Universita
Ca ' Foscari i
/enezia \

Dottorato di ricerca
in Informatica

Scuola di dottorato in Scienze e Tecnologie
Ciclo XXIII
(A.A. 2009 - 2010)

Type-based Analysis of Security APIs

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: INF/01
Tesi di dottorato di Matteo Centenaro, matricola 955482

Direttore della Scuola di dottorato Tutore del dottorando

Prof. Paolo Ugo Prof. Riccardo Focardi

Abstract

A Security API is an interface between processes running at different levels of trust
with the aim of assuring that a specific security policy holds. It allows an untrusted
system to access the functionalities offered by a trusted secure resource assuring that
no matter what sequence of the API commands are invoked, the intended security
policy is satisfied.

This kind of API is often developed having in mind a target application and
how it will typically use the available services. It is thus easy to miss the fact that
some functionalities could be used in a malicious way to break the intended security
policy. In fact, a number of attacks to existing security APIs have been found in
the last years.

This thesis proposes a type-based analysis to verify the security of these critical
components. Language-based analysis is, in fact, a powerful tool to formally prove
security and, at the same time, helps API developers to understand the root-causes
of known vulnerabilities affecting APIs and guides them in programming secure
code.

A security API which slowly leaks secret data to an attacker capable to spot
interferences between input parameters and a command output can be secured by a
noninterference policy. The thesis extends the setting of language-based information
flow security to account for cryptographic expressions (both randomized and deter-
ministic ones) and applies the obtained results to analyse the ATM PIN verification
API. A possible fix to it is also proposed and shown to be secure by typing.

A security API which, instead, directly releases a secret value as the result of
a sequence of legal commands will be analysed with a type system ensuring that
data secrecy is preserved at run-time. The thesis presents the case of programs
implementing key management functionalities and proposes a type system to reason
on the security of RSA PKCS#11 API and verify the correctness of a novel patch
to it.

Sommario

Una security API & un ’interfaccia che regola la comunicazione tra due processi,
che vengono eseguiti con diversi livelli di affidabilita, allo scopo di assicurare che
sia soddisfatta una determinata proprieta di sicurezza. In questo modo, un sistema
potenzialmente non fidato puo fruire delle funzionalita offerte da una risorsa sicura
senza mettere a rischio la sicurezza dei dati in essa contenuti: la API deve infatti
impedire che una delle possibili sequenze di suoi comandi permetta di usare in
maniera inappropriata la risorsa fidata. Molto spesso una API di questo tipo viene
progettata e sviluppata considerando quella che sara la sua applicazione pitt comune
e come questa utilizzera i servizi messi a disposizione. Una mancata visione di
insieme dei comandi esposti dalla API apre la strada ad un suo possibile utilizzo
malevolo atto a sovvertire la sicurezza dei dati che dovrebbe proteggere. Negli ultimi
anni, infatti, sono stati scoperti numerosi attacchi contro le security API esistenti.

La tesi propone un’analisi, basata sui sistemi di tipi, per verificare la sicurezza
di queste cruciali componenti. L’analisi formale dei linguaggi e, infatti, uno stru-
mento molto potente per dimostrare che un dato programma soddisfa le proprieta
di sicurezza richieste. Inoltre, fornisce anche un aiuto agli sviluppatori delle API
per capire a fondo le cause delle vulnerabilita che le affliggono e li guida ad una
programmazione consapevolmente sicura.

Un attaccante che e in grado di osservare differenze nei risultati ottenuti invo-
cando la stessa funzione di una API con diversi parametri di input, puo utilizzarle
per derivare informazioni sui segreti custoditi nella parte fidata del sistema. Una
security API soggetta a questo genere di attacchi puo essere resa sicura utilizzando
una proprieta di non-interferenza. La tesi estende la teoria esistente nel campo
dell’information flow security per analizzare la sicurezza di programmi che fanno
uso di primitive crittografiche (sia randomizzate che deterministiche) e applica i
risultati ottenuti per studiare la API impiegata per la verifica dei PIN nella rete
degli sportelli ATM (bancomat). Utilizzando il sistema di tipi proposto, & stato
possibile proporre e verificare una soluzione che rende sicura tale API.

Una security API che, come risultato di una inaspettata sequenza di comandi,
rivela una informazione che dovrebbe rimanere segreta, puo essere invece analizzata
con un sistema di tipi atto a controllare che la segretezza dei dati sia preservata
durante tutto il tempo di esecuzione dei programmi. La tesi presenta il caso di
programmi che offrono servizi per la gestione delle chiavi crittografiche, introducendo

un sistema di tipi in grado di ragionare sulla sicurezza dello standard RSA PKCS#11
e di verificare la correttezza di una nuova patch che lo rende sicuro.

Acknowledgments

Research is a team effort and I owe a great debt to several people who given me
their time and input.

My very first thank goes to my supervisor, Riccardo Focardi, who has been
supporting and motivating me during all the past three years. He introduced me to
the world of research and worked very hard on each of our co-authored papers. I
would also like to thank my co-authors: Graham Steel, Flaminia Luccio and Matteo
Bortolozzo.

Thanks to my official reviewers Andrei Sabelfeld and Isabella Mastroeni for their
valuable feedbacks and useful comments in reviewing my thesis.

Many thanks to the Computer Science Department of Ca’ Foscari University and
all the people working there. In particular, I would like to thank Annalisa Bossi and
Antonino Salibra for their coordination of the Ph.D course.

Special thanks to all my Ph.D colleagues and friends with special mentions to
Matteo Zanioli, Luca Leonardi, Alberto Carraro, Stefano Calzavara, Alvise Spano,
Gian-Luca dei Rossi, Raju Halder and Luca Rossi. A big thank goes also to “sec-
group” (in particular Marco, Claudio, Lorenzo and Andrea) and to Andrea Suisani.

I am deeply grateful to my parents and my twin-sister Elisa for their uncondi-
tional support. My gratitude and my love goes to Francesca for always staying by
my side.

Contents

Preface
Introduction

Security APIs

1.1 API Attacks
1.2 Type-checking Security APIs
Noninterference

2.1 Nonminterference Lo
2.2 Typing noninterference
2.3 Conclusion

Cryptographic Noninterference

3.1 Introduction
3.2 A Language with Cryptography
3.3 Standard noninterference
3.4 Cryptographic noninterference
3.5 Hook-up properties
3.6 Typesystem
3.7 Conclusions

Proving Integrity by Equality

4.1 Introduction
4.2 Secret-sensitive Noninterference
4.3 Hash Functions and Secrecy
4.4 Proving Integrity by Equality
4.5 Security Type Systemo Lo
4.6 Case Studies
4.7 Related Works.
4.8 Conclusions

Type checking PIN Verification APIs

5.1 Introduction
5.2 The Case Study
5.3 Basic Language and Security L.
5.4 Cryptographic primitives oL

5.4.1 Security with cryptography

vil

ix

11

13
14
15
18
21
28
30
32

35
36
38
39
42
42
46
48
49

i Contents
5.4.2 Formal analysis of a PIN.V APl attack 60

5.5 Type System 61
5.6 A type-checkable MAC-based APT 68
5.7 Conclusions 70

6 Type checking PKCS#11 73
6.1 Introduction 73
6.2 Language e 75
6.3 Type System 7
6.3.1 Type Soundness 81

6.4 Typed PKCS#11 84
6.4.1 RSA PKCS#11 Standard 84

6.4.2 Key Diversificationo 85

6.4.3 Secure Templates L. 87

6.5 Conclusions 89

7 Tookan: a TOOI for cryptoKi ANalysis 91
7.1 Introduction 91
7.2 Model 92
7.2.1 Basic Notions o 93

7.2.2 Modelling Real Tokens 94

7.2.3 Limitations of Reverse Engineering 99

7.3 Results. 100
7.3.1 Implemented functionality 101

7.3.2 Attacks 102

7.3.3 Model-checking resultso 103

7.4 Finding Secure Configurations 103
7.5 Conclusion 105
Conclusions 109

A Cryptographic Noninterference - Formal Proofs 113
B Proving integrity by equality - Formal Proofs 121
C Type checking PIN Verification APIs - Formal Proofs 149
C.1 Closed key types 150
C.2 Memory well-formedness 150

D Type checking PKCS#11 - Formal Proofs 183
D.1 Typing values 184
D.2 Formal proofs 184
Bibliography 191

4.1 Size-aware Lattice

List of Figures

7.1 Tookan system diagram 94

List of Figures

2.1
2.2

3.1
3.2

4.1

0.1
5.2
5.3
5.4

6.1
6.2
6.3

7.1
7.2

7.3

C.1
C.2
C.3
C4
C.5
C.6

List of Tables

Commands Semantics 8
Typing noninterference 10
Multi-threaded language semantics 19
Typing Multi-threaded Commands 31
Security Type System 45
The PIN verification APL. 53
PIN APIs Type System - Expressions 63
PIN APIs Type System - Commands 66
The new PIN.V_M API with MAC-based integrity. 69
Commands Semantics Lo 7
Typing expressions 80
Typing commandso 81
Syntax of Meta-language for describing PKCS#11 configurations . . . 95
PKCS#11 key management subset with side conditions from the

meta-language of table 7.1o 96
Summary of results on devices oL 100
Values well-formedness 152
Command Semantics 153
Expression Semantics Lo 153
PIN-block formats L 181
Revised model of the PIN verification API with types. 182

The new PIN_.T_M API with MAC-based integrity, with types. 182

vi

List of Tables

Preface

The work presented in this thesis is based on some previously published papers as
the result of the research carried out during the Ph.D. Program in Computer Science
organized by the Department of Computer Science of Ca’ Foscari University.

Chapter 3 has been first presented as joint work with Riccardo Focardi at the
third ACM SIGPLAN Workshop on Programming Languages and Analysis for Se-
curity (PLAS) in 2008 [32].

The contents of Chapter 4 appeared in the revised selected papers of Automated
Reasoning for Security Protocol Analysis and Issues in the Theory of Security Joint
Workshop, ARSPA-WITS 2010 [20].

Chapter 5 is the result of a joint work with Riccardo Focardi, Flaminia Luccio
and Graham Steel published in the Proceedings of the 14/th Furopean Symposium on
Research in Computer Security (ESORICS) [21].

Contents of Chapter 6 appeared in a Computer Science Technical Report at Ca’
Foscari University [19] and is going to be submitted for publication.

The contents of Chapter 7 was presented at the 17th ACM Conference on Com-
puter and Communications Security (CCS) in 2010 as a joint work with Matteo
Bortolozzo, Riccardo Focardi and Graham Steel.

viii Preface

Introduction

Computer systems are more and more used to store relevant data and need to enforce
policies to protect them. Moreover, applications are growing in their complexity and
it is unattainable to assume that these programs are error-free. A very important
design principle is thus to identify the security critical part of a software and isolate
it from the rest of the application, so that it will be possible to better check its
correctness. Functionalities implemented in this sub-system can be accessed by the
other components of the application through the interface exposed to them. In this
way the security relevant functions would offer an API (Application Programming
Interface) which programs can use in order to perform security significant tasks with-
out worrying about respecting policies on the data. This kind of API is referred to
as a security API, since it aims at enforcing a security policy on critical information.

It is clear that a security API, which is only implemented as a separate software
component and run on the same system together with the rest of the application,
could be subject to attacks aiming at subverting its protections. Moreover any
malicious system administrator would be able to tamper with the API software
implementation, for example, substituting it with a broken one. Special tamper-
proof hardware is then used to guarantee API integrity: it implements a specific
security API and assures that no one is able to access its internal components without
causing an irremediable loss of data. Trusted hardware comes in different forms: in
the financial applications it is often a Hardware Security Module (HSM), a PCI-
card to be plugged into a computer, while in other kinds of systems, for example on
authentication ones, it could present itself as a smartcard or even as a usb token.
For example, think of credit-cards, public transport electronic tickets and the mobile
phone Subscriber Identity Modules (SIMs): these are all trusted devices which are
now ubiquitous in our day-to-day life.

The system is so divided into (at least) two sub-systems identifying a trusted
component and an untrusted one. However, even if it is impossible to tamper with
the trusted part as it is ‘sealed’ into special hardware, there is usually no proof
that the provided security APIs are compliant to the intended policies. In fact, a
number of attacks has been found which are able to break the security of these APIs
by performing a somewhat unexpected sequence of legal calls leading to a security
breach.

Designing security APIs is a really difficult task: it is necessary to think of the
result of any possible API invocation sequence and see if the outcome is an attack
or not. Formal analysis tools are potentially of great help in this field, assisting
API developers in proving that their implementations are compliant to the desired
security property. This thesis focuses on type-based analysis of security APIs: the

X Introduction

idea is that an API designer should code a prototype of its API and statically check if
it type-checks, in that case she would be assured that the proposed implementation
respects the security policy, no matter what sequence of calls are performed.

Contributions of the Thesis

The thesis first considers attacks against security APIs which are able to slowly
leak secret data spotting dependency between the input parameters, chosen by an
attacker, and the output given by an API command. This kind of bugs can be
avoided by enforcing noninterference-style properties, whereby private data cannot
influence values of the public ones, unless this is done in a controlled way. Security
APIs often employ cryptographic primitives to protect data confidentiality and clas-
sical noninterference is too strong to be applied in this case. In fact, it forbids any
flow from private to public data, contrasting, for example, the intuition that the en-
cryption of a secret data under a secret key can be regarded as being public (indeed
noninterference will regard this as insecure since the result depends on secret data).
A first contribution of the thesis is the definition of new noninterference properties
suitable to reason about the security of programs using cryptography.

The study of this intriguing extensions of noninterference starts from the case
of symmetric key encryption. To protect data confidentiality it is common that
encrypted message are randomized using an unpredictable confounder [1], otherwise
information on plaintexts could be obtained comparing the corresponding cipher-
texts. The capability of an intruder to observe different instances of the same en-
cryption is modeled using patterns [3, 2]. Intuitively, this correspond to the attacker
ability of comparing ciphertexts bit-wise as done, e.g., in traffic-analysis. Crypto-
graphic noninterference [32] embodies these two ideas so that an intruder would not
distinguish too much and a program releasing to the public a randomized encryption
of a secret data under a secret key will not break the security property.

Deterministic cryptography is anyway commonly adopted in security APIs. For
example, in the ATM PIN verification framework, it is possible to encrypt a user PIN
in a non-randomized way: it will be encrypted together with a public identification
data such as, e.g., the user account number. Combined with the fact on-line attacks
are limited to very few attempts (usually 3), this enforces PIN confidentiality: given
an account number, only few encrypted message can be produced. This avoids the
possibility for an attacker to build a code-book of all the PINs. Limiting the wrong
attempts at the ATM to just one, we can prove noninterference with deterministic
encryption [21].

Determinism is also a crucial aspect of cryptographic hash functions, when em-
ployed to track data integrity. In fact, if the result of applying a deterministic opera-
tor to a given value is the same as one previously obtained by the same function, it is
guaranteed (collisions apart) that the two pre-image values are the same. Technique
like this one are useful, for example, to establish the integrity of a file downloaded
from an untrusted site. However, the code executed inside an if-branch performing

Introduction xi

this kind of integrity check should generally be regarded as low-integrity, since an
opponent can always make the check fail by tampering with the values. Anyway, if
the code is in what we informally call ‘match-it-or-die’ form, i.e., it always performs
integrity checks at the outer level and halts whenever the check is not passed, this
behaviour is harmless: for these programs, the attacker is not interested in causing
a failure, as no code would be executed in such a case [21, 20].

Cryptographic hash functions can also be applied to track integrity of secret data
or to commit to a secret value revealing it later on. In that case, randomization
helps avoiding the above mentioned code-book attacks. However, if the entropy of
the hashed value is low, an attacker might try to compute, by brute-force, the hash
of all the possible values until he finds a match. This requires a non-trivial extension
of the notion of patterns already used for the randomized encryption case [20].

These new noninterference properties are applied to give a type-based analysis
of the ATM PIN verification API. In the last few years, several attacks have been
published on this interface [11, 14, 24]. Very few of these attacks directly reveal the
PIN. Instead, they involve the attacker calling the API commands repeatedly with
slightly different parameters values, and using the results (which may be error codes)
to deduce the value of the PIN. The machinery of information flow security, extended
with the results discussed above, allows to precisely track the root-causes of these
bugs and also to fix them. More precisely, the thesis focuses on the decimalization
table attack [14] and shows that it is due to absence of integrity checks on the input
parameters. An improved API is then proposed which assures the integrity of inputs
using Message Authentication Codes (MACs). A type system for the analysis of this
API is given and it is proved that if a program (implementing a command of the PIN
verification framework) type-checks then it does not reveal any information about
the PIN.

The second class of attacks to security APIs, considered in the thesis, directly
leaks a secret in its output result, provided that a given sequence of commands are
executed. The attack model in this case is rather different from the one discussed
above: the malicious user is not looking at the outputs of the commands to learn
something on the confidential data but is instead focused on finding a sequence of
commands that reveal the desired information in clear. The attacker exploits an
‘unusual’ way of composing commands: taken alone, each API function will not
leak any information on its secrets, but issuing an unexpected sequence of calls, the
secrecy of the data can be broken. Noninterference would be a too strong property
to require in this case. To tackle this issue, the thesis proposes the use of a type
system verifying that data confidentiality is preserved at run-time.

One of the most used API for key management, RSA PCKS#11 [51], is consid-
ered as an example of interface vulnerable to these attacks. In fact, it is possible to
extract the value of a sensitive key by overloading a key of different roles and execut-
ing a rather simple sequence of commands [23, 27]. The problem in this case is that
cryptographic keys can be used for conflicting purposes and so the security of the
operations for exporting and importing keys (in an encrypted form) are undermined.

xii Introduction

A type system to verify the security of programs designed to perform key manage-
ment tasks is introduced, proving that if they type-check then sensitive keys cannot
be leaked. The type system forces programs to clearly define a unique purpose for
each cryptographic key used and properly limits the functionalities of untrusted im-
ported keys. A new patch for PKCS#11 is also presented as a novel contribution
here. It is based on the usage of key diversification to ensure that no key is ever used
for conflicting functions. This patch and another one [15] are shown to be secure
by type-checking. We argue that this type-based analysis will help developers and
hardware producers to better understand the reasons of the long known vulnerabil-
ities affecting this security API and will be also useful to test and formally analyse
new patches.

Devices implementing the PKCS#11 standard are widespread, but it was not
known to what extents these vulnerabilities affected them. Moreover, a type-based
analysis would require to access the source code of the firmware and/or the driver
of these products: you can guess that this is no way possible. As a final result, the
thesis presents a tool which is able to reverse engineer the features offered by a device
and build a formal model of its functionalities [15]. This model is then analysed by
a model-checker and if an attack is found it can be directly executed on the token
to verify its applicability. Even if the formal techniques used to reason about the
security of these devices are not based on type-theory, we have decided to give an
overview of the state of the art of the security of these real devices. Moreover, this
tool has recently become a commercial product of INRIA and Ca’ Foscari University,
a result which is worth mentioning and highlighting with a dedicated chapter.

Structure of the Thesis

The thesis gives some background notions on security APIs in Chapter 1, and on
noninterference in Chapter 2. Extensions to information flow security suitable to
analyse security APIs is presented in Chapter 3 and 4, then the ATM PIN verification
API is analysed in Chapter 5. PKCS#11 security is the subject of Chapter 6 while
Chapter 7 presents an automated tool for the analysis of real devices implementing
such APL.

1

Security APlIs

2 1. Security APIs

An application programming interface (API) enables the interaction among het-
erogeneous components (hardware devices, software applications, libraries and so
on) sharing the knowledge about the interface’s vocabulary (commands) and con-
ventions. A security API is an interface in between processes running with different
levels of trust and which has to obey to a security policy: it allows an untrusted
system to access the functionalities offered by a trusted secure resource assuring
that the intended security policy is satisfied no matter what sequence of the API’s
commands are invoked.

Security APIs are ubiquitous these days. Think for example to a bank’s ATM: it
physically separates the component performing the cryptographic operations and the
rest of the system (the PIN entering device, the smartcard reader, etc.); a tamper-
resistant hardware security module will execute all the harmful cryptographic com-
mands and will expose an API to the other ATM’s components. The policy in this
case ensures that any user PIN is always stored in an encrypted form and is never
available in clear. Consider, otherwise, a tamper resistant smartcard used, for ex-
ample, to store sensitive cryptographic materials such as keys and certificates. The
card will offer an interface to any reader such that only an authorized user is allowed
to access data stored inside the card (for example by asking for a PIN) and has also
to guarantee that its keys are never extracted unencrypted. Another example is a
browser JavaScript interpreter: it offers a set of commands to any web-site on the
Internet visited by a user. In this case the policy requires, for example, that access
to the client machine file system must be denied.

Designing security APIs is a very hard task. An API is often developed thinking
about a target application and how this will legally use the available services. It
is thus easy to miss the fact that some functionalities could be used in a malicious
way to break the intended security policy. If it is the case then the interface is not
secure and the sequence of commands leading to subvert the policy is told to be an
API attack. The goal of an APT attacker is to find out the proper parameters and
calling sequence in order to mount an API attack.

The concept of security API as a research filed originated from Bond’s PhD
Thesis, Understanding Security APIs [13]. The idea was first introduced by Ross
Anderson, Bond’s supervisor, in a talk given at the Cambridge Security Protocols
workshop in 2000. He described an attack he had originally presented some years
before [6], which was caused by the inclusion of a specific transaction into a security
API, but interestingly Anderson asked: “So how can you be sure that there isn’t
some chain of 17 transactions which will leak a clear key?”. Over the next years a
number of attacks to existing security APIs have been found and formal methods
have been used to analyse these APlIs.

1.1. API Attacks 3

1.1 API Attacks

A security API’s policy can be broken in different ways [13]. An attacker is free to
invoke each API command with parameters of his choice and so could, for example,
exploit a bad choice of cryptographic algorithm or the way in which it is used, in this
case we talk about cryptographic API attacks. Otherwise, an attack could simply
consist of a sequence of invocations which directly leads to a result breaking the
security policy without exploiting any specific cryptographic data: this is a pure API
attack. Another class of API attacks is the information leakage one which spots a
dependency of some APT’s secret data and its output (for example observing the fact
that an error occurs) and consequently leak the private information by repeatedly
calling the same command with slightly different parameters. A high-level example
for each of the attack type follow.

Poor Key-half Binding Whenever the length of a cryptographic key is bigger
than the algorithm block size, it is stored by using several blocks (as much as are
needed). If the various parts composing a key are not precisely tracked, a malicious
user would be able to mount an attack. Consider for example the case of the
Triple-DES algorithm, usually its keys are stored into two different blocks but if the
two halves of the key can be arbitrary manipulated by a user then its security is
seriously undermined. In fact, if the two blocks containing the key can be set to
the same value, then the key behaves exactly as a single-length DES key [12]: this
is a cryptographic API attack, indeed the attacker is able to force the API to use a
less-secure cryptographic algorithm.

The Wrap-Decrypt Attack PKCS#11 defines a widely adopted API for cryp-
tographic tokens providing key management functions[51]. It offers some crypto-
graphic functionalities and should preserve certain security properties, e.g. the val-
ues of a sensitive key stored on a device should never become known in the clear.
Each key managed by the API has a set of attributes describing its property, e.g.,
signaling its valid usages. Known attacks on PKCS#11 [23, 27] are related to the op-
erations for exporting and importing sensitive keys, called WrapKey and UnwrapKey
in the API. The former performs the encryption of a key under another one and
the latter performs the corresponding decrypt and import in the token. The API
does not clearly separate roles for keys so that is possible to use the same key for
conflicting purposes: for example, a key could have its decrypt and wrap attributes
set, enabling the wrap and subsequent decrypt of a sensitive key, with the effect of
leaking it outside the token as plaintext: a pure API attack. The security of this
API will be the subject of Chapter 6, we will postpone all the details there.

The Decimalization Table Attack PIN codes are stored encrypted in a HSM
at ATM facilities, the issuing bank when verifying the correctness of an entered PIN

4 1. Security APIs

will derive it from some public verification data. More precisely, it will encrypt the
verification data under a PIN derivation key, truncate the result to the PIN’s length
and decimalize it, i.e., maps every byte to a decimal number based on a user-given
mapping. Finally, the result of the comparison will say if the entered code was the
right one. There is an attack [14] which exploits the fact that the function mapping
the PIN to decimal number is chosen by the user invoking the API command: the
attacker changes repeatedly the value of the mapping function discovering the digits
of the PIN. This is an information leakage attack since no single transaction reveal
the secret PIN in the clear, but the attacker uses the return values to discover
information on it. The PIN verification API will be analysed in Chapter 5, all the
details on this attack are discussed there.

1.2 Type-checking Security APIs

This thesis focuses on pure and information leakage API attacks. As already said
above, it is not easy to build an API resistant to such attacks, it would thus be helpful
to have formal tools suitable to check that a given implementation of a security
API is indeed secure. Here a type-based analysis is proposed, indeed our focus is
on helping API developers to understand the root-causes of known vulnerabilities
affecting APIs and to aid them in developing secure code. We believe type-systems
are better suite to this scope than other formal methods, such as model checkers
which are instead more qualified for finding (new) attacks.

2

Noninterference

6 2. Noninterference

Protecting data stored in a computer system or transmitted over a public network
is a relevant issue in computer security. Most of the methods employed to secure
information cannot enforce end-to-end policies. Consider for example cryptography:
encrypting the network communication between two peers using a fresh shared secret
key prevents a malicious user to steal information by “listening” to the network
traffic, anyway nothing prevents one of the parts to decrypt and reveal in the clear
all the exchanged messages. Secure information flow tracks data propagation: an
information flow policy specifies the security classes (or security levels) for data in a
system and a flow relation declares the legal paths which the information can follow
among the given security classes. To protect data confidentiality, for example, one
can distinguish between secret and public data and avoid any secret information
to flow to the public. More formally, an ordering on the security levels must be
established and then during a program execution an information is allowed to flow
from one level to another only if the former is lower or at the same level as the latter:
a program is secure only if it does not contain any illegal flow. This constraint can be
checked by noninterference [36], whereby a program is required to make computation
on data such that any value stored in a variable of a certain security level does not
depend on the value of any variable whose security level is greater or incomparable.

Information flow security can be enforced both statically at compile time and dy-
namically by adding specific control at run-time. This work focuses on static meth-
ods. The first static information flow certification mechanism has been presented
in 1977 by Denning and Denning [30] and was implemented by instrumenting the
language semantics to detect any leakage. A more interesting approach relies on a
type-system [62]: variables are labeled with a security level and then if the program
type-checks, it is guaranteed to not contain any illegal information flow.

This chapter gives background on language-based information flow security by
first giving a noninterference property for a standard while language and then show-
ing a type system to enforce such property.

2.1 Noninterference

Data confidentiality demands that private information are never revealed to someone
which has not the clearance to access them. This thesis focus on language-based
techniques thus restricting the interest to programs and their computations. A
program aiming at preserving data confidentiality can access and modify secret
information but must not reveal anything about such data in its public outputs:
confidential data must not influence public ones so that variations on private data
does not produce any observable difference in the outputs. This policy is known
as noninterference: insecure information flows happen every time the value of a
certain piece of information is influenced by the value of some data at an higher or
incomparable security level. See Sabelfeld and Myers survey [53] for an overview on
the literature on language-based information flow security .

2.1. Noninterference 7

Illegal flows in a language-based setting may only occur transferring information
between variables in a given language. Such insecurity interferences may manifest
themselves in different ways. A direct flow is an information leak that happens due
to an illegal assignment, think for example of assigning the value of a secret variable
to a public one. More subtly the control flow of a program can (unintentionally)
reveal data, throughout a so called implicit flow:

if secret = 0 then public := 0 else public := 1

Programs can also leak information through their termination or nontermination.
Consider the following example, it is clear that whenever the program terminates
the value of secret is zero: private information is so revealed by the fact that the
computation terminates or diverges.

while secret != 0 do skip

To certify noninterferent programs, each variable is assigned a security level, then
an equivalence relation on programs’ outputs (also referred to as states) is used to
model the observational power of an external attacker and a program is said to
respect noninterference if given two equivalent initial states it performs exactly the
same observable computations on them thus leading to equivalent output states.

Security levels ¢ form a security lattice and information is allowed to flow only
upwards or to the same level. In this thesis multi-level security is not considered
so we will always refer to the basic case of two security levels: low for public (L)
and high for secret (H) where L C H, i.e., public data are allowed to flow to high
variables while secret ones are forbidden to go to the low variables.

Consider a simple imperative while language like the following where expressions
e are variables and binary (arithmetic and relational) operators on expressions while
commands are skips (no operation), assignments, conditional branches, while loop
and sequential compositions of commands.

e == x| e ope

c == skip| z:=e | if e then c; else cy | while e do ¢ | ¢1;¢o

Variables = belongs to the set Var while Val is the set of values ranged over by v.
Memories M : Var — Val are finite maps from variables to values. We write e [M v
to note the atomic evaluation of expression e to value v in memory M. Command
semantics is given by a standard structural operational semantics (Table 2.1) in
terms of a small-step transition between configurations (M, c), pairs of memories
and commands. Transitions are labeled with an event a € Var U {7} indicating
that an assignment to variable a (or no assignment if « is 7) has happened.

Observable behaviour A security environment I' maps variables to their security
levels. Users at level £ may only read variables whose level is lower or equal than £.

8 2. Noninterference

Table 2.1 Commands Semantics

e M

M,z:=¢e) = (M[z > v],¢)

[skip] (M, skip) = (M,) [assign]

[36(]1] <M17 C1> i> <57 M2> [36(]2] <M17 C1> i> <M27 C/1>
(My, c15¢0) = (M, co) (My, c15¢0) = (Ma, ¢f; c0)

i e IM=£ true (i e IM true
i i

(M, if e then c; else cy) — (M, cy) (M, if e then c; else c3) = (M, c;)

M
t
[whilet] . ‘ t e .
(M, while e do ¢) — (M, c; while e do c)
[whilef] ¢ | true

(M, while e do c) = (g, M)

Let My, be the projection of the memory M to level /, i.e., memory M restricted to
variables visible at level ¢ or below.

Definition 2.1. (Memories f-equivalence)
M and M’ are (-equivalent, written M =, M, if M|, = M',,.

Intuitively, users at level ¢ will never be able to distinguish two f¢-equivalent
memories M and M’. Similarly, users may only observe transitions assigning to
variables at or below their level. Transition =, is defined as the least relation
among configurations such that:

(M, c) = (M, "y T(z)C ¥
(M, c) 5y (M ')
(M, c) S (M, c"Y a=7ora=gzwith ['(z) £/
(M, c) Dp (M, ')

* *
We write =, to denote L)ZiM, if « # 7, or l>g otherwise. Transitions =, are
considered internal, silent reductions which are unobservable by anyone. Notice,
instead, that for observable transitions =, the level of z is always at or below ¢,

2.2. Typing noninterference 9

i.e.,, I'(z) C ¢. A configuration (M, c) diverges for ¢, written (M, c) 1}, if it will never
perform any f-observable transition —.

Secure programs Noninterference is formalized here by means of bisimulation
relations. Two notions of noninterference are going to be introduced: the first
one accept programs which leaks information via the termination channel while the
second one is more restrictive and reject any leakage (even those using termination
channels).

A termination-insensitive ¢-bisimulation relates two programs if the observable
transitions of the first program are simulated by the second one, unless the latter
diverges on /.

Definition 2.2. (Termination-insensitive ¢-bisimulation)

A symmetric relation R on configurations is a termination-insensitive ¢-bisimulation
(¢-TIB) if (M1,c1) R (My, co) implies My =; My and whenever (My, c;) =, (M}, c))
then either

e <M27C2> %Z <M/27C/2> and <M/17C/1> R <M/2acl2> or
d <M2,C2> e

(M1, c1) and (Mg, co) are termination-insensitive (-bisimilar, (M, ci) =, (My, o),
if there exists a €-TIB relating them. Similarly, two commands are termination-
insensitive ¢-bisimilar, ¢; &2 g, if V My =; My it holds (My,c1) ~¢y (Ma, c3).

Termination-sensitive bisimulation, instead, always requires observable actions
to be simulated, enforcing a stronger noninterference policy which avoid any leakage.

Definition 2.3. (Termination-sensitive (-bisimulation)

A symmetric relation R on configurations is a termination-sensitive ¢-bisimulation
(¢-TSB) if (M1, c1) R (Myg, co) implies My =, My and whenever (My, c;) <, (M}, c))
then <M27C2> %f <M/27C,2>7 <M/17C/1> R <M/27C/2>

Configurations (M, c1) and (Ma,co) are termination-sensitive (-bisimilar, written
(My,c1) ~ (Mg, co), if there exists a (-TSB relating them. Similarly, two commands
are termination-sensitive (-bisimilar, ¢; 2~ co, if V My =y My, (My,¢cq) 4 (Ma, co).

2.2 Typing noninterference

Noninterference can be enforced by a static analysis of programs’ source code. Every
expression is assigned a security level: an expression is low (L) if it does not contain
any H variable while any expression can be high (H); then it is sufficient to check that
programs do not assign a H-expression to a L variable (avoiding direct flows) and
forbid commands with a H guard to assign in their body to L variable (preventing

10 2. Noninterference

implicit leaks). These requirements are straightforward to implement in a type
system, this section presents a standard one that certifies termination-insensitive
noninterference. The first type system to check noninterference has been proposed
by Volpano, Smith and Irvine [62], and since then a lot of them appeared in the
literature [53].

Expression are typed with security level ¢ using the security environment I' to
retrieve the type, i.e. the level, of each variable. The notation I' - e : ¢ means
that expression e types ¢ under the security environment I'. Commands are typed

Table 2.2 Typing noninterference

Ezpressions
[(z)=1¢ F'Fe:L kel
_ -h) I'ke:H -1
(var) I'Fe:/? (exp-h) ¢ (exp-1) I'Feope:L
Commands

[(z)=0¢ Thke:t! (CV
O z=e

=
-

r
(skip) T, [¢] F skip (assign) (sub) F—s
The:l T,[Fc T,[Fc
[, [¢] - if e then c; else ¢y

Fa [Z] = G F7 [E] - Co

(lf) F7 [6] ~ C1,Co

(seq)

'ke:¢ T,[{Fc

hil
(while) - 7 while ¢ do <

in a security context (noted [¢]) as I', [(] - c. More precisely, a command that types
whit context ¢ assigns only to variables whose security level is at least as restrictive
as ¢ (see rule (assign)). The if branch and the while loop use the security context
to track dependencies of the control flow from their test guard: rule (if) requires
that the branches of an if command type at a security level prescribed by the guard,
similarly for rule (while) in the case of loop. Implicit flows are so prevented, indeed,
if the guard of branch (or loop) types H then the branches (or the loop’s body) are
forced to assign only to secret variables.

Soundness Programs that type-checks are guaranteed to satisfy noninterference
(the termination-insensitive one). In order to prove such statement two standard
lemmas, explicitly highlighting the principles encoded in the typing rules, are needed.

Lemma 2.1. (Simple security)
If 't e : £ then every variable x occurring in e is such that T'(z) C £.

2.3. Conclusion 11

Lemma 2.2. (Confinement)
If T, [f] b c then for every variable x assigned to in c it holds { T T'(z).

Simple security is useful to prove that assignments do not break memory /-
equivalence while Confinement is needed when proving the fact that branches and
loops do not allow for implicit flows to occur. The following soundness theorem can
be easily derived.

Theorem 2.1. (Noninterference) If ', [¢] - ¢ then c = c.

The formal proofs of the above lemmas and theorem follow similarly to the ones
originally presented by Volpano, Smith and Irvince [62].

Typing termination-sensitive noninterference The more restrictive noninter-
ference property can also be enforced using a type system. This can be achieved by
some strong limitations on the while loops [61], allowing only low loop guards, or
by accounting for the termination effect of a command [17, 56].

2.3 Conclusion

This chapter introduced the language-based information flow security notions neces-
sary for the development of the rest of the thesis. Noninterference has been defined
in a bisimulation form for a simple imperative while language, and a type system to
enforce a termination-insensitive policy has been given.

12

2. Noninterference

3

Cryptographic Noninterference

14 3. Cryptographic Noninterference

Noninterference forbids any flow from private to public data, this contrasts the
common feeling that the encryption of a secret data under a secret key can be
regarded as being public. This chapter extends noninterference to correctly deals
with symmetric cryptography: the main idea is that to protect data confidentiality
every encrypted message has to be randomized using an unpredictable confounder
[1], in this way for an attacker it is of any help to compare memories variable by
variable (indeed two ciphertexts on two different memories can be considered to be
always different) but he can instead look for the equality pattern of each memory
and require them to be equivalent.

3.1 Introduction

Consider a multi-threaded distributed system in which threads share local memories
and (multi-threaded) processes communicate over an insecure network. Due to the
public nature of the network, programs will use encryption primitives to secure
messages.

The analysis is carried out on the simple imperative while-language of the pre-
vious chapter extended with commands to send and receive network messages and
one for spawning a new thread. Cryptographic operations are modelled as special
expressions respecting the Dolev-Yao assumptions, i.e., an attacker can never de-
crypt a ciphertext without knowing the right decryption key. Studying information
flow in this setting is challenging [9, 57]. Encrypting secret data with a high level
key is expected to produce a low result that might be sent on the insecure network,
like in

send(enc(h, k))

where h and k are, respectively, a high level datum and a high key. Since the
encryption depends on high level, variations of A cause variations on the ciphertext
which become observable when the message is sent over the network. This program
would be thus judged as insecure by standard noninterference notions.

A new variant of noninterference which correctly deals with cryptographic mes-
sages in the Dolev-Yao model is introduced here. First of all, since information on
plaintexts can be obtained by comparing the corresponding ciphertexts, randomized
encryption based on unpredictable confounders, similarly to what is done in [1], is
considered. The idea is that each encryption contains a fresh confounder which
makes it different from every previous and future encryption. Then, memories (and
networks) will be judged equivalent based on the notion of patterns [3, 2] so that
it is possible to model the capability of an intruder to observe different instances of
the same encryption. In fact, encrypting twice the same message will yield different
ciphertexts, but copying the same encryption twice will result in a memory storing
the very same encrypted messages as illustrated in the following example program

3.2. A Language with Cryptography 15

taken from [42]:
ll ::enc(hl, k’)
if h then ly:=enc(hq, k) (3.1)
else I :=1;

Depending on the high level variable h, the program assigns to [y either a new
encryption of hy with k or the encrypted value stored in ;. Because of confounders,
a new encryption of h; under k£ will differ from the one already stored in [;. At
the end of the program execution, if the else branch is taken, it will hold I, = [,
otherwise l; # ls: the boolean h is thus observable.

This new equivalence notion, apart from incorporating the above mentioned
Dolev-Yao assumption, looks for possible patterns of equal encrypted messages and
requires that those patterns are the same so to make it impossible for the intruder
to achieve any information about secret encrypted data. From this indistinguishable
patterns derives a definition of strongly secure programs which naturally extends the
one proposed by Sabelfeld and Sands [54] for programs without cryptography.

This is, to the best of our knowledge, the first definition of noninterference in a
multi-threaded distributed setting, with insecure channels and cryptography. Inter-
estingly, only the underlying low-equivalence notion is refined, leaving the remaining
part of the definition, i.e., the low-bisimulation, substantially the same. This min-
imal change, together with the fact that cryptography is modelled via expressions,
simplifies the task of re-proving known results. In particular, we prove composition-
ality of secure programs and we adapt the type system of Sabelfeld and Sands [54]
to our setting, proving its correctness.

Structure of the chapter The chapter is organized as follows: Section 3.2
presents the language, Section 3.3 gives the noninterference notion of strongly secure
programs showing it is inadequate for dealing with cryptography; Section 3.4 illus-
trates the new noninterference notion, through many simple examples; Section 3.5
presents some results about composition of secure programs; Section 3.6 gives a type
system for the proposed NI property; Section 3.7 draws some concluding remarks.

3.2 A Language with Cryptography

This section introduces an extension with explicit cryptography and commands han-
dling the network and multi-threading functionalities of the imperative language
presented in Chapter 2. The obtained language is all the way similar to the Multi-
Threaded While-Language with Message Passing [52], a simple imperative language
with message passing communication. Instead of assuming the presence of secure
channels, as done in [52], these are all public and thus accessible by every program.
Security is then achieved by explicit cryptographic operations which we model via
the special expressions enc and dec. For the sake of readability, we only consider
a synchronous, blocking, receive. We are confident all the results will scale to the

16 3. Cryptographic Noninterference

full language of [52], in which a non-blocking if-receive is considered, too. As in the
original language, the send command is asynchronous. The new expressions and
commands syntax follows:

e = ... |enc(ey,e) | dec(er, e2) | pair(ey, e) | fst(e) | snd(e)

c == ... | fork(cc) | send(cid, e) | receive(cid, z)

Commands are ranged over by c,d, while C, d denote possibly empty vectors of con-
current commands {c;cs ... ¢, |), representing multi-threaded programs, variables
x range over Var, boolean expressions (expressions using relational operators) are
ranged over by b, values v range over Val and channel identifiers cid range over a
fixed set CID. As in the previous chapter a security environment I" assigns to each
variable a security level ¢ (ranging over L and H). The commands send(cid, e) and
receive(cid, z) are used to send and receive messages on network channel identified
by cid. As already mentioned, channels are all public (in contrast to channels parti-
tion assumed in [52]), i.e., every program can access them, and are accessed with a
standard First-In-First-Out (FIFO) policy. We model cryptographic operations as
special expressions following the Dolev-Yao assumptions, as explained below.

Language Semantics A configuration (M, o,C) is a triple consisting of a local
memory M, a network state ¢ and a vector of commands C. The network state
o : CID — LVal returns, for each channel identifier, the ordered list of values which
are present on that channel. A program shares, over its threads, the local memory M
and we suppose that executions happen on a single processor, i.e., at most one thread
is active at a given point in time. Distributed programs ci,...c, have their own
memories My, ..., M, and communicate via the network whose state is represented
by o. Global configurations, noted <((My,ci), ..., (M,,c,); o>, represent distributed
programs.

The semantics is formalized in Table 3.1 by transitions between configurations
and global configurations. In particular, — transition formalizes the deterministic
execution of sequential commands and is the same as the one presented in Chapter 2
except for the new rules for send, receive and fork and the fact that the label o has
been removed since it is not necessary (as it will be discussed when introducing
the noninterference policy). Only these new transitions are reported below (in Ta-
ble 3.1): fork(cc) dynamically generates a new vector of threads € running in parallel
with c; send(cid, e) and receive(cid, =) respectively sends and receives values on the
channel cid which is modeled as a FIFO queue; notice also that rule [seq2 needs
to be redefined to account for the possible generation of threads d by ¢; and that
have to be executed concurrently with the rest of the program. In [52], channels are
modelled as unordered lists thus capturing a lower level view of distributed systems

3.2. A Language with Cryptography 17

in which the order of message delivery is not guaranteed. We can easily adapt our
definitions to also deal with this different assumption.

Concurrency is modeled by transitions — and —», the first non-deterministically
picking a thread and executing it via —, the second non-deterministically picking
a multi-threaded program and executing it via —. Intuitively, — acts as purely
nondeterministic scheduler among all the threads, while — gives an interleaving
semantics to the global distributed system.

Cryptography We model cryptography via special expressions. In particular, in
the set of expressions FXP, we assume to have all the usual arithmetic and relational
expressions plus encryption (enc) and decryption (dec) for cryptography, pair for the
constructions of tuples, fst and snd to access their contents. We thus consider the
following values, ranged over by v:

vie=1 |n|b|{vi.]| (v, m)

where L is a special value representing failures, n denotes a generic atomic value, b
ranges over booleans, {v}, represents the encryption of v using n as key and (v, vy)
is a pair of values. We will sometimes omit the brackets to simplify the notation,
e.g., we will write {vy, 1o}, for {(v1, v2)}n.

Based on this set of values we can give the semantics of the special expressions
mentioned above:

enc(v,n) = {v,c}, c«C
dec({v,c}t,,n) = v
newkey = k k+— KEY
pair(vl, Ug) = (Ul, U2>
fSt((Ul, 1}2)) = N
snd((vl, ’UQ)) = 1

where ¢ is a fresh confounder, i.e., a number which is used for one encryption and
never used again, and k is a fresh key. The notation < is used to represent random
extraction from a set of values, namely C is the stream of confounders and KEY
the one of encryption keys. Further details on this latter stream will be given later
on. The probability of extracting the same random value is negligible, if the set is
suitably large, so we actually model random extraction by requiring that extracted
values are always different, e.g., ¢ < C can be thought as extracting the first element
of an infinite stream of confounders and removing it from the list so that it cannot
be reused. More formally we assume that two extractions ¢, ¢ < C are such that
¢ # . A similar solution is also adopted, e.g., in [1, 2].

Interestingly, the above functions are not defined for all the possible values. For
example, decrypting with the wrong key is undefined, as is taking the first element of
a value which is not a pair. We assume that all the undefined cases will fail producing
a L as result. This choice will influence command semantics, as described below.

18 3. Cryptographic Noninterference

A simpler solution would be to stop execution for the undefined cases. This would
however make many programs insecure if we assume the intruder is able to observe
termination (as we will). For example the following program reads a message from
the network, decrypts it using a secret key k, then sends out a public value.

receive(cid, x)
y := dec(z, k)
send(cid, ()

If dec stopped the execution then the last message would not be sent and the intruder
could gain information about the message sent to the program. In particular, he
could discover whether or not it was encrypted with the right key k. Our solution
makes dec total: in case of wrong key y will be bound to L but the last message
will be sent anyway. We leave to the programmer the task of handling failures.

To guarantee a safe use of cryptography we also assume that every expression
e different from the five above and every boolean expression b different from the
equality test will fail when applied to ciphertexts, producing a L. This is important
to (i) avoid “magic” expressions which decrypt a ciphertext without knowing the
key like, e.g., magicdecrypt({v,c},) = v; (ii) abstract away from the bit-stream
representation of ciphertexts: in our model, doing any kind of arithmetic operation
on a ciphertext has an unpredictable result given that we are assuming randomized
encryption. Checking equality is instead useful to observe copies of the very same
encryption.

3.3 Standard noninterference

This section recalls the notion of strongly secure programs [54, 52| and naively try
to apply it to the setting of programs which uses explicit cryptographic primitives.
The goal is to illustrate why a standard non-interference property does not scale
to cryptography. In doing this, we will exploit arguments similar to the ones of
Askarov et al.[8, 9].

Strongly Secure Programs To judge a multi-threaded program c secure we
employ the notion of strong low-bisimilarity [54]: two strongly low-bisimilar thread
pools must be of the same size and must spawn or terminate the same number
of threads at each execution step, moreover each sequential move of one thread
pool must be simulated by corresponding thread of the low-bisimilar pool and lead
from low-equivalent states into low-equivalent states. This last requirement is really
strong and makes the noninterference notion time-sensitive, i.e., bisimilar programs
are not allowed to release information via the time channel: this obviously include
also the termination channels so this policy is stronger than the one introduced in
Definition 2.3.

3.3. Standard noninterference 19

Table 3.1 Multi-threaded language semantics

Commands
[Squ] <M170-7C1> — <M270J7C/1a’>
(M1, 0,c15¢5) = (Mg, 07, (c}; c2)d)
[fork] (M, o, fork(cd)) — (M, o, cd)
(send elMv o(cid) = wvals
(M, o, send(cid, exp)) — (M, o[cid — v.vals], e)
(receive] o(cid) = wals.v
(M, o, receive(cid, var)) — (M[var — v}, olcid — vals], €)
Threads
[pT'OC] <M1707 Ci> — <M27OJ7€>

<|\/|1,a,<|c1...ci...cn|)> —> <M27U,7<IC1...E...Cn|>>
Distributed programs
(Mj,0,¢;) — (M}, o', &)

A€, My) ... (Cp, M,); 00> — <(My, 1) ... (M4,) ... (M, C,); 0>

Jr i

[par]

The memory (-equivalence (see Definition 2.1) is now lifted to networks in the
expected way: low level users can observe every message in every network channel
cid € CID. A state s = (M, o) is a pair composed of a memory M and a network
state o.

Definition 3.1. Two states sy = (My,01) and s5 = (Mg, 03) are low-equivalent,
noted s, = Sa, if
1. My = My;

2. o1 =L 0y: Vcid € CID, 01(cid) = o9(cid);

Strong low-bisimilarity is now formally defined using state low-equivalence to
compare the result of each computational step.

Definition 3.2. Let R be a symmetric relation on multi-threaded programs of equal
size. R is a strong low-bisimulation if whenever

(ci...cn) R {dy...dy)

20 3. Cryptographic Noninterference

then Vsy, s9,1, such that s; =, Sa:

(s1,¢;) — <s’1,§’) implies (SQ,dil—) (s, d")
for some s, d" such that ¢ R d',s] = s.

Strong low-bisimilarity &= is defined as the union of all strong low-bisimulations.

The intuition behind ¢ &, d is that the two programs C and d are not distinguish-
able by any low level observer. In fact, every change done by one computational
step of € to the state is simulated by din a way that preserves state low-equivalence.
Thus, if the states were indistinguishable before such a step, they will remain in-
distinguishable even after. Moreover, the reached programs have to be bisimilar so
to guarantee that even the future steps will be indistinguishable. Notice also the
universal quantification over all the possible low-equivalent states done at each step.
This ensures compositionality given that any state change possibly performed by
parallel threads or distributed programs is certainly “covered” by quantifying over
all the possible states.

Definition 3.3. A program C is secure if C =, C.

Intuitively, a secure program which is run on equivalent states will always pro-
duce low-equivalent states, even in the presence of parallel threads and distributed
programs. Thus no information on the high variables will ever be leaked.

Standard NI and Cryptography The above noninterference notion is too re-
strictive if naively applied to our language with cryptography. A simple assignment

l:=enc(h, k) (3.2)

of an encrypted high level value to a low variable would be considered insecure.
Notice that this kind of assignments are the one we expect to be able to do via
encryption: we actually want to hide high level information via cryptography so to,
e.g., safely send it on the untrusted network or simply store it in an untrusted (low)
part of the local memory. To see why this simple program is judged to be insecure,
consider the two following low-equivalent memories M; = My:

My M,
h:1234 | h: 5678
[:0 [:0
k:K k:K
Running the assignment we get
M M
h:1234 h : 5678
[: {1234,01}}(l: {5678,02}}(
k: K k: K

3.4. Cryptographic noninterference 21

where M| (1) = {1234, ¢1 }k # {5678, 2}k = Mj(1) and so M| #. Mj,. We conclude
that

[:=enc(h,k) % [:==enc(h, k)

and, consequently, such an assignment is judged as insecure. Notice that this is
not just caused by the confounders ¢; and ¢,. Even without confounders the two
ciphertexts {1234}, and {5678}, would differ. The problem is related to the fact
that = do no take into account that the plaintext should not be visible without
knowing the decryption key. Confounders will actually help us defining a new notion
of low-equivalence which is suitable for cryptography.

3.4 Cryptographic noninterference

The notion of strongly secure programs can be adapted to the language with cryp-
tographic expressions. Interestingly, only the underlying notion of low-equivalent
states =| has to be refined while the remaining part of the definition, i.e., the low-
bisimulation part, does not need to be changed. As shown later in Section 3.6, this
minimal change together with the fact that cryptography is modeled via expressions,
thus leaving the language unchanged, will make it very easy to rephrase an existing
type system to the new setting.

Low-equivalent ciphertexts The use of confounders models the fact that en-
cryptions will always be different, even when the encrypted messages are the same.
As already discussed, this is an abstraction of randomized encryption, where en-
cryptions are not always different but the probability that they are the same is
negligible.

Intuitively, if ciphertexts are always different we can consider them to be indis-
tinguishable and so equate them all. Of course, this is not true for values encrypted
with a low level key, i.e., a key known by low level users: high level keys need to be
distinguished from low level ones. A new security level K is added to the security
lattice and we also require that variables labeled as K are disjoint from the other
ones, i.e., variables which are not keys cannot flow to K and key variables cannot
flow in the lattice: ¢ [Z K and K [Z (¢ : L, H).

Cryptographic low-equivalence, noted =, is a new version of low-equivalence on
values based on the notion of patterns [3, 2]. Patterns (Pat) is a set of extended val-
ues obtained by adding [., representing an undecryptable message with confounder
¢, to Val. The function p(v) takes a value and returns the corresponding pattern
by replacing all the ciphertexts that cannot be decrypted with [J.. The intuition is
that equal confounders correspond to equal, undecryptable, messages. In fact, mes-
sages generated using high keys are always assumed to contain a fresh confounder
making it impossible to have two different messages with the same confounder. A
confounder substitution is a bijection on confounders p : C — C used to compare

22 3. Cryptographic Noninterference

patterns up to renaming of confounders: pp denotes the result of applying p as a
substitution to the pattern p.

Definition 3.4. Let p: Val — Pat be defined as follows:

[{p(v). ke ifngKEY
o O, otherwise

p(L) = L

p(n) = n

p(b) = b

p((v1, 1)) = (
)

P({v; cln

Two values v and vy are cryptographically-low-equivalent, written v| ~¢ vo, if there
exists a confounder substitution p such that p(vi) = p(v2)p.

