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Abstract
Policy makers have implemented multiple non-pharmaceutical strategies to mitigate
the COVID-19 worldwide crisis. Interventions had the aim of reducing close proximity
interactions, which drive the spread of the disease. A deeper knowledge of human
physical interactions has revealed necessary, especially in all settings involving
children, whose education and gathering activities should be preserved. Despite their
relevance, almost no data are available on close proximity contacts among children in
schools or other educational settings during the pandemic.
Contact data are usually gathered via Bluetooth, which nonetheless offers a low

temporal and spatial resolution. Recently, ultra-wideband (UWB) radios emerged as a
more accurate alternative that nonetheless exhibits a significantly higher energy
consumption, limiting in-field studies. In this paper, we leverage a novel approach,
embodied by the Janus system that combines these radios by exploiting their
complementary benefits. The very accurate proximity data gathered in-field by Janus,
once augmented with several metadata, unlocks unprecedented levels of
information, enabling the development of novel multi-level risk analyses.
By means of this technology, we have collected real contact data of children and

educators in three summer camps during summer 2020 in the province of Trento,
Italy. The wide variety of performed daily activities induced multiple individual
behaviors, allowing a rich investigation of social environments from the contagion
risk perspective. We consider risk based on duration and proximity of contacts and
classify interactions according to different risk levels. We can then evaluate the
summer camps’ organization, observe the effect of partition in small groups, or social
bubbles, and identify the organized activities that mitigate the riskier behaviors.
Overall, we offer an insight into the educator-child and child-child social

interactions during the pandemic, thus providing a valuable tool for schools, summer
camps, and policy makers to (re)structure educational activities safely.

Keywords: Close proximity interactions; Contagion risk levels; Social bubble
strategy; Wearable devices

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjds/s13688-022-00316-y
https://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-022-00316-y&domain=pdf
mailto:eleoni@fbk.eu


Leoni et al. EPJ Data Science            (2022) 11:5 Page 2 of 22

1 Introduction
Close proximity interactions (CPIs) drive the spread of any disease that is transmitted pre-
dominantly by respiratory droplets and saliva, such as influenza, common colds, and se-
vere acute respiratory syndromes (i.e., Severe Acute Respiratory Syndrome (SARS), Mid-
dle East Respiratory Syndrome (MERS), Coronavirus Disease 2019 (COVID-19)) [1–6].
An improved characterization of CPIs should thus lead to a better understanding of the
spread dynamics and possibly inform public health experts and policy makers to design
more effective interventions [7].

For this reason, some research efforts have used wearable devices and Radio Frequency
Identification (RFID) or infrared (IR) sensors to measure and analyze high-resolution
proximity interactions in different settings such as schools [4, 8], workplaces [9, 10], hos-
pitals [11–15], households [16], and conferences [9, 17, 18].

During the COVID-19 pandemic, social contacts and in particular CPIs were signif-
icantly modified [19–22] by several non-pharmaceutical interventions such as physical
distancing measures (i.e., 1 m or more), mobility restrictions, closings of schools, univer-
sities, and selected businesses (e.g., restaurants, bars, coffee shops, gyms), promotion of
teleworking, cancellations or limits on the size of events (e.g., sports events, weddings, fu-
nerals), limits on the number of people in small family, educational and social gatherings
(i.e., social bubbles), etc. [23–25].

However, despite their relevance, almost no data are available on how CPIs occur among
children in contexts such as schools or summer camps during the COVID-19 pandemic,
thus making it difficult to evaluate and model the effects of physical distancing measures,
small group strategies, preferences for outdoor activities, masks, etc., on CPIs, as well as
identifying the situations and activities during school and summer camp days where the
risk of transmission is elevated.

The collection of reliable data in these environments (e.g., schools, summer camps) is
itself a nontrivial task. During the pandemic, several local and national governments have
launched smartphone digital contact tracing (DCT) apps based on the Bluetooth Low
Energy (BLE) technology [26] and the GAEN (Google and Apple Exposure Notification)
interface [27], and several studies have shown the effectiveness of Bluetooth-based DCT
using real-world contact patterns [28, 29] and in pilot and country-wide studies conducted
in Switzerland, the United Kingdom (the Isle of Wight and the whole country), and Spain
(Gomera island) [30–33].

In addition to the challenge that most children do not carry personal smartphones,
this technology has at least two shortcomings for capturing CPIs in schools and summer
camps: (i) low temporal resolution (e.g., GAEN detects neighbors every 4 minutes [27]),
and (ii) low spatial resolution, which directly descends from limitations of BLE and leads
to significant estimation errors [34]. The first issue can be tackled by the use of an alter-
native to GAEN, while the second can be addressed by changing the technology used for
estimating distances, e.g., to ultra-wideband (UWB), which brings the spatial error down
from meters to decimeters [35].

In this paper, we address these issues via a novel approach, embodied in the Janus system
[36], combining a custom, efficient device discovery mechanism based on BLE with the
ability to accurately measure pairwise distances via UWB. In our experiments, we con-
figured Janus to acquire distance measurements every 30 s and installed it on a wearable
device that children can easily carry. We have collected real-world CPIs with Janus at three
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summer camps in the province of Trento (Italy). These camps offer interesting settings be-
cause of the rich variety of daily activities that induce different CPIs among children and
between children and the summer camps’ educators. Moreover, the summer camps took
place during the summer of 2020, in the middle of the pandemic and just after the local
easing of lockdown measures. As such, it is possible to investigate the effect of the guide-
lines and regulations enforcing physical distancing, mask-wearing, outdoor activities, and
the formation of small groups (i.e., social bubbles).

