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ABSTRACT
Closed testing has recently been shown to be optimal for simultaneous true discovery proportion control. It is, however, challenging
to construct true discovery guarantee procedures in such a way that it focuses power on some feature sets chosen by users based
on their specific interest or expertise. We propose a procedure that allows users to target power on prespecified feature sets, that is,
“focus sets.” Still, the method also allows inference for feature sets chosen post hoc, that is, “nonfocus sets,” for which we deduce
a true discovery lower confidence bound by interpolation. Our procedure is built from partial true discovery guarantee procedures
combined with Holm’s procedure and is a conservative shortcut to the closed testing procedure. A simulation study confirms that
the statistical power of ourmethod is relatively high for focus sets, at the cost of power for nonfocus sets, as desired. In addition, we
investigate its power property for sets with specific structures, for example, trees and directed acyclic graphs. We also compare our
method with AdaFilter in the context of replicability analysis. The application of our method is illustrated with a gene ontology
analysis in gene expression data.

1 Introduction

1.1 Background

Inmultiple hypotheses testing, a recent approach is simultaneous
(and thus post hoc) inference. It allows researchers to examine the
data and obtain valid true discovery proportion (TDP) guarantees,
that is, a lower confidence bound for TDP, simultaneously
for all possible subsets of hypotheses (Blanchard, Neuvial, and
Roquain 2020; Genovese and Wasserman 2006; Goeman and
Solari 2011; Goeman, Hemerik, and Solari 2021). True discovery
guarantee procedures have been applied in genetics (Ebrahim-
poor et al. 2020; Ebrahimpoor and Goeman 2021) and brain
imaging (Andreella et al. 2023; Blain, Thirion, and Neuvial 2022;
Rosenblatt et al. 2018).

True discovery guarantee procedures, however, can have very
different power properties depending on the choice of test-

ing methods, for example, some methods are powerful for
sparse alternatives and some for dense alternatives (Goeman,
Hemerik, and Solari 2021; Tian et al. 2023; Vesely, Finos, and
Goeman 2023). Additionally, the power of the procedures depends
on the structure of the sets to be tested, for example, tree
structures (Bogomolov et al. 2021) or directed acyclic graphs
(DAGs; Meijer and Goeman 2015). It is a challenging problem
to construct a true discovery guarantee procedure that has good
putative properties, targeting its power to specific sets of interest.

The goal of this paper is to design a true discovery guarantee
procedure that targets its power towards a collection of a priori
chosen feature sets. Existing procedures that direct their power
towards chosen sets include methods to control family-wise error
rate (Goeman and Mansmann 2008; Meinshausen 2008) or to
control the False Discovery Proportion (FDP) with nested or tree-
structured reference families (Blanchard, Neuvial, and Roquain
2020; Durand et al. 2020). Our novel approach is similar in
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spirit to the focus-level procedure of Goeman and Mansmann
(2008) but improves upon that method using the techniques of
Blanchard, Neuvial, and Roquain (2020) and Goeman, Hemerik,
and Solari (2021).

We use prespecified feature sets as a reference family, which
we call “focus sets.” Within each focus set, we suppose that a
partial true discovery guarantee procedure is given, which will be
used as building blocks of our post hoc true discovery guarantee
procedure. The procedure is general and allows for any partial
true discovery guarantee procedure on the focus set. As intended,
the statistical power of our method is relatively high for focus
sets, though this increased power comes at the cost of power for
nonfocus sets.

Closed testing has been proven to be the only admissible way to
achieve a simultaneous true discovery guarantee procedure, that
is, alternative procedures either are equivalent to closed testing
or can be uniformly improved by it (Goeman, Hemerik, and
Solari 2021). We, therefore, show that the proposed procedure is
a shortcut to a closed testing procedure, and we construct the
local test of this closed testing procedure explicitly. The worst-
case computation time of closed testing is exponential in general,
but we present several shortcuts which can dramatically reduce
computation time. These shortcuts retain the true discovery
guarantee but come at the cost of some reduction in power. The
shortcuts assume that efficient algorithms are available for the
partial true discovery guarantee procedures on the focus sets
(Brannath andBretz 2010; Blanchard,Neuvial, andRoquain 2020;
Dobriban 2020; Durand et al. 2020; Gou et al. 2014; Goeman et al.
2019; Tian et al. 2023; Vesely, Finos, and Goeman 2023).

To support our theoretical results, we demonstrate the targeted
effectiveness of our procedure on focus sets using artificial data.
We compare our method with the methods for which hypotheses
are in a DAG (Meijer and Goeman 2015) and in a tree (Durand
et al. 2020). We make no assumptions about the focus sets; they
can be disjoint or overlapped, for which the power difference is
presented by using a toy example in the Supporting Information.
We also investigate in some depth an application to replicability
analysis, in which the focus sets can be taken as disjoint and the
method is simplified. For this case, we show a qualitative and
quantitative improvement of our approach over AdaFilter (Wang
et al. 2022). The generalmethod is illustratedwith a gene ontology
analysis in gene expression data in the Supporting Information.