The following two simple examples illustrate how the new equivalence operator
~c equates only indistinguishable ciphertexts. Consider again Program (3.2) of
Section 3.3 which, starting from low-equivalent memories, was producing the two
different ciphertexts {1234, c; }x and {5678, c2} k. Given that K € KEY | we obtain
that p({1234,c1}x) = O, and p({5678,ca}x) = O,. Since confounders represent
random numbers, the two patterns are indistinguishable. In fact, taking p(c2) = ¢;
it follows 0., = O.,p and so {1234, ¢; } x ~¢ {5678, c2} k; if instead the key is a low
level one n ¢ KEY, p({1234,¢1},) = {1234, ¢1}, # {5678, co}tn = p({H678,catn).
Notice that it is impossible to make the two patterns equal through a substitution p
because of the different plaintexts, thus {1234, ¢; }, %8¢ {5678, ¢2},. The same holds
also if only one of the two keys is untrusted, e.g., {1234, ¢1 } x % {5678, ¢}, since
O, is never equal to {5678, c2},,. As a matter of fact, one of the two ciphertexts can
be decrypted using n which tells an observer that the first ciphertext is, at least,
encrypted with a different key.

Patterns of equal ciphertexts Whenever a new ciphertext is computed, the
confounder guarantees that it will be different from any other ciphertext, but if a
ciphertext from a variable is copied into another variable, the two will be identical.
Intuitively, this correspond to the attacker ability of comparing ciphertexts bit-
wise as done, e.g., in traffic-analysis: copies of the same ciphertext will always be
identical and this aspect has to be considered when defining low-equivalence. Take,
for example, the following program which only acts on low variables and public
channels:
if (ll = lg) then
send(cid, l3)

else (3.3)

send(cid, l4)

3.4. Cryptographic noninterference 23

Depending on the equality of /1 and l5 it sends the value of two different low variables
on channel cid. Now, consider the following states:

M, 01 M, 02
Iy {1234, ¢, } i | cid : l1:{9999, ¢}k | cid :
12 : {1234,61}[(lg . {5678,0’2}[(

I3 : true I3 : true

ly : false l, : false

Since K GKEY, it is Ml(ll) = {1234701}](~c {9999,0’1}}(= Mg(l1> and Ml(lg) =
{1234, 1}k ~¢ {5678,cL}xk = Ma(ly). However, running the program on these
memories result in two different network states:

o1 ‘ o

cid : true ‘ cid : false

Thus, m; and ms should not be considered equivalent. This crucial issue is also
illustrated with another simple example. Consider the two programs:

l1 :=enc(h, k) l1 :=enc(h, k)
lg = enc(h, k) l2 = ll

Starting from clearly low-equivalent memories, in which, e.g., [; = I3 = 0, they will
produce the following memories

M, M,

h: 1234 h : 5678

I {1234, ¢1} i | 1 2 {5678, 3}k (3.4)

lo : {1234, co} i | lo: {5678, 3}k

k:K k:K
Notice that My(l1) ~¢ May(l1) and M;(ly) ~¢c May(l3) but My store twice the same
ciphertextx in l; and ly (I = l3) while My do not (I; # l3). Thus the previously
discussed low program (3.3) would distinguish M; from M,.

One might argue that the two programs above are anyway distinguishable by
NI, given that we quantify over all possible low-equivalent states. After the first
assignment to [; we might, in fact, override that value and take two equivalent
memories with, e.g, [= 0. If we run the programs on these new memories we clearly
obtain non-equivalent memories, given that we will have Iy : {1234, ¢} k for the first
program and Is : 0 for the second one. NI can thus track copies between memory
cells via plain-texts and given that we require bisimilar programs to preserve low-
equivalence of all the possible low-equivalent states, the two programs above would
result to be non-bisimilar. However we may write a smarter program that copies [y
to [y only when [; actually contains a ciphertext:

if (dec(ly,k) #1) then
l2 = ll

else
ly:=enc(h, k)

24 3. Cryptographic Noninterference

This program produces memories like (3.4) only when [y is actually a ciphertext
encrypted with k£, but we cannot track anymore this copy via plain-texts because,
when [is not a ciphertext, the program writes a new fresh ciphertext to ls which
will never be the same as [;. Notice that, whenever we observe [; =[5, e.g., via the
low program (3.3), we learn that [y is encrypted with K, which should be detected
as a flow from high to low.

These examples show that it is necessary to build one single pattern on the whole
memory, so that equal confounders in different memory cells will be observable.
Indeed, the same reasoning applies to the network: equal confounders appearing
either in the local memory or on the network channels will be observable, too. In
order to deal with channel values, patterns are extended to deal with list of values,
noted vy.vals, by just letting p(v;.vals) = p(v1).p(vals). As expected, vals ~¢ vals'
if p(vals) = p(vals’)p for a confounder substitution p.

Definition 3.5. The set of memory, network and state patterns are constructed as
follows:

sp(M) = { (z, p(M(z))) | Vo. ['(z) = L}
sp(o) = { (cid, p(o(cid))) | Veid € CID}
sp(M,o) = sp(M)Usp(o)

Two memories, networks or states t; and ty are cryptographically-low-equivalent,
written t1 =¢ ta, if there exists a confounder substitution p such that sp(t;) = sp(ta)p.

For example, memories (3.4) have state patterns

sp(Ml) :{ (llvDC1)7 (ZQ’DQ) }

and
Sp(Mg) :{ (l17DC3)7 (leDC:z) }

Notice that there does not exist a substitution p which makes such state patterns
equal, thus M; #c M,.

This reflects the fact that equality of confounders is not the same in the two
states: if equality is not preserved, it is in fact impossible to find a bijection p on
confounders that make them the same.

We can prove that equivalent states are such that values of corresponding vari-
ables and channels are equivalent, too. The opposite implication does not hold and
it actually motivated the definition of state patterns. We can also prove that re-
moving (i.e., reading) the first value of one channel (item 3) and also copying it to
the same low variable (item 4) do not break state equivalence.

Lemma 3.1. If (My,01) =¢ (Mg, 09) then

1. My =¢ My implies Vz. T'(z) = L, My(z) =c My(z);

3.4. Cryptographic noninterference 25

2. 01 =¢ 09 implies Ycid, o1(cid) ~¢ o9(cid);

3. If 01(cid) = wvalsy.v; and oy(cid) = valse.vy then (My, oq[cid — wvals]) =¢
(Mg, o5[cid — valss]).

4. If T(z) =L, o1(cid) = valsy.vy and os(cid) = valsy.vy then
(My[z +— 1], 01[cid — wvals;]) =¢
(Ma[z = w5, oo[cid — valss)).

Proof. The first two statements derives from the fact that we take subsets of the
state patterns. On those subsets we can apply the same p that we used to equate
states. For example, (My,01) =¢ (Mg, 02) if sp(My,01) = sp(Mg, 02)p. We have
that sp(M;) and sp(My) are the subsets of sp(My, 1) and sp(Ms, 03) only containing
variables with their patterns. It is thus easy to see that the same p equates such
memory patterns, i.e., sp(M;) = sp(Ms)p. Analogously for statement three and four:
removing the first value of a channel leaves the remaining patterns identical, up to
p; the same happens when we assign such value to a low variable. O

The next example, taken from [8], shows why it is important to simultaneously
observe patterns of memories and channels, as we do.

l:=enc(hy, k)

send(ch,)

if h then

[:=enc(hy, k) (3.5)
else

skip

An observer can deduce the value of h by comparing the value of [with the one
sent on ch: they will be different only when A is true. Consider the following states
just before the branch:

M, 01

h : true

hy:1234 hg : 5678

[:{1234,c1} g ch: {1234, ¢, } g
M, 02

h : false

hi : 4443 hy : 5556

[:{4443,¢ } i ch: {4443, ¢}k

After the branch, M; is updated (yielding M) with the new value {5678, 2}k for
variable [while My will not be touched (My = Mj). If we only observe memory
patterns we have sp(My) = { (I,0c,) } =c { (I,0e;) } = sp(M3), since they are equal,
up to renaming of ¢} into co. This is because there are no copies of [in the memory

26 3. Cryptographic Noninterference

to compare with. Similarly we have sp(o1) = sp(o2). However, if we observe the
whole state we obtain sp(M{,01) = { ([,00.,), (ch,0¢,) } #c { (,Oy), (ch,0y) } =
sp(Mj,,). Notice that the equality of ¢| in sp(M5, o5) makes it impossible to rename
confounders so to make patterns equal. Intuitively, the comparison with the value
sent on the network allows us to deduce the value of h.

Secure programs Strong cryptographic low-bisimilarity, noted =¢, is defined ex-
actly as strong low-bisimilarity of Definition 3.2, with = replaced by =¢. When
quantifying over all the possible states, we make two assumptions:

Confounder unicity Values encrypted with high level keys and with the same
confounder are exactly the same. As already discussed, this is a consequence
of using a fresh confounder for each encryption. Instead, we do not assume
anything on confounders that might have been chosen by the intruder, i.e., the
confounders of ciphertexts encrypted with low level keys;

High level key safety High key variables, k such that I'(k) = K can only contain
high key values K € KFEY. On the other hand, we never allow high key
values to occur unprotected in the low level memory and on the network,
given that this would imply those keys are broken. This does not mean we
assume keys cannot be broken: since we start from a state with no broken key
and we require that, at each steps, keys are not broken, we basically check that
high key values remain protected. Moreover, we will prove that this check is
actually not necessary because secure programs will never break keys.

The first assumption is just a well-formedness condition that is preserved by each
program execution, independently of its security:

Definition 3.6. A state s = (M, o) is well-formed if whenever {v,c}g,{v', '}k
occur in s, with K, K' € KEY , then ¢ = ¢ implies {v,c}x = {v', } k.

We will always implicitly assume that states are well-formed. The second condi-
tion, instead, is important to check that high level keys are safely dealt with. In order
to formalize it, given a state s, we write s = K to denote that K € wvalues(sp(s))
where values(p) is the set of all atomic values occurring in pattern p.

Definition 3.7. A state s = (M, 0) is key-safe if
1. Vz. T'(z) = K, M(z) e KEY;
2. st n impliesn € KEY ;

We denote with KS the set of key-safe states.

We are now ready to give the new notion of strong cryptographic low-bisimilarity.
Notice that we require key-safety only for quantified states s; and s5. Indeed, we will
prove that key-safety is preserved by bisimilar programs with controlled assignments
to high level variables.

3.4. Cryptographic noninterference 27

Definition 3.8. Let R be a symmetric relation on multi-threaded programs of equal
size, it is a strong cryptographic low-bisimulation if whenever (cy...c,) R (di...d,)
then Vi, Vs, s9 € KS, such that s1 =¢ Sa:

(s1,¢;) — <s’1,_(:7) implies <82,di>_'—> (s, d")
for some sy, d" such that ' R d', s =¢ sb.

Strong cryptographic low-bisimilarity ¢ is defined as the union of all strong cryp-
tographic low-bisimulations.

The universal quantification over all possible cryptographically-low—equivalent
states done at each step ensures compositionality. Indeed, any state change per-
formed by a (possibly evil) concurrent thread or distributed program will be cer-
tainly “covered” by this quantification.

We can now prove key-safety preservation for programs with controlled assign-
ments to high level key variables, called key-safe programs:

Definition 3.9. A program c is key-safe if
1. receive(cid, x) never occurs in c if I'(x) = K;
2. x:=e with'(z) = K occurring in c implies e = y and ['(y) = K or e = newkey.

Proposition 3.1. Let ¢ and d be two key-safe programs.
If Vs, 80 € KS, with s1 =¢ so and

(s1,¢c) — (sﬁ,?) implies (sy,d) — (s}, d’)
for some s, d" such that s} =¢ s,

then s, s, € KS.

Proof. Let us assume, by contradiction, that one of &, s5, let us say s}, is not in KS..
We have that either M} (k) ¢ KEY for a certain k such that I'(k) = K, or s} - K
with K € KEY. Since s; € KS we have that Vz. I'(z) = K,My(z) € KEY. The
assumption on assignments ensures that k& can only have been assigned to another
z, for which we know M;(z) € KEY, or to newkey that, by definition, returns a
value in KEY which gives a contradiction. The only remaining case is s§ - K with
K € KEY. We have two sub-cases: (i) if K has been generated with newkey it
must be different from every other name in s, and, since it appears in sp(s}) and
not in sp(s)), it cannot be | =¢ sh; (i1) K appeared in s; but not in sp(s;) because
s1 € KS. Thus we can consider a new state s3 = syn with n being the substitution
K — K', with K' < KEY fresh. Since sp(s1) = sp(s3), then we have s; =¢ ss.
We can run again ¢ and d on equivalent states s; and s3. Since K does not occur
in sy it is impossible that it appears in s5. But we have that K appeared in sp(s})
from which we obtain the contradiction, i.e., s| #¢ s4. Intuitively, the universal
quantification on equivalent states allows us to relabel broken key K to a fresh

28 3. Cryptographic Noninterference

one and observe its leakage by comparison with the relabelled state (which does not
contain it). Assumption on receive command let us preserve key-safety while reading
messages from the network. This follow directly form the fact that s;, s, € KS, so
st/ K and so b K, VK € KEY. Thus, we avoid to assign a bad value (i.e., a value
not contained in KEY') to a key. O

Definition 3.10. A program c is secure if it is key-safe and ¢ = C.

3.5 Hook-up properties

Inspired by previous works [54, 52], this section investigates hook-up properties for
R it is proved that composing secure programs yields a secure program. The
results are very similar to the ones of [54, 52], but the notion of low expressions has
to be carefully adapted. A low expression, in the model with no cryptography, is
just an expression that evaluates the same when calculated on low-equivalent states
[54, 52|, i.e.,

VM= My, e JMi=e |

This cannot just be rephrased to the new equivalences
v M1 =C MQ, € J/M1%C € \l,MQ (36)

indeed the equivalence of two values does not guarantee that if they are stored into
two memories or sent on public channels the resulting states are equivalent. More
precisely, it does not hold that M; =¢ My, I'(z) = L and e {Mi~c e [M2 implies
Mi[z — e IM1] ~o Myf[z — e [M2], and analogously for network states, as we have
already illustrated in example (3.5). The following stronger requirement is instead
used to identify low expressions:

Definition 3.11. An expression e is said to be low if,
Vz. I'(z) = L,Veid € CID, for all states (My,01) =¢ (Mg, 09), if we let vy = e M
and vy = e (M2, it holds that

1. (Ml[x — Ul],Ul) =C (M2[$ — ’02],02),'
2. (My, o1[cid — vy.vals]) =¢ (Mg, o3]cid — vy.vals]).
otherwise e is high.

The following simple lemma, shows that the previously proposed definition of
low expressions (3.6) is implied by our new definition.

Lemma 3.2. If e is low then VM, =¢ My, e Mz e (M2,

Proof. This fact is a direct consequence of Lemma 3.1, item 1. Taking a o with
empty channels, we also have that (My,0) =¢ (Mg, o). By definition of low expres-
sions, we obtain (Mi[z — e [M],0) =¢ (My[z — e [M?],0) and, by Lemma 3.1,
item 1, e [Mi~e e [M2. O

3.5. Hook-up properties 29

This lemma is useful for proving a deterministic behaviour in case of low boolean
guards. Notice the equality instead of equivalence:

Corollary 3.1. If b is low, then b (M= b [M2.
Proof. Trivial, by Lemma 3.2 and by the fact that p(b) = b (Definition 3.4). O

Secure contexts [54, 52] are extended taking into account direct assignment to
high level key variables and a careful use of the receive command.

Definition 3.12. A secure context is a context built with secure programs. Let [e]
and [e] be holes for, respectively, a command vector and singleton command. Secure
contexts are defined as follows

Cle1, 03] i=skip | z:=¢ (I'(z) =H) | z:=Fzp, (I'(z) =L)
| [ou];[8o] | k:= k" (T(k) = T(K) = K) | k:=newkey (I'(k) = K)
| if b then [e;] else [e5] | while b do [e]
| fork([e][53]) | send(cid. Exp,)
| receive(cid, z) (T'(z) # K) | {[e1][e2])

where b and Exp; denotes low expressions.

The next result proves that = is preserved by secure contexts.
Theorem 3.1. If ¢; ECC_{, R c72 then

1. Cla, 6] =¢ C[cz,cz],'

2. Let D[e}, 5] = if b then] else o3, with b high. Then, ¢i = ¢ implies
Dlci, 3] =e D[c],).

Proof outline. (Full proof is in Appendix A.) The Theorem is proved inductively on
the structure of contexts, by exploiting equivalences ¢; ¢ c71 and ¢, ¢ c_’; and, for
statement 2, ¢ ¢ ¢3. It can be conducted as in [54], except for assignments, mes-
sage exchange, branches and while loops. For assignments and message exchanges,
we have to prove that equivalence of states will be preserved by executing the com-
mand. To this aim, we directly exploit the requirements on low expression given
in Definition 3.11. In fact, such a definition states that assigning the result of an
expression to a low variable or sending such a result on the network leave the states
equivalent. For the reception of a message we also exploit Lemma 3.1, item 3 and
4, stating that the removal of a value from a channel and the assignment of that
value to a low variable does not break state equivalence. As far as low branches
(and while loops) are concerned, we have to prove that they always branch in the
same way on equivalent states. This is guaranteed by Corollary 3.1, stating that the
result of evaluating b on the two equivalent states is always the same. O]

30 3. Cryptographic Noninterference

The next Hook-up Corollary proves that secure programs placed in secure con-
texts are still secure. For high branches, as expected, this happens when the two
branches are equivalent.

Corollary 3.2. Let ¢i, ¢3 be secure programs. Then
1. Clcq, c3] is secure;

2. Let D[e7, 85] = if b then o] else o3, with b high. Then, ¢i =c ¢ implies that
DIci, ¢3] is secure.

Proof. Since ¢; and ¢5 are secure we have ¢ ¢ ¢; and ¢; & ¢;. By Theorem 3.1
it must be that C[cq, ¢3] =¢ C|ci, ¢3] meaning that C|cj, ¢3] is secure and the same
holds for D|cj, ¢3]. O

3.6 Type system

The type system presented by Sabelfeld and Mantel in [52], which is an extension

of [54], can be easily adapted to the setting of the current chapter. It transforms, if

possible, a given program € into a new one ¢ which is the timing-leak free version

of the original program, exploiting Agat’s approach [5]. In particular, branches of

conditional of different lengths are padded using skip commands, when necessary.
The typing rules for commands have the form

C—c: Sl

where € is a program, ¢ is its transformation and Sl is the type of ¢'. The type of a
program is its low slice: a copy of a secure command where assignment to high and
key variables have been replaced by skip. A slice models the time behaviour of ¢ as
observable by an attacker running concurrently with it [54].

Our message passing commands send and receive are typed as the low, insecure,
channels of [52]. The only real extension to previous type systems are the rules for
typing expressions, including enc and dec.

Expressions Types for expressions are levels ¢: L, H, for public and secret data,
and K, for high level keys. Only encrypting with a secure key k will provide security
guarantees. However, we admit encryption with untrusted (L) values so to allow
encrypted communication between the trusted processes and the hostile environment
that otherwise could only communicate via plain-texts.

Judgments have the form e : ¢. Typing rules for expressions are as the one of
Chapter 2 (see Table 2.2) with the new rules handling newkey and encryption:

z:K e:H

(newkey) newkey : K (enc-sec) enc(e,z): L

3.6. Type system 31

Table 3.2 Typing Multi-threaded Commands

e: L
l:=e—=l:=e:l:=¢

(Skip) skip < skip : skip (Assigniow)

e: K
k:=e — k:=e:skip

(Assignpign) hi=e— h:=e:skip (Assigngey)

€1 ¢y Sl cog = ch: Sl . b: Lc—c:8l
S W hil
(Sea) = S e shish VM) e do ¢ 5 while b do < : while b do S
(FOT’]C) C1‘—)C’128l1 CE‘—)CQIS_Z'Q (Par) C1‘—)CI11511 Cn‘—>C7IlSln

fork(c1¢3) — fork(c’lc_é) : fork(S11.51,) {arcn) = et) (Sh... Sl

b: L C1‘—>CI11511 C2<_>C/2:SZQ

I ow . . .
(Lfiow) if b then c; else co < if b then c] else ¢, : if b then Sl; else Si,
(I fuion) b: H c¢g—=c):Slh ca—=ch:8ly al(Sl) = al(Sly) = false
ni9h) " 3f b then c; else ¢y — if b then c|; Sly else Sly;c) : skip; Siy; Sla
e: L
Send
(Send) send(cid, e) — send(cid, e) : send(cid, e)
r K
(Receive) (2) #

receive(cid, x) < receive(cid, z) : receive(cid, 1)

The (newkey) rule states that newkey returns a high level key. The (enc-sec) rule
checks that a proper key is used when a secret text is ciphered: it demands to use
a high level key. Note that the dec expression has not a dedicated rule: it will be
typed using either rule (exp-1) or (exp-h) of Table 2.2, so apart from decryption with
a L “key” dec will be always typed H.

Commands Typing and transformation rules are presented in Table 3.2. Intu-
itively, the command skip is typed by itself; to prevent explicit flows, rule (Assignoy)
requires the expression to be typed as L; typing an assignment to a secret variable
will be done using skip as its low slice, this is because we want that the slice has no
occurrences of H variables (Assignpign). Rule (Assignye,) requires the expression to
be typed as K and uses skip as low slice; Rules (Seq), (W hile), (Fork), (Par), (I fiow)

32 3. Cryptographic Noninterference

are as expected and do nothing interesting. Let al(C') be a boolean function on com-
mand returning true whenever occurs a syntactic assignment to a low variable or a
receive command of the form receive(cid, z) with I'(x) = L. Rule (I fyi4n) asks that
(al(Sly) = al(Sly) = false), neither low assignment nor receive that reads message to
a low variable occurs, to prevent indirect insecure flows [54]. It also aims to make
the two branches of the conditional bisimilar, in fact the transformed command is
composed by the same conditional with branches modified to contains the original
sub-command and the low slice of the other branch. Rules (Send) and (Receive)
are taken from [52] for the case of low (public) channel. We additionally require
that a key cannot be read directly from a channel. Low slice cannot use secret vari-
ables so (Receive) let the command read the message from the network (removing
it from cid) but do not update the variable x if it is high. This is obtained using
the notation which is defined as follow: z = _if I'(z) = H, 2 = z if I'(z) = L [52].

Soundness In order to apply Theorem 3.1 and Corollary 3.2 to well-typed pro-
grams, expressions that type L must be shown to be low expressions:

Lemma 3.3. (Expression equivalence)
If e : L then e is low according to Definition 3.11

Proof. Proof is in Appendix A. n
It can be finally proved that well-typed programs are secure.

Theorem 3.2. (Correctness)
Ife—c: Sl then c=¢ Sl

Proof. Proof is in the Appendix. O]

Theorem 3.3. (Program Noninterference)
If ¢ — ' : Sl, then c' is secure, i.e., ¢’ is key-safe and ' = .

Proof. The proposed type system accepts a program as valid only if it is a key-safe
program: rules (Assignye,) and (Receive) implement the requirements of Definition
3.9. By Theorem 3.2 we know that d =c Sl By symmetry and transitivity of =
we get o d. [

3.7 Conclusions

A noninterference property for programs using explicit cryptographic primitives has
been introduced in this chapter. The setting used to develop the security analysis
consider multi-threaded programs but the same ideas can be also applied to the
simpler case of sequential single-threaded processes such as the one of security APIs.

3.7. Conclusions 33

Related work. Information flow security for programs with cryptographic expres-
sions has been studied also by Askarov, Hedin and Sabelfeld [8, 9], Smith and Alpizar
[57] and Laud [42]. All of these papers, however, propose models and properties for
sequential programs without multi-threading or concurrency.

More specifically, in [9] the authors adopt the notion of possibilistic noninterfer-
ence, a weaker variant of noninterference. This choice has been driven by the need
of distinguishing between different encryptions and copies of the same ciphertexts.
The limitation of such a notion, however, is that it does not deal with possible
concurrent thread executions. Consider, for example, the following program:

h :=true
if (k) then [:=true
else [:=false

It is clear that in a single-threaded setting this code can be referred as secure: in
fact using the (possibilistic) noninterference notion of [9] the program would be
considered secure (even if it would be rejected by the type system). Intuitively, such
a property observes the result after program termination which, independently of
the initial values of h and [, is always h : true, [: true. Our definition rejects such a
program because a thread running together with the above code could change the
value stored on the secret h just before the if command, thus making the program
change its execution path and reveal the new high value.

The work by Smith and Alpizar [57] uses computational probabilistic noninter-
ference on a language with random assignments. The language is not multi-threaded
but random assignments break the determinism of sequential programs making the
setting much more complicate than just single-threading. The paper focus on the
computational counterpart of noninterference, that we instead do not consider here.

Another paper on this line of research by Laud [42] investigates conditions under
which the model proposed in [8] is computationally sound. The author essentially
proves a conjecture made in [8] about the properties required on the underlying cryp-
tographic primitives to guarantee computational security for programs that satisfy
the possibilistic noninterference property discussed above. Interestingly, at the end
of the paper, Laud suggests a variant of the model of [8] based on the same definition
of patterns presented in this chapter. He still employs possibilistic noninterference
for a single-threaded language. For example, consider the following example taken
from [42]:

k := newkey
if (k) then

34 3. Cryptographic Noninterference

Notice that the order of assignments is swapped in the two branches. Nevertheless,
Laud’s model accept this program as secure, given that, at the end of execution,
the two low variables are assigned to two different (randomized) ciphertexts. In a
multi-threaded environment, however, we can think of the intruder as a concurrent
thread observing, step by step, the program execution (and possibly controlling the
scheduling). It is clear that by observing which of the two variables is assigned first,
the intruder can deduce the value of h. The notion of noninterference introduced
above correctly rejects this program. In a previous work, Laud [41] presented a type
system to check secrecy of messages in cryptographic protocols implementation.
While addressing multi-threading it was not aiming at noninterference result.

Vaughan and Zdancewic [59] study interaction between cryptography and infor-
mation flow using implicit primitives in a single-threaded imperative language and
obtaining a noninterference result which is based on both static and dynamic check-
ing. They implement a decentralized label model (DLM) where confidentiality and
integrity requirements can be specified independently. Chothia, Duggan and Vitek
[22] first investigated the combination of DLM-style policies and cryptography but
without providing any noninterference result.

Finally, papers [52, 45] are also quite related, even if they do not treat explicit
cryptography. In particular, the language for distributed multi-threaded programs
we adopted derives from the one proposed in those papers. Differently from [52, 45]
we only consider insecure channels and, consequently secret data needs to be en-
crypted before being sent over the network. The noninterference property we adopt
is basically the same but, because of the cryptographic messages, the underlying
low-equivalence notion is completely different, as already discussed.

Closing remarks We have investigated information flow security for multi-threaded
distributed application in the presence of explicit cryptographic operations. The
model we have adopted derives from the notion of patterns [3, 2| proposed by the
authors for proving computational soundness of formal cryptography. Interestingly,
we have adopted it for a completely different purpose, i.e., as an underlying model
for rephrasing an existing notion of noninterference [54]. Before discovering we
really needed this notion, we have tried a number of different formalizations for low-
equivalence, none of them as satisfactory as the present one. Extending the notion of
noninterference introduced in this chapter to security APIs is straightforward since
the most relevant part is the new equivalence relation on memories which can be
used in any setting.

4

Proving Integrity by Equality

36 4. Proving Integrity by Equality

In the previous chapter noninterference has been extended to programs employ-
ing explicit cryptographic primitives. To preserve data secrecy, encrypted messages
have been required to be randomized using an unpredictable confounder so that
each ciphertext is different from every previous and future ecnryption. The following
chapter investigates how to extended noninterference to deterministic cryptography
considering the case of hash functions. The security property introduced will also
focus on data integrity, since deterministic cryptography plays a crucial role in en-
abling a safe way to establish trust on messages retriven by an insecure sink. Secure
usage of hash functions is also studied with respect to the confidentiality of digests
by extending secret-sensitive noninterference of Demange and Sands [29].

4.1 Introduction

Cryptographic hash functions are commonly used as modification detection codes
(MDCs) [46]: a hash function takes an input message and gets back its image or di-
gest, then the goal is to provide message integrity assurance by comparing the digest
of the original message with the hash of what is thought to be the intended message.
Moreover, hash functions are also commonly employed to protect data secrecy as
done, e.g., in Unix password files. To provide both integrity and confidentiality,
hash functions are required to respectively be collision resistant and one-way [46],
meaning that it should be infeasible to exhibit two messages with the same digest
and to find a message whose digest matches a given one.

A first example of everyday usage of hash functions is password-based authen-
tication: a one-way hash of the user password is securely stored in the system and
is compared with the hash of the password typed by the user at the login prompt,
whenever the user wants to access her account. The following code is a simplified
fragment of the Unix su utility used to let a system administrator perform privileged
actions. The password file is modeled as an array passwd[username].

trial = hash(t_pwd);
if (trial = passwd[root]) then
<< launch the administrator shell >>

The typed password t_pwd is given as input to the program thus we regard it as un-
trusted. In fact, from the program perspective there could be an enemy “out there”
trying to impersonate the legitimate administrator. The same holds for trial, be-
ing it computed from an untrusted value. Existing type systems for noninterference
would consequently consider the guard of the if-branch as tainted (its result de-
pending on untrusted data) and require that the code in the if-then branch never
modifies high-integrity variables, being its execution under the control of the enemy.
Clearly the administrator shell can make any change to the system including, e.g.,
modifying user passwords, and this program would be consequently rejected.

4.1. Introduction 37

One of the motivations for hashing passwords is to protect confidentiality. In
fact, if the hash function is one-way, it is infeasible for an opponent to find a pass-
word whose hash matches the one stored in the password file. In practice, brute-force
dictionary attacks suggest that the password file should be nevertheless kept inacces-
sible by non-administrators, as it is done, e.g., in the shadow password mechanism
of Unix. However, if password entropy is ‘high enough’ it might be safe to let ev-
ery user access the hashed passwords. Formally, this would correspond to assigning
the array passwd[] a low-confidentiality security level. Consider now the following
update of Alice’s password to the new, high-confidentiality value alice_pwd:

passwd[alice] := hash(alice_pwd);

This assignment would be rejected by usual type systems for noninterference, as it
downgrades the confidentiality level of the password.

Hash functions are also often used for integrity checks. We consider a software
producer who wants to distribute an application on the Internet, using different
mirrors in order to speed-up the downloads. A common way to assure users down-
loading a binary file my_blob.bin from mirrors of its integrity, is to provide them
with a trusted digest swdigest of the original program. The browser would then
run a code similar to the following:

if (hash(myblob.bin) = swdigest) then
trusted_blob.bin := my_blob.bin;
<< install trusted_blob >>

The idea is that the user will install the given binary only if its digest matches
the one of the original program provided by the software company. In fact, if
the hash function is collision resistant, it would be infeasible for an attacker to
modify the downloaded program while preserving the digest. Once the check suc-
ceeds, my_blob.bin can be safely ‘promoted’ to high-integrity and installed into the
system. This is modelled by assigning my blob.bin to the high-integrity variable
trusted_blob.bin. This is usually regarded as a direct integrity flaw and rejected
by usual type systems for noninterference. Moreover, installing the application can
be thought as writing into a high integrity area of the filesystem and, as for the root
shell above, would be forbidden in a branch with a low-integrity guard.

We have discussed how typical examples of programs using cryptographic hash
functions break standard notions of noninterference, even if they are intuitively
secure. In this chapter, we study how to extend noninterference notions so that
such kinds of program can be type-checked and proved secure. We model hash
functions symbolically: the hash of a value v is simply h(v). We do not assume
any deconstructor allowing to recover v from h(v) thus modelling the fact h is
one-way, and we also assume h(v) = h(v’) if and only if v = v’, modelling collision-
resistance. As is customary in symbolic settings, what has negligible probability in
the computational world becomes here impossible.

38 4. Proving Integrity by Equality

We focus on what we informally call ‘match-it-or-die’ programs which, like the
above examples, always perform integrity checks at the outer level and fail whenever
the check is not passed. For these programs, the attacker is not interested in causing
a failure, as no code would be executed in such a case. This enables us to type
check programs that assign to high-integrity variables even in a low-integrity if
branch, as in the Unix su example. We then observe that assignments such as
trusted_blob.bin := my_blob.bin are safe under the check hash(myblob.bin) =
swdigest. In fact, being swdigest high-integrity, matching it with the low-integrity
value hash(myblob.bin) guarantees that myblob.bin has not been tampered with.
This allows us to type check programs like the application downloading example.

Moreover, we investigate the confidentiality requirements for using hash functions
to preserve data secrecy. We first observe that if the entropy of the hashed value is
low an attacker might try to compute, by brute-force, the hash of all the possible
values until he finds a match. We thus select, as our starting point, a recent non-
interference variant called secret-sensitive noninterference [29] which distinguishes
small and big secrets and allows us to treat their corresponding digests accordingly.
If a secret is big, meaning that it is infeasible to guess its actual value, then the
brute force attack above is also infeasible. We show that it is safe to downgrade the
hash of a big secret, assuming some control over what secret is actually hashed. In
fact, two hashes of the same big secret are always identical and the opponent might
deduce some information by observing equality patterns of digests. This requires a
non-trivial extension of the notion of memory equivalence so to suitably deal with
such equality patterns.

Finally, we give a security type system to statically enforce that programs guar-
antees the proposed noninterference notions.

Structure of the chapter In Section 4.2 we give the background on secret-
sensitive noninterference [29]; Section 4.3 extends the noninterference notions so to
correctly deal with hash functions. Integrity check by equality is analyzed in Sec-
tion 4.4. The security type system enforcing noninterference is given in Section 4.5
while Section 4.7 discusses related works. The chapter closes with some final remarks
and ideas for future work in Section 4.8.

4.2 Secret-sensitive Noninterference
Secret-sensitive noninterference [29], by Demange and Sands, is a variant of nonin-
terference which distinguishes small, guessable secrets from big, unguessable ones.

As discussed in the introduction, this distinction will be useful to discipline the
downgrading of digests of secret values, as we will see in Section 4.3.

Size-aware security lattice Secrets are partitioned into big (H,) and

4.3. Hash Functions and Secrecy 39

Figure 4.1 Size-aware Lattice small (Hs) ones. Preorder C among confiden-
tiality levels is defined as L C¢ Hp, T Hg, mean-

H.L ing that public, low data can be regarded as se-

HQ L cret and, as discussed above, small secrets need

\ /l-\ to be treated more carefully than big ones. We

H.H LL extend this size-aware confidentiality lattice by

\LH/ composing it with the basic two-level integrity

lattice in which H C; L. Notice that integrity
levels are counter-variant: low-integrity, tainted
values have to be used more carefully than high-integrity, untainted ones. The prod-
uct of these two lattices is depicted in Figure 4.1. We will write £ = {c{; to range
over the product lattice elements. The ordering between the new security levels ¢ is
denoted by C and is defined as the component-wise application of C and ;.

Secure programs The main idea of [29] is that for unguessable secrets, brute-
force attacks will terminate only with negligible probability. Intuitively, this al-
lows for adopting a termination-insensitive equivalence notion when comparing pro-
gram behaviour. Guessable secrets, instead, can be leaked by brute-force using
‘termination-channels’, and for those values it is necessary to distinguish between
terminating and nonterminating executions.

A secure program will preserve small secrets from being leaked via the termi-
nation channel while will be more liberal with respect to the big ones. This is
achieved by requiring termination-sensitive bisimilarity (see Definition 2.3 on Chap-
ter 2) whenever the inspected memories are the same at level HyL, meaning they

only differ on small secrets. Notice that, as usual, the attacker is assumed to be at
level LL.

Definition 4.1. (Secret-sensitive NI)
A command c satisfies secret-sensitive NI if V My = My it holds

1. (My,¢) =~ (My,c) and

2. My =p,. My implies (My,c) ~p,L (Mg, c).

4.3 Hash Functions and Secrecy

This section extends secret-sensitive NI to program using hash functions. As already
observed, hash functions could be subject to brute-force attacks, unless the hashed
messages are big enough to make exhaustive search infeasible. The idea is to take
advantage of the two distinct secret levels Hp and Hg protecting digests of small
secrets while treating more liberally the digests of big secrets.

40 4. Proving Integrity by Equality

Hash expressions The language of Chapter 2 is augmented with a new hash
expression whose semantics is defined in terms of a special constructor h. Formally,
hash(e) M h(v) if e {M v with v € Val. We then partition Val into the sets of
small and big values Val,, Val,, ranged over by v, and v,. We define the sets of
small and big digests as Val{ = {h(v) | v € Vals}, with § € {s,b}. As discussed
in the introduction, this simple modelling of hash functions is coherent with the
assumption of being one-way (no deconstructor expressions) and collision-resistant
(digests of different values never collide).

Memories /-equivalence Lifting the notion of memory equivalence when dealing
with digests requires to carefully handle equality patterns. In fact, in our symbolic
model, equal digests will correspond to equal hashed messages.

Consider the program z := hash(y), where z is a public variable and y is a secret
one. It must be considered secure only if y is a big secret variable, indeed leaking the
digest of a small secret is equivalent to directly reveal the secret since an attacker
could perform a brute-force attack on the hash.

The equivalence notion between memories needs, however, to be relaxed in order
to capture the fact that big secrets are, in practice, random unpredictable values. We
illustrate considering again z :=hash(y) and assuming y to be a big secret variable.
We let My(z) = 0 = May(x), My(y) = v # v, = My(y), then it holds My = M.
Executing the above code the resulting memories differ on the value stored in the
public variable z: M} (z) = h(v,) # h(v]) = Mjy(z). It follows that M| #.. M}, and
the program does not respect noninterference so it would be rejected as insecure.
However, being v, and v, two big random numbers we can never expect they are
equal and the only opportunity for the attacker is to see if they correspond to other
big values in the same memory. Requiring the equality of big secrets and digests
across memories is too strong.

This boils down to the idea of patterns, already employed in the previous chapter
for cryptographic primitives. We illustrate through an example. Consider program
z:=hash(z); w := hash(y) where z and w are public variables and x and y are big
secrets. Consider the following memories:

My | My

T .U | XY

Yiu Y v (4.1)
z:0 | z:0

w:0|lw:0

executing the above code would make public two different digests in My and the very
same digests in My. The attacker is able to learn that the first memory stores two
different secrets values while the second does not. In summary, we do not require the
equality of big secrets and digests across memory but only that the equality-patterns
are the same.

4.3. Hash Functions and Secrecy 41

As the last example shows, in order to safely downgrade digests of big secrets we
need to control how big secrets are stored in the memories. We do this by projecting
out from memories big secret values which are either stored in big secret variables
or hashed and observable from ¢. This is done by the following function r, taking as
parameters the value v and the level ¢, of a variable.

v if v e Valy and ¢, = Hyl;
re(v,0,) =< v if v =h(v"),v" € Val, and ¢, C ¢
0 otherwise

A big-secret projection r,(M) is defined as r,(M)(xz) = r,(M(z),T'(x)), for all z €
Dom(M). Two memories will be comparable if their big-secret projections can be
matched renaming big values , i.e., if two big values are the same in one projection
then it will also be the case that they are equal in the other one.

Definition 4.2 (Comparable memories).
Two memories My and My are (-comparable, noted My 1, My, if there exists a
bijection p : Valy, — Valy, such that rg(My) = r,(Ma) .

Example 1. The two memories (4.1) are not comparable if observed at level LL,
i.e., My vaL My, In fact, r(My)(z) = v, # vy = re(M1)(y) while r(Ma)(z) = v, =
v, = re(M2)(y). Thus there exists no bijection p such that rg(My) = ro(Mg)p, since
W cannot map v, to both v, and vy,.

Two memories are f-equivalent if they are /-comparable and their observable big
digests expose the same equality patterns. A digest substitution p is a bijection on
digests of big values: p : Valff — Vall‘f.

Definition 4.3. (Memory /-equivalence with hash functions)
Two memories, My and My, are (-equivalent, written M :? Ms, if My <1y My and
there exists a digest substitution p such that My, = My, p.

Secure programs The bisimulation definitions given in Chapter 2 are left un-
changed except for the relation used to compare memories which is now = in place
of =;. Secret-sensitive NI is thus rephrased as follows.

Definition 4.4. (Secret-sensitive NI with hash functions)
A command c satisfies secret-sensitive NI if V My =0 My it holds

1. (My,c) =~ (Mg, c) and

2. M, :{'L'bl- My implies (My, c) ~p,L (Ma,c).

42 4. Proving Integrity by Equality

4.4 Proving Integrity by Equality

Consider the comparison (by equality test) of a high integrity value and an untrusted
one: if the test succeeds we are guaranteed that the compared, low-integrity, value
has not been tampered with.

Integrity can be checked via noninterference by placing the observer at level
H.H. This amounts to quantifying over all the values in low-integrity variables and
observing any interference they possibly cause on high integrity variables.

Definition 4.5. (Integrity NI)
A program c satisfies integrity NI if for all My, My such that My =n.q My it holds
<M1, C> ~NHH <M2, C>.

Note that ~u,4 in the definition above refers to the termination-insensitive bisimu-
lation introduced in Chapter 2 and not the one using the new equivalence operator
of Definition 4.4.

Consider the program if (x = y) then c¢; else ¢y where z is a low-integrity
variable and y is a high-integrity one. If ¢; and c; modify high-integrity variables
this program will be rejected. In fact, an opponent manipulating the low-integrity
variable x may force the program executing one of the two branches and gain control
on the fact high integrity variables are updated via c; or c,.

Consider now the case of the simplified su utility discussed in the introduction.
Similarly to what we have seen above, an attacker might insert a wrong administrator
password making the check fail. However, the program is in what we have called
match-it-or-die form: the else branch is empty and nothing is executed after the if-
then command. In the definition we have given, we obtain that the program diverges
and the termination-insensitive notion of Integrity NI would consider the program
secure.

A special case of integrity test is the one which involves the comparison between
the on-the-fly hash of a low-integrity message and a trusted variable. Upon success,
integrity of the untrusted data will be proved and it will be possible to assign it to
a high-integrity variable. Consider the following program where y and z are trusted
variables while x is a tainted one.

if (hash(x) = y) then
z = X;

As in the software distribution example of the introduction, the assignment will be
executed only if the contents of the variable x has been checked to be high-integrity,
being its digest equal to the high integrity digest y, and is thus safe.

4.5 Security Type System

This section presents a security type system to statically analyze programs using a
hash function and which derive integrity by equality test.

4.5. Security Type System 43

The proposed solution is based on the type system by Demange and Sands [29].
We only report typing rules for expressions and integrity check commands. All the
remaining rules are as in [29].

We distinguish among four different types of values: small, big and their respec-
tive digests. Value types VT are S (small), B (big), S# (hash of a small) and B#
(hash of a big) and are ranged over by vt. These value types are populated by the
respective values:

v € Val?
o S#

v € Val

v € Valg
Fo: B#

Fv:S

v € Valy,

(v-big) — (v-hashs) (v-hashb)

(v-small)

Security types are of the form 7 = A, where A € {P,D} distinguish between
plain values and digests, while ¢ is the associated security level. A security type
environment A is a mapping from variable to their security types. Given 7 = A\
the two functions T and L give respectively its variable type and security level, i.e.,
T(r) =X and L(7) = ¢.

A subtype relation is defined over security types, it is meant to preserve A, as
we do not want to mix plain values with digests. Moreover plain big secret types
are preserved by being removed from the relation: 71 < 7 if T(7y) = T(r2) = D and
L(m) C L(m) or T(m) = T(m) = P, L(7;) # Hpl; and L(7) C L(7).

To prove that the type system enforces the security properties stated above it
must be that plain big secret variables really store big values. To guarantee that
small values are never assigned to big variables a conservative approach will be
taken: every expression which involves an operator and returns a plain value lifts
the confidentiality level of its result to Hs, whenever it would be Hy. The following
function on security levels performs this upgrade:

o [Wby 0= Hy
I 4 otherwise

A variable x respects its security type 7 = A with respect to a memory M if A\ =P
and - M(z) : Sor - M(z) : B and similarly if A = D then - M(x) : S# or - M(z) : B¥.
A memory will be said to be well-formed if it respects the type of its variables, more
precisely the expected properties are:

1. All variable respects their security types
2. Public variables do not store plain big values
3. Plain big secret variables only store big values.

The rules impose conditions also for the low-integrity variables. Note, indeed, that
this work is not interested in spotting type flaws thus such statements do not affect
the security result that is being proved here. These requirements are straightforward
to formalize.

44 4. Proving Integrity by Equality

Definition 4.6. A memory M is well-formed with respect to a security type envi-
ronment A if

1. A(z) = PHl; implies = M(z) : vt with vt € {S, B}
2. A(z) = PHpl; implies = M(z) : B

3. A(z) = PLl; implies - M(z) : S

4. A(z) = DL implies - M(z) : vt with vt € {S# B#}

Expression typing rules are depicted in Table 4.1. Rules (var) and (sub) are
standard. Rule (eq) types the equality test of two expressions requiring that they
type the same 7 and judging the result as a plain small value, being it a boolean.
Rule (op) let any operator to be applied only to plain expressions, since in our
symbolic model of the hash function no operation is defined on digests except for
the equality test. These two rules use the ¢~ function to promote the confidentiality
level of their result to Hg whenever necessary, as already discussed above.

Hashes are typed either by (hash-b) or (hash-s). Rule (hash-b) performs a con-
trolled declassification, the idea is that since the message is a plain big value its
secrecy is not broken by releasing its digest. Indeed it can be proved that this does
not break noninterference. The latter typing rule does nothing special and just
preserve the security level of its argument.

The type system has to enforce a termination-insensitive noninterference for big
secrets and termination-sensitive for small ones. This latter requirement can be
achieved by some strong limitations on the while loops [61] or by accounting for the
termination effect of a command [17, 56]. Demange and Sands type system [29] is
built upon the work of Boudol and Castellani [17] following the latter approach.

A command type is a triple (w,t, f) where w and t are security levels and f is
a termination flag ranging over | and 1 which respectively note that the command
always terminates or that it could not terminate. A program is considered to be
always terminating if it does not contain any while loop. The two flags are ordered
as JCT. A type judgement of the form A F ¢ : (w,t, f) means that ¢ does not
assign to variables whose security level is lower than w (w is the writing effect of c),
observing the termination of ¢ gives information on variables at most at level ¢ (¢ is
the termination effect of ¢) and the termination behaviour is described by f.

Rules (int-test) and (int-hash) are new contributions of this work and implement
the integrity verification tests discussed in Section 4.4. The former one let a trusted
computation happens if the integrity of a tainted variable is proved by an equality
test with an untainted one. The latter is pretty similar but is specific for the hash
case and asserts that the intended original message, stored in the untrusted variable
used to compute the on-the-fly digest, can be assigned to a trusted variable, whenever
the check succeeds.

The else-branch in both cases must be the special command FAIL. It is a silent
diverging while loop of the form while true do skip. Requiring that each integrity

4.5. Security Type System 45

Table 4.1 Security Type System

Ezpressions
Alz) =T AkFe:7 7 <7 AkFe:7 Abe:7 L(r)=¢
(var) AFz:T (sub) ArFe:T (ca) AF e = e : P
Atz : PHH Az :Pl [#HH
hash- hash-
(hash-b) - o h@y otn B A i) be
(op) AFe Pl Al ey : Pl
P At e opey: PM
Commands

Alz)=7 AFe:T
AFz:=e:(L(r),LH,])

(skip) A b skip: (HsL,LH,]) (assign)

(if) AbFe:7 AFc:(w,t, fi) L) Ew;
A Fif e then C1 else Co (U}l M w2,t1 L tg L L(T),fl L fg)

AFe:7 AFc:(wt,f) L) Cw t=Hd;=tCw

hil
(while) A F while ¢ do ¢ : (w,tUL(7), 1)
Abci:(wti, fi) tiTHLor fi =]
(seq-1)
AFciyco: (wy Mwg, ty Uty, fr U fy)
(se 2) At G (wwtz?fl) ty = HSKI fl :T t1 E Wa
E AF ;e (wy Mws, ty Uty, 1)
AFz:7 AFy:7 T(r)=T(7)
. L(T) = gcl_ L(T’) = ch EC ;C Hb AFc: (ch,t, f)
(int-test) _
Ak if z =y then celse FAIL : (¢cH,t U (oL, 7T)
AFz:PlcL AFy:DicH
A(z) =PlcH (oCoHy Abc:(lH.t,
(int-hash) (2) ¢ c=Ccb ¢: (bo /)

A b if hash(z) = y then z:==x;c else FAIL : ({cH,t U ¢cL,T)

46 4. Proving Integrity by Equality

test command executes such a program in case its guard condition is not satisfied
assure that all the typed programs are in the ‘match-it-or-die’ form. In fact, upon
failure no observable actions will be ever executed which is equivalent to say that,
from an attacker point of view, no code would be run.

The confidentiality level of the variables involved in (int-test) and (int-hash)
guard is constrained to be at most H, to avoid brute-force attacks to small secrets.
The command in the if-branch (c) is typed with a writing effect which has an high-
integrity level, thus letting it to have write clearance to high-integrity variables, and
the same confidentiality level as the two expressions compared in the guard. The
termination effect of the overall command is constrained by the one of c and by ¢cL
since the test contains variables which are at most at that security level. Note that
the two integrity tests would be potentially non terminating due to the FAIL branch.

Results The proposed type system enforces the security properties given in Sec-
tion 4.3 and Section 4.4: If a program type checks then it is both secret-sensitive
and integrity noninterferent.

Theorem 4.1. (SSNI by typing)
If A+ c: (w,t, f) then c satisfies Secret-sensitive NI.

Theorem 4.2. (Integrity NI by typing)
If AFc:(w,t, f) then c satisfies integrity NI

Formal proofs are in Appendix B.

4.6 Case Studies

In this section the case studies presented in the introduction are shown to type check
and a new example will be introduced. Note that some syntactic sugars which were
given introducing the examples has been removed here in order to show fully typed
codes.

A simplified su command The first example is a simplified version of the su
Unix utility. Let root_shell be a command which requires an high-integrity level
to be computed, i.e., A F root_shell : ({cH, ¢, f). The user entered password t_pwd
will be deemed to be secret and low-integrity, i.e., A(t_pwd) = PH,L. root_passwd,
instead, stores the digest of the administrator password and it will be a high-integrity
data since it is supposed to be stored in a write-protected file, let A(root_passwd) =
D/cH. Note that the array notation have been replaced by a single variable, this
does not affect the aim of the example which is proving the security of the Unix
implementation of the password-based authentication mechanism.

trial := hash(t_pwd);

4.6. Case Studies 47

if (trial = root_passwd) then
root_shell;

else
FAIL;

The password is supposed to be strong thus it has been typed as a big secret. If such
an assumption is removed, the code does not type, indeed the above program could
be used to mount a brute-force attack on the password. The type system prevents
such fact by requiring that the confidentiality level of the guard is at most a big
secret in rule (int-test).

The confidentiality level of root_passwd could be either setted to L or Hy,. This
models the fact that having strong passwords, they could be safely stored in a public
location.

Let A(trial) = DHylL, the expression hash(pwd) is typed DH,L by rule (hash-b)
and the first assignment is then typed (HuL,LH,]) by (assign). The if branch is
typed (HpH,H,L U¢, 1) by (int-test): if /o = L by sub-typing root_passwd will be
typed DHyH while if /- = Hy, nothing special is needed. The sequential composition
of the two commands is then typed by (seq-1), indeed LH C HyL.

Software Distribution A software company distributes an application using dif-
ferent mirrors on the Internet. Having downloaded the program from one of the
mirrors, a user will install the given binary only if its digest matches the one of the
original application provided by the software company.

if (hash(my_blob.bin)

swdigest) then

trusted_blob.bin := my_blob.bin;
install := 1;

else
FAIL;

Let my blob.bin be the variable storing the downloaded binary, it is a low-
integrity public variable, i.e., A(my_blob.bin) = PLL. The trusted digest given by
the software company is stored in the swdigest variable which is a high-integrity one
(A(swdigest) = DLH). The installation of the application is simulated by first sav-
ing the low-integrity binary in the trusted location trusted blob (A(trusted blob) =
PLH) and then by assigning 1 to the high-integrity variable install (A(install) =
PLH).

The if branch types (LH,LL,1) by (int-hash), indeed all the requirements on
variables are satisfied by letting ¢ = L in the typing rule and, the assignment to
install types (LH,LH,]).

A new case study is now introduced, it shows a program which let a system
administrator to manage the password file.

48 4. Proving Integrity by Equality

A simplified passwd This example presents a password update utility. It is
a simplified version of the passwd Unix command where we require that only the
administrator can perform such a task. This is due to the fact that the integrity of
the password file must be preserved.

Three parameters are expected: the administrator password and the user old
and new passwords.

root_trial := hash(t_root);
user_trial := hash(old);
if (root_trial = root_passwd) then
if (user_trial = user_passwd) then
user_passwd := hash(new);
else
FATL;

else
FAIL;

Variable root_passwd stores the digest of the root password while user_passwd
the hash of the user one. These model, as in the first example, the needed portions
of the password file (A(root_passwd) = DH,H and A(user_passwd) = DHyH). The
typed root password t_root is low-integrity, i.e., A(t_root) = PH,L as well as the
root_trial variable used to store its digest (A(root_trial) = DHplL). Similarly,
A(0ld) = PH,L and A(user_trial) = DHyL. The new variable which stores the new
user password must be regarded as high-integrity (A(new) = PHyH). This time the
user input will be considered trusted since the intended user will be authenticated
and only in that case the new password will be used. This is the only way to make
the hash operator to type at a high-integrity level when storing the digest of the
new password to user_passwd. In fact, there is no way to prove the integrity of a
fresh new password by equality test.