The accurate and fine-grained contact data uniquely enabled by Janus, complemented
by the metadata about summer camps, results in the rich data set that is the basis of our
multi-level analysis. First, we explore the definition of close contact as the aggregation of
multiple raw measurements captured by the sensors and discuss the modeling choices im-
plied by this operation. After this aggregation phase, the resulting contacts are enriched
with metadata. For example, social bubbles [37, 38] were enforced as a contagion con-
tainment measure, and thus we assign to each contact the groups of the two involved
individuals. Further, each contact is associated with the activity being performed during
the contact time.

By considering the metadata in the analysis along with the raw contact data, we offer
novel insights into both educator-child and child-child social interactions during the pan-
demic. In particular, we study the distribution of the level of contagion risk among in-
dividuals depending on the proximity and duration of their contacts, finding that a vast
majority of CPIs are classified as low risk. Moreover, we aggregate the contacts as intra-
group (i.e., within the social bubble) and inter-group (i.e., between different bubbles), and
observe changes in the distribution of contact risk levels in the two cases, offering evidence
of the effectiveness of the social bubble strategy [37, 38]. Finally, a thorough analysis of the
different activities provides insights into their inherent risks of contagion, which can be
further interpreted in view of the features of the activity itself (indoor or outdoor, static
or dynamic, etc.).

The results of our analyses provide information immediately actionable by school and
summer camp managers and teachers, policy makers, and public health experts.

2 Related work
In this section we review key works related to our paper from two distinct areas: (i) the
development of technologies for detecting proximity contacts, and (ii) the usage of close
proximity data for modeling the spread of infectious diseases.

2.1 Detecting proximity contacts
Several technologies have been explored for detecting proximity, e.g., including infrared
[39], ultrasound [40], and IEEE 802.15.4 [41]. However, one of the earliest and most popu-
lar systems for measuring and tracking close proximity interactions, proposed in the con-
text of the SocioPatterns project, was based on the pairwise exchange of active RFID sig-
nals among badge-like devices [9]. In this case, distance measurements were estimated
every 20 s based on the received signal strength of packets transmitted at multiple power
levels, and an estimation of face-to-face context was provided based on the receipt of a
very low power signal.

The approach of estimating pairwise distances based on signal attenuation is common in
radio-based systems [41], notably including COVID-19 contact tracing apps [42] relying
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on the low-cost and low-energy BLE chips pervasive in smartphones. A similar approach
is also exploited by many commercial BLE-based tags offering contact tracing function-
ality in scenarios where a smartphone is not available or practical. Unfortunately, in both
cases the low accuracy of distance estimation with BLE, whose approach based on signal
strength is significantly affected by environmental factors [35, 43], remains a major issue
[34].

This motivated interest in UWB, recently exploited by several contact tracing and prox-
imity tags. However, the significantly higher distance estimation accuracy of UWB is coun-
terbalanced by its higher energy requirements, about an order of magnitude higher than
BLE. For example, the Bump contact tracing UWB tag [44] has been employed in large-
scale events such as the London marathon; however, the higher UWB energy consumption
limits the tag lifetime to 12 hours. Further, the mechanics of UWB distance estimation,
involving a pairwise packet exchange [45], require coordination among nearby nodes to
avoid packet collisions, whose negative impact on reliability can be significant. For in-
stance, the scheme in [46] reports a 65% success in scenarios with 10 neighbors.

In contrast, our work utilizes the Janus system that applies both the UWB and BLE ra-
dios in concert. By using the energy-efficient BLE radio for constant discovery operations
as well as for coordination, Janus ensures that the expensive UWB radio is activated only
when strictly needed to acquire a distance estimate, and in a coordinated way that signifi-
cantly mitigates the impact of collisions. Further details about Janus are found in Sect. 3.1
and in [36].

2.2 Modeling the spread of infectious diseases from proximity data
The analysis of proximity contact data includes multiple works that focus on modeling
the spread of infectious diseases. For instance, Salathé et al. [4] have used sensors with a
proximity resolution up to 3 meters in a high school to obtain a dataset in which they have
simulated the spread of an influenza-like disease. Doing this, they have found results in
agreement with absentee data during the influenza season.

Another line of studies has exploited data collected in different environments within
the SocioPatterns project. In particular, the estimation of face-to-face interactions was
used to correct theoretical epidemiological infectiousness parameters and thus to obtain
a better risk estimation for generic spreading processes [12, 47–50], or to identify specific
individual roles in workplaces, hospitals, schools that would be more responsible for the
spread of a disease [16].

Other face-to-face interaction data have been collected by Duval et al. [14] to under-
stand how hospital-acquired infections spread and to possibly design control strategies.
Similarly, Obadia et al. [51] collected CPIs and data about a staphylococcus transmission
in a hospital, finding that collected CPIs were able to correctly reproduce transmissions
and thus demonstrating the importance of this tool to trace disease spread.