1.2 Notation and Preliminaries

We assume that data are distributed according to some unknown
probability distribution 𝑃 ∈ Ω. Let 𝑊 be the whole feature
set and (𝐻𝑠)𝑠∈𝑊 be the family of null hypotheses to be tested
corresponding to |𝑊| features, where | ⋅ | denotes the cardinality
of a set.Wehave𝐻𝑠 ⊆ Ω for all 𝑠 ∈ 𝑊, and a hypothesis𝐻 is true if
and only if 𝑃 ∈ 𝐻. The set of true null hypotheses in𝑊 is denoted
by 𝑊0 = {𝑠 ∈ 𝑊 ∶ 𝑃 ∈ 𝐻𝑠}, and 𝑊1 = 𝑊 ⧵𝑊0 is the set of false
hypotheses. For any feature set 𝐼 ⊆ 𝑊, the true discoveries in 𝐼

are𝑊1 ∩ 𝐼 and the false discoveries are𝑊0 ∩ 𝐼.

We define intersection hypotheses as 𝐻𝐼 =
⋂

𝑠∈𝐼
𝐻𝑠, for any 𝐼 ∈

2𝑊 , where 2𝑊 denotes the family of all possible subsets of 𝑊.

An intersection hypothesis 𝐻𝐼 is true if and only if all individual
hypotheses𝐻𝑠, 𝑠 ∈ 𝐼 are true. For the special case 𝐼 = ∅, we always
have 𝐻∅ = Ω.

Suppose that certain subsets of the hypotheses are a priori of
particular interest, which we call focus sets. These are chosen
based on practitioner’s experience or background knowledge. Let
the collection of focus sets be  = {𝐹1, … , 𝐹𝑚}, where each 𝐹𝑖 ⊆

𝑊, 1 ≤ 𝑖 ≤ 𝑚. We assume that the focus sets are independent of
the data used for testing, so that they can be considered fixed. We
do not impose any further restrictions on the focus sets, which
can overlap or be disjoint with each other.

As defined in Goeman, Hemerik, and Solari (2021), a true
discovery guarantee procedure 𝑑𝛼 provides a lower confidence
bound for the number of true discoveries in any set of interest,
with confidence level 1 − 𝛼, that is, for any 𝑆 ⊆ 𝑊,

𝑃(𝑑𝛼(𝑆) ≤ |𝑆 ∩𝑊1| for all 𝑆 ∈ 2𝑊) ≥ 1 − 𝛼. (1)

In a similar way, a partial true discovery guarantee procedure
is defined for a subfamily of the hypotheses. Without loss of
generality, a partial procedure 𝑑𝛼𝑖 for the subfamily 2

𝐹𝑖 satisfies
that

𝑃(𝑑𝛼
𝑖
(𝑆) ≤ |𝑆 ∩𝑊1| for all 𝑆 ∈ 2𝐹𝑖 ) ≥ 1 − 𝛼. (2)

2 Combining Partial True Discovery Guarantee
Procedures

2.1 Bonferroni-Based Combination

To control the error rate, we perform each partial true discovery
guarantee procedure at the Bonferroni corrected significance
level, that is, 𝛼∕𝑚, for the focus sets. These partial procedures are
then used as building blocks to calculate the true discovery lower
bounds for any set chosen after seeing the data. We will initially
focus exclusively on finding the true discovery bound in set 𝑆 for
the case that 𝑆 = 𝐹𝑖 , for some 𝑖, only, extending to other 𝑆 later in
this section.

We start by defining a trivial procedure 𝑑(0) that uses only
information from focus sets and only gives nontrivial results for
focus sets, that is,

𝑑(0)(𝑆) =

{
𝑑
𝛼∕𝑚

𝑖
, ∃𝐹𝑖 ∈  , 𝑆 = 𝐹𝑖,

0, otherwise,
(3)

where we use the shorthand 𝑑𝛼∕𝑚
𝑖

= 𝑑
𝛼∕𝑚

𝑖
(𝐹𝑖). The true discovery

guarantee of 𝑑(0) follows directly from Equation (2).

Following Goeman, Hemerik, and Solari (2021), the trivial pro-
cedure can be improved by interpolation. After interpolation, the
proceduremay give nontrivial bounds for nonfocus sets as well as
focus sets. The interpolated version of the lower bound is defined
as:

𝑑(𝑘+1)(𝑆) = max
𝑈∈2𝑊

{𝑑(𝑘)(𝑈) − |𝑈 ⧵ 𝑆| + 𝑑(𝑘)(𝑆 ⧵ 𝑈)}. (4)
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TABLE 1 Improvement to 𝑑(0) by interpolation. After two rounds,
it converges to closed testing.