The first two assignments type (HpL, LH,]) by (assign). The innermost if branch
types (HpH, HpL, 1) by (int-test): variable user_passwd types DH,H and user_trial
DHpL, the assignment to user_passwd types (H,H,LH,]) by (assign) and the hash
expression is typed by DLH by (hash-b) and promoted by subtyping to DH,H. In a
similar way the main if branch is again typed by (int-test) obtaining (HyH, HpL,1).

The whole program is thus typed (H,H, HpL, 1) by (seq-1).

4.7 Related Works

A secure usage of hash function in the setting of information flow security has been
already explored by Volpano in [60]. There are, however, many difference with
respect to the security properties presented above. First, Volpano does not account
for data integrity and, consequently, integrity checks, which is one of the major
contributions of our work. On the other side, we limit our study to a symbolic

4.8. Conclusions 49

treatment of hash functions, distinguishing between two different kind of secrets,
while Volpano aims at a computational result.
The distinction between big and small secrets and the two different bisimilarity

notions which have to be applied to protect them is completely inspired by Demange
and Sands [29].

4.8 Conclusions

We have studied the security of programs that use hash functions in the setting of
information flow security. We have shown how to prove data integrity via equality
tests between a low and a high-integrity variable.

We have extended secret-sensitive noninterference to guarantee that leaks via
the hash operator could not occur: the intuition is that the digest of a big enough
secret s would not be subject to a brute-force attack and so releasing it to the public
will not break the confidentiality of s.

A classical noninterference property has been instead used to check that secure
programs do not taint high-integrity data. Equality tests to enforce data integrity
have been introduced. The equality of a tainted variable with a trusted one is
regarded as an evidence of the fact that the value stored in the untrusted variable is
indeed untainted. This kind of integrity proof is widely adopted in real applications
and this chapter gives the tools to reason about its security.

Future Work Hash functions could be used in commitment protocols. Suppose
Anna challenges Bruno to solve a problem and claims she has solved it. To prove
her statement Anna takes the answer and appends it to a random secret nonce, she
then sends the hash of such message to Bruno. When the challenge finishes or when
Bruno gives up, Anna has to reveal him the secret nonce thus he can check that the
correct answer was sent in the first step of the process.

Formally studying this scenario in an information flow setting would be challeng-
ing. Some form of declassification would be allowed since at certain point in time
the secret nonce has to be released. When the random will be downgraded then
the digest could not be thought to protect Anna’s answer anymore. Analyzing the
security of this problem will require an interaction of a declassification mechanism,
suitable to reason about the when dimension of downgrading [55], with the solution
presented here for the secure usage of hash functions.

To guarantee that small values are never assigned to big variables we have taken
the very conservative approach of forbidding expressions to return a big secret. In
practice, this might be relaxed by adding some data-flow analysis in order to track
values derived from big secrets. For example, the xor of two different big secrets
might be considered a big secret, but the xor of two equal big secrets is 0. We intend
to investigate this issue more in detail in the next future.

50 4. Proving Integrity by Equality

Memory equivalence based on patterns and the notion of static equivalence in
process calculi seems to be strongly related. Big secrets resemble the notion of
bound names which can be a-converted preserving equality patterns. We leave as a
future work the intriguing comparison between the two formal notions.

Type checking PIN Verification APIs

This chapter presents the first of the case studies of the thesis. It considers some
known attacks on the ATM PIN verification framework, based on weaknesses of the
underlying security API for the tamper-resistant Hardware Security Modules used
in the network. Most of these attacks do not directly reveal the PIN. Instead, they
involve the attacker calling the API commands repeatedly with slightly different
parameter values, and using the results (which may be error codes) to deduce the
value of the PIN: these are information leakage API attacks and will be studied
using the machinery of language based information flow security introduced in the
previous chapters.

This API is here implemented using an imperative language with cryptographic
primitives, and it will be shown how its flaws are captured by a notion of robustness
that extends the one of Myers, Sabelfeld and Zdancewic [48] to the cryptographic
setting. The chapater introduces a type system to assure integrity and to preserve
confidentiality via randomized and non-randomized encryptions. An improved API
is also proposed and it is shown type-checkable proving its security.

5.1 Introduction

In the international ATM (cash machine) network, users’ personal identification
numbers (PINs) have to be sent encrypted from the PIN Entry Device (PED) on
the terminal to the issuing bank for checking. The PIN is encrypted in the PED
under a key shared with the server or switch to which the ATM is connected. The
PIN is then decrypted and re-encrypted under the key for an adjacent switch, to
which it is forwarded. Eventually, the PIN reaches the issuing bank, by which time
it may have been decrypted and re-encrypted several times. The issuing bank has no
direct control over what happens in the intermediate switches, so to establish trust,
the international standard ISO 9564 (ANSI X9.8) stipulates the use of tamper proof
cryptographic Hardware Security Modules (HSMs). These HSMs protect the PIN
encryption keys, and in the issuing banks, they also protect the PIN Derivation
Keys (PDKs) used to derive the customer’s PIN from non-secret validation data such
as their Personal Account Number (PAN). All encryption, decryption and checking
of PINs is carried out inside the HSMs, which have a carefully designed API provid-

52 5. Type checking PIN Verification APls

ing functions for translation (i.e., decryption under one key and encryption under
another one) and wverification (i.e., PIN correctness checking). The API has to be
designed so that even if an attacker obtains access to the host machine connected
to the HSM, he cannot abuse the API to obtain PINs.

In the last few years, several attacks have been published on the APIs in use in
these systems [11, 14, 24]. Very few of these attacks directly reveal the PIN. Instead,
they involve the attacker calling the API commands repeatedly with slightly different
parameter values, and using the results (which may be error codes) to deduce the
value of the PIN. High-profile instances of many PINs being stolen from hacked
switches has increased interest in the problem [38, 50]. PIN recovery attacks have
been formally analysed, but previously the approach was to take a particular API
configuration and measure its vulnerability to combinations of known attacks [58].
Other researchers have proposed improvements to the system to blunt the attacks,
but these suggestions address only some attacks, and are “intended to stimulate
further research” [44]. We take a step in that direction, using the techniques of
language-based security [53].

Looking at the code for the current PIN processing APIs, one can immediately
see that the current API functions allow an ‘information flow’ from the high security
PIN to the low security result. However, it is a necessary feature of the verification
function to reveal whether the encrypted PIN is correct or not, so some flow is
inevitable. The language-based security literature has a technique for dealing with
this: a ‘declassification policy’ [55], whereby we decide in advance that a certain
flow is permitted. The problem is that an intruder can often manipulate input
data in order to declassify data in a way we did not intend. Again there is a
technique for this: ‘robust declassification’ [47], whereby we disallow ‘low integrity’
data, which might have been manipulated by the attacker, to affect what can be
declassified. However, the functionality of our PIN verification function requires the
result to depend on low-integrity data. The solution in the literature is ‘endorsement’
[48], where we accept that certain low integrity data is allowed to affect the result.
However, in our examples, endorsing the low integrity data permits several known
attacks.

From this starting point, we propose an extension to the language-based security
framework for robust declassification to allow the integrity of inputs to be assured
cryptographically by using Message Authentication Codes (MACs). We present se-
mantics and a type system for our model, and show how it allows us to formally
analyse possible improvements to PIN processing APIs. We believe our modelling
of cryptographically assured integrity to be a novel contribution to language based
security theory. In addition, we give new proposals for improving the PIN processing
System.

Structure of the chapter This chaperter first illustrates the case study, the PIN
verification command (Section 5.2). Some notions of language based security related

5.2. The Case Study 53

to declassification are reviewed in Section 5.3, then the modelling of cryptographic
primitives, and in particular MACs for assuring integrity, and the flaws making PIN
verification fails to be robust are discussed (Section 5.4). The type system is pre-
sented in Section 5.5 and a MAC-based improved API is type-checked in Section 5.6.
Section 5.7 concludes.

5.2 The Case Study

In the introduction we have observed how PINs travelling along the network have to
be decrypted and re-encrypted under a different key, using a translation API. Then,
when the PIN reaches the issuing bank, its correspondence with the validation data'
is checked via a verification API. We focus on this latter API, which we call PIN_V:
it checks the equality of the actual user PIN and the trial PIN inserted at the ATM
and returns the result of the verification or an error code. The former PIN is derived
through the PIN derivation key pdk, from the public data offset, vdata, dectab (see
below), while the latter comes encrypted under key k as EPB (Encrypted PIN
block). Note that the two keys are pre-loaded in the HSM and are never exposed to
the untrusted external environment. In this example we will assume only one key of
each type (k and pdk) is used. The API, specified in Table 5.1, behaves as follows:

-The user PIN of length len is obtained Table 5.1 The PIN verification APIL.
by encrypting validation data vdata with PIN.V (PAN . EPB, len, offsct, vdata, dectab)
the PIN derivation key pdk (z;), taking x1 :=encyay (vdata) ;

the first len hexadecimal digits (zz), dec- iy Zf:zi(if;’i:;()d;embwg);

imalising through dectab (z3), and digit- z; :=sum_mod10(z3, offset) ;
. . x5 :=decy (EPB);
wise summing modulo 10 the offset (z;). 2 = fcheck(zs) ;
More precise1y7 the outcome Of the en- if (z¢ ==""FAIL") then return(” format error’);
if (z; == x5) then return("PIN is correct);

cryption z; is a 16 hexadecimal digit
string and decimalize is a function that
associates to each possible hexadecimal
digit (of its second input) a decimal one as specified by its first parameter (dectab).
The obtained decimalised value z3 is the ‘natural’ PIN assigned by the issuing bank
to the user. If the user wants to choose her own PIN, an offset is calculated by digit-
wise subtracting (modulo 10) the natural PIN from the user-selected one. Thus, to
get the user PIN the offset is summed to the natural PIN (zy).

else return(” PIN is wrong”)}

-The trial PIN is recovered by decrypting EPB with key k (x5), and extracting
the PIN by removing the random padding and checking the PIN is correctly for-
matted (zg). For some PIN block formats the PAN is required for the extraction.
However we give here the algorithm for extracting the PIN from an ISO1 block,

IThe value of this parameter is up to the issuing bank. It is typically an encoding of the user
PAN and possibly other ‘public’ data, such as the card expiration date or the customer name.

54 5. Type checking PIN Verification APls

where encryption with random padding is used. In our model this amounts to pro-
jecting the first element of a pair consisting of a PIN and random padding. We will
discuss other block formats and how to model them later.

-Finally, the equality of the user PIN (z;) and the trial PIN (zg) is returned.

Example 2. Let len=4, offset=4732, dectab = 9753108642543210, this last param-
eter encoding this mapping: 0 - 9,1 - 7,2 -+ 5,3 - 3,4 —- 1,5 — 0,6 - 8,7 —
6,8 +4,9 >2 A —>5B —>4C —- 3,D -2 E — 1,F — 0. Let also x; =
enc,q; (vdata) = A47295FDE32A48B1.

Then, zo = left(4, A47295F DE32A48B1) = A472 | x3 = decimalize(dectab, A472)
= 5165, and z; = sum_mod10(5165,4732) = 9897. This completes the user PIN
recovery part. Let now (9897,r) denote PIN 9897 correctly formatted and padded
with a random r, as required by 1SO1 (recall that we are omitting details about other
PIN formats for the moment) and let us assume that EPB = {9897, r[};. We thus
have: z5 = decy ({19897, r[}x) = (9897, 7), and x5 = fcheck(9897,r) = 9897. Flinally,
since g is different from " FAIL" and x; = x4 the API returns " PIN is correct”. [

The given specification is an abstraction and a simplification of real PIN verifi-
cation code, i.e., PIN_V corresponds to Encrypted PIN Verify of [39] simplified by
omitting some parameters for alternative PIN extraction methods. We only model
the IBM 3624 PIN calculation method with offset, but this is not limiting as the
other PIN calculation methods can be similarly specified and analysed.

5.3 Basic Language and Security

The language adopted in this chapter is the same as the one presented in Chapter 2.
Given that we are interested in analysing security APIs, which we assume to be
executed on trusted hardware with no multi-threading, we adopt a standard big-
step semantics similar to that of Volpano et al. [62].

(M, c) = M’ denotes the execution of a command c in a memory M, resulting in
a new memory M. For example, (M, z:=¢) = M[z — v] if e {M v. The complete
semantics is reported in Table C.2 of Appendix C.

Security A security environment I' maps each variable to a level of confiden-
tiality and integrity. To keep the setting simple, we limit our attention to two
possible levels: high (H) and low (L). For any given confidentiality (integrity) lev-
els 0,0y, we write {4 Co lo (¢4 C; ly) to denote that ¢; is as restrictive or
less restrictive than /5. In particular, low-confidentiality data may be used more
liberally than high-confidentiality ones, thus in this case
L C¢ H; dually low-integrity data must be treated more
carefully than high-integrity ones, giving the counter- / \

variant relation H C; L. We consider the product of the HH LL
above confidentiality and integrity lattices, and we denote \ /

5.3. Basic Language and Security 55

with C the component-wise application of Co and T (on
the right).

Noninterference is now rephrased to this simpler big-step execution model. Two
configurations are indistinguishable at level ¢ if they lead to f-equivalent outputs
(notice that memories are compared using the equivalence introduced in Chapter 2).

Definition 5.1 (Indistinguishability). Two configurations are indistinguishable,
written (My,c) =, (Ma,c), if whenever (My,c) = M) and (Ma,c) = M then
M} =, M5,

Noninterference requires that data from one level should never interfere with
lower and incomparable levels. Intuitively, command c satisfies noninterference if,
fixed a level ¢, two indistinguishable memories remain indistinguishable even after c
has been executed.

Definition 5.2 (Noninterference). A command c satisfies noninterference if V ¢, My, My
we have that My =, My implies (My,c) =y (Mg, c).

To see how this captures confidentiality /integrity leakages, consider the cases
¢ =LL and ¢ = HH. The former says that high-confidentiality data cannot be leaked
to low-confidentiality levels LL, LH. Dually, the latter case states that low-integrity
data cannot corrupt high-integrity ones HH, LH.

Noninterference formalizes full security, with no leakage of confidential informa-
tion or corruption of high-integrity data. The property proposed by Myers, Sabelfeld
and Zdancewic (MSZ) in [48], called robustness, admits some form of declassification
(or downgrading) of confidential data, but requires that attackers cannot influence
the secret information declassified by a program c. In our case study of Section 5.2,
PIN_V returns the correctness of the typed PIN which is a one-bit leak of infor-
mation about a secret datum. Thus, the API is intended to declassify some secret
information. Robustness will allow us to check that attackers cannot abuse such a
declassification and gain more information than intended.

Consider a pair of memories M, My which are not distinguishable by an intruder,
i.e., My =L My. The execution of c on these memories may leak confidential infor-
mation violating noninterference, i.e., (M, c) # (Ms, c). Robustness states that if
the behaviour of the command c is not distinguishable on M; and M, then the same
must happen for every pair of memories M}, M}, the attacker may obtain starting
from M;, M. To characterize these memories note that: (i) they are still indistin-
guishable by the intruder, i.e., M} = | M), as he is deterministic and starts from
indistinguishable memories; (iz) they only differ from the initial ones in the low-
integrity part, i.e., My =gy M), My =y M}, given that only low-integrity variables
can be modified by intruders.

As done by MSZ, we require that attackers start from terminating configurations
to avoid they ‘incompetently’ self-corrupt their observations. This is done via a
notion of strongly indistinguishability, written (My, c) =, (My, c), requiring that both

56 5. Type checking PIN Verification APls

configurations terminate, i.e., (My,c) = M}, (My,c) = M}, and resulting memories
are indistinguishable, i.e., M| =, M.

Definition 5.3 (Robustness). Command c is robust if YMy, My, M, M}, s.t. My =
Mg, Mll =LL Mlg, M1 =—HH Mll, MQ =—HH Mé, 1t holds <M1,C> g|_|_ <M2,C> zmplzes <M/1,C>
(M3, c).

This notion is a novel simplification of the one of MSZ, who allowed a malicious
user to insert untrusted code at given points in the trusted code. In security APIs
this is not permitted: an attacker can call a security API any number of times with
different parameters but he can never inject code inside it, moreover, no intermediate
result will be made public by the API. This leads to a simpler model where attackers
can only act before and after each security API invocation and, thus, there is no
need to make their code explicit. Memory manipulations performed by attackers are
covered by considering all the pairs of indistinguishable memories which only differ
in the low-integrity part with respect to the initial ones.

Example 3. We will write x; to denote a variable of level ¢. Consider a program
P in which variable x stores the user entered PIN, yyny contains the real one, and

20 = (2L = yun) , i.e., 2L says if the entered PIN is the correct one or not. This
program does not obey to noninterference since the result of the equality test depends
on secret data and it is assigned to a public variable, moreover it is not robust. To see
this latter fact, consider memories My and My such that My (z) = Ma(2) = 1111,
thus My =1L My, and My(ypy) = 1234 while My(yqn) = 5678. Now assume the
attacker generates two memories M} and My where M (yqn) = M) (a) = My(a) =
1234, thus M| =, M}, and My(yqn) = 5678. It clearly holds that My =uq M) and
My =nn MY, but the execution of P in the first two memories leads to indistinguishable
results in z |, false/false, thus (My, P) =, (My, P), while for the second ones we get
true/false, and so (M, P) #. (M}, P). Intuitively, the attacker has ‘guessed’ one of
the secret PINs and the program is revealing that his guess is correct: the attacker
can tamper with the declassification mechanism via variable x, .]

5.4 Cryptographic primitives

In order to model our API case-study, we now extend the language given in Chap-
ter 2 with confounder generation, (symmetric) cryptography, Message Authenti-
cation Codes (MACs), pairing and projection. These are introduced as special
expressions (as already done in Chapter 3 and 4) ranged over by e:

e:=... | new() | enc,(e) | dec,(e) | mac,(e) | pair(ey, e2) | fst(e) | snd(e)

working on values v = n | {{o[}x | (v)r | (v1,v2) where n ==L | r | k| ... s
an atomic name which can be the special value L representing failure, a confounder
r € C, a cryptographic key k£ € I, or any other value used in a program, e.g.,

—LL

5.4. Cryptographic primitives 57

Booleans and integers. On these atomic values we build cryptographic values and
pairs ranged over by v: more specifically, {|v[}; and (v); respectively represent the
encryption and the MAC of v using k as key, and (v, 1) is a pair of values. We
will often omit the brackets to simplify the notation, e.g., we will write { vy, w[}x to
indicate {|(v1, v2)[} -

Based on this set of values we can easily give the semantics of the special expres-
sions mentioned above. For example, we have enc,(e) M {v[}, whenever e [M v and
x M k. Moreover, dec,(e’) {M v if ¢/ [M {Jo[}, and = M k; otherwise dec,(e’) |ML,
representing failure, and analogously for the other expressions. Confounder genera-
tion new() |M r extracts a ‘random’ value, noted r <— C, from a set of values C. In
real cryptosystems, the probability of extracting the same random confounder is as-
sumed to be negligible, if the set is suitably large, so we symbolically model random
extraction by requiring that extracted values are always different. Thus, r +— C can
be thought as extracting the first element of an infinite stream of confounders and
removing it from the list so that it cannot be reused. More formally, we assume that
two extractions 7,7’ < C' are such that r # r’. Moreover, similarly to [1, 2], we
assume C' to be disjoint from the set of atomic names used in programs. Semantics
of expressions is summarized in Table C.3 of Appendix.

To guarantee a safe use of cryptography we also assume that every expression e
different from enc, dec, mac, pair and every Boolean expression except the equality
test: (i) always fails when applied to special values such as confounders, keys, ci-
phertexts, and MACs (even when occurring in pairs), producing a 1 and (i) never
produces those values. This is important to avoid “magic” expressions which encryp-
t/decrypt/MAC messages without knowing the key like, e.g., magicdecrypt(e) M v
when e [M {|v]},,. However, we permit equality checks as they allow the intruder to
track if the same encryption appears twice, as occurs in traffic analysis.

5.4.1 Security with cryptography

We now rephrase the notions of noninterference and robustness in order to accom-
modate cryptographic primitives. In doing so, we extend the notions presented in
Chapter 3 in a non-trivial way by (i) accounting for integrity primitives such as
MACs and (ii) removing the assumption that cryptography is always randomized
via confounders. This latter extension is motivated by the fact that our case study
does not always adopt randomization in cryptographic messages, so we need to leave
the programmer decide whether or not to insert confounders in encryptions. Notice
that non-randomized encrypted messages are subject to traffic analysis, thus confi-
dentiality of those messages cannot be guaranteed except in special cases that we
will discuss in detail.

In order to extend the indistinguishability notion of definition 5.1 to crypto-
graphic primitives we assume that the level of keys is known a-priori. We believe
this is a fair assumption, since in practice it is fundamental to have information
about a key’s security before using it. Since we have only defined symmetric key

58 5. Type checking PIN Verification APls

cryptography we only need trusted (of level HH) and untrusted keys (of level LL).
The former are only known by the APIs while the latter can be used by the attackers.
This is achieved by partitioning the set of keys K into KCyy and £y .

Patterns and indistinguishability As the intruder cannot access (or generate,
in case of MACs) cryptographic values protected by HH keys, one might state that
such values are indistinguishable. However, an attacker might detect occurrences of
the same cryptographic values in different parts of the memory, as occurs in some
traffic analysis attacks.

Example 4. Consider the program z := (2L = yL) which writes the result of the
equality test between x and y. into 2. Given that it only works on LL variables
it can be considered as an intruder-controlled program.

Consider the memories My and My (below) where the initial value of z is not
of interest, and where k € Kuyn.

M, | M,
L - {‘1234|}k L - {‘9999’}19
YL - {|1234|}k Y - {‘5678|}k

At first sight, one may conclude the two memories are indistinguishable as an at-
tacker cannot distinguish {1234}y, from {{9999[}x and {1234}y, from {|5678[}x. How-
ever, running the above intruder-program on these memories, we obtain two new
memories M| and M), in which z. and y. remain unchanged, but z, = true in
the first one and z = false in the other one, i.e., M} and M}, differ. The intruder
has in fact detected the presence of two equal ciphertexts in the first memory which
allows him to distinguish the initial memories My and Ms. O

This ability of the attacker to find equal cryptographic values in the memories is
formalized through the notion of pattern inspired by Abadi et al. [2, 3] and already
adopted for modelling noninterference in Chapter 3. Note that we adopt patterns
to obtain a realistic notion of distinguishability of ciphertexts in a symbolic model,
and not to address computational soundness as is done in other works [2, 3, 4].

Patterns, ranged over by p, extend values as follows: p = v | O, the new
symbol [J, representing messages encrypted with a key not available at the obser-
vation level £. More precisely, we define a function p,(v) which takes a value and
produces the corresponding pattern by replacing all the encrypted values v pro-
tected by keys of level ¢’ [Z ¢ with [J,,, and leaving all the other values unchanged.
For example, for {{1234]};, in the example above we have py({1234[}x) = Ogiozap,
while pun({|1234[}x) = {|1234[}x. Notice that, in 0J,, v is the whole (inaccessible)
encrypted value, instead of just a confounder as used in Chapter 3 and previous
works [2, 3, 32, 42]. In these cases, each new encryption includes a fresh confounder
which can be used as a ‘representative’ of the whole encrypted value. Here we
cannot adopt this solution since our confounders are optional. To disregard the val-
ues of confounders, once the corresponding ciphertext has been accessed (i.e., when
knowing the key), we abstract them as the constant L.

5.4. Cryptographic primitives 59

Given a bijection p : OJ, — 0O, that we call hidden values substitution, we write
pp to denote the result of applying p to the pattern p, and we write Mp to denote the
memory in which p has been applied to all the patterns of M, i.e., Mp (z) = M(x) p.
On hidden values substitutions we always require that keys are correctly mapped,
i.e, formally p(Ogup,) = Ogurp,- We write Ky to denote the set of keys at or below
l, ie., Ug/gg’Cgl.

Definition 5.4. Let py(v) : v — p be recursively defined as follows:

pe(n) = n n not a confounder
pg(T’) = L
Pe((v1, 1)) = (pe(v1), pe(v2))
Pe((v)x) = (pe())n

pe({vl) = {ﬁ;‘;{;)ﬂk i

Let pg(M) denote the restriction of memory M to level £ in which all of the values
v have been substituted by py, formally ps(M) = py o M|,. Two memories My and
My are indistinguishable at level £, written My =, My, if there exists a hidden values
substitution p such that p,(My) = pe(M2) p .

Example 5. Consider again the two memories My and My of example 4. We ob-
served that they differ at level LL because of the presence of two equal ciphertexts in
Mi. Since k € Kyy we obtain the values of x and y . below. Now it is impossible
to find a hidden values substitution p mapping the first memory to the second, as
Cgi234p, cannot be mapped both to Uggggep, and Ugsersp, -

p(My) ‘ pLL(M2)
I - D{|1234|}k L o D{\9999[}k
v o Oguosay, | w0 Ugsersp,

Thus we conclude that My % Mo. If, instead, My (y.) were, e.qg., {|2222[}; we might

use p = [Dﬂ1234\}k — Ugoogopy, » Lgazeop, — D{\5678[}k] obtaining pe(M1) = p(M2)p and
thus Ml L MQ. O

Notice that we do not extend our notion of hidden values to MACs, i.e., we assume
that all messages inside MACs are public, and hence equivalence between MACs can
be defined on these messages. We will use encryption only for secrecy, and MACs
only for authentication.

Noninterference and robustness We now reconsider the security notions of
Section 5.3 in the new cryptographic setting. The idea is to keep the same defi-
nitions and substitute =, with ~; everywhere. For example, the notion of (weak)
indistinguishability of executions (definition 5.1), denoted (M, c) =, (M’,c), is just
rephrased by stating that whenever (M, c) = M} and (My, c) = M}, then M} ~, Mj,.

60 5. Type checking PIN Verification APls

We need to be careful that memories do not leak cryptographic keys, i.e., that
keys disclosed at level ¢ are all of that level or below. We should also discipline the
quantification over all possible memories so that variables intended to contain keys
really do contain keys. We prefer to postpone these aspects to Section 5.5, after
types have been defined. In fact, they are easily achieved by requiring that variables
of key-types are only populated by key-values, as the intuition suggests, and that
memories are well-formed with respect to types.

In the next section we illustrate a known practical attack on the PIN verification

API and we then show that it can be formally captured by the non-robustness of
the APL

5.4.2 Formal analysis of a PIN.V API attack

In this section we show how the lack of integrity of the API parameters can be
exploited to mount a real attack leaking the PIN.

Let us consider the case study of Section 5.2 and in particular the code of the
PIN verification API shown in Table 5.1. Let us now concentrate on two specific
parameters, the dectab and the offset, which are used to calculate the values of
x3 and x4, respectively. A possible attack on the system works by iterating the
following two steps, until the whole PIN is recovered|[14]:

1. The intruder picks a decimal digit d, changes the dectab function so that values
previously mapped to d now map to d + 1 mod 10, and then checks whether
the system still returns " PIN is correct”. Depending on this, the intruder
discovers whether or not digit d is present in the user ‘natural’ PIN contained
in x3, thus extracting information on the user PIN digits;

2. when a certain digit is discovered in the previous step by a ”"PIN is wrong”
output, the intruder also changes the offset until the API returns again that
the PIN is correct. This allows the intruder to locate the position of the
deduced PIN digit.

Example 6. Recall that in Example 2 we assumed len = 4, dectab = 9753108642543210,
of fset = 4732, x1 = A47295FDE32A48B1, EPB = {9897, r|}x. As we have shown,
with these parameters the API returns "PIN is correct”.

Assume now the attacker chooses the new dectall = 9753118642543211, where
the two 0’s have been replaced by 1’s. The aim is to discover whether or not 0 appears
in x3. If we invoke the API with dectab' we obtain the same intermediate and final
values, as decimalize(dectab’, A472) = decimalize(dectab, A472) = 5165. This means
that 0 does not appear in 3.

The attacker now proceeds by removing from the dectab the next decimal digit
until the API fails: with dectab” = 9753208642543220, i.e., by replacing digit 1 with
digit 2, we obtain that decimalize(dectab”, A472) = 5265 # decimalize(dectab, A472) =

5.5. Type System 61

5165, reflecting the presence of 1 in the original value of x3. Then it follows,
x4 = sum_mod10(5265,4732) = 9997 instead of 9897 thus returning” PIN is wrong”.

The intruder now knows that digit 1 occurs is in x3. To discover its position
and multiplicity, he now tries variations of the offset so to ‘compensate’ for the
modification of the dectab. In particular, he tries to decrement each offset digit
by 1. For example, testing the position of one occurrence of one digit amounts
to trying the following offset variations: 3732,4632,4722,4731. Notice that, in this
specific case, offset value 4632 makes the API return again” PIN is correct”. In fact
x3 = decimalize(dectab, A472) = 5165 and x4 = sum_mod10(5165,4732) = 9897 with
dectab, and x3 = decimalize(dectab”, A472) = 5265 and x4 = sum_mod10(5265, 4632)
= 9897 with dectab”. Notice, in particular, that the value of x4 is the same. The
attacker now knows that the second digit of x3 is 1. Given that the offset is public,
he also calculates the second digit of the user PIN as 1 4+ 7 mod 10 = 8.

The above attack is based on the lack of integrity of the input data, which allows
an attacker to influence the declassification mechanism as shown below.

In order to model the PIN deriwation encryption of xi, we now adopt a small
trick: we write vdata = {{A47295F DE32A48B1[} a4, and the encryption can now be
modelled as a decryption x; :=dec,q,(vdata). The reason for this is that we have a
symbolic model for encryption that does not produce any low level bit-string encrypted
data. Notice also that this model is reasonable, as the high-confidentiality of the
encrypted value is ‘naturally’ protected by the HH PIN derivation key.

Consider now two memories, M and My that store the correct parameters of
Example 2 for the PIN verification API call (parameters which are all at level LL),
but contain dectab” instead of dectab and have different encryption values, i.e., EPB
and a different EPB;, respectively. Note that M and My could be built by an attacker
sniffing all encryptions arriving at the verification facility.

It holds that M =~ My since the only unequal values are randomized and so
can be re-named to make their patterns equal. If we execute PIN.V in M and M;
we obtain "PIN is wrong” in both cases as for memory My, the encrypted PIN is
wrong, and for memory M, the encrypted PIN is correct but the dectab” will change
the value of derived PIN. It follows that (M,PIN_V) ~r; (My, PIN_V).

Now suppose that the intruder replaces dectab’ with the original value dectab,
and plugs this into the above memories obtaining memories My and Ms. Note that
My ~r1, M3, however My will return” PIN is correct” since all the data correspond,
whereas memory Mz will return "PIN is wrong” because the encrypted PIN is in-
correct. Thus, (Ma, PIN_V) %1, (M3, PIN_V), and hence robustness does not hold.

To overcome this problem, integrity of the input must be established. O

5.5 Type System

In this section we give a type system to statically check that a program with cryp-
tographic primitives satisfies noninterference and/or robustness. We will then use it

62 5. Type checking PIN Verification APls

to type-check a MAC-based variant of the PIN verification API and a MAC-based
variant of a translation API we will briefly introduce later.

We refine integrity levels by introducing the notion of dependent domains used
to track integrity dependencies among variables. Dependent domains are denoted
D : D where D € D is a domain name. Intuitively, the values of domain D : D are
determined by the values in the set of domains D. For example, PIN : PAN can be
read as ‘the value of PIN is fixed relative to the account number PAN’: when the PAN
is fixed, the value of the PIN is also fixed. A domain D : (), also written D, whose
integrity does not depend on other domains is called an integrity representative and
it can be used as a reference for checking the integrity of other domains. In fact,
integrity representatives cannot be modified by programs and their values remain
constant at run-time.

The integrity level associated to a dependent domain D : D is written [D : D],
and is at a higher integrity level than H, ie., [D: D] C; H. In some cases, e.g.,
in arithmetic operations, we necessarily loose information about the precise result
domain D : D and we only record the fact the value is determined by domains D,
written [e : [3] In this case we know the value is determined by at most variables
of domains f), but we have no precise information on its domain. The obtained
integrity levels are thus: 6; ==L | H | [D: D] | [e: D], while confidentiality levels
are still 6 := L | H, as before. The preorder of integrity levels is extended as:

[D:Ijl]2[0:51]21[0252]EIHEIL

with Dl - Dg. We will write C in place of [e], to denote a constant value with no
specific domain. Based on these levels, we give the type syntax:

T u= 0| cKi(T) k| encs k| mKs(T) | (71, 72)

A variable of type ¢ contains generic data at level 0; types cK§(7) x and mKs(7)
respectively refer to encryption and MAC keys of level §, working on data of type 7;
k is a label that uniquely identifies one key and is used to reconstruct types when
decrypting high integrity ciphertexts; we write K(k) = cK§(7) & to refer to such a
unique type; label i indicates whether the ciphertext is ‘randomized’ via confounders
(= R) or not (p missing); we only consider untrusted keys of level LL and trusted
ones of level HC: trusted keys are not modifiable thanks to the constant integrity
type C; encs k is the type for ciphertexts at level §, obtained using a key labelled x,
thus we will always assume that two key types with the same x are exactly the same
type; pairs are typed as (71, 72) and the two types are required to have the same
confidentiality level and, for integrity levels at or above H, even the same integrity
level. Intuitively, this requirement is to avoid information leakage when projecting
elements from the pairs. Dependent domains will never be observed from ‘inside’,
since our observation level will always be in the four-point lattice, making them
appear as a unique higher level.

A security type environment A : x — T maps variables to security types. The
security environment I', suitably extended to the new integrity levels, can be derived

5.5. Type System 63

Table 5.2 PIN APIs Type System - Expressions

Alz) =T AFe:7m <71
ber) Xrzer O T ATes
(op) Abe:0 AFe:d L(6)#[D:D]
P AFe ope:d
i Abe:mn AFe:n AFe:(m,m)
fst /snd
(pair) A F pair(ey, e3) : (11, T2) (fst/snd) AFfst(e):m AbFsnd(e):m
(enc) Alz)=cKs(r) k Ake:T (dec) A(z) =cKs(r) k At e:ency K

Ak enc,(e) : encsuz(r) K Ak dec,(e): dU o

Alz)=cKfic(T)k AFe:T
At encli(e) s encicug,(r) K

(enc-r)

A(z) =cKiic(1) K Ak e:encsocuc,) 8 Lo(T)=H
At dect(e): T

(dec-p)

A(z) =cKyc(t) K AFe:7 CloseDD*(7)

A'l-enc,(e) s encicug, () K

(enc-d)

Alz) =mKss,(T) AbFe:T
A F mac,(e) : LLU L(7)

(mac)

from the type environment A by just ‘extracting’ from the types their security
level. This is done via the following level function £ : 7 — ¢ defined as L(§) =
L(Ks(T) k) =L(encs k) = 6 and L((71,72)) = L(71) LU L(72). Notice that we write
Ks(7) & to indifferently denote encryption and MAC key types. We will also write
Lo(7) and L7(7) to respectively extract the confidentiality and integrity level of
type 7. Formally, if £(7) = 60 then Lo(7) = 6¢ and L;(7) = ;. From now on we
will assume I' = L o A.

The subtype preorder < extends the security level preorder C on levels ¢ with
encs.s5, K < 0cL. Moreover, from now on, we will implicitly identify low-integrity
types at the same security level, i.e., we will not distinguish 7 and 7/ whenever
L(T) = L(7") = écL, written 7 = 7/. This reflects the intuitions that we do not
make any assumption on what is stored into a low-integrity variable. We do not
include high keys in the subtyping and we also disallow the encryption (and the
MAC) of such keys: formally, in Ks(7) x and (71, 72) types 7,71, 7o # Kuc(7) k. We
believe that transmission of high keys can be easily accounted for but we leave this
extension as future work.

64 5. Type checking PIN Verification APls

Closed key types

In some typing rules we will require that types transported by cryptographic keys are
‘closed’, meaning that they are all dependent domains and all the dependencies are
satisfied, i.e., all the required representatives are present. As an example, consider
cKiic(7) £ with 7 = (H[D], H[D' : D]). Types transported by the key are all dependent
domains, noted DD(7), and are closed: the set of dependencies, noted Dep(7), is
{D}, since [D": D] depends on D, and the set of representatives, noted IRs(7), is
{D}, because of the presence of the representative [D]. If we instead consider 7/ =
(H[D],H[D’ : D],H[D’' : D"]) we have that the set of dependencies is {D,D”} and
the set of representatives is {D}, meaning that the type is not closed: not all the
dependencies can be found in the type. We will write CloseDD(7) to denote that
7 is closed, formally expressed as Dep(7) C IRs(7), and only contains dependent
domains, written DD(7). When it additionally does not transport nested randomized
ciphertexts we write CloseDD*(7). We will describe the importance of this closure
conditions when describing the typing rules. In section C.1 of Appendix C we report
the formal definition of the above predicates.

Expression typing rules

Expressions are typed with judgment of the form A+ e : 7, derived from the rules
in Table 5.2. The first five rules are pretty standard. The only unusual requirement
is £;(0) # [D: D] in rule (op). This forbids the typing of an operation with the
dependent domain of the operands. This is because for an arbitrary operation,
we cannot predict the precise value of the result. However, the dependency on
other domains f), noted e : f)], is correctly preserved meaning that the result of the
operation depends ‘in some way’ from D. Recall, in fact, that [D : D] < [e : DJ.

The first two rules for cryptography (enc) and (dec) correspond to the (op) rule
described above: they allow one to encrypt and decrypt at a level which is the least
upper bound of the levels of the key and the plaintext/ciphertext. Recall that we
only consider untrusted LL keys and trusted HC ones.

The remaining rules are more interesting: rule (enc-r) is for randomized encryp-
tion: we let enc?(e) and dec(e) denote, respectively, enc, (e, new()) and fst(dec, (e)),
i.e., an encryption randomized via a fresh confounder and the corresponding decryp-
tion. The typing rule requires a trusted key HC. The integrity level is handled as
before (notice that C has the effect of removing all the information on domains, as
for operations), while confidentiality of the ciphertext is L, meaning that it can be
assigned to low-confidentiality variables and thus accessed by an attacker. The rule
intuitively states that whenever a fresh confounder is encrypted with the plaintext,
the resulting ciphertext preserves secrecy, even if sent on an public/untrusted part
of the memory.

Rule (dec-p), when p = R is the dual of (enc-r). Notice that the rule gives the
correct type 7 to the obtained plaintext. This can be done only if the confidentiality

5.5. Type System 65

of the plaintext is at least as restrictive as the one of the key used, i.e., equal to H,
since H is the highest possible.

Rule (enc-d) is the most original one. It encodes a way to guarantee secrecy
even without confounders, i.e., with no randomization. The idea comes from for-
mat [SO0 for the EPB, which intuitively combines the PIN with the PAN before
encrypting it in order to prevent codebook-attacks. Consider, for example the ci-
phertext {{PAN,PIN[};. Since every account, identified by the PAN, has its own
PIN, the PIN can be thought of as at level [PIN : PAN] (‘the PIN is fixed relative to
the PAN’). Thus equal PANs will determine equal PINs, which implies that differ-
ent PINs will always be encrypted together with different PANs, producing different
EPBs. This avoids, for example, allowing an attacker to build up a codebook of
all the PINs. Intuitively, the PAN is a sort of confounder that is ‘reused’ only
when its own PIN is encrypted. The rule requires CloseDDt(7), i.e., that each sub-
expression is at integrity level [D; : D], and that dependent domains are closed, i.e.,
all the required integrity representatives are in 7. This is important as they play
the role of confounders, as explained above. Moreover it is also required that no
random ciphertexts are included in the message to encrypt. As in (enc-r) integrity
is propagated and confidentiality of the ciphertext is L, meaning that it is safe to
assign it to low confidentiality variables.

Rule (mac) is for the generation of MACs: it is similar to (op). The only inter-
esting difference is that the confidentiality level of the key does not contribute to the
confidentiality level of the MAC, which just takes the one of e. This reflects the fact
that we only use MACs for integrity and we always assume the attacker knows the
content of MACs, as formalized in definition 5.4. The reason why we force integrity
to be low is related to the fact we want to forbid declassification of cryptographic
values, which would greatly complicate the proof of robustness. By the way, this is
not limiting as there are no good reasons to declassify what has been created to be
low-confidentiality.

Typing rules for commands As in existing approaches [48] we introduce in the
language a special expression declassify(e) for explicitly declassifying the confiden-
tiality level of an expression e to L. This new expression has no operational import,
i.e., declassify(e) |M v iff ¢ {M v. Declassification is thus only useful in the type-
system to isolate program points where downgrading of security happens, in order
to control robustness.

Judgements for commands have the form A, pc F ¢ where pc is the program
counter level. It is a standard way to track what information has affected control
flow up to the current program point [48]. For example, when entering a while
loop, the pc is raised to be higher or equal to the level of the loop guard expression.
This prevents such an expression to allow flows to lower levels. The pc is a level on
the four point lattice, notice that, however, when its integrity level is high we let
assignment to integrity levels below H, e.g., dependent domains, to take place: this
makes sense since, as mentioned before, we never move our observation level below

66 5. Type checking PIN Verification APls

Table 5.3 PIN APIs Type System - Commands

A,pckci A,pck co (hile)A}_b:T A, L(T)Upckc
A, pch ciico v A, pc F while b do ¢

(skip) A, pc k= skip (seq)

Alz)=7 Akre:7 pcC L(T)ULH
A,pckxz:=e

(assign)

AFb:7 A L(T)Upckc A, L(T)Upck cy
A,pct if b then ¢y else co

(if)

A(z)=6cH Atre:dH pcCécH
A, pc b z:=declassify(e)

(declassify)

A(z) = mKyc(L[D],7) AFz:L[D] AFe:LL AFe:LL A(y) =7

(£ MAC) IRs(L[D], 7) = {D}CloseDD(L[D],7) A,pctkc A,pctcy peE L(r)ULH

A, pc k= if macy(z,e) = e’ then (y:=e;c1) else co; Lmac

LH.

Typing rules for commands are depicted in Table 5.3. The first six rules are
largely standard [48]. The pc is raised on entering if branches and while loops.
Notice also that assignments are only possible at or above the pc level and, as
mentioned above, at lower integrity levels if £;(pc) = H. Rule (declassify) lets
a high integrity expression to be declassified, i.e., assigned to some high-integrity
variable independent of its confidentiality level, when also the program counter is
at high-integrity and the assignment to the variable is legal (pc C dcH). The high-
integrity requirement is for guaranteeing robustness: no attacker will be able to
influence declassification.

The (if-MAC) rule is peculiar of our approach: it allows the checking of a MAC
with respect to an integrity representative z. The rule requires that the first param-
eter z is typed at level L[D]; the second parameter e and the MAC value ¢’ are typed
LL. If the MAC succeeds, variable y of type 7 is bound to the result of e through an
explicit assignment in the if-branch. Notice that such an assignment would be for-
bidden by the type-system, as it is promoting the integrity of an LL expression to an
unrestricted type 7 (as far as pc is high integrity). This can however be proved safe
since the value returned by the LL expression matches an existing MAC, giving us
enough guarantees about the integrity of the data, and allowing us to ‘reconstruct’
their type from the type of the MAC key.

Side conditions IRs(L[D],7) = {D} and CloseDD(L[D],) ensure that the MAC
contains only values which directly depends on the unique integrity representative
given by variable z. The ‘then’ branch is typed without any particular restric-
tion, while the ‘else’ one is required to end with a special failure command 1 pac

5.5. Type System 67

which just aims at non-terminating the program (it may be equivalently though as
a command with no semantics, which never reduces, or a diverging program as, e.g.,
while true do skip) so to obtain a 'match-it-or-die’ program (see Chapter 4). This is
needed to avoid the attacker breaks integrity and robustness by just calling an API
with wrong MACs. In fact, we can assume the attacker knows which MACs pass the
tests and which MACs do not (unless he is trying some brute-force/cryptanalysis
attack on the MAC algorithm, that we do not account for here) and by letting the
else branch fail we just disregard those obvious, uninteresting, information flows.

Security results We now give an overview of the security results, all the formal
proofs can be found in Appendix C.

As mentioned above, our type-system aims at guaranteeing a form of noninter-
ference and robustness, in the presence of cryptography and MAC-based integrity.
Our results hold under some reasonable well-formedness/integrity assumptions on
the memories: (i) variables of high level key-type really contain keys of the ap-
propriate level, and such keys never appears elsewhere in the memory; (i7) values
of variables or encrypted messages at integrity H, or below, must adhere to the
expected type; for example, the value of a variable typed as high integrity pair is
expected to be a pair; (iii) values for dependent domains [D : f)] are uniquely de-
termined by the values of the integrity representatives D, e.g., when they appear
together in an encrypted message or a MAC or when they have been checked in an
if-MAC statement; (iv) confounders are used once: there cannot be two different
encrypted messages with the same confounder.

Condition (ii7) states, for example, that if a MAC is expected (from the type of
its key) to contain the PAN, of level [PAN] and the relative PIN, of level [PIN : PAN],
encrypted with another key, all of the possible MACs with that key will respect a
function fipin:pany, pre-established for each memory. Thus, equal PANs will imply
equal encrypted PINs. Intuitively, even if the attacker does not know the actual
PIN, he knows that what is encrypted is the unique PIN corresponding to the
PAN. The value of integrity representatives, like the PAN above, is instead instan-
tiated ‘on-the-fly’, during well-formedness check, via a function g. For example,
let us assume fipin.panj(pan;) = pin;. We have that all of these MACs are well-
formed: (pany, {|pini[}x)x, (pang, {{pinalte)r, -.., (Pan,, {|pinm}r)w, as they all
respect fipin:pan). Intuitively, when we check the well-formedness of these MACs we
fix a function g(PAN) the exact moment we check the value in the MAC, i.e., for
the first MAC we choose g(PAN) = pan;, and so on. A well-formed PIN value
is thus the one that matches fipin.pan)(9(PAN)). Memories well-formedness, noted
A I—g M, is fully described and formalized in Section C.2 of appendix.

Program that are run on well-formed memories always return well-formed mem-
ories:

Proposition 5.1. If A,pctc, AF) M and (M,c) = M’ then A/ M.

From now on, we will implicitly assume that memories are well-formed. The next
result states that when no declassification occurs in a program, then noninterference

68 5. Type checking PIN Verification APls

holds. This might appear surprising as MAC checks seem to potentially break
integrity: an attacker might manipulate one of the MAC parameters to gain control
over the MAC check. In this way he can force the execution of one branch or
the other, however recall that by inserting 1L uac at the end of the else branch we
force that part of the program not to terminate. Weak indistinguishability will thus
consider such an execution equivalent to any other, which means it will disregard
that situation.

Next lemmas are used to prove the main results. The first one is peculiar of our
extension with cryptography: if an expression is typed below the observation level ¢,
we can safely assign it to two equivalent memories and still get equivalent memories.
We cannot just check the obtained values in isolation as, by traffic analysis (modelled
via patterns), two apparently indistinguishable ciphertext might be distinguished
once compared via equality with other ciphertexts existing in the memories.

Lemma 5.1 (Expression f-equivalence). Let My ~;, My and let A - e : 7 and
e Miv. If L(T) T 0 or L(A(z)) Z € then My[z — v;] ~p My[z +— v;].

Lemma 5.2. (Confinement) If A, pc = c then for every variable x assigned to in
c and such that A(xz) = 7 it holds that pc C L(T) LU LH.

Theorem 5.1 (Noninterference). Let ¢ be a program which does not contain any
declassification statement. If A, pc F c then c satisfies noninterference, i.e., ¥ £

LH, My, My. My =y My implies (My, c) =4 (Mg, C).

We can now state our final results on robustness. We will consider programs that
assign declassified data to special variables assigned only once. This can be easily
achieved syntactically, e.g., by using one different variable for each declassification
statement (which we label for clarity), i.e., z; :=declassify; (e1), . . ., ,,, := declassifyy, (€,),
and avoiding to place declassifications inside while loops. These special variables are
nowhere else assigned. We call this class of programs Clearly Declassifying (CD).
We do this to avoid, one more time, that attackers ‘incompetently’ hide flows by
resetting variables after declassification has happened and, since our semantics is
big-step, we would not detect these intermediate critical states. CD-programs, in-
stead, keep declassified data unchanged in fixed variables up to their termination.

Theorem 5.2 (Robustness). If a CD-program c is such that A, pc = ¢ then ¢ satisfies
robustness, i.e., VM, Mg, M|, M}, such that My ~ L My, M| =~ M} and M; ~uy M
it holds

<M1,C> =L <M2,C> implies <M,1,C> L <M/2,C>

5.6 A type-checkable MAC-based API

5.6. A type-checkable MAC-based API 69

We now discuss PIN.V_.M a MAC- Taple 5.4 The new PIN.V_M API with MAC-
based improvement of PIN.V, p...q integrity.

which prevents the attack of Sec-

. 5.4.9 d] h PIN_V_M(PAN,EPB,len,offset ,vdata,dectab,MAC){
tion Sz, all several others if (macyk(PAN, EPB,len,of fset,vdata,dectab)==MAC)

from the literature. We show then ECJ;B’;=E1;B:165/::bl;m;sﬁset;:Offset;

. . vdata' :=vdata ; dectab’ := dectab;
PIN_.V_M is type-checkable using PIN_V(PAN,EPB’,len’,offset’,vdata’,dectab’);
our type system, and we also else ret :="integrity violation”; Lpmact

show where the original API fails
to type-check.

We assume the intruder starts with only one EPB which contains the correct
PIN. An attacker equipped with several EPBs for the same PAN, only one of which
contains the correct PIN, can always violate robustness: he can try all the EPBs
until he identifies the one containing the correct PIN, influencing the declassification
of data. We feel our assumption is justified because an attacker with a stolen or
fake card can only make three guesses at the terminal before the account is blocked.
If the attacker were able to circumvent this restriction, given sufficient patience, he
could make a ‘brute force’ attack on the PIN from the terminal which we do not
expect to be able to prevent with our API.

Our fix is reported in Table 5.4. The new API checks a MAC of all the parameters
at the very beginning. Intuitively, the MAC check guarantees that the parameters
have not been manipulated. Some form of ‘legal’ manipulation is always possible:
an intruder can get a different set of parameters, e.g., eavesdropped in a previous
PIN verification and referring to a different PAN, and can call the API with these
parameters. Those parameters will have a correct MAC validating their integrity.
This is actually captured by our notion of dependent domains by typing all the MAC
checked variables as dependent from the PAN.

We need to refine the model given in Table 5.1 for the verification APT (called by
our MAC checking version). As discussed in Section 5.4.2, we model PIN derivation
as a decryption, obtaining the expected hexadecimal (secret) number from which
the PIN is then derived. The only change needed in Table 5.1 is substituting
z; :=encyq; (vdata) with z; :=dec,q(vdata). We model the extraction of the PIN
from an ISO1 block as randomized decryption. The resulting function is in Ta-
ble C.5 of Appendix C.

We show typing in detail: All the parameters except for the PAN (EPB, len,
offset, vdata, dectab, MAC) are of type LL, since we assume the attacker can
read and modify them; the PAN instead is used as the integrity representative
and is thus typed L[PAN]. The important element is the mac key ak which is
given type mKyc(7) with 7 = L[PAN], encja:pan) Ker, L[LEN : PAN], L[OFFS : PAN],
encije.paN] Kpdk, L[DECTAB : PAN]. Note that IRs(7) = {PAN}, Dep(7) = {PAN},
thus we have Closed(L[PAN], 7) and also DD(7) as 7 only contains types of the form
[D : PAN]. All the checked variables are typed according to the above tuple, e.g.,
PAN' with L[PAN], EPB’" with encife.pan] Ker and so on. In the code, to make it
readable, we directly assign MAC checked expressions to variables. To type-check,

70 5. Type checking PIN Verification APls

this assignment should be done in one variable, and than decomposed by projecting
the first and second elements of pairs. The result of the API will be stored in the
ret variable whose type is LL.

The key ek is typed as cKfic(H[PIN : PAN]) k., while the PIN derivation key pdk
as cK{ic (H[HEX : PAN]) kpqr. To complete the typing of the MAC we need to type
the two branches. The else branch is trivial: the assignment to ret is legal and then
it is followed by the MAC-fail command. The other one amounts to checking the
original API with the new high integrity types. What happens is that x; is typed
H[HEX : PAN] by rule (dec-u) and zo, ..., x4 are typed H[e : PAN] by rule (op). xg
is typed H[PIN : PAN] by rule (dec-u). Thus the declassification to x7, which is
typed LH, of the result of the comparison, is type-checkable as the expression types
Hle : PAN] and by subtype leads to HH. By theorem 5.2 we are guaranteed PIN_V_M
is robust. In the original version of the API, without the MAC check, x4 and x4
would only be typeable with low integrity, and hence the declassification would
violate robustness.

PIN translation API We conclude our results with a brief discussion of the
translation API that we call PIN_T_M, used to decrypt and re-encrypt a PIN under
a different key. Switches may not be able to support all known PIN formats, so the
translation function might need to reformat messages under different block formats.
In this paper we consider only the ISO-0 and ISO-1 formats (specified in table C.4
of the appendix). ISO-0 pads the PIN with data derived from the PAN.

