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A B S T R A C T   

The sharp decrease in the cost of RNA-sequencing and the rapid improvement in computational analysis of eco- 
toxicogenomic data have brought new insights into the adverse effects of chemicals on aquatic organisms. Yet, 
transcriptomics is generally applied qualitatively in environmental risk assessments, hampering more effective 
exploitation of this evidence through multidisciplinary studies. In view of this limitation, a methodology is here 
presented to quantitatively elaborate transcriptional data in support to environmental risk assessment. The 
proposed methodology makes use of results from the application of Gene Set Enrichment Analysis to recent 
studies investigating the response of Mytilus galloprovincialis and Ruditapes philippinarum exposed to contaminants 
of emerging concern. The degree of changes in gene sets and the relevance of physiological reactions are inte-
grated in the calculation of a hazard index. The outcome is then classified according to five hazard classes (from 
absent to severe), providing an evaluation of whole-transcriptome effects of chemical exposure. The application 
to experimental and simulated datasets proved that the method can effectively discriminate different levels of 
altered transcriptomic responses when compared to expert judgement (Spearman correlation coefficient of 0.96). 
A further application to data collected in two independent studies of Salmo trutta and Xenopus tropicalis exposed 
to contaminants confirmed the potential extension of the methodology to other aquatic species. This method-
ology can serve as a proof of concept for the integration of “genomic tools” in environmental risk assessment 
based on multidisciplinary investigations. To this end, the proposed transcriptomic hazard index can now be 
incorporated into quantitative Weight of Evidence approaches and weighed, with results from other types of 
analysis, to elucidate the role of chemicals in adverse ecological effects.   

1. Introduction 

The functioning of an aquatic ecosystem is the result of complex 
interactions often under growing anthropogenic pressure (Borgwardt 
et al., 2019), with chemical contamination being one of the most 
alarming threats. The classification of ecosystem health status should be 
based on a broad range of indicators that are able to evaluate not only 
the severity of the chemical contamination affecting its different com-
partments, but also the biological outcomes on aquatic organisms 
inhabiting the ecosystem (WFD 2000/60/EC). 

As recently debated in Suter (2021) and in Johnson et al. (2021), 
when dealing with multiple and heterogeneous bodies of evidence, the 
use of an integrated framework should be encouraged to comprehend 
causal relations and correctly estimate the likelihood of hazard posed by 
chemical contaminants of concern. The integration of different studies 
can be pursued by means of a quantitative Weight of Evidence (QWoE) 
approach (US Environmental Protection Agency, 2016), with several 
examples of methods and applications available in the literature (e.g., 
Gottardo et al., 2011; Micheletti et al., 2011; Piva et al., 2011; Benedetti 
et al., 2012; Bebianno et al., 2015; Fan et al., 2015; Barjhoux et al., 2018; 
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Lehtonen et al., 2019). In a QWoE approach, multiple and heteroge-
neous data are organized into distinct lines of evidence (LoEs) (Chapman 
et al., 2002), to be then denoted by synthetic indices specifying the class 
of hazard, and eventually harmonized together using weighing or 
ranking (Linkov et al., 2009). Because of the modularity and flexibility 
of such models, the possibility of adding other relevant or site-specific 
LoEs should be considered as long as they can be quantitatively inte-
grated with other lines (Suter and Cormier, 2011). Yet, in QWoE ap-
proaches, questions remain over the feasibility of bringing together the 
most validated types of analyses with evidence from effect-based tools 
(Solimini et al., 2009), such as transcriptomics (Wernersson et al., 
2015). 

In recent years, the sharp decrease in RNA-sequencing costs and the 
rapid improvement in computational analysis encouraged the applica-
tion of transcriptomics in ecotoxicology (Sauer et al., 2017). By 
revealing temporary and/or persistent alterations in gene expression at 
the whole genome level, transcriptomics can help clarify contaminants 
mechanisms or mode of action (MoA) (Ankley et al., 2006), identify 
specific molecular fingerprints of chemical stress (Milan et al., 2015), 
contribute to the delineation of Adverse Outcome Pathways (AOPs; 
Bajard et al., 2023), or derive a no effect threshold for transcriptional 
response (Villeneuve et al., 2012; Pagé-Larivière et al., 2019). Being 
sensitive in the recognition of exposure makes transcriptomics an 
effective complementary investigation to biomarkers and bioassays 
analyses. 

However, mostly because of difficulties in generating and inter-
preting transcriptomic data consistently under a common framework 
(Verheijen et al., 2020), transcriptomics has served primarily as a 
qualitative tool. Also in recent WoE applications, transcriptional evi-
dence was evaluated qualitatively without taking part in the weighted 
integrative process (e.g., Mezzelani et al., 2021; Schmitz et al., 2022; 
Lucia et al., 2023). This represents a missed opportunity for tran-
scriptomics, and –omics data in general, to be considered within QWoE 
approaches for environmental risk assessment (ERA) and regulatory 
purposes (Soufan et al., 2022). 

In this respect, a novel methodology is here proposed with the aim of 
synthesizing transcriptomic data into a hazard index so that tran-
scriptomics can in future constitute an additional piece of information in 
QWoE schemes. To this end, transcriptomic alterations measured in two 
sentinel species, the Manila clam Ruditapes philippinarum (hereafter Rp) 
and the Mediterranean mussel Mytilus galloprovincialis (hereafter Mg), 
were elicited with Gene Set Enrichment Analysis (GSEA, Subramanian 
et al., 2005) and used to develop a transcriptomics hazard index (section 
Materials and methods). Both species have high ecological and eco-
nomic importance and are widely used to characterize the effects of 
emerging contaminants (Bernardini et al., 2021) and the impact of 
anthropogenic activities in marine ecosystems (d’Errico et al., 2021). 
The ability of the synthetic index to mirror the expert judgment of 
transcriptional alterations was tested with both simulated and experi-
mental transcriptomics profiles of these species (section Results and 
discussion). The methodology was further tested on two independent 
studies, one of brown trout Salmo trutta (hereafter St) exposed to her-
bicides (Webster and Santos, 2015) and a second one of western clawed 
frog Xenopus tropicalis (hereafter Xt) exposed to benzo[a]pyrene (Reg-
nault et al., 2014). The index was able to disentangle the transcriptional 
changes between the different concentrations of chemicals and sampling 
times used in the studies, demonstrating its potential applicability to 
other species. Challenges, opportunities and future developments of the 
methodology are discussed in the last section of the manuscript. 