Additional studies have also focused on contact tracing strategies, such as the work by
Farrahi et al. [52] and more recently, for COVID-19, the ones of Cencetti et al. [28] and
Barrat et al. [29].

Finally, a few in-field experiences with Janus are reported in [36], also in the context
of COVID-19. Nevertheless, these are meant to illustrate the possible uses of the system,
have significantly shorter duration, and do not consider the interplay of contact data and
the activity metadata.
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Instead, our current study describes the collection of real-world daily educator-child
and child-child close proximity interactions at three summer camps during the COVID-
19 pandemic. This unique dataset allows us to characterize contagion risks based on du-
ration and proximity of contacts and classify interactions according to different risk levels.
We can then investigate the effect of the guidelines and regulations enforcing physical dis-
tancing, observe the effect of partition in small groups (i.e., social bubbles), and identify
the summer camp activities that mitigate the riskier behaviors in terms of contagion.

3 Materials and methods
Here, we concisely describe the salient aspects of the Janus system used in our in-field
studies, offer details about the summer camps where they were performed and the me-
chanics of data acquisition, and state the definition of close proximity contact used
throughout the paper.

3.1 Janus: a system for measuring close proximity interactions
Janus [36] relies on a dual-radio architecture to provide an accurate and energy-efficient
system for proximity detection. We split proximity detection into two primary function-
alities: identifying the other devices nearby and measuring the distances between them.

The first, device discovery, must be performed continuously as people (and the devices
they carry) move freely in an unconstrained space. Fundamentally, Janus detects that two
devices are near each other when they are able to communicate. For this continuous op-
eration, we exploit the lower power BLE radio and build atop the continuous Bluetooth
Low Energy neighbor discovery protocol, BLEnd [53]. BLEnd defines the optimal sched-
ules for the BLE advertisement and scan periods to minimize consumption while meeting
a service level agreement defined by the maximum allowed latency to discovery, the re-
quired probability for discovery, and the maximum number of devices expected to be in
range. In our in-field studies, we configured the BLEnd component of Janus to guarantee
the discovery of a neighbor within 30 s at least 95% of the times, provided no more than
20 devices are in range.

Once a nearby device is detected, Janus exploits the payload of the BLE advertisements
continuously sent by BLEnd to coordinate, at no additional communication cost, the ac-
curate ranging between devices performed by the UWB radio. Janus relies on single-sided
two-way ranging (SS-TWR), part of the IEEE 802.15.4 standard [45]. This scheme requires
a 2-packet exchange between an initiator and a responder; the transmission and reception
of these packets are timestamped and made available at the initiator, which can compute
the time of flight and therefore the distance between devices. In Janus, each device pe-
riodically schedules a ranging window during which it is available to respond to ranging
requests; the aforementioned coordination exploiting BLE advertisements informs each
neighbor of its unique offset into this window, ensuring that ranging requests among mul-
tiple neighbors do not collide. Additional details about Janus are available in [36].

Figure 1 provides an example of the distance data directly obtained from Janus de-
vices, which in our case are the MDEK1001 development kits by Decawave (now Qorvo),
equipped with a BLE radio and the popular DW1000 UWB transceiver. The chart shows
a snapshot of 105 minutes for device 2 with respect to two other devices, 6 and 7. Each
dot indicates the distance measurement between device 2 and either device, color-coded
as blue for device 6 and orange for device 7. According to our configuration, samples are
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Figure 1 Raw data obtained from a Janus device. Timestamped distance measurements collected over 105
min by the Janus device of user 2 with respect to the devices of users 6 and 7

Table 1 Description of the three summer camps investigated in our study

ID Short Description Ages Children Educators Groups

AM-PRI Morning camp with a large indoor space,
nearby a public park.

6-11 21 5 3

DAY-PRI All day camp in an alpine region with only
outdoor space.

6-11 13 5 2

DAY-INT All day camp in an alpine region with
additional indoor space.

11-14 9 2 1

taken every 30 s. Even without additional data processing, it can be easily seen that de-
vice 2 (and therefore the person carrying it) was very close (within 1 m) to device 6 for
approximately 15 min, starting just after 11:00. We also note that the data is quite clean;
the variations of the measurements across time are consistent. This is due to the accuracy
of UWB, which enables our subsequent analysis.

3.2 Data acquisition
The data used in our analyses are the results of a study conducted from August to Septem-
ber 2020 in three different summer camps, summarized in Table 1, in Trentino, Italy. The
study design was approved by the Agency for Family, Birth, and Youth Policies (Agen-
zia Provinciale per la Famiglia, la Natalità, e le Politiche Giovanili) of the Autonomous
Province of Trento,1 the provincial government body responsible for the organization of
the summer camp programs, and by the two social cooperatives directly responsible for
camp management and activities. In preparation for the study, parents and educators were
provided with detailed information about the purpose of the study, the data treatment and
privacy enforcement strategies, the devices the children and educators would be using,
and the measurements they provide. Following Italian regulations, all parents and edu-
cators signed an informed consent form. Special attention was given to privacy and data
protection: no personal information was associated with the identifier of the correspond-
ing Janus device. We did note the group (i.e., social bubble) the individual belonged to
and, in some cases, the identity of devices carried by others for whom physical distancing

1https://www.trentinofamiglia.it/

https://www.trentinofamiglia.it/
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rules were waived (e.g., among siblings and between children with special needs and the
educators assigned to assist them).