Feature set 𝒅(𝟎) 𝒅(𝟏) 𝒅(𝟐)

∅ 0 0 0
{1} 0 0 0
{2} 0 1 1
{3} 0 0 0
{4} 0 1 1
{𝟏𝟐} 1 1 1
{13} 0 0 0
{14} 0 1 1
{23} 0 1 1
{𝟐𝟒} 2 2 2
{34} 0 1 1
{123} 0 1 1
{124} 0 2 2
{134} 0 1 1
{234} 0 2 2
{1234} 0 2 2

Note: The bold feature sets represent the focus sets.

The rationale of the interpolation is that if the number of true
discoveries in 𝑈 exceeds |𝑈 ⧵ 𝑆| the remainder must be in 𝑆.
Interpolation is especially useful if 𝑆 has a large overlap with
some 𝑈 for which 𝑑(𝑘)(𝑈) is large. The interpolated procedure
may improve upon the original procedure for focus sets as
well. It always gives at least as good bound as the procedure it
interpolates. We have

𝑑(𝑘+1)(𝑆) ≥ 𝑑(𝑘)(𝑆). (5)

Moreover, by Goeman, Hemerik, and Solari (2021), Lemma 2,
𝑑(𝑘+1) is a true discovery guarantee procedure if 𝑑(𝑘) is. The inter-
polated procedures can be improved again by another round of
interpolation. The procedure that cannot be further improved by
interpolation is called a coherent procedure (Goeman, Hemerik,
and Solari 2021). Let 𝑟 be a number of interpolations after which
the procedure cannot be improved anymore, that is, 𝑑(𝑟)(𝑆) =
𝑑(𝑟+1)(𝑆).

We illustrate the process of interpolation using a toy examplewith
four features. Suppose that we have two focus sets: 𝐹1 = {1, 2} and
𝐹2 = {2, 4} with 𝑑

𝛼∕𝑚

1 (𝐹1) = 1, 𝑑
𝛼∕𝑚

2 (𝐹2) = 2. The lower bound of
true discoveries in any nonfocus set, say {2, 3}, can be computed
based on Equation (4), that is,

𝑑(1)({2, 3}) = max

⎧⎪⎨⎪⎩
𝑑(0)({1, 2}) − |{1}| + 𝑑(0)({3}) = 0, for 𝐹1,

𝑑(0)({2, 4}) − |{4}| + 𝑑(0)({3}) = 1, for 𝐹2,

0, for all nonfocus sets.

Table 1 summarizes the improvement by interpolation for all
feature sets. We see that 𝑑(1) is a coherent procedure since it
cannot be improved further.

ALGORITHM 1 Partial true discovery procedures with Holm’s
procedure.

input : Partial true discovery procedures on focus set
{𝐹1,⋯ ,𝐹𝑚}, i.e.

output: 𝑑
𝛼∕ℎ

𝑖
, 𝑖 = 1,⋯ ,𝑚

Initialize Holm’s factor: ℎ ← 𝑚 ;
repeat

1 Calculate 𝑑𝛼∕ℎ
𝑖

for 𝑖 = 1, … ,𝑚 ;
2 Update ℎ = |{𝑖∶ 𝑑𝛼∕ℎ

𝑖
< |𝐹𝑖|}|.

until ℎ remains unchanged or ℎ = 0;

2.2 Holm-Based Combination

To improve upon the Bonferroni-based combinations of the
previous section, we can use a variant of the procedure of
Holm (1979), following the same principle that was used in the
focus-level procedure of Goeman and Mansmann (2008).

Call ℎ “Holm’s factor” and initialize it to ℎ = 𝑚. For every focus
set 𝐹𝑖 for which the partial true discovery procedure rejects all
hypotheses, that is, 𝑑𝛼∕ℎ

𝑖
(𝐹𝑗) = |𝐹𝑖|, Holm’s factor is reduced by

one. Next, 𝑑𝛼∕ℎ
𝑗

(𝐹𝑗) is recalculated for the remaining focus sets
using the updated ℎ. These steps are repeated until no new
completely rejected focus sets are found, which mostly happens
in a handful of steps. This results in Algorithm 1.

In the following sections, we prefer theHolm-based combination.
However, we may sometimes revert to the Bonferroni-based
combination to improve computational speed at the cost of
some power.

3 Fast Greedy Algorithm for Interpolation

We note that the new procedure optimizes over exponentially
many sets in (4). In practice, however, it is hardly necessary to
try out all 𝑈 ∈ 2𝑊 . We note that discoveries in 𝑆 come through
focus sets exclusively and predominantly through focus sets with
many discoveries and a large overlap with 𝑆. Therefore, we can
approximate 𝑑(𝑟)(𝑆) with a greedy algorithm that chooses focus
sets based on the number of discoveries they infer about 𝑆. This
procedure is given in Algorithm 2. It retains control but may
sacrifice some power.

