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Albumin-based strategies to effectively prolong the 
circulation half-life of small immunomodulatory payloads 
in cancer therapy
Sara Linciano1,4, Emilia Vigolo2, Antonio Rosato2,3,  
Yoichi Kumada4 and Alessandro Angelini1,5

Small immunomodulatory payloads (IMMs) such as peptide 
vaccines and cytokines have the capability to activate and 
boost the immune response against cancer. However, their 
clinical use has often been hindered by their poor stability and 
short circulating half-lives. To enhance the pharmacokinetic 
properties of small IMMs and promote their trafficking and 
accumulation in lymphatic and tumor tissues, a large variety of 
strategies have been developed. One of the most successful 
relies on the use of serum albumin (SA), the most abundant 
protein in the circulatory and lymphatic system. Here, we report 
a comparative analysis of the different covalent and 
noncovalent SA-based strategies applied so far to improve the 
efficacy of small IMMs in cancer therapy.
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Introduction
Cancer immunotherapy (CI) has transformed the field of 
oncology by prolonging the survival of patients 
with cancer [1]. CI functions by activating and boosting 
potent host immune responses to eradicate tumor cells 
[1–3]. Current CIs include monoclonal antibodies 
(mAbs), immune checkpoint inhibitors (ICIs), adoptive 
cell transfer (ACT), cytokines, and peptide vaccines 
[2–4]. While several mAbs, ICIs, and ACT-based 
therapies have shown durable clinical responses, with 
numerous ongoing clinical trials and approved products 
[2,5], the use of small immunomodulatory payloads 
(IMMs), such as cytokines and peptide vaccines, in 
cancer therapy remains modest [6,7]. The clinical use of 
small IMMs has been hampered by their poor pharma-
cokinetic and biodistribution properties [8–12]. The 
small size and limited stability of peptide vaccines 
hinder their efficient accumulation in lymph nodes 
(LNs) [12–16]. The rapid clearance of cytokines limits 
their exposure to immune cells, thus maintaining ef-
fective concentrations requires high dosages and fre-
quent injections that may overshoot the narrow 
therapeutic window, resulting in adverse toxicities that 
affect patient compliance [8–11]. To overcome these 
limitations, a large variety of strategies have been de-
veloped over the past few decades to enhance stability 
and increase the hydrodynamic diameter of IMMs to be 
5 nm, large enough to extend their circulating half-life 

and promote their trafficking to LNs [17,18]. These 
approaches include covalent or noncovalent tethering of 
cytokines and peptide vaccines to a large variety of 
synthetic and natural polymers, including large un-
structured polypeptides and globular proteins [10,14]. 
Since most of these strategies have been thoroughly 
described elsewhere [10,14,19,20], this review will focus 
exclusively on the use of serum albumin (SA) to effec-
tively deliver small IMMs in cancer therapy.

SA is a nonglycosylated globular protein of 66.5 kDa 
with an average concentration in the bloodstream and in 
the lymphatic system of ∼40 g L−1 and ∼0.17 g L−1, 
respectively (Figure 1) [21–23]. SA is characterized by a 
remarkable solubility and stability, and it has the ability 
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to bind and transport a large diversity of endogenous and 
exogenous ligands [21–23]. Moreover, SA presents low 
immunogenicity and a maximum circulatory half-life of 
19 days in humans [21–23]. This long half-life is mainly 
related to its structural properties and its ability to bind 
the neonatal Fc receptor (FcRn), which mediates the 
pH-dependent endocytic recycling and, ultimately, the 
rescue of SA from intracellular lysosomal degradation. 
All these properties make SA an ideal carrier for the 
delivery of diverse small IMMs, including chemical 
moieties, nucleic acids, peptides, and protein-based 
IMMs [21–24]. So far, two main strategies have been 
explored: (i) noncovalent tethering of a small IMM to SA 
using a specific binding moiety and (ii) covalent fusion of 
the small IMM to SA (Figure 1). While the first approach 
relies on endogenous SA, the second one requires pre-
paration of exogenous SA-based genetic fusions or con-
jugates. These strategies and their abilities to initiate 
and regulate both innate and adaptive immunity in 
cancer are discussed in the following sections.