The development of such hazard index based on transcriptomic data 
should facilitate the integration of –omics tools in environmental risk 
assessment. The ultimate goal is to broaden the range of modules 
available in QWoE studies for fostering the understanding of the 
ecological status of aquatic environments. 

2. Materials and methods 

2.1. Rationale for transcriptomic data processing 

One of the main challenges in transcriptomics is dealing with high 
dimensional data. In particular, gaining biological insight from the 
generated data. Single-gene analysis, implemented to draw a list of 
differentially expressed genes (DEGs) between a sample and a control 
condition, can lead to a misinterpretation of the biological outcomes 
because of the many false negatives, the arbitrary choice of a cut-off 
value, and the disregarding of multiple functions operating by a single 
gene in different cellular processes (Maleki et al., 2020). In light of these 
shortcomings, the present work makes use of gene set enrichment 
analysis (GSEA) in its revised form proposed by Subramanian et al. 
(2005). GSEA is a non-parametric statistical approach that ranks all 
genes in the dataset on the basis of expression criteria (typically the Fold 
Change) but allows to consider all information from an expression ma-
trix without an a priori definition of DEGs lists. GSEA has found appli-
cations in different fields, from drug response to complex diseases 
studies, becoming one of the most widely used gene set analysis methods 
(i.e. about 34.000 citations in Google Scholar). 

As pointed out by Maleki et al. (2020), there is no general consensus 
on which methods outperforms the others and GSEA is not without flaws 
either. However, GSEA is here reckoned as a good compromise when it 
comes to more computationally demanding analysis, methods with 
stringent assumptions, or analyses characterized by high sensitivity but 
low specificity. 

GSEA reveals, within the same biological pathway/process, coordi-
nated shifts in gene expression across multiple genes and associates to 
such coordinated shifts an “intensity index”, the Enrichment Score (ES), 
and a p-value for the significance of this effect. The ES embodies the 
degree to which a gene set is over or under-represented. To calculate the 
ES, a running sum increases when walking down the ranked list of genes, 
ordered for decreasing values of gene score, a gene belonging to the gene 
set is encountered, while it decreases if meeting a gene not part of the 
gene set. Given its definition, the ES can vary between +1, when all 
genes belonging to the gene set are displayed at the top of the list (up- 
regulated compared to the control group), and − 1 when genes are all 
located at the bottom of the list (down-regulated compared to the con-
trol group). Here, the ES has been considered to translate the significant 
pathways (i.e. False Discovery Rate, FDR, <0.2) identified by the GSEA 
into a quantitative hazard index as it is explained in the next section. 

The choice to deem pathways with FDR <0.2 as significant stems 
from two considerations: i) the default FDR threshold suggested by the 
authors of the GSEA method is 0.25; ii) the functional database used to 
build the hazard index is composed of only 48 pathways (see below for 
more details), thus implying a limited number of multiple comparisons. 
For these reasons, the 0.2 FDR threshold represents a good compromise 
for the purpose of the following analysis. 

GSEA requires the a priori definition of gene sets (e.g., KEGG path-
ways, Reactomes, Gene Ontology) that are responsible for driving a 
specific biological function; hence, a key aspect in implementing the 
analysis is the identification of an appropriate collection of gene sets. 
Considering that a single gene can be accountable for multiple functions, 
redundancy in gene sets may lead to over-representation of some bio-
logical responses hindering the identification of others in the following 
statistical analysis. To overcome redundancy issues, the present study 
relies on the “Hallmark” gene set collection presented in Liberzon et al. 
(2015). Each hallmark gene set represents a distinct biological process 
that is then assigned to one of eight higher biological categories 
following Dean et al. (2017): cellular component, development, DNA 
damage, immune, metabolism, stress response, proliferation, and 
signaling (see detail in Supplementary information, Table S1). 

To further reduce the redundancy between gene sets compositions, 
before application, the Hallmark dataset was cross checked to identify 
gene sets overlaps. The immune response gene sets “HALLMARK 
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INTERFERON GAMMA RESPONSE” and “HALLMARK INTERFERON 
ALPHA RESPONSE”, which shared 70 genes (corresponding to 36% and 
75% of the entire “HALLMARK INTERFERON GAMMA RESPONSE” and 
“HALLMARK INTERFERON ALPHA RESPONSE”, respectively), were 
merged creating a unique inclusive hallmark representing both hallmark 
sets. The same approach was applied to “HALLMARK ESTROGEN 
RESPONSE EARLY” and “HALLMARK ESTROGEN RESPONSE LATE”, 
characterized originally by an overlap of 50%, eventually leaving the 
hallmark database with 48 gene sets out of the original 50 sets. 

The choice to rely on functional information based on human despite 
the current work being conducted on very distant non-model species, 
mostly stems from the strengths of the Hallmark database: i) it is 
generated from one of the most widely used and comprehensive func-
tional databases of gene sets; ii) it was generated by a combination of 
automated approaches and expert curation, assuring refinement and 
high accuracy and reducing variation and redundancy in gene sets; iii) it 
can be easily “customised” by removing pathways that are not known/ 
described in the studied species. In this regard, when applied to bivalves, 
the Hallmark database was further refined eliminating four gene sets 
that were never described in these taxa i.e., “HALLMARK ALLOGRAFT 
REJECTION”, “HALLMARK HEME METABOLISM”, “HALLMARK KRAS 
SIGNALING DN”, and “HALLMARK KRAS SIGNALING UP”. 

The retained Hallmark gene sets remained well populated with an 
average of about 70 genes ascribed to each gene set. Clam and mussel 
transcriptomes shared an average of 50% of genes with the human 
Hallmark gene sets. The distribution of biological categories, along with 

annotated Hallmark gene sets, in terms of gene size, are reported in 
Fig. 1 for the bivalve species of interest, and listed in the SI (Table S1). 

2.2. Elaboration of a transcriptomic quantitative index 

With the objective of integrating GSEA results into environmental 
risk assessment, a new index was developed to translate transcriptomic 
data into a quantitative evaluation of risk. 