It is obvious that the number of iterations in the above algorithm
is no more than𝑚. The number is small if the set is less likely to
overlap with the focus sets and close to𝑚 if the set is more likely
a union of the focus sets.

The following Lemma3.1 shows that𝑑(𝑟)(𝑆) is a shortcut to𝑑(𝑟)(𝑆),
the proof of which can be found in the Supporting Information.

Lemma 3.1. 𝑑(𝑟)(𝑆) ≤ 𝑑(𝑟)(𝑆) for all 𝑆 ⊆ 𝑊.

Finally, if the partial true discovery guarantee procedures are a
computational bottleneck,wemaywant to avoid updatingHolm’s
factor too often in Algorithm 1. For this situation, we note that
error control is retained ifAlgorithm 1 is stopped early. In themost
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ALGORITHM 2 Greedy algorithm for interpolations.

Data: 𝑑
𝛼∕ℎ

𝑖
,𝐹𝑖 ∈ 

Result: 𝑑(𝑟)(𝑆)

Define 𝑑𝛼∕ℎ
𝑖

(𝑆)← 𝑑
𝛼∕ℎ

𝑖
− |𝐹𝑖 ⧵ 𝑆| ;

Initialize 𝑑(𝑟)(𝑆)← 0;
repeat

1 Calculate 𝑑𝛼∕ℎ
𝑖

(𝑆), for all 𝐹𝑖 ∈  ;
2 Find out the focus set thatmaximizes 𝑑𝛼∕ℎ

𝑖
(𝑆), i.e.

𝓁 = argmax
1≤𝑖≤𝑚

{𝑑
𝛼∕ℎ

𝑖
(𝑆)} ;

3 True discovery lower bound of 𝑆 is at least as many as of
𝑑
𝛼∕ℎ

𝑘
(𝑆), update 𝑑(𝑟)(𝑆)← 𝑑(𝑟)(𝑆) + 𝑑

𝛼∕ℎ

𝓁
(𝑆) ;

4 Update set 𝑆: 𝑆 ← 𝑆 ⧵ 𝐹𝓁 and  :  ←  ⧵ 𝐹𝓁 ;
until 𝑆 ∩ 𝐹𝑖 = ∅, ∀𝐹𝑖 ∈  ;

extreme case, we may not update Holm’s factor ℎ at all but keep
ℎ = 𝑚.

4 A Full Closed Testing Procedure

As argued byGoeman,Hemerik, and Solari (2021), the closed test-
ing procedure is the only admissible procedure for true discovery
guarantee: all other procedures are either equivalent to closed
testing or can be improved by it. In this section, we construct
an admissible closed testing procedure that uniformly improves
upon the true discovery guarantee procedure constructed above.
The purpose of constructing this procedure is to investigate the
“computational gaps,” that is, the places where the procedure we
have described above sacrifices power for computational reasons,
compared to the full closed testing procedure.

4.1 The Closed Testing Procedure

To construct the closed testing procedure, we propose a local test
for every hypothesis𝐻𝑆, 𝑆 ⊆ 𝑊, defined as

𝜙(𝑆) =

{
1, if 𝑑𝛼∕𝑚𝑆

𝑖 (𝐹𝑖 ∩ 𝑆) > 0 for at least one 1 ≤ 𝑖 ≤ 𝑚,

0, otherwise,
(6)

where 𝑚𝑆 = #{𝑖 ∶ 𝐹𝑖 ∩ 𝑆 ≠ ∅} is the number of focus sets that
have a nonempty intersection with 𝑆. 𝜙(𝑆) = 1 indicates the
rejection of𝐻𝑆 , when at least one partial true discovery guarantee
procedure, at level 𝛼∕𝑚𝑆 , reports a positive number of true
discoveries in 𝑆. The following lemma asserts that the local test
𝜙(𝑆) controls type I error at 𝛼.

Lemma 4.1. If 𝑃 ∈ 𝐻𝑆 , then 𝑃(𝜙(𝑆) = 1) ≤ 𝛼.

Based on the local test 𝜙, we can construct the closed testing
procedure, which fulfills (1). It is given by

𝑑(𝐼) = min
𝐽⊆𝐼

{|𝐼 ⧵ 𝐽| ∶ 𝜓(𝐽) = 0}, (7)

where 𝜓(𝐽) = min{𝜙(𝐾) ∶ 𝐽 ⊆ 𝐾 ⊆ 𝑊}. However, this closed test-
ing procedure involves invoking the partial true discovery pro-
cedures exponentially many times for many different sets and

significance levels, resulting in a large computational burden.We
can alleviate this burden using shortcuts in several steps, as we
will discuss below, finally coming to the procedure described in
Sections 2 and 3.