Noncovalent binding of small 
immunomodulatory payloads to endogenous 
serum albumin
The inherent ability of SA to bind a large diversity of 
endogenous and exogenous ligands has inspired the 
development of multiple chemical compound- and 
polypeptide-based hitchhiking strategies to enhance the 
mode of action of different small IMMs. The reversible 
noncovalent binding to SA allows detachment of the 
IMM, facilitating its interaction with the target, as well 
as its penetration and diffusion into small regions 

otherwise inaccessible to larger molecules. Moreover, 
the diversity and large number of noncovalent-binding 
sites distributed through the SA tertiary structure allow 
co-delivery of multiple IMMs concomitantly. However, 
the noncovalent association of the IMMs to SA could 
also result in a loss of the same small IMMs during FcRn 
endocytic recycling, ultimately decreasing the con-
centrations of IMMs available.

Chemical moiety conjugates
SA can bind up to seven fatty acids (FAs) simulta-
neously. Short- to medium-length FAs (6–12 carbons) 
bind SA with affinities between 0.5 and 60 μM, while 
longer FAs (14–18 carbons) have 10-fold higher affinities 
(<  50 nM) [22]. The ability of SA to bind long FAs with 
high affinity has led to the use of acylation as an effec-
tive and safe conjugation strategy to enhance the mode 
of action of small IMMs. Irvine et al. pioneered the use 
of the lipophilic SA-binding tail 1,2-distearoyl-sn-gly-
cero-3-phosphorylethanolamine (DSPE) to generate in-
novative amphiphile (AMP) vaccines with enhanced 
antitumor potency (Figure 2 and Tables 1 and 2) [25]. 
Their AMP vaccines consisted of (i) DSPE, (ii) a polar 
polymeric spacer polyethylene glycol (PEG) to ensure 
good solubility while retaining SA-binding affinity, and 
(iii) an IMM, such as the antigenic melanoma tumor–-
associated self-antigen tyrosinase-related protein 2 
(Trp2)-derived peptide or the human papillomavirus 
type 16 (HPV-16)-derived cervical cancer peptide E7 
antigen (HPV16-E7; Table 1) [17,25]. When tested in 
tumor-bearing immunocompetent mice, AMP vaccines 
exhibited longer half-life, enhanced stability, and higher 

Figure 1  
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Structure of SA and strategies to prolong the circulation half-life of IMMs. (a) Crystal structure of hSA representing the three homolog domains (I, II, 
and III) whose reciprocal interactions create an asymmetric globular heart-shaped module with up to eight distinct FA-binding sites [74]. Each domain 
is divided into two subdomains (A and B), composed by four and six α-helices, respectively. The α-helices of hSA are represented by cylinders. The 
subdomains are shown in white (IA), gray (IB), palecyan (IIA), skyblue (IIB), salmon (IIIA), and firebrick (IIIB). The three-dimensional structure model of 
hSA (PDB identification code: 7AAE) [75] was generated and rendered using Pymol [76]; (b) Noncovalent tethering of an IMM to SA through the use of 
a specific binding moiety; (c) Covalent fusion of the small IMM to SA either at the N- or at the C-terminus of SA; (d) Pharmacokinetic properties of an 
IMM (blue) are enhanced by associating it, covalently or noncovalently, to SA (SA-IMM, red); (e) IMM, covalently or noncovalently, bound to SA can 
effectively traffic in the LN resulting in higher accumulation of IMM and ultimately superior immune system activation and increase antitumor efficacy.  
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trafficking to draining LNs and induced superior antigen 
presentation and tumor control, compared with IMMs 
alone (Table 2) [25]. Activity of AMP vaccines did not 
depend on SA binding to FcRn but instead required 
Batf3-dependent dendritic cells (DCs), known to med-
iate the cross-priming of CD8+ T cells (Table 2) [26]. 
Though, subsequent studies showed that the activity of 
AMP vaccines depended on SA binding to FcRn and 
that FcRn-mediated transcytosis of SA-bound AMP 
vaccines through the nasal mucosa is important for pro-
moting stronger mucosal immunity [27,28]. Additional 

studies showed that AMP vaccines accumulate in 
draining LNs and prolong the availability of peptide 
antigens and adjuvant, which correlate with massive 
expansion of functional antigen-specific T cells that 
provide protection against viral or tumor challenges 
[27,29]. Moreover, administration of AMP vaccines to 
immunocompetent mice bearing tumor treated with 
chimeric antigen receptor T cells (CAR-T) further pro-
moted their expansion and tumor infiltration, triggered 
DC recruitment to tumors, increased tumor antigen 
uptake by DCs, elicited the priming of endogenous 

