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Small immunomodulatory payloads (IMMs) such as peptide
vaccines and cytokines have the capability to activate and
boost the immune response against cancer. However, their
clinical use has often been hindered by their poor stability and
short circulating half-lives. To enhance the pharmacokinetic
properties of small IMMs and promote their trafficking and
accumulation in lymphatic and tumor tissues, a large variety of
strategies have been developed. One of the most successful
relies on the use of serum albumin (SA), the most abundant
protein in the circulatory and lymphatic system. Here, we report
a comparative analysis of the different covalent and
noncovalent SA-based strategies applied so far to improve the
efficacy of small IMMs in cancer therapy.
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Introduction

Cancer immunotherapy (CI) has transformed the field of
oncology by prolonging the survival of patients
with cancer [1]. CI functions by activating and boosting
potent host immune responses to eradicate tumor cells
[1-3]. Current CIs include monoclonal antibodies
(mAbs), immune checkpoint inhibitors (ICIs), adoptive
cell transfer (ACT), cytokines, and peptide vaccines
[2-4]. While several mAbs, ICIs, and ACT-based
therapies have shown durable clinical responses, with
numerous ongoing clinical trials and approved products
[2,5], the use of small immunomodulatory payloads
(IMMs), such as cytokines and peptide vaccines, in
cancer therapy remains modest [6,7]. The clinical use of
small IMMs has been hampered by their poor pharma-
cokinetic and biodistribution properties [8-12]. The
small size and limited stability of peptide vaccines
hinder their efficient accumulation in lymph nodes
(LLNs) [12-16]. The rapid clearance of cytokines limits
their exposure to immune cells, thus maintaining ef-
fective concentrations requires high dosages and fre-
quent injections that may overshoot the narrow
therapeutic window, resulting in adverse toxicities that
affect patient compliance [8-11]. To overcome these
limitations, a large variety of strategies have been de-
veloped over the past few decades to enhance stability
and increase the hydrodynamic diameter of IMMs to be
>5 nm, large enough to extend their circulating half-life
and promote their trafficking to LNs [17,18]. These
approaches include covalent or noncovalent tethering of
cytokines and peptide vaccines to a large variety of
synthetic and natural polymers, including large un-
structured polypeptides and globular proteins [10,14].
Since most of these strategies have been thoroughly
described elsewhere [10,14,19,20], this review will focus
exclusively on the use of serum albumin (SA) to effec-
tively deliver small IMMs in cancer therapy.

SA is a nonglycosylated globular protein of 66.5 kDa
with an average concentration in the bloodstream and in
the lymphatic system of ~40 g ™! and ~0.17 g L™,
respectively (Figure 1) [21-23]. SA is characterized by a
remarkable solubility and stability, and it has the ability
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Structure of SA and strategies to prolong the circulation half-life of IMMs. (a) Crystal structure of hSA representing the three homolog domains (I, II,
and lll) whose reciprocal interactions create an asymmetric globular heart-shaped module with up to eight distinct FA-binding sites [74]. Each domain
is divided into two subdomains (A and B), composed by four and six a-helices, respectively. The a-helices of hSA are represented by cylinders. The
subdomains are shown in white (IA), gray (IB), palecyan (lIA), skyblue (IIB), salmon (lllA), and firebrick (llIB). The three-dimensional structure model of
hSA (PDB identification code: 7AAE) [75] was generated and rendered using Pymol [76]; (b) Noncovalent tethering of an IMM to SA through the use of
a specific binding moiety; (c) Covalent fusion of the small IMM to SA either at the N- or at the C-terminus of SA; (d) Pharmacokinetic properties of an
IMM (blue) are enhanced by associating it, covalently or noncovalently, to SA (SA-IMM, red); (e) IMM, covalently or noncovalently, bound to SA can
effectively traffic in the LN resulting in higher accumulation of IMM and ultimately superior immune system activation and increase antitumor efficacy.

to bind and transport a large diversity of endogenous and
exogenous ligands [21-23]. Moreover, SA presents low
immunogenicity and a maximum circulatory half-life of
19 days in humans [21-23]. This long half-life is mainly
related to its structural properties and its ability to bind
the neonatal Fc receptor (FcRn), which mediates the
pH-dependent endocytic recycling and, ultimately, the
rescue of SA from intracellular lysosomal degradation.
All these properties make SA an ideal carrier for the
delivery of diverse small IMMs, including chemical
moieties, nucleic acids, peptides, and protein-based
IMMs [21-24]. So far, two main strategies have been
explored: (i) noncovalent tethering of a small IMM to SA
using a specific binding moiety and (i) covalent fusion of
the small IMM to SA (Figure 1). While the first approach
relies on endogenous SA, the second one requires pre-
paration of exogenous SA-based genetic fusions or con-
jugates. These strategics and their abilities to initiate
and regulate both innate and adaptive immunity in
cancer are discussed in the following sections.