The statistically significant gene sets indicate which categories are 
subject to transcriptional alteration after exposure to chemical con-
taminants. To elucidate the severity of such alteration, specific algo-
rithms were developed to account for both the relevance of each 
category in terms of physiological reactions and the degree of its dif-
ferential regulation. The conceptual framework finds inspiration in the 
mathematical structure of the LoE outlined for biomarkers in Piva et al. 
(2011) and, as subsequently modified, in Regoli et al. (2019). 

First, to each of the eight biological categories a “weight” between 1 
and 3 was assigned based on the relevance of the biological endpoint 
triggered by the change in transcripts, reflecting, where possible, the 
indication proposed by Piva et al. (2011) for biomarkers LoE. The weight 
1 was given to the category “cellular components” that includes gene 
sets for which changes at transcriptional level are less evidently asso-
ciated to the onset of adverse effects at higher biological levels. The 
weight 1.5 was assigned to the categories “immune” and “metabolism” 
because they may prelude adverse effects at a higher biological level but 
for which transcriptional/biological changes could be reversible. The 

Fig. 1. Plot depicting the Hallmark gene sets selected for this study, grouped together in eight higher categories. Percentages reflect the number of genes involved in 
each category for bivalves. The list of gene sets is reported also in SI (Table S1). 
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weight 2 was attributed to the category “stress response” that includes 
gene sets prognostic of impairment at higher levels of biological orga-
nization (e.g. “apoptosis” among others). The weight 2.5 was given to 
“DNA damage”, “development” and “signaling” because they include 
pathways potentially reflecting dysfunctions at hormonal, reproductive 
and developmental level. Weight 3 was assigned to “proliferation” as it 
reflects alterations related to cell cycle regulation, cell death and cancer. 
The full list of gene sets with assigned weights is reported in Table S1 of 
Supplementary Information. It should be highlighted that the weighting 
system can be revised if additional mechanistic knowledge of biological 
functioning triggered by alterations in the transcriptome becomes 
available. As showed here, it can also be tailored to the tested species. 

The relevance of differential regulation is represented by the ratio 
between the observed cumulative ES of significant gene sets and the 
maximum ES attainable within a specific category. The maximum ES is 
obtained by adding together the highest level of differential regulation 
potentially achievable in each molecular pathway, i.e. |ES| = 1, 
contributing to the same category. For example, the category “meta-
bolism” consists of six gene sets, whose maximum attainable ES in ab-
solute value is 1, hence the highest level of differential regulation is 
equal to 6. 

In the proposed approach, the transcriptional effect observed for the 
category i is defined according to Equation (1), where the category 
weight wi, is normalized by the maximum value wmax = 3 (maximum 
assigned weight value) and the sum of the statistically significant ESs is 
divided by total ES attainable for the biological category, i.e. ESmax,i. 

Ei =
wi

wmax
•

∑

gene sets∈i
|ES|

ESmax,i
• 100 (1) 

So defined, the transcriptomic effect for each category can vary from 
0% to 100%, with the latter value representing the case of maximum 
differential regulation achieved simultaneously by all the pathways 
contributing to a category whose alterations can lead to cell death, 
apoptosis, and cancer (i.e. for which w = 3). Depending on the value of 
Ei, five classes of effect have been defined, namely: A - Absent (Ei =

0%), B - Slight (0% < Ei ≤ 7%), C - Moderate (7% < Ei ≤ 25%), D - 
Major (25% < Ei ≤ 40%), E − Severe (40% < Ei ≤ 100%) (Fig. 2). 

Finally, the Transcriptomics Hazard Index (THI) associated with the 
overall transcriptomics results is calculated based on the percentages of 
categories included in each class of effect, as described in Equation (2). 

THI = %categoriesA • a + %categoriesB • b + %categoriesC • c

++%categoriesD • d + %categoriesE • e (2) 

With a = 0, b = 0.7, c = 2.5, d = 4 and e = 10. Factors a to e find 
correspondence with the upper bound of each class of hazard, and the 
increasing values make so that larger importance is given to categories 
that are progressively more affected by transcriptomics variations 
(Fig. 2). 

Five classes for the final THI have been defined, namely: Absent, 
Slight, Moderate, Major, and Severe. As shown in Fig. 2, the class of 
hazard results Absent when THI is equal to zero. When THI varies be-
tween 0 and 70 (70 corresponding to all categories with slight effects), 
the hazard is Slight; THI from 70 to 250 (the maximum value when all 
categories have moderate effect) classifies the hazard as Moderate, while 
from 250 to 400 it is considered Major. Severe hazard index ranges 
between 400 and 1000, the latter caused by all categories with severe 
effects. 

The logical steps of the above procedure as well as classes boundary 
values were calibrated and validated using data, reported in the 
following sections, from experimental studies along with transcriptional 
situations made up to simulate a vast range of genomic alterations. 

2.3. Calibration, validation and testing of the methodology 

Calibration and validation of the proposed methodology for THI 
estimation were carried out using experimental and simulated datasets. 
Detailed information about the experimental datasets and the bio-
informatic pipeline used to produce the GSEA input files is reported in 
the following section. 

A sub-set of experimental and simulated datasets was used to cali-
brate the boundaries between classes of effect and, consequently, for the 
determination of coefficients to derive the five classes of hazard. For 
both experimental and simulated datasets, calibration was performed by 
means of expert judgment in order to align the THI output with the 
expert qualitative interpretation of the transcriptomic altered profiles. 
Interpretations were based on the number of differentially expressed 
pathways, their degree of differential regulation, and the significance of 
the alteration in terms of physiological outcomes. All together, these 
factors supported the assignment of a semi-quantitative hazard class, 
from absent to severe, to each condition. 

Once thresholds and coefficients were calibrated, the index was 
calculated for the second set of experimental and simulated datasets to 
assess its performance. For this purpose, similar to calibration, the THI 
output was compared with the expert qualitative evaluation. The 
versatility of the methodology was assessed on two independent studies 
of aquatic vertebrate species exposed to contaminants under laboratory 
conditions. 

To further assess the reliability of the index, the THI outputs were 

Fig. 2. Flowchart for the calculations of the Transcriptomics Hazard Index.  
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evaluated against different quantitative summaries of transcriptomics 
results, i.e., DEGs, number of GSEA statistically significant pathways and 
average ESs. 