Figure 2  

Current Opinion in Biotechnology

Chemical structures of moieties that bind to SA noncovalently. (a) Chemical structure of DSPE. The indicated conjugation site has been used to link 
the following IMMs: CpG, Trp-2, HPV16-E7, EGP20, MUT30, PEPvIII, and KRAS/NRAS mutants; (b) Chemical structure of cholesterol. The conjugation 
sites of 2-propanoic acid butyl trithiocarbonate (PABTC) and IMM (IMDQ) are indicated; (c) Chemical structure of CRX-527, a lipid A analog. The 
indicated conjugation site has been used to append the following IMMs: OVA-HPV16, EnvH, and OVA-EnvH; (d) Chemical structure of Gly-Gly-Gly- 
Lys[Nε-C18-diacid]-2xAEEA-γGlu (B6). The indicated conjugation site has been used to covalently link IL-2; (e) Chemical structure of Evans blue dye. 
The indicated conjugation site has been used to link the following IMMs: CpG, Trp-2, Adpgk, Ntrk1, Rtn2, and Imp3. Chemical structure of (f) α- 
tocopherol and (g) albumin-binding peptide. The indicated conjugation site has been used to covalently link CpG and EGP20.  
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Table 1 

Noncovalent binding of IMMs to endogenous SA. The name of the moiety binding noncovalently to endogenous SA is reported in the first 
column, whereas the name and the amino acid sequence (from N- to the C-terminus) of the IMMs linked to it are reported in the second 
and third columns, respectively. SA-binding affinities indicated in the fourth column are reported as published dissociation constant (KD). 
Fold improvement of the terminal half-lives (τ1/2) of each IMM upon linkage to the SA-binding moiety is reported in the fifth column. Fold 
enhancement of the area under the curve (AUC) of each IMM upon linkage to the SA-binding moiety is reported in the sixth column. 
Legend: NbSA = albumin-binding nanobody; MUT30 = MHC II–restricted neoantigen peptide derived from the K739N mutant murine ki-
nesin family member 18B (KIF18B); PEPvIII = epidermal growth factor receptor (EGFR) class III variant (EGFRvIII); EnvH = T helper epitope 
peptide derived from the envelope (Env) protein of Moloney murine leukemia virus; a = mouse serum albumin, b = human serum albumin; 
c = half maximal effective concentration (EC50); n.a. = not available; Ref = reference. 

Albumin- 
binding 
moiety

IMM KD τ1/2 AUC Ref

Name Amino acid sequence

DSPE CpG TCCATGACGTTCCTGACGTT (DNA sequence) 125 nMa 3 days 12-fold [25,26, 
31–34]Trp-2[181–188] CVYDFFVWL

HPV16-E7[43–62] 

HPV16-E7[49–57]
GQAEPDRAHYNIVTFCCKCDCRAHYNIVTF

EGP20[20–39] VGALEGPRNQDWLGVPRQL
KIF18B[735–749] (MUT30) VDWENVSPELNSTDQ
EGFRvIII[25–37] (PEPvIII) LEEKKGNYVVTDHC
PEPvIII–OVA[257–264] LEEKKGNYVVTDH – SIINFEKL
KRAS/NRAS[5–21] G12D CYKLVVVGADGVGKSALTI
KRAS/NRAS[5–21] G12R CYKLVVVGARGVGKSALTI
KRAS/NRAS[5–21] G12V CYKLVVVGAVGVGKSALTI
KRAS/NRAS[5–21] G12A CYKLVVVGAAGVGKSALTI
KRAS/NRAS[5–21] G12C CYKLVVVGACGVGKSALTI
KRAS/NRAS[5–21] G12S CYKLVVVGASGVGKSALTI
KRAS/NRAS[5–21] G13D CYKLVVVGAGDVGKSALTI
NY-ESO-1[157–165] SLLMWITQC

Cholesterol IMDQ C22H25N5 (chemical formula) 9.2 µMb n.a. n.a. [37,71]
CRX 527 OVA[248–265] – HPV16[742–770] DEVSGLEQLESIINFEKLAAAAAK – 

GQAEDRAHYNIVTFBBKBDSTLRLBVK
1 
and 6 µMb

n.a. n.a. [38,40]