The first summer camp, am-pri, operated for half days (mornings) with 21 primary
school-age children and 5 adult educators, all of whom agreed to participate in the study.
The children were divided into 3 groups, each with one or two educators. Each activity
during the day was restricted to a single group at a time to maintain separation and lever-
age the concept of social bubbles [37, 38].

The second and third camps were organized the same week by the same cooperative,
but took place at different locations; therefore, we treat them separately. Both were all-day
camps from 8:00 to 16:30. day-pri applied the social bubble with two groups of primary
school children. The third camp, day-int, involved 9 intermediate school children with
two educators. The overall study participation rate in these two camps was 94%.

The summer camps engaged the children in different educational and playing activi-
ties, as summarized in Table 2. For each activity, we indicate the approximate duration in
minutes for each camp.

3.2.1 Device setup and experimental setting
To make carrying the device comfortable for the children, we inserted it inside a water-
proof waist bag, as shown on the left of Fig. 2. We received positive feedback from the
educators, who said that the children immediately forgot they were wearing the device.
As mentioned, the Janus device is configured to sample distances every 30 s when devices
are in proximity. Measurements greater than 10 m are discarded to save memory on the

Table 2 Daily activities at the summer camps, each with a brief description, the location and the
duration in minutes for each summer camp that offered the activity

Activity Description Location AM-PRI DAY-PRI DAY-INT

Woods Playing in a wooded area outdoor 90 min
Soccer Playing in a soccer field outdoor 90 min
Board games Playing tabletop games indoor 90 min
Newspaper Pairs work at computers indoor 90 min
Theater Singing and acting indoor 90 min
Snack Short food break indoor 15 min
Team games Organized group games indoor 90 min 120 min 120 min
Crafts Arts and craft indoor 90 min 180 min
Hiking Group walk outdoor 240 min
Round table Greetings, planning, etc indoor 180 min
Day closing Free play pre pick-up outdoor 30 min 60 min
Outdoor lunch Eating outdoor 60 min
Indoor lunch Eating indoor 60 min
Free play No organized activities indoor 60 min
Free play No organized activities outdoor 60 min

Figure 2 Janus device management at the AM-PRI camp. Left: An educator fitting the waist bag containing
the device on a child, on the first camp day. Right: Devices in waist bags sitting on a storage bench overnight;
the inhibitor device is inside the red bag in the center
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device and because these large distances are not considered relevant for the transmission
of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [54, 55].

After programming the devices and inserting new batteries, the waist bags were deliv-
ered to camp organizers at the beginning of each week. The educators were responsible
for handing out the bags to the same children each morning and collecting them at the
end of the day. At the end of the week, the devices were collected and the data offloaded
via Universal Serial Bus (USB).

As the devices do not have an on/off switch, to avoid the collection of meaningless data
at night, when devices were stored on a bench (Fig. 2), we implemented an inhibitor device.
This special device was turned on at the end of the day by connecting it to a USB power
bank. When the regular devices detected the BLE advertisement of the inhibitor, they went
to sleep for 5 min. Upon restarting, if the inhibitor was detected again, they returned to
sleep; otherwise, they started functioning normally, ranging with all neighboring devices.
Each morning, the inhibitor device was detached from its power supply. This inhibition
mechanism saved battery as well as memory and, most important, required no technical
skills from the educators; even using the USB power bank was much easier than removing
the battery from all Janus devices, which was the only other alternative available.

3.3 Definition of close proximity contacts
After downloading the measurements from all devices, we pre-processed them as detailed
in Appendix A. This processing removed spurious measurements, e.g., those recorded be-
tween the morning activation of the devices and the start time of the activities. We then ag-
gregated these raw samples into contacts characterized by two device IDs, the timestamp
marking the beginning of the contact, the contact duration, and a distance, as described
next.

To identify a contact, we focus on a pair of IDs, collecting all measurements captured
by either device, and sorting them in time. This sequence is then processed sequentially
to divide the time into multiple, meaningful contacts. Intuitively, a contact should contain
measurements that are all temporally and spatially close to one another, which we define
via time and distance thresholds.

We begin with the temporal dimension, splitting the sequence into sub-sequences when-
ever a gap of τtime = 90 s exists between two consecutive measurements. This step accounts
for interruptions in the interaction between the pair of devices, e.g., when they move away
from one another.

Second, we check each of the distances inside each sub-sequence, ensuring that a single
contact contains only measurements with similar distances, and ensuring that the single
distance attribute assigned to a contact has a reasonable spatial variation. Therefore, we
sequentially process the measurements of a sub-sequence in temporal order, and retain
them in a single sub-sequence as long as all the measured distances are within τspace = 2 m
from each other; a new sub-sequence is started upon the first measurement outside this
range.