Finally, the fitness of THI was tested by independent peer-evaluation 
of ten datasets of GSEA outputs picked from both experimental and 
simulated datasets so that the risk ranged from slight to severe (datasets 
are reported in Table S2, section S5, of the SI). To this end, an inde-
pendent panel of eleven experts from different institutions, selected for 
their expertise in transcriptomics, were presented with the list of sta-
tistically significant Hallmark gene sets generated by the GSEA and the 
respective enrichment score as they appear in the SI for each dataset. 
After a debrief on gene sets grouped into biological categories with 
assigned weights and the possible range of variation of the ES, experts 
were asked to assign a class of hazard, from absent to severe, to each 
dataset. The evaluations of the independent panel were compared with 
the THI results gained on the same datasets and the THI performance 
was assessed by means of a non-parametric Spearman correlation test. 

2.4. Experimental and simulated data 

Data from previous experiments consisted of transcriptomic analysis 

of two types of bivalve species exposed, under controlled laboratory 
conditions, to realistic environmental concentrations of emerging con-
taminants, i.e. per-fluoroalkyl substances, pharmaceutics, herbicides, 
and fragrances, and to environmental stressors, i.e. acidification. Tran-
scriptomic data recently obtained for the marine invertebrate species Rp 
and Mg were selected due to i) the extensive use of these species 
worldwide as sentinel species; ii) the availability of a plethora of tran-
scriptomic data obtained by RNA-seq, one of the most used technologies 
for gene expression profiling analysis in ecotoxicology; iii) the possi-
bility to develop and validate the method with data obtained at the 
authors’ institute through consolidated and standardized procedures, 
from controlled exposures to RNA-seq data analyses. 

Successively, the transcriptional index has been applied to data from 
two independent studies, one on brown trout St exposed to different 
concentrations of the herbicides Roundup and glyphosate (Webster and 
Santos, 2015) and a second one on western clawed frog Xt exposed to 
benzo[a]pyrene at different exposure times (Regnault et al., 2014). By 
doing this, it was possible to demonstrate the flexibility and applicability 
of the methodology to different species, as well as to data collected by 
other institutes in previous studies. Table 1 briefly outlines the selected 
experimental datasets and related details (target chemical/stressor, 

Table 1 
Datasets with relative information about chemical/stressor, exposure dose and time, tested species, and additional information on biological replicates and technical 
procedures. Reference studies are cited in progressive roman numbers next to the tested chemical/stressor in the first column.  

Chemical/Stressor Dose Exposure 
time 

Species Number of tested 
biological replicates 

Development stage Methodology (RNA extraction and 
library preparation) 

Sequencing 
approach 

C6O4 (I) 0.1 μg/l 7 days Rp 5 pools (each composed 
by 4 individuals) for 
condition/sampling time 

Adults (3.64 ± 0.32 
cm shell length) 

Total RNA extraction: RNeasy Mini Kit 
Qiagen with additional DNAse 
treatment; Libraries 
Preparation: Illumina 
TruSeq RNA Library Prep Kit. 

Illumina Novaseq 
6000 with a paired- 
end 
2 × 100 bp setup 

C6O4 (I) 1 μg/l 7 days 
PFOA (I) 1 μg/l 7 days 
C6O4 (I) 0.1 μg/l 21 days 
C6O4 (I) 1 μg/l 21 days 
PFOA (I) 1 μg/l 21 days 
Acidification and 

Carbamazepine 
(II) 

pH 7.6, 
1 μg/l 

28 days Mg 5 pools (each composed 
by 5 individuals) for each 
condition 

Adults (6.0 ± 0.5 
cm shell length) 

Total RNA extraction: RNeasy Mini Kit 
Qiagen with additional DNAse 
treatment; Libraries 
Preparation: Agilent Sure Select Strand- 
Specific mRNA Library 

Illumina HighSeq 
4000 with a single 
1*100 bp setup 

Acidification (II) pH 7.6 28 days 
Carbamazepine (II) 1 μg/l 28 days 
Glyphosate (III) 100 μg/ 

l 
7 days Mg 6 individuals for each 

condition/sampling time 
Adults (5–6 cm shell 
length) 

Total RNA extraction: RNeasy Mini Kit 
Qiagen with additional DNAse 
treatment; Libraries 
Preparation: Agilent Sure Select Strand- 
Specific mRNA Library 

Illumina HighSeq 
4000 with a single 
1*100 bp setup AMPA(III) 100 μg/ 

l 
7 days 

Glyphosate and 
AMPA(III) 

100 μg/ 
l 

7 days 

Glyphosate (III) 100 μg/ 
l 

21 days 

AMPA(III) 100 μg/ 
l 

21 days 

Glyphosate and 
AMPA(III) 

100 μg/ 
l 

21 days 

Glyphosate (IV) 10 μg/l 21 days Mg 4 pools (each composed 
by 5 individuals) for each 
condition 

Adults (6.5–7 cm 
shell length) 

Total RNA extraction: RNeasy Mini Kit 
Qiagen with additional DNAse 
treatment; Libraries 
Preparation: Agilent Sure Select Strand- 
Specific mRNA Library 

Illumina HighSeq 
4000 with a single 
1*50 bp setup 

Glyphosate (IV) 100 μg/ 
l 

21 days 

Glyphosate (IV) 1000 
μg/l 

21 days 

Amyl Salicylate (V) 0.1 μg/l 7 days Mg 5 pools (each composed 
by 4 individuals) for each 
condition/sampling time 

Adults (5.4 ± 0.5 
cm shell length) 

Total RNA extraction: RNeasy Mini Kit 
Qiagen with additional DNAse 
treatment; Libraries preparation: 3′

QuantSeq kit (Lexogen) 

NextSeq 500 
Illumina with a 
single 1*75 bp setup 

Amyl Salicylate (V) 0.5 μg/l 7 days 
Amyl Salicylate (V) 0.1 μg/l 14 days 
Amyl Salicylate (V) 0.5 μg/l 14 days 
Glyphosate (VI) 10 μg/l 14 days St 6 individuals for each 

condition 
Juvenile female 
brown trout (six 
months old) 

Total RNA extraction: RNeasy Mini kit 
with additional DNAse treatment; 
Libraries preparation: Illumina TruSeq 
RNA Sample Preparation kit. 