OVA[323–341] – HPV16[742–770] ISQAVHAAHAEINEAGR – 
GQAEDRAHYNIVTFBBKBDSTLRLBVK

EnvH[118–135] EEPLTSLTPRCNTAWNRL
OVA[248–265] – EnvH[118–135] DEVSGLEQLESIINFEKLAAAAAK – 

EEPLTSLTPRCNTAWNRL
OVA[323–341] – EnvH[118–135] DEVSGLEQLESIINFEKLAAAAAK 

–EEPLTSLTPRCNTAWNRL
B6 IL-2 UniProtKB accession number: Q0GK43 n.a. 13-fold 14-fold [41]
Evans blue CpG TCCATGACGTTCCTGACGTT (DNA sequence) 1 µMa 2 days 43-fold [23,44]

Trp-2[181–188] CVYDFFVWL
Adpgk[318–344] CGIPVHLELASMTNMELMSSIVHQQVFPTC
Ntrk1[57–64] CSSMSLQFMTL
Rtn2[472–480] CSSGAIFNGFTL
Imp3[77–85] CSSAALLNKLYA

α-Tocopherol CpG TCCATGACGTTCCTGACGTT (DNA sequence) 7 µMb n.a. n.a. [26]
EGP20[20–39] AVGALEGPRNQDWLGVPRQL

ABP EGP20[20–39] AVGALEGPRNQDWLGVPRQL 8.5 µMb,c n.a. n.a. [26,72]
ABD iTEP (GVGVPG)35 – (GVLPGVG)16 n.a. 2-fold 4-fold [45]

iTEP – OVA[257–264] (GVGVPG)35 – (GVLPGVG)16 – SIINFEKL
IL-15 UniProtKB accession number: P40933 2.8 nMa; 

3 nMb
26-fold 180-fold [46]

cIFN-α UniProtKB accession number: Q6QNB6 9.8 µMa 6.4-fold n.a. [47]
ABD094 G-CSF UniProtKB accession number: P09919 n.a. 8-fold 3-fold [48]
NbSA IL-21 UniProtKB accession number: Q9HBE4 < 1 µMa 30-fold 30-fold [49,73]
Nb80 IL-2 UniProtKB accession number: Q0GK43 166 pM 46-fold n.a. [50]
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antitumor T cells ultimately circumventing antigen-ne-
gative tumor escape and enhancing antitumor efficacy 
(Table 2) [30,31]. Recently, conjugation of DSPE to the 
molecular adjuvant cytosine-phosphoguanine motif 
(CpG) led to AMP-CpG, a lipid-modified toll-like re-
ceptor 9 (TLR9) agonistic DNA oligonucleotide. Co- 
administration of AMP-CpG with a multiantigen-specific 
protein subunit vaccine, which included the Epstein- 
Barr virus (EBV)-encoded gp350 glycoprotein and an 
engineered recombinant EBVpoly protein bearing dif-
ferent conserved immunodominant CD8+ T cell epi-
topes derived from multiple EBV lytic and latent 
antigens, elicited broad humoral and cellular immunity 
ultimately promoting effective immunity and conferring 
protection against EBV-associated B cell lymphoma in 
mice (Tables 1 and 2) [32]. An AMP vaccine, named 
ELI-002 2P, including the AMP-KRAS G12D and G12R 
mutant peptide-based antigens and an AMP-modified 
CpG oligonucleotide adjuvant designed to expand 
polyfunctional mutant KRAS-specific T cells, showed 
increased immunogenicity, tumor clearance, and survival 
in mouse models [33]. ELI-002 2P vaccine is currently in 
human Phase 1 clinical trial (AMPLIFY-201) as im-
munotherapy against mutant KRAS-driven solid tumors. 
The study showed no dose-limiting toxicities, treat-
ment-related serious adverse events or cytokine release 
syndrome, and no maximum tolerated dose was identi-
fied (Tables 1 and 2) [34]. Recently, a new AMP vaccine, 
named ELI-002 7P, was designed against seven KRAS 
and neuroblastoma RAS viral oncogene homolog 
(NRAS) peptides including mutations G12D, G12R, 
G12V, G12A, G12C, G12S, and G13D. ELI-002 7P 
immunotherapy is currently being investigated in 
human phase 1/2 trial (AMPLIFY-7P) in subjects with 
KRAS- and NRAS-mutated solid tumors (NCT 
Number: NCT05726864).