In this way, we obtain a set of sub-sequences, each containing measurements without
large temporal gaps and with similar distances. After discarding sub-sequences with fewer
than τlen = 2 measurements, we aggregate each cluster into a contact. Each contact is
tagged with the timestamp of the first measurement in the sub-sequence, a duration given
by the time span of the measurements in it, and a distance given by the median value of
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Figure 3 Measurement splitting and contact aggregation process. The figure shows the measurements
collected in the first 20 min of August 8th, 2020, between node 26 and 27 at the AM-PRI camp. The
measurements (light colors) are colored according to the division into contact characterized by τtime = 90 s
and τspace = 2 m. Each contact is depicted as a horizontal bar from its beginning to its end, where the height
of the bar represents the median distance

the measurements. Using the median (i.e., the central value of the distribution) yields a
more robust value compared to the mean, which is more sensitive to extreme values and
outliers.

An example of this splitting and aggregation process is shown in Fig. 3, which depicts
a sequence of measurements in a 20 min period grouped into sub-sequences (identified
by colors) and aggregated into contacts (identified by the horizontal lines). The different
splitting strategies can be observed. For example, the orange and green sequences are sep-
arated due to the gap of more than τtime between them. On the other hand, the blue and
orange sequences are separated because the first measurement in the orange cluster is
outside the range of τspace with respect to the previous measurements.

The resulting contacts model the high-level notion of CPI that we use in our analyses
in the next sections, and enables the general contagion risk assessment of the different
environments. Further, we also associate to each contact the groups of the involved IDs
and an activity when both IDs are in the same group.

Some of the contacts can be removed a posteriori to account for risk-modelling choices.
For instance, we discard contacts between siblings (who were not required to respect phys-
ical distancing rules) or between children with special needs and their support teacher.
Additionally, in day-pri and day-int, the two activities “welcoming activity” and “swim-
ming pool” have been discarded because the devices had not all been distributed and were
piled up in the same place, resulting in many spurious measurements.

The resulting numbers of contacts for each summer camp setting are reported in Table 3.
For each data set, we also report the number and percentage of contacts where both users
belong to the same group, and thus to which we are able to assign an activity.

4 Results
Leveraging the previous definition of contacts and additional metadata, we can now delve
into the analysis of the complex daily CPI patterns within the summer camps.
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Table 3 Description of the contacts resulting from the aggregation procedure. For each camp, we
report the total number of contacts, the average number of the measurements for each contact, the
number of groups and activities in the camp, and the number and percentage of the contacts that
are uniquely associated with an activity. For DAY-PRI and DAY-INT, we report both the number of
activities, and the number of activities considered for the analysis (in parenthesis)

ID Num. Contacts Average Measurements
per Contact

Num. Groups Num. Activities Activity-tagged
contacts

AM-PRI 7259 5.80 3 8 6833 (94.13 %)
DAY-PRI 7561 8.48 2 5 (4) 6774 (89.59 %)
DAY-INT 3485 16.40 1 9 (7) 3485 (100.00 %)

Table 4 Risk levels of contagion defined on the basis of duration of exposure and physical distance

Duration Distance

High risk ≥ 15 min ≤ 1 m
Medium high risk ≥ 10 min ≤ 2 m
Medium low risk ≥ 5 min ≤ 4 m
Low risk < 5 min > 4 m

4.1 Identification of contagion risk levels
To build a general model for risk analysis, we define four different categories of contagion
risk for contacts based on proximity and duration. We then classify all contacts into these
categories.

In a meta-analysis and systematic review of observational studies on Severe Acute Res-
piratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome-related
Coronavirus (MERS-CoV), and SARS-CoV-2 person-to-person transmission [55], a phys-
ical distancing of less than 1 m was reported to result in a significantly higher transmission
risk than distances higher than 1 m (12.8% vs. 2.6%), thus supporting a minimum physical
distance of 1 m, as in the rule enforced in schools and summer camps in Italy. However, as
pointed out by Jones et al. [54], physical distancing rules would be more appropriate and
effective if they offer graded levels of risk. Similarly, although contact tracing guidelines in
several countries, various digital tracing contact apps, and some studies [56] assume that
the duration of exposure to a person with COVID-19 influences the transmission risk
(e.g., defining a threshold of 15 min beyond which transmission risk increases), a precise
quantification of the duration of exposure is still missing [54].

Following these considerations, we define the risk categorization summarized in Table 4.
The first category is associated with a high risk of contagion and includes all contacts with
duration above 15 min and distance less than 1 m. The second category, medium-high
risk, includes all contacts with duration above 10 min and distance below 2 m that are not
included in the high-risk category. The third category, medium-low risk, includes contacts
with duration above 5 min and distance below 4 m not included in the previous categories.
The fourth category contains all remaining contacts, therefore associated to a low risk
level.

Notably, this granularity in discriminating risk levels is enabled by the fine-grained
spatio-temporal resolution offered by Janus. The high accuracy of UWB ranging, in con-
trast to the coarse, Received Signal Strength Indicator (RSSI) based distance estimation
[43] with errors on the order of meters, enables spatial discrimination at the granularity
of a meter. Similarly, our configuration of Janus captures distances every 30 s, while the
popular GAEN interface collects a single sample in each 4 minute window.
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It is worth noting that while our data is rich in terms of accuracy, the Janus platform
does not capture whether interactions are face-to-face. However, while face-to-face inter-
actions provide a good approximation of conversations and are useful for social interac-
tion analysis [9, 57], when studying SARS-CoV-2 transmission this aspect is less critical.
Indeed, several researchers are highlighting that SARS-CoV-2 can spread among people
occupying the same space, whether or not they are facing one another [58, 59].