Illumina HiSeq 2500 
(100 bp paired 
reads) 

Glyphosate (VI) 10000 
μg/l 

14 days 

Roundup (VI) 10 μg/l 14 days 
Roundup (VI) 500 μg/ 

l 
14 days 

Roundup (VI) 10000 
μg/l 

14 days 

Benzo[a]pyrene (VII) 10 μg/l 6 h Xt 3 individuals for each 
condition/sampling time 

Adults Xenopus 
tropicalis female 

RNA extraction using the RNAqueous®- 
4PCR Kit; Library preparation; double- 
strand fragmented cDNA using 
superscript II 

Illumina Genome 
Analyzer II (75 bp 
single-end reads) 

Benzo[a]pyrene (VII) 10 μg/l 12 h 
Benzo[a]pyrene (VII) 10 μg/l 18 h 
Benzo[a]pyrene (VII) 10 μg/l 24 h 

I: Bernardini et al. (2021); II: Mezzelani et al. (2021); III: Iori et al. (2020); IV: Milan et al. (2018); V: Bernardini et al. (2022); VI: Webster and Santos (2015); VII: 
Regnault et al. (2014). 
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tested doses, exposure times, target species, biological replicates and 
development stage, technical procedures), while more details are re-
ported in the Supplementary Information (section S2) and in the cited 
studies. 

Raw transcriptomics data were generated using the protocols 
detailed in the respective published studies. Once the raw count tables 
were obtained, data were normalized using the “RUVs” function from 
the RUVseq library protocol by Risso et al. (2014). After that, normal-
ized counts were imported in edgeR and subjected to Differential 
Expression Analysis, following the steps detailed in section 2.3 of the 
RUVseq package vignette. The differential expression table containing 
the p-value and log fold change for each tested gene in the transcriptome 
was saved. 

As previously mentioned, Hallmark gene sets are named following 
the HUGO (Human Genome Organization) nomenclature, which uses 
human gene symbols. For the mollusc datasets, sequence similarities 
between the predicted protein set of bivalve species and the Ensembl 
human proteome were obtained using protein BLAST (Basic Local 
Alignment Search Tool, Altschul et al., 1990) with an e-value cut-off 
<10− 6. BLAST was chosen because, due to the taxonomic distance be-
tween human and mollusc, a homology-based approach (e.g. Ortho-
Finder) would have been too strict, leaving the majority of the genes in 
transcriptomes without an orthologous gene and hence without a 
functional annotation. To overcome this issue and, at the same time, 
trying to be as strict as possible, protein BLAST was performed with a 
conservative threshold E-value of 10− 6 instead of the threshold 
commonly accepted for protein-BLAST (i.e. E-value threshold of 10− 3). 

The differential expression table with the updated gene ids and 
respective logFC was then used as input for GSEA, which was run inside 
the R software (via the “clusterProfiler” R library, Wu et al., 2021). The 
scripts to run the GSEA pipeline can be found at https://github.com/GE 
MMA-BCA/TranscriptomicsWeightOfEvidence. 

Datasets used for calibration and validation consisted of statistically 
significant gene sets with their relative ES. To create a broader variety of 
scenarios, simulated datasets complemented the experimental ones, and 
were created ad-hoc to resemble plausible GSEA outputs. To characterize 
each scenario in terms of transcriptional alterations, a list of statistically 
significant gene sets with assigned ESs were fictively assembled by the 
authors as also presented in the Supplementary Information at Chapter 
S4. 

3. Results and discussion 

3.1. THI application 

Results are presented in Table 2 (and in chapter S3 in the SI), where 
priority has been given to results obtained for the experimental datasets, 
whereas the expected hazard and THI outcome for the simulated sce-
narios are included in the Supplementary Information (Chapter S4). In 
Table 2, for each dataset a class of transcriptomic hazard is provided 
based on the THI value obtained. To facilitate the visualization of the 
hazard magnitude, classes’ intervals were scaled to a common width and 
graphically represented by a hazard-meter. THI was converted accord-
ingly and its value is indicated by a hazard pointer. 

If only classes were to be considered as hazard indication, results for 
the experimental datasets would covered most of the outcomes available 
in the method, spanning from “slight” to “major”. Although, a closer 
look at the hazard-meters provides additional information to discrimi-
nate different situations between or within classes of hazard. This is 
particularly relevant for transcriptional alterations that fall close to the 
threshold between classes and for which the level of hazard could be 
misinterpreted if the hazard class was to be considered alone (e.g., Mg 
exposed for 7 days to 100 μg/l of AMPA, hazard class “moderate” but 
THI = 71, very close to the boundary with the “slight” class). Another 
example of hazard-meters assisting in the interpretation of the chemical 
risk is provided by experiments with clams exposed to two C6O4 

concentrations (0.1 μg/l and 1 μg/l) and PFOA. Despite the resulting 
class indicates “moderate” risk in all three treatments (at both 7 and 21 
days), the highest THI was obtained for clams exposed to the lower 
C6O4 concentration. This finding echoes the most important transcrip-
tional changes observed in correspondence to 0.1 μg/l of C6O4 by 
Bernardini et al., (2021). 

Given the large number of experimental datasets presented, it is not 
within the intent of this study to discuss the transcriptional responses of 
organisms under the tested exposure conditions, which are extensively 
reviewed in the referenced manuscripts. Exception is made for the two 
independent studies of St exposed to glyphosate and Roundup (Webster 
and Santos, 2015) and Xt exposed to benzo(a)pyrene (Regnault et al., 
2014). A comparison between the findings reported by the authors of the 
studies and the THI outputs would elucidate the applicability of the 
proposed methodology to other species. 

Webster and Santos (2015) reported that most transcripts displayed 
alike expression trends with an overlap in gene ontologies and signaling 
pathways, suggesting similar risks and shared mechanisms of toxicity for 
glyphosate and Roundup. These results agree with the findings obtained 
here, where glyphosate and Roundup treatments share 59% and 53% of 
the significant Hallmark gene sets at the lowest and highest concentra-
tions, respectively (Supplementary information S3). This would explain 
the similar THI values obtained across different treatments. 