4.2 First Shortcut: Using Coherence

According to Equation (6), computation of 𝑑(𝑆) involves cal-
culating 𝑑𝛼∕𝑚𝑆

𝑖
(𝐹𝑖 ∩ 𝑆) for exponentially many sets. Even if fast

algorithms exist for each partial procedure, the computational
cost of so many calls would be prohibitive. In this section, we
propose a shortcut that uses only 𝑑𝛼∕𝑚𝑆

𝑖
(𝐹𝑖), drastically reducing

the number of calls to 𝑑𝛼∕𝑚𝑆

𝑖
(𝐹𝑖 ∩ 𝑆).

The alternative local test based on 𝑑𝛼∕𝑚𝑆

𝑖
(𝐹𝑖) is defined as follows:

𝜙̃(𝑆) =

{
1, if 𝑑𝛼∕𝑚𝑆

𝑖
(𝐹𝑖) > |𝐹𝑖 ⧵ 𝑆| for at least one 1 ≤ 𝑖 ≤ 𝑚,

0, otherwise.
(8)

This local test is a shortcut to 𝜙 in Equation (6) since a hypothesis
can be rejected by 𝜙̃ only if it is rejected by 𝜙, as stated by the
following lemma. Type I error control of 𝜙̃ follows by combining
this lemma with Lemma 4.1.

Lemma4.2. 𝜙̃(𝑆) ≤ 𝜙(𝑆) for all 𝑆 ∈ 2𝑊 , with equality if 𝑆 ∩ 𝐹𝑖 =
𝐹𝑖 or 𝑆 ∩ 𝐹𝑖 = ∅ for all 1 ≤ 𝑖 ≤ 𝑚.

From Lemma 4.2, we see that there is no power loss in replacing
𝜙 by 𝜙̃ if 𝑆 is a union of some focus sets. Power loss can be
substantial if 𝑆 is very unlike such a set. The lemma, therefore,
suggests that the resulting shortcut is most useful for sets 𝑆 that
are “nearly” unions of focus sets.

A closed testing procedure 𝑑 can be defined by 𝜙̃, analogous to (7).
This closed testing procedure needs to call each partial procedure
𝑑
𝛼∕𝑚𝑆

𝑖
for only focus sets, but still for many values of 𝛼∕𝑚𝑆 . We

will address this issue in the next section.

4.3 Second Shortcut: Using Holm

In this section, we construct a further shortcut for the closed
testing procedure based on 𝜙̃, for which it suffices to calculate
𝑑
𝛼∕ℎ

𝑖
(𝐹𝑖), 𝑖 = 1, … ,𝑚 for only a limited number of values of ℎ.

Our reasoning follows the principle of Holm (1979), as outlined
in Section 2.

Based on 𝑑𝛼∕ℎ
𝑖

, we define a local test as follows:

𝜙̄(𝑆) =

{
1, if 𝑑𝛼∕ℎ𝑖 (𝐹𝑖) > |𝐹𝑖 ⧵ 𝑆| for at least one 1 ≤ 𝑖 ≤ 𝑚,

0, otherwise,
(9)

where ℎ is understood to be the final value of ℎ upon convergence
of Algorithm 1. The following lemma states that 𝜙̄ is a shortcut
testing to 𝜙̃.

Lemma 4.3. 𝜙̄(𝑆) ≤ 𝜙̃(𝑆) for all 𝑆 ∈ 2𝑊 .

4 of 9 Biometrical Journal, 2024
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We may note that the power loss of 𝜙̄(𝑆) is negligible when the
number of focus sets that have an empty intersection with 𝑆 is
close to the number of fully rejected focus sets. Otherwise, the
power loss will be large. Moreover, Lemma 4.3 is useful because
it allows quick determination of the effective local test. Let 𝜓̄(𝐽) =
min{𝜙̄(𝐾) ∶ 𝐽 ⊆ 𝐾 ⊆ 𝑊} be the closed testing procedure, and 𝐽 is
any generic subset of𝑊, we then have

Lemma 4.4. 𝜓̄(𝐽) = 𝜙̄(𝐽).

It follows from Lemma 4.4 that the shortcut calculates whether
𝐻𝑆 is rejected in 𝑂(𝑚) time, after 𝑑𝛼∕ℎ1 (𝐹1), … , 𝑑

𝛼∕ℎ
𝑚 (𝐹𝑚) have

been evaluated.

Based on 𝜙̄, the corresponding closed testing procedure can be
defined as 𝑑. We show in the following lemma that the proposed
procedure 𝑑(𝑟)(𝑆) in Section 2 is equivalent to 𝑑, which is a
shortcut to the closed testing procedure 𝑑 in Equation (7).

Lemma 4.5. 𝑑(𝑆) = 𝑑(𝑟)(𝑆) for all 𝑆 ∈ 2𝑊 .

From the two-step shortcut described above, we see that the
computational gaps between the procedure proposed in Section 2
and a fully closed testing procedure cause minimal power loss
when the set of interest is a union of disjoint focus sets and the
number of focus sets that have a nonempty intersection with
the set is equal to that of not completely rejected focus sets.
Otherwise, the power loss can be substantial after two gaps.