Noncovalent binding of small
immunomodulatory payloads to endogenous
serum albumin

The inherent ability of SA to bind a large diversity of
endogenous and exogenous ligands has inspired the
development of multiple chemical compound- and
polypeptide-based hitchhiking strategies to enhance the
mode of action of different small IMMs. The reversible
noncovalent binding to SA allows detachment of the
IMM, facilitating its interaction with the target, as well
as its penetration and diffusion into small regions

otherwise inaccessible to larger molecules. Moreover,
the diversity and large number of noncovalent-binding
sites distributed through the SA tertiary structure allow
co-delivery of multiple IMMs concomitantly. However,
the noncovalent association of the IMMs to SA could
also result in a loss of the same small IMMs during FcRn
endocytic recycling, ultimately decreasing the con-
centrations of IMMs available.

Chemical moiety conjugates

SA can bind up to seven fatty acids (FAs) simulta-
neously. Short- to medium-length FAs (6-12 carbons)
bind SA with affinities between 0.5 and 60 pM, while
longer FAs (14-18 carbons) have 10-fold higher affinities
(< 50 nM) [22]. The ability of SA to bind long FAs with
high affinity has led to the use of acylation as an effec-
tive and safe conjugation strategy to enhance the mode
of action of small IMMs. Irvine et al. pioneered the use
of the lipophilic SA-binding tail 1,2-distearoyl-sn-gly-
cero-3-phosphorylethanolamine (DSPE) to generate in-
novative amphiphile (AMP) vaccines with enhanced
antitumor potency (Figure 2 and Tables 1 and 2) [25].
Their AMP vaccines consisted of (i) DSPE, (ii) a polar
polymeric spacer polyethylene glycol (PEG) to ensure
good solubility while retaining SA-binding affinity, and
(111) an IMM, such as the antigenic melanoma tumor—
associated self-antigen tyrosinase-related protein 2
(Trp2)-derived peptide or the human papillomavirus
type 16 (HPV-16)-derived cervical cancer peptide E7
antigen (HPV16-E7; Table 1) [17,25]. When tested in
tumor-bearing immunocompetent mice, AMP vaccines
exhibited longer half-life, enhanced stability, and higher
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Chemical structures of moieties that bind to SA noncovalently. (a) Chemical structure of DSPE. The indicated conjugation site has been used to link
the following IMMs: CpG, Trp-2, HPV16-E7, EGP,o, MUT30, PEPVIII, and KRAS/NRAS mutants; (b) Chemical structure of cholesterol. The conjugation
sites of 2-propanoic acid butyl trithiocarbonate (PABTC) and IMM (IMDQ) are indicated; (¢) Chemical structure of CRX-527, a lipid A analog. The
indicated conjugation site has been used to append the following IMMs: OVA-HPV16, EnvH, and OVA-EnvH; (d) Chemical structure of Gly-Gly-Gly-
Lys[Ne-C18-diacid]-2xAEEA-yGlu (B6). The indicated conjugation site has been used to covalently link IL-2; () Chemical structure of Evans blue dye.
The indicated conjugation site has been used to link the following IMMs: CpG, Trp-2, Adpgk, Ntrk1, Rtn2, and Imp3. Chemical structure of (f) a-
tocopherol and (g) albumin-binding peptide. The indicated conjugation site has been used to covalently link CpG and EGP20.