We specify the code of PIN_T_M for translating specifically from ISO-1 to ISO-
0 in Table C.6 of the appendix. The API takes a PIN block EPB; and key k. It
extracts the PIN, reformats it and re-encrypts it with key &’. Decryption is as in the
previous section and gives the PIN in variable x; with type H[PIN : PAN]. The PIN
is now padded with the PAN and sent encrypted with the new key, which has type
cKyc(H[PIN : PAN],H[PAN]) k) Encryption is thus typed via (enc-d) giving £PBgo
of type enci..pan) k- Recall that this is safe since the PAN is playing the role of a
confounder. MAC creation is not problematic. The API type-checks and, given it
does not contain any declassification, it satisfies noninterference (Theorem 5.1).

5.7 Conclusions

This chapter shown how to type check a security API subject to noninterference at-
tacks. We have presented our extensions to information flow security types to model
deterministic encryption and cryptographic assurance of integrity for robust declas-
sification. We have shown how to apply this to PIN processing APIs. Most previous
approaches to formalising cryptographic operations in information flow analysis have
aimed to show how a program that is noninterfering when executed in a secure en-
vironment can be guaranteed secure when executed over an insecure network by
using cryptography, see e.g., [9, 32, 34, 42, 59]. They typically use custom cryp-
tographic schemes with strong assumptions, e.g. randomised cryptography and/or

5.7. Conclusions 71

signing of all messages. This means they are not immediately applicable to the
analysis of PIN processing APIs, which have weaker assumptions on cryptography.
[26] presents what seems to be the only information flow model for deterministic
encryption, that shows soundness of noninterference with respect to the concrete
cryptography model. However, it does not treat integrity. Gordon and Jeffreys’
type system for authenticity in security protocols could be used to check correspon-
dence assertions between the data sent from the ATM and the data checked at the
API [37]. However, this would not address the problem of declassification, robust-
ness or otherwise. Keighren et al. have outlined a framework for information flow
analysis specifically for security APIs [40], though this also currently models confi-
dentiality only. The formal analysis of security APIs has usually been carried out
by Dolev-Yao style analysis of reachability properties in an abstract model of the
API, e.g., [27, 43, 63]. This typically covers only confidentiality properties.

We plan in future to refine our framework on further examples from the PIN
processing world and elsewhere. Focardi, Luccio and Steel have also investigated
practical ways to implement our scheme in cost-effective way (see [33]).

72

5. Type checking PIN Verification APls

Type checking PKCS#11

PKCS#11, also known as “Cryptoki”, is a security API to perform key management
tasks. It is known to be vulnerable to attacks [23, 27] which can directly extract
in clear the value of a sensitive key, which should be protected by the API. These
are pure API attacks: they are not exploiting some cryptographic issue or deriving
information on the raw value of a sensitive key from the result of a command. In
fact, these vulnerabilities use the possibility of having the same key to perform
conflicting operations so that the API, as a result of some sequence of calls that the
interface regards as being correct and legal, leaks confidential keys.

A simple imperative programming language, suitable to code programs imple-
menting key management functionalities, is given together with a type-system check-
ing that sensitive keys are never leaked. These offer the possibility to give secure
implementations of the PKCS#11 API: a new patch based on key diversification
is presented and proved secure (by typing) and also a previously proposed security
fix [15, 16] is shown to be type-checkable.

6.1 Introduction

PKCS#11 defines a widely adopted API for cryptographic tokens [51]. It provides
access to cryptographic functionalities and should preserve certain security proper-
ties, e.g. the values of a sensitive key stored on a device should never become known
‘in the clear’. PKCS#11 is intended to protect its sensitive cryptographic keys even
when connected to a compromised host. However, it is known to be vulnerable to
various attacks that break this property [23, 27].

In a PKCS#11-based API, applications initiate a session with the cryptographic
token, by supplying a PIN. Once a session is initiated, the application may access
the objects stored on the token, such as keys and certificates. However, access to
the objects is controlled. Objects are referenced in the API via handles, which can
be thought of as pointers to or names for the objects. In general, the value of the
handle, e.g. for a secret key, does not reveal any information about the actual value
of the key. Objects have attributes, which may be a bitstring such as the value of a
key, or a Boolean flag signalling a property of the object, e.g. whether the key may
be used for encryption, or for encrypting other keys. New objects can be created by

74 6. Type checking PKCS#11

calling a key generation command, or by ‘unwrapping’ an encrypted key packet. In
both cases a fresh handle is returned. When a function in the token’s API is called
with a reference to a particular object, the token first checks that the attributes of
the object allow it to be used for that function.

Known attacks on PKCS#11 are related to the operations for exporting and
importing sensitive keys, called WrapKey and UnwrapKey in the API. The former
performs the encryption of a key under another one and the latter performs the
corresponding decrypt and import in the token. The standard does not clearly
separate roles for keys so that is possible to use the same key for conflicting purposes:
for example, a key could have its decrypt (D) and wrap (V) attributes set, enabling
the wrap and subsequent decrypt of a sensitive key, with the effect of leaking it
outside the token as plaintext:

h_myKey := GenerateKey({D, W});
wrapped :=WrapKey(h_-mySuperSecretKey, h-myKey);
leak :=Decrypt(wrapped, h-myKey);

Note, in fact, that the wrapping format adopted by PKCS#11 cannot distinguish
between an arbitrary encrypted message and a wrapped cryptographic key. So
when executing the decrypt command it has no way of telling that the ciphertext it
is decrypting and giving out in clear contains a key.

The next chapter will show that the state of the art in PKCS#11 security tokens
is rather poor: most of the commercially available devices are vulnerable to attacks
or prevent them removing functionalities for secure transport of sensitive keys. The
standard, however, can be patched without necessarily avoiding key wrapping [27]:
the set of admissible templates has to be restricted by policies on the attributes
which prevent a key to be used for conflicting operations and, a wrapping format
to bind key attributes to wrapped packets must also be added [27] or the imported
keys has to be used only for non-critical functions [15].

Clearly define a role for each key is the first argument of any security patch to
PKCS#11. In cryptography, key diversification is a standard technique which given
a key derives new ones from it. This is useful to differentiate the usage of a secret key
instead of distributing and protecting many of them (one for each purpose). This
chapter illustrates the first patch to PKCS#11 applying key diversification to assure
that a given key is never used for conflicting operations. The token will internally
diversify each sensitive key for the specific function asked by the user: notice that
only the original key will be securely stored in the device, while diversified keys will
be calculated at the time of the API command invocation and then thrown away.

A formal tool to reason about the security of different implementations of a
PKCS#11 API would help developers and hardware producers to better understand
the root-causes of the long known bugs affecting it and will also be useful to test new
patches. To this aim, a type-system to verify the security of programs designed to
perform key management tasks is presented here. It is used to type-check the new
patch discussed above and another one proposed (and implemented in a software

6.2. Language 75

emulated token) by the author and others [16, 15]. Note that the model introduced
in this chapter as well as the new security patch proposed, only consider symmetric
key cryptography.

Structure of the chapter A language suitable to implement programs which
perform key management operations is presented in Section 6.2 and a type system
to check that sensitive keys are not leaked is given in Section 6.3. It is then shown,
in Section 6.4 that a program respecting the RSA PKCS#11 Standard is not secure
and two security fixes are considered and proved correct. The chapter closes with
some remarks on Section 6.5.

6.2 Language

This section introduces a simple imperative language suitable to implement PKCS#11
API commands.

A cryptographic token can generate values not known outside of it, this is mod-
eled by considering an infinite stream of values G disjoint from the one (N) of values
available to an external user of the API. Generated values g, ranging over G, can
be thought as fresh values: g <— G, representing the extraction of the value g from
G, takes the first element of G and removes it from the stream so that it cannot
be reused, i.e., extracted values are always different. More formally, two extractions
9,9 < G are such that ¢ # ¢’. Such generation capability will be used to model
the generation of a new key by a secure device but also to get a new handle for an
object stored inside the token. With a little abuse of notation, whenever we write
g € G it is meant that g is a value extracted from G.

Cryptographic keys can be also obtained by key diversification: given a key £k,
a new one can be derived encrypting a tag under k. Tags are special values distin-
guishing between data and two different kinds of wrapping diversified keys. Values
are tags, errors, generated values (g), byte-streams (n), encrypted and decrypted
messages.

tag == D|W|W? (tags)
err = CKR_TEMPLATE_INCONSISTENT | CKR_HANDLE INVALID (errors)
v u= n|g]|enclv,v) | dec(v,v') | enc(tag, v) (no-err values)
z u= wvlerr (values)

The properties and capabilities of keys are described by templates, ranged over by
T, represented by a set of attributes. When a certain attribute is contained in a
template T" we will say that the attribute is set and unset otherwise. A key can be
either sensitive or non-sensitive, a sensitive key can also be always-sensitive if it has

76 6. Type checking PKCS#11

been generated (as a sensitive key) by a secure device. These two properties are
described by the attributes S (sensitive) and A (always-sensitive). Four attributes
identify the capabilities of a key: data encryption (E) and decryption (D) , wrap
(W) and unwrap (U), i.e., encryption and decryption of other keys. A non-sensitive
key is always assumed to be a non-always-sensitive one, i.e., S ¢ T implies A ¢ T.

Expressions e are defined below: getObj retrieve the raw value of a key given
its handle, checkTemplate query the template of a key stored inside the token,
diversifyKey obtain a new key diversifying another one, enc and dec respectively
encrypts and decrypts data or keys.

erey = getObj(z) | checkTemplate(z, ¢) | diversifyKey(tag, x)
emem = | enc(e,z) | dec(e,x)
e D= Chey | Emem

A handle-map H maps atomic value g to pairs of key and template. A memory
M maps variable to no-err values v. e [MH 2 denotes that the evaluation of the
expression e in memory M and handle-map H leads to value z. As it is standard
M(z) identify the value stored for variable z in memory M. The semantics of the
expressions follow:

| wn [v if M(z) =g A H(g) = (v, T)
getObj(z) + { CKR_HANDLE_INVALID otherwise

v it M(z)=9g A Hg) =wT)ANTCT

M,H
checkTemplate(z, T) 4 {CKRTEMPLATEINCONSISTENT otherwise

checkTemplate returns the value of the key pointed to by handle stored in z if its
template has all the attribute requested by the query template T set. Encryption
and key diversification semantics is straightforward: let e JMH v and M(z) = o', then
enc(e,z) MH enc(v,v’) and diversifyKey(tag, z) JMH enc(tag, v'). The encryption
mechanism modeled does not perform any integrity check on the messages so when
decrypting a ciphertext, if the right key is supplied, the payload is correctly returned,
i.e., dec(e,z) {MH v if e \MH enc(v,v’) and M(z) = @/, otherwise dec(e, z) |MH
dec(v,v") (with e [MH ¢ and M(z) = v').
A program c is a sequence of assignments or a failure:

c == FAlL[err] | z:=e | z:=genKey(T) | z:=importKey(y, T') | c1;c2

The semantics is pretty standard and is reported in Table 6.1. Whenever an expres-
sion evaluates to an error, the program transits to FAIL reporting the error message.
Key generation command (genKey) extracts a new key (¢g) and a new handle (¢')
from G and maps them in the handle-map using the given template T'; the handle
is also stored in the memory for future usages of the generated key. Note also that

6.3. Type System 77

if a sensitive key is generated, the template will also have its A attribute set: this
is performed by the & function which returns the original template T if S ¢ T and
T U {A} otherwise. Similarly, it is possible to import a key in the handle-map.

Table 6.1 Commands Semantics

[assign] e Mo [err] e M0 err
(M,H, z:=¢) — (M[z — v],H,¢) (M,H, z:=¢) — (M, H, FAIL[err])
[seql] (M1,Hy,c1) = (Mg, Ha, €) [seq] (M1, Hy,c1) — (Mg, Ha, cf)
(M1,Hq,c15¢2) = (M2, Ha, c2) (M1, Hy,c1;c0) = (Mo, Ha, 5 c2)
[genkey] 9.9 <G
S M H 2= genKey(T)) = (M[z — ¢[, HIg' — (g, &(T))],)
M —
[impkey] 9= G) = v

(M, H, z :=importKey(y, T)) — (M[z > g],H[g — (v, T)], &)

6.3 Type System

A secure implementation of the PKCS#11 API should never leak any sensitive key.
This property can be enforced by a type system requiring that (i) every key has a
specific unique purpose and (ii) keys can only be wrapped using secret (i.e. sensitive)
and trusted keys.

A handle type is a template (7'), reporting information about the properties set
on the key when it has been generated or imported into a secure device.

Keys are divided into sensitive and non-sensitive: two confidentiality levels (/)
are needed, secret (high-confidentiality) H and public (low-confidentiality) L. Confi-
dentiality levels are ordered by the operator C¢ revealing that sensitive keys need to
be used more carefully than non-sensitive one: L T H. Similarly, keys are also clas-
sified by their integrity level ¢;: a key having its A attribute set is a high-integrity
one (H) otherwise it is low-integrity (L). In fact, the always-sensitive PKCS#11
attribute cannot be set by a user when generating or unwrapping a key (see RSA
PKCS#11 Standard [51], Table 15 footnotes 4 and 6), this attribute is meant to be
automatically managed by the tamper resistant token whenever a key is generated as
sensitive (since once set, the sensitive attribute cannot be unset anymore). The or-
dering relations (C;) on integrity levels is counter-variant: low-integrity, tainted val-
ues have to be used more carefully than high-integrity, untainted ones, i.e., H £y L.

78 6. Type checking PKCS#11

Every key has a security level £, which is the concatenation of a confidentiality level
{c and an integrity one ¢;, £ = {¢;. The order between security levels, denoted C,
is defined as the component-wise application of Co and C;.

A key type could either be D’ identifying a key with security level ¢ whose
purpose is to encrypt and decrypt (public) data, or W*[f;] denoting a wrapping
key with security level ¢; used to encrypt and decrypt keys at level {5 (note that
it must be that ¢; = (.0} and (%4 Co (}; we always assume such requirement is
satisfied on types). There could also be keys that mix the two functionalities, such
keys are really dangerous since different kinds of data could be encrypted and when
decrypting a message there is no way to be sure about the nature of its payload:
well known attacks against PKCS#11 exploit such “feature”. These keys will be
typed with their security level ¢ and will be properly limited in their usages by the
type system. Types are ranged over by 7 and are defined by the following syntax:

T u= T || D" | Whaly)

A sub-type relation is defined over non-handle types: ¢ < ¢ if £ T ¢, D* < ¢,
WE['] < ¢ and also D < D2 and W4 [(] < W*[{] if ¢; C ¢». Non-sensitive and
untrusted keys (at level LL) cannot be used to perform any critical operation such as
wrapping a sensitive key. Such keys will be only employed to encrypt and decrypt
public messages: the sub-typing relation will so consider LL < DHL. Handles are
public values available to the user of the API, they are not in any sub-type relation
except for the fact that any handle could be safely considered as public byte-stream,
ie, T'<LL. We also assume that level LH never appears in any type, indeed there
is no public trusted data that the API needs to be aware of.

Templates, used to type a handle to a key, can be automatically converted to
key types: templates can be grouped into class of keys to which they refer to.
Given a template T it is first necessary to understand if it defines a unique purpose
for a key, note that whenever it is not possible to map a template to a unique
usage (because the key has not any capability flag set or because it mixes different
purposes) the special value L is derived. In the following, =y derives the fact that
a given template refers to a wrapping/unwrapping key or not, =p does the same
for encryption/decryption keys and |= finally states the key role calculated from the
template.

WeT v UeT Wg¢&T N U¢T DeT Vv Ee€T DET N EET
EwT: W EwT: L EpT: D EpT: L

EpT:D EwT:L EpT:L EwT:W EpT:L EwT:L EpT:D EFwT:W
=T:D ET:W ET:1 ET:L

Key types are then derived (denoted F T : 7) by calculating the security level
induced by the template.

6.3. Type System 79

AeT SeTl AgT SeT
¢ T :HH ¢ T :HL EoT:LL

ET:L =T:4{ ET:D T:4 ET:W T:0(#LL ET:W ET:LL
FT:¢ -7 D! =T : WIHL] =7 LL

Note that wrapping templates are mapped to a key type which can wrap any other
key, this is because there is no information about the target keys on the template.

Security policy The type system is parametric with respect to a policy which
governs key generation and import. More precisely, a policy P is made of two
components: Pgpy, a set of templates which are considered legal when generating a
new key, and Py, p a set of templates which can be given to a handle of an unwrapped
key. Unwrapped keys cannot be regarded to be always-sensitive (or trusted) and
their original capabilities are unknown: it must be that V1" € Pryp. = T : HL. The
policy P can be defined by the API programmer to implement security patches to
PKCS#11 standard: the type system enforces the fact that sensitive keys are never
leaked, so if a developer can give a policy P that let his PKCS#11 implemention to
type-check then the fix proposed (in terms of the policy) is a good one. By the way,
the policy is also useful to encode some restrictions required by the RSA standard
itself. From now on, every policy P is supposed to satisfies the following property:
VT € PgenUPryp, A ¢ T. Indeed the always-sensitive attribute must not be
used when generating or unwrapping a key as already discussed above.

Expressions Expressions getObj is straightforward to type: rule (get) maps the
type of the handle (i.e., a template) to its corresponding key type. A user could
also supply a byte-stream as handle when trying to get a key’s raw value, in that
case the type system will recover to a conservative type for the result: any returned
value will be typed as the top of the type hierarchy (HL) by rule (get-un).

The checkTemplate expression queries the template of the key pointed to from
the handle z against T' deriving some partial information about the real template
of the key: rule (chk) approximates the result’s type by inspecting the type of all
the templates allowed by the policy P and matching the query: more precisely, it
uses the function topQ(T, P), defined below, to calculate the least upper bound of
the types corresponding to templates in the policy P satisfying the query 7T

topQ(T, P) = | | 7’
T'ePaeNUPIMP
TCT' FT":7"
Key diversification properly specializes a given key to respectively a data or a
wrapping key depending on the tag issued.
Encrypting a public byte-stream message, rule (enc), always yields a public byte-
stream, indeed there is no secret to protect and thus any kind of data is allowed to be

80 6. Type checking PKCS#11

used as key except for strictly wrapping trusted keys (WHH[HH]) which are intended
only to wrap trusted keys. If potentially sensitive data has to be encrypted, rule
(wrap) requires the use of an always-sensitive wrapping key. Note, however, that
you cannot use a data key (D") or a non-sensitive one (LL) to encrypt something
which is not a byte-stream. Decryption by means of a (sensitive) data key types
as a public byte-stream indeed no sensitive values are ever encrypted using such a
key (see rule (dec)). If, otherwise, a (sensitive) key with no clear unique purpose is
used to decrypt a message, rule (unwrap) will protect the result regarding it as a
potentially sensitive untrusted key. Rules (hh-w) and (hh-u) govern the usage of the
special keys intended to only wrap and unwrap other trusted keys: it is interesting
to note that in such case when unwrapping a key it is possible to regard it as being
trusted.

Table 6.2 Typing expressions

Fkpe:7' <7 I(z)=r kpaz:T FT:7
b) ———m8m _— t
(sub) I'Fpe:T (var) Thtpz:T (get) I'+p getObj(z) : 7
'tpa:LL 'kpaz:LL topQ(T,P)=r
t- hk
(got-un) I' Fp getObj(z) : HL (chk) I' Fp checkTemplate(z, T) : 7
F"pfliie FFP.TZK E#LL
dk dw-h
(dk) I Fp diversifyKey(D, z) : D¢ (dw-h) [Fp diversifyKey(W, z) : W[HL]
(dw-1) I'kpaz:LL (dww) I'kpz:HH

I Fp diversifyKey (W, z) : LL [Fp diversifyKey(W2, z) : WHH[HH]

TFpaz:HL T(z) #WHHHH] Thrpe:LL Thkpa:WHHHL] Thpe:HL

(enc) I'Fpenc(e,z):LL (wrap) I'Fpenc(e,z): LL
(dod) Thpa:DHY Thpe:lL (unwrap) P EHL Thpell
T Ip dec(e, z) : LL wrap T Ip dec(e, z) : HL
Thpa:WHHHH] TFpe: HH Thpa:WHHHH] Trpe:LL
(hhw) — 27 HH) Thpe (hhm) —E2 HAH] Thp e

I'Fpenc(e,z):LL I'+p dec(e,z) : HH

6.3. Type System 81

Commands Rules (gen), (imp-1) and (imp-h) apply the policy P as expected, note
that generated sensitive keys will be marked with A flag (always-sensitive). The two
distinct rules for key import consider respectively the usage of an untrusted key, in
which case the template will be required to be in the Pry;p component of the policy,
or a trusted one, permitting to import a key whose template will have its A attribute
set, correctly tracking the fact that it is an high-integrity key. Rules (assign) and
(seq) are standard.

Table 6.3 Typing commands

Mz)=7 Ikpe:T (gen) I'(z)=@(T) T € Psen
I' bp z:=e s I' Fp z:=genKey(T)

(assign)

I I_P C1 T "p Co
I' Fp ci5c

(fail) T'Fp FAIL[err] (seq)

F(I):T Fl_pyHL TEP]MP F T :HL
[' Fp z:=importKey(y, T')

(imp-1)

I'(z)=T Trkpy:HH T\{A} € Peegn + T :HH

imp-h
(imp-h) [' Fp z:=importKey(y, T)

6.3.1 Type Soundness

Sensitive values are identified observing the public portion of a memory and com-
paring it with the keys stored in the handle map. The function priv returns true
if the given value does not appear in any byte-stream (LL) variable: privp y(v) =
Vz. I'(z) < LL, M(z) # v. A value is sensitive if it is stored on the handle-map with
only sensitive templates and it does not appear in the public memory. Let botH be
a function returning, if it exists, the greatest lower bound of all the possible types
(templates) assigned by H to a given value:

botH(v,H) =[]
(v, T)ecod(H)
=T 7/

It is now possible to precisely describe sensitive values.

82 6. Type checking PKCS#11

Definition 6.1. A value v is sensitive according to a type environment ', a memory
M and a handle-map H if v € G, privp y(v) and botH(v,H) =7 # LL (if (v, T) €
cod(H)).

An attacker is represented by a program using only variables whose type 7 is such
that 7 < LL. Indeed, our model assumes that these are the only variables to which
an external user of the API has access to. The idea is that attacker can be simulated
by inserting attack code before and after each API command implementation: this
model the fact that a malicious user can tamper with any parameter to be sent to
the PKCS#11 token and also with its returned values and use these to call (the
same or) other commands any number of times.

Some assumptions must be done on the initial memory and handle-map. The
memory does not store any sensitive key value in its public (i.e., LL) variables, and
messages encrypted with a non-sensitive key (or a byte-stream) does not contain
any sensitive key in their payload. With respect to the handle-map, the templates
assigned from the type environment to the handles must agree with values mapped
via H. These ideas can be formalized by typing values and showing that a memory
and handle-map respects the hypothesis of a given type environment. Moreover,
notice that err values will never appear in any memory.

The notation I' =y y v : 7 states that value v types 7 under type-environment
I', memory M and handle-map H. First of all, if v € N then I' Fyy v : LL
For values in G if the value is not in the public portion of the memory then it
will be typed as described by the handle-map (with the greatest lower bound of all
the templates under which the value appears), otherwise it will be a byte-stream.
Typing of g follows:

v € G privpy(v) botH(v,H) =7 # LL

I' Fmp v 7

ve G (=(privim(v)) Vo AbotH(v,H) V botH(v,H) = LL)
r l_l\/l,H v: LL

Values are subject to the sub-typing relation given on types. All encrypted values
must type LL but if their payload is not a public byte-stream then an always-sensitive
wrapping key is required. Diversified keys type as expected based on the used tag.
Decrypted messages require a public encrypted input and are typed as if the right
key has been used (even if it is not the case, since such values can only be generated
by wrong decryption). Rules are in Appendix D.1.

It is now possible to formalize the assumptions sketched above. First of all,
always-sensitive keys must not be known outside of the tamper-resistant device:
this is modeled by requiring that any always-sensitive key does not appear in public
variables. Then it must be checked that a policy P is respected, i.e., every key in the
handle-map should have a template allowed by P. More precisely, a non-sensitive
key is required to have its template in Pgpxn since all imported keys will be treated

6.3. Type System 83

as sensitive. Always-sensitive keys’ templates, in the same way, are restricted only
to templates in Pggy, indeed these are keys generated by the secure device. Notice
however that any template in the policy cannot have the attribute A set so in
checking this case, this attribute will be removed. A sensitive, non-always-sensitive
key’s template must be allowed by Pjj/p representing the fact that such key is an
(untrusted) imported one.

Definition 6.2. (Memory and handle-map well-formedness)

A memory M and handle-map H are well-formed with respect to a type environment
I' and policy P, written I' Fp M, H, if

1. V(v, T) € cod(H), A € T implies privp y(v)
2. and for any variable x in the domain of M it holds

e l'(z)=7# T and M(z) = v withT Fyn v: 7 <7, or
e(z)=T,M(z)=0v,T Fpypu v: LL, T : 77 and

— S ¢ T implies T € Pogpn

— A€ T implies T\ {A} € Popn

—SeTand A& T implies T € Pryp

— if v € dom(H) then H(v) = (v/, T) withT bmp v : 7 <77

The security of typed programs is proved by the following two theorems. It
is first shown that well-typed programs preserve memory and handle-map well-
formedness (Theorem 6.1), then it is also proved that sensitive values are never
leaked (Theorem 6.2).

Theorem 6.1. Let I'Fp MJH and I' Fp c. If (M;H,c) — (M’ H',c') then
e ifc £cthen'kpc and
e THp M H.

Theorem 6.2. Let T'p MH and T' Fp c. If (M;H,c) — (M H'.c') and v € G
then

1. privpm(v) and botH(v,H) = 7 # LL implies privp y (v) and botH(v,H') = 7 #
LL, and

2. privp y(enc(tag, v)) and botH(enc(tag, v),H) = 7 # LL implies privp . (enc(tag, v))
and botH(enc(tag, v),H") = 7 # LL.

Formal proofs are in Appendix D.2.

84 6. Type checking PKCS#11

6.4 Typed PKCS#11

PKCS#11 offers commands to encrypt and decrypt data as well as to wrap and
unwrap keys. This section want to provide a way to implement such commands
and type them to be sure that they are not vulnerable to attacks. Each API’s
command will be modeled as a program reading inputs from pre-defined variables
and assigning the result to the ret variable.

The semantics of the commands is defined by the RSA’s standard so the typ-
ing for input parameters and the result of each API function is fixed. C_Encrypt
takes a byte-stream and a handle to a key having its E flag set and returns an
encrypted byte-stream, similarly C_Decrypt take a byte-stream and decrypt it using
the key pointed to the given handle (having its D flag set) and returns to the user
the decrypted message. C_WrapKey takes the handle of a key to be wrapped and
the one pointing to the wrapping key (this is required to have its W flag set and
to be sensitive, a point missed by the standard but necessary to preserve wrapped
key confidentiality) returning an encrypted byte-stream. The unwrap command
(C_UnwrapKey) reads a byte-stream and decrypt it using the unwrapping key (a sen-
sitive key having its U flag set) returning a handle to a key whose value corresponds
to the decrypted message.

The following are the signatures of each command:

C_Encrypt(data : LL, h_key : LL) : LL
CDecrypt(data : LL, h_key : LL) : LL
C_WrapKey(h_key : LL, h-w : LL): LL

C_UnwrapKey(data : LL, how : LL): LL

6.4.1 RSA PKCS+#11 Standard

This sections shows that an implementation of PKCS#11 which exactly follows the
standard, fails to type-check: this is expected since it is known to be vulnerable to
attacks.

The standard impose that the always-sensitive attribute must never be used
when generating or importing a key and does not add any policy for the encrypt,
decrypt, wrap and unwrap attributes. The policy P encoding these requirements,
allows Pgen to contain any template both for sensitive and non-sensitive keys, i.e.,
Pgeny = {T. A € T}; in the same way for P;yp: Pryp = Pgen. Notice however,
that the model presented here does not allow for such permissive key import policy,
so we suppose Pryp = {7. F T :HL}: in this way we are adding more constraints
than the one asked by the standard, but these are not enough to make it secure.
The two commands used to mount the attacks, i.e., C_Decrypt and C_WrapKey, are

6.4. Typed PKCS#11 85

considered. In the following, to the right of the assignments the required types for
the variables are reported.

CDecrypt(data : LL, h_key : LL) : LL

k := checkTemplate(h_key, {D}); (['(k) = D"\)
ret := dec(data, k); (I'(ret) = LL)

The ret variable must be typed LL and thus the decrypt would state that I' Fp
k : DML But the checkTemplate expression, which queries a handle for a decryption
key ({D}), will not be able to type it as needed: in fact, topQ({D}, P) = HL since
it will be possible to have any kind of decryption key, also one that mixes this
functionality with the wrapping one. It is thus impossible to type the above code.

Similarly, when querying for a wrapping key ({W}) the result will never be
typed WHH[HL] and so the following implementation of the wrap command does not
type-check.

C_WrapKey(h_key : LL, how :LL): LL

w := checkTemplate(h_w, {W}) (I'(w)= WHH[HL])
k = getObj(h_key); (I'(k) = HL)
ret :=enc(k, w); (['(ret) = LL)

6.4.2 Key Diversification

This section presents a novel patch to PKCS#11. The idea is to use key diversi-
fication to avoid the same key to be used for conflicting purposes. Two different
implementations for the wrap and unwrap commands are given: one using the com-
mon wrapping key which can export/import any kind of key (even a non-sensitive
one) and the other one employing a wrapping key intended only for wrapping and
unwrapping always-sensitive keys.

The policy P is the most liberal one, used above: Pgpy = {T. A ¢ T} and
Pryp ={T. =T : HL}. Encrypt and decrypt commands follow.

C_Encrypt(data : LL, h_key : LL) : LL

k :=checkTemplate(h_key, {E}) (I'(k) = HL)
dk :=diversifyKey(D, k); (T'(dk) = DHY)
ret :=enc(data, dk); (['(ret) = LL)

CDecrypt(data : LL, h_key : LL) :LL

k := checkTemplate(h_key, {D}) (I'(k) =HL)
dk := diversifyKey(D, k); (D(dk) = DML
ret .= dec(data, dk); (I'(ret) = LL)

The wrap and unwrap commands below, are the ones which allow for the export
and import of any kind of cryptographic key: this result in a sever restriction when

86 6. Type checking PKCS#11

unwrapping a key since it has to be treated as an untrusted sensitive key no matter
what the real type of the original key was. Note that the wrap command require
an always-sensitive key to be used: this is a requirement which any patch aiming at
protecting the key export functionalities has to impose, indeed exporting a key out
of the token encrypted under an untrusted non-sensitive key opens up the way to
straightforward attacks.

C_WrapKeyHt(h_key : LL, how : LL) : LL

w := checkTemplate(h_w, {A,W}) (I'(w) = HH)

k .= getObj(h_key); (T'(k) = HL)

dk = diversifyKey (W, w); (T'(dk) = WHHHL])
ret :==enc(k, dk); (['(ret) = LL)

C_UnwrapKey'(data : LL, how : LL) : LL

w := checkTemplate(h_w, {U}) (I(

dk := diversifyKey (W, w); (I'(dk) = HL)
k :=dec(data, dk); (I'(k

ret :=importKey(k, {S, D, E,W,U}); (I'(

The following wrap and unwrap commands use always-sensitive wrapping keys
employed only to wrap and unwrap other trusted keys, note that in this case also
the unwrap command requires a trusted key. The wrap function will ensure that
the key to be wrapped is a trusted one.

C_WrapKey™(h_key : LL, how :LL):LL

w := checkTemplate(h_w, {A,W}) (I'(w) = HH)
k := checkTemplate(h_key, {A}); (I'(k) = HH)
dk = diversifyKey (W2, w); (T(dk) = WHH[HH])
ret :=enc(k, dk); (I'(ret) = LL)
C_UnwrapKey"H(data : LL, how : LL) : LL
w := checkTemplate(h-w, {A,U}) (I'(w) = HH)
dk = diversifyKey (W2, w); (T(dk) = WHH[HH])
k :=dec(data, dk); (I'(k) = HH)
ret :=importKey(k,{A, S, D, E,W,U}); (I(ret) = LL)

Importing a wrapped key as trusted in token, allows for it to be used also to
export other (trusted) keys. This is a very useful feature which could be used for
example to copy all the keys of a token (implementing this patch) to another one
(also using the same fix) to obtain a copy of it: it will be necessary to wrap all the
keys stored inside the secure device and re-import them into the other one which
will be able to perform exactly all the same commands performed by the first token.

6.4. Typed PKCS#11 87

Notice also that it would be possible to build a secure PKCS#11 module which
implements both the C_WrapKey"" and the C_WrapKey™ commands (and their re-
spectively unwraps). Then the user would be asked to choose the mode in which the
token has to operate, moreover this can be changed at any time without exposing the
stored keys to attacks: this is guaranteed by the fact that both the implementations
type-checks and typed programs can be safely composed.

This patch is completely transparent to the user: it does not bother with some
restrictive policy on the attributes of generated keys but instead it takes care of
ensuring the same key is never used for encrypting and decrypting both data and
other keys. It must be noted that this breaks the compatibility with other devices,
indeed a key wrapped by a token implementing this patch cannot be correctly im-
ported by one acting as described by the standard (and vice versa), the same holds
for encrypted data.

Note also that for two devices to be able to communicate (exchanging encrypted
data and keys) a common master key has to be shared. The token should provide
a special operation allowing a user logged in as a Security Officer, which must be
supposed to operate on an isolate and safe environment, to install such a key in all
the devices which need to share data and keys.

This is, to the best of our knowledge, the only patch that ensure to keep sensitive
keys secure and to let any developed application, talking with a device implementing
the patch, to work as expected without raising any error.

6.4.3 Secure Templates

Secure templates is a patch proposed by the authors and others [16, 15] which is the
first secure PKCS#11 configuration to appear in the literature that does not require
any cryptographic mechanisms to be added to the standard. Here it is shown to be
type-checkable giving a proof that it does not leak any sensitive key.

This security fix limits the set of admissible attribute combinations for keys in
order to avoid that they ever assume conflicting roles at creation time. This is
configurable at the level of the specific PKCS#11 operation. For example, different
secure templates can be defined for different operations such as key generation and
unwrapping.

More precisely, the patch allows three templates for the key generation com-
mand: a wrap and unwrap one for exporting/importing other keys, an encrypt and
decrypt template for cryptographic operations, and an empty template. The unwrap
command is instead allowed to set either an empty template or one which has the
unwrap and encrypt attributes set and the wrap and decrypt ones unset.

These rules are encoded in a policy P which sets Pggy to contain all the tem-
plates T" such that T\ {S,A} C {D,E} or T\ {S, A} C {W,U}, while the Pyp
component imposes that any imported key does not have its D and W attribute set:
Pyp={T. W E&TANDEZTNAZT NS €T}, the requirements on the A and S
attributes are due to the general rule that any template in the import component of

88 6. Type checking PKCS#11

a policy has to be mapped to HL key type. Notice that the patch is presented here
in an extended version: originally it allows the generation of sensitive keys only,
we instead let non-sensitive keys to be accepted by the Pggy policy component
(governing key generation).

With such a policy, whenever a checkTemplate expression queries a handle for a
decryption key ({D}) then the type returned is D": if D € T then T € Pgpy and
more precisely there are exactly two templates satisfying the query, T3 = {D, F'} and
Ty = {S, D, E} (meaning that there will be keys in the handle-map with template
Ty, ={A,S, D, E} since the A attribute is added by the key generation command);
it holds + Ty : LL and + T4 : D" from which LL U D" = DHL. Similarly, when
querying for an always-sensitive wrapping key ({A,W}) the result will be typed
WHHIHL] since only key generated by the token can be used to wrap a key and the
only template satisfying the query is @({S, W, U}).

C_Encrypt(data : LL, h_key : LL) : LL

:=checkTemplate(h_key, {E}) (T'(k)=HL)
ret :=enc(data, k); (I'(ret) = LL)

CDecrypt(data : LL, h_key :LL):LL

k :=checkTemplate(h_key, {D}) (I'(k)= D"
ret :=dec(data, k); (T'(ret) = LL)

C_WrapKey(h_key : LL, how : LL): LL

w := checkTemplate(h_w, {A,W}) (I'(w)=WHH[HL])
k = getObj(h_key); (I'(k) = HL)
ret :==enc(k, w); (['(ret) = LL)

C_UnwrapKey(data : LL, hw : LL): LL

w := checkTemplate(hw, {U}) (I'(w) = HL)
k :=dec(data,w); (I'(k) = HL)
ret :=importKey(k, {S, E,U}); (I'(ret) = LL)

With respect to the key diversification patch, this one pose some strong limits
to the possible templates. This could be an issue if an application in use on a given
system fails to obey to such requirements. Moreover, in this case compatibility with
other devices is not broken (anyway using unsafe tokens would expose your keys
under attacks on that devices). Also in this case for two token to be able to share
wrapped keys, they have to be initialized with a common master key.

6.5. Conclusions 89

6.5 Conclusions

A type system suitable to check the security of PKCS#11 APIs has been introduced.
It want to be a tool that helps developers and hardware producers to better under-
stand the crucial bugs affecting the design and implementation of this standard.

In fact, the type system has been used to prove that C_Decrypt and C_WrapKey
commands do not type if implemented as prescribed by the standard [51]. More
precisely, it has been shown that the requirements on the templates of the keys used
to perform such operation are not restrictive enough to avoid keys having conflicting
purposes.

A new patch to the RSA standard [51], based on key diversification, has also been
presented here. It lets the token to take care of separating roles for each key and
free the user from keeping track of keys’ templates to prevent well-known attacks
23, 27]. The type system has been used to verify the new patch as well as the secure
templates one [16, 15] proving their security.

RSA introduced a new attribute, called CKA_WRAP_WITH TRUSTED, to the standard
starting from version 2.20. It could be helpful to prevent the attacks object of this
work. The idea is that only the security officer would be able to import a trusted key
(i.e., a key whose CKA_TRUSTED attribute is set) into a token and any sensitive key,
which one would like to protect, has to have its CKA_-WRAP_WITH TRUSTED attribute
set, meaning that it can only be wrapped under a trusted key: this recalls the
idea of the special trusted key which can be diversified using the W? tag in the key
diversification patch, but to obtain the same result it is again necessary to restrict
the keys’ template to prevent them to be used for conflicting purposes. Investigating
the security implications of these two attributes is indeed an interesting issue and
is in the plan for an extension of the present work.

An implementation of the key diversification patch on a software emulated token
is also left as a future work. As already done for the secure template patch [16, 15]
the starting point would be the open-source project openCryptoki [49].

90

6. Type checking PKCS#11

Tookan: a TOOI for cryptoKi
ANalysis

This chapter shows how to extract sensitive cryptographic keys from a variety of
commercially available tamper resistant cryptographic security tokens, exploiting
vulnerabilities in their RSA PKCS#11 based APIs. The attacks are performed
by Tookan, an automated tool we have developed [15], which reverse-engineers the
particular token in use to deduce its functionality, constructs a model of its API for
a model checker, and then executes any attack trace found by the model checker
directly on the token.

Results of testing the tool on 17 commercially available tokens are presented: 9
were vulnerable to attack, while the other 8 had severely restricted functionalities.
Tookan may be also used to verify patches to insecure devices, to this aim it is shown
how it can prove that the secure templates patch [15], implemented in a software
token simulator, is secure.

Tookan has also recently become a commercial product of a joint colloboration
between INRIA and Ca’ Foscari University.

7.1 Introduction

This chapter describes Tookan!, an automated tool that reverse engineers the partic-
ular functionality offered by a device, constructs a formal model of this functionality,
calls a model checker to search for possible attacks, and executes any attack trace
found directly on the device. The model is based on previous work by Delaune,
Kremer and Steel, [27], but enriched significantly to better match the functionality
we found on real devices. We describe optimisations to the model building process
that result in models which can be handled efficiently by the model checker. We
also contribute a meta-language for describing PKCS#11 configurations, used by
the reverse-engineering part of our tool.

The results of testing the tool on commercially available devices are disquieting:
every device that offered the functionality necessary to import and export sensitive

Tool for cryptoKi ANalysis

92 7. Tookan: a TOOI for cryptoKi ANalysis

keys in an encrypted form, a standard key management operation, did so in an
insecure way allowing the key value to be recovered after a few calls to the API.
The tokens we tested that were not vulnerable to these attacks have very limited
functionality (just asymmetric keypair generation and signing, for example).

We then show how to use our tool to verify patched tokens. We present Cryp-
tokiX, a fiXed variant of the openCryptoki [49] software token simulator, which is
configurable by selectively enabling different patches. This offers a proof-of-concept
that secure, fully fledged tokens can be realized in practice. At the same time,
this has allowed us to test our reverse-engineering framework on (simulated) devices
implementing various combinations of security patches. Among its patches, Cryp-
tokiX includes the first secure configuration to appear in the literature that does
not require any new cryptographic mechanisms to be added to the standard.

Finally, we comment on the lessons for the next generation of standards for cryp-
tographic key management such as IEEE 1619.3 and the OASIS Key Management
Interoperability Protocol, currently in the draft stage.

Structure of the chapter The formal model of the API and how our tool extracts
information from the token to allow us to build the model for a particular device are
discussed in Section 7.2. We give our experimental results on various commercially
available devices in Section 7.3. We describe how to use the tool to find secure
configurations in Section 7.4. We conclude with a discussion of open problems and
future key management APIs in section 7.5.

7.2 Model

To protect a key from being revealed, PKCS#11 says that the attribute sensitive
must be set to true. This means that requests to view the object’s key value via the
APIT will result in an error message. Once the attribute sensitive has been set to true,
it cannot be reset to false. This gives us the principal security property stated in the
standard: attacks, even if they involve compromising the host machine to obtain the
PIN, cannot “compromise keys marked ‘sensitive’, since a key that is sensitive will
always remain sensitive”, [51, p. 31]. Such a key may be exported outside the device
if it is encrypted by another key, but only if its extractable attribute is set to true.
An object with an extractable attribute set to false may not be read by the API,
and additionally, once set to false, the extractable attribute cannot be set to true.
Protection of the keys essentially relies on the sensitive and extractable attributes.

The vulnerabilities of this critical API has already been discussed in the previous
chapter. Delaune, Kremer and Steel (DKS) proposed a Dolev-Yao style abstract
model for PKCS#11 APIs, and showed how difficult it is to prevent these kinds of
attacks: the commands can be restricted to prevent certain conflicting attributes
from being set on the same object, but still more attacks arise [27]. The model
presented here follows their approach.

7.2. Model 93

The idea is to model the device as being connected to a host under the complete
control of an intruder, representing a malicious piece of software. The intruder
can call the commands of the API in any order he likes using any values that he
knows. We abstract away details of the cryptographic algorithms in use, following
the classical approach of Dolev and Yao [31]. Bitstrings are modelled as terms in
an abstract algebra and the rules of the API and the abilities of an attacker are
written as deduction rules in the algebra. The intruder is assumed not to be able
to crack the encryption algorithm by brute-force search or similar means, thus he
can only read an encrypted message if he has the correct key. We analyse security
as reachability, in the model, of attack states, i.e. states where the intruder knows
the value of a key stored on the device with the sensitive attribute set to true, or the
extractable attribute set to false.

7.2.1 Basic Notions

We assume a given signature Y, i.e. a finite set of function symbols, with an arity
function ar : ¥ — N, a (possibly infinite) set of names N and a (possibly infinite) set
of variables X. Names represent keys, data values, nonces, etc. and function symbols
model cryptographic primitives, e.g. {x [}, representing symmetric encryption of
plaintext x under key y, and {x}, representing public key encryption of x under
y. Function symbols of arity 0 are called constants. This includes the Boolean
constants true (T) and false (L). The set of plain terms PT is defined by the
following grammar:

=T reX
| n neN
| f(t177tn) fEEaIld CL?”(f):n

t,1;

We also consider a finite set F of predicate symbols, disjoint from 3, from which we
derive a set of facts. The set of facts is defined as

FT ={pt,b) | pe F,t e PT,be{T,L}}

In this way, we can explicitly express the Boolean value b of an attribute p on a term

t by writing p(¢,b). For example, to state that the key referred to by n has the wrap

attribute set we write wrap(n, T). This is a difference in the syntax of our model

compared to DKS, where attributes are expressed as literals (wrap(n) or —wrap(n)).
The description of a system is given as a finite set of rules of the form

T:L —>neWﬁ T, L

where T, 7" C PT are sets of plain terms L, L' C F are sets of facts and n C N
is a set of names. The intuitive meaning of such a rule is the following. The rule
can be fired if all terms in 7" are in the intruder knowledge and if all the facts in

94 7. Tookan: a TOOI for cryptoKi ANalysis

Figure 7.1 Tookan system diagram

SATMC Tookan Device

L hold in the current state. The effect of the rule is that terms in 77 are added to
the intruder knowledge and the valuation of the attributes is updated to satisfy L'.
The new . means that all the names in 7 need to be replaced by fresh names in 7"
and L’. This allows us to model nonce or key generation: if the rule is executed
several times, the effects are different as different names will be used each time.

Example The following rule models wrapping:

h(xb yl)’ h(X27 Y2)7 Wrap(xl,T), eXtraCt(X27T) — {Iy2 I}y1

Intuitively, h(x;,y1) is a handle x; for key y; while term {y»[},, represents a key y,
wrapped with y;. Since the attribute wrap for key y; is set, noted as unwrap(xy, T),
and key y, is extractable, written extract(xp, T), then we can wrap y, with y;, creating

{lyZI}Yr

The semantics of the model is defined in a standard way in terms of a transition sys-
tem. Each state in the model consists of a set of terms in the intruder’s knowledge,
and a set of global state predicates. The intruder’s knowledge increases monoton-
ically with each transition, but the global state is non-monotonic. For a formal
semantics, we refer to the literature [27].

7.2.2 Modelling Real Tokens

The motivation for our work was to try to model the PKCS#11 implementations of
real tokens. Our experiments on the tokens proceed following the system diagram
in figure 7.1. First, Tookan extracts the capabilities of the token following a reverse
engineering process (1). The results of this task are written in a meta-language
for PKCS+#11 models, described below. Tookan uses this information to generate a
model in the above described style (2), which is given as input to the SATMC model
checker [7]. Model checker output (3) is sent to Tookan for testing on the token (4).

In table 7.1 we give the syntax for the model meta-language. The language de-
scribes the functions and attributes supported by the token. It is also designed to
capture the restrictions on functionality the token imposes. In table 7.2 we give our
model for PKCS+#11 showing how it is parametrised by the meta-model. We describe
this relationship in more detail below. Note that the model we give here is slightly

7.2. Model

95

Table 7.1 Syntax of Meta-language for describing PKCS#11 configurations

PKCS11_CONFIG

Key_Types

Functions
FunctionList
Function
Attributes
Attributelist

Attribute

Key_Types

Functions

Attributes
Attribute_Restrictions
Templates

Flags

supports_symmetric_keys(BOOL) ;
supports_asymmetric_keys (BOOL) ;

functions(FunctionlList);

nil | Function, FunctionlList

wrap | unwrap | encrypt | decrypt | create_object
attributes(AttributelList);

nil | Attribute, Attributelist

sensitive | extract | always_sensitive |
never_extract | wrap | unwrap | encrypt | decrypt

Attribute_Restrictions = Sticky_On

Sticky_On
Sticky_0ff
Conflicts

Tied
AttributePairlist

Templates

TemplateList
Template

Flags

BOOL

Sticky_Off
Conflicts
Tied
sticky_on(Attributelist);
sticky_off(Attributelist);
conflict(AttributePairlList);
tied(AttributePairList);
nil | (Attribute,Attribute) , AttributePairlist
generate_templates(TemplateList);
create_templates(TemplatelList);
unwrap_templates(Templatelist);
nil | (Template) , TemplateList

nil | (Attribute , BOOL) , Template

sensitive_prevents_read(BOOL) ;
unextractable_prevents_read(BOOL) ;

true | false

96 7. Tookan: a TOOI for cryptoKi ANalysis

Table 7.2 PKCS#11 key management subset with side conditions from the meta-
language of table 7.1

KeyGenerate : newnk h(n,k); A(n, B) (with B € G)
KeyPairGenerate : % h(n,s),pub(s);.A(n,B) (with B € G)
Wrap (sym/sym) : h(x1,y1), h(x2,y2); wrap(xi, T),extract(x2, T) = {y2}y,

Wrap (sym/asym) : h(xy, priv(z)), h(x2,y2); wrap(xq, T),extract(xa, T) = {y2}pub(z)
Wrap (asym/sym) : h(x1,y1), h(xo, priv(z)); wrap(xq, T),extract(xp, T) — {priv(z)}y,

Unwrap (sym/sym) : h(x,y2), {y1}y,; unwrap(x, T), ™ h(ny,y1); A(n1, B)
(with B € U)
Unwrap (sym/asym) : h(X, pl’iV(Z)), {yl}pub(z); unwrap(x, T)v L (nla yl)a 'A(nlv B)
(with B € U)
Unwrap (asym/sym) : h(x,y2), {priv(z)}y,; unwrap(x, T), fewm, h(ny, priv(z)); A(n1,B)
(with B € U)
SEncrypt : h(x1,y1),y2; encrypt(x1, T) — {yaly,
SDecrypt : h(x1,y1), {y2}y,; decrypt(x1, T) — y2
AEncrypt : h(x1, priv(z)), y1; encrypt(x1, T) = {y1}pub(z)

ADecrypt : h(xq, priv(z)), {y2}pub(z); decrypt(xs, T) — 2

SetAttribute : h(x1,y1); a(xg, L), 4@ (xq, 1) — ; a(xq, T), A%d@) (xy, T)
(with a € A\ sticky_off_attributes)

UnsetAttribute : h(xi,y1); alx, T) — 3 a(xq, L), A%d@ (x;, 1)
(with a € A\ sticky_on_attributes)

CreateObject : x; % h(n,x); A(n,B) (with B€C)

GetAttribute : h(n,x); extract(n, be), sensitive(n,bs) — x
with be,bs € {L, T} and

sensitive_prevents_read(T) = bs = L and
unextractable prevents_read(T) = be =T
Notation: - A = {a1,...,am} denotes the (ordered) set of attributes
- B ={by,...,bn} denotes a template, i.e. a set of Boolean values for attributes A

- A(n,B) stands for a;(n,by),...,am(n, by) while A(n,b) stands for a;(n,b),...,am(n,b)
- B(n,B), with B = {aj,, ..., } C A denotes aj (n,b),...,aj(n,b;), ie.,
the projection of A(n, B) on B
- A%rf(@) is the subset of attributes a’ € A conflicting with a, i.e., such that conflict(a’,a)
- Ated(@) is the subset of attributes a’ € A tied to a, i.e., such that tied(a’,a)

7.2. Model 97

simplified: in Tookan we construct separate sets of Attribute_Restrictions and
Templates for asymmetric and symmetric keys, since many tokens impose quite dif-
ferent policies for these two different types. The full syntax and all the configurations
derived during our experiments on real tokens can be viewed online?.

Cryptographic Keys and Key Attributes

Tookan tests to see if a token supports the generation of asymmetric or symmetric
keys, and returns the results, respectively, in the Booleans supports_symmetric_keys
and supports_asymmetric_keys. By trying successive key generation commands,
Tookan extracts the list of attributes in use for key objects and delivers these as the
list attributes. These are used throughout the construction of the model and are
noted as A in table 7.2. Note that as shown in the BNF in table 7.1, we restrict
attention at the moment to a subset of PKCS#11 attributes. We do not consider
signing and verification capabilities for example.

Functions

Tookan returns a list of functions supported, including one important function not
modelled in the DKS work: CreateObject. This function allows the application to
directly set the value of a new key on the device. Only the functions on the list are
included in the final model.

Key Generation Templates

A major difference between our model and the DKS model is that we take into
account key templates. In DKS, the key generation commands create a key with all
its attributes unset [27, Fig. 2]. Attributes are then be enabled one by one using
the SetAttribute command. In our experiments with real devices, we discovered
that some tokens do not allow attributes of a key to be changed. Instead, they
use a key template specifying settings for the attributes which are given to freshly
generated keys. Templates are used for the import of encrypted keys (unwrapping),
key creation using CreateObject and key generation. The template to be used in a
specific command instance is specified as a parameter, and must come from a set of
valid templates, which we label G, C and U for the valid templates for key generation,
creation and unwrapping respectively. Tookan can construct the set of templates in
two ways: the first, by exhaustively testing the commands using templates for all
possible combinations of attribute settings, which may be very time consuming, but
is necessary if we aim to verify the security of a token. The second method is to
construct the set of templates that should be allowed based on the reverse-engineered
attribute policy (see next paragraph). This is an approximate process, but can be
useful for quickly finding attacks. Indeed, in our experiments, we found that these

’http://secgroup.ext.dsi.unive.it/pkcsii-security

98 7. Tookan: a TOOI for cryptoKi ANalysis

models reflected well the operation of the token, i.e. the attacks found by the model
checker all executed on the tokens without any ‘template invalid’ errors.

Attribute Policies

Most tokens we tested attempt to impose some restrictions on the combinations of
attributes that can be set on a key and how these may be changed. Some restrictions
are listed as mandatory in the standard, though we found that not all tokens actually
implement them. In our meta-model language, we describe four kinds of restriction
that Tookan can infer from its reverse engineering process:

Sticky_on These are attributes that once set, may not be unset. The PKCS#11
standard lists some of these [51, Table 15]: sensitive for secret keys, for example. As
shown in table 7.2, the UnsetAttribute rule is only included for attributes which are
not sticky on. To test if a device treats an attribute as sticky on, Tookan attempts
to create a key with the attribute on, and then calls SetAttribute to change the
attribute to off.