5 Global Test Implementation: newFocus

Although the method we have presented is general, we have a
special interest in the application of the method based on partial
closed testing procedures that use the global test of Goeman
et al. (2004) as its local test. For this, we have derived a variant
of the shortcut of Xu, Solari, and Goeman (2023). This latter
shortcut is only designed for set-wise family-wise error rate
(FWER) control, that is, for deciding whether 𝑑𝛼𝑖 (𝑆) > 0 for any
𝑆 of interest; our novel shortcut is specific for finding 𝑑𝛼𝑖 (𝐹𝑖)

only. The derivation can be found in the Supporting Information.
It is implemented in the R package newFocus (Xu, Solari, and
Goeman 2021) on CRAN, which also implements the general
procedure of Sections 2 and 3.

6 Simulations

6.1 Focused Power

In this section, we investigate whether combining partial true
discovery guarantee procedures has the expected property that it
concentrates power on focus sets at the expense of nonfocus sets.
We do this using an artificial data example.

We use 𝑛 = 100 samples and 𝑤 = 1000 features, where the
response 𝑌 is binary, following from Bernoulli distribution with
probability 0.5. We vary the number of truly associated features
in (200, 500, 800), that is, the proportion of true nonnull features
varies in (0.2, 0.5, 0.8). The features 𝑋1, … , 𝑋𝑤 were drawn inde-
pendently from a normal distribution with 𝜎 = 1. The mean of

truly associated features is 0.7 and 0 otherwise. The higher the
mean, the stronger the association between𝑋 and𝑌.We calculate
the 𝑝-value for every feature by testing the association between
the feature and the response using an independent sample t-test.

We choose to create a list of 22 sets, 11 of which are focus sets
and the others are nonfocus sets, both with TDP in the range of
(0, 0.1, 0.2, … , 1). We construct the sets in a way that the focus sets
are overlapped with each other and also with the nonfocus sets.
More details about the creation of the sets can be found in the
Supporting Information.

For the partial true discovery procedures on the 11 focus sets, we
use the closed testing procedure based on Fisher’s combinations
as local tests, for which a fast shortcut is available (Tian et al.
2023), implemented in the R package sumSome (Vesely and Chen
2021). We combine these partially closed testing procedures in
the way described in Section 2, using the greedy algorithm in
Section 3. As a competitor, we considered the full closed testing
procedure with Fisher’s combination local tests.

We calculate TDP on average over 1000 replications for all focus
sets and nonfocus sets, summarizing the results in Figure 1. We
see in all settings that the proposed procedure gives better TDP
bounds for focus sets than the overall Fisher’s combinations based
closed testing procedure, but not for nonfocus sets, confirming
that it concentrates power on focus sets. Moreover, this power
is quite stable for different proportions of nonnull features.
In contrast, the overall procedure is highly affected by the
proportions. Surprisingly, the proposed procedure has also good
power on nonfocus sets especially when the true features in the
nonfocus sets are very enriched and largely overlapped with the
focus sets (see first panel in Figure 1).

6.2 DAG- and Tree-Structured Hypotheses

In thiswork,we do notmake any assumptions about the structure
of the feature sets. There have been many methods proposed
for tree-structured hypotheses (Blanchard, Neuvial, and Roquain
2020; Bogomolov et al. 2021; Miecznikowski and Wang 2023)
or specifically DAG-structured hypotheses (Guo, Lynch, and
Romano 2018; Meijer and Goeman 2015). To better understand
the pros and cons of the method, we compare our method with
“sanssoucci” (Blanchard, Neuvial, andRoquain 2020) and “DAG”
(Meijer and Goeman 2015) for tree- and DAG-structured feature
sets. In addition, we compare to Simes-based closed testing on
these feature sets (Goeman et al. 2019).

The artificial data are generated from the R package sanssouci.
The complete dyadic tree structure with 100 elements and eight
layers is created. The proportion of true nonnulls is set to
(0.1, 0.2, 0.5, 0.8), and we consider two situations of nonnulls in
the tree structure: (1) they are grouped in one branch of the tree,
or (2) they are randomly distributed from all leaves. The strength
of the signals is controlled by 𝜇, for which we set 𝜇 = 1 as weak
signals and 𝜇 = 4 as strong signals. The detailed setting can be
found in the Supporting Information.

We calculate the TDP bound of the set of all nonnulls, which is
not a node in the tree. The result from R package sanssouci is
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FIGURE 1 True TDP (x-axis) versus TDP confidence bound (y-axis) by the full closed testing procedure (the empty points) and by partially closed
testing (the filled points). The point shape denotes the set type, the circles are focus sets, and the triangles are nonfocus sets. The plots differ by the
proportion of true nonnull features.