Further, while our definition of risk level is context-agnostic, based only on proximity
and duration in line with the national and international policy recommendations [60, 61],
our analysis in the following sections is context-aware as it takes into account metadata
that notably includes whether or not the contacts occurred indoor or outdoor. This two-
step strategy allows for an in-depth risk assessment and effective definition of the risk
levels without requiring possibly intrusive and privacy-critical contextual information.

4.2 Contagion risk analysis
Figure 4 shows a scatter plot for each summer camp dataset, reporting the recorded con-
tacts as a function of duration and proximity. Each dot represents a contact, as defined
in Sect. 3.3, with colors describing the associated risk according to the color code in Ta-
ble 4. The percentages reported inside the figures, and associated with the different risk
levels, represent the percentage of time spent by the population in the corresponding risk
category. Interestingly, we see that, even if different summer camps imply different lev-
els of risk, there is a non-negligible percentage of contacts at high risk of contagion in all
summer camps.

In the representation in Fig. 4, each dot represents a single contact between two individ-
uals, but it ignores information about the corresponding IDs. Therefore, it is possible that
the analyzed population has heterogeneous behaviors, e.g., with only a few participants
involved in more risky close proximity interactions and the majority of individuals inter-
acting safely, or vice-versa. To understand how the risk is distributed among the summer
camp population we consider three additional views, shown in Fig. 5, where we examine
the behavior for pairs of individuals. We report only the case of am-pri, since the other
camps yielded analogous results. First, in Fig. 5(a), we compute for each pair the aver-
age distance and duration across all the contacts, resulting in a single dot per pair. We
observe that each pair interacts, on average, in low-risk social interactions. A similar re-
sult is observed in Fig. 5(b), where we select the single contact per pair with the smallest
proximity distance. Finally, Fig. 5(c) shows the single contact per pair with the longest du-
ration. Here, we see that ∼23% of the pairs of individuals are involved in very high-risk
interactions. From this, we conclude that the risk of contagion is distributed quite homo-
geneously among the different pairs of individuals, except for some for which the longest
interactions are also the most dangerous ones.

These graphical representations give a first, general idea of the contact risk levels and
offer an understanding of how the risk is distributed among the individuals. We note that
these analyses depend on our definition of contact and, particularly, on the thresholds
defined in Sect. 3.3.

In addition, the proposed contact definition allows us to perform two types of meta-
analysis based on the risk levels related to: (i) group dynamics (e.g., CPIs among group
members, among members of different groups, educator-child interactions, child-child
interactions), and (ii) the type of educational and recreational activities planned during
the summer camp.
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Figure 4 Summer camp contacts and contagion risk. The figure reports, for each summer camp, the
corresponding contacts classified according to their risk of contagion as a function of the duration of
exposure and proximity, following the risk categories in Table 4. The values in parentheses denote the
percentage of time spent in a contact with the corresponding risk category

As described in Sect. 3.2, each summer camp setting organized participants in small
groups and in specific roles (educator, child). Groups are intended to keep participants
separated into disjoint bubbles [37, 38] so that any contagion event would remain local-
ized. On the other hand, roles reflect the internal organization of the summer camps,
where both children and educators were present. The results are graphically reported in
Fig. 6, where the colored bars show the relative percentages of contacts for each risk level
that can be attributed to child-child, educator-child, and educator-educator interactions,
respectively. Moreover, these can be divided into interactions involving two people be-
longing to the same group (“intra-group”) and those bridging two different groups (“inter-
group”). Instead, the large grey bars in the background report the total percentages of
contacts for each specific type of interaction, independently on the associated risk. To fa-
cilitate the quantitative comparison of the results, Table 5 reports, for each summer camp,
the number and the total duration of the contacts in the six groups.
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Figure 5 Unique contacts and risk levels. Contacts from AM-PRI, aggregated into a single point (one per
device pair) according to different criteria

When a contact occurs between two members of the same group, we assign to it the
activity being performed at that moment by that group. In this way, we add another layer
of analysis that allows us to study the relationship between the activity type, the number,
and the contagion risk level of the contacts. The results are shown in Fig. 7, where we
report four bars for each activity, representing the four risk levels. The height of the bars
represents the sum of the duration of all contacts during each activity divided by the total
duration of the activity. Hence, each bar reports the risk per unit time of each activity.
This normalization allows comparison across the different activities, independent of their
duration. The percentages show the fraction of contact time within each risk level, for each
activity.

5 Discussion
We already observed that in all summer camps there is a non-negligible percentage of
contacts at high risk of contagion and that this is in general not due to some specific in-
dividuals or couples of individuals but the risk is quite homogeneously distributed among
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Figure 6 Social bubble policy and roles. Distribution of risk levels by group and type of interaction for each
summer camp. The color bars, which refer to the right-hand scale, report the percentage of time of contact
within each risk level. The grey background bars, which refer to the left-hand scale, report the total time of
contact for each of the six categories

all the participants (Figs. 4–5). We now discuss more in detail the results and their impli-
cations.