trafficking to draining LLNs and induced superior antigen
presentation and tumor control, compared with IMMs
alone (T'able 2) [25]. Activity of AMP vaccines did not
depend on SA binding to FcRn but instead required
Batf3-dependent dendritic cells (DCs), known to med-
iate the cross-priming of CD8* T cells ('T'able 2) [26].
Though, subsequent studies showed that the activity of
AMP vaccines depended on SA binding to FcRn and
that FcRn-mediated transcytosis of SA-bound AMP
vaccines through the nasal mucosa is important for pro-
moting stronger mucosal immunity [27,28]. Additional

studies showed that AMP vaccines accumulate in
draining LNs and prolong the availability of peptide
antigens and adjuvant, which correlate with massive
expansion of functional antigen-specific T' cells that
provide protection against viral or tumor challenges
[27,29]. Moreover, administration of AMP vaccines to
immunocompetent mice bearing tumor treated with
chimeric antigen receptor T cells (CAR-T) further pro-
moted their expansion and tumor infiltration, triggered
DC recruitment to tumors, increased tumor antigen
uptake by DCs, eclicited the priming of endogenous
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Table 1

Noncovalent binding of IMMs to endogenous SA. The name of the moiety binding noncovalently to endogenous SA is reported in the first
column, whereas the name and the amino acid sequence (from N- to the C-terminus) of the IMMs linked to it are reported in the second
and third columns, respectively. SA-binding affinities indicated in the fourth column are reported as published dissociation constant (Kp).
Fold improvement of the terminal half-lives (z4,2) of each IMM upon linkage to the SA-binding moiety is reported in the fifth column. Fold
enhancement of the area under the curve (AUC) of each IMM upon linkage to the SA-binding moiety is reported in the sixth column.
Legend: Nb5A = albumin-binding nanobody; MUT30 = MHC ll-restricted neoantigen peptide derived from the K739N mutant murine ki-
nesin family member 18B (KIF18B); PEPvIII = epidermal growth factor receptor (EGFR) class Ill variant (EGFRUvIII); EnvH =T helper epitope
peptide derived from the envelope (Env) protein of Moloney murine leukemia virus; a = mouse serum albumin, b = human serum albumin;
c = half maximal effective concentration (EC50); n.a. = not available; Ref = reference.

Albumin- IMM Ko T AUC Ref
binding
moiety Name Amino acid sequence
DSPE CpG TCCATGACGTTCCTGACGTT (DNA sequence) 125nM? 3 days 12-fold  [25,26,
Trp-2[181-188] CVYDFFVWL 31-34]
HPV16-E7143-62 GQAEPDRAHYNIVTFCCKCDCRAHYNIVTF
HPV16-E7149-57]
EGP2020-3°! VGALEGPRNQDWLGVPRQL
KIF18BL735-74°1 (MUT30) VDWENVSPELNSTDQ
EGFRVINEZS=S7 (PEPvIII) LEEKKGNYVVTDHC
PEPvVIII-OVA?57-264] LEEKKGNYVVTDH — SIINFEKL

KRAS/NRAS®2" G12D CYKLVVVGADGVGKSALTI
KRAS/NRASP21 G12R CYKLVVVGARGVGKSALTI
KRAS/NRASE-21 G12v CYKLVVVGAVGVGKSALTI
KRAS/NRASE21 G12A CYKLVVVGAAGVGKSALTI
KRAS/NRASE21 G12C CYKLVVVGACGVGKSALTI
KRAS/NRASP21 G128 CYKLVVVGASGVGKSALTI
KRAS/NRASP21 G13D CYKLVVVGAGDVGKSALTI

NY-ESO-1157-163] SLLMWITQC
Cholesterol IMDQ CaoHosN5 (chemical formula) 9.2 pMP n.a. n.a. [387,71]
CRX 527 OVAI248-26%1 _ Hipy/16l742=7701  DEVSGLEQLESIINFEKLAAAAAK — 1 n.a. n.a. [38,40]
GQAEDRAHYNIVTFBBKBDSTLRLBVK and 6 uM?