Sticky_off These are attributes that once unset may not be set. In the standard,
extractable is listed as such an attribute. As shown in table 7.2, the SetAttribute rule
is only included for attributes which are not sticky off. To test if a device treats an
attribute as sticky on, Tookan attempts to create a key with the attribute off, and
then calls SetAttribute to change the attribute to on.

Conflicts Many tokens (appear to) disallow certain pairs of attributes to be set,
either in the template or when changing attributes on a live key. For example, some
tokens do not allow sensitive and extractable to be set on the same key. As shown
in table 7.2, the SetAttribute rule is adjusted to prevent conflicting attributes from
being set on an object or on the template. When calculating the template sets C, G, U
(see above), we forbid templates which have both the conflicting attributes set. To
test if a device treats an attribute pair as a conflict, Tookan attempts to generate a
key with the pair of attributes set, then if no error is reported, it calls GetAttribute
to check that the token really has created a key with the desired attributes set.

Tied Some tokens automatically set the value of some attributes based on the
value of others. For example, many tokens set the value of always_sensitive based
on the value of the attribute sensitive. As shown in table 7.2, the SetAttribute and
UnsetAttribute rules are adjusted to account for tied attributes. The template sets
C,G,U are also adjusted accordingly. To test if a device treats an attribute pair
as tied, Tookan attempts to generate a key with some attribute a on and all other
attributes off. It then uses GetAttribute to examine the key as it was actually created,
and tests to see if any other attributes were turned on.

Respecting the Standard

Tookan checks two vital aspects of the token’s behaviour: footnote 7 in table 15 of
the standard specifies that certain attributes of an object may not be revealed via

7.2. Model 99

a GetAttribute query if either the object’s sensitive attribute is set to true, or the ex-
tractable attribute is set to false. We test these conditions independently by attempt-

ing to read the attribute giving the true value of a secret key. The results are respec-
tively stored in sensitive_prevents_read and unextractable prevents read. Clearly
if either of these are false for a real token, we have a vulnerability, since these are
two of the critical security properties the token is supposed to provide. Nevertheless,

we include them in our model since several of the tokens we tested fail to enforce
these restrictions.

Optimising the Template Set

For tokens which allow a large number of different templates, the sets C,G,U can
get very large, which creates a model that is very slow to search. We apply some
simple optimisations to the template set that make a significant improvement to
performance. Specifically, we construct a set of attributes A" which only appear in
the model set to true and do not appear in any conflicts. It is easy to see that if
there are no rules that test this attribute is false, and it does not affect the value of
any other attributes, then we need only construct templates where these attributes
are set to true. Likewise, we construct a set of attributes A~ which only appear in
the model set to false. We need not construct templates where this attribute is true.

Implementing Abstractions for Proving Security

A previous work [35] proved that, for models where attributes are static (i.e. they are
all both sticky on and sticky off), it is possible to over-approximate the generation
of fresh handles and keys to prove security for an unbounded number of handles and
keys using a small finite model. Intuitively, the idea is to generate one key for each
template, and to allocate one handle for each template. If a template is used twice,
the same handle is generated, even if the key is different. Tookan has an option
that builds a model following this abstraction. Since it is an over approximation,
the abstract model may suggest false attacks. In this case, the user can switch back
to the concrete, bounded model, where a user defined number of fresh handles and
keys are used.

7.2.3 Limitations of Reverse Engineering

Our reverse engineering process is not complete: it may result in a model that is too
restricted to find some attacks possible on the token, and it may suggest false attacks
which cannot be executed on the token. This is because in theory, no matter what
the results of our finite test sequence, the token may be running any software at
all, perhaps even behaving randomly. However, if a token implements its attribute
policy in the manner in which we can describe it, i.e. as a combination of sticky
on, sticky off, conflict and tied attributes, then our process is complete in the sense

100 7. Tookan: a TOOI for cryptoKi ANalysis

Table 7.3 Summary of results on devices

Device Supported Functionality Attacks found
Company Model sym asym cobj chan w ws | al a2 a3 a4 ab | mc
Aladdin eToken PRO v v v v v v v al
Athena ASEKey v v v
Bull Trustway RCI v v v v v v v v al
Eutron Crypto Id. ITSEC v v
Feitian StorePass2000 v v v v v v v v v a3
USB | Feitian ePass2000 v v v v v v v v v a3
Feitian ePass3003Auto v v v v v v v v v a3
Gemalto Smart Enterprise Guardian v v
MXI Security Stealth MXP Bio v v v
SafeNet iKey 2032 v v v v
Sata DKey v v v v v v v v v v v a3
ACS ACOSH v v v v
Card | Athena ASE Smartcard v v v
Gemalto Cyberflex V2 v v v v v v a2
Gemalto SafeSite Classic TPC IS V1 v v
Gemalto SafeSite Classic TPC IS V2 v v v v v v v v v v a3
Siemens CardOS V4.3 B v v v v v ad
Soft Eracom HSM simulator v v v v v v v v al
IBM opencryptoki 2.3.1 v v v v v v v v v al
[[Acronym [Description]
sym symmetric-key cryptography
asym asymmetric-key cryptography
Supported cobj inserting new keys via C_CreateObject
functionality chan changing key attributes
w wrapping keys
ws wrapping sensitive keys
al wrap/decrypt attack based on symmetric keys
a2 wrap/decrypt attack based on asymmetric keys
Attacks a3 sensitive keys are directly readable
ad unextractable keys are directly readable (forbidden by the standard)
ab sensitive/unextractable keys can be changed into nonsensitive/extractable
mc first attack found by Tookan

that the model built will reflect exactly what the token can do (modulo the usual
Dolev-Yao abstractions for cryptography).

In our testing, the model performed very well: the Tookan consistently found
true attacks on flawed tokens, and we were unable to find ‘by hand’ any attacks on
tokens which the model checker deemed secure. This suggests that real devices do
indeed implement their attribute policies in a manner similar to our model.

7.3 Results

In this section, we report experimental results from using our tool to find attacks on
commercially available devices. We acquired as many tokens as we could subject to
our lab budgets, and the retail or loan availability of single tokens and cards. Tokens
cost anything from 20 to 400 USD, with the global market estimated at 5 billion

7.3. Results 101

USD3. We also tested our tool on two software simulators, intended for development
purposes. Table 7.3 summarises the outcome of the analysis. For each token, we
give a summary of the configuration information obtained from the token and a core
subset of the attacks we found. Our testing on tokens is ongoing. Latest results can
be viewed at the project website?.

7.3.1 Implemented functionality

Columns ‘sym’ and ‘asym’ respectively indicate whether or not symmetric and asym-
metric key cryptography are supported, i.e. the values of supports_symmetric keys
and supports_asymmetric keys from the extracted configuration. We do not at-
tempt to distinguish which particular cryptographic algorithms are supported in our
analysis, since it is not relevant to the kinds of attacks we are looking for. Both kinds
of cryptography are available on all the devices except three: the Eutron Crypto
Identity ITSEC, Gemalto Smart Enterprise Guardian and the Gemalto SafeSite
Classic TPC IS V1, which only provide asymmetric key cryptography. This last
device should implement both symmetric and asymmetric cryptography according
to its specification, but the one we tested could not generate and use symmetric
keys. This may be a hardware issue with the specific token we possess.

Column ‘cobj’ refers to the possibility of inserting external, unencrypted, keys
on the device via C_CreateObject PKCS#11 function, i.e. whether create_object
is included in the list of functions in the extracted configuration. This is allowed by
almost all of the analysed tokens. Although this command does not directly violate
a security property, allowing known keys onto a device is generally a dangerous
thing: an attacker might import an untrusted wrapping key from outside and ask
the device to wrap a sensitive internal key with it [27].

The next column, ‘chan’, refers to the possibility of changing key attributes
through C_SetAttributeValue. This functionality can easily be abused if not lim-
ited in some way. For example, it is clear (and stated in the standard) that it
should never be possible to make a sensitive key nonsensitive. The behaviour of
the C_SetAttributeValue command for a particular token is reported to the model
checker via the sticky_ on and sticky off lists. A tick in this column indicates
that at least one attribute was found that was not both sticky_on and sticky_off.
The three Feitian devices correctly limit C_SetAttributeValue so that a sensitive
key can never be changed into nonsensitive. However, this is of no use, since these
tokens let any user directly access sensitive and unextractable keys (see attacks a3
and ad), disregarding the standard. The Sata and the Gemalto SafeSite Classic V2
devices are the only ones which allow the sensitive attribute to be unset with no
limitation; this is in a perverse sense coherent, as just like the Feitian devices, they
let any user access sensitive/unextractable keys. An interesting case is the Eracom

3InfoSecurity Magazine February 2010, http://fanaticmedia.com/infosecurity/archive/
Feb10/AuthenticationTokensstory.htm
‘http://secgroup.ext.dsi.unive.it/pkcsii-security

102 7. Tookan: a TOOI for cryptoKi ANalysis

HSM simulator, which allows attribute change, but correctly implements the above
mentioned policy, i.e., it disallows making a sensitive key nonsensitive, while also
making sensitive keys unreadable: in this way, once a key is set as sensitive it will
never become directly accessible. Subtler attacks on the keys are still possible by
exploiting wrap/unwrap functions (see below attacks al and a2).

The following two columns, ‘w’ and ‘ws’, respectively indicate whether the token
permits wrapping of nonsensitive and sensitive keys. It is discouraging to observe
that every device providing ‘ws’, i.e., the wrapping of sensitive keys, is also vulner-
able to attack. All the other devices avoid attacks at the price of removing such
functionality. Forbidding the wrapping of sensitive keys is a quite limiting design
choice since it compromises any proper management of sensitive keys among different
devices. Wrapping sensitive keys is necessary in order to export/import those keys
in a secure way. Most of these ‘limited’ tokens simply remove the whole wrapping
functionality, i.e., both ‘w” and ‘ws’. There are however two devices which allow the
wrapping of nonsensitive keys only: SafeNet iKey and Siemens CardOS. Although
this choice is less restrictive than removing the whole wrapping functionality, it
seems difficult to think of an application where this would be a useful functionality.
As we will discuss in the next section, it is indeed possible to produce a secure token
configuration which allows wrapping (and unwrapping) of sensitive keys.

7.3.2 Attacks

Attack al is a wrap/decrypt attack: the attacker exploits a key ky with attributes
wrap and decrypt and uses it to attack a sensitive key k;. Using the notation from

Section 7.2:
Wrap: h(na,k2), h(n1, k1) = {ka |,

SDecrypt: h(nz, k2), {Ikll}k2 — k]_
As we have discussed above, the possibility of inserting new keys in the token (col-
umn ‘cobj’) might simplify further the attack. It is sufficient to add a known wrap-
ping key:

CreateObject: ko =22 h(n,, kz)
Wrap: h(nz, ko), h(ng, ki) = {kifh,

The attacker can then decrypt {ki[x, since he knows key ko. SATMC discovered
this variant of the attack on vulnerable tokens. We note that despite its apparent
simplicity, this attack has not appeared before in the PKCS#11 security litera-
ture [23, 27].

Attack a2 is a variant of the previous ones in which the wrapping key is a public
key pub(z) and the decryption key is the corresponding private key priv(z):

Wrap: h(nz, pub(z)), h(ni, ki) = {ki}pubz)
ADecrypt: h(ny, priv(z)), {ki}x, = ki

In this case too, the possibility of importing key pairs simplifies even more the
attacker’s task by allowing him to import a public wrapping key while knowing the

7.4. Finding Secure Configurations 103

corresponding private key. Once the wrap of the sensitive key has been performed,
the attacker can decrypt the obtained ciphertext using the private key.

Attack a3 is a clear flaw in the PKCS#11 implementation. It is explicitly re-
quired that the value of sensitive keys should never be communicated outside the
token. In practice, when the token is asked for the value of a sensitive key, it should
return some “value is sensitive” error code. Instead, we found that some of the
analysed devices just return the plain key value, ignoring this basic policy. Attack
a4 is similar to a3: PKCS#11 requires that keys declared to be unextractable should
not be readable, even if they are nonsensitive. If they are in fact readable, this is
another violation of PKCS#11 security policy.

Finally, attack a5 refers to the possibility of changing sensitive and unextractable
keys respectively into nonsensitive and extractable ones. Only the Sata and Gemalto
SafeSite Classic V2 tokens allow this operation. However, notice that this attack is
not adding any new flaw for such devices, given that attacks a3 and a4 are already
possible and sensitive or unextractable keys are already accessible.

7.3.3 Model-checking results

Column ‘mc’ reports which of the attacks has been automatically rediscovered via
model-checking. SATMC terminates once it has found an attack, hence we report
the attack that was found first. Run-times for finding the attacks vary from a couple
of seconds to just over 3 minutes. We evaluate the performance of the model checker
further in Section 7.5.

7.4 Finding Secure Configurations

As we noted in the last section, none of the tokens we tested are able to import and
export sensitive keys in a secure fashion. In particular, all the analysed tokens are
either insecure or have been drastically restricted in their functionality, e.g. by com-
pletely disabling wrap and unwrap. In this section, we present CryptokiX, a software
(fiXed) implementation of a Cryptoki token, whose security is configurable by se-
lectively enabling different patches. This offers a proof-of-concept that secure, fully
fledged token can be realized in practice and, at the same time, it allows us to test
the reverse-engineering framework on devices implementing various combinations of
security patches. As well as providing Tookan with test data, this proof-of-concept
of a secure token has also been adopted for educational purposes in a security lab
class at the University of Venice, during which students are challenged to extract a
sensitive key from a token which has only a subset of the patches turned on, so as
to be insecure but not easy to attack [10].

Our starting point is openCryptoki [49], an open-source PKCS#11 implemen-
tation for Linux including a software token for testing. As shown in Table 7.3, the
analysis of openCryptoki software token has revealed that it is subject to all the

104 7. Tookan: a TOOI for cryptoKi ANalysis

non-trivial attacks. This is in a sense expected, as it implements the standard ‘as
is’, i.e., with no security patches. We have thus extended openCryptoki with:

Conflicting attributes. We have seen, for example, that it is insecure to allow
the same key to be used for wrapping and decrypting. In CryptokiX it is possible
to specify a set of conflicting attributes.

Sticky attributes. We know that some attributes should always be sticky, such as
sensitive. This is also useful when combined with the ‘conflicting attributes’ patch
above: if wrap and decrypt are conflicting, we certainly want to avoid that the wrap
attribute can be unset so as to allow the decrypt attribute to be set.

Wrapping formats. It has been shown that specifying a non-conflicting attribute
policy is not sufficient for security [23, 27]. A wrapping format should also be used
to correctly bind key attributes to the key. This prevents attacks where the key is
unwrapped twice with conflicting attributes. Some existing devices already include
such wrapping formats; an example is the Eracom ProtectServer [28].

Secure templates. The set of admissible attribute combinations for keys are
limited in order to avoid that they ever assume conflicting roles at creation time.
This patch has already been presented in the previous chapter.

A way to combine the first three patches with a wrapping format that binds at-
tributes to keys in order to create a secure token has already been demonstrated [35].
In the following, we show how to check the security of the fourth patch, originally
proposed by the author and others [15] using Tookan. Consider a set of templates
with attributes sensitive and extractable always set. Other attributes wrap, unwrap,
encrypt and decrypt are set as follows:

Key generation: we allow three possible templates:
1. wrap and unwrap, for exporting/importing other keys;
2. encrypt and decrypt, for cryptographic operations;

3. neither of the four attributes set, i.e. the default template if none of the above
is specified.

Key creation/import: we allow two possible templates for any key created with
CreateObject or imported with Unwrap:

1. unwrap,encrypt set and wrap,decrypt unset;
2. none of the four attributes set.

The templates for key generation are rather intuitive and correspond to a clear
separation of key roles, which seems a sound basis for a secure configuration. The
rationale behind the single template for key creation/import, however, is less obvious
and might appear rather restrictive. The idea is to allow wrapping and unwrapping
of keys while ‘halving’ the functionality of created /unwrapped keys: these latter keys

7.5. Conclusion 105

can only be used to unwrap other keys or to encrypt data, wrapping and decrypting
under such keys are forbidden. This, in a sense, offers an asymmetric usage of
imported keys: to achieve full-duplex encrypted communication two devices will
each have to wrap and send a freshly generated key to the other device. Once the
keys are unwrapped and imported in the other devices they can be used to encrypt
outgoing data in the two directions. Notice that imported keys can never be used
to wrap sensitive keys. Note also that we require that all attributes are sticky on
and off, and that we assume for bootstrapping that any two devices that may at
some point wish to communicate have a shared long term symmetric key installed
on them at personalisation time. This need only be used once in each direction.
Our solution works well for pairwise communication, where the overhead is just one
extra key, but would be more cumbersome for group key sharing applications.

We analysed the developed solution by extracting the model using Tookan. A
model for SATMC was constructed using the abstraction option (see section 7.2.2).
Given the resulting model, SATMC terminates with no attacks in a couple of sec-
onds, allowing us to conclude the patch is safe in our abstract model for unbounded
numbers of fresh keys and handles. Note that although no sensitive keys can be
extracted by an intruder, there is of course no integrity check on the wrapped keys
that are imported. Indeed, without having an encryption mode with an integrity
check this would seem to be impossible. This means that one cannot be sure that
a key imported on to the device really corresponds to a key held securely on the
intended receipient’s device. This limitation would have to be taken into account
when evaluating the suitability of this configuration for an application. CryptokiX
is available online’.

7.5 Conclusion

We conclude by evaluating the state of commercial security tokens, the performance
of Tookan, and lessons for future key management APIs.

The state of the art in PKCS#11 security tokens seems rather poor. In our
sample of 17 devices, we found 5 tokens that trivially gave up their sensitive keys
in complete disregard of the standard, 3 that were vulnerable to a variety of key
separation attacks, and a further smartcard that allowed unextractable keys to be
read in breach of the standard. The remainder provide no functionality for secure
transport of sensitive keys. We sent vulnerability reports to the manufacturers
concerned at least 5 months before publication. Their responses can be viewed at
the project website®.

The tokens we have encountered so far have not provided much of a challenge
for Tookan. At the start of the project, we hoped to encounter tokens that were
patched in an effort to mitigate the attacks. Instead we found tokens with simple

Shttp://secgroup.ext.dsi.unive.it/cryptokix
Shttp://secgroup.ext.dsi.unive.it/pkcsii-security

106 7. Tookan: a TOOI for cryptoKi ANalysis

flaws or minimal functionality. Attacks were found on all the vulnerable tokens,
usually in just a few seconds. The potential value of the tool is perhaps best indi-
cated by the work in section 7.4, where we implement patches on a software token
simulator obtaining a fully featured software prototype of a secure (at least in our
model) token, capable of wrapping and unwrapping keys. The software token can be
reverse-engineered accurately by our automated framework, indicating that Tookan
is ready to analyse more sophisticated devices as soon as they become available
on the market. Our software token might be useful as a reference to develop such
next-generation devices.

Notice, however, that if a manufacturer would like to validate a security patch
to be implemented in its products, having the full accessibility to the source-code
of the drivers and firmwares, it would be better to use a type-based approach like
the one proposed in Chapter 6. Indeed having the possibility to validate if the code
is secure appears more efficient and also time and cost preserving than building a
token and use Tookan to reverse-engineer it. On the other side, a company (or a
person) which would like to check if the PKCS#11 devices in its posses are not
vulnerable (to the attacks considered here) will find Tookan a valuable and perfectly
suited product.

In future work we will be extending our model to more cryptographic detail.
We would also like to try Tookan on PKCS#11 based devices currently outside our
budgets, such as Hardware Security Modules (HSMs).

Finally, there are at least two new standards which address key management cur-
rently at the draft stage: IEEE 1619.37 (for secure storage) and OASIS Key Manage-
ment Interoperability Protocol (KMIP)®. Although neither is aimed at cryptographic
tokens, it is clear there is a move towards better standards for key management in
general. Given the apparent difficulty of constructing a secure interface based on
PKCS#11, this seems a timely intervention. Our conclusions based on the research
in this paper are that the new standards should:

e Specify clearly what security properties an interface complying to the standard
should uphold. Our experimental evidence suggests that the security goals in
PKCS#11, i.e. protection of sensitive or unextractable keys, are apparently
too well hidden for some implementers to notice. A clear set of security prop-
erties would make life substantially easier for application developers as well.

e Include a format for key wrapping that securely preserves key metadata (i.e.
attributes etc.). This has already been noted by recent proposals for secure
interfaces [18, 25].

e Treat explicitly the problem of key roles, and give guidance to avoid conflicting
roles. Again this issue has been treated by recent proposals for APIs in the
academic literature [18, 25].

"https://siswg.net
8http://www.oasis-open.org/committees/kmip/

7.5. Conclusion 107

e Make provision for compliance testing, to weed out poorly implemented tokens.

108 7. Tookan: a TOOI for cryptoKi ANalysis

Conclusions

110 Conclusions

Security APIs are Application Programming Interfaces that allow an untrusted
system to access the functionalities offered by a trusted secure resource, assuring
that a security policy is satisfied no matter what sequence of the API commands are
invoked. Unfortunately, a number of attacks on existing security APIs have been
found. This is because designing them is very hard. Formal methods have been
applied in order to verify the security of these interfaces, and this thesis proposed to
use a type-based analysis: an API designer should code a prototype of its API and
if it type-checks, she would be assured that the proposed implementation is secure,
i.e., respects the given security policy.

Two different kinds of attacks have been considered: information leakage and
pure API attacks. The former slowly leak secret data to an attacker which will be
able to spot dependency between the input parameters and the output given by an
API command. The latter directly leaks a secret in its output result, provided that
a given sequence of commands are executed. The attack model in this case is rather
different: the malicious user is not looking at the outputs of the commands to learn
something on the confidential data but will find a way in which commands can be
composed so that to reveal the desired information in clear.

This work argues that information leakage attacks can be prevented enforcing
noninterference-style properties. To this aim, the setting of language-based infor-
mation flow security has been extended to account for randomized and determin-
istic cryptography. These are general results which are novel contributions to the
language-based security foundational research filed. They have also opened up the
possibility of a type-based analysis of the ATM PIN verification API which has
highlighted the causes of its vulnerabilities so that a possible fix has been proposed.

Pure API attacks can be avoided asking that data confidentiality is always pre-
served at run-time, a more liberal policy than noninterference. The thesis have so
presented a type system for a key management API which proves that secret keys
are never leaked. It has been used to reason on the security of PKCS#11 and to
prove the correctness of a novel security fix for it.

In the future, it would be interesting to use a type-based approach to in-
vestigate the security of more APIs. The typing introduced for key manage-
ment APIs could be used to verify the security of two new standards currently in
their draft stage: IEEE 1619.3 (https://siswg.net) (for secure storage) and OA-
SIS Key Management Interoperability Protocol (KMIP) (http://www.oasis-open.
org/committees/kmip/).

Web applications could also be considered. In fact, these are moving to offer
a lot of services through HTTP-based APIs. This is true also for some of the
biggest social networks, e.g., Facebook and Twitter, and for big sites like Google’s
ones: in these cases the privacy of the users data must not be broken by flawed
APIs. Another interesting test case would also be the client-side part of the web
experience: the browser. Any web site visited by a user could interact with the
browser’s underlying system through JavaScript, this is a source of possible attacks

Conclusions 111

to the user’s computer. It would be possible to model the JavaScript interpreter as
the entity exposing a security API to the browser and to verify if some desirable
security policy holds. For example, it could be proved that information stored in
cookies belonging to a domain are not accessible to a web site out of that domain.

Type-based analysis has proved to be a valid tool for the formal analysis of the
APIs security properties, and also for helping API developers to understand the root-
causes of known vulnerabilities affecting APIs and to aid them in developing secure
code. We believe that, for trusted hardware manufacturers, having the possibility
to type-check the code to put inside their devices is more efficient and also time and
cost preserving than the possibility offered by other formal methods.

This thesis does not give a last answer to the problem of verifying the correctness
of security APIs. It instead provide valuable examples to argue that a type-based
analysis would be profitable in this field. In fact, type systems are rather common
tools these days and can be considered well-understood by most (if not all) the
programmers and so their application to the development of security APIs seems to
be the natural way to go.

112 Conclusions

A

Cryptographic Noninterference -
Formal Proofs

114 A. Cryptographic Noninterference - Formal Proofs

Theorem. 3.1 If C, ~¢ (:71, Cy &C@ then
1. C[G,, G =c C[CF, C));

2. Let D[e],e5] = if b then] else o5, with b high. Then, (i o C; implies
D[Cy, Co] =¢ D[C], C).

Proof. Proof follows by induction on the structure of C. o
For these first cases, the single-threaded ones, suppose C[C{,Cy] = C,

C[C',C)] = C" and let R be the relation {(C,C")}U =¢.

skip
Starting with s; =¢ s with both states the computation ends in one step with
the same states.

z:=e¢p (['(z) =L)
er, is a low expression so the computation of the command, in the two low-
equivalent states s; =¢ sy, terminates in one step producing two new low-
equivalent states. Indeed, let v; = ey, {M* and vy = ez, [M2, then by definition
of low expression (Definition 3.11) it holds that (My[z — v1],01) =¢ (Ma[z —

UQ], 0'2).

z:=e (I'(z) = H)
Computing the command terminates in one step and does not have visible
effects on the two low-equivalent starting states. In fact sp(s}) = sp(s1) and
sp(sh) = sp(sq) since variables at level H are not considered in patterns con-
struction. So s =¢ s5.

k:=Fk', k:=newkey (I'(k) = I'(k') = K)
These cases assign to a key variable a value contained in KEY. As for the
above case, computation does not have visible effect and the proof follows in
the same way.

if by then [eq] else [oy]
Computation starts with (sy,if b then C; else Cy) and (s, if b then C| else C)).
Let s = (My,01) and sy = (Mg, 03). by, will be evaluated to the same boolean
value on both states, indeed it is a low expression and by Corollary 3.1 we
know that b;, |Mi= b = by [M2. Thus, in one step these configurations move
to two bisimilar configurations, namely these could be either (s1,Cy), (s2,C})

(Cl =c Cll) or <Slv C2>7 <327 C/2> (CQ =c CIQ)

if b then [e;] else [o5] (b is high)
Start with s; =¢ so. Here the value of b might differ for s; and sy, but since
C =c Gy, 4,7 : 1,2, one step of computation ends up in bisimilar commands
and low-equivalent states (indeed no state change occurs in this step).

115

fork([e;][e2])

Computation does not depend on state so this case is trivial.

send(cid, er)
Let s; = (My,01), s = (Mg, 03), v1 = ep {M and v, = e |M2. With both
states, the computation of send terminates in one step giving two new low-
equivalent states, since ey, is a low expression and so it holds (by Definition
3.11) that (My, o1[cid — vy.vals|) =¢ (Mg, 03]cid — vy.vals]).

receive(cid, z) (I'(z) # K)

Let (My,01) = 51 =¢ 82 = (My, 02). Two cases can be analyzed:

e I'(z) = H: let 07 = vals;.v; and oy = valss.v1. Reception of a message
on channel cid will get the following states: s| = (My, o1[cid — vals;))
and s, = (Mg, o9[cid — valsy]). By Lemma 3.1 item 3 we can state that

! =C 8/2.

e I'(z) = L: in both s; and ss receive terminates in one computational step
leading the following new states: s{ = (My[z — v1], o1[cid — vals;]) and
3’2’ = (My[z — wg],09[cid +— wvalss]). By Lemma 3.1 item 4 we can say

" "

Note that we cannot have the case I'(z) = K. This let us preserve key-safe
property on states as stated by Proposition 3.1.

We now take care of multi-threaded cases:

[01]; [e2]
In this case C; and C] can create new threads, so we need to construct R

properly:
R = {((Cl»c2)D1, (C’I,C’)D’) |

Ci=¢), D) =¢ D/}UNC

Startlng from s, = 8, if (s1,Cy) — (s1,Cy 5} then (sq9,C}) — (sg,a[fg>
and C; D1 X C/ D’ with s] =¢ s} (since C; ®¢ C}). Thus, it must be the case
that C1 o C and D1 o D

Let C[C,Cy] = (C;C and C[C’l,C’] = (C;C,. If C; spawns
threads, (sl,Cl;C2> <81,(C1,C2)D1> then C} do the same (sq9,C};Ch) —
(sQ,(C’l,Cz)D’1> and C; ¢ C\, Dy = D, & =¢ s, Commands so ob-
tained are included in R and produce low-equivalent states. Note that, if
(s1,C1) — (s),¢), then (s9,C)) — (sh,e) and s] =¢ s, so it holds that if
(s1,Cy; Co) = (57, Cy) then (sq9, C1; Ch) — (55, CY) and s) =¢ 55 (Co =e C), by
hypothesis). These latter two configurations are included in the bisimulation,
concluding the proof of the case.

116 A. Cryptographic Noninterference - Formal Proofs

while by, do [e]
In this case contexts are C[Cy] = while by, do C; and C[C}] = while b, do C.
Here we choose R to be
{((Cy;while bz, do C1)D1, (Cl,whlle by do C’)D’)|

C1~CC1, D1~CD }UNC

Starting with s; =¢ s9, by will be evaluated to the same boolean value on
both states by Corollary 3.1. Computation either terminates in one step or
moves to the commands Cy;while b, do C; and C};while b;, do C} with low-
equivalent (unchanged) states. In the first case proof is concluded, for the
latter one we need to show that if the obtained commands move, then they
reduce to programs still contained in R. Indeed, C; & C} and this let us say
that, if (s;,Cy) — (shClD), then (s9,C)) — (S’Q,C'DZ) and s} =¢ s,. Thus,
(s1,Cy;while by, do Cy) — (s, (Cl,whlle b, do C) 1) implies
(s2, C|;while by, do C}) — (s}, (Cl,whlle by, do C,D’)
These commands are in R and the states produced are low-equivalent.

{ [o1][o2] oL L . -

Let R be {(C,Cy, C1CY)| C; =¢ Clyi 2 1,2} U=¢. From C; &¢ C| we know that

Cl, C/ will be of the form (C!...C"|) and (C/'...C/"). The same is true for

Come Ch (CL...C), (C...Cim). Tt holds that Vs; =¢ sa, i:1,...,nj
1,...,m:

if (s1,C}) — (s}, C) then (s3,C}) — (sh,C")

if (s5,C7) — (s, C) then (s5, C¥) — (s}, C

and C = C', s| =¢ s,. This proves the case.

Lemma. 3.3 (Expression equivalence)
If e : L then e is low according to Definition 3.11.

Proof. We prove the following stronger fact:
Let 51 = (My,03), 85 = (Mg, 03) with s; =¢ 89 and v = e [M1| 1y = ¢ |[M?

e:L=3p: po(v1) = pe(v2)p, sp(s1) = sp(sa)p
By induction on the structure of e.

T
Since $1 =¢ S2, Ip 1 sp(s1) = sp(s2)p. Considering p,(M;(z)) and p,(Ma(z))
we are taking a subset of the original patterns, indeed z : L so I'(z) = L. Thus,
it holds that pg(v;) = p¢(w)p using the same confounder substitution adopted
to match the patterns on the whole states.

117

pair(ey,)
Let 5p(s1) = $p(52)p.
By (exp-l) pair(er, e2) : L, e; : Land ey : L. Let v = e; JMi, v/ = ey M
with 7 : 1,2. By induction on e; and e; we can say that

Jp1: pe(v]) = pe(v3)p1,5p(51) = sp(s2)p1
3pa i pe(vy') = pe(vy)p2,5p(51) = sp(s2)p2

Thus, it holds that if p(c) = ¢ then also pi1(c) = ¢ and py(c) = ¢ for all
confounders substituted by p, i.e., p; and py perform the same substitutions of
p on sp(sqg). That also means that new substitutions added to both p; acts on
fresh (different) confouders. Let p’ = p[p1, p2] be the confounder substitution
which acts as p plus substitutions performed by p; and ps. It follows that:

pe(v1) = (Pe(v1), Pe(vy)) = (Pe(v2), Pe(v2))p’ = pe(wa)p” and sp(s1) = sp(sq)p'.

fSt(@l)
Let sp(s1) = sp(s2)p. Standing that fst(e;) : L, then e : L by (exp-1). Let
v = e J™™ 4 : 1,2. By induction on e;:

3p1 : pe(vy) = pe(v3)p1, sp(s1) = sp(s2)p

!/ / ! __ " n ! 1 "
Thus v; and v} has the same structure. If v; = (vy, v{") then v} = (v, v3’) and

pe(v1) = pe(v]) = pe(vd)p1 = pe(v2)p1. This prove the sub-case. Otherwise,
if v] is not a couple, v| # (v, v"), then fst(e;) ML on both M; and M.
pe(L) =L, thus it holds that py(v1) = pe(v2)p,sp(s1) = sp(sa2)p, where p is the
same map we assumed at the beginning of the case.

snd
This case is all way similar to the fst one.

newkey
Since newkey : K by (newkey), this case does not satisfy Lemma hypothesis.

enc(ey, e)
Let sp(s1) = sp(s2)p. We can analyze two distinct cases:

e ¢; : H: this is the case where we are encrypting secret data. The type
system requires that e, is a variable z and I'(z) = K by rule (enc-sec).
Thus, ps(v1) = O, and py(ve) = O,,, indeed by Definition 3.7 M;(z) €
KEY, i : 1,2 (item 1) and sp(sy) I/ Mi(z), sp(s2) 1/ Ma(z) (item 2).
Since ¢; and ¢y are fresh confounders, they are not mapped in p so we
can extend it as follows: p' = p[cy — ¢1]. It holds that p,(v1) = pe(wa)p/,

sp(s1) = sp(s2)p"

118 A. Cryptographic Noninterference - Formal Proofs

e ¢ :L: byrule (exp-l) e : L, ep : L. Let vf = e; JMi) v = ey [Mii: 1,2
By induction on e; and e; we can say:

Jp1: pe(v]) = pe(v3)p1, sp(s1) = sp(s2)p1
Jpa: pe(vy') = pe(vy)p2, sp(s1) = sp(s2)pa

If v/ is not an atomic value n, then enc evaluates to L on both states.
Thus, pe(L) =L and it holds that p,(v1) = pe(w)p,sp(s1) = sp(sz2)p.
If v/ is an atomic value, then we have p,(v/) = n = py(v)). We are
creating two new cyphertexts so, let ¢; and ¢, be two new fresh con-
founders not mapped in p;. Let us extend such a substitution as follows:
p' = pilcz = c1]. Tt holds that pe(v1) = {pe(v1), c1}n = {Pe(v3), c2}np’ =
pe(w2)p/; sp(s1) = sp(s2)p'.

dec(el, 62)
By rule (exp-l) e; : L and ey : L. By hypothesis s; =¢ $o and so sp(s;) =
sp(sa)p. Let vf = e; {Mi) v/ = e; [Mi) i :1,2. By induction on e; and e it
holds that.

If v is not an atomic value n, then also v will not be an atomic values and
SO U1 =1= V.

Since py(L) =L, it follows ps(v1) = pe(wa)p, sp(s1) = sp(s2)p. Otherwise, if
vy = n, two cases are possible:

e v = {v”, ¢1},: in this case vy has the same structure, i.e., v5 = {v]", | }n.

We know, by induction on e, that pe(v)) = {v",c1}n = {5, ¢ }npr =

pe(v5)p1. Evaluation of e, in this case, yields the two values v; = v;” and

vy = vy, As just noted p; is a confounder substitution which let us say

pe(v1) = pe(v2)p1, sp(s1) = sp(sa)pi.
e otherwise: in this case dec will be evaluated to L in both states. So,
pe(v1) = pe(v2)p, sp(s1) = sp(s2)p.
€1 = €

Let sp(s1) = sp(s2)p. Since evaluation of this operators leads to a boolean
value or | we always use p as a confounder substitution but we need to show
that pe(v1) = b = pe(ve). Since e : L, by (exp-1), e; : L and ey : L. Let
v = e; M) v = ey [Mi i :1,2. By induction on e; and e, it holds that.

Jp1: pe(vy) = pe(vy)p1, sp(s1) = sp(s2)p1
Jpa + pe(vy) = pe(vy)p2, sp(s1) = sp(s2)p2

119

Cases v; = v and v] # v/ are handled similarly. We present here just the
first case, the latter is symmetric.

Let v; = v{ we then, want to prove that this also imply v, = vJ. Proof follows
by induction on the structure of the value v;.

!
Uy

!
1

=n
Since po(vy) = n = pe(vy)p1 and pe(vy) = n = pe(vy)pa, it is easy to
show that py(vy) = n = pe(v)) indeed no confounder substitution can be

performed on such value.

/:b

This case is very close to the above one.

— (off,)

The case follows by induction hypothesis. Let v;' = (vs, v3) since v; = v/’
it holds that v{” = vy and v{" = v. Suppose that v = (v*, v¥*) and
vy = (vg*, v3*). Thus, by induction v/* = v)* and v¥* = v3* that prove

the case.

= {v", e1}n

In order to have two equal cyphertexts both encryptions must be already
contained in the state patterns: creating new encryption will lead to a new
(fresh) value as discussed. Let vy = {v)’ ¢}, and vy = {v)’, c3}. Note
that we used the same value for the message contained in both encryptions
since it holds by induction. Let us take the pattern built on a state
composed only by v/ and v. It must hold that sp(v{, v]") = sp(vs, v3)p
since sp(s1) = sp(s2)p and these are subset of s1 and s respectively. Thus,
let x and y be two variables used just to build our example patterns

s' = sp(uy, vf) =

{(z,{pe(valy), ci}n), (y, {pe(v"), c1}n)}

and

s" = sp(vy, v5) =

{(@, {pe(vals’), ca}n), (y, {pe(v2"), cs}n)}

but s’ = s”p and so it must holds that ¢y = c3, proving the case.

={v", c1}n

As stated for the above case, the two compared cyphertexts must al-
ready be included in the state patterns sp(s;) and sp(sz). Suppose
vh = {v' o}ty and vf = {wall) c3}rr. Proof follows by taking into
account state patterns generate from (v], v]') and (vj, vf) as for the above
case, letting us to prove that ¢y = ¢3. By well-formed definition on state

(Definition 3.6) this assure that the two values are the same.

120 A. Cryptographic Noninterference - Formal Proofs

e1 op ey (op #=)
Let sp(s1) = sp(s2)p. e types L, so e; : L and ey : L by (exp-1). If op is
applied to cyphertexts, it will be evaluated to L. So, if v; =1, then v, =1
and py(v1) = pe(vals)p,sp(s1) = sp(s2)p. Otherwise, if all the sub-expressions
evaluate to cleartexts then by induction on e, e; we can say:

1 _ _ 1 2 2

where v/ = ¢; {Mi,i:1,2j:1,2. It holds v; = n = w (or v, = b = 1) and
thus, pe(vi) = pe(v2)p,sp(s1) = sp(s2)p.

]

Thﬁeorer_}n. %.2 . .
IfC—C:Sl then C =q Sl

Proof. By induction on the structure of C'.

Cases skip : skip, [:=e:l:=e (e: L), h:=e:skip, k:= e : skip and message send-
ing and receiving send(cid, e) : send(cid, e) (e : L), receive(cid,z) : receive(cid, %),
are easy to prove since the program C is clearly low-bisimilar to its low slice.

Cases Cy;Cy @ Sly; Sly, while bdo C; @ while bdo Sl (b : L), (Cy...C,)
(Sly...SL,), fork(C,Cy) : fork(S11Sly) and the branch based on a low-expression
test if b then C; else C; : if b then Sy else Sly (b : L) provide secure contexts
[o1]; [®2], while b do [e1] (b : L), ([e1]...[e,]), fork([e;][e3]) and if b then [e;] else [es].
Thus, since by induction hypothesis sub-commands have a low-bisimilar slice, The-
orem 3.1 let us prove these cases.

One last case is left: the branch with a secret guard. if b then C}; Sl; else Siy; C, :
skip; Sly; Sls. To apply secure congruence theorem we need to show that the
transformation made by the type system lead two low-bisimilar branches, i.e.,
C; Sly =¢ Sly;C,. This follows providing the secure context C = [e4];[#3]. By
induction hypothesys we know that C| =¢ Sl; and C, = Sl which let us conclude
that C[C}, Sly] =¢ C[Sly, C,]. This is enough to show that the following relation is
a strong cryptographic low bisimulation concluding the proof:

{(if b then C/; Sl else Siy; Cly, skip; Sly; Sla) U =¢ O

B

Proving integrity by equality - Formal
Proofs

122 B. Proving integrity by equality - Formal Proofs

This appendix proves that the type system presented in Chpater 4 enforces both
secret-sensitive and integrity noninterference.

Expression evaluation Simple security is a standard lemma used to prove the
soundness of security type systems dealing with information flow as discussed in
Chapter 2 (see Lemma 2.1). It can be seen that rule (hash-b) breaks such a propo-
sition, indeed it takes a big secret as an input but its result will be typed public. In
this setting, instead, it can be shown that if an expression types at security level ¢
then its value can be assigned to an observable variable of two ¢-equivalent memories
without breaking their equivalence.

Given two digest substitutions p and p/, p is included in p’, noted p C p’ if all
the mappings performed by p is also done in p’. A digest substitution p is said
to be minimal with respect to My and My if My, = Myp and V(h®(v), h®(v1)) €
p, 3. My(z) = hP(v;) A My(x) = hP(wy).

Proposition B.1. Suppose My =" My and let My, = Map where p is a minimal
digest substitution for My and My. If My(z) = v € Valy, Ma(z) = vy € Val, and
L(A(z)) = Huly, then h(ve) € dom(p) implies (h(wa), h(vy)) € p.

Proof. The two memories are comparable, let r,(M;) = ry(My)pu, it must be that
(1o, v1) € p since M;(z) = v; € Valy, i : 1,2 and L(A(x)) = Hyl;. The digest
substitution p is minimal for My, My and h(vy) € dom(p) thus (h(vy), h(v*)) € p and
there must be a variable y such that L(A(y)) C ¢, M;(y) = h(v*) and My(y) = h(w).
Suppose v* # vy, then (vy, v*) € p which is impossible since p is a bijection and
(9, v1) € p. It follows v* = v; and so (h(v2),h(vy)) € p. O

It is straightforward to prove that a typed expression respects value types as
shown by the next statement.

Proposition B.2. Let M be a well-formed memory, if At e : 7 and e (M v then it
holds:

1. 7 = PHyl; implies - v : vt with vt € {S,B}

2. 7 = PHpl; implies - v : B

3. T =PLl; implies v : S

4. 7 = D{ implies = v : vt with vt € {S# B#}
Proof. By induction on the structure of e.

T
This case follows directly by considering that M is well-formed.

123

hash(z)
It holds A F hash(z) : 7/ < 7 and one of (hash-b) or (hash-s) has been used.
In both cases notice that 7/ = D¢ and A + z : P¢ thus by induction on z it
holds that F M(z) : vt with vt € {S,B}. By hash semantics then it follows
hash(z) {M v € Val? U Valf thus - v : vt € {S#, B#}.

e; op ey with op #=
The type system says that A F e op e : P/ and P¢’ < 7 = P{¢. By (op)
AF ¢ :Pl"and ¢ = ¢ C ¢, thus ¢ could either be L¢; or Hi¢;. Two
different cases have to be considered: ¢ = L¢; and ¢” [Z LL.

Let ¢" = L{;, then ¢ = L{;. Suppose e¢; M ;, by induction - v, : S and
F vy : S from which the thesis follows.

Otherwise ¢ IZ LL and ¢ = H¢¢;. By induction, if ¢ = Hp¢; then F v; : B,
while ¢” = Hgl; implies F v; : vt with vt € {S,B}. The evaluation of the
expression then will result either in a big or small values thus giving the thesis.

€1 = €
It holds A e = ey : PV by (eq) and P’ < 7 = P¢ with ¢/ C ¢. From the
typing rule follows that A+ ¢; : 7/, L(7') = ¢” and ¢/ = " thus ¢’ could either
be L¢; or Hil;. The equal operator gives back a boolean which is a small value
then it holds F e; = ey : S which prove the case for both possible values of ¢'.

]

A simple consequence of the above proposition is that if a given expression types
P/ then its evaluation on a well-formed memory M gets a plain value, i.e., a value
which is not a digest.

Corollary B.1. If A e : Pl and e [M v then - v : vt with vt € {S, B}
Proof. The fact follows directly from Proposition B.2 conditions 1,2 and 3. m

Given two f-equivalent memories and an expression which types as a digest with
a security level less or equal to ¢, its evaluation on these memories have to result in
two values belonging to the same domain.

Proposition B.3. Let M, My be two well-formed memory such that My = My and
e Miwv. IfAFe:7 and T(1) =D, L(7) C ¢ it holds v, € Vall < vy € Vall.

Proof. Note that the expression could have been typed A F e : 7/ < 7 only by (var),
(hash-b) or (hash-h). It follows L(7") C L(7) thus L(7") C ¢. The proof follows by
cases on the typing rule used to type e.

If rule (var) has been applied then let e be z, it follows A -z : D¢” and since ¢ C ¢
then M;(z) = My (z)p thus the two variables store values from the same domain.

124 B. Proving integrity by equality - Formal Proofs

If rule (hash-b) hash been used then e is hash(z) and A + z : PHyH thus by
memory well-formedness and Proposition B.2 z [M: v € Val, so by hash semantics
hash(z) {Mi v, € Valf.

Finally if rule (hash-s) derive the type judgment then A F z : P¢” and it must
be that Mi(x) = My(z) indeed ¢ C ¢ and the values stored in the variables are
not subject to substitution by p (by Corollary B.1) thus it will be M;(x) € Val, or
M;(x) € Vals which will get the wanted result. O

Take two (-equivalent memories M; = M,, they will also be comparable. Sup-
pose re(M;) = rg(My)pu. Let A F e : 7 with L(7) E £ and e M v;. Since there is
no expression which can produce new random values it holds that the same random
substitution can be used to make M; [z — v;] and Ma[z — 1] f-comparable.

Proposition B.4. Let My, My be two well-formed memories such that My :? M.
Suppose ry(My) = ro(Mo)u. If A+ e: 7 withL(t) =0 C L, e M v and L(A(z)) = ¢’
then ro(My[x — u]) = rg(Ma]z — w]) .

Proof. By cases on the structure of the expression e.

Y
AFy:7s0A(y) =7 < 7. It follows L(A(y)) = ¢ C ¢ and two cases are

considered:

e T(7) = P: By Corollary B.1 v € Val,U Val, so from M; = M, it follows
M;(y) = My(y) = v, indeed the variable is observable at level ¢ and the
values stored in it are not in the domain of a digest substitution.

If ¢ = Hpl; then subtyping cannot be used (so ¢’ = H,¢) and by memory
well-formedness v € Val, and it also holds (v, v) € u proving the case.

Otherwise, ¢ # Hpl; and ry(v,¢') = 0 from which the thesis follows.

e T(r) = D: By Proposition B.2 v; € Val? U Valf. If v, € Val} then
vy € Vali by Proposition B.3 and suppose v; = h(v)), it follows re(v;, £') =
v/ € Val, and since ¢ C ¢’ then ¢” C ¢ so (v, v]) € p proving the case.
If instead v; € Val? then also v, € Val? (always by Proposition B.3) thus
re(v;, ¢') = 0 proving the case.

hash(y)
In this case T(7) = D so by Proposition B.2 v; € Val®U Val{. The case follows
like the one above (sub-case T(7) = D).

€1 Op €5
Let A F e : 7 < 7 be derived either by (op) or (eq). If A F ¢ : 7" with
L(7") = ¢" then L(7") = ", ie., L(7') = L¢r or L(7') = Hsl; and since
T(7') = P by subtyping definition 7 could be either PL¢; or PH./;. It follows
that v; € Vals U Val, by Corollary B.1 thus ry(v;, ¢') = 0 proving the case.

125

]

The main proposition on typed expressions follows. If an expression types at
security level ¢ then its value can be assigned to an observable variable of two /-
equivalent memories without breaking their equivalence.

Lemma B.1. (Expression (-equivalence)
Let My, My be two well-formed memories such that My :? My, A F e : 7 with
L(1) =0 C ¢ and e {Mi v If L(A(2)) = €' then My[z — v] =8 My[z — wy)].

Proof. Let My, = Myyp with p being a minimal digest substitution for M; and M.
It must be proved that:

1. Ml[fL' — Ul] > MQ[I — UQ]

2. there exists a digest substitution p’ such that Mi[z — vi],, = Ma[z — w] 0’
and p C p'.

The first part is proved by Proposition B.4 while the second statement is proved
by induction on the structure of the expression.

Y
From A F y : 7 it follows A(y) = 7" < 7, i.e.,, L(7') C L(7), indeed the typing
can be derived by (var) and (sub). The variable is directly observable at level
¢ so M1 (y) = My(y)p which proves the case by choosing p’ = p.

hash(y)

A F hash(y) : 7/ < 7 could by derived either by (hash-b) or (hash-s). Suppose
that A Fy: 7", two distinct cases are considered:

1. 77 = PHuH: In this case rule (hash-b) will be used to derive the type
judgement.

A+ hash(y) : DLH < 7 = D¢. Note that A -y : PHyH implies A(y) =
PHLH indeed the subtyping rule cannot be applied in this case. By hash
semantics v; = h(v/), indeed memories are well-formed so M;(y) = v/ €
Valy. If vy € dom(p) then by Proposition B.1 (v, v1) € p thus giving the
thesis by p' = p. If, instead w & p, it follows Az. My(z) = h(vj). Since
M; <y Mo, let rg(My) = r,(My)p, it will be (v5, vf) € p indeed L(A(y)) =
HoH. Suppose that there exists a variable w such that L(A(w)) C ¢,
Mo(w) = h(v*) with v* # v, and My(w) = h(v{), then it should be
that (v*,v]) € p but it cannot be the case since p is a bijection thus
there is no variable in M; that stores the digest h(v]). The thesis now
follows by adding (h(vj), h(v;)) to p, i.e., p'(v) = p(v) Vv € dom(p) and
p'(h(v)) = h(v{), indeed note that p C p'.

126

B. Proving integrity by equality - Formal Proofs

€1 Op €3
Two cases have to be considered:

2. 7" = Pl £ # HpH: In this case rule (hash-s) will be used to type the

expression.

A F hash(y) : D¢” < 7 = D¢, and obviously ¢’ C ¢. The type system
state that A y : P¢” i.e., variable y is directly observable at level ¢
and it stores a plain value by Corollary B.1 so let My (y) = My(y) = v. If
v € Valg then the value is not on the domain of a digest substitution and
the thesis follows by p' = p. Otherwise, if v € Val, by Proposition B.1
if h(v) € dom(p) then (h(v),h(v)) € p and the case is proved choosing
P’ to be p; if, instead v € dom(p) then there not exists a variable z such
that My(z) = h(v). As shown above from M; <, My it will be possible to
derive the fact that there will also not be any observable variable w such
that My (w) = h(v). The thesis follows by p/(v) = p(v) Yv € dom(p) and
p'(h(v)) = h(v) which also gives p C p'.

1. op #=: It holds A F e op e : P¢’ with P¢” < 7 = P/ and also

Al e :Pl"and AF ey : PV and ¢/ = ¢". So, ¢" C ¢ and ¢ C ¢ from
which follows ¢ C ¢'. Let e; (M v} and e, (M v2. By induction on ¢;
it holds My[z >], = Ma[z — w;],,p', the values are plain as stated by
Corollary B.1 thus they are not in the domain of a digest substitution so
it holds v} = vs, the same can be proved by induction on e, obtaining
v? = v2. These two equalities directly gives e; op e; |Mi v, 4 : 1,2 from
which the thesis follows with p' = p.

opis=: Ak e opey: Pl by (eq) with Pl <7 =Pl Ttis Ak e : 7",

AF e 7" and L(7") = £" with £7 = (", Let e; M 0! and ey [Mi v?

)

with 4 : 1,2.

If T(7"”) = P then by Corollary B.1 e; and ey will both evaluate to plain
values. By induction on e; it follows My [z; = o], = My[21 = 3]0/ but
more precisely it is v} = v since the values are not in the domain of
a digest substitution. The same can be said about e, yielding vZ = v3.
Thus the thesis is proved.

If T(r") =D, (op) rule cannot be applied to type the expressions ¢; and
e so they must both be an invocation of the hash function or a variable.
Note that v} € Val{ < v} € Val{ by Proposition B.3 and the same holds
for v?: v € Val} < v3 € Valf.

Suppose v} € Val¢ and v? € Val?, then obviously v} # v? and it will
also be that v} € Val{ and v € Val? thus v} # v} which prove the case,
indeed e, = e, M false. The case in which v € Val? and v? € Valf is

all the way similar.

127

Let v} € Val{ and v} € Valf, more precisely suppose that v} = h(v;")
and v? = h(v}) and note that v;* € Val, and v} € Val,. Since both e;
can be either hash(z;) or z; dlfferent cases are analyzed:

e ¢, = 11, e = xy: In this case My(x1) = My(z1)p and My(z3) =
My(z3)p it follows (h(v'),h(v;)) € p and (h(v3),h(v})) € p. If
h(v;") = h(v}) then since p is a bijection it holds h(vy") = h(v3).
In the same way from h(v;") # h(v;) and the fact that p is a bijec-
tion it follows h(w,") # h(v}).

e ¢, = x1, e = hash(xs): It must be that My(z1) = My(z1)p, i.e.,
(h(vy),h(v")) € p. Tf (h(vd),h(vf)) € p, then the case follows as
in the previous case by the fact that p is a bijection and the two
substitution are contained in it. Otherwise, if (h(vy),h(vy)) ¢ p,
by induction on e Mi[z — h(vf)], = Ma[z = h(v3)] 0 and p C p/,
thus there exists a digest substitution p’ such that (h(v,"), h(v")) € o’
(since p C p') and (h(v3),h(v)) € p’ which give the case as shown
above.

e ¢; = hash(x;), e; = x9: This case is symmetric to the above one.

e ¢; = hash(xy), e; = hash(xzy): Three different cases must be consid-
ered.