A similar strategy was adopted by De Vrieze et al. to 
reduce the systemic inflammation of imidazoquinolines 
(IMDQs), synthetic agonists of toll-likes receptor 7 and 
8 (TLR7 and TLR8) [35,36]. Toward this goal, they 
designed lipid–polymer amphiphile conjugates com-
posed of a cholesterol tail coupled to a hydrophilic 
polymer decorated with multiple IMDQs (Figure 2 and 
Table 1). The cholesterol–polymer–IMDQ conjugates 
bound SA and induced higher DC, B cell, and macro-
phage activation than the control conjugate lacking the 
cholesterol moiety (Table 2) [37].

Analogously, Tondini et al. applied the lipid A analog 
CRX-527 to enhance the antitumor efficacy of different 
antigenic peptides [38]. CRX-527 is a toll-like receptor 4 
(TLR4) ligand that binds SA at two different sites 
(Figure 2 and Table 1) [39,40]. Antigenic peptides 
conjugated to CRX-527 enhanced DC stimulation and 
boosted T cell activation and expansion, resulting in 
superior anticancer immunity (Table 2) [38].T
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Additionally, FA conjugation has been used to improve 
delivery, lower systemic toxicity, and enhance the effi-
cacy of cytokines [8–11]. Selective bioconjugation of 
interleukin IL-2 to octadecanoic (C18) diacid modified 
with a linker including a γGlu and two units of 8-amino- 
3,6-dioxaoctanoic acid (AEEA) on one side and four 
amino acids (Gly-Gly-Gly-Lys) on the opposite side 
(Gly-Gly-Gly-Lys[Nε-C18-diacid]-2xAEEA-γGlu) led to 
B6, a FA-conjugated-IL-2 with extended half-life and 
enhanced cytotoxic CD8+ T cells proliferation activity 
(Figure 2 and Tables 1 and 2) [41].

Besides FAs, SA can bind numerous other small mole-
cules (SMs). For example, Zhu et al. exploited the 
ability of Evans Blue (EB) to bind multiple distinct sites 
of SA to develop innovative self-assembling SA/AlbiVax 
nanocomplexes (Figure 2 and Table 1). The AlbiVax 
was prepared by conjugating a maleimide-functionalized 
EB derivative (MEB) with thiol-modified peptides de-
rived from the melanoma tumor–associated self-antigen 
Trp2 or from the MHC-I H-2Db-restricted neoantigen 
peptide from murine MC38 colorectal cancer cell 
(Adpgk) [23]. When tested in vivo, the SA/AlbiVax na-
nocomplexes showed a 100-fold more efficient co-de-
livery of antigens to LNs and a 10-fold increase in the 
frequency of peripheral antigen-specific CD8+ cytotoxic 
T lymphocytes compared to the benchmark incomplete 
Freund’s adjuvant (Table 2) [23,42,43]. Combination of 
SA/AlbiVax nanocomplexes with the ICI anti-pro-
grammed cell death protein 1 (anti-PD-1) mAb and the 
chemotherapeutic Abraxane enhanced antitumor im-
munity and therapeutic efficacy [23]. To enhance the 
therapeutic efficacy of monovalent vaccines and to pre-
vent tumor immune evasion, Zhu et al. have recently 
developed a multivalent lymph node–targeting ad-
juvant/antigen-codelivering albumin-binding vaccines 
(AAco-AlbiVax). The system is based on a Y-shaped 
DNA scaffold that was site specifically conjugated to (i) 
the adjuvant CpG, (ii) the albumin-binding MEB, and 
(iii) one peptide neoantigen derived from the H2-Db- 
restricted mutant neurotrophic receptor tyrosine kinase 
1 (Ntrk1), reticulon-2 (Rtn2), or the U3 small nucleolar 
ribonucleoprotein 3 (Imp3; Table 1). In mice, AAco- 
AlbiVax elicited antitumor immunity, including neoan-
tigen-specific CD8+ T cell responses. Further combi-
nation of AAco-AlbiVax with radiotherapy and both anti- 
PD-1 mAb and anti-cytotoxic T-lymphocyte antigen 4 
(anti-CTLA-4) mAb significantly inhibited progression 
of orthotopic glioblastoma multiforme in mice 
(Table 2) [44].