OVAR23-3411 _ Hpy16l742770 |SQAVHAAHAEINEAGR —
GQAEDRAHYNIVTFBBKBDSTLRLBVK

EnvH[118-138] EEPLTSLTPRCNTAWNRL
OVA248-265] _ EnyHl118-138]  DEVSGLEQLESIINFEKLAAAAAK —
EEPLTSLTPRCNTAWNRL
OVAR23-3411 _ EpyHl118-135]  DEVSGLEQLESIINFEKLAAAAAK
—EEPLTSLTPRCNTAWNRL

B6 IL-2 UniProtKB accession number: Q0GK43 n.a. 113-fold  114-fold [41]
Evans blue CpG TCCATGACGTTCCTGACGTT (DNA sequence) 1 uM? 2 days 143-fold [23,44]

Trp-2[181-188] CVYDFFVWL

Adpgkl318-344] CGIPVHLELASMTNMELMSSIVHQQVFPTC

Nitrk1157-64 CSSMSLQFMTL

Rtn2l472-480] CSSGAIFNGFTL

Imp3l77-8°l CSSAALLNKLYA
a-Tocopherol CpG TCCATGACGTTCCTGACGTT (DNA sequence) 7 uMP n.a. n.a. [26]

EGP20[20-3°! AVGALEGPRNQDWLGVPRQL
ABP EGP20/20-3¢! AVGALEGPRNQDWLGVPRQL 8.5uMP°  n.a. n.a. [26,72]
ABD iTEP (GVGVPG)35 — (GVLPGVG)16 n.a. 12-fold 14-fold [45]

iTEP — OVA[?57-264] (GVGVPG)35 — (GVLPGVG);6 — SIINFEKL

IL-15 UniProtKB accession number: P40933 2.8 ni\)/la; 126-fold 1 180-fold [46]

3nM

clFN-a UniProtKB accession number: Q6QNB6 9.8 um? 16.4-fold n.a. [47]
ABD094 G-CSF UniProtKB accession number: P09919 n.a. 18-fold 13-fold [48]
NbSA IL-21 UniProtKB accession number: Q9HBE4 <1uyM?®  130-fold 130-fold  [49,73]
Nb80 IL-2 UniProtKB accession number: Q0GK43 166 pM 146-fold  n.a. [50]
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Ref
[48]
[49,73]

ttumor growth

inhibition

Therapeutic
effects

TN cells
1DC1 cells
TM1 cells

LN accumulation Immune response

n.a.
n.a.

administration

Tumor location Route of

p
i.d.

Cancer type
Neutropenia

Colon cancer — MC38
cell line

Sprague-Dawley rat

Animal model
C57BL/6 mice

MM
G-CSF
IL-21

Table 2 (continued)

Albumin-
binding
moiety
ABD094
NbSA

1CD8" cells

Colon cancer - CT26-MSLN

cell line

BALB/c mice

1CD4* cells

LDC2 cells
IM2 cells

(50]

ttumor growth

inhibition
tsurvival

1CD8" T cells
TNK cells

n.a.

C57BL/6 mice Lung cancer s.c. (flank)

IL-2

Nb80
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antitcumor T' cells ultimately circumventing antigen-ne-
gative tumor escape and enhancing antitumor efficacy
(‘Table 2) [30,31]. Recently, conjugation of DSPE to the
molecular adjuvant cytosine-phosphoguanine motif
(CpG) led to AMP-CpG, a lipid-modified toll-like re-
ceptor 9 (TLR9) agonistic DNA oligonucleotide. Co-
administration of AMP-CpG with a multiantigen-specific
protein subunit vaccine, which included the Epstein-
Barr virus (EBV)-encoded gp350 glycoprotein and an
engineered recombinant EBVpoly protein bearing dif-
ferent conserved immunodominant CD8" T cell epi-
topes derived from multiple EBV lytic and latent
antigens, elicited broad humoral and cellular immunity
ultimately promoting effective immunity and conferring
protection against EBV-associated B cell lymphoma in
mice (I'ables 1 and 2) [32]. An AMP vaccine, named
ELI-002 2P, including the AMP-KRAS G12D and G12R
mutant peptide-based antigens and an AMP-modified
CpG oligonucleotide adjuvant designed to expand
polyfunctional mutant KRAS-specific T cells, showed
increased immunogenicity, tumor clearance, and survival
in mouse models [33]. ELI-002 2P vaccine is currently in
human Phase 1 clinical trial (AMPLIFY-201) as im-
munotherapy against mutant KRAS-driven solid tumors.
The study showed no dose-limiting toxicities, treat-
ment-related serious adverse events or cytokine release
syndrome, and no maximum tolerated dose was identi-
fied ('T'ables 1 and 2) [34]. Recently, a new AMP vaccine,
named ELI-002 7P, was designed against seven KRAS
and neuroblastoma RAS viral oncogene homolog
(NRAS) peptides including mutations G12D, G12R,
G12V, GI12A, G12C, G12S, and G13D. ELI-002 7P
immunotherapy is currently being investigated in
human phase 1/2 trial (AMPLIFY-7P) in subjects with
KRAS- and NRAS-mutated solid tumors (NCT
Number: NCT05726864).