FIGURE 2 TDP bound for the set of all true nonnulls for grouped true nonnull signals in the tree.

represented by “tree,” and the result from R package cherry is
represented by “dag.” The procedures “ptd@4” and “ptd@all”
represent the combined procedures for which the focus sets are
nodes at layer 4 of the tree and all nodes of the tree, respectively.
The partial true discovery procedure is chosen as a partially closed
testing procedure, for which the local test is Fisher’s combination
test, which is also the test method chosen for the dag method.

The mean TDP based on 100 replications is summarized in
Figure 2 for grouped true nonnulls. The result for ungrouped true
nonnulls are presented in the Supporting Information. It is shown

in Figure 2 that “ptd@4” and “ptd@all” are powerful for strong
signals as well as the dag and Simes method. The tree method is,
however, powerful when the signals are weak, whereas the other
methods are less powerful.

7 Replicability Analysis With Artificial Data

In recent years, there has been a considerable debate about
the lack of replicability of results in many scientific fields

6 of 9 Biometrical Journal, 2024
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TABLE 2 Mean lower bound obtained by partial closed testing and AdaFilter-𝑟 methods.

Number of studies with signal 𝒗𝟏
0 1 2 3 4 5 6 7 8 9 10

true mean 𝑟 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
Partial CT 0.00 0.38 0.83 1.29 1.78 2.28 2.79 3.32 3.85 4.40 4.96
AdaFilter-2 0.00 0.00 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AdaFilter-3 0.00 0.00 0.01 1.38 1.49 1.49 1.50 1.50 1.50 1.50 1.50
AdaFilter-4 0.00 0.00 0.00 0.02 1.83 1.99 1.99 2.00 2.00 2.00 2.00
AdaFilter-5 0.00 0.00 0.00 0.00 0.02 2.26 2.48 2.49 2.50 2.50 2.50
AdaFilter-6 0.00 0.00 0.00 0.00 0.00 0.02 2.70 2.98 2.99 3.00 3.00
AdaFilter-7 0.00 0.00 0.00 0.00 0.00 0.00 0.03 3.14 3.48 3.50 3.50
AdaFilter-8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 3.66 3.98 4.00
AdaFilter-9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 4.16 4.49
AdaFilter-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 4.79

(Ioannidis 2005; Nuzzo 2014). This debate has brought about
the development of formal statistical methods for assessing
replicability (Benjamini and Heller 2008; Friston, Penny, and
Glaser 2005; Jaljuli et al. 2023; Wang et al. 2022). Replicability
analysis aims to identify the findings that are replicated across
independent studies that examine the same features.

Consider the problemwhere𝑚 hypotheses are tested in 𝑣 studies.
Define an 𝑚 × 𝑣 matrix of hypotheses (𝐻𝑖𝑗)𝑚×𝑣 , with one row
per feature and one column per study, where 𝐻𝑖𝑗 specifies no
effect for the 𝑖th feature in the 𝑗th study. Suppose that we have
a 𝑝-value matrix (𝑝𝑖𝑗)𝑚×𝑣 for the hypotheses (𝐻𝑖𝑗)𝑚×𝑣 and assume
that 𝑝𝑖1, … , 𝑝𝑖𝑣 are independent for each 1 ≤ 𝑖 ≤ 𝑚 and that 𝑝𝑖𝑗
is stochastically larger than uniform when 𝐻𝑖𝑗 is true. Let 𝑝𝑖(1) ≤
⋯ ≤ 𝑝𝑖(𝑣) be the sorted values of 𝑝𝑖1, … , 𝑝𝑖𝑣 for each 1 ≤ 𝑖 ≤ 𝑚.

The partial conjunction (PC) testing framework of Benjamini and
Heller (2008) aims at establishing that an effect was discovered
in at least 𝑟 of 𝑣 studies, where 𝑟 is a prespecified integer
indicating the minimal replicability requirement. Let𝐻𝑟∕𝑣

𝑖
be the

PC hypothesis specifying that fewer than 𝑟 studies have shown
a true effect for the 𝑖th feature for 1 ≤ 𝑖 ≤ 𝑚. Rejecting the PC
hypothesis, 𝐻𝑟∕𝑣

𝑖
guarantees that the signal in the 𝑖th feature has

been replicated at least 𝑟 times across 𝑣 studies.

A recent proposal for simultaneous testing of the PC hypotheses
is AdaFilter (Wang et al. 2022), a multiple testing procedure that
increases power by filtering out PC hypotheses that are likely
true nulls by using the filtering 𝑝-value 𝑅𝑖 = (𝑣 − 𝑟 + 1)𝑝𝑖(𝑟−1).
Specifically, for a prespecified level 𝛼, AdaFilter rejects 𝐻𝑟∕𝑣

𝑖
if

the selection𝑝-value 𝑆𝑖 = (𝑣 − 𝑟 + 1)𝑝𝑖(𝑟) < 𝛼̂, where 𝛼̂ = sup{𝛾 ∈

[0, 𝛼] ∶ 𝛾
∑𝑚

𝑖=1 𝟙{𝑅𝑖<𝛾} ≤ 𝛼}. Wang et al. (2022) proved that the
AdaFilter procedure controls the family-wise error at level 𝛼
under the assumption that all𝑚 × 𝑣 𝑝-values are independent.