Similarly, Irvine et al. used the low molecular weight 
organic molecule α-tocopherol, an active form of vitamin 
E capable of binding SA, to enhance the potency of the 
molecular adjuvant CpG and the melanoma glycoprotein 
100 (gp100) antigen EGP20 (Figure 2). The α-tocopherol 
conjugates showed ∼3-fold higher CpG levels in the 

draining inguinal and axillary LNs, and 10-fold higher 
frequencies of T cells response to antigenic peptides 
(Tables 1 and 2) [26].

Polypeptide binder conjugates
In addition to FAs and SMs, an increasing number of 
polypeptides have been used as SA-binding moieties. 
Polypeptides usually have a large interaction interface 
with their target, leading to high binding affinities and 
specificities. Moreover, polypeptides can be coupled to 
IMMs, either recombinantly or chemically.

For instance, chemical linkage of the albumin-binding 
peptide (ABP, NDICLPRWGCLWC) to the peptide 
antigen EGP20 via a PEG2000 spacer, led to ABP-PEG- 
EGP20, a conjugated molecules with enhanced LNs ac-
cumulation (> 13-fold) and higher antigen-specific T cell 
activation (5-fold) than EGP20 alone (Figure 2 and 
Tables 1 and 2) [26].

Recombinant fusion of a SA-binding domain (ABD,  
NLAEAKVLANRELDKYGVSDFY KRLINKAKTVE-
GVEALKLHILAALPC) to the immune-tolerant elastin- 
like polypeptide (iTEP) resulted in a greater LNs ac-
cumulation (> 3-fold), DCs (> 4-fold), and CD8+ T cells 
activation than iTEP alone (Figure 3 and Tables 1 and 
2) [45]. Moreover, fusion of IL-15 to ABD led to IL-15- 
ABD, a recombinant molecule that showed longer half- 
life (> 20-fold) but also the ability to overpower im-
munosuppressive cells (e.g. Tregs and MDSCs) while 
enhancing the antitumor activity of CD8+ T cells and 
natural killer (NK) cells (Figure 3 and Tables 1 and 
2) [46].

Additionally, fusion of a cyclized interferon-alpha 
(cIFN-α) to an ABD enabled the generation of cIFNα- 
ABD, a recombinant molecule with retained SA-binding 
affinity, longer circulatory half-life (> 4-fold), higher 
stability, greater tumor penetration and retention (> 4- 
fold), and stronger antitumor efficiency than linear or 
cyclic IFN-α alone (Figure 3 and Tables 1 and 2) [47]. 
Similarly, fusion of the granulocyte colony-stimulating 
factor (G-CSF) to another ABD yielded ABD-G-CSF, a 
recombinant molecule with improved pharmacokinetic 
properties (half-life > 9 hours) and higher neutrophil 
stimulation (Figure 3 and Tables 1 and 2) [48].

Analogously, fusion of a SA-binding nanobody (NbSA) to 
IL-21 extended its circulatory half-life (> 30-fold) and 
enhanced its antitumor effectiveness (Figure 3 and 
Tables 1 and 2). Combination of IL-21-NbSA with the 
anti-PD-1 mAb tuned the ratio of specific subsets of 
tumor-associated macrophage (M1 > M2) and DCs 
(D1 > D2), while it triggered the expression of two ad-
ditional checkpoint molecules, T cell immunoglobulin 
mucin-3 (TIM-3) and lymphocyte activation gene-3 
(LAG-3). Indeed, combination of IL-21-NbSA with anti- 
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PD1, anti-TIM-3, and anti-LAG-3 mAbs resulted in a 
stronger antitumor response and limited toxicity (Figure 
3 and Tables 1 and 2) [49]. Recently, fusion of IL-2 to 
Nb80, a cross-reactive nanobody that binds SA from 
different species, led to Duraleukin, a protein fusion 
with a 46-fold longer circulating half-life than IL-2 
alone, that increased the numbers of tumor-infiltrating 
CD8+ T cells and NK cells (Tables 1 and 2) [50].