A similar strategy was adopted by De Vrieze et al. to
reduce the systemic inflammation of imidazoquinolines
(IMDQs), synthetic agonists of toll-likes receptor 7 and
8 (TLR7 and TLRS8) [35,36]. Toward this goal, they
designed lipid—polymer amphiphile conjugates com-
posed of a cholesterol tail coupled to a hydrophilic
polymer decorated with multiple IMDQs (Figure 2 and
Table 1). The cholesterol-polymer—-IMDQ conjugates
bound SA and induced higher DC, B cell, and macro-
phage activation than the control conjugate lacking the
cholesterol moiety (T'able 2) [37].

Analogously, Tondini et al. applied the lipid A analog
CRX-527 to enhance the antitumor efficacy of different
antigenic peptides [38]. CRX-527 is a toll-like receptor 4
(TLR4) ligand that binds SA at two different sites
(Figure 2 and Table 1) [39,40]. Antigenic peptides
conjugated to CRX-527 enhanced DC stimulation and
boosted T cell activation and expansion, resulting in
superior anticancer immunity ('able 2) [38].
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Additionally, FA conjugation has been used to improve
delivery, lower systemic toxicity, and enhance the effi-
cacy of cytokines [8-11]. Selective bioconjugation of
interleukin IL-2 to octadecanoic (C18) diacid modified
with a linker including a yGlu and two units of 8-amino-
3,6-dioxaoctanoic acid (AEEA) on one side and four
amino acids (Gly-Gly-Gly-Lys) on the opposite side
(Gly-Gly-Gly-Lys[Ne-C18-diacid]-2xAEEA-yGlu) led to
B6, a FA-conjugated-IL.-2 with extended half-life and
enhanced cytotoxic CD8" T cells proliferation activity
(Figure 2 and Tables 1 and 2) [41].

Besides FAs, SA can bind numerous other small mole-
cules (SMs). For example, Zhu et al. exploited the
ability of Evans Blue (EB) to bind multiple distinct sites
of SA to develop innovative self-assembling SA/AlbiVax
nanocomplexes (Figure 2 and Table 1). The AlbiVax
was prepared by conjugating a maleimide-functionalized
EB derivative (MEB) with thiol-modified peptides de-
rived from the melanoma tumor—associated self-antigen
Trp2 or from the MHC-I H-2DP-restricted neoantigen
peptide from murine MC38 colorectal cancer cell
(Adpgk) [23]. When tested in vivo, the SA/AlbiVax na-
nocomplexes showed a 100-fold more efficient co-de-
livery of antigens to LNs and a 10-fold increase in the
frequency of peripheral antigen-specific CD8" cytotoxic
T" lymphocytes compared to the benchmark incomplete
Freund’s adjuvant ("I'able 2) [23,42,43]. Combination of
SA/AlbiVax nanocomplexes with the ICI anti-pro-
grammed cell death protein 1 (anti-PD-1) mAb and the
chemotherapeutic Abraxane enhanced antitumor im-
munity and therapeutic efficacy [23]. To enhance the
therapeutic efficacy of monovalent vaccines and to pre-
vent tumor immune evasion, Zhu et al. have recently
developed a multivalent lymph node-targeting ad-
juvant/antigen-codelivering albumin-binding vaccines
(AAco-AlbiVax). The system is based on a Y-shaped
DNA scaffold that was site specifically conjugated to (i)
the adjuvant CpG, (i1) the albumin-binding MEB, and
(iii) one peptide neoantigen derived from the H2-D-
restricted mutant neurotrophic receptor tyrosine kinase
1 (Ntrkl), reticulon-2 (Rtn2), or the U3 small nucleolar
ribonucleoprotein 3 (Imp3; Table 1). In mice, AAco-
AlbiVax elicited antitumor immunity, including neoan-
tigen-specific CD8" T cell responses. Further combi-
nation of AAco-AlbiVax with radiotherapy and both anti-
PD-1 mAb and anti-cytotoxic T-lymphocyte antigen 4
(anti-CTLA-4) mAb significantly inhibited progression
of orthotopic glioblastoma multiforme in mice
(Table 2) [44].