— Both expressions have been typed by (hash-b): From M; = " My it
follows My <, My. It must be that A(xz) = PHuH so (v, ,vl) en
and (vg, v;) € p which implies that vt = v if and only if v = v
proving the case.

— Only one of the expressions type by (hash-b): The only case in
which this could happen is when A(z;) = PH,H and A(zy) = P¢
with ¢/ £ HyH and ¢’ C £. If ¢/ = L{; then it will hold that x5 can
store only a small value by Proposition B.2 and so hash(z;) =
hash(z,) {M: false proving the case; Otherwise ¢ = HyL but then
also x is observable and M;(z1) = M;(z3) if and only Ms(z1) =
Mo (x2) (indeed My (z1) = Ma(z1) and My (z9) = My(x2)) proving
the case.

— Both expression are typed using (hash-s): The two variables
(z1 and z3) are observable and store plain values by Proposi-
tion B.2 so the case follows by observing that M;(x1) = May(xq)
and M1<CL’2) = MQ(J]Q).

If, instead, v} € Val? and v? € Val?, then by induction on e; it holds
M [z — vll]w = My[z — U21]|€,0 indeed the values are not subject to a digest
substitution and thus v{ = v;; the same reasoning can be applied to e,
to get v2 = v2. These facts easily prove the case. In all the above cases
it will be that Mi[z — v, = Ma[z — w],,p indeed the equal operator
gets back a boolean, i.e., a plain value thus no new substitution will be

128 B. Proving integrity by equality - Formal Proofs

needed to map the result.

[]

Subject reduction A subtyping relation for command types is introduced here.
This has not been done before since it is not directly used by the type system,
anyway it is useful to make some of the proofs cleaner: (wq,t, f1) < (we, ta, fo) if
we Cwy, t; Tty and f1 T fo [29].

Note that the type system allows an untyped assignment in rule (int-test). The
following proposition characterize the only command type which could lead to such
scenario.

Proposition B.5. If A - ¢ : (w,t, f) and (M,c) = (M, 2:=y;c) with A(z) =
PlcH, Ay :Plcl, lc o Hy and A (W', f') it holds (w,t, f) = (lcH,t' U
gC"—vT)‘

Proof. Note that the assignment z :=y is not typed and since ¢ type-checks it must
be that rule (int-hash) has been used. The thesis then follows by applying the typing
rule to the hypothesis. O]

The following Lemma proves a kind of subject reduction, indeed the untyped
assignment discussed above must be considered as a special case.

Lemma B.2. (Subject reduction)
IfAFc:(w,t, f) and (M,c) = (M’ ') then either:

1. AECd (Wt ff) < (w,t, f) or

2. =x:=y;c" and A(x) = PlcH, Aty : PlcL and
AbFd:(w,t f) < (wct,f) or

3. =¢ or c = FAIL.

Proof. By induction on the structure of c.

skip
A F skip : (HsL,LH,]) and (M, skip) — (M, ¢).

ri=e
This case is similar to the above one, indeed the command reduce to ¢ in one
step.

if e then c; else ¢y
Three different cases are analyzed depending on the typing rule used to derive
the judgement.

129

e (if): It holds Ak e: 7, AF ¢ : (wt;, fi) and L(1) C w; from which
follows A I if e then ¢ else cg @ (wy Mwy, t1 Uiy, f1 U fo).
If e [M true then (M, if e then c; else c;) — (M, c;) and the case is proved
by the typing of ¢y, indeed wy Mwy E wq, t; E t; Uty and f1 T f U fo.
The case in which e |[M false is all the way similar.

e (int-test): In this case e is * = y and ¢y is FAIL. The command is
typed (lcH,lcL,T). It holds A -z : 7, Ak y: 7 with T(r) = T(7)
and L(7) = lcL, L(7") = lcH and {c Co Hy. If 2 = y M false then
(M,if z =y then c; else FAIL) — (M, FAIL) concluding the case. Instead,
if z = y |M true then (M, if 2 = y then c; else FAIL) — (M, c;) from which
the thesis follows by A & ¢y : (¢cH,t, f) indeed {cH C ¢cH, t C LUt

and TC fU 1.

e (int-hash): In this case e is hash(z) = y and ¢; is z:=z;c}| and ¢y is
FAIL.
If hash(x) = Y M false then (M, if hash(x) =

y then z:=ux;c]| else FAIL) — (M, FAIL) proving the case.

Otherwise, (M, if hash(x) = y then z:=x;c] else FAIL) — (M, z :=x;c})
and by the type system A(z) = PlH, A F x : PlsL and
AFc):(bcH,t, f) < (bcH,t U L, T) which prove the case.

while e do ¢’

The command is typed (w,¢ U L(7)1,) by rule (while) provided that A F
e 17, A - : (wt,f) and if t = Hgf; then t T w. If ¢ M
false then (M,while e doc’) — (M,e) which proves the case. Otherwise,
(M, while e do ¢’) — (M, c’;while e do). If ¢ = Hy¢; and f =7 then by (seq-
2) it follows A F c’;while e do ¢’ : (w,t U L(7),1) thus w C w, t C ¢t U L(7)
and f C1 which prove the case, otherwise if ¢ C H,L or f =] by (seq-1) it is
A F c’;while e do ¢ : (w,t UL(T),T) proving the case.

C1;C2
Let A F ¢ (wity, fi). If (Myci) = (M c}) and ¢} # ¢, ¢, # FAIL then
(M, ci;c0) = (M c};cy). By induction on c; it either holds (1) A F ¢ :
(w, 11, f1) < (wity, fi) or (2) ¢ = z:=y;cf and A(z) = PlcH, Aty -
PlcLand A ¢ @ (w), 8], f1) < (wy,t1, f1), these two cases are considered:

1. Suppose that the type judgement of ci;cy has been derived by (seq-1),
then ¢; C HyL or f; =]. Since A F ¢} : (wi,t}, f]) < (ws,t1, f1) then
wy Cwy,) ¢y and f] T f;. If ¢; C HuL then ¢} C HplL thus by applying
(seg-1) again the thesis follows: Indeed c/; cy will type (w| Mwsy,] Uts, f1U
fo) < (wy Mwe, ty Uty, f1 U fo); if fi =] then f{ =] indeed it is the only
way in which f] C f; is satisfied (and indeed if a program terminates all
its subcommands do so) thus again the proof follows by (seq-1): c};co
will type as above.

130 B. Proving integrity by equality - Formal Proofs

If c1; co has been typed by (seq-2) then t; = Hl;,fi =1 and t; C wy so
t) Tty and f] C fi. If ¢) C HplL or f] =] then by (seq-1) c};co types
(w) Mws, t) Uts, fi U fo) < (wy Mws, t; Uts, T). Otherwise, t| = Hg¢; and
fi =71 and by (seq-2) cj; ¢y types

(wi Mwa, 8] Uta, 1) < (wi Mwa, ty Uiz, 1).

2. It holds wy C wi, t) C t; and f] C f;. By Proposition B.5 (wy,t1, f1) =

(lcHp, t) U oL, 1) and ¢o Ce Hy so if ¢) U oL C Hypl then ¢ T Hpl and
by rule (seq-1) cf;cy is typed (w] Mwsy, t) Utse,T) proving the case.
If) UlcLl = HL then #) = Hgf; and cy;co must have been typed by
(seq-2) from which follows t; U oL T w,y. It straightforward to derive
that ¢} C wy and so cf;cy types (w] Mwy, t) Uts, T) by (seq-2) proving the
case.

If (M,c;) & (M’,¢) then (M, cp;co) = (M’ cy) and both (seq-1) and (seq-2)
typing rules state that A ¢y : (we, ta, fo) from which the case follows: Indeed
by (seq-1) it would be A F ¢y : (wa, ta, fo) < (wy Mwsy, t; Uts, f1 U fo) and by
(seq-2) Ak cy: (wa, ta, fo) < (wi Mawg, ty Uis, T).

If (M, c;) = (M’ FAIL) then (M,cy;cy) = (M’ FAIL; cy) but since FAIL has no
semantics it is equivalent to state that (M, c;;co) < (M’ FAIL) proving the
case.

]

It is useful to note that untyped program (which is not an end of the computation

or a FAIL) originated from a typed one could only come from an integrity test by
hash.

Proposition B.6. A Fc: (w,t, f), (M,c) = (M, '), ¢’ # FAIL, ¢’ # ¢ and ¢’ does
not type if and only if c is if hash(z) = y then z:=ux;c” else FAIL;c".

Proof. Note that there is only rule in the type system which allow an untyped
assignment: (int-hash). O

The following proposition proves that typed commands preserve memory well-
formedness.

Proposition B.7. If A+ c: (w,t, f), M is well-formed and (M,c) = (M, c') then
M’ is well-formed and it either holds:

1. AR (W't f") or

2. d =x:=y;c" and A(z) = PlcH, AF y: Plcland A" : (W', ¢, f') and it
holds (M, z:=v) = (M" &) with M" a well-formed memory or

3. =¢ or c = FAIL.

131

Proof. By induction on the structure of the command c.

skip
This case is trivial, indeed (M, skip) — (M, ¢).

Ti=e
Rule (assign) states that A(z) = 7 and A + e : 7. By Proposition B.2 ¢ |M v
and if 7 = PH¢¢; then F v : vt € {S,B}, if 7 = PHyl; then - v : B, if 7 = PL{;
then - v : S and if 7 = Df then - v : vt € {S# B#}.

(M, 7:=¢e) 5 (M[z ~ v],¢) which prove the case.

if e then c; else cs
By cases on the rule used to type the command.

Suppose rule (if) has been used. It holds At e : 7 and A F ¢; : (wy, t;, ;). Tt
then follows (M, if e then c; else c3) — (M, ¢;) and the result is proved.

If rule (int-test) has been applied then e is x = y and ¢y is FAIL and A +
¢ (UpH t, f). If (M,if x = y then ¢; else FAIL) — (M, c;) the result follows,
otherwise (M, if x = y then c; else FAIL) — (M, FAIL) and the case is proved.

If rule (int-hash) is used then e is hash(z) =y, ¢; is z :=x; ¢] and ¢y is FAIL. Tt
also holds AF z: PloL, AFy:DlcH, Al 2z :PlcH and A F ¢} : (¢H, ¢, f).
Suppose that (M,if hash(z) = y then z:=uz;c] else FAIL) — (M, z:=x;c)).
Let M(z) = v, it is now proved that M|z — v] is well-formed. Three cases can
be distinguished: If A -z : PLL then v € Vals, by Proposition B.2 and thus
since A(z) = PLH its assignment to v do not break memory well-formedness;
If A F z: PHyL then by Proposition B.2 v € Val, thus the assignment to z
which has type PHLH do not break well-formedness; Finally if A F z : PHL
v € Vals U Val, (again by Proposition B.2) but since A(z) = PHH that is
exactly what is expected by memory well-formedness. Hence M[z — v] is
well-formed. It holds (M, z :=x) = (M[z > v], e) which proves the case.
Otherwise, (M, if hash(xz) = y then z:=ux;c] else FAIL) — (M, FAIL) and the
thesis follows.

while e do ¢
Two cases are considered: (M, while e do ¢’) — (M, &) which get the thesis.
Otherwise (M, while e do ¢’) — (M, c; while e do ¢’} and by (while) A F ¢’ :
(w,t', f'), the proof follows by cases on t:

o ¢ <HpL: ¢ C HyL and rule (seq-1) types c’; while e do c'.

o t =Hyl;: If t/ = Hy; then ¢ C w by (while) and if f’ =1 ¢’; while e do ¢’
types by (seq-2) otherwise by (seq-1). If instead ¢’ T HpL, c’; while e do ¢’
types by rule (seq-1).

132 B. Proving integrity by equality - Formal Proofs

C1;C2
A F cyco 0 (w,t, f) could derive either from (seq-1) or (seq-2), in both
cases A F ¢ 1 (wi,ty, f;). If (M,c;) = (M’,c}) then by subject reduction
(Lemma B.2) it holds either (1) A F ¢ : (w', ¢, f) < (w,t, f) or (2) =
r:=y;c" and A(z) = PlcH, Ay : Plcl and A - @ (w', ¥, f) < (w,t, f)
or (3) c = ¢ or ¢ = FAIL. The proof follows by these three cases:

1. By induction on c;, (M,c;) = (M, ¢}) and M, is well-formed. It holds
(M, c1;ca) = (M’ c4; o) which types by subject reduction (Lemma B.2).

2. By induction on ¢; (M, z:=7) = (M” &) and M" is well-formed. It fol-
lows (M, ci;c0) = (M, :=y;c};ch) proving the case, indeed c/;cy types
by subject reduction (Lemma B.2).

3. If ¢/ = ¢ then (M,c;;c5) = (M, cy) and by induction on c; it follows
M’ is well-formed and by subject reduction cy types. If ¢; = FAIL then
(M, ci;c0) 5 (M, FAIL; c;) but since FAIL has no semantics it could be
stated that (M,ci;co) <> (M’ FAIL) proving the case since M’ will be
well-formed by induction on c;.

]

Information flow properties Some standard lemmas [62] for information flow
security type systems are rephrased in the following. They confirm the intuitions
given above in Section 4.5 when defining the role of each command type component
[29].

If a command types with a writing effect w then it assigns only to variables
whose security level is at or above w.

Lemma B.3. (Confinement)
If At c: (w,t, f) then for every variable x assigned to in c it holds w C L(A(z)).

Proof. By induction on the structure of the command c.

skip
No assignment is done, thus the thesis trivially holds.

Ti=e
By rule (assign) A(z) =7, Ak e:7and A z:=e: (L(r),LH,]) which
proves the case.

if e then c; else ¢y
Three different could be applied, the proof of the case proceed by cases on the
rule used:

133

o (if): tisAFe:7, AFc: (w,t, fi), L(T) E w; and
A Fif e then ¢; else ¢o @ (wy Mws, t; Uty U L(tau), f1 U f). By induction
on ¢; for every variable x assigned to in it w; C L(A(x)) and by induction
on ¢y for every variable x assigned to in it wy T L(A(x)). The case is
then proved, indeed wy M wy E wy and also wy M wsy E ws.

e (int-test): In this case e is * = y and cy must be FAIL. The command
types ({cH,t U oL, 1). The else-branch do not perform any assignment
thus the thesis vacuously holds for it, for the then-branch the case follows
by induction on ¢; indeed A b ¢; : (¢cH,t, f) thus for any variable x
assigned to in ¢, {cH C L(A(x)) which prove the case.

e (int-hash): It must be that e is hash(z) = vy, ¢; is z:==x;c| and ¢y is
FAIL. The command is typed as (¢cH,t U ¢cL,1). It also holds that
A(z) = P{cH and by induction on ¢, since A F ¢ : (¢cH,t, f), for any
variable x assigned to in ¢} it holds {cH C L(A(x)) proving the case.

while e do ¢’: By rule (while) AFe:7, A : (w,t, f) and
A F while e do ¢’ : (w,t L L(7),T) thus the case follows by induction on c'.

ci;¢o: The command could be typed by (seq-1) or (seq-2), however notice that
both rules states that A ¢; : (w;, t;, fi) and A F cy;co : (wy Mws, ty Uiy, f1).
By induction on ¢; for every variable x assigned to in ¢; it holds w; C L(A(z))
and by induction on ¢y for every variable assigned by it follows wy C L(A(z)).
Since wy Mwy C w;, 1 : 1,2 the case is proved.

]

Observing the termination of c gives information on variables at most at level ¢,
so all the guard of the program is based on variables whose security level is below t.

Lemma B.4. (Guard safety)

If A Fc: (w,t, f) then for every while loop or conditional guard e in c it holds
AF e: 7 with L(1) Tt or for every variable x in the guard it holds A &+ x : T with
L(T)Ct.

Proof. By induction on the structure of the command c.
Commands skip and z:=e do not contain any guard so the thesis vacuously
holds for them, the interesting cases are analyzed below.

if e then c; else ¢y
Three different rules could be applied to type the command:

o (if): ItisAkF e:7, Al ¢ : (w,t;, fi), and A F if e then ¢; else ¢y :
(wy Maws, ty Uty L L(T), f1 U f2). By induction, for every while loop or
conditional guard e in ¢; it holds A F e : 7/ with L(7) C ¢; C ¢, UtoLIL(7T)

134 B. Proving integrity by equality - Formal Proofs

or for every variable x in e A -z : 7/ with L(7") C ¢; C ¢; Uto U L(7) and
also for every while loop or conditional guard e in ¢y it is A F e : 7/ with
L(7") C ty C ¢ty Uty UL(T) or for every variable x in e A F z : 7/ with
L(7") C ty C ¢ Ut LU L(7). To conclude the case it just suffice to note
that L(7) C ¢t; Ut LL(7).

—~

e (int-test): In this case e is = y. The command types ({cH,t L (oL, 7T).
By induction on c¢; for every while loop or conditional guard e contained
in ¢; it holds A F e : 7/ with L(7") C ¢ C t U /L or for every variable z in
e AFx:7 with L(7) C ¢t CtUloL, indeed A F ¢y : (€cH,t, f). The test
expression could either types 7 = PLL by (eq) from which L(7) = LL C
tULL or if /¢ = Hy the expression do not type but it holds A F y : PH,H
and H,H C ¢t UHpL and also A+ 2z : PH,L and H,L C ¢ LU H,L proving the
case.

e (int-hash): It must be that e is hash(xz) = y, ¢; is z:=x;c] and ¢y is
FAIL. The command is typed as ({/cH,tU/lcL,T) and A F ¢} : (¢cH,t, f).
By induction, for every while loop or conditional guard e in ¢ it holds
AF e: 7 with L(7") C ¢t C tUlcL or for every variable x in the guards it
holds A F z : 7/ with L(7") C ¢t C tU/lcL. The test expression is not typed
by (eq) anyway A F x : PH,L and HpL C ¢ LI HpL and also Ay : DHpH
and H,H C ¢ LU H,H proving the case.

while e do ¢’: By rule (while) Ak e:7, AFc : (w,t, f) and
A+ while e do ¢’ : (w,t U L(7),71). By induction on ¢’ for every while loop or
conditional guard e in ¢’ it holds A+ e : 7/ L(7) C ¢t C ¢t UL(7) or for every
variable z in e A F 2z : 7/ with L(7/) C ¢t C t U L(7) and also L(7) C ¢t U L(7)
proving the case.

¢1; ¢o: The command could be typed by (seq-1) or (seq-2), however notice that both
rules states that A - ¢; @ (wy, t;, fi) and A F cy;¢o @ (wy Mws, ty Uiy, f'). By
induction for every while loop or conditional guard e in ¢; it holds A+ e : 7
with L(7) C ¢; C tyUty or forevery zin eitis A bz - 7 with L(7) C ¢ C ¢, Uty
and for every while loop or conditional guard e in cy it is A F e : 7 with
L(7) € ty C t; Uty or for every variable z in e it holds A + z : 7 with
L(T) Etg Etlutg.

Finally, the termination flag | is given to program which always terminate.

Lemma B.5. (Termination)
If A+ c:(w,t,]) then c terminates on all memories.

Proof. 1t is proved that if A+ c: (w,t,]) then (M,c) —* (M’,¢). By induction on
the structure of the command c.

135

skip
A F skip : (HsL,LH,]) and (M, skip) — (M, ¢) proving the case.

T:=e¢
At z:=ec: (w,t |,a)ndif e Mo then (M, z:=¢e) = (M[z > v],&) proving
the case.

if e then c; else co
The command could be typed by three different rules, note that if rule (int-test)
or rule (int-hash) have been used then the command is potentially nontermi-
nating so the hypothesis does not hold. It must be that the command is typed
by (if), A F¢; : (wy, t;, fi) and
At if e then ¢ else ¢y 1 (wy Mwe, ty Uty, f1 U f2). Since fi U fo =] it must be
that f; :], 7 : 1,2 which give the thesis by induction on c; or c,.

while e do ¢’
By (while) A F while e do ¢’ : (w, t,1) so the hypothesis does not hold.

C1;C2
Note that to meet the hypothesis only rule (seq-1) could be used to type c;; ca,
it follows A F ¢; @ (wy, t;, f;) and fi U fo =] form which the thesis follows by
induction on c; and c,.

]

SSNI by typing It is now proved that the type system assures that a typed
program obeys to secret-sensitive NI. The proofs below follow the scheme of the
proofs by Demange and Sands [29].

A command c is said to be a Hg command if A c: (Hl;, ¢, f), alternatively it
is a Hp, command if A+ ¢ : (w,t, f) with H,H C w. The following propositions show
that the fact of being an Hg or Hy program is preserved by typing.

Proposition B.8. If c is Hy and (M,c) < (M’,c’) then c’ is a Hy command.

Proof. By subject reduction (Lemma B.2) noting that clause (2) will never be trig-
gered since rule (int-hash) type the command as (¢cH,#,1) with /¢ Ce Hy. O

Proposition B.9. Ifc is Hy and (M,c) & (M, c') then either
1. AR (Wt f") and ¢ is a Hy, command, or
2. ' =x:=y;" with A(x) = PH,H, Ay : PHpL and c” is H,.

Proof. By subject reduction (Lemma B.2), in case 2 notice that A F c: ({cH,t, f)
by Proposition B.5 and /o = H, since the program is Hy, by subject reduction
AR (Wt f) < (w,t, f) proving that ¢” is Hy.]

136 B. Proving integrity by equality - Formal Proofs

It is straightforward to show that Hg commands are H,L-TSB and H, one are
LL-TIB.

Proposition B.10.
{(<M1,C1>, <M2,C2>)| M1 :ﬁbl— M2 and C1,Co are Hs} 1S an HbL-TSB

Proof. The relation is symmetric by definition. Commands are typed as A F ¢; :
(Hsli ti, f;)-

If (My,¢;) = (M}, c}) then by Confinement (Lemma B.3) the command assigns
only to variables whose level is greater or equal to Hgf} thus it holds (M, c;) —HL
(M{,c}) and My =} | M{. The transition can be matched by (Ms, c,) %S'bL (Mg, co),
indeed since My =f; | My then M{ =} | M. Command cf is still an Hs command by
Proposition B.8. The two configurations are thus contained in the relation proving
the claim. O

Proposition B.11.
Let B be a relation on command configurations defined as (My, c;)B{(Ma, o) if and
only if My =, My and it either holds:

e c; is Hy or
o ¢; =x:=y;c with A(z) = PH,H, Ay :PHyL and ¢’ a H, command.
It holds that B is a LL-TIB.

Proof. The relation is symmetric by definition and the proof follows by induction
on the definition of B.

C1,Co are Hy
If (My,c;) = (M), c}) then by Confinement (Lemma B.3) the command as-
signs only to variables whose level is greater or equal to H,H thus it holds
(M, c1) =1 (M), ;) and My =, M|. The transition can be matched by
(My, c2) %E_ (My, c), indeed since My =[| My then M} =l M,. The two
configurations are still in B indeed ¢, is H, and c; satisfies one of the two
conditions by Proposition B.9.

c; is Hp, and cy satisfies the second condition
If (M,c;) = (M’,c}) then by Confinement (Lemma B.3) the command as-
signs only to variables whose level is greater or equal to HyH thus it holds
(My,c1) =1 (My,c)) and My =l M). The transition can be matched by

0
(Mg, c2) = (Mg, cy), indeed since My =, My then M} =}, M,. The two
configurations are still in B indeed c, still satisfies the second condition and
c; satisfies one of the two requirements by Proposition B.9.

137

¢; satisfies the second condition and ¢y is Hy
My, z:=7;¢) = (My[z — M(y)],c’). Since A(z) = PHpH then
(My, z:=y;c) =L (Mi[z — M(y)],c’) and M; =, M}. The transition can be
matched by (Ms, c) %ﬁL (M, co), indeed since My =J| My then M} =, M.
The two configurations are still in B indeed ¢’ and ¢, are Hy.

c; and ¢y satisfy the second condition
My, 2:=y;c) = (My[z = M(y)],c’). Since A(z) = PH,H then
(M, z:=y;c) =1 (My[z = M(y)],) and M; =]}, M}. The transition can be
matched by (Ms, cy) %SL (Mg, cp), indeed since M; =}, My then M} =, M,.
The two configurations are still in B indeed ¢’ is H, and ¢, satisfies the second
condition.

]

Memories equivalence at level LL and HypL is preserved according to the termi-
nation effect of a command.

Proposition B.12.
If AFc: (w, Ll f) and My =l My then (My,c) = (M, c) implies (Mg, c) =

Proof. By induction on the structure of the command c.

skip
This case is obvious.

T=e
It holds A e : 7 and L(A(z)) = 7 and let e M v;. Tt follows (M;, z:=¢) =
(M;[z — v;],e). If 7 C LL then by Expression f-equivalence (Lemma B.1) it
follows My [z +— v;] =, My[z + v,] which proves the case. If instead 7 [Z LL
then the variable to which the value is assigned is not observable thus it easily
holds that My [z — o] =l My[z —).

if e then c; else ¢y
Three different cases are considered depending on the rule used to type the
command.

e (if): It holds A F e : 7, AF ¢ : (wyt;, f;) and L(7) C w;. Notice
that since the termination effect of the whole command is L¢; it must
be that L(7) C L¢; and also ¢; = L¢;. Since the expression types with a
security level equal or below LL then the expression will be evaluated to
the same boolean value thus the same branch will be followed in both the
executions: (M, if e then c; else co) — (M;, ¢;) which proves the case.

138 B. Proving integrity by equality - Formal Proofs

e (int-test): In this case e is © = y. Note that Az :7and A F y: 7/
and it must be that L(7) = LL and L(7") = LH thus M;(z) = My(z) and
Mi(y) = Ma(y). The two executions will execute the same branch and
get to two configurations with the same memory by a silent transition.

e (int-hash): The case follows similarly to the above one.

while e do ¢’
ItisAFe:7and AFc : (w,t, f). Since the termination effect is L¢; it must
be that L(7) C L¢; and ¢t C L¢;. The expression is thus evaluated to the same
value in both memories: If it gets evaluated to false then (M;, while e do /) —
(M;, €), otherwise (M;, while e do ¢’) = (M;, c; while e do c’).

C1;C2
Since the termination effect is L¢; only rule (seq-1) can be used and also A
Ci . (wl,tl,fl) and A F Co (wg,tg,fg) with tl E Lf[, tQ E Lé[If <M1,C1> $
(M}, c4) then by induction on ¢; it holds (Mg, c;) = (M, ch) with M} =k
M,. By command semantics (M, ci;co) — (M}, ch;co) and (Mg, cp5co) =
(MY, c; co) proving the case.

If (My,c;) = (M), e) then by induction on c; it is (My,c;) < (M},) with
M} :}LLL M.
The case follows by command semantics: (M, cy;co) = (Mf, cy).

O

Proposition B.13.
If At c: (w,Hply, f) and My =}, | My then (My,c) 5 (MY,) implies (Mg, c) =
(M,) with My =, | M.

Proof. The proof follows by induction on the structure of the command and is all
the way similar to the one above for Proposition B.12. O

Given two HpL memories an execution of a hash integrity test on them will follow
the same branch.

Proposition B.14.

If My =f,L My and A + if hash(z) = y then z:=u;c" else FAIL : (w,t, f) then
(My,c) — (My,c) implies ¢’ does not type, (Mg, c) — (Mg, ') and ¢’ = z:=z;c"
with A(z) = PlcH, AFx :DlcL, lc Co Hy and A" (w',t', f) or ¢ = FAIL.

Proof. The command can only be typed by (int-hash) and hash(x) = y will evaluate
to the same boolean value on the two memories since A(z) = PlcL, Ay : DlcH
with fc EC’ Hb.]

The following lemma proves that typed commands are related by a H,L-TSB.

139

Lemma B.6. If At c: (w,t, f) and My =}; | My then (My,c) ~p,1 (M, c).
Proof. Take § a relation on command configurations defined as

(M1, c1)S(Ms, c3) if and only if My =} | My and either:

(a) At cy:(wy,ty, f1), Al cy: (wa,ts, fo) and either:

1. ¢; and cy are Hq
2. Ci = Co

A/ _ AR 3 / /
3. ¢ =c);c, cg = ch;” with (My, c})S(Ma, c)

or(b)cg=ca=FAlLorci =cy=¢

or (¢) ¢ = co = z:=y;c with A(z) = PlcH, A F y : PlcL with {c T Hp and
AFECd: (Wt).

In the following S is shown to be an HpL-TSB. Since My ={} | My by definition,
it remains to prove that if (My,c;) <p,. (M}, c)) then (Ms,co) 3>:,b|_ (M5, cb) and
(M7, c})S(M5, c). By induction on the definition of S.

Case (a):

1. By Proposition B.10

2. In this case ¢; = ¢y thus the proof proceed by induction on the structure of
the command c;.

skip
This case is obvious.

Ti=e
The type system states that A+ e : 7 and A(z) = 7. Let e [M 1. Two
cases must be considered.

If L(A(z)) C HylL then by Lemma B.1 My [z — 1] =} | Ma[z — 1,]. Note
that (My, z:=¢e) Sn,. (M[z = v;],¢€), this prove the case since the two
memories are equivalent and the configurations are related by clause (b).

Otherwise, the assignment will not be observable, thus it easily holds that
Mz — v] =} | Ma[z —] and the case follows as for the previous one.

if e then ¢} else ¢
Three different cases are considered depending on the rule used to type
the command.

140

B. Proving integrity by equality - Formal Proofs

e (if): It holds A F e : 7and A F ¢ : (w),t;, f}). If L(7) C HyL

17 Y1)

then the expression will evaluate to the same value in both M;
and My thus the same branch will be followed: If e |[M: false then
(M, if e then ¢ else c}) —p, (M;, ch), clearly the resulting memories
are equivalent since they are unchanged and the configurations are
related by clause 2.

If, instead L(7) £ HpL then the type system assure that L(7) C w;
thus w; = Hgl%,4 : 1,2, i.e., the two branches are Hs commands. The
action is silent and do not change memories. Moreover requirement
1 is satisfied proving the case.

(int-test): In this case e is = y and ¢, is FAIL. It holds A -z : 7,
AFy:7T(r)=T(7), L(r) = lcL, L(7') = lcH and ¢ T Hp. The
variables are observable, thus if T(7) = P then it follows M;(z) =
Ms(x) and M;(y) = Ma(y) hence the test expression will evaluate
to the same boolean on both memories. If, instead, T(7) = D
then by Proposition B.3 My(z) € Valg < Mo(z) € Valg: If
M;(x) € Valgs then My (z) = My(z) otherwise p(My(x)) = p(Ma(x))p,
and the same holds for y. Thus x = y will evaluate to the same
value on both memories: Indeed if the values are digest of small
values nothing special is needed otherwise the fact that p is a bi-
jection prove the statement. Suppose that x = y |[M¢ false, then
(M;,if z = y then ¢ else FAIL) —y, (M;, FAIL) which proves the
case by satisfying requirement (b). If the expression gets evaluated
to true (M;,if z = y then c| else FAIL) —p,. (M;,c}) concluding the
case, indeed My ={; | M, and the configurations are related by clause
2.

(int-hash): Here e is hash(x) = y, ¢} is z:=xz;c] and c} is FAIL. It
holds A+ z : Plcl, A+ y: DlcH, A(z) = PlcH and ¢c T Hy. Tt
follows My (z) = My(z) and My (y) € Valg, < Mo(y) € Valg. Sup-
pose M;(y) € Valys (indeed memories are well formed thus it must
be a digest) it must be that M;(y) = My(y) thus hash(z) M= M, (y)
if and only if hash(z) {M2= My(y). Otherwise if My(y) € Valg it
holds p(M;(y)) = p(Ma(y))p but M;(z) = My(x) thus since the hash
operator is deterministic the test gets evaluated to the same value in
both memories. If the guard evaluates to true then

(M;,if hash(z) = y then z:=ux;c] else FAIL) — (M;, z:=x;c/) prov-
ing the case by My =}, | M and clause (c), indeed A(z) = P/cH
AFy: Plol with lo Co Hp and A F ¢ @ (¢cH, t, f). If the guard
evaluates to false then the two configurations are related by clause

(b).

while e do ¢’
The case is similar to the conditional one sub-case (if).

141

C1;Co
Let A Fc;: (w;,t;, fi). Two cases are considered.

If (M1, ¢;) S (M), c)) and ¢} # & then (My,ci;co) “p,L (M), c);ca).
By induction on ¢; (Mg, cy) 3>:|b|_ (My,ch), My =f M and
(My, 1) S{Mj, c3).
By command semantics it follows (My, cq; co) i>>|:b|— (MY, ch; o).
If Ak cco: (w),t), f/) then two cases are possible:
o | = c: It follows c);cy = cb; ¢y proving the case by requirement 2.
e ¢} # c,: The two configurations are in S by clause 3.
If ¢} does not type then by subject reduction (Lemma B.2) it could be
ci =xz:=y;c] and A(x) = PlcH, AF y: PlcL and A Fcf = (wf,t], 1)
in which case the same holds for ¢, ie., ¢, = ¢| and also (My,¢;) —
(My,c}), (Mg, c1) — (My, c}) by Proposition B.14. By command seman-
tics (My,ci3¢a) —m,L (Mi,cl;co) and (Mo, ci;ca) —p,L (Mo, cj;co) and
the two configurations are related by clause (c), indeed cf; cs is typed by
subject reduction. It could also be that c¢| = ¢}, = FAIL which prove the
case by requirement (b).

Otherwise (My,c;) <p,L (M),) and by induction on ¢; (M, c;) if,:b'_
(My,e) and My =}, M, It follows (My,ci;c) v (MY, co) and

(Mg, c1;ca) = (M5, co) proving the case by clause 2.

3. ¢p =c);c”, co = ch;c” with (My, c)S(Mag,).
If (My, ct) = HpL(M}, c”) by induction hypothesis (M, c}) i>:|bL (M5, cf) and
(M1, ¢)S (M, ¢y from which follows Mj =} | Mj. It holds (My,cj;ca) “rhL
(M, s co) and (My, cj;co) “p,L (M), cl;co) proving the case by clause 3.

If instead (My,c}) Sp,. (M}, ¢) then by induction hypothesis (Mg, ch) gf,:bL
(My,e) with My =} M, It follows (Mi,ciic) =p (M) and
(My, ch; co) >, (M), co) which prove the case by relating the configurations
by constraint 2.

Case (b): Note that (My,c;) and (Mg, cy) either cannot move or both silently
diverge, getting the result.

Case (c): Let M;(y) = v it follows (My, 7 :=y;c/) SpL (Mi[z — w],¢) and
(Mg, z:=17;¢) S (Mo — 5],). Note that A -y : PH,L so by Corollary B.1
v; and v are not in the domain of a digest substitution so from M; :{}ibl— M, it
follows My (y) = Ma(y) hence My[z — v] =} |

Ms[z +— w,]. The case is then proved since ¢’ is typed and so (M{,c)S(M),c’) by
clause 2.

It follows that S is H,L-TSB and the lemma is proved by clause 2. m

142 B. Proving integrity by equality - Formal Proofs

The following lemma proves, instead, that typed commands are related by a
LL-TIB.

Lemma B.7. If AFc: (w,t, f) and My =l My then (My,c) =~ (M, c).

Proof. Take § a relation on command configurations defined as
(M1, ¢c1)S(My, co) if and only if My =} My and either:

(a) A Ci: (wl,tl,fl), AF Co . <w2,t2,f2> and either:
1. ¢; and cy are Hy
2. Ci1 = Co

/) AN : / /
3. ¢p =c;d” o =l ” with (My, c})S(My, cb)

or (b) ¢; = FAIL or ¢, = FAIL
or(c)cg=cp=¢
or (d) ¢ = cg = z:=y;c with A(z) = PlcH, A+ y : PlcL with {c Co Hp and
AR ('t f).
In the following S is shown to be an LL-TIB. Since M; =l M, by definition, it
remains to prove that if (My,c;) <1 (M}, c}) then either (My, c,) S0 (M5, c) and
<M,1> C,1>S<M/27 C,2> or <M27 C2> .

By induction on the definition of S.
Case (a):

1. By Proposition B.11

2. In this case ¢; = ¢y thus the proof proceed by induction on the structure of
the command c;.

if e then c] else ¢
Three different cases are considered depending on the rule used to type
the command.

e (if): It holds A F e : 7 and A F ¢ : (w),t, f}). If L(t) C LL
then the expression will evaluate to the same value in both M;
and My thus the same branch will be followed: If e |[M: false then
(M;,if e then ¢} else c,) — (M;, c)), clearly the resulting memories
are equivalent since they are unchanged and the configurations are

related by clause 2.

If, instead L(7) IZ LL then the type system assure that L(7) C w;
thus w; = Hpf% i : 1,2, i.e., the two branches are H, commands. The
action is silent and do not change memories. Moreover requirement
1 is satisfied proving the case.

143

e (int-test): In this case e is x = y and ¢} is FAIL. It holds A F z : T,
Aby:7 T(r)=T(), L(r) = lcL, L(7") = cH and o T Hy.
Let (My,if x = y then ¢ else FAIL) — | (My,cf). If either one of
the two runs follow the else-branch then the case is proved by clause
(b) relating either (My, FAIL)S(My, co) or (My, c{)S(Msy, FAIL). The
case in which both runs follow the then-branch is the only one that
remains to prove, let (Mo, if 2 = y then c| else FAIL) — | (My,c})
and also ¢] = c].
If /¢ = H, then by (int-test) c| is a H, command thus the case is
proved by relating the two configuration using constraint 1.
Otherwise, if /o = L then A F ¢} : (LH,t, f) and the configurations
are related by requirements 2.

e (int-hash): Here e is hash(z) =y, ¢} is z:=z;c] and c} is FAIL.
Let (My,if hash(z) = vy then z:=x;c] else FAIL) — (M, c}).
If either one of the two runs follow the else-branch then the
case is proved by clause (b) relating either (My, FAIL)S(My, co) or
(M, ¢5)S (M, FAIL).
The case in which both runs follow the then-branch is the only one
that remains to prove.
Let (Mg, if hash(z) = y then z:=xc] else FAIL) —| (My, z:=z;c})
and also c¢f = z:= z;c]. The configurations are related by clause (d)
concluding the case.

The other cases are similar to the proof of Lemma B.6.

3. ¢p =c);c”, co =ch;c” with (My, c)S(Mag,).
If (M, c}) = LL(M{,c) by induction hypothesis (Ms, c5) iiL (M5, c) and
(M7, c])S(M, b)) from which follows M} = M} or (My,ch) 1. It holds
(M1, clica) S (ML, c) and (Mg, chicy) 11 (Mh,c?;cy) proving the case
by clause 3 or (Msy, c; co) 1.

If instead (My,c}) <L (M}, €) then by induction hypothesis (Ms,ch) <5/,
(M, &) with Mf =f, | M} or (M, ch) 1. It follows (My, cj; ca) <> (Mf, c2) and
(My, ch;co) =L (M), co) which prove the case by relating the configurations
by constraint 2 or (Mg, c; co) 1.

Case (b): Note that FAIL is a silent diverging program thus if ¢; = FAIL every
moves will be matched by (My, cg) %(EL (My, co), otherwise if (My,c;) < (M, ch)
it holds (Mo, FAIL) 1.

Case (c): The configurations do not move proving the case.

Case (d): Let M;(y) = v. If o = Hy, then it follows (M;, z:=y;) =1 (Mi[z —
v],c/) and obviously Mi[z —] =, My[z — w] and the two configurations
are related by clause 2, indeed ¢’ is typed. Otherwise, /¢ = L and it follows

144 B. Proving integrity by equality - Formal Proofs

My, z:=y;c) S0 Mz = o],c) and (Mg, z:=vy;c') S (Mafz = w),c).
Note that A + y : PLL so by Corollary B.1 v; and w» are not in the domain
of a digest substitution so from M; ={, | My it follows Mi(y) = My(y) hence
M|z — v] = My[z —). The case is then proved since c’ is typed and so
(M}, cYS(M, ') by clause 2.

It follows that S is LL-TIB and the lemma is proved by clause 2. n

It then follows that a typed command obeys to secret-sensitive NI.

Theorem. (SSNI by typing)
If A+ c:(w,t, f) then c satisfies SSNI.

Proof. 1t holds that if A F c: (w,t, f) then YM; =, My
1. (My,c) =~ (Mg, c) by Lemma B.7 and
2. My :ﬁbl_ M, implies (My, c) ~, L (Mg, c) by Lemma B.6.

]

Integrity NI by typing It is now proved that the type system assures that a
typed program obeys to integrity NI.

Proposition B.15. If A - ¢ : ({cL,t, f) and (M,c) = (M',c') then A ¢ :
(CeL, v, 1)

Proof. By subject reduction (Lemma B.2), notice that case 2 cannot be applied
since ¢’ is typed ({cH,t”, ") by Proposition B.5 and (¢cH,t", f") £ (bcL,t, f). O

Note that M; =p.n My implies My :ﬁlsH M, indeed it holds Myjyy = Moy p
where p is the identity function.

Proposition B.16.
{(<M1,C1>, <M2,C2>)‘ M1 =HH M2 and A\ cmdi . (EleL,tZ,fZ)} 18 a HSH—T]B

Proof. The relation is symmetric by definition. Commands are typed as A F ¢; :

If (My,¢;) = (M}, c,) then by Confinement (Lemma B.3) the command assigns
only to variables whose level is greater or equal to ¢, L thus it holds (My,c1) —p.n
(M/, c}) and My =44 M]. The transition can be matched by (My, cs) %S,SH (My, co),
indeed since M; =4 My then M} =4 My. Command ¢ is still such that A ¢ :
(L, t', f') by Proposition B.15. The two configurations are thus contained in the
relation proving the claim. O]

Lemma B.8. If At c: (w,t, f) and My =pn My then (My, c) ~un (Mg, c).

145

Proof. Let § be a relation on command configurations defined as
(M1, c1)S{My, co) if and only if My =4 My and either:

(a) A b ¢y (wy,ty, f1), A b co: (we,ts, fo) and either:
1. At (CLLt, f;)
2. c1=¢Cy
3. ¢1 = ;" ¢y = ch;c” with (Mg, c})S(My, ch)

or (b) ¢ = FAIL or c; = FAIL
or(c)cg=cp=¢
or (d) ¢ = cg = z:=y;c with A(z) = PlcH, A+ y : PloL with ¢c Co Hy, and
AFCd: (W, f) and My (y) = Ma(y).
In the following S is shown to be an HH-TIB. Since M, :f}'SH M; by definition, it
remains to prove that if (My,c;) Zhp (M}, c}) then either (Ms,cy) i>:|sH (M5, ch)
and (M}, c})S(M5, c}) or (Mg, co) 1)

By induction on the definition of S.
Case (a):

1. By Proposition B.16

2. In this case ¢; = ¢y so the proof follows by induction on the structure of the
command c¢;

skip
This case is obvious.
ri=e
It holds A(z) = 7 and A Fexp : 7. Let e {Mi v;, it follows (M;, z:=¢) =
(M;[z — v],e). If L(7) = Lol then (M;, z:=¢e) —pn (Mi[z — v;],¢) and
Mi[z —] =py.n Ma[x — vp] proving the case by requirement (c). Other-
wise the case follows similarly by Expression ¢-equivalence (Lemma B.1).
if e then ¢} else ¢
Three cases are considered depending on the rule used to type the com-

mand.
o (if): It holds Ak e:7, Ak c: (wt;, f;) and L(7) C w;.
If L(r) = {lcL then the w; = oL, it fol-
lows (My,if e then ¢} else c}) —H.H (My,c}) and

(M, if e then | else ¢}) —pnu (M, cl) so the configurations
are related by clause 1.
Otherwise, L(7) = ¢cH and so the expression evaluates to the same
boolean value on both memories by Expression ¢-equivalence thus
(M, if e then ¢ else ¢j) —nn (Mi,cj) and the configurations are
related by constraint 2.

146

B. Proving integrity by equality - Formal Proofs

e (int-test): In this case e is z =y, ¢} is FAIL, A(z) =7, A by : 7
with L(7) = fcL, L(7") = LcH, T(1) = T(7).
Let (My,if = y then ¢} else FAIL) —p.n (My,c]). If either one of
the two runs follow the else-branch then the case is proved by clause
(b) relating either (My, FAIL)S(My, co) or (My, c{)S(Ms, FAIL). The
case in which both runs follow the then-branch is the only one that
remains to prove, let (Mg, if © = y then ¢ else FAIL) —pyn (My,c))
and also ¢/ = ¢] thus the two configurations are related by clause 2.

e (int-hash): Here e is hash(z) = y, ¢} is z:=z;c/ and c is FAIL.
Let (My,if hash(z) = ythen z:=uz;c] else FAIL) —pn (My,c}).
If either one of the two runs follow the else-branch then the
case is proved by clause (b) relating either (My, FAIL)S(My, cy) or
(M, ¢£)S(Ms, FAIL).
The case in which both runs follow the then-branch is the only one
that remains to prove.
Let (My,if hash(z) = ythen z:=uz;c] else FAIL) —pyn
(My, z:=x;c}) and also ¢} = z:=z;c/.
It holds hash(z) = y {Mi true, My(y) = My(y) = v so if v = h(2')
then it follows M;(z) = My(z) = o', otherwise v = hP(v”) and
Mi(x) = My(x) = v”. The configurations are related by clause (d)
concluding the case.

while e do ¢’

This case is similar to the conditional one sub-case (if).

/. !
C15Co

Let A F ¢ : (wl,t;, f)). Two cases are considered. If (My,c}) Shn

(M}, c?) and ¢/ # € then (My,c};ch) <hn (M}, c?; co). By induction on c}
*

(Mg, c}) g>HSH (M3, c3), My :}I—LlsH M5 and (Mf, ci)S(My,) or (M, ci) 1.

In the latter case the proof is done.

Otherwise by command semantics it follows (Ms, c{;) ﬁ>:|sH (MY, ¢l ca).

IfAF e (w! t!, f) then two cases are possible:

7910
e ¢ =c}: It follows cf;cy = cb; ¢y proving the case by requirement 2.
e ¢ # c,: The two configurations are in S by clause 3.

If ¢ does not type then by induction it could be ¢ = z:=y;c] and
A(z) =PlcH, Aty : Plcl, Mi(y) = Ma(y) and A F ¢« (w]’, t}", f") in
which case the same holds for ¢, i.e., ¢ = ¢{. By command semantics
(My,ci5¢h) —pn (My,cf5co) and (Mo, cf;ch) —pn (Mg, cf;co) and the
two configurations are related by clause (c¢), indeed cf;cy is typed by
subject reduction. It could also be that ¢} = ¢}, = FAIL which prove the
case by requirement (b).

o *

Otherwise (My,c}) <pu (M],e) and by induction on ¢} (Ma,c}) =

147

(Mj,) and M, =f,, My Tt follows (My,cj;ch) Sun (Mi,ch) and
(M, ch; ch) Shn (M, cb) proving the case by clause 2.

3. ¢ =c;c”, cg =l ” with (M, c])S(Mo, c).
If (My,ct) & HH(MY,) by induction hypothesis (Mg, c}) if;sH (M5, cb) and
(M7, c)S(Mj, ci) from which follows M} =4 M), or (My, c)) 1.
It holds (My, c};ca) Zhm (M), c”;co) and (My, ch;ca) =hn (M, c”; co) proving
the case by clause 3 or (Mg, c; co) 1)

If instead (My,c}) Su.n (M, €) then by induction hypothesis (Ms, c)) i)LSH
(M, £) with M =p,n M or (My, ¢5) . It follows (My, ¢j; ca) Sun (M cy) and
(Mg, c; co) —p.n (M), co) which prove the case by relating the configurations
by constraint 2 or (Mg, c; co) 1)

Case (b): Note that FAIL is a silent diverging program thus if ¢; = FAIL every
moves will be matched by (Ms, cg) %E'SH (My, cy), otherwise if (My,c;) S (M), ch)
it holds (My, FAIL) 1.

Case (c): The configurations do not move proving the case.

Case (d): Let My(y) = v, it follows (M, z:=y;¢) Spn (Mi[z — v],¢) and
(Mg, z:=y; ') S (Ma[z = v],c’) so from My = My it easily follows M;[z
v] =p.n Moz — v]. The case is then proved since ¢’ is typed and so (M{, c')S(M}, c’)
by clause 2.

It follows that S is a H,H-TIB and the lemma is proved by clause 2. m

Theorem. (Integrity NI by typing)
If A c: (w,t, f) then c satisfies integrity NI.

Proof. It must be proved that if A F c: (w,t, f) then VM; =p.n My (My, ¢) ~p.n
(Mg, c). The claim follows directly by Lemma B.8.]

148 B. Proving integrity by equality - Formal Proofs

C

Type checking PIN Verification APIs
- Formal Proofs

150 C. Type checking PIN Verification APIls - Formal Proofs

C.1 Closed key types

In some typing rules we need to recursively collect the level of the types of an
encryption or MAC key, by descending into pairs and into high level encryptions.
This is achieved by the following function LT (0)

LTa(0) = {4}
LTa((11,72)) = LTa(m)U LTA(@) .
LTa(encs k) = { l{lﬁ(}ﬂ gtklfé:v)/i; cKel(r) K

Notice that, if there is a cycle of encryption labels the computation of LTA(d) does
not terminate. From now on we will always assume key types are acyclic. We also
need to check when a type does not contains randomized encryptions.

Det(0) = true
Det((ﬁ, 7’2)) = Det(ﬁ) A\ Det(Tg)
Det(encs k) = Det(7) A (K(k) = cKs(T) K)

Based on this function, we define some useful sets and predicates:

() = {D |5c[D] € LTa(r)}
(r) = {D|DeD,éc|D':D]elLTa(r)}
DD(7) iff 0cdr € LTa(7) implies C IZ 41
(7) iff Dep(r) C IRs(7)
(1) iff Closed(r) A DD(7)

(1) iff Closed(7) A DD(7) A Det(7)

respectively, the set IRs(7) of the integrity representatives in 7; the domains Dep(7)
on which types of 7 depend; the fact, written DD(7), that all the integrity levels are
below C, i.e., are all of the form [D : 5]; a predicate Closed(7) checking the closure
of dependent domains of 7 with respect to integrity representatives. For example,
([D],[D’" : D)) is closed while ([D],[D’: D"]) is not; CloseDD(7) and CloseDD%t(7),
additionally requiring DD(7) and Det(r).

C.2 Memory well-formedness

Well-formedness for values is given in Table C.1. © is an injective mapping from
key values to their types. An integrity representative assumes the constant value
determined by function g(D) where D is the domain of the representative (v-ir).
A value which depends on a set of domains {Dy,...Dn} = D’ and belongs to the
dependent domain D : D’ is mapped by a function fp.p, . p, taking the values of
each of the integrity representative of the domains contained in D’ and returning
the value of the resulting domain (v-dd). The ordering of the D; is important here to
keep the parameters in the correct sequence. While g can change depending on the

C.2. Memory well-formedness 151

integrity context, we assume f is fixed a-priory for a memory and never changes while
checking well-formedness. This amounts to fix the dependency among dependent
domains without however fixing a-priori their values, which is instead determined
once ¢ is also fixed. We will always assume that f and g never returns keys or
confounders. Finally, while ¢ is partial, we always assume f is defined for each
dependent domain D : D’

MACs and values encrypted with trusted keys that should always contain ‘high-
integrity” values of type 7 (v-enc) and (v-mac), and a confounder in case of random-
ized encryption (v-enc-R). In fact, those values can only be generated by trusted,
well-typed, programs. These rules also instantiate all the integrity representatives
corresponding to domains appearing in 7 via a function g; this is to avoid that the
same representative assumes different values in the same high integrity context.

All the other rules work as expected. Notice that ciphertexts obtained through
high level keys can be given confidentiality level L independently of the confiden-
tiality level of the plaintext, reflecting the possibility of generating low-confidential
ciphertexts containing high-confidentiality plaintexts. As well-formedness only aims
at checking the integrity of values, we do not constraint the value of dc as done,
instead, when typing expressions.

It can be easily proved that any value in which only low-level keys appear is
well-formed and can be given any possible low-integrity type, meaning that we do no
restrict attacker ability to manipulate low-integrity memories apart from subvalues
generated via high level keys. (Recall that types at level dcL are all implicitly
considered the same.)

Intuitively, a memory M is well-formed if all its variables stores well-formed
values. For dependent domains we fix a-priori all the representatives via a specific
g. This is to account for run-time situations in which a MAC check has been
performed. Let g, denote e when H C £;(7) and g otherwise.

Definition C.1 (Memory well-formedness). Let © : k — Ks(7) k be a mapping
Jrom keys to key-types such that k € Kr@ew)), and injective for high level keys, i.e.,
k. k" € Kgc implies O(k) # O(k'). A memory M is well-formed with respect to A
and g (# €), written A l—g M, if the followings hold

(1) A(z) =7 and M(z) = v imply © F] v :7

(i3) If values {Jv, r[r, {{v',7'[}x occur in M, then O(k) = cKE(7) Kk and v # o'
imply r # r'.