Covalent fusion to exogenous serum albumin
The pharmacokinetic properties of IMMs can also be 
enhanced by covalent fusion to exogenous SA. 
Compared with the noncovalent-based hitchhiking 
strategies described above, covalent linkage of IMMs to 
SA (i) enables longer circulation lifetimes of the IMM, as 
the risks of IMM loss during the FcRn-mediated re-
cycling of endocytosed SA is minimized, (ii) ensures 
steric access of the IMM to cell receptors, (iii) increases 
the overall size of the IMM, thus reducing its rate of 
diffusive escape from the tumor (‘tumor entrapment’), 
which prolongs IMM persistence to provide sustained 

and local boosts of the immune system [51]. However, 
covalent linkage of IMMs to SA (i) is generally limited to 
only two locations, the N- and C-terminus of SA and (ii) 
requires recombinant protein production, which is often 
labor intensive and costly.

For example, fusion of human SA (hSA) to the C-ter-
minus of IL-2 yielded IL-2-hSA, also known as 
Albuleukin, a molecule with 50-fold longer circulating 
half-life than IL-2 alone (Figure 3 and Tables 3 and 4) 
[52]. Though Albuleukin accumulated preferentially in 
the LNs, liver, and spleen, it failed to provide significant 
clinical benefits over conventional IL-2 antitumor 
therapy [53–56].

Further co-administration of untargeted IL-2 fused to 
the C-terminus of murine SA (mSA) with different 
tumor antigen–specific mAbs revealed superior tumor 
lymphocyte infiltration, synergistic activation of both 
innate and adaptive response, and production of anti-
tumor Abs when tested in different isogenic murine 
tumor models (Figure 3 and Tables 3 and 4) [57]. Si-
milarly, combination of the untargeted mSA-IL-2 with 
the anti-PD-1 mAb enabled long-term tumor clearance 
and creation of an immunological memory when tested 
on an isogenic mouse model of glioblastoma (Tables 3
and 4) [58]. Further combination of the delayed systemic 
clearance mSA-IL-2 with anti-PD-1 mAb, different 
tumor antigen–specific mAbs, and an AMP vaccine 
showed higher potency in multiple challenging tumor 
models. Efficacy relied on the activation of multiple 
types of adaptive and innate immune cells as well as a 
higher CD8+ to regulatory T cell (Treg) ratio. Notably, 
such combination immunotherapy stimulated immune 
responses against antigens not included in the vaccine, 
thus expanding its potential application to tumor types 

Figure 3  

Current Opinion in Biotechnology

Noncovalent and covalent-based strategies to enhance delivery of 
IMMs. (a) Noncovalent tethering of an IMM (blue) to SA through the use 
of a specific binding moiety (red); (b) Crystal structure of a bacterial SA- 
binding domain (ABD; firebrick; PDB identification code: 1GJS). ABDs 
fold into a small (∼5 kDa) and highly stable three-helix-bundle domain. 
ABDs are often derived from protein G of Streptococcus strain GI48 and 
from protein PAB of Finegoldia magna [77]; (c) Crystal structure of a SA- 
binding nanobody (Nb; salmon; PDB identification code: 5VNW). Nbs 
are small (12–15 kDa) and stable variable domain of the heavy-chain- 
only (VHH) antibodies naturally occurring in the Camelidae family [78]. 
Nbs present a typical immunoglobulin variable domain (IgV) fold 
comprising nine β-strands and three hypervariable loops. The three- 
dimensional structure model of ABD and Nb was generated and 
rendered using Pymol [76]; (d) Covalent fusion of a small IMM to either 
the N- or the C-terminus of exogenous SA.  

Table 3 

Covalent fusion of IMM to exogenous serum albumin. The name 
of IMMs covalently linked to exogenous SA is reported in the 
first column. Fold improvement of the terminal half-life (τ1/2) and 
area under the curve (AUC) of each IMM upon linkage to SA are 
reported in the second and third columns, respectively. Legend: 
n.a. = not available; Ref = reference. 

