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1 Introduction
This paper studies the winner-takes-all Tullock (1967) contest with desert concerns
first presented in Gill and Stone (2010). This principle suggests that, in a compet-
itive setting, competitors aspire to gain what they deem fair based on their efforts
relative to others. Notably, when all participants exert positive effort, the contest’s
probabilistic nature can result in winners (losers) receiving more (less) than what
they believe they deserve. Consequently, the rewards for effort-motivated competi-
tors are influenced by their perception of entitlement and monetary rewards. Within
this structure, we explore how fairness concerns affect player behaviors and the dis-
sipation of resources.

We study a contest involving n players who may differ in their productivities
and desert concerns, with the desert payoff potentially having a more significant
impact on the loss or gain domain. Specifically, in the former, undeserved losses
cause more pain than undeserved gains. In the latter, undeserved benefits are more
beneficial than undeserved losses.1 Within this framework, we establish conditions
for the uniqueness of equilibrium in pure strategies and conduct a comparative static
analysis on players’ spending behavior, probability of winning, and rent dissipation.

Our analysis yields the following findings. In a contest with a large number of
symmetric players (n → ∞), if the desert payoffs are more sensitive to losses (gains),
the total expenditures are lower than (exceeds) the prize value. This occurs because
the aversion to undeserved losses prompts players to reduce their effort. In contrast,
in a contest with heterogeneous players, the aversion to undeserved losses can de-
crease or increase the players’ effort. If an agent is dominant (meaning her chances
of winning are higher than 1/2) and her desert payoff is more sensitive to losses, she
will exert greater effort than in the standard Tullock contest. This agent can afford
to exert extra effort, which reduces her chances of experiencing an undeserved loss.
However, a non-dominant player (with a probability of winning below 1/2) will exert
less effort than in the standard Tullock contest to lower her chances of experienc-
ing undeserved losses. The opposite is true if the desert payoff is more sensitive to
gains. Finally, we show that individual expenditure differs among agents in two play-
ers’ contests with heterogeneity in ability. This result contrasts with the standard
model, where heterogeneous players expend the same resources in equilibrium and
nicely fits the recent experimental evidence on contests with heterogeneous agents

1For a comparison with inequity aversion and psychological game theory, refer to Gill and Stone
(2010).
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(Kimbrough et al., 2014; Fallucchi et al., 2021).

Our paper contributes to the literature on the interactions between reference-
dependent preferences and strategic choices in competitive settings. To our knowl-
edge, Gill and Stone (2010) and Dato et al. (2018) are the first to investigate the
topic employing a two-player contest model à la Lazear and Rosen (1981). They
primarily focus on the equilibrium fundamentals of a game in which players are
loss averse, measured by λ > 0, around their meritocratically determined reference
points.2 Recently, Fu et al. (2022) included moderate and symmetric concerns for
desert, λ ∈ [0, 1

3 ], into the Tullock contest with linear cost of efforts.3

Fu et al. (2022) also highlighted the significance of exploring competition among
contestants who differ in their levels of loss aversion. The assumption of loss aver-
sion, λ > 0, implies that undeserved losses always hurt more than the