Proofs

This appendix contains all the proofs of the results. In some cases we also add a
few technical details that have been skipped in Chapter 5 to easy the presentation.

152 C. Type checking PIN Verification APIls - Formal Proofs

Table C.1 Values well-formedness
Note: In rules (v-enc), (v-enc-r), (v-mac), g = ¢’ when g #e or L;(0) =L

Yl - oK , i
(v-name) ngk - 6 # [D: D] (v-key) M (v-sub) b fT <
OFyn:dcir OkFgk:7 orlv:r
O v O po
(v-pair) g v; n g V272
© l_g (Ula UQ) : (TlaTQ)
(v-ir) 9@ n=g(D) (v-dd) g(Di)l n= fo,,..0,(9(D1),...,9(Dy))
© 4 n:6c[D] O+ n:0c[D:{Di,...,Dnl]
O(k) =mKs(r) OF, v:ir
(v-mac) 7 g
] |_g <’U>k : (scL
(v-enc) Ok) =cKs(r) = © l_.flc’ ver (v-enc-r) O(k) = Kijc(r) & © "5/ viT

Ok {vlk : encsor, (5y)uLs(r) K O) {v, bk : encspcuc, () K

Preliminaries

We first formalize various assumption that have been given (a few of them omitted
for the sake of simplicity).

Assumption C.1 (Types). We always assume that:

1. In (11, 72) we have Lo(m) = Lo(m). If HE L((71,72)) then also Li(m) =
L"I(TQ);'

2. In cK§(7) Kk and ch,l(T’) K, k =K implies cK§(T) Kk = ch‘,/(T’) K.

3. In Ks(7) k and (11, 72) types 7,71, T # Kuc(T) K

4. For types referring to the same key label as encs k and cK§ (1) K, we always

assume Lr(6) = L7(8") U Ly(T)

Intuitively, (1) states that, in pairs, the two types are required to have the same
confidentiality level and, for integrity levels at or above H, even the same integrity
level; (2) formalizes that & is a label that uniquely identifies one key type; (3) states
that we disallow the encryption (and the MAC) of high level keys; (4) requires that
the integrity level of encryption is coherent with the one of the key (notice that this
is not limiting, as if the integrity level is not the right one it is impossible to type
encryptions and decryptions).

C.2. Memory well-formedness 153

Table C.2 Command Semantics

e My

(M,c) =M (M, cy) = M/

[skip] (M, skip) =M [assign] [seq]

(M, z:=¢) = M[z — v] (M, cy;c0) = M

biMtrue (M,c;) = M’ [if b{Mfalse, L (M,co) = M
(M, if b then c; else co) = M/ (M, if b then c; else c3) = M/

[if]

b M true (M,c) = M (M’ while b do c) = M”
(M, while b do ¢) = M”

b M false, L

hilet
[while] (M, while b do ¢) = M

[whilef]

Table C.3 Expression Semantics
NOTE: We let e (M v, e; M vy, e5 {M vy and = [M k.

new() {M r r« C
)M {olt
decx((e ; im ’é’ > K if ¢ M ol
mac, (e)k
pair(ey, e2) IM (vy, vy)
YAIM if ¢ ™ (v1,)
)M vy if e IM (v1, vp)

All remaining cases, e.g., decryption with an incorrect key, evaluate to the special
value | making the expressions total.

Assumption C.2 (Expressions). For generic expressions it always holds

1. ey op ey IMn withng KU C

‘

2. e op ey ML then either op is ‘=" (i.c., the equality check) or e; \M n; with

3. when the observation level ¢ is HL (top) the equality check is defined as e; =
ex IM true iff e; IM v and puL(v) = puL(we) (instead of vy = uy); €1 = ey (M
false otherwise.

Intuitively, (1) generic expressions never generate keys or confounders; (2) they
fail when applied to names which are not atomic and different from keys/con-
founders, unless the operation is the equality check; (3) equality check e; = ey
is evaluated as expected (i.e., syntactic equality of the resulting values) apart when
the observation level is HL; in this particular case we require it is consistent with
equality of patterns at the actual observation level HL; this assumption is needed
to prove noninterference when ¢ = HL. We might even remove this assumption and
restrict noninterference result (theorem C.2) to LL and HH which are anyway the

154 C. Type checking PIN Verification APIls - Formal Proofs

levels of interest since they respectively represent the attacker and the trusted users.
Robustness, in fact, is based on these two levels and does not depend on assumption
C.2(3). Technically, under this assumption, expression evaluation, and consequently
program execution, depend on /; to keep the notation as much simple as possible, we
however prefer to omit to decorate with ¢ program semantics. When not explicitly
specified, we will always intend that programs are executed below HL, i.e., with the
expected semantics for equality check (e = ey M true iff ¢, |M v; and v; = 1y, and
er = ey [M false otherwise.)

Assumption C.3 (Confounders). Confounders r occur in memories only as {|v, r}x
with ©(k) = cKfic (1) k.

This assumption comes from the fact that (typed) programs only use confounders
in the expected way, i.e., inside randomized ciphertexts. It is trivial to show that
the assumption is preserved when running (typed) programs: it is enough to observe
that, by assumption C.2(1) above, the only expression which returns confounders is
new and it is only (implicitly) typed by rule (enc-r), while randomized decryption
always ‘throws away’ the confounder.

Memory well-formedness

We now give some results on value well-formedness. To do so, we first need to
formalize what is a subvalue. In particular, we formalize a notion of subvalues at
level ¢, i.e., subvalues observable by only knowing keys at or below . To simplify a
bit the notation, we will often write v to denote the set {v} only containing value
v. Recall that we write Krs to denote the set of keys at or below 9, i.e., Us5/KCs.

Definition C.2. The set of §-subvalues of a value v, written Subs(v) is recursively
defined as:
Subs(n) = n
Subs((v1,v2)) = (w1, v2) USubg(vy) U Subs ()
Subs((v)k) = (v}
_ [Aol if k& Kes
Subs({Julie) = { {vl}r USubs(v) otherwise
We write Sub(v) to denote Subyi (v), i.e., the set of all the subvalues of v.

Notice that keys used to create ciphertexts and MACs are not considered as
subvalues. We actually assume it is never possible to deduce a key from a ciphertext
or MAC. Those keys, when needed, can be extracted from a value by just looking
at all the ciphertexts/MACs appearing as a subvalue. Formally

K(v) ={k | {v'[}x € Sub(v) V (v'); € Sub(v)}

Next lemma states that any value in which only low-level keys appear is well-formed
and can be given any possible low-integrity type, meaning that we do no restrict at-
tacker ability to manipulate low-integrity memories apart from subvalues generated
via high level keys.

C.2. Memory well-formedness 155

Lemma C.1. If K(v) C KL and Sub(v) N Kuc =0 then © F/ v : LL.

Proof. It is sufficient to consider © such that ©(k) = LL for all k € K(v). We now
proceed by induction on the structure of v.

Base case:
n
By (v-name) we have that all names n, except keys, are such that © ' n : LL.
Since Sub(v) N Kuc = 0 we have that n & Kuc. When n € Ky, by ©(k) = LL
for all k € K(v) and (v-key) we obtain © ' k : LL.
Inductive case:
(v1, v2)

Since Sub(v;),Sub(wvy) C Sub(v) we also have K(v;) C K(v) C Ky and
Sub(v;) N Kpc € Sub(v) N Kyc = 0. Thus by inductive hypothesis we know
that © ' v : LL. By applying (v-pair) we directly obtain the thesis since
(LL,LL) = LL.

v

As above, by induction we know that © = v’ : LL and by K(v) C KL we know
that ©(k) = LL. Recall we identify LL with every low-integrity/confidentiality
type as, in particular, cK (LL) k = LL. By (v-enc) we thus get © F {{v'[};. :
enc | k = LL.

(V')

We proceed exactly as in the previous case. [
]

We now prove that in any well-formed value, which is not itself a high level key,
high level keys k never appear as subvalues, even if they can appear as keys as, e.g.,

in {|v[}g.
Lemma C.2. Let © l—g v:7. Then v & Kyc implies Sub(v) N Kpyc =0 .

Proof. By induction on the structure of v:
Base case:
n, <U>k

Trivial since Sub(v) = {v}. By v & Kuc we directly have that Sub(v) N Kyc =
0.

Inductive cases:

156 C. Type checking PIN Verification APIls - Formal Proofs

(v1, 0a)
Let © I—g (v1,v) : 7. Since pairs are not in the subtyping relation, the
Judgement comes from (v-pair) implying that T = (11, 72), © l—g v 1 oand
© F w7y, By assumption C.1(3), we have that 7; # cK{ic(7) k. Notice that
if i € Kue it would be necessarily be typed as cKlic(7) k since the only pos-
sible rule for high keys is (v-key) and high level key-type is not in the subtype
relation. So v; € Kne and, by induction, Sub(v;) N Kuc = 0. Thus,

Sub((vl, 1}2)) N ’CHC =
= (Sub(v1) U Sub(vz) U (v1, 1)) N Kuc = 0

v

Let © I—g {vl}x : 7. The judgement might derive from (v-sub) and one among
(v-enc) and (v-enc-r), meaning (k) = cK{(7') k and O I—Z;, v 1. By
assumption C.1(3), we have that 7" # cKiic(T) k. As for the above case, this
means that v' & Kuc. By induction we thus get Sub(v;) N Kyc = 0. Thus,

Sub({Jv'[x) N Kuc C
C (Sub(v') U {[v/[}) N Kic = 0

[]
[]

Intuitively, judgments © ' v : LL, © F/ v : 7 and © I—g v : 7 have increasing
discriminating power, as they are used to check the well-formedness of values at
increasing integrity levels. We formally show that © l—g v : 7 always implies © -/
v : LL. Moreover, when £;(7) = H, it also implies © F/ v : 7. This does not hold for
high level key values whose integrity cannot be reduced by subtyping. For example,
a high level key k can be typed as © I—}; k : 7 but it can never be typed © F/ k : d¢L.

Lemma C.3. Let v € Kyc. Then
(i) ©F) v 7 implies © H v : LL;
(i1) ©Ff w:r and Li(t) =H imply O H v : 7.

Proof. By induction on the structure of v.

Base case:

We have that all names n, except keys, are such that © Ff n : LL, thanks to
(v-name). Moreover, the condition k € K@) on © ensures that low keys
k € K are such that ©(k) = 7/ = LL and by (v-key) © F k : LL. By
hypothesis n & Kyc.

C.2. Memory well-formedness 157

Inductive cases:

(01, v2)
Let © I—g (v1,v2) @ 7. Since pairs are not in the subtyping relation, the
judgement comes from (v-pair) implying that 7 = (7, 72), © I—g v; : 7. By
lemma C.2 we know that v; & Kyc. Thus, inductive hypothesis applies and
we obtain © F/ v; : LL and, by (v-pair), © F/ (v, 1) : (LL,LL) = LL.

{v' B
Let © -/ {|o'[}x : 7. The judgment might derive from (v-sub) and one among
(v-enc) and (v-enc-r), meaning O(k) = cK§(7') £ and © I—g/ v 7', By
lemma C.2 we know that v' & Kyc. Thus, inductive hypothesis applies and
we obtain © ¢/ : LL. By reapplying the very same rule (v-enc) or (v-enc-r)
with empty g and dc = L we obtain © FF {|v'[}; : enci| k = LL.

(V')

This case is identical to the previous one.

(77) Again, by induction on the structure of v:

Base case:

By rule (v-name), we have that all names n, except keys, are such that © 7
n 7', with £;(7) = H. When £;(7') = H we also obtain © -/ n : 7, by
taking 7" = 7. The condition k € K,@©)) on © ensures that low keys k € Ky
are such that ©(k) = 7/ = LL and by (v-key) © -/ k : LL. Thus, low keys
can never be typed at level £;(7) C; H, meaning the n ¢ K\ . Moreover, by
hypothesis n € KCyc. Thus n cannot be a key.

Inductive cases:

(v1, v2)
Let © (v, v) : 7 with £;(7) = H. Since pairs are not in the subtyp-
ing relation, the judgement comes from (v-pair) implying that 7 = (71, 7),
© 7 v : 7. By assumption C.1(1), we also have £;(71),L;(2) = H. Thus,
induction gives © F/ v; : 7, and from (v-pair) with empty g we directly obtain
O (v,) : (11, T2).

{onlw

Let © F/ {ul}y - 7 with £;(7) = H. The judgment might derive from (v-
sub) and one among (v-enc) and (v-enc-r), meaning O(k) = cKf(m) x and
O l—g, v, : 1. By reapplying the very same rules with ¢ = € we thus obtain

O {uly:T.

158 C. Type checking PIN Verification APIls - Formal Proofs

(V)

MACs are never typed at high integrity.

Corollary C.1. Let HC; L;(7). Then, © I—g v: 7 if and only if O H v i 7.

Proof. Notice that © ' v : 7 denotes © l—g v . T with an empty g. So we only need
to prove that © I—g v : 7, with HC; L1(7) and non-empty g, implies © =/ v : 7. By
HC; £;(7) we have two easy cases: when Lr(T) = L, by lemma C.3(i) we obtain
that © =/ v : LL = 7. When L;(7) = H, by lemma C.3(ii) we directly obtain
Or v:r. 0]

Next lemma states that value subtyping works as expected even in the presence
of g.. Recall that g, denotes ¢ when H C £;(7) and g otherwise.

Lemma C.4. © I—gT, v:7 and 7 < 1 then © I—!J;T VT,

Proof. By (v-sub) we have that © l—ng v:7 and T < T imply © '_fz:/ v:7. Now
we have three cases. If H L L;(T) then also H IZ L;(7') and g, = g = g which
concludes the proof. If HC L;(7) and H C L;(7') then g, = g = € and even this
case is concluded. The only interesting case is when H T L;(7) and H Z L;(7")
which implies g, = € and g = g. Intuitively, this happens when subtyping ‘crosses
the H integrity boundary. By corollary C.1(ii) we obtain that © I—g v . 7 implies

O F v : 1 giving the thesis.] [

)

Key-safety of well-formed memories We now show that memory well-
formedness implies key-safety: when observing a memory at § we can only learn
keys of level § or below. We first need to formalize the set of values deducible from
a set of values V' by only using deducible keys, written knows(V). It is defined as
the least set such that

(1) V C knows(V);
(2) if (v, 1) € knows(V') then vy, v2 € knows(V);
(3) if k, {Jv[}x € knows(V') then v € knows(V').

What is deducible at § from a memory M, written knowss(M), can be now expressed

as:
knows;(M) = knows(img(M|s))

where img(M|s) = {M|s(z) . z € dom(M|s)}. We can now define memory key-safety
as follows:

Definition C.3 (Key-safety of memories). A memory M is key-safe iff knowss(M)N
K C Kcs.

C.2. Memory well-formedness 159

In order to prove that well-formed memories are key-safe we need a few lemmas.
First, it is trivial to show that knowss(M) only contains subvalues of img(M|s),
written Sub(M|s) = Uyeimg(mis)Sub().

Lemma C.5. knows;(M) C Sub(M|s).

Proof. Let V = img(M|s). We proceed by induction on |knowss(M)|.

Base case: |knowss(M)| = |V]. We have knowss(M) = V C U,cySub(v) =
Sub(M|s).

Inductive case: |knowss(M)| > |V|. We pick v € knowss(M). If v € V' we are done
as V C U,erSub(v) = Sub(M|s). If; instead, v ¢ V' we remove it from knowss(M),
obtaining V' = knowss(M) \ {v}. Doing so we necessarily break condition (2) or (3),
otherwise we would have knowss(M) is not the least set satisfying those constraints
(since V' is included in it). We now have different subcases depending on which
condition we break:

(2) We have either (v,v") € V' or (v, v) € V'. Without loss of generality, assume
(v,v") € V'. By inductive hypothesis we have that (v,v") € Sub(v”) for at
least one v” € V which implies v € Sub(v”) C Sub(M|s) giving the thesis.

(3) We have that k,{v[}y belong to V'. By inductive hypothesis we have that
{vl}x € Sub(v”) for at least one v” € V which implies v € Sub(v”) C Sub(M|s)
giving the thesis. O]

]

Next lemma states that values typed at a certain integrity level contains subval-
ues which are typed at the same integrity level or below (i.e., higher since integrity
levels are countervariant).

Lemma C.6. Let © F/ v : 7 and let v' € Sub(v). Then, © l—g, ' o 7T and
E[(T/) E[,C[(T).

Proof. Observe that if © I—g v: T then © I—i;, v' 7' occurs in the proof of the former
Judgement since all subvalues are recursively judged.

Thus the only fact we need to prove is that L;(7") &y Ly(7). It is sufficient to
proceed by induction on the length of the derivation from © I—g, v' 7 to © I—g; VT,
For length 0 we have that v = v" which trivially gives the thesis. For length 1 > 0,
by an inspection of the rules, we can see that, when v is not atomic, judgement
S) I—g v : 7 always depends on © I—]gc,, 0" 7 such that v" is a subvalue of v and, in
all cases, we have Li(t") Ty L;(7). Since we also have that v' € Subs(v") (in case

of pairs we will choose the appropriate subvalue), by inductive hypothesis we obtain
L(7") Ty Li(7") from which the thesis. O O

We can now prove that low keys never occurs as subvalues of values which have
integrity level at or below H.

160 C. Type checking PIN Verification APIls - Formal Proofs

Lemma C.7. Let © HJ v : 7 and L;(7) E; H. Then Sub(v) N Ky = 0.

Proof. By lemma C.6 we know that v € Sub(v) is such that © l—g, v' o 1 with
L(t") T L;(7) E7 H. Since low keys can only be typed via (v-key) and (v-sub) as
dcL, we conclude that v & K| from which the thesis. O

Proposition C.1 (Key-safety). Let A I—g M, then M is key-safe.

Proof. We want to prove that knowss(M) N IKC C Kry. First recall that knowss(M) =
knows(img(M|s)) and, by definition, M|s is the submemory of M only containing
variables whose level is less then or equal 6. Let vy, ..., v, be all the values in
img(M|s). From A I M we know that © l—gﬁ v; © T owith L(1;) T 0, for all
1=1...n.

If LL £ § we necessarily have that L;(6) = H. By lemma C.7 we know that
Sub(v;)) N KL = 0. By lemma C.5 we obtain that knowss(M) N K. € U™, Sub(v;) N
]CLL = @

If HC' IZ § we know that v; & Kuc since high keys can only be typed at level HC.
By lemma C.2 we obtain that Sub(v;) N Kuc = 0. Again by lemma C.5 we obtain
that knowss(M) N KCue C U, Sub(v;) N Kuc = 0.

We have thus proved that knowss(M) N Kgs = 0, where Kgzs = K\ Kzs. Now we

can write
knowss(M) N K =

= knOW55<|\/|) N (/CQ; U ICZ5>
(knowss(M) N Kzs) U (knowss (M) N Ks)

giving the thesis. [Il

Evaluation of well-typed expressions

We now prove that well-typed expressions of type 7 evaluated on well-formed mem-
ories, always give a well-formed value of type 7. Moreover, randomized ciphertexts
are guaranteed to be either identical copies of already existing ones or completely
new ones, i.e., with a fresh confounder. Recall, we write Sub(M) to denote the set
of subvalues of the whole memory M, i.e., Uycimgm)Sub(v).

Proposition C.2. Let A/ M, At e:7 and e M v. Then
(1)) OF v:7

(43) if {|v', r}}x € Sub(v), with k € K&, then either {v',r[}y € Sub(M) or r has
been extracted fresh, noted r < C, during the evaluation of e.

Proof. By induction on the structure of e.

C.2. Memory well-formedness 161

T
By Az : 7 we have that A(r) = 7/ with 7/ < 7. Since z M M(z) by (i) of
definition C.1 we directly obtain that © l—f R 7" and by lemma C.4 we obtain
thesis (7). Thesis (i7) is easily obtained by observing that Sub(v) C Sub(M).
€1 Op €2

By A F e op e : 0 we have £;(8) # [D:D]. Here we do not even need
induction: by assumption C.2(1) we have that e¢; op e; {M n with n ¢ K.
Thesis (i) is a direct consequence of (v-name), thesis (i¢) holds since Sub(v) =

pair(ey, €)

By A F pair(er,) @ (11,72) we have A F ¢ : 7/ with 7/ < 7. Let ¢ M
v; and notice that pair(ey, e2) M (v1,v2). By induction and lemma C.4 we
directly obtain that © / v; : 7. We have two cases: if H C&; £;((71,72)),
by assumption C.1, we know that H ©&; L;(11) = L1(72) thus g, = g-, =
gr = € and we obtaln the thesis by (v-pair). If H iZ; £;((71, 7)) we also have
H Z; L£;(1),L;(72), since, by definition, L((71,72)) = L(m) U L(72). Thus
9r, = 9r, = 9 = g and, again, by (v-pair) we obtain thesis (i). Now observe
that Sub(wv, 1) = (vi, v2) U Sub(v;) U Sub(v,), thus every value of the form
{v', [} € Sub(wvy, 1) occurs either in Sub(wv;) or Sub(w,). Since, by induction,
(71) holds on v; and vy, it also holds for (v, vs).

fst(e1), snd(e;)

We show the proof for fst(e;) as the one for snd(e;) is identical. By A F fst(e) :
7 we have A F ¢ : 7 = (7/,75) with 7 < 7. Let ¢ {M v;. By induction
we know that © l—f vy = 7", Now we have three cases: if v; = (v,v9)
and H C; £;(7"), as " for the above case, we have that H CT; £;(7'), thus
et = g = €, 1mply1ng C) I—f v : 7" and, by lemma C.4 we obtain © l—f VT,
The case v = (v,v2) and H Z; L;(7") implies also H Z; L;(T) giving
g-» = g = g, and we proceed as above. The last case is when v is not a pair.
Here we have that fst(e) returns L. The only way a non-pair can be typed as
a pair is when 7/ = LL = (LL,LL). By (v-name) we obtain © -/ 1: 7 = LL.
Thesis (i7) is trivial in the case the result is L. If; instead, the result is v it is
sufficient to observe that Sub(v) C Sub(w;) and that, by induction, (i) holds
for v;.

enct(e)
In this case A - e : encs k. Let e; {M v; and z [M w. The proof follows by
cases on the key type.

If A(z) = cK| (7) k then the expression has been typed by (enc). It follows
that 6 = dcL and A F e : 7/ with 7/ < 7. We have two cases: if v, € K we have
e \ML and by (v-name) we directly obtain © F/ L: §oL = encs x. If, instead,

162 C. Type checking PIN Verification APIls - Formal Proofs

v, = k € K, we have e [M {lu[}4. By induction hypothesis, © -/ v, : 7/ and

O(uy) = K (7) k = cK| (LL) k; by lemma C.3(i) we obtain © -/ v; : LL and
by (v-enc) we directly obtain that © F/ {u[}; : dcL = enc; k.

If A(z) = cKye(7) & then the expression can be typed either by (enc) or
(enc-d). In both cases A F ¢ : 7/ with 7/ < 7 and £;(§) = C U L;(7). So
by induction and lemma C.4, © F/ v : 7 and O(k) = cKyc(7) £. Notice
that, since £;(5) = C' U L;(7), we have gene, » = ¢-. We can now apply (v-
enc) to get © F/ {uix : encs k. Notice that (v-enc) does not constraint
the confidentiality level of ¢, which is useful to fulfill both (enc) and (enc-d)
requirements.

The case A(z) = cKE () & is exactly as the above one.

Thesis (i7) is trivial in the case the result is L. If, instead, the result is {|v; [},
with O(k) # cKfi-(7) K, we observe that Sub({|vi[}x) = {vi[}x U Sub(v;) and,
since by induction we know that (ii) holds on Sub(v;), we obtain the thesis.
The only interesting case is when ©(k) = cKE(7) x which gives {Jvy, 7[}x and
consequently Sub({ v, r[}x) = {|v1, r[}x U Sub(v;) U r. Since r < C' during the
evaluation of this encryption and by induction we know that (zi) holds on v,
we obtain it also holds for { v, r[}.

dect(e)
We have A - dec,(e;) : 7 and A & e : encs k. Let e; (M v and z M v,. By
induction hypothesis, © l—g , v o 7" with 77 = encsy k. The proof follows by
cases on the key type.

If A(z) = cK| (7") k then the expression has been typed with 7 = LL LU § by
(dec). It follows that 7 = dcL. We have two cases: if vy # {Jv[},, or v, & K
we have e |M1 and by (v-name) we directly obtain © H/ L: oL = 7. If,
instead, v; = {|v[}x and v, = k € K, we have e |M v. By induction hypothesis,
© F v : encs k = dcL. This implies, by (v-enc), that © F v : 7/ and, by
lemma C.3(i) we obtain © /v : LL < dcL.

If A(z) = cKye(7') K, since high keys can only be typed via (v-key), we know
that v, = k and O(k) = cKyc(7') k. The expression can be typed either by
(dec) or (dec-p).

If the expression has been typed with 7 = HC U by (dec) we have two
subcases: if v; # {|v[}x we have e [M L. The only way v; can have type encs
without being a ciphertext is when £;(§) = L thus £;(HC' U J) = L. By (v-
name) we directly obtain © =/ L: 7. If, instead, v; = {Jv[}s, we have e |M v.
By induction hypothesis, © I—Jgi" vy : 7" with 77 = encs k and by (v-enc) we

know that © l—g, v: 7, with CUL(7") = L(7"). This implies H C; £,(7") iff

C.2. Memory well-formedness 163

H C; £;(7") which means ¢g,» = g,». Notice also that ¢’ can be different from
g-» only when g,» = € but this happens when H C; £;(7’) and by corollary C.1
we obtain that © I—Z;, v : 7 implies © F v : 7. Thus O I—chT" v : 7" and
since g,» = g, © l—gT, v : 7. Now it can be easily shown that 7 = Hd; with
o = CUL(7"). Infact, 7 = HCUd = HCUL;(d) = HCUL,(7") = HCUL (7).
Thus 7/ < 7 and by lemma C.4 we obtain © I—gT viT.

If the expression has been typed with 7 = 7/ by (dec-u) two subcases must
be considered: if v; # {Jv[}; we have e [M L. The only way v; can have type
encs x without being a ciphertext is when £;(0) = £;(HC U L;(7")) = L, i.e.,
L;(7") = L. By (v-name) we directly obtain © F/1: dcL = 7/. Otherwise
v, = {Jof}, and we have e M v. If £;(7') = L the proof follows directly by
(v-name). If, instead, L£;(7") C; H it follows £;(d) C; H and v must have
been typed via (v-enc). The fact © I—gT/ v : 7' is obtained exactly as done for
the previous case.

The case A(z) = cK{ic(7') & is exactly as the above one except for v; = {|v, [}
which is typed via (v-enc-r) in place of (v-enc).

Thesis (i7) is trivial in the case the result is L. If, instead, the result is v it
is sufficient to observe that Sub(v) C Sub({ v[}x) and that, by induction, (i)
holds for {|v[}.

macg(e;)

Proof is analogous to the one for encryption: The expression has been typed
by rule (mac) with A(z) = mKs,s, (7). It follows that A F e : 7/ with
7" < 7. We have two cases: if v € K we have 6; = L and e [ML and by
(I-name) we directly obtain © F/1: LL. If, instead, v, = k € K, we have
e JM (v1)y. If the key is of level LL, by induction hypothesis, © l—i;/ vy : 7" and
O(vy) = mK (7) = mK (LL) and by lemma C.3(i) we obtain © F/ v; : LL
which by (v-mac) gives © F/ (v); : LL. If instead the key is of level HC,
by induction and lemma C.4, © F/ v : 7 and O(k) = mKype (7). Thus, by
(v-mac) © F/_(u1)g - dcL and by lemma C.3(i) © H/ (v1) : LL E dcL.

Thesis (i) is trivial in the case the result is L. If, instead, the result is (v;)y
we observe that Sub({v1);) = (v1)x USub(v;) and, since by induction we know
that (47) holds on Sub(v;), we obtain the thesis. O

]

It is useful to prove that well-formedness of values of type dcd; does not constrain
in any way the confidentiality level.

Lemma C.8. If © I—ch v : HO; then © I—g v : Loy,

164 C. Type checking PIN Verification APIls - Formal Proofs

Proof. By induction on the structure of v.

Base case:
n
We know that © H/ n : 6,07 with 6567 < Ho;. Notice that n ¢ Kuc as high
keys can never be typed as Hd;. Low keys are only typed LL and HL which
directly gives the thesis. For n ¢ IC we observe that rules (v-name), (v-ir) and
(v-dd) do not restrict the confidentiality level. By reapplying the same rule as
above with d;, = L we thus obtain © +/ n : Ld;. From L&} < Ld; we obtain
the thesis.
Inductive cases:
(U17 U2>

The only case a pair can be typed Hd; is when 6; = L, since HL = (HL, HL).
Thus, by assumption C.1(1) and (v-pair), we know that © F/ v : HL. By
induction we get © =/ v; : LL and by (v-pair) directly © H/ v : (LL,LL) = LL.

{lvl
We know that © =/ {lof}) : ency 5 & with ency s & < L < HL. The first
judgment is either (v-enc) or (v-enc-r): we reapply it with 6y, = L getting
O I {Jultx - encry & < LL.

(V)

This case proved exactly as above.

Theorem C.1. If A, pctc, A+] M and (M,c) = M then A+ M’

Proof. By induction on the derivation length of (M,c) = M.

Base case, length 1:

[skip|, [whilef]
Since (M, skip) = M and A I—g M we have nothing to prove. The same holds
for while loops when the guard is false, since memory is untouched.

[assign)]

We have (M, z:=¢) = M|z — v] = M’ given that ¢ |M v. We now prove
condition (7) of definition C.1. Since the only change from M to M’ is the
value of x, which is set to v, we just need to check that A(z) = 7 implies
©F/ w:7. For (assign) this is directly achieved via proposition C.2(i), since
the rule requests A e : 7. For (declassify) we know that A(z) = écH and
A& e: 0H and, by proposition C.2(i), © - v : §H. By lemma C.8 we have
that © v : LH < §¢H.

C.2.

Memory well-formedness 165

Notice that Sub(M’) C Sub(M) U Sub(v). Thus if we prove condition (i)
of definition C.1 on Sub(M) U Sub(v) we obtain that it holds even for M’.
We consider three different cases: Let ©(k) = cKfic(7) & and {v, [},
{lv/, 7'} € Sub(M). Since A F/ M we directly know that r # r/. If, in-
stead, {Jv, r[}x, { v, 7’ [}x € Sub(v), by proposition C.2(ii) we know that either
{v', 7'} € Sub(M), which leads to the previous case, or r has been extracted
fresh, noted r < C', during the evaluation of e, which directly gives r # 7’.
Finally, if {Jv, r[}x, {v', r'[}x € Sub(v) we have that either both values also ap-
pear in M, which one more time leads to the first case, or one of the confounder
has been extracted fresh during the evaluation of e which directly gives r # r'.

Inductive case, length n. We consider the last rule applied:

[seq]

We have (M, ci;¢) = M’ since (M, ¢;) = M” and also (M”,cy) = M’. By rule
(seq) we have that A, pc F ¢;. By induction on first command we get A l—g M,
then by induction on the second one A I—g M.

[4ff]

If the command is typed with rule (if) we proceed by induction on the executed
branch and we directly get A I—g M’. The interesting case is when the command
is typed via (if-MAC). If the mac check is false the command do not terminate
and we have nothing to prove. We analyze the case when mac,(z,e) = ¢’ is
true, i.e., we have:

(M, if mac,(z, e) = €' then (y:=¢;¢;) else co; Lyac) = M’

because of (M,y:=¢) = M” and (M”",c;) = M. By rule (it-MAC) we
know that A(z) = mKyc(L[D],7). By A K/ M we know that M(z) has type
mKuc(L[D], 7), i.e., M(z) = k and ©(k) = mKyc(L[D],7) thus mac,(z,e) M
(v,v")y and € M (v, v');. We know that A ¢’ : LL, thus by proposition C.2
we know that © =/ (v, v'); : LL. By (v-mac) and (v-pair) we are guaranteed
that © I—g, v : L[D] and © l—g, v 7. By rule (itMAC) we also know that
A& z: L[D] and from A F/ M we have © -/ v : L[D], with the expected g
since the type integrity is lower than H. We obtain that g(D) = ¢’(D). From
IRs(L[D],7) = {D} and Closed(L[D], 7) we easily obtain that £(7) = dc[e : D]
and also that © I—g, v' 7 implies © I—g v' . 7, since by lemma C.6 nothing
above [e : D] will ever appear as subvalue of v" and g and ¢’ are the same on
domain D. This is what we need to prove to check the well-formedness of the
memory obtained after the assignment (item (ii) of well-formedness is dealt
with as in the case [assign]). Thus A F/ 'M”. By induction on the derivation
for ¢; we have that also A I—g M’

[whilet]

This case is analogous to [seq]. Execution (M,while e do c) = M’ derives

166 C. Type checking PIN Verification APIls - Formal Proofs

from (M,c) = M” and (M” while e do c) = M’. Rule (while) ensures that
A, pc F c. Thus, by induction, we get A I—g M” and consequently A I—g M.
Notice that we can apply induction on (M”, while e do c) = M’ as, even if the

command is the same as the one we are analysing, the derivation length is
n—1. O

O

Indistinguishability of well-formed memories We now extend the equivalence
notion on memories, so to respect dependent domains. Notice that observation point
is placed in the four-point lattice (i.e., we write £ and not), i.e., variables below
integrity H are always observed as a whole, at the appropriate confidentiality level.

We say that a substitution p f-respects © if p(ygy,p,) = Ogup,) and O(k) =
Ks (7) £ imply 3¢’ such that © I—gf v; : 7. Moreover, ¢ = e it HC; L£;(7).

Definition C.4 (WF-Indistinguishability). M; and My are WF-indistinguishable at
level ¢, written My ~5 My, if

1. A I—gi M;;

2. pe(M1) = pe(Mz) p (meaning that My ~; My);

3. p f-respects ©.

Intuitively, two memories are WF-indistinguishable if (1) they are well-formed;
(2) they are indistinguishable; (3) encrypted hidden values mapped by p can be
typed with the same ¢’ (at the expected type 7).

We now need a few lemmas that characterize CloseDD(7) types, defined in sec-
tion C.1.
Lemma C.9. DD(7), with 7 # Kuc(7') K, implies L;(1) C; H.

Proof. Notice that stating £;(7) C; H is equivalent to H [Z; L;(7) since every
integrity level is comparable with H. We proceed by induction on the structure of
T

Base case:
0cor

Trivial since DD(dcd)) directly requires that C [Z; 6; and C &y H C L. Thus
07 7é L,H, ie., ,C](T) CrH.

Inductive case:

Kg/ (7’ /) K
We have assumed 7 # Kyc(7) £ thus ' = LL, which is anyway forbidden as
C C; L. Thus this case never occurs.

C.2. Memory well-formedness 167

encys: K
Notice that if k refers to a low key we have LL in LT (ency), making DD(7)
false. Thus we only consider the case in which & refers to a high key cK{jc(7') &,
By assumption C.1(4) we have £;(§') = CU L;(7"). We also have DD(ency k)
iff DD(7') and 7' cannot be a high key by assumption C.1(3) . Thus, by
induction we get L;(7") C; H which implies £;(0") = L;(encs k) Ty H.

(71, 72)
We have DD(r) iff DD(71) and DD(7;) and by assumption C.1(3) 7; cannot be
high level key types. Thus by induction £;(7;) C; H and so £;(7) C; H. O

[]

We let gcore, = (IRs(7) U Dep(7)) x Val. When we intersect a function g with
gcore, we get its restriction on the set of domains IRs(7) U Dep(7). Intuitively,
these are the domains which are needed to type a value as 7, since they are all the
integrity representatives plus all the domains which type 7 depends on. Next lemma
formalizes this fact. Moreover it proves that any other ¢’ which includes the above
mentioned restriction of g, can be used in place of g to type the value.

Lemma C.10. Let © F) v : 7, g # ¢, DD(7). Then
(i) dom(g) 2 IRs(7) U Dep(7)
(i) g O g N gcore, implies © l—g, VT,

Proof. By induction on the structure of v:

Base case:

First notice that types ¢[D] and d¢[D : {Dy,...,Dn}] have no subtypes. The
only rules where the value of g matters are (v-ir) and (v-dd) which respec-
tively gives judgements © / n : 6¢[D] and © F n : 6¢[D: {Dy,...,Dm}].
In the former case we have D € IRs(d¢[D]) = {D}. We know that g(D) |
and n = ¢g(D). Since Dep(d¢[D]) = 0 we directly have (i). In order to
prove (ii), by lemma hypothesis we get ¢'(D) |, ¢/(D) = ¢(D) and thus
n = ¢'(D) which implies © I—g, n : 6c[D]. In the latter case we have that
Di,...,Dm € Dep(é¢[D :{Dy,...,Dn}]) = {Di,...,Dn}. We additionally
know that g(D;)] and n = fp.p,.. 0, (9(D1),...,9(Dm)). By lemma hypothesis
we thus get ¢'(D;) |, ¢'(Di) = g(D;) thus n = fpp,,.0,(9'(D1),- .., 9' (D))
which implies © l—g, n:0c[D:{D1,...,Dm}], since f is the same function.

Inductive case:

168

C. Type checking PIN Verification APIls - Formal Proofs

(1, v2)

{1v'T

We have © I—g v : 7 = (11, 72) because of © I—g v; : 7; (pairs are not in
the subtype relation). We have that DD(7) iff DD(7;) and DD(7); moreover,
IRs(7) U Dep(7) = U;IRs(7;) U Dep(7;). Thus, ¢’ 2 g N (IRs(7;) U Dep(7;)) x Val
meaning that, by induction, we get dom(g) 2 IRs(7;) U Dep(7;) thus dom(g) 2
IRs(7) U Dep(7), and © l—g, v; : 7; which, from (v-pair), trivially gives thesis

We have O(k) = Ks(7') & and © F/ {|o/[}, : 7 because of one of the (v-enc)
rules. Moreover notice that type encs s derived from those rules is always
such that C' C L£;(§). Thus by DD(7) we know that 7 = encs k; in fact
subtyping would give encs k < ¢’ with C' C L£;(¢") = L forbidden by DD(7).
We consider (v-enc): since by hypothesis g # € we have that © I—g v T
Now we have DD(7) iff DD(7"). Notice, in fact, that LTa(encs k) = LTa(7)
where 7’ is the type transported by the unique key relative to label . For the
same reason, IRs(7) U Dep(7) = IRs(7’) U Dep(7’). By induction, we thus get
dom(g) 2 IRs(7") U Dep(7’) = IRs(7) U Dep(7) and O l—g, v" . 7" and, again by
(v-enc), we get © I—g, {v'[}x : 7. Rule (v-enc-r) is analyzed in the very same
way apart from the fact v = (v”, 7).

This case is not possible as MACs can never be typed at a level dcd; such that
C Z; 41, as required by DD(7). O

]

We now prove that when v is typed 7 under g and ¢/, then g and ¢ are the
same when restricted to the set of integrity representatives of 7. We let gcorelR, =
IRs(7) x Val.

Lemma C.11. Let © F/ v : 7, © l—g, v:T,q,9 #¢€ DD(1), with T # Kyc(7') K.
Then g N georelR, = ¢’ N gcorelR .

Proof. We proceed by induction on the structure of 7:

Base case:

dc0r

Since DD(d¢dy) requires that C [Z; 07 the only possible types are d¢[D] and
dc[D : {D1,...,Dm}]. The only one which has a non empty IRs(7) is the former.
In fact, IRs(6¢[D]) = {D}, and it can only type atomic names n. Thus v =n
with n = g(D) = ¢/(D), from which the thesis.

Inductive case:

C.2. Memory well-formedness 169

Ks (7)) K
We have assumed 7 # Kyc(7) £ thus ' = LL, which is anyway forbidden as
C C; L. Thus this case never occurs.

€nCy/ K
Notice that if refers to a low key we have LL in LTa(ency k), making DD(7)
false. Thus we only consider the case in which refers to a high key cK{jc(7') &.
We also have IRs(ency k) = IRs(7’) and DD(7) iff DD(7’). Since, by (v-enc),
v=A{v}rand O v : 7', © I—g, v" : 7', by induction we get g N gcorelR, =
g'NgcorelR,, which gives the thesis. The case for (v-enc-r) is done analogously.

(71, 72)
We have IRs((71, 7)) = U;IRs(7;). We have that DD(7) iff DD(71) and DD(7).
By rule (v-pair) we have that © I—g v 2T, O I—g, v; : 7 and, by induction,
we get g N georelR,, = ¢’ N georelR,.. Since g N georelR, = U;g N georelR,. and
g’ NgeorelR, = U;¢’ NgcorelR,. we obtain that g NgcorelR, = ¢’ NgcorelR,.. [

]

If we type v and vy as 7 under the same g and f, and the DD(7), Det(7), then
we can conclude that the two values are the same:

Lemma C.12. Let © /vy : 7, © F) vy - 7 and g # ¢, DD(7), Det(r), with
T # Kuc(7') k. Then vy = w.

Proof. We proceed by induction on the structure of 7:

Base case:

dcor
Since DD(d¢d)) requires that C [Z; §; the only possible types are d¢[D] and
d¢c[D : {D1,...,Dm}]- In the former case v;,vs = ¢(D), in the latter case

U1, U = fD:Dl,...Dm (g(D1)7 s)g(Dm))
Inductive case:

K (7)) K
We have assumed 7 # Kyc(7) & thus ¢’ = LL, which is anyway forbidden as
C C; L. Thus this case never occurs.

€NCy/ K
Notice that if k refers to a low key we have LL in LT (ency), making DD(7)
false. Thus we only consider the case in which k refers to a high deterministic
key cKyc(7') K, given that randomized keys are excluded by condition Det(7).
Now we have DD(7) iff DD(7') and Det(r) iff Det(7’). Since, by (v-enc),
v; = {Jv/}}r and © F/ o] - 7/, © 1 vf - 7/, by induction we get v = vj, which
gives the thesis.

170 C. Type checking PIN Verification APIls - Formal Proofs

(TlaTQ)
Let v; = (v},v?). We have that DD(7),Det(r) iff DD(ry),Det(m;) and

DD(72), Det(1); By rule (v-pair) we have that © -/ ¢/ : 7 and, by induc-

: J_ g ; — (pl 22) — (] 2}
tion, we get v] = vj from which v; = (v}, v{) = (vy, v3) = vs. O
[

When we remove the condition on deterministic cryptography, we can prove
P (v1) = pun(v2) instead of vy = wy:

Lemma C.13. Let © H) v : 7, ©) vy - 7 and g # €, DD(7), with T # Kuc(7') k..
Then pun(vi) = puan(ve).

Proof. Proof of this lemma is exactly as the one above apart from randomized
encryptions. Notice, in fact, that we have removed the condition Det(r). The
equality only holds above HH as, intuitively, at that level we can enter randomized
encryptions and disregards confounders. Formally, we are in the case ency x with
cK{ic(7') k. By (v-enc), v; = {{v/, ity and © Hf o] : 7/, © Ff v} : 7/, and by induction
we get pun(v) = pun(vs). Now it is sufficient to notice that pup({v/, ri}x) =
{prn(v)), L [}&, which gives the thesis. O O

Proposition C.3. Let © l—_{;i v T, © I—;f v 17, 9,9 # ¢ and CloseDD(7), with
T # Kuc(7') k. Then vy = v] iff vy = vi.

Proof. We prove the = implication. The other direction is completely analogous.
By lemma C.10(i7) we get that
v:T O v T

g'Ngcore; 1

O

gngcorer

By CloseDD(7) we know that Dep(7) C IRs(7) which implies gcore, = gcorelR;.
Thus

/.
NgcorelR~ Ui - T

O

T . fz
gngcorelR - v . T S l_g/
By lemma C.11 we get that v; = v] implies g N gcorelR,. = ¢’ N georelR, = §.
Thus we get
@l—gzvg:T @l—gQUQ:T
From lemma C.12 we finally get vy = vj. O O
No well typed expression will ever return a confounder.

Lemma C.14. Let A I—i; M. Then At e: 1 and e M v imply v satisfies assump-
tion C.3.

Proof. Easy by assumption C.3 and by induction on the structure of expressions.
The only interesting cases are (i) randomized encryptions, which generate one con-
founder r in the value {Jv, r[};, thus respecting the assumption, and (i¢) randomized
decryptions, which always disregard the confounder. Assumption C.2(1) ensures
that no other expression will ever generate confounders. O] O]

C.2. Memory well-formedness 171

It is now useful to prove that expressions evaluated at level dcH never return
ciphertext, MACs or pairs.

Lemma C.15. Let A l—g M. Then A e:0cH and e [M v imply v = n.

Proof. Ciphertexts, MACs and pairs can never be typed as dcH. Notice, in par-
ticular, that MACs always have low-integrity, ciphertexts can be promoted only to
low-integrity and pairs are not in the subtype relation. The fact that n ¢ C' derives
from assumptions C.2(1) and C.3 O O

Notice that when we have p,(M;) = p;(My)p it might be the case that some
hidden values in My are not in the domain of p. This means that these values [,
are untouched by p but we might of course extend p so that p((J,) = O,. We note p
this ‘closure’ of p and we obviously have p,(M;) = py(Ms)p. Notice that if item (3) of
definition C.4 holds for p it trivially holds also for p. In fact, by lemma C.6, since v
is subvalue of a values stored in My, which is well-formed, we have that © l—i;, vt
By corollary C.1 we obtain that © -/ v : 7/ when H £; £;(7), as required by item
(3) of definition C.4. In the next result, when ¢ = HL we adopt the nonstandard
semantics of equality check formalized in assumption C.2(3).

Proposition C.1 (Expression equivalence). Let M; ~2 My and let A - e : T
with L(1) T €. Then, e M v and p,(M;) = ps(My)p and p f-respects O, imply
pe(v1) = pe(w2)p’ such that p C p' and p' f-respects ©.

Proof. By induction on the structure of the expression e:

x
From A F z : 7 we know, by (var) and (sub), that A(z) = 7" with £(7') C
L(T) C £. As a consequence the variable is observable, i.e., ps(M;) = p(Ma)p
implies py(v1) = pe(v2)p, which gives the thesis (with p = p').

pair(ey, e)

We have A F pair(er, e3) : (71,72). By (pair) and since pairs are not in the
subtype relation, we know that A F e : 74 and A F e : 7. It always
holds £(7;) C L(1,72) E £. Let ¢ |M ’UJZ By induction on e¢; we can say
pe(v1) = pe(vy)p and py(vi) = pe(vy)py with p € py € p and py, Pl frespect
©. Since p maps all the hidden values in My we also have p,(M;) = p,(Ms)p}.
By induction on e; we now obtain p,(vi) = pe(vs)ph with g} C p and p)
f-respects ©. Notice that, as above, we also have py(vi) = pe(vy)ph, thus
pe((v, vy)) = pe((vE, v3))py and since p C p) C py C ph, we obtain the thesis
with p = pj.

fst(e’)
We have A F fst(e’) : 7 with £(7) E ¢. By (pair) and (sub) we know that
AF e :(m,m)and 7 <7 thus £(r) C L(7) C ¢. By assumption C.1 we

172 C. Type checking PIN Verification APIls - Formal Proofs

know that either £(7) = L(72) (when H C L;(7y)) or H Z L;(71), L1(72). In
both cases we obtain that £((7,72)) C £. Let ¢’ JMi v;. By induction we get
pe(v1) = pe(12)p) such that p C p} and p) f-respects ©. From this we know
that either v; = (v, v?) or none of them is a pair, respectively giving e {Mi v}
or e {Mi 1. In the former case it is sufficient to observe that p,(v{) = pe(v4)p}
and we thus obtain the thesis with p’ = p}. The latter case trivially give the

thesis with p’ = p since no new mapping is required to match | with L.

snd(e’)

Exactly as above.

enck(e’)
The expression considered by this case is e = enc”(¢’). From the type system
we know that A(z) = cK§, (7') k, At e’ : 7" and A+ e : encs k withencs k < 7
meaning that 6 C £(7) C £. Let ¢/ {™i v; and = |[Ms vf. We proceed by cases
depending on the typing rule used to get A e : encs k:

(enc) we have that § = ¢’ U L£(7'), meaning that ¢, L(7') C ¢, i.e., both the
key and the subexpression are observable at £. By induction we get p,(vF) =
pe(v5)pl,, meaning that either v = k € K or none of them is a key, respectively
giving e [Mi {Ju;[}; or e {MiL. The latter case trivially give the thesis with
p' = p since no new mapping is required to match | with L. In the former case
we just observe that, since the key is below ¢, we have pe({|v;[}x) = {pe(v;)[}x-
By induction (since £(7') C ¢) we get ps(v1) = pe(v2)p) such that p C p} and
py frespect ©, from which the thesis with p’ = pf.

(enc-r) we have A(z) = cK{ic(7') k and e = encfi(¢/). By A H1i M; we are
guaranteed that M;(z) = k € Ky where k is the unique key such that O(k) =
cK{ic(7") K (recall © is injective on high keys). Thus e ™ {|vj, r;[}x, with 7
extracted fresh. We have two cases: if HC C / the key is observable and we have
pe({lvj, iltk) = {lpe(v;), L [}x. By rule (enc-r) we know that § = LCU L;(7'),
meaning that £;(7") C; £;(0) T; L7(¢) and, since in this case we have HC C 7,
we obtain £(7") C ¢. We can thus apply induction and we get py(v1) = pe(v2)p}
such that p C p} and p) f-respect ©, from which the thesis with p/ = p}. If
HC [Z ¢ the key is not observable and we have p,({|v;, 7j[}x) = Ogo,,r,p,.- Thesis
is trivially obtained with p' = pU [Ogu, oy, = Ogor,rp,)- Even in this case the
fact confounders are fresh trivially guarantees that the extension is possible
and by proposition C.2 we get © l—gj {lvi, ril}x = 7, 1.e., p/ f-respects ©.

(enc-d) We have A(z) = cKyc(7') & and e = enc,(e’). As above, by A Hli M;
we are guaranteed that M;(z) = k € Kyc where k is the unique key such that
O(k) = cKye(7') k. Thus e IMi {Jv;[},. We have two cases: if HC C ¢ the key
is observable and we have p;({|v;[}x) = {lpe(v;)[}x. As for the above case, by
rule (enc-d) we know that § = LC U £;(7') from which we derive L(7') C ¢.

C.2. Memory well-formedness 173

Thus, by induction we get py(v1) = pe(w)p} such that p C p| and p) f-respect
©, from which the thesis with p/ = p}. if HC [Z ¢ the key is not observable
and we have p/({v[}x) = Ogo,p,. If Oguyp, & dom(p) and Oy, & img(p)
we trivially obtain the thesis with p' = p U [Ogup, — Ogup,] (notice that
by proposition C.2 we get © Ft {l;l}y = 7, ie., p/ frespects ©). If, instead,
Ogop, € dom(p) or Ogop, € img(p) we show that ﬁ(D{|U2|}k) = Ugu s, i-€., the
needed mapping is already in p and we thus have the thesis by simply taking
p' = p. Assume, then, that Og,,p, € dom(p). By the constraints on hidden
value substitutions we know that p(yu,p,) = Ogurp,, since the mapping is
required to respect keys. By the fact that p f-respects ® we know that J¢’
such that © l—gﬁ vy : 7 and © l—gﬁ v": 7. By lemma C.9 and since CloseDD(7")
and, by assumption C.1(3), 7" # Kuc(7) & we get that £;(7") T H, thus ¢’ # e.
Since A F ¢’ : 7/ and A I—gi M;, by proposition C.2 we get © I—g;i v; : 7. By
CloseDD9t(7') and proposition C.3 we directly obtain that v, = v’, showing
that the new mapping is the same already in p. (The other direction is proved
similarly.)

mac,(e’)

The expression considered by this case is e = mac,(¢€’). From the type system
we know that A(z) = CKf;,ca}(T/) K, AF e 7 and AF e: LLUL(7) with
LL U £(7") < 7 meaning that £(7') C L(7) C ¢, i.e., the subexpression is
observable at . Let ¢/ [Mi v; and = |[Mi UJ'?“ . We proceed by cases depending
on level 6,07 of the key.

If §z.07= LL, we have that also the key is observable at ¢. By induction we
get pe(vf) = pe(vf)p), meaning that either v = k € K or none of them is a
key, respectively giving e {Mi (v;) or e [MiL. The latter case trivially give
the thesis with p’ = p since no new mapping is required to match L with L.
In the former case we just observe that py((vj)x) = (pe(v;))r. By induction
we get pe(v1) = pe(w2)p) such that p C p} and p| f-respect O, from which the
thesis with p’ = p.

If 0;,87= HC, the key might be not observable at {. However, since the key is
high and the memories are well-formed, by A l—gi M; we are guaranteed that
M;(z) = k € Kuc where k is the unique key such that O(k) = cKE(7') &
(recall © is injective on high keys). Thus e |Mi (v;);. Now observe that
Pe((vj)k) = (pe(v;))k (this is independent of the level of the key). By induction,
as above, we get pg(v1) = pe(v2)p} such that p C p} and p| f-respect O, from
which the thesis with p' = pf.

dec,(¢)
The expression is e = dec,(e’) and A F e : 7 with £(7) C ¢. From the type
system we know that A(z) = cKf,(7) k, A - € : encgr k. Let ¢ [M]
and z [M oF. In case of rule (dec), we know that ¢’ LI 6" < 7 meaning

174

C. Type checking PIN Verification APIls - Formal Proofs

that ¢’,6” C /, i.e., both the key and the subexpression are observable at /.
For (dec-u) we know that 7/ < 7. By the fact Lo(7) = H we know that
¢ = H{; thus the key is observable, and by the typing rule we know that
Lr(6") = L(8") U Ly(7") = CU L;(7") which implies £;(6") T; ¢;. Thus
0" C ¢ meaning that also the subexpression is observable. By induction we
get po(vf) = pe(v5)p, and pe(v]) = pe(vy)p) meaning that either vf = k € K
or none of them is a key, and either v/ = {|v;[}; or none of them is a ciphertext
based on key k. When v & K or v/ # {|v;[}, we obtain e M/ L. We easily get
the thesis with p’ = p since no new mapping is required to match 1 with L.
Otherwise, we get e ™ v;. Observe that, since the key is below ¢, we have
pe({viltx) = {pe(vj)}x. By the above induction we had that p C p} and pj
f-respect ©, from which the thesis with p’ = p.