Similarly, Irvine et al. used the low molecular weight
organic molecule a-tocopherol, an active form of vitamin
E capable of binding SA, to enhance the potency of the
molecular adjuvant CpG and the melanoma glycoprotein
100 (gp100) antigen EGP,, (Figure 2). The a-tocopherol
conjugates showed ~3-fold higher CpG levels in the

draining inguinal and axillary LNs, and 10-fold higher
frequencies of T cells response to antigenic peptides
(‘I'ables 1 and 2) [26].

Polypeptide binder conjugates

In addition to FAs and SMs, an increasing number of
polypeptides have been used as SA-binding moiecties.
Polypeptides usually have a large interaction interface
with their target, leading to high binding affinities and
specificities. Moreover, polypeptides can be coupled to
IMMs, either recombinantly or chemically.

For instance, chemical linkage of the albumin-binding
peptide (ABP, “DICLPRWGCLW®) to the peptide
antigen EGP, via a PEG2000 spacer, led to ABP-PEG-
EGPj, a conjugated molecules with enhanced LLNs ac-
cumulation (> 13-fold) and higher antigen-specific T cell
activation (5-fold) than EGP,q alone (Figure 2 and
Tables 1 and 2) [26].

Recombinant fusion of a SA-binding domain (ABD,
NLAEAKVLANRELDKYGVSDFY KRLINKAKTVE-
GVEALKLHILAALP®) to the immune-tolerant elastin-
like polypeptide (iTEP) resulted in a greater LNs ac-
cumulation (> 3-fold), DCs (> 4-fold), and CD8" T cells
activation than i'TEP alone (Figure 3 and Tables 1 and
2) [45]. Moreover, fusion of IL.-15 to ABD led to IL-15-
ABD, a recombinant molecule that showed longer half-
life (>20-fold) but also the ability to overpower im-
munosuppressive cells (e.g. Tregs and MDSCs) while
enhancing the antitumor activity of CD8" T cells and
natural killer (NK) cells (Figure 3 and "T'ables 1 and
2) [46].

Additionally, fusion of a cyclized interferon-alpha
(cIFN-a) to an ABD enabled the generation of cIFNa-
ABD, a recombinant molecule with retained SA-binding
affinity, longer circulatory half-life (>4-fold), higher
stability, greater tumor penetration and retention (>4-
fold), and stronger antitumor efficiency than linear or
cyclic IFN-a alone (Figure 3 and Tables 1 and 2) [47].
Similarly, fusion of the granulocyte colony-stimulating
factor (G-CSF) to another ABD yielded ABD-G-CSF, a
recombinant molecule with improved pharmacokinetic
properties (half-life >9hours) and higher neutrophil
stimulation (Figure 3 and "Tables 1 and 2) [48].

Analogously, fusion of a SA-binding nanobody (Nb**) to
IL-21 extended its circulatory half-life (>30-fold) and
enhanced its antitumor effectiveness (IFigure 3 and
Tables 1 and 2). Combination of IL-21-Nb%* with the
anti-PD-1 mAb tuned the ratio of specific subsets of
tumor-associated macrophage (M1>M2) and DCs
(D1>D2), while it triggered the expression of two ad-
ditional checkpoint molecules, T cell immunoglobulin
mucin-3 (TIM-3) and lymphocyte activation gene-3
(LAG-3). Indeed, combination of IL-21-Nb®** with anti-