The significant Hallmark gene sets identified by GSEA, and reported 
in the SI, also reflect evidence described by the authors of the study. 
Gene sets contributing to the THI values were responsible for tran-
scriptional changes of signaling processes (“TNF signaling via NFKB”), 
apoptosis (mainly in trout exposed to low glyphosate and low/medium 
Roundup concentrations), cell proliferation and disruption of several 
immune pathways. In trouts exposed to the highest glyphosate con-
centration, a depressed stress response was also present. For both 
chemicals, the highest THIs were obtained at the lowest concentrations, 
confirming the observation of Webster and Santos that fewer tran-
scriptional changes were found at the highest treatment concentrations. 
In agreement with the conclusions reached in the study of brown trout, 
THI ranging from 156 (moderate hazard) to 284 (major hazard) ex-
presses a considerable degree of similarity between treatments, as well 
as more adverse effects at low environmentally-relevant concentrations. 

Concerning the second study, Regnault et al. (2014) investigated 
short-term transcriptomic changes occurring on clawed frogs at 6-, 12-, 
18- and 24-h exposure to benzo(a)pyrene. The authors observed 
maximum transcriptional changes at 12 h post exposure, with the 
disruption of glucose and fatty acid metabolism, apoptosis regulation 
and tight junctions. These findings are well summarized by the highest 
THI (THI = 265) and class of hazard major calculated after 12 h exposure 
(Table 2). The increase in THI originates from the disruption of several 
Hallmark gene sets involved in the same biological processes described 
by the authors of the study as also reported in SI (Chapter S3). 

It is evident that in the process of summarizing into a synthetic index 
the size and complexity of data generated via transcriptional analysis, 
functional genomics information might be lost. However, THI proved to 
be able to complement functional information by capturing the severity 
of the perturbation occurring in the whole transcriptome and by trying 
to convey it in a way that can be used in ERA by a wider range of users. 

3.2. THI output: testing and validation 

The performance of the novel methodology is addressed here by 
comparing the THI outputs with other quantitative summaries of tran-
scriptomics metrics and with the judgment of a panel of external experts. 
To understand whether the THI outperformed alternative analysis re-
sults, the index values obtained from application to 31 experimental 
datasets (on Rp, Mg and St species) were statistically compared with i) 
the number of DEGs as presented in the reference studies, ii) the number 
of GSEA pathways considered as statistically significant, and iii) the 
average ES of all significant GSEA pathways. Fig. 3 presents results of the 
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Table 2 
Estimated THI as a numerical value and relative hazard class for the experimental datasets considered in this study. THI values are visualized in a hazard-meter plot 
where classes of hazard are converted to a common width. Colours in plots identify the five classes of hazard: grey/absent, light blue/slight, yellow/moderate, red/ 
major and black/severe.  

Chemical/Stressor Species Dose Transcriptomics Hazard Index (THI): class and numerical 
value 

Class of hazard References 

C6O4 (7 days) Rp 0.1 μg/l Moderate, 111 
Bernardini et al., (2021) 

C6O4 (7 days) Rp 1 μg/l Moderate, 80 

PFOA (7 days) Rp 1 μg/l Moderate, 89 

C6O4 (21 days) Rp 0.1 μg/l Moderate, 134 

C6O4 (21 days) Rp 1 μg/l Moderate, 71 

PFOA (21 days) Rp 1 μg/l Moderate, 130 

Acidification and 
Carbamazepine 

Mg pH 7.6, 1 μg/l Slight, 63 
Mezzelani et al., (2021) 

Acidification Mg pH 7.6 Moderate, 144 

Carbamazepine Mg 1 μg/l Moderate, 194 

Glyphosate (7 days) Mg 100 μg/l Moderate, 90 
Iori et al. (2020) 

AMPA (7 days) Mg 100 μg/l Moderate, 71 

Glyphosate and AMPA (7 days) Mg 100 μg/l Moderate, 89 

Glyphosate (21 days) Mg 100 μg/l Slight, 49 

AMPA (21 days) Mg 100 μg/l Slight, 26 

Glyphosate and AMPA (21 days) Mg 100 μg/l Slight, 40 

Glyphosate (21 days) Mg 10 μg/l Moderate, 163 
Milan et al., (2018) 

Glyphosate (21 days) Mg 100 μg/l Moderate, 121 

Glyphosate (21 days) Mg 1000 μg/l Moderate, 103 

Amyl Salicylate (7 days) Mg 0.3 μg/l Moderate, 156 
Bernardini et al., (2022) 

(continued on next page) 
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correlation tests conducted by means of Spearman’s rank correlation 
coefficient (S) with the function ggscatterstats of the R package 
ggstatsplot. 

No significant correlation denoted the relationship either between 
THI and the number of DEGs (p-value = 0.75, ρSpearman = 0.06, Fig. 3a) 
or between the number of GSEA pathways and the number of DEGs (p- 
value = 0.61, ρSpearman = 0.10, Fig. 3b). The absence of correlation re-
marks one of the shortcomings of single-gene analysis: in some cases, 
few DEGs are found but the associated THI value is high. The use of 
DEGs creates a situation where, due to the cut-off threshold for defining 
DEGs, the output might miss many subtle (i.e. not “strong” enough to 
call the gene as differentially expressed) but coordinated changes in 
gene expression which still have a great biological relevance. 

When compared to GSEA summative information, THI well corre-
lates with the number of statistically significant pathways (p-value =
5.21e-14, ρSpearman = 0.95, Fig. 3c) but poorly with the average ES (p- 
value = 0.33, ρSpearman = − 0.19, Fig. 3d). The first result (Fig. 3c) is in 
agreement with the conceptual framework at the basis of the THI deri-
vation, where the number of statistically significant pathways contrib-
utes to define the class of effect of each category. It should, however, be 
highlighted that on top of the number of significant pathways, THI adds 
an extra layer of information, which consists of the relevance of the 
physiological reactions (i.e., included through the weighing) triggered 
by a change in pathways’ expression. 

On the other hand, the “simpler” metrics that considers the average 
ES disregards the severity of the transcriptomic alteration because, due 
to the averaging process, extreme responses (i.e. extreme ES values) are 
attenuated. Thereby, using the average ES instead of THI would lead to 
an underestimation of the hazard. Overall, the analysis proved that THI 
can summarize whole-transcriptome changes more accurately than 
single-gene analysis results, i.e. the number of DEGs, while performing 
better than simpler gene set analysis metrics, e.g. average ES. 