€1 Op €9

Al e op e :d. By (op) we know that A - e; : ¢ and A F ey : ¢ with
§ T § C /, thus both subsxpressions are observable. Let e; [M v; By
induction on e; we can say pg(vi) = pe(vd)p;, and pg(vi) = pe(vs)p, with
p C py C p} and pf,p; f-respect ©. Since p maps all the hidden values
in My we also have p;(M;) = p,(M3)p}. By induction on e; we now obtain
pe(vE) = pe(v2)py with p) C ph and pfy f-respects ©. Notice that, as above, we
also have py(vl) = pe(vy)py. We consider two cases: if e; op ey is the equality
test e, = ey by lemma C.14 and C.15 we know that for 6 C HH we have
vj = n} ¢ C. Thus, easily, v} = v iff py(v]) = pe(v}). By lemma C.14 we
have that the same holds for § = LL, since no confounders will be abstracted in
the patterns (since high keys are not known) and hidden values are decorated
by the whole encrypted message. When ¢ = HL we exploit assumption C.2(3).
We obtain that v = v? iff vy = 0. Thus we get the thesis with p/ = pb.
For all the other generic expressions, by assumption C.2(2), we know that
ep op e ML implies ¢; (M n; with n; € KU C. By pe(vf) = pe(vi)ph we
obtain that ¢; (M n; iff ¢; (M2 n;, (n; € KU C) meaning that the expression
e, op ey either evaluate to L or to the very same n in both memories. We thus
get the thesis with p' = pl. O

]

Corollary C.2. Let My ~2 My and let A+ e : 7 and e (M v If L(7) T £ or
L(A(x)) Z £ then My[z — v;] =2 My[z — v,].

Proof. If L(7) T ¢, by M; ~2 M, we know that there exists p such that
pe(M1) = pe(My)p and p f-respects ©. Now, by proposition C.1 we directly have
pe(v1) = pe(w)p’ such that p C p' and p’ f-respects ©. Of course we also have
pe(Mi) = pe(Mz2)p’ and, consequently, p((Mi)[z — v] = ps(Ma)[z = w]p’. If,
instead, L(A(z)) [Z ¢ then the variable x is above the observation level and we triv-
ially have M;|, = M;[z —]|, which gives p,(My)[z — v] = pe(My) = ps(M3)p =

C.2. Memory well-formedness 175

pe(My)[z +— w]p. We still need to prove that A /¢ M;[z — v;]. This is directly
achieved by proposition C.2: A |_£¢ M; and A F e : 7 imply © '_£T v; 7 which
implies A Ht M;[z — v]. O O

Lemma C.16. (Confinement) If A pc b c then for every variable x assigned to
in ¢ and such that A(z) = 7 it holds that pc T L(7) U LH.

Proof. We proceed by induction on the strucuture of c.

skip
The command does not assign to any variable thus the lemma trivially holds.

T:=e
This command can be typed by two different rules: (assign) and (declassify).
The former requires pc C £(7) U LH while the latter pc C £(7), which directly
give the thesis.

C1;C2
Since A, pc F ¢;, the thesis follows directly by induction on ¢; and cs.

if b then c; else ¢y
Two different rules may be used to type this command.

(if)
The typing rule assures that the expression b types 7" and A, L(7") Upc F
¢;. By induction on ¢; and ¢, it holds that for every variable x assigned to

in ¢y, ¢ such that A(z) = 7 L(7')Upc C L(7)ULH, thus pc C £(7)UJLH.

(if-MAC)
For variable y we directly have pc C L(7) LU LH. Since A, pc ¢; and
A, pc F ¢y, by induction on the two commands we get the thesis.

while e do ¢
This case is analogous to the former one of the if command. O]

O

We now prove noninterference on all the level but LH. In fact, on LH, the prop-
erty does not hold since, intuitively, randomized but high-equivalent messages (i.e.,
messages encrypted with high keys differing only for the values of confounders) might
be distinguished by LH users, who know no keys, via traffic analysis. Once more, this
is like the attacker fouling himself, by ‘incompetently’ sending messages on which
he can perform traffic analysis. We disregard this uninteresting behaviour by just
requiring ¢ 1 LH. As for expression equivalence, in the next result, when ¢ = HL we
adopt the nonstandard semantics of equality check formalized in assumption C.2(3).

176 C. Type checking PIN Verification APIls - Formal Proofs

Theorem C.2 (Noninterference). Let ¢ be a program which does not contain any
declassification statement. If A, pc F c then c satisfies noninterference, i.e., ¥ £

LH, My, My. My =2 My implies (My, c) ~2 (M, c).

Proof. Recall that (M;,c) ~2 (My,c) denotes weak-indistinguishability, i.e., when-
ever (M;, c) = M} we have M} ~2 M),. We proceed by induction on derivation length
of (M;,c) = M.

Base case, length 1:

[skip]
Since (M;, skip) = M; we have nothing to prove.

[assign)]
We have (M;, z:=e) = M;[z — v;] = M} given that e [Mi v;. If rule (assign)
have been used then A(z) = 7, A+ e : 7. Notice that either £(7) C ¢ or
¢ L(1) = L(A(z)). Corollary C.2 directly gives the thesis. By hypothesis,
we do not have declassify commands, thus rule (declassify) cannot have been
used to type the assignment.

Inductive case, length n. We consider the last rule applied:

[seq]
We have (M;,cy;co) = M; since (M;,c;) = M/ and also (M/,cy) = M.. By
rule (seq) we have that A, pc - ¢;. By induction on ¢; we have M} ~2 M} and
by induction on c, we obtain M} ~5 M.

[ift], [aff]
Let (M, if b then ¢y else co) = M.. The typing can be made by rules (if) and
(i-MAC).

For rule (if) it holds that AFb: 7, A, L(T)Upct ¢y and A, L(7)Upc b co. If
L(7) C £ then by proposition C.1 the boolean expression b necessarily evaluates
to two identical boolean values (or L) so the same branch will be followed.
Suppose e [Mi true, we have that (M;,c;) = M}, thus by induction on ¢,
M} ~2 M, (analogously for false/ L and c;). If instead £ = £(7) by lemma C.16
for every variable x assigned by c; and ¢y such that A(z) = 7/ it holds that
L(T)Upc T L(7")ULH, thus ¢ C £(7") U LH which implies ¢ = L(7’) (since ¢
is at least LH). Intuitively, all the assignments performed by the branches are
above the level of observation. By corollary C.2 we directly obtain M} ~2 M.

In case (if-MAC) has been applied then the command has the following form:

if mac,(z,e) = ¢’ then (y:=e;cy) else ca; Lmac

C.2. Memory well-formedness 177

and it must be that A(z) = mKyc(L[D],7), A + z : LID], A F e : LL,
A(y) = 7, A F € : LL. Moreover A ,pc F ¢; and A,pc F co. Note that
if one of the execution takes the else branch it will not terminate, giving
(My,c) ~2 (Mg, c). We thus consider the case in which both executions take
the if branch. Let e [Mi v;, we consider different cases depending on level ¢:

Let LL C ¢, by corollary C.2 we get that My [y — v;] ~2 My[y — v;].

If LL Z ¢ By hypothesis ¢ T LH thus the only possibility is £ = HH: as
in the proof of theorem C.1 (case [ift]) we get that mac,(z,e) M (v;, v!);
and e [Mi (v, 0]); and © F/ o] : 7. Since memories are well-formed and,
by lemma C.9 we have that £;(7) C; H, we know that © F@ M;(y) : 7.
Now by lemma C.13 we have that puyn(v/) = pun(M;(y)), meaning that the
assignment does not change in any way the equality of the two memories, i.e.,

My — v] %ﬁH Maly — v;].

We have thus proved that, for all £ 3 LH, My[y — v;] ~2 Ma[y — v;]. Now,
by induction on c¢; we get the thesis.

[whilet], [whilef]
For rule (while) it holds that A+ b : 7, A, L(7)Upc t c. If L(7) C £ then
by proposition C.1 the boolean expression b evaluates to two identical boolean
values (or L) so the same branch will be followed. Suppose e [Mi true, we have
that (M;,c) = M? and (M?, while e do ¢) = M., thus by induction (on the
length of the derivation), M/ ~2 M4 and then M} ~2 M,. If instead ¢ = L()
by lemma C.16 for every variable x assigned by c such that A(z) = 7’ it holds
that £(7) Upc T L(7") ULH, thus ¢ © £(7') U LH which implies ¢ T L£(7')
(since ¢ is at least LH). Intuitively, all the assignments performed by the
loops are above the level of observation. By corollary C.2 we directly obtain
M| ~2 Mj. When the guard is false the result trivially holds, since memories
remain untouched. [

O

When we re-introduce declassification statements, noninterference still holds for ¢ =
HH as, as expected, integrity is not broken by declasssifying information. This is
proved in the following theorem:

Theorem C.3. If A, pc - c thenV My, My such that My a5, My it holds (My, c) ~&,,
<M27C>

Proof. The proof of this theorem is a simple extension of the one of theorem C.2,
instantiated with ¢ = HH, to programs which contain declassification. The only
case that we need to extend is the assignment, since it is where declassification may
occur: We have (M;, z :=declassify(e’)) = M;[z — v;] = M, given that e |Mi v,

178 C. Type checking PIN Verification APIls - Formal Proofs

From the type system it follows A F ¢’ : §;H T HH. By corollary C.2 we obtain the
thesis. O
O

We can now state our final results on robustness. We will consider pro-
grams that assign declassified data to special variables assigned only once.
This can be easily achieved syntactically , e.g., by using one different vari-
able for each declassification statement (which we label for clarity), i.e.,
x; :=declassifyi(e1), . . ., &, := declassifyn, (e5,), and avoiding to place declassifications
inside while loops. These special variables are nowhere else assigned. We call this
class of programs CD-programs.

Lemma C.17 (CD-programs). In a CD-program c, if (My,z :=declassify(e’)) =
Mi[z —] and (Mg, y:=e) = Ma[y —] occur in the derivation of (M,c) = M’
then x # y.

Proof. Easy by induction on the structure of commands, by observing that the
only command re-executing the same syntactic portion of a program is the while-
loop. O] [

Let A, pc - c. We now prove that any value v declassified during the computation
of c on a well-formed memory is an atomic name.

Lemma C.18. Let A, pc b ¢ and A Ff M. Then any (My, z := declassify(e’)) =
Mi[z — w] occurring in the derivation of (M,c) = M’ is such that v, = n and
n¢gC.

Proof. 1t is sufficient to notice that the declassified value is expected to be of type
d0cH and apply lemma C.15. n n

Information leakage in clearly declassifying programs can be always observed by
inspecting the equality of declassifying variables as proved in the following:

Lemma C.19. Let c be a CD-program on variables xy,. .., xy. If A,pct c, My ~8
My, (M;,c) = M and M} 25 MY, then 3i such that M (z;) =n # n' = Mjy(z;).

Proof. Lemma C.18 already proves that declassified values are all atomic names.
We now proceed by induction on the number of declassifying variables in c.

Base case (no declassification): We have M} ~ M} by theorem C.2, thus we
have nothing to prove.

Inductive case: Assume we have z;, ..., x,, declassifying variables. Let M| %8
M. If M| (z,,) # M4 (2,,,) we are done. Otherwise it will be M (z,,) = Mj(z,,) = n.
We replace 1z, := declassifyy, (€,,) with z,,:=n obtaining ¢’ and re-execute it, i.e.,
(M;, ") = M!. By lemma C.17 we know that the above one was the only assignment
done to ,, during the derivation, thus M; = M/, thus M/ %8 Mj. By induction
we now have that 3i € [1,m — 1] such that M'(z;) = M{(z;) = n #n’ = Mj(x;) =

C.2. Memory well-formedness 179

Lemma C.20. Let ci;¢0 be a CD-program such that A,pc F ci;¢o. Then
<M1,C1;C2> :LAL <M2,C1;C2> Zmplzes <M1,C1> QJLAL <M27C1>.

Proof. (My,cy;¢0) ~f (Mg, cp;c) means that (M;,ci;co) = M, and M) ~f M.
Notice, in fact, that ~ is strong and requires both executions to terminate. We
know that (M;,c;) = M/ and (MY ,co) = M.. Since ci;¢y is a CD-program, so
are c; and co, as the condition is purely syntactic. Assume, by contradiction, that
M? 25 MY, By lemma C.19 there exist a declassifying variable 2 such that M/ (z) =
n # n' = Mj(z). By lemma C.17 we know that = will never be assigned again
in (M7, co) = M., thus giving M{(z) = n # n’ = Mj(z) and the contradiction
M/ %8 M. O O

Next result finally proves robustness of well-typed CD-programs. Notice that
it only adopts the standard semantics of equality check and is thus not based on
assumption C.2(3).

Theorem C.4 (Robustness). If a CD-program c is such that A,pc b ¢ then c
satisfies robustness, i.e., YMy, My, M}, M}y such that M; ~5 My, M} ~& M} and
M; ~5, M. it holds

<M1’C> :LAL <M27C> Zmplles <M,17C> %LAL <M/2,C>
Proof. The proof follows by induction on the structure of the command c.

skip
By (M, skip) = M/ we directly get (M}, c) ~f (M}, c).

ri=e
If the expression e is not a declassification then by Theorem C.2, c satisfies
noninterference, thus (M, z:=e) %LAL (M}, z:=¢).

Suppose e = declassify(e’). The type system states that A(z) = dcH, A F
¢ : 0hH and pc C d¢cH. Let ¢ [Mi v and ¢ [Mi v/, By corollary C.2,
since M; ~&, M, and 0 H C HH, we get M;[z — v;] ~§, Mz — 2]. By
lemma C.18 we know that all these values are atomic and not confounders,
thus we get v; = v/ = n;. Now, (M}, 7:=¢) ~8 (My, 2:=¢) implies M;[z >
v ~ Mgz — 1), meaning v; = v,. We get v = v = % = v5. Thus
M/ [z — v]] =5 Mylz — v5], giving the thesis (M), z:=e) a5 (M), z:=e).

if b then c; else ¢,
If rule (if) has been used to type the command, then A+ b: 7 and A, L(7) U
pc = ¢;.

If £;(7) = L then L£(7)Upc £ §cH thus, by lemma C.16, no declassification may
occur in both ¢; and ¢y. By Theorem C.2, the whole command is noninterferent
giving thesis (M/,c) ~8 (M, c).

180

C. Type checking PIN Verification APIls - Formal Proofs

while

C1;C2

If £(7) = HH then A,HH U pc - ¢; and by Confinemnt lemma (Lemma C.16)
it holds that for every variable = assigned to by ¢; and ¢y such that A(x) = 7/
then HH U pc C L£(7') U LH, meaning £(7') IZ LL. Thus, by corollary C.2,

(Mf,c) &) (Mj, c).

Suppose L£(1) = LH then the same branch will be followed by each of the
four executions. Let, for example b [Mi false and b |[M: false, then it must
be that (M;,if e then ¢; else co) = N; because of (M;,co) = N; (by com-
mand semantics rule [zﬁ]) thus (M, cp) ~& (My,) which by induction
on cy gets (M}, co) ~8 (M), co). This implies (M}, if b then c; else cp) ~&
(M}, if b then c; else cy). (Analogously for the case b [Mi true.)

If rule (if-MAC) has been used to type the command it is
if mac,(z,e) = ¢’ then (y:=e;cy) else ca; Lmac

and it must be that A(z) = mKuc(L[D],7), AF 2z :LID], AFe:LL A(y) =7
At e : LL and also A, pc F ¢;,A,pe F co. Suppose e [Mi v;, z M v* and
e M v/, 2 IMi o/*. Since from the hypothesis the program terminates in
both M; and M, it must be that the then-branch has been followed in both
configurations giving (My, y :=e;¢;) =5 (Mg, y:=¢;¢;).

Notice that if one of the executions (M}, c) and (M), c) takes the else branch
it will not terminate, directly giving (M, c) ~& (M}, c). We thus consider the
case in which both executions take the if branch By corollary C.2 we get that
Mily =] =5 Maofy = w], Mi[y — v]] =5 Mjly — v5]. As in the proof of
lemma C.1 (case [ift]) and Theorem C.2 we get that mac,(z, e) JM (vf, vi)s,
mac,(z, e) M (v, v} and ¢ M (vF, v)p, ¢ LM (v v/) and © I—fl v;

7,0 l—f’ ! : 7 . Since memories are well formed and, by lemma C.9 we have
that EI() EI H, we know that © F/' Mi(y) : 7,0 /' Mi(y) : 7. Now by
lemma C.13 we have that pun(v;) = pun(M;(y)) and pun(v)) = pun(Mi(y)),
meaning that the assignment does not change in any way the equality of the
two memories, i.e., M;[y — v;] ~8§; M.y — v;]. Hence it is possible to apply
induction on c¢; to conclude the case.

e do ¢
No declassification is allowed inside a while loop, thus the case follows by
Theorem C.2.

Rule (seq) states A;pc F ¢ and A,pc + c3. By Lemma C.20 since
(M1, c15¢0) =8 (Mg, ci;c) then it must be that (My,cy) _LL (My, cq) thus
by induction we get <|\/|1,c1> ~0 (M), c). Let (M;,ci) = N}, (M c;) = N?
it holds N} ~& Ni, N? ~f N2 and by theorem C.3 N}! ~§, N2 The thesis
follows by induction on c. O]

]

C.2. Memory well-formedness 181

Table C.4 PIN-block formats
We report some of the standard PIN block formats. All of the formats below are 16

hexadecimal digits, i.e., 64 bits long, and support PINs from 4 to 12 digits in length.

ISO-0, ANSI X9.8, VISA-1, ECI-1

[0O J L TP PP] P [PF][PF[PF[PF[PF]|[PF[PF[PF] F | F]

0 identifies the format, L is the length of the PIN, P are the PIN digits while P/F
is either e PIN digit or the pad value F, depending on the PIN length. Then the
rightmost 12 digits of the PAN are written as follows:

[0] 0] 0 [0 [JPAN]PAN [PAN [PAN [PAN [PAN [PAN | PAN | PAN [PAN [PAN [PAN |

and we now just xor the two numbers:

P P P/F P/F P/F P/F P/F P/F P/F P/F F F
0 L P P Xor Xor XOr Xor xor Xor XOr xor xor xor xor xor
PAN | PAN | PAN | PAN | PAN | PAN | PAN | PAN | PAN | PAN | PAN | PAN

ISO-1

[T T L [P P[P]]PJ[PR[]PR][PR[PR][PR[PR][PR[PR[] R [R]

1 identifies the format, L is the length of the PIN, P are the PIN digits while P/R
is either e PIN digit or the pad random value R, depending on the PIN length.

182 C. Type checking PIN Verification APIls - Formal Proofs

Table C.5 Revised model of the PIN verification API with types.

PIN_.V (PAN, EPB, len, offset, vdata, dectab) {

// deriving user PIN with IBM 3624 PIN calculation method:

z; :=decyqi (vdata) ; // *decrypt* wdata with pdk - x;:H[HEX: PAN]
xo = left(len, x;1); // takes len leftmost digits - z3:H[e:PAN]
zg :=decimalize(dectab,z2); // decimalizes - x3:H[e:PAN]

z; :=sum_mod10(zs, offset); // sums the offset - x4:H[e:PAN]

// recovering the trial PIN from ISO-1 block
16 :=decl(EPB); // decrypts the EPB with k - x¢:H[PIN: PAN]

// checks trial PIN wersus actual user PIN
zy :=declassify(z; = z4) // declassify the result - xz7:LH
if (xy) then vret:="PIN is correct”; // ret:LL

else ret:="PIN is wrong”;

Table C.6 The new PIN.T_M API with MAC-based integrity, with types.

PIN.-T_-M(PAN, EPB;, EPBo, MAC;, MACop) {

// checking the MAC of PIN decryption
if (macy,(EPBr,PAN) = MACT) then

{
// recovering the trial PIN from ISO-1 block
z; :=decl(EPB;); // decrypts the EPB with k - xp:H[PIN:PAN]
EPB},:=encli(x1, PAN); // PIN encryption ISO-0, PAN in padding

// - EPBO:encL[.:pAN} Kk!

MACo :=macy (EPBo,PAN); // generates the mnexzt MAC - MACo:LL
EPBgo:=EPBY; // rises to LL - EPBp:LL
ret :="success" ; // ret:LL

}

else

ret :=" Integrity Check Failed”;

D

Type checking PKCS#11 - Formal
Proofs

184 D. Type checking PKCS#11 - Formal Proofs

D.1 Typing values

The following rules type ciphertext, diversified keys and decrypted messages.

I'typ ve 7 77<7 I''bFyp v: LL T Fyp o' T#WHH[HH]
r l_M,H v.T r l_M,H enc(’u,v’): LL

r l_l\/I,H v:T T }_I\/I,H U,Z WHH[HL] T l_M,H v HH r l_M,H ’l)/I WHH[HH]
I' Fmu enc(v, o) @ LL I' Fmu enc(v,v’) @ LL

F|_M,H v: b F|_M,H v: b g#LL F|_M,H v: LL
I' Fmu enc(D,v): DY T bFup enc(W,v): WEHL] T bFypy encW,v): LL

I I_M,H v: HH I |_M,H v: LL T |_M,H 1)/1 DHL
I' Fmu enc(W?,v) : WHHIHH] I' Fmu dec(v,v') @ LL

r l_M,H v: LL T l_M,H U/I WHH[HL] I I—M7|-| v: LL T }_M,H UIZ WHH[HH]
' Fmp dec(v,v') . HL I' Fmu dec(v,v'): HH

D.2 Formal proofs
The sub-type relation permits no type to be a sub-type of a handle.
Proposition D.1. If 7/ <7 then # T =71 # T’

The following lemma shows that expression evaluation respects value typing.
Lemma D.1. LetT'Fpe:7 and e [MP v, IfT' Fp M, H then it holds

o 7 T impliesT' Fypy v: 7/ <7

o 7= T implies' Fypu v: LL

Proof. By induction on the derivation of the type judgement I' Fp e : 7, on cases
on the last rule applied:

(var)
This case follows directly from I'" =p M, H.

(sub)
It holds I' Fp e : 77 and 7 < 7. T'wo cases are considered:

D.2. Formal proofs 185

e 7 % T it could be that 77 = T in which case by induction I' Fyp v : LL
and it also holds LL < 7 since T' < LL and T < 7; otherwise if 7" # T, by
induction on the judgement of I' Fp e : 7", ' Fypy v: 77 with 77 < 77
from which the case follows since the sub-typing relation is transitive.

e 7 = T: by Proposition D.1 it must also be that 7/ = T’ but since handle
types are not in any sub-type relation it holds 7" = T which gives the
result by induction.

(get)
Note that e must be of the form getObj(z) and it holds I' Fp x : T and
=T :7# T. If getObj(z) {MH CKR_HANDLE_INVALID then the case is trivial
since the hypothesis do not hold (CKR_HANDLE_INVALID is an error err and not
a value v). Otherwise H(n) = (v, T) and getObj(z) JMH v. By I' Fp M, H it
follows I' Fyu v : 7" < 7 proving the case.

(get-un)
It must be that e is getObj(z) and I' Fp z : LL. If getObj(z) |MH
CKR_HANDLE_INVALID then the case is trivial since the hypothesis do not hold
(CKR_HANDLE_INVALID is an error err and not a value v). Otherwise, 7 = HL
and the result follows noting that for any 7/, 7/ < HL.

(chk)
e is checkTemplate(z, T'), it follows I' -p = : LL and topQ(T, P) =7 # T. If
checkTemplate(z, T') JMH CKR_TEMPLATE_INCONSISTENT then the case is triv-
ially proved since the hypothesis do not hold. Otherwise, it must be that
M(z) =g, H(g) = (v, T"), TC T and v = v'. Let - T" : 7", from I' Fp M, H
it follows I' Fmypy v 77 < 7”7 and also T' € Pgen U Pryp, then 77 < 7
proving the case.

(dk)
The expression e is diversifyKey(D, z). Let M(z) = v’ then v = enc¢(D, v). The
type system requires that I' Fp = : £ and states that 7 = D*. By induction on
the judgement for z it holds I' Fyp v : 77 <l so ' Fypy ¢ : £ and the
case is proved.

(dw-h)
The expression e is diversifyKey(W,z) and I' Fp = : ¢ # LL. Let M(z) = ¢/,
then v = enc(W, v'). By induction on I' Fp z : £ it follows I' by y v': 77 <
so' by v': £ proving the case (indeed I' Fyy enc(W,v') : WEHL]).

(dw-1)

It holds I' Fp z : LL and if M(z) = v’, v = enc(W,v'). By induction on the
type judgement for z if follows I' Fyy o' @ 77 <LL,so' Fmypu o' : LL
proving the case by deriving I' Fyy enc(W, v') : LL.

186

D. Type checking PKCS#11 - Formal Proofs

(dww)

e is diversifyKey(W?, z) and it holds T' Fp z : HH. Let M(z) = v’ then v =
enc(W?, v"). By induction on the judgment for z it follows ' Fypy v': 77 < HH
which proves the case: indeed it also holds by sub-typing that I' Fypy o' @ HH
and then I' by enc(W?,v') : WHH[HH].

(enc)

In this case e = enc(e’, z). Let ¢/ [MH " and M(z) = v”, then v = enc(v’, v").
The type system requires I' Fp z : HL, T'(z) # W"HHH] and T Fp ¢ :
LL then 7 = LL. By induction on the judgment for x and e’ it holds that
I' by ¢ 7" <HLand I' Fyp o' @ 7”7 < LL. It directly follows that
I' Fmu enc(v’,v”) : LL from the value-typing rule for an encrypted message
whose payload is a public byte-stream.

(wrap)

Let e be enc(e’,z), ¢/ MH v and M(z) = v”, it holds v = enc(v’,v”). Rule
(wrap) states that T Fp z : WHH[HL] and T p ¢’ : HL. By induction T' ty 4
v': 7" <HL, T Fyp v”: WHHHL] from which I' Fyy enc(v’,v”) @ LL.

(dec)

Expression e is of the form dec(e’, z). It holds I' Fp 2 : D" and T' p e : LL.
Let e’ {MH v/ and M(z) = v” then two cases are considered:

e v/ =enc(v”,v"”): in this case v = v"”". By induction on z and ¢’ it follows

L Fup 0" 77 <D"™and T' Fyy ¢ : LL (since the value is an
encryption and every encrypted message types LL). The only rule which
can be used to derive such a typing on a encrypted message, given the
typing of v”, is the one that states that I' Fyn ©” : LL concluding the
case.

e v/ # enc(v”,v"): in this case v = dec(v’,v”). By induction on z and
e’ it follows T' Fyy 0" : 77 <D and T' gy o' @ 77 < LL, then
I' Fmu dec(v',v") : LL as needed.

(unwrap)

Let e be dec(¢/,z) with ¢/ [MH v/ and M(z) = v”. Tt holds T Fp z : HL and
I'p e: LL. Two cases are considered:

e v = enc(v",v"): in this case v = v"”. By induction it follows I"
v": LL (indeed it is an encrypted message) and I' Fyy 0”@ 77 < HL.
Since the encrypted message (v') types, it holds I' Fypy 0”@ 7% and it
will always be that 7 < HL proving the case.

o v # enc(v",v"): it follows v = dec(v’, v"). By induction it holds I 4
o' 7" <LLand I' bFyy 0" : 77 < HL. It is enough to state that
I Fmn dec(v',v”) : 7% for some 7% and it will always be 7 < HL
proving the case.

D.2. Formal proofs 187

(hh-w)
Let e be enc(e’, z), ¢ |MH v" and M(z) = v”, it holds I" Fp 2 : WHH[HH] and
' Fp €' : HH. The expression evaluates to v = enc(v’,v”) and by induction
L Fmp v 77 <HH, T Fyy 0" WHHHH] from which ' Fyp enc(v’, v”)

LL.
(hh-u)
The expression e is dec(¢/,z) and T' Fp z : WHH[HH], T Fp ¢’ : LL. Let
e’ \MH " and M(z) = v”, two cases are considered:
e v = enc(v",v"”): in this case v = v"”. By induction, I' Fyn o' : LL

and I' by 0”@ WHHHH] then it must be that I' Fyy v” @ HH by
the only rule typing a value with such a key.

o v # enc(v”,v"): then v = dec(v’, v"). By induction, I' Fypy o' : 77 <
LL and T Fypy v” @ WHHIHH] which directly give the thesis: indeed it
follows I' Fpmu dec(v’,v”) @ HH.

]

Note that no expression will ever produce new handles, this functionality is
delegated to the dedicated assignment commands using genKey and importKey. It
follows that if an expression types as a handle then it can only be a variable.

Lemma D.2. IfI'Fp e: T then e is a variable.

Proof. The proof follows by observing that every expression e different from a vari-
able is always typed as 7 # T and such type cannot be sub-typed to a handle
type. L]

It is essential to prove that every expression typed LL does not reveal any secret,
in fact this confirms that every value “leaked” to the public gives no information
about sensitive keys.

Lemma D.3. LetI' Fp MJH, T'Fp e: LL, e [MH v and v’ € G such that privp m(v')
and botH(v',H) = 7 # LL. It holds v # v' and v # enc(tag,v').

Proof. By induction on the structure of the value v:

n
This case trivially holds since n € N and N N G = (), and also n # enc(vy, v2)
for any vy, vs.

By Lemma D.1, I' Fyu ¢ : 7 < LL so it must be that —(privp(g)) or
/3 botH(v,H) or botH(v,H) = LL, proving that v # v’. Notice also that
g # enc(uv, vp) for any vy, v.

188 D. Type checking PKCS#11 - Formal Proofs

enc(uvy, vg)
It trivially holds that v # v’ since an encrypted message is never equal to
an atomic value in the G set. Moreover note that for any value v” it holds
v" # tag proving the fact that v # enc(tag, v').

enc(tag, vy)
It holds I' Fmuy enc(tag,v) : 7 < LL by Lemma D.1, it then follows
I' Fmu v LL which proves the case.

dec(vy, vp)
This case is obvious since dec(v, 1) # ©v” for any atomic v” and also
dec(vy, vp) # enc(tag, vs) for any vs.

[]

The main result is proved by the following theorem stating that well-typed pro-
grams preserve memory and handle-map well-formedness and that if a well-typed
program c reduce to ¢’ then ¢’ is well-typed.

Theorem. Let I'p MJH and I' Fp c. If (M,H,c) — (M’ H', ') then
o ifcd #ethenT Fpc and
e I'p M H.

Proof. By induction on the structure of the program c.

FAIL[err]
This command represents an error state and does not move, the case trivially
holds.

ri=e

If e [MH 9, (M/H,2:=¢) — (M[z — v],H,e). Tt is only necessary to prove
that I' Fp M[z — v],H. It holds I'(z) = 7 and I" Fp e : 7. Two cases are
considered. If 7 # T then by Lemma D.1 it follows I' Fypy v : 7/ <7 and
the case is proved. Otherwise the same Lemma states that I' Fyy v : LL
and by Lemma D.2 e must be a variable y, the case follows by well-formedness
requirements on y.

If, instead e [MH err then (M H,z:=¢) — (M, H,FAIL[err]) concluding the
proof, indeed I' Fp FAIL[err] and the memory and handle-map are unchanged
thus well-formed by hypothesis.

z:=genKey(T)
It holds (M, H, z :=genKey(T)) — (M[z — ¢'|,H[¢' — (g9,®(T)))],). It must
be proved that I' Fp M[z — ¢'],H[¢' — (g,®(T))]. The type system requires
that T € Pggn, and I'(z) = @&(7T). It immediately holds that if S ¢ T

D.2. Formal proofs 189

then &(7T) € Pgpy (indeed &(T) = T) and otherwise &(7T) \ {4} € Pepn
indeed ®(7T) = T'U{A}. Suppose = &(T) : 7, it remains to be proved that
F'tww ¢ LLand I' By v 0 77 < 7. The new handle ¢’ is extracted fresh
from G and assigned to # and I'(x) = ©(T') < LL so —privp . (g') from which
I'Fwm e ¢ ¢ LL. In the same way g is a fresh value and the only template in H’
which is associated to it is ©(7") then I =y g : 7. Notice also that privy
since Vz € dom(M) it holds M(z) # g (well-formedness requirement 1 is thus
satisfied) and the case is proved.

z:=importKey(y, T)
The command reduces to ¢ yielding memory M|z +— g| and handle-map H[g —
(v, T')] (starting from M and H) where g < G and M(y) = v. Two cases are
considered:

e I' Fp y : HL: the type system requires that I'(z) = T, T € P;yp and
F T : HL. Note that since T' € Pryp, A ¢ T and also it must be that
S e Tsincet T :HL. It holds I Fyy ¢« LL since I'(z) = 7' < LL (thus
—privp w(9)). By Lemma D.1 T Fyy v : 7 < HL proving the case.

e I'Fp y: HH: it must be I'(z) = T, T\ {A} € Pgpny and F T : HH.
It holds I' Fm g : LL since I'(z) = T < LL (thus —privp (g)). By
Lemma D.1T' Fyu v: 7 < HH proving the case since the requirement
on the handle-map is verified and also point 1 of well-formedness, indeed
A€ T (from = T : HH) and M is well-formed so privp y(v) (in fact public
variable can only store values typing 7 < LL and HH £ LL).

C1;C2
Rule (seq) requires that I' =p ¢; and I' Fp co. Let (M, H, ¢;) — (M, H',c}), by
induction on ¢; T'=p M’ H'. If ¢} = & then (M, H, cy;¢co) — (M) H' co) proving
the case, otherwise (M, H,cy;¢c0) — (M H' c};co) and by induction on ¢; it
holds I' p ¢} from which the proof follows applying rule (seq) to c; cs.

It must also be proved that sensitive values are never leaked.
Theorem. Let I'+p M,H and T'Fpc. If (M;H,c) — (M H') and v € G then

1. privpm(v) and botH(v,H) = 7 # LL implies privp y (v) and botH(v,H') = 7 #
LL, and

2. privp y(enc(tag,v)) and botH(enc(tag,v),H T # LL implies
H

privy w (enc(tag, v)) and botH(enc(tag, v),H’) = 7 # LL.

Proof. By induction on the structure of the command c.

190 D. Type checking PKCS#11 - Formal Proofs

FAIL[err]
This case is obvious since M’ = M and H = H.

T:=e
The type system states that I'(z) = 7 and I' Fp e : 7. If e {MH o, then
M’ = M[z — v;] and H' = H. Two different cases are considered:

e 7 < LL: in this case by Lemma D.3 v" # v and also v" # enc(tag, v) thus
proving the case.

e 7 £ LL: then it holds privpy(v) = privpy(v) (and the same for
enc(tag, v)) proving the case.

z:=genKey(T)
Note that this command does not assign any value already contained in M to
a variable and also store in the handle map a fresh value so the case follows
immediately.

z:=importKey(y, T)

The value assigned to x is fresh and is leaked since it is used as a handle. Let
M(y) = o', if v" is not a sensitive value (= (privp y(v’) A botH(v',H) = 7/ # LL)
then nothing has to be proved, otherwise let = 7' : 7, it follows botH(v',H") =
botH(v',H) M 7, two different cases are considered: if the command types
by rule (imp-l1) then 7 = HL and botH(v’,H) M HL = botH(v',H) proving
the case; otherwise rule (imp-h) must have been used and 7 = HH, from
botH(v',H) = 7" # LL it follows 7' MHH = 7" # LL concluding the case.

C1;C2
This case follows directly by induction on c;.

1]

2]

[10]

Bibliography

Martin Abadi. Secrecy by typing in security protocols. Journal of the ACM
(JACM), 46(5):749-786, September 1999.

Martin Abadi and Jan Jurjens. Formal Eavesdropping and Its Computational
Interpretation. In Theoretical Aspects of Computer Software, jth International
Symposium (TACS), volume 2215 of LNCS, pages 82-94, Sendai, Japan, Octo-
ber 29-31 2001. Springer.

Martin Abadi and Phillip Rogaway. Reconciling Two Views of Cryptography
(The Computational Soundness of Formal Encryption). JCRYPTOL: Journal
of Cryptology, 15(2):103-127, 2002.

Pedro Adao, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of
formal encryption in the presence of key-cycles. In 10th Furopean Symposium
on Research in Computer Security (ESORICS), volume 3679 of LNCS, pages
374-396. Springer-Verlag, 2005.

Johan Agat. Transforming out timing leaks. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POLP), pages 40-53, Boston, Massachusetts, USA, January 2000. ACM
Press.

Ross Anderson and Markus Kuhn. Low Cost Attacks on Tamper Resistant De-
vices. In Proceedings of the 5th International Workshop on Security Protocols,
volume 1361 of LNCS, pages 125—-136. Springer, 1997.

Alessandro Armando and Luca Compagna. SAT-based model-checking for se-
curity protocols analysis. Int. J. Inf. Sec., 7(1):3-32, 2008. Software available at
http://www.ai-lab.it/satmc. Currently developed under the AVANTSSAR
project, http://www.avantssar.eu.

Aslan Askarov, Daniel Hedin, and Aandrei Sabelfeld. Cryptographically-
Masked Flows. In Proceedings of the 13th International Static Analysis Sym-
posium Static Analysis (SAS), volume 4134 of LNCS, pages 353-369, Seoul,
Korea, August 2006. Springer.

Aslan Askarov, Daniel Hedin, and Aandrei Sabelfeld. Cryptographically-
Masked Flows. Theoretical Computer Science, 402(2-3):82-101, August 2008.

Lorenzo Baloci and Andrea Vianello. Un sistema per lo studio della sicurezza.
Baccalaureate Thesis, University of Venice, Italy, April 2010.

192

Bibliography

[11]

[17]

[18]

[19]

[20]

Omer Berkman and Odelia Moshe Ostrovsky. The unbearable lightness of
PIN cracking. In 11th International Conference, Financial Cryptography and
Data Security (FC 2007), volume 4886 of LNCS, pages 224-238, Scarborough,
Trinidad and Tobago, February 2007. Springer.

Mike Bond. Attacks on Cryptoprocessor Transaction Sets. In Cryptographic
Hardware and Embedded Systems - CHES, Third International Workshop, vol-
ume 2162 of LNCS, pages 220234, Paris, France, May 2001. Springer.

Mike Bond. Understanding Security APIs. PhD thesis, University of Cambridge
Computer Laboratory, 2004.

Mike Bond and Piotr Zielinski. Decimalization table attacks for PIN cracking.
Technical Report UCAM-CL-TR-560, University of Cambridge, Computer Lab-
oratory, 2003. http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf.

Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham Steel.
Attacking and fixing PKCS#11 security tokens. In Proocedings of the 17th
ACM Conference on Computer and Communications Security (CCS), pages
260269, Chicago, Illinois, USA, October 2010. ACM.

Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham Steel.
CryptokiX: a cryptographic software token with security fixes. In Proocedings
of the 4th International Workshop on Analysis of Security APIs (ASA), Edin-
burgh, UK, July 2010.

Gérard Boudol and Ilaria Castellani. Noninterference for Concurrent Programs.
In Proceedings of International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 2076 of LNCS, pages 382-395, Crete, Greece, July
2001. Springer.

Christian Cachin and Nishanth Chandran. A Secure Cryptographic Token In-
terface. In Proceedings of the 22nd IEEE Computer Security Foundations Sym-
posium (CSF), pages 141-153, Long Island, New York, 2009. IEEE Computer
Society Press.

Matteo Centenaro. Type-based Analysis of PKCS#11. Technical Re-
port CS-2010-7, Computer Science Department, Ca’ Foscari University,
2010. http://www.unive.it/media/allegato/dipartimenti/informatica/
Ricerca/RapportiTecnici/CS-2010-7.pdf.

Matteo Centenaro and Riccardo Focardi. Match It or Die: Proving Integrity by
Equality. In Automated Reasoning for Security Protocol Analysis and Issues in
the Theory of Security, volume 6186 of LNCYS, pages 130-145, Paphos, Cyprus,
March 2010. Springer Berlin / Heidelberg.

Bibliography 193

[21]

[22]

[25]

[20]

28]

[29]

[30]

Matteo Centenaro, Riccardo Focardi, Flaminia L. Luccio, and Graham Steel.
Type-Based Analysis of PIN Processing APIs. In Proceedings of the 14th Euro-
pean Symposium on Research in Computer Security (ESORICS), volume 5789
of LNCS, pages 53-68, Saint-Malo, France, September 2009. Springer.

Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based distributed access
control. In Proceedings of the 16th IEEE Computer Security Foundations Work-
shop (CSF'W), pages 170, Pacific Grove, CA, USA, July 2003. IEEE Computer
Society.

Jolyon Clulow. On the security of PKCS#11. In 5th International Workshop
on Cryptographic Hardware and Embedded Systems (CHES 2003), volume 2779
of LNCS, pages 411-425, Cologne, Germany, September 2003. Springer.

Jolyon Clulow. The design and analysis of cryptographic APIs for security
devices. Master’s thesis, University of Natal, Durban, 2003.

Véronique Cortier and Graham Steel. A generic security API for symmetric
key management on cryptographic devices. In Proceedings of the 14th European
Symposium on Research in Computer Security (ESORICS), volume 5789 of
LNCS, pages 605-620, Saint Malo, France, September 2009. Springer.

Judicaél Courant, Cristian Ene, and Yassine Lakhnech. Computationally Sound
Typing for Non-interference: The Case of Deterministic Encryption. In 27th
International Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’07), volume 4855 of LNCS, pages 364-375,
New Delhi, India, December 2007. Springer.

Stéphanie Delaune, Steve Kremer, and Graham Steel. Formal Analysis of
PKCS#11. In Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF’08), pages 331-344, Pittsburgh, PA, USA, June 2008. IEEE
Computer Society Press.

Stéphanie Delaune, Steve Kremer, and Graham Steel. Formal analysis
of PKCS#11 and proprietary extensions. Journal of Computer Security,
18(6):1211-1245, November 2010.

Delphine Demange and David Sands. All secrets great and small. In Pro-
gramming Languages and Systems, 18th European Symposium on Program-
ming (ESOP), volume 5502 of LNCS, pages 207221, York, UK, March 2009.
Springer.

Dorothy E. Denning and Peter J. Denning. Certification of Programs for Secure
Information Flow. Commununications of the ACM, 20(7):504-513, 1977.

194

Bibliography

[31]

32]

[35]

[40]

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transac-
tions in Information Theory, 2(29):198-208, March 1983.

Riccardo Focardi and Matteo Centenaro. Information Flow Security of Multi-
Threaded Distributed Programs. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security (PLAS), pages
113-124, Tucson, AZ, USA, June 2008. ACM Press.

Riccardo Focardi, Flaminia L. Luccio, and Graham Steel. Blunting Differential
Attacks on PIN Processing APIs. In Proceedings of the 14th Nordic Conference
on Secure IT Systems (NordSec), volume 5838 of LNCS, pages 88-103, Oslo,
Norway, October 2009. Springer.

Cédric Fournet and Tamara Rezk. Cryptographically Sound Implementa-
tions for Typed Information-Flow Security. In 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’08),
pages 323-335, San Francisco, Ca, USA, January 2008. ACM Press.

Sibylle Froschle and Graham Steel. Analysing PKCS#11 key management APIs
with unbounded fresh data. In Revised Selected Papers of the Joint Workshop
on Automated Reasoning for Security Protocol Analysis and Issues in the The-
ory of Security (ARSPA-WITS’09), volume 5511 of Lecture Notes in Computer
Science, pages 92-106, York, UK, March 2009. Springer.

Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In
IEEE Symposium on Security and Privacy, pages 11-20, Oakland, California,
USA, April 1982. IEEE Computer Society Press.

Andrew D. Gordon and Alan Jeffrey. Authenticity by Typing for Security
Protocols. Journal of Computer Security, 11(4):451-520, 2003.

Hackers crack cash machine PIN codes to steal millions. The Times
online. http://www.timesonline.co.uk/tol/money/consumer_affairs/
article4259009.ece.

IBM Inc. CCA Basic Services Reference and Guide for the IBM 4758 PCI
and IBM 4764 PCI-X Cryptographic Coprocessors, 2006. Releases 2.53-3.27.
Available at http://www-03.ibm.com /security /cryptocards/
pcice/library.shtml.

Gavin Keighren, David Aspinall, and Graham Steel. Towards a Type System
for Security APIs. In Proceedings of Automated Reasoning for Security Protocol
Analysis and Issues in the Theory of Security (ARSPA-WITS’09), pages 173
192, York, UK, March 2009.

Bibliography 195

[41]

[42]

[43]

[44]

[45]

[48]

[49]
[50]

[51]

[52]

[53]

Peeter Laud. Secrecy Types for a Simulatable Cryptographic Library. In Pro-
ceedings of the 12th ACM Conference on Computer and Communications Se-
curity (CCS), pages 26-35, Alexandria, VA, USA, 2005. ACM.

Peeter Laud. On the computational soundness of cryptographically masked
flows. In 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’08), pages 337-348, San Francisco, Ca, USA,
January 2008. ACM Press.

Dennis Longley and S. Rigby. An Automatic Search for Security Flaws in Key
Management Schemes. Computers and Security, 11(1):75-89, March 1992.

Mohammad Mannan and Paul C. van Oorschot. Reducing Threats from Flawed
Security APIs: The Banking PIN Case. Computers € Security, 28(6):410-420,
September 2009.

Heiko Mantel and Andrei Sabelfeld. A Unifying Approach to the Security
of Distributed and Multi-Threaded Programs. Journal of Computer Security,
11(4):615-676, 2003.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing Robust
Declassification. In Proceedings of 17th Computer Security Foundations Work-
shop (CSFW), pages 172-186. IEEE Computer Society, 2004.

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. FEnforcing Ro-
bust Declassification and Qualified Robustness. Journal of Computer Security,
14(2):157-196, May 2006.

openCryptoki. http://sourceforge.net/projects/opencryptoki/.

PIN Crackers Nab Holy Grail of Bank Card Security. Wired Magazine Blog
"Threat Level’. http://blog.wired.com/27bstroke6/2009/04/pins.html.

RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard,
June 2004.

Andrei Sabelfeld and Heiko Mantel. Static Confidentiality Enforcement for
Distributed Programs. In Proceeding of the 9th International Static Analy-
sis Symposium, volume 2477, pages 17-20, Madrid, Spain, September 2002.
Springer.

Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-Flow
Security. [EEE Journal on Selected Areas in Communications, 21(1):5-19,
2003.

196

Bibliography

[54]

[62]

[63]

Andrei Sabelfeld and David Sands. Probabilistic Noninterference for Multi-
Threaded Programs. In Proceedings of the 13th IEEE Computer Security Foun-
dations Workshop, pages 200-214, Cambridge, England, July 2000.

Andrei Sabelfeld and David Sands. Declassification: Dimensions and Principles.
Journal of Computer Security, 17(5):517-548, October 2009.

Geoffrey Smith. A new type system for secure information flow. In Proceedings
of the 14th IEEE Computer Security Foundations Workshop (CSFW), pages
115-125, Cape Breton, Nova Scotia, June 2001. IEEE Computer Society.

Geoffrey Smith and Rafael Alpizar. Secure information flow with random as-
signment and encryption. In Proceedings of the 2006 ACM workshop on Formal
methods in security engineering (FMSE), pages 33-44, Alexandria, VA, USA,
November 3 2006. ACM.

Graham Steel. Formal Analysis of PIN Block Attacks. Theoretical Computer
Science, 367(1-2):257-270, November 2006.

Jeffrey A. Vaughan and Steve Zdancewic. A Cryptographic Decentralized Label
Model. In IEEE Symposium on Security and Privacy, pages 192-206, Oakland,
California, USA, May 2007. IEEE Computer Society.

Dennis Volpano. Secure introduction of one-way functions. In Proceedings of the
13th IEEE Computer Security Foundations Workshop (CSFW), pages 246-254,
Cambridge, England, July 2000. IEEE.

Dennis Volpano and Geoffrey Smith. Eliminating Covert Flows with Minimum
Typings. In Proceedings of the 10th Computer Security Foundations Work-
shop (CSFW), pages 156169, Rockport, Massachusetts, USA, June 1997. IEEE

Computer Society.

Dennis M. Volpano, Geoffrey Smith, and Cynthia E. Irvine. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2/3):167-188,
1996.

Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amerson
Lin, Ronald L. Rivest, and Ross Anderson. Robbing the bank with a theorem
prover. Technical Report UCAM-CL-TR-644, University of Cambridge, August
2005.

Estratto per riassunto della tesi di dottorato

Studente: Matteo Centenaro matricola: 955482
Dottorato: Informatica
Ciclo: XXIII

Titolo della tesi : Type-based Analysis of Security APIs
Abstract:

A Security API is an interface between processes running at different levels of trust with the aim of assuring
that a specific security policy holds. It allows an untrusted system to access the functionalities offered by a
trusted secure resource assuring that no matter what sequence of the APl commands are invoked, the
intended security policy is satisfied.

This kind of API is often developed having in mind a target application and how it will typically use the
available services. It is thus easy to miss the fact that some functionalities could be used in a malicious way
to break the intended security policy. In fact, a number of attacks to existing security APIs have been found
in the last years.

This thesis proposes a type-based analysis to verify the security of these critical components. Language-
based analysis is, in fact, a powerful tool to formally prove security and, at the same time, helps API
developers to understand the root-causes of known vulnerabilities affecting APIs and guides them in
programming secure code.

A security APl which slowly leaks secret data to an attacker capable to spot interferences between input
parameters and a command output can be secured by a noninterference policy. The thesis extends the
setting of language-based information flow security to account for cryptographic expressions (both
randomized and deterministic ones) and applies the obtained results to analyse the ATM PIN verification
API. A possible fix to it is also proposed and shown to be secure by typing.

A security APl which, instead, directly releases a secret value as the result of a sequence of legal commands
will be analysed with a type system ensuring that data secrecy is preserved at run-time. The thesis presents
the case of programs implementing key management functionalities and proposes a type system to reason
on the security of RSA PKCS#11 API and verify the correctness of a novel patch to it.

Una security API € un 'interfaccia che regola la comunicazione tra due processi, che vengono eseguiti con
diversi livelli di affidabilita, allo scopo di assicurare che sia soddisfatta una determinata proprieta di
sicurezza. In questo modo, un sistema potenzialmente non fidato puo fruire delle funzionalita offerte da una
risorsa sicura senza mettere a rischio la sicurezza dei dati in essa contenuti: la API deve infatti impedire che
una delle possibili sequenze di suoi comandi permetta di usare in maniera inappropriata la risorsa fidata.
Molto spesso una API di questo tipo viene progettata e sviluppata considerando quella che sara la sua
applicazione piu comune e come questa utilizzera i servizi messi a disposizione. Una mancata visione di
insieme dei comandi esposti dalla API apre la strada ad un suo possibile utilizzo malevolo atto a sovvertire la
sicurezza dei dati che dovrebbe proteggere. Negli ultimi anni, infatti, sono stati scoperti numerosi attacchi
contro le security API esistenti.

La tesi propone un'analisi, basata sui sistemi di tipi, per verificare la sicurezza di queste cruciali componenti.
L'analisi formale dei linguaggi &, infatti, uno strumento molto potente per dimostrare che un dato programma
soddisfa le proprieta di sicurezza richieste. Inoltre, fornisce anche un aiuto agli sviluppatori delle API per
capire a fondo le cause delle vulnerabilita che le affliggono e li guida ad una programmazione
consapevolmente sicura.

Un attaccante che & in grado di osservare differenze nei risultati ottenuti invocando la stessa funzione di una
API con diversi parametri di input, pud utilizzarle per derivare informazioni sui segreti custoditi nella parte
fidata del sistema. Una security APl soggetta a questo genere di attacchi pud essere resa sicura utilizzando
una proprieta di non-interferenza. La tesi estende la teoria esistente nel campo dell'information flow security
per analizzare la sicurezza di programmi che fanno uso di primitive crittografiche (sia randomizzate che
deterministiche) e applica i risultati ottenuti per studiare la APl impiegata per la verifica dei PIN nella rete
degli sportelli ATM (bancomat). Utilizzando il sistema di tipi proposto, & stato possibile proporre e verificare
una soluzione che rende sicura tale API.

Una security API che, come risultato di una inaspettata sequenza di comandi, rivela una informazione che
dovrebbe rimanere segreta, pud essere invece analizzata con un sistema di tipi atto a controllare che la
segretezza dei dati sia preservata durante tutto il tempo di esecuzione dei programmi. La tesi presenta il
caso di programmi che offrono servizi per la gestione delle chiavi crittografiche, introducendo un sistema di
tipi in grado di ragionare sulla sicurezza dello standard RSA PKCS\#11 e di verificare la correttezza di una
nuova patch che lo rende sicuro.

Firma dello studente