Current Opinion in Biotechnology 2024, 90:103218
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Figure 3
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Noncovalent and covalent-based strategies to enhance delivery of
IMMs. (a) Noncovalent tethering of an IMM (blue) to SA through the use
of a specific binding moiety (red); (b) Crystal structure of a bacterial SA-
binding domain (ABD; firebrick; PDB identification code: 1GJS). ABDs
fold into a small (~5 kDa) and highly stable three-helix-bundle domain.
ABDs are often derived from protein G of Streptococcus strain Gl48 and
from protein PAB of Finegoldia magna [77]; (c) Crystal structure of a SA-
binding nanobody (Nb; salmon; PDB identification code: 5VNW). Nbs
are small (12-15 kDa) and stable variable domain of the heavy-chain-
only (VHH) antibodies naturally occurring in the Camelidae family [78].
Nbs present a typical immunoglobulin variable domain (IgV) fold
comprising nine p-strands and three hypervariable loops. The three-
dimensional structure model of ABD and Nb was generated and
rendered using Pymol [76]; (d) Covalent fusion of a small IMM to either
the N- or the C-terminus of exogenous SA.
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PD1, anti-TIM-3, and anti-LAG-3 mAbs resulted in a
stronger antitumor response and limited toxicity (Figure
3 and T'ables 1 and 2) [49]. Recently, fusion of IL.-2 to
Nb80, a cross-reactive nanobody that binds SA from
different species, led to Duraleukin, a protein fusion
with a 46-fold longer circulating half-life than IL-2
alone, that increased the numbers of tumor-infiltrating
CD8* T cells and NK cells (T'ables 1 and 2) [50].

Covalent fusion to exogenous serum albumin
The pharmacokinetic properties of IMMs can also be
enhanced by covalent fusion to exogenous SA.
Compared with the noncovalent-based hitchhiking
strategies described above, covalent linkage of IMMs to
SA (i) enables longer circulation lifetimes of the IMM, as
the risks of IMM loss during the FcRn-mediated re-
cycling of endocytosed SA is minimized, (ii) ensures
steric access of the IMM to cell receptors, (iii) increases
the overall size of the IMM, thus reducing its rate of
diffusive escape from the tumor (‘tumor entrapment’),
which prolongs IMM persistence to provide sustained

Table 3

Covalent fusion of IMM to exogenous serum albumin. The name
of IMMs covalently linked to exogenous SA is reported in the
first column. Fold improvement of the terminal half-life (t4,2) and
area under the curve (AUC) of each IMM upon linkage to SA are
reported in the second and third columns, respectively. Legend:
n.a. = not available; Ref = reference.

IMM linked to serum T1/2 AUC Ref
albumin

mSA-IL-2 121-fold n.a. [57,59,60]
lumican-mSA-IL-2 n.a. 110-fold [61]
IL-12-mSA-lumican

hSA-IL-2 16-fold 175-35-fold  [53]
IL-2-mSA n.a. n.a. [62]
IL-12-mSA

hSA-IFNB 110-fold n.a. [54]
cSA-IFNy 14-fold 1170-fold [66]
hSA-GCSF 110-fold  n.a. [67-69]

and local boosts of the immune system [51]. However,
covalent linkage of IMMs to SA (i) is generally limited to
only two locations, the N- and C-terminus of SA and (ii)
requires recombinant protein production, which is often
labor intensive and costly.

For example, fusion of human SA (hSA) to the C-ter-
minus of IL-2 vyielded IL-2-hSA, also known as
Albuleukin, a molecule with 50-fold longer circulating
half-life than IL.-2 alone (Figure 3 and T'ables 3 and 4)
[52]. Though Albuleukin accumulated preferentially in
the LN, liver, and spleen, it failed to provide significant
clinical benefits over conventional IL.-2 antitumor
therapy [53-56].