For ten datasets selected from experimental and simulated profiles to 
cover the entire spectrum of hazard classes, the THI output was then 
compared with the judgment of a panel of eleven external experts 
(Supplementary information S5). By converting experts’ classes into a 
nominal scale, ranging from 1 – for absent hazard, to 5 – in case of severe 
hazard – an averaged judgment accompanied by its variation in terms of 
standard deviation could be derived for each dataset. To allow com-
parison, the respective THI value was proportionally adjusted to follow 
the same scale. Fig. 4 shows the correlation between averaged expert 
evaluations and THI outputs for each data set. 

Overall, THI proved to be a good indicator of the different levels of 
adverse transcriptomic response across the entire spectrum of hazard 
classes. The correlation between the two variables was indeed signifi-
cant, with a Spearman correlation coefficient of 0.96 (p-value <0.0001) 
and with data falling closely to the identity (y = x) especially for situ-
ations of slight and major hazards (Fig. 4). Again, the quantitative 

Table 2 (continued ) 

Chemical/Stressor Species Dose Transcriptomics Hazard Index (THI): class and numerical 
value 

Class of hazard References 

Amyl Salicylate (7 days) Mg 3 μg/l Moderate, 144 

Amyl Salicylate (14 days) Mg 0.3 μg/l Slight, 40 

Amyl Salicylate (14 days) Mg 3 μg/l Moderate, 125 

Glyphosate (14 days) St 10 μg/l Major, 284 
Webster and Santos 
(2015) 

Glyphosate (14 days) St 10000 μg/l Major, 265 

Roundup (14 days) St 10 μg/l Major, 256 

Roundup (14 days) St 500 μg/l Major, 256 

Roundup (14 days) St 10000 μg/l Moderate, 156 

Benzo[a]pyrene (6 h) Xt 10 μg/l Slight, 49 
Regnault et al. (2014) 

Benzo[a]pyrene (12 h) Xt 10 μg/l Major, 265 

Benzo[a]pyrene (18 h) Xt 10 μg/l Slight, 40 

Benzo[a]pyrene (24 h) Xt 10 μg/l Slight 58 
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hazard index seems to work in conjunction with the qualitative class of 
hazard by complementing the indication of the transcriptomics hazard 
that would result in the simple use of a “label” (from absent to severe). 
For example, the THI value can give an indication of the degree of risk 
for borderline situations, where also experts’ evaluations were shown to 
hardly align. The next step towards a better interpretation of 

transcriptomic hazard could provide the proposed methodology with a 
quantitative approach to estimate and communicate the uncertainty of 
the hazard output. 

3.3. Challenges, benefits, and opportunities of THI in environmental risk 
assessment 

The recent development of new genomic-enabled technologies has 
brought valuable insights in ecological, evolutionary, and environ-
mental science, making affordable refined studies of the genome and 
transcriptome of non-model species (Van Aggelen et al., 2010). Among 
them, NGS (Next Generation Sequencing) technological and computa-
tional advances of which RNA sequencing (RNA-seq) is a major step, 
allowed to apply genome-wide gene expression analysis to investigate 
the effects of anthropogenic impact (e.g. toxicants) on organisms. 
Transcriptomics provides information from a different biological level 
by simultaneously characterizing hundreds to thousands of expressed 
genes (which will putatively translate to proteins/enzymes). It can be 
considered a “super-biomarker”. In fact, it conceives a much greater 
amount of information than that generated by the “classical” bio-
markers, which can only focus on one or a handful of proteins/enzymes 
(van Straalen and Feder, 2012). 

Despite its potential, transcriptomics is not exempt from challenges 
mainly related to data analysis and, consequently, to functional in-
terpretations of genes expression. The global adoption of a single pipe-
line that covers all aspects of the RNAseq analysis (i.e. from sample’s QC 
to the generation of the table containing the p-value and fold change for 
each gene in the genome/transcriptome) would add a level of stand-
ardisation and comparability between datasets that are then used for the 
interpretation of the biological outcome. 

To gain biological insights, different methods for gene expression 

Fig. 3. Correlations between the THI index and different transcriptomic metrics from the experimental datasets presented in Table 2: a) THI and number of DEGs; b) 
number of significant GSEA pathways and number of DEGs; c) number of significant GSEA pathways and THI; d) mean ES and THI. Solid blue line represents the 
regression line with its confidence interval as shaded grey area. Correlation test was assessed by means of Spearman’s rank correlation coefficient (S). Additional 
statistical details are depicted in the subtitle of each plot: "p" denotes the significance of the correlation, the effect size and confidence interval are identified by "ρ" 
and "CI95%", while "n" indicates the number of observations. Quantities on axes are all nondimensional. 

Fig. 4. Comparison of THI values with the averaged expert qualitative evalu-
ation converted into nominal scale from 1 (absent hazard) to 5 (severe hazard). 
Error bars give an indication of experts’ variability in attributing a class of 
hazard. The red line represents complete correlation between the two variables, 
while the observed Spearman correlation coefficient is reported above 
the graph. 
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analyses have flourished in the past years, fostering a great variation in 
the results obtained depending on the choice of methodology, parame-
ters and thresholds applied. Gene set analysis methods differ in their 
various components, from the underlying assumptions to the way they 
test for significance. The extensive review compiled by Maleki et al. 
(2020) well illustrates the strengths and weaknesses of the main gene set 
analysis methods (i.e., overrepresentation analysis, functional class 
scoring, and pathway topology-based methods) ascribing the problem of 
reproducibility, specificity and sensitivity of the results to the absence of 
a gold standard expression database to test the methods against. The 
result is a lack of consensus on the best practice to follow when analysing 
and interpreting transcriptional data. Under these circumstances, the 
use of the GSEA, as in Subramanian et al. (2005), is here proposed, 
keeping in mind both GSEA potential over single-gene analysis and its 
limitations. It is not excluded in the future the possibility of considering 
new methods denoted by higher specificity and sensitivity, or able to 
overcome GSEA shortcomings such as the influence of the gene set sizes 
in the results and the presence of gene sets overlapping due to multi-
functional genes. 