IMM linked to serum 
albumin

τ1/2 AUC Ref

mSA-IL-2 21-fold n.a. [57,59,60]
lumican-mSA-IL-2 
IL-12-mSA-lumican

n.a. 10-fold [61]

hSA-IL-2 6-fold 75–35-fold [53]
IL-2-mSA 
IL-12-mSA

n.a. n.a. [62]

hSA-IFNβ 10-fold n.a. [54]
cSA-IFNγ 4-fold 170-fold [66]
hSA-GCSF 10-fold n.a. [67–69]
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lacking known antigens [59]. Similar results were ob-
served when triple-negative breast cancer mouse models 
were treated with mSA-IL-2 in combination to an anti- 
PD-1 mAb and an agonist of the stimulator of interferon 
genes (STING) [60]. To limit the systemic dissemina-
tion of SA-cytokine fusions while prolonging their local 
tumor residence, Wittrup et al. developed novel tumor 
antigen–agnostic intratumoral injection-based im-
munotherapies. By appending the small leucine-rich 
proteoglycan lumican, a collagen-anchoring protein, to 
either the N- or C-terminus of mSA, and the inter-
leukins IL-2 and IL-12 to the C- and N-terminus of 
mSA, respectively, they obtained fusion proteins (lu-
mican-mSA-IL-2 and IL-12-mSA-lumican) that dis-
played longer intratumoral retention, no systemic 
exposure toxicity, enhanced tumor-targeting antibody 
efficacy, strong tumor-specific T cell and NK cells re-
sponse, greater cancer vaccine efficacy, improved CAR- 
T cell treatment, and augmented neoadjuvant check-
point blockade (Figure 3 and Tables 3 and 4) [61]. In-
terestingly, co-administration of untargeted IL-2-mSA 
and IL-12-mSA fusions led to enhanced tumor-reactive 
CD8+ T cell effector differentiation, decreased numbers 
of tumor-infiltrating CD4+ Treg, and increased survival 
of lung tumor–bearing mice (Table 3) [62].

Fusion of interferon-beta (IFN-β) to the C-terminus of 
hSA led to the generation of hSA-IFNβ, also known as 
Albuferon, a molecule with retained activity and 10-fold 
longer circulation half-life than IFN-β alone [63]. Phar-
macokinetic and biodistribution studies revealed that 
hSA-IFNβ accumulated preferentially in the tumor- 
draining LNs. Co-administration of hSA-IFNβ with ei-
ther ovalbumin (OVA) or HPV16-E7 antigenic peptides 
revealed enhanced DC maturation and generation of 
antigen-specific CD8+ T cells in tumors (Figure 3 and 
Tables 1 and 3) [64]. Similar antitumor efficacy has been 
observed in dogs with canine renal malignant histiocy-
tosis that have been treated with a canine interferon- 
gamma (cIFN-γ) fused to the C-terminus of canine SA 
(cSA) (Figure 3 and Tables 1 and 3) [65,66].

Finally, fusion of human granulocyte colony-stimulating 
factor (G-CSF) to the C-terminus of hSA led to the long- 
acting hSA-G-CSF (CG-10639) capable of increasing 
leukocytes, neutrophilic granulocytes, and monocytes in 
a dose-dependent manner, thus preventing severe neu-
tropenia in patients with cancer with myelosuppressive 
chemotherapy (Figure 3 and Tables 1 and 3) [67–70].

Conclusions
Albumin has been shown to be an effective carrier to 
prolong the plasma residence time of numerous small 
IMMs, effectively trafficking them into different lym-
phatic areas and enhancing their diffusion and accumu-
lation into tumor tissues. When covalently linked to or 
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noncovalently associated with SA, IMMs are protected 
from proteolytic degradation and rapid renal filtration 
due to the hydrodynamic volume of SA and its ability to 
bind the recycling FcRn. Noncovalent and covalent 
strategies for SA binding have their own advantages and 
disadvantages, and the choice of one over another de-
pends on many factors, including the intrinsic properties 
of the IMMs and their receptors, as well as the type of 
immune and cancer cells toward which IMMs should 
function. Thus, for each IMM, multiple factors should 
be carefully evaluated concomitantly to maximize the 
therapeutic efficacy while minimizing undesired toxic 
effects. In the case of endogenous SA-based delivery 
strategies, future research efforts should be oriented 
toward the development of novel ligands capable of 
binding SA with tunable affinities or recognizing dif-
ferent SA sites, thus enabling co-delivery of multiple 
IMMs at once. In the case of exogenous SA-based de-
livery strategies, further development should involve the 
use of bioengineered SA with different affinities to 
FcRn, enhanced fusion linkers as well as capability to 
transport multiple IMMs at once. Finally, synergistic 
combination therapies involving the use of both en-
dogenous and exogenous SA-based delivery systems and 
different IMMs at once should be explored to ultimately 
enhance efficacy of small IMMs against multiple types 
of tumors.
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