A more flexible approach to replicability analysis advocated by
Heller (2011) and Jaljuli et al. (2023) is based on simultaneous
testing PC hypotheses 𝐻𝑟∕𝑣

𝑖
for all 1 ≤ 𝑖 ≤ 𝑚 and all 1 ≤ 𝑟 ≤ 𝑣,

thereby adding another layer of multiplicity. Importantly, PC

testing for all possible values of 𝑟 provides a lower bound 𝑑 for
the number of studies that replicated, and it allows to make
simultaneous statements such as “with 95% confidence, out of
𝑣 studies, at least 𝑑𝐴 = 2 studies shown an effect for feature
A, at least 𝑑𝐵 = 4 for feature B, no one (𝑑𝐶 = 0) for feature C,
etc.” compared to fixed-𝑟 PC testing, which simply identifies the
features that shown an effect in at least 𝑟 studies.

We implemented this alternative approach by combining partially
closed testing procedures. Define as focus sets the partition  =
{𝐹1, … , 𝐹𝑚} of the 𝑤 = 𝑚 × 𝑣 hypotheses, with 𝐹𝑖 representing
the 𝑖th feature by including the indexes corresponding to the
hypotheses 𝐻𝑖1, … ,𝐻𝑖𝑣 . We derive the lower bound 𝑑𝑖 = 𝑑

𝛼∕𝑚

𝑖
(𝐹𝑖)

for each of the focus sets by closed testing based on Fisher’s
combination method as a local test (Goeman and Solari 2011).
Computation of the lower bound 𝑑𝑖 amounts to test in order𝐻

𝑟∕𝑣

𝑖

for increasing values of 𝑟, which provides 𝑑𝑖 = max{𝑟 ∶ 𝑝
𝑢∕𝑣

𝑖
≤

𝛼∕𝑚 for 𝑢 = 0, … , 𝑟}, where 𝑝𝑢∕𝑣

𝑖 is the 𝑝-value testing 𝐻𝑢∕𝑣

𝑖 by
Fisher’s combination method (Heller 2011). Closed testing offers
simultaneous 𝑑𝛼∕𝑚𝑖 (𝐼) not only for 𝐼 = 𝐹𝑖 but also for any subset of
studies 𝐼 ⊆ 𝐹𝑖 . The algorithm in the R package sumSome provides
calculation of 𝑑𝛼∕𝑚𝑖 (𝐼) with log-linear complexity in the total
number of hypotheses.

We performed a simulation study at level 𝛼 = 5% with 𝑚 =
10 features and 𝑣 = 10 studies. Let 𝑣1 be the true number of
studies with signal. For the first half of features, we vary 𝑣1
from 0 to 𝑣, and for the second half of features, we set 𝑣1 to
zero. We generated independent 𝑝-values following Beta (𝛼, 1) or
Uniform(0,1) distribution according to the presence or absence
of an effect, respectively. We compared partially closed testing
with the AdaFilter-𝑟method for different values of 𝑟. AdaFilter-𝑟
lower bound for the 𝑖th feature is equal to 𝑟 if 𝐻𝑟∕𝑣

𝑖
is rejected by

AdaFilter-𝑟 and 0 otherwise. For each value of 𝑣1, we calculated
the average lower bound of true studies over all features by
partially closed testing and AdaFilter-𝑟 methods, for 2 ≤ 𝑟 ≤ 𝑣.
For comparison, the true mean of studies with signal is 𝑟 = 𝑣1∕2.
Results average over 1000 replications are reported in Table 2. It
is shown that the partially closed testing procedure outperforms
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AdaFilter in general, with the exception that the prespecified 𝑟 of
AdaFilter is equal to 𝑣1, where AdaFilter concentrates power on
detecting if there are at least 𝑟 studies showing effects for the first
half of features.

8 Discussion

We have shed light on a true discovery guarantee procedure for
all possible feature sets, which can specifically focus power on
some feature sets of interest but may cost power for other feature
sets. The procedure is proved to be a shortcut to the closed testing
procedure, for whichwe showwhere the potential computational
gaps are.

Our method is useful to measure the effect size of the feature
set by global testing, which is superior to the original focus-
level procedure that only shows the absence or presence of true
features. However, limitations of themethod exist, that is, wemay
lose power when inferring the nonfocus sets and applying the
shortcuts. We may shed light on how to improve both the power
and computational efficiency in the future study.

The procedure is derived from Bonferroni- or Holm-based
combinations of partial procedures. We have shown in the
Supporting Information that the overlapping focus sets result in
a more conservative procedure than the disjoint focus sets. The
power loss can be 50% around in our numerical study, which
suggests users choose disjoint focus sets in practice as much
as possible.
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