Further co-administration of untargeted IL-2 fused to
the C-terminus of murine SA (mSA) with different
tumor antigen—specific mAbs revealed superior tumor
lymphocyte infiltration, synergistic activation of both
innate and adaptive response, and production of anti-
tumor Abs when tested in different isogenic murine
tumor models (IFigure 3 and Tables 3 and 4) [57]. Si-
milarly, combination of the untargeted mSA-IL-2 with
the anti-PD-1 mAb enabled long-term tumor clearance
and creation of an immunological memory when tested
on an isogenic mouse model of glioblastoma (Tables 3
and 4) [58]. Further combination of the delayed systemic
clearance mSA-IL-2 with anti-PD-1 mAb, different
tumor antigen-specific mAbs, and an AMP vaccine
showed higher potency in multiple challenging tumor
models. Efficacy relied on the activation of multiple
types of adaptive and innate immune cells as well as a
higher CD8" to regulatory T cell (Treg) ratio. Notably,
such combination immunotherapy stimulated immune
responses against antigens not included in the vaccine,
thus expanding its potential application to tumor types
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lacking known antigens [59]. Similar results were ob-
served when triple-negative breast cancer mouse models
were treated with mSA-IL-2 in combination to an anti-
PD-1 mAb and an agonist of the stimulator of interferon
genes (STING) [60]. To limit the systemic dissemina-
tion of SA-cytokine fusions while prolonging their local
tumor residence, Wittrup et al. developed novel tumor
antigen—agnostic  intratumoral injection-based im-
munotherapies. By appending the small leucine-rich
proteoglycan lumican, a collagen-anchoring protein, to
either the N- or C-terminus of mSA, and the inter-
leukins IL.-2 and IL.-12 to the C- and N-terminus of
mSA, respectively, they obtained fusion proteins (lu-
mican-mSA-IL-2 and IL-12-mSA-lumican) that dis-
played longer intratumoral retention, no systemic
exposure toxicity, enhanced tumor-targeting antibody
efficacy, strong tumor-specific T cell and NK cells re-
sponse, greater cancer vaccine efficacy, improved CAR-
T cell treatment, and augmented neoadjuvant check-
point blockade (IFigure 3 and Tables 3 and 4) [61]. In-
terestingly, co-administration of untargeted IL.-2-mSA
and I1.-12-mSA fusions led to enhanced tumor-reactive
CD8" T cell effector differentiation, decreased numbers
of tumor-infiltrating CD4" Treg, and increased survival
of lung tumor—bearing mice (''able 3) [62].

Fusion of interferon-beta (IFN-f) to the C-terminus of
hSA led to the generation of hSA-IFNB, also known as
Albuferon, a molecule with retained activity and 10-fold
longer circulation half-life than IFN-B alone [63]. Phar-
macokinetic and biodistribution studies revealed that
hSA-TFNB accumulated preferentially in the tumor-
draining LLNs. Co-administration of hSA-IFNB with ei-
ther ovalbumin (OVA) or HPV16-E7 antigenic peptides
revealed enhanced DC maturation and generation of
antigen-specific CD8+ T cells in tumors (Figure 3 and
T'ables 1 and 3) [64]. Similar antitumor efficacy has been
observed in dogs with canine renal malignant histiocy-
tosis that have been treated with a canine interferon-
gamma (cIFN-y) fused to the C-terminus of canine SA
(cSA) (Figure 3 and Tables 1 and 3) [65,66].

Finally, fusion of human granulocyte colony-stimulating
factor (G-CSF) to the C-terminus of hSA led to the long-
acting hSA-G-CSF (CG-10639) capable of increasing
leukocytes, neutrophilic granulocytes, and monocytes in
a dose-dependent manner, thus preventing severe neu-
tropenia in patients with cancer with myelosuppressive
chemotherapy (Figure 3 and Tables 1 and 3) [67-70].

Conclusions

Albumin has been shown to be an effective carrier to
prolong the plasma residence time of numerous small
IMMs, effectively trafficking them into different lym-
phatic areas and enhancing their diffusion and accumu-
lation into tumor tissues. When covalently linked to or
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noncovalently associated with SA, IMMs are protected
from proteolytic degradation and rapid renal filtration
due to the hydrodynamic volume of SA and its ability to
bind the recycling FcRn. Noncovalent and covalent
strategies for SA binding have their own advantages and
disadvantages, and the choice of one over another de-
pends on many factors, including the intrinsic properties
of the IMMs and their receptors, as well as the type of
immune and cancer cells toward which IMMs should
function. Thus, for each IMM, multiple factors should
be carefully evaluated concomitantly to maximize the
therapeutic efficacy while minimizing undesired toxic
effects. In the case of endogenous SA-based delivery
strategies, future research efforts should be oriented
toward the development of novel ligands capable of
binding SA with tunable affinities or recognizing dif-
ferent SA sites, thus enabling co-delivery of multiple
IMMs at once. In the case of exogenous SA-based de-
livery strategies, further development should involve the
use of bioengineered SA with different affinities to
FcRn, enhanced fusion linkers as well as capability to
transport multiple IMMs at once. Finally, synergistic
combination therapies involving the use of both en-
dogenous and exogenous SA-based delivery systems and
different IMMs at once should be explored to ultimately
enhance efficacy of small IMMs against multiple types
of tumors.
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