The latest limitation was here addressed with the adoption of the 
Hallmark gene sets collection which was further refined by merging 
redundant Hallmark gene sets. However, the application of Hallmark 
gene sets in non-model species, often lacking of a high-quality genome 
and/or annotated transcriptome compared to mammalian models, may 
provide partial insight into the real dysfunction of specific molecular 
pathways. The EcoToxModules recently proposed by Ewald et al. (2020) 
represents an interesting attempt to create a gene set collection shared 
by scientists and stakeholders and a second one unbiased by functional 
annotation. Whilst these gene sets were developed in fathead minnow, 
the same method can be applied to other species with a sequenced 
transcriptome and can be also considered in future to refine species 
specific lists of gene sets included in the definition of the THI. 

Bearing in mind that a standardized protocol for data processing and 
gene expression analysis would improve the biological interpretation of 
generated data, THI has here demonstrated to perform well in summa-
rizing large and complex data into a single index that can be used in 
ERA. With respect to single-gene analysis results or to simpler gene set 
analysis metrics, THI couples changes occurring at the whole tran-
scriptome level with their relative biological importance. Compared to 
other approaches that try to summaries transcriptional data, this 
methodology does not focus only on few (or a handful of) genes known a 
priori to be associated with specific toxicity pathways, as in the case of 
Benchmark Dose approaches (BMD). On the contrary, THI considers the 
entire sets of genes in the transcriptome and their degree of change in 
comparison with a control condition. Focusing only on a particular 
group of genes in the attempt to elicit a threshold (Point of Departure, 
POD) for transcriptional responses might jeopardize the prediction of 
other adverse effects or key toxicological events, especially when tran-
scriptional responses do not show predictable concentration- 
dependence. THI tries to overcome this limitation, but for its correct 
interpretation and use it is crucial to not lose sight of the biological 
meaning of transcriptomic data and to combine this information with 
other LoEs providing information about effect at higher biological level. 

The possible application to both model and non-model species as 
long as there is an annotated genome or transcriptome available is 
another beneficial aspect of the THI. In this study, the proposed method 
has been applied to two bivalve and one freshwater fish species without 
the need to adjust and/or modify the bioinformatics and statistic pipe-
lines. The methodology requires to link genes in the studied species with 
the Ensembl Human gene ids. Several ways are currently available to 
perform such task, like the Ensembl biomaRT tools (if the studied species 
is available on Ensembl), the KEGG’s KOALA tools (e.g. BlastKOALA, 
GhostKOALA, KofamKOALA), the protein BLAST or OrthoFinder pro-
grams (by running them against the human proteome set) (Durinck 
et al., 2009; Kanehisa et al., 2016; Emms and Kelly, 2019). Further, as 
demonstrated here for Mg and Rp datasets, the approach is also flexible 

in the sense that each user is free to eliminate some of the gene sets if not 
relevant to the studied organism, or if there is evidence suggesting that 
the function of genes in those species is different. This is a key aspect for 
a future extension of the proposed methodology to environmental risk 
studies of species placed also at different trophic levels. In addition, 
given the accessibility of transcriptomic data from published studies in 
public databases (e.g., SRA in NCBI), the method can be easily applied to 
previously collected data (similarly to what was done here with the 
brown trout and the western clawed frog studies), without the need to 
generate new data again. Researchers would then take advantage of a 
great deal of information that has already been generated over the past 
years in order to compare risks for different chemicals, concentrations 
and/or species. 

With regard to the main objective of this work, transcriptomics can 
now be introduced in a QWoE approach applied to ERA contexts. The 
index can be normalized to the same scale of indexes from other bodies 
of evidence and weighed before being aggregated with other LoEs (Bates 
et al., 2018). The contribution of transcriptomics evidence to the final 
assessment should reflect the relevance and reliability of transcriptomics 
results. This depends on the collective properties of transcriptional data, 
such as resolution, study design and execution, or standardization of 
procedures, which the assessors should evaluate and distill into a 
weight. The evaluation requires assessors to manage with a certain de-
gree of confidence transcriptomics, and this might be one of the factors 
that has refrained from quantitatively introduce transcriptional data in 
WoE approaches. Compared to widely validated LoEs, such as chemistry 
or ecotoxicological bioassays, transcriptomics lacks of quality standards 
and of a universally accepted standardized method for data processing. 
As a consequence, the exploitation of transcriptomics for 
multi-disciplinary risk assessment has remained narrow. With this study, 
where a methodology for data processing and results interpretation is 
provided, the hope is that transcriptomics will be part of QWoE so that 
hazard can be inferred at different levels of organism functioning. 

3.4. Conclusive remarks 

In the pursuit of quantitatively summarizing transcriptomic data to 
support ERA, a new hazard index was developed that reflects the level of 
genes expression alteration in aquatic organisms exposed to chemicals 
and the biological importance of such modifications. According to the 
THI, five classes of hazard (i.e. from absent to severe) were calibrated 
and validated using previously collected data on two bivalve species and 
simulated transcriptional profiles. The consistency between THI and the 
independent expert opinion across the entire spectrum of effects repre-
sents an excellent indication of the ability of the methodology to “cap-
ture” and synthesize transcriptomic changes. The flexibility of proposed 
functional database and algorithms facilitates transferability of the 
methodology to other species, as demonstrated here with the brown 
trout and clawed frog studies. Additional testing and refinement are 
surely desirable, especially when it comes to applicability to in situ 
scenarios characterized by multiple stressors and mixture of chemicals. 
At the moment, the methodology incorporates uncertainty in the pro-
cessing of data but not in the reached conclusions. Towards a statistical 
QWoE that estimates the probability of impairment, the next step would 
provide THI with a method for calculating the hazard probability for the 
transcriptomics LoE. In the meantime, a transparent methodology that 
covers all aspects, from data processing to results interpretation, is 
proposed and validated across different aquatic species. Within the 
multidisciplinary vision adopted by ecological QWoE approaches, the 
proposed method constitutes an opening towards the construction of a 
supportive LoE based on transcriptional evidence, something that has 
been long sought after. This will strengthen and complement the inter-
pretation of results from other analyses in support to a more accurate 
assessment of environmental risk in aquatic ecosystems. 
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