5.1 Social bubbles and roles
To analyze the effectiveness of the social bubble policies, we look at Fig. 6, which reports
the percentages of contacts taking place inter- and intra- groups and between children
and children, educator and educator, and educator and children for the three summer
camps. Note that in day-int there was only a single group. We observe, as expected,
that intra-group contacts are more numerous, but they are also interpreted as less risky
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Table 5 Summary of the number and duration of the contacts in the three camps according to the
social bubble strategy. For each camp AM-PRI, DAY-PRI, and DAY-INT, we report for the different
bubbles the total time of contact and the number of contacts organized by the role of the
participants

Intra-group Inter-group

Child
child

Child
educator

Educator
educator

Child
child

Child
educator

Educator
educator

AM-PRI Time [min] 10,362.40 2285.28 77.82 462.12 181.77 11.75
Number 5484 1297 52 295 121 10

DAY-PRI Time [min] 12,075.02 5250.60 290.32 538.95 383.93 72.33
Number 4388 2064 145 341 195 49

DAY-INT Time [min] 7732.58 2229.58 4.22 – – –
Number 2004 613 2 – – –

since they are foreseen and permitted within the social bubble policies. On the other hand,
inter-group contacts happen across different groups and are generally more risky; how-
ever, their limited number is a good indication of the effectiveness of the application of
the social bubble policies. The collected data thus confirm that in case of an epidemic
spreading in these settings, most of the possible contagions would likely be restricted to
a single group, and transmission to other groups would be avoided or limited. Focusing
on the interactions within each group, we observe that the highest percentages of con-
tacts with high or medium-high risk of contagion involve children (i.e., children-children
or educator-children CPIs), while the educators tend to have low-risk interactions among
them.

5.2 Activity type
For summer camp am-pri shown in Fig. 7(a), it is evident that the activity involving the
highest number of interactions per unit time is “snack”; however, it is also the only activity
where none of the CPIs was at high risk. This is actually by design as the activity duration
is less than 15 min (Table 2), which is the minimum duration required to mark a contact
as high risk (Table 4). We observe a similar finding in the other two data sets, day-pri
and day-int (Figs. 7(b) and 7(c)), where “lunch” is the activity with the fewest risky con-
tacts. This is probably because, during meal times, the children were not wearing their
face masks; thus, the educators were paying more attention to the compliance to physical
distancing rules. Moreover, the children were seated during lunch, so there was a reduced
probability of accidental CPIs.

Other low-risk activities in am-pri were “crafts”, “theater” and “team games”, all metic-
ulously organized activities where the educators established precise rules for physical dis-
tancing to avoid CPIs. The risk rises instead with “soccer” and “woods”, where no precise
rules were established, and the children were free to move in a large space. Moreover, these
activities took place outdoor, and there is evidence for a reduced transmission risk during
outdoor activities as compared to indoor ones [62–65].

The riskiest activities, still with a limited total duration of high-risk close proximity con-
tacts, are represented by “newspaper” and “board games”, two indoor activities with spe-
cific constraints: the first consisted of collaborating in pairs in front of a computer, working
on the summer camp’s newspaper, and the second one consisted of playing board games
around a table. Since the activities required being close to each other watching the same
screen or table, the physical distance clearly could not be very large. However, it is worth
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Figure 7 Activities and risk levels. The figure shows the distribution of the risk levels by activity, sorted
according to a decreasing percentage of high-risk contacts for AM-PRI (Fig. 7(a)), DAY-PRI age range 6–11
(Fig. 7(b)) and DAY-INT 11–14 (Fig. 7(c)). The percentages show the fraction of contact time within each risk
level, for each activity

highlighting that children wore face masks during the activities, thus reducing the trans-
mission risks [66–68].

Moving to day-pri, a different summer camp with a different organization (Fig. 7(b)), we
observe a high number of contacts during the activity “team games”, even if most of these
contacts are at low risk of contagion. Interestingly, in this summer camp the organized
games imply many more contacts per unit time with respect to “free play”. However, the
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activity with the highest percentage of high-risk CPIs is “day closing”, which was the final
part of the day, when children were waiting for pick up and entertained themselves by
playing table tennis or table football, in rather unstructured way.

An additional and final scenario can be observed in day-int, showing different typical
behaviors, possibly due to a higher age range of the participants, namely 11–14 years old,
and different adherence to physical distancing rules. Figure 7(c) shows a general lowering
of the time spent interacting with each other and, at the same time, a higher percentage
of high-risk CPIs. Differently from am-pri but similarly to day-pri, we observe that the
activities with the highest risk are exactly the most organized ones: “team games” and
“craft”, followed by the ones where children were more free to move around: “day closing”,
“hiking”, and “free play”. The activities that provide less high-risk CPIs are instead “round
table” and “lunch”, where participants were sitting to talk or eat, all together but keeping
a well-defined physical distance from one another.

All together, this analysis of the activities shows the different ways in which different
settings have been addressed. In particular, it seems that the combination of mask-wearing
in the close-interaction static activities and a precise organization of the dynamic activities
results into an overall effective strategy to contain the risk.

5.3 Lessons learned and actionable policies
Our analysis clearly outlines the effectiveness of the social bubble policy and the multi-
faceted nature of the risk implied by the different summer camp activities, which in turn
highlights the importance of performing a fine-grained analysis of these activities. These
analyses are made possible by a novel tool capturing distances and exposure duration dur-
ing CPIs, and would not be reproducible with competing technologies, characterized by
a lower spatial resolution.

