probability, notable changes in the classification probabilities in
SEV were seen from the changes in the maximum significant wind wave height, where the
probability of the high-erosion classes increased, indicating the highest increase in shoreline
variability. In comparison, SPM was more influenced by changes in wave direction and
wind wave direction. High values of KD were generally most influenced by seawater
velocity values (ESV and NSV); however, changes in the posterior probability to KD
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were more subtle, indicating that, overall, the explanatory nodes made roughly similar
contributions to the model output.

Figure 7. Sensitivity analysis for the explanatory nodes of the constructed BN model for the assess-
ment endpoints. The red, yellow and dark green sections represent the highest, moderate, and lowest
classes, respectively.

3.2.4. Baseline Scenario Analysis

Baseline scenario analysis was carried out by analyzing three different “what-if ” sce-
narios representing extreme weather and oceanographic conditions for sea level rises,
waves, wind wave height, and direction, as detailed in Section 2.3.3. Figure 8 shows the
prior probability (i.e., the probability of the unperturbed condition to occur), depicted in the
first bar of each assessment endpoint, as well as the results of three baseline scenarios in the
second, third, and fourth bars, detailing the results of the first, second, and third scenarios.

Figure 8. Results of diagnostic inference of the three baseline scenarios for the three selected assess-
ment endpoints. The red, yellow, and green colors represent the different classes of each variable, as
detailed in the box.

First Scenario. The first ‘what-if ’ scenario was set up by applying 100% probability of
the highest state related to the maximum and mean significant wave height (i.e., MWAH and
WAH, respectively). On the medium time scale (i.e., years to decades), the modifications in
beach morphology and shoreline are affected by the changes in interannual wave-regime
processes. Therefore, the prediction of future shoreline changes is often based on knowledge
of the alongshore transport in relation to wave height [83]. The resulting shoreline evolution
node highlights that the most significant change was observed in the [−1, 1] meters range,
with a reduction of about 8.5% of stable coast (Figure 8). This change was balanced by an
overall slight increase in the most unstable classes (i.e., high erosion (−Inf, −10) and high
accretion [10, +Inf)). However, the variabilities were relatively lower (i.e., 3% and 2% rise
in high-erosion and high-accretion class, respectively). There was about a 3% increase in
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the moderate-erosion class [−10, −1) and no change in moderate accretion [1, 10)). On
the other hand, no significant changes were observed for the water quality assessment
endpoint (i.e., about 1% for both KD and SPM), meaning that oceanographic pressures such
as maximum and mean significant wave height could drive more severe impacts on the
shoreline evolution rather than to water quality deterioration along the Venice shoreline.

The results of this scenario allow for evaluating the effect of wave height on shoreline
dynamics and water quality parameters, as a prognostic inference. In fact, the increase
in wave heights, resulting from changes in wind direction and surface wind energy [84],
could contribute to the alteration in shoreline evolution since wave conditions are one of
the main drivers of longshore drift rates [61] and longshore sediment transport rate [85].
Therefore, the alteration in maximum and mean significant wave height would have direct
implications for coastal erosion, as observed in this scenario, i.e., reduce the stable class
of shoreline evolution. As a consequence of longshore sediment transport, materials,
organic and inorganic, can be carried away and redistributed by water and wind. Thus,
the increase in wave height parameters could indirectly affect the deterioration of water
quality parameters, such as KD and SPM. Nevertheless, this indirect influence was not
clearly detected in this scenario analysis since the changes in these parameters were minor.

Second Scenario. The purpose of this scenario was to simulate wave and wind wave
directions generated by the Sirocco wind along the Adriatic coastline, which has been
identified as one of the main drivers of extreme storm surge events in the investigated area.
Accordingly, the probabilities of the highest value of the wave and wind wave directions
(i.e., WAD and WID) were set equal to [132, 135]◦ N and [114, 123]◦ N, respectively.

The results reported in Figure 8 for the shoreline evolution node show a very low
increase in the upper and lower classes (i.e., high erosion and high accretion). Similar to
the first scenario, the highest variability is observed once again in the stable class with a
reduction of about 6.5%, which is compensated by an increase in the values of the two
moderate classes (i.e., about 3% in moderate erosion and 1.5% in moderate accretion). On
the other hand, as far as water quality variables are concerned, KD once again experienced
no significant changes, while the SPM node showed a noticeable increase in both ‘high’
and ‘very high presence’ classes (about 6%). Therefore, the results show that both WAD
and WID could influence water quality in terms of SPM, especially because of storm surge
events driven by the Sirocco wind.

The results of this scenario help to disentangle the potential influence of wave and
wind wave directions on shoreline dynamics and water quality parameters. An alteration
in wind direction is recognized as the most important driver for sediment transport and
coastal erosion [86–88]. Wind directions establish the wave direction and form seawater
waves and wave height, which, in turn, disturb bottom sediment and affect shoreline
dynamics. In the context of the Venice case study, the increase in extreme storm surge
events, due to the changes in wind and wave direction, led to a reduction in the stable
class because of the increased alteration in sediment transport, which, in turn, increased
suspended particulate matter. The results of the scenario analysis also reflect that the
mixing of sediment more significantly affects the presence of suspended particulate matter
rather than the infiltration capacity of the light into the water since the changes in KD
were negligible. It is important to highlight from the sensitivity analysis (Section 3.2.3) that
wind direction is the most influential factor for the shoreline evolution (Figure 7c) and SPM
(Figure 7b), which is in line with previous studies [61,89].