We also envision the process of informing policy makers and schools through a number
of actionable policy recommendations, especially when designing non-pharmaceutical in-
terventions and contact tracing activities. Namely, special attention should be paid to a
strict design and enforcement of a social bubble policy, which is a low cost action that
requires almost no limitations to the behavior of the children. Moreover, via contact trac-
ing it is possible to clearly identify which summer camp activities, given their risk levels,
should be limited or require special attention. In our analysis, for instance, some should
preferably require the presence of stable pairs (e.g., “newspaper”) and others should be
moved outdoors (e.g., “board games”). This process should be planned as a continuous
feedback loop, with periodic reassessments of the risk levels and a consequent redesign of
the activities, enabled and informed by our accurate and non-invasive approach to contact
tracing.

5.4 Limitations
As with any experimental data collection, we acknowledge the limitations of our study.
First, the gathered data sets are limited in time by the duration of the summer camps (one
week, and half or whole days only) and by the number of participants (61 individuals in
total). While the high temporal and spatial resolution enabled by Janus allow interesting
analyses, the sample size and length limits make it impractical to simulate an epidemic
spreading model based on this population. Further, all the summer camps were located
in the Trentino area, and do not necessarily directly translate to other cities, regions, or
countries, perhaps with different distancing rules.
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Finally, a comparison to similar studies in the summer camp setting is not possible, as
none are available in the literature. Moreover, we do not have hard ground truth to com-
pare against; this would have required either cameras or manual annotations, which would
have greatly interfered with the children privacy and the camps’ activities. Nevertheless,
the results and findings we outlined have been shared with the educators, who confirmed
them based on their knowledge and recollection of the activity organization, and the ob-
served general behavior of the children and educators.

Despite these limitations, we reassert that the data collected by the Janus devices is, to
the best of our knowledge, the only example of physical distance data for child interactions
with high spatio-temporal resolution collected during the COVID-19 pandemic.

6 Conclusion
Tracking and measuring CPIs in a real setting is a challenging task that, however, plays
a crucial role in understanding the dynamics of social interactions during the pandemic
and their effect on the spread of the disease.

This work shows that the Janus system is well-suited to provide high temporal and spatial
resolution data to capture CPIs in complex settings like summer camps. Similar observa-
tions would have been impossible to obtain with either BLE or UWB alone.

In particular, we have analyzed three summer camps’ daily activities and social inter-
actions in the Autonomous Province of Trento (Italy). The captured CPIs allowed us to
derive several key insights into the duration and proximity patterns characterizing the
child-child and the educator-child interactions.

Specifically, we verified the effectiveness of the social bubble strategy, which is easy to
implement in the summer camp setting and offers an effective mechanism to balance con-
trol of the epidemic against light restrictions on the children during educational and recre-
ational experiences.

Moreover, we analyzed the risk levels of a series of activities performed during the sum-
mer camps. We obtained key information into their safety in terms of number of contacts,
duration of the contacts, and level of contagion risk. When combined with other metadata
such as the location (indoor vs. outdoor) and the possibility to adopt personal protective
equipment (i.e., face masks), this information can be exploited towards actionable policies
to design safer environments for interactions among children in the summer camp setting
but also at schools.

Appendix A: Pre-processing of the data
Prior to analysis, the data collected during each summer camp were cleaned of spurious
samples recorded by the devices. We describe the process here and report a summary of
the collected data for each setting.

The Janus devices do not have an on/off switch, and as a result, are active 24 hours per
day, not only when the summer camps are in session. Although we used the inhibitor
device to limit the measurements taken after the daily close of the summer camp, some
additional measurements are still stored.

For example, if the BLE signal to the inhibitor was weak, the devices may have been
briefly activated. Additionally, the inhibitor node was often disabled several minutes be-
fore children arrival and devices distribution, resulting in measurements among the de-



Leoni et al. EPJ Data Science            (2022) 11:5 Page 19 of 22

Table 6 Statistics of the raw data sets, including the number of measures before and after the
pre-processing step

ID Initial day Final day Unique users Raw measures Filtered measures

AM-PRI 2020-08-17 2020-08-21 24 222,222 48,739
DAY-PRI + DAY-INT 2020-08-24 2020-08-30 25 213,219 146,576

Figure 8 Filtering of the spurious measures. Distribution of the measurements over the entire sampling
period, either with Active or Inactive status for AM-PRI

vices still on the storage bench. Finally, some children were absent for entire days or arrived
late while their device was still taking measurements.

Identifying all these cases was a largely manual effort based on information from the ed-
ucators about absences and observations in the data itself. For example, when a sequence
of constant distance measurements is seen at the beginning of the day, it is likely that the
devices are still in storage, as children are rarely so still. The data cleaning step filters all
these spurious measures. Table 6 shows for each summer camp the data collection time
frame, the number of unique participants that have been involved, the number of overall
measures, and the number of measures after the filtering step.

Figure 8 shows the distribution of the entire measurement set for am-pri. The time in-
tervals during which the activities took place (Active) are separated from the time between
the activities (Inactive). The peaks of data close to the morning camp start time correspond
to the phase when the inhibitor node is off, but the devices have not yet been distributed
to the children. In this case, all devices are immobile, near one another on a bench (Fig. 2)
and thus save many distance measurements.
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