Third Scenario. The third scenario was aimed at evaluating the combination of the two
most influencing extreme weather and oceanographic conditions affecting the investigated
area, i.e., 100% probability of the highest classes of sea surface height (SSH) and maximum
significant wave height (MWAH). As far as shoreline evolution is concerned, the results
show that when storm waves reach critical height, small changes are observed in high-
and moderate-erosion classes, with an increase of 3% and 4%, respectively. This result is
balanced by a significant decrease of about 10% in the stable class, while the moderate
and high accretion experienced slight changes (less than 2%). Regarding the water quality
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nodes, changes in SPM and KD are mostly countable (3% and 4%, respectively) for the
highest and lowest classes, whereas moderate classes have almost negligible changes (less
than 2%).

The results of this allow us to understand the effect of sea surface height and wave
parameters on shoreline dynamics and water quality parameters. As emerged from many
studies, sea level rise is expected to exacerbate beach erosion and long-term shoreline
evolution [18,61,90,91]. The estimation of the sea level rise rate in Venice in 2100 is about
10.7 mm/year, with respect to the reference period (2000–2013) [92], and the future projec-
tions indicate that sea level rises could lead to the permanent loss of low-lying areas and
beaches in this area [47]. Moreover, the increase in sea surface height is expected to reduce
the effectiveness of the submerged and present coastal structures such as groins along the
shore and jetties near the mouth. This scenario shows that the combined effect of SSH and
MWAH could determine a reduction in the stable class of the shoreline up to 10%, which is
higher than that obtained for scenario 1 (i.e., 6.5%) when considering only the changes in
significant wave height.

The ‘what-if ’ scenario analysis represents a first attempt to assess the impact of extreme
weather and oceanographic condition impacts affecting the Adriatic coast of Venice. In
particular, the overall baseline scenario analysis confirms that significant consequences
could be related to coastal erosion risk and water quality changes under extreme sea level
and wave conditions. This is in line with previous studies suggesting that changes in
significant wave and wind wave height, as well as sea surface height, can perturb the coast
and its dynamics, causing coastal erosion, flooding, increased turbidity, and other climate
change-related impacts [45,91].

4. Conclusions

This work developed a risk assessment approach for the shoreline of Venice using
a Bayesian Network model able to integrate different indicators representing drivers of
shoreline evolution (waves, wind, extreme sea levels) and physical–chemical water quality
parameters (diffuse attenuation and suspended particulate matter). The designed BN was
validated by using the dataset for the period 2015–2019 in the case study area. After the
correlation analysis and sensitivity analysis, three “what if” scenarios representing extreme
weather and oceanographic events were simulated, testing the capability of the designed
model to assess the potential consequences in terms of coastal erosion and water quality
change. Accordingly, the designed BN model can be used as a decision support tool to
support decision makers in the visualization of the potential risks of coastal erosion under
a span of plausible extreme events.

The resulting outputs of this analysis, even to a minor extent, highlighted a relationship
between alterations in oceanographic boundary conditions and coastal erosion and water
quality parameters, with a rising probability of higher turbidity, as well as shoreline
movement (i.e., accretion and retreat). Through the scenario analysis, changes in sea
surface height, maximum, and mean significant wave height increased the probability
of high-erosion and high-accretion states significantly compared to changes in the water
quality variables (i.e., KD and SPM). However, by altering the wind and wave direction
of currents, these WQ variables show significant changes in the higher-risk classes. These
‘what-if ’ scenarios represent a first attempt at applying the BN model to assess the risks of
climate change and variabilities of oceanic variables on coastal erosion and water quality
parameters under different narrative scenarios. The results of this analysis present a clear
relevance for coastal risk management in designing climate change impact assessments and
local-level adaptation plans to cope with the impact of changing wind, wave, and current
parameters in relation to climate change and sea level rises. Building on this model, future
developments could be improved by including future climate change scenarios based on
numerical modeling simulations.

The major advantages of the proposed Bayesian Network approach are the model
transparency and flexibility (i.e., the connections among variables) and the possibility
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to incorporate both empirical data (e.g., satellite images and Marine Copernicus data)
and expert knowledge (e.g., variable selection). Moreover, the BN model allows for the
integration of heterogeneous data (i.e., wave data, water quality, and shoreline changes)
from different sources with various spatio-temporal resolutions. Yet, the proposed BN
demonstrates the flexibility in designing scenarios underpinning different hypotheses
related to climate change projection and extreme events. Drawing from the results of this
application, the model could be a useful tool for coastal managers and decision makers to
assess the impacts of climate change and/or human interventions on shoreline changes
and water quality-related problems, providing useful insights for coastal management.

Some constraints of the BN model are related to the data availability and spatio-
temporal limitation. For instance, some relevant variables such as natural (e.g., precipi-
tation) and anthropogenic variables (e.g., infrastructures and beach nourishment) were
not considered in the model due to their incompleteness for the whole studied period.
Moreover, the coarse spatial resolution (i.e., 4 km) of the oceanographic input data is a
shortcoming of this analysis. Finally, the timeframe of this analysis remains short due to
the availability of freely available satellite images for shoreline evolution analysis.

To overcome these limitations, future studies should expand the timeframe of the
analysis by considering other sources of satellite images with higher temporal and spatial
coverage such as the RapidEye Imagery. This expansion will allow for the integration
of new variables such as sea level rise and storm surge dynamics, which could help the
evaluation of the cascading impacts of extreme events against space and time dimensions.
Moreover, the development of Dynamic Bayesian Networks could be implemented for
the representation of the network’s dynamics among space and time. Finally, other novel
methods, including more complex and advanced Machine Learning algorithms (e.g., Artifi-
cial Neural Network), could help to integrate more spatiotemporal data and simulate the
complex dynamics and other natural processes arising in coastal areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse12010139/s1, Table S1: List of the final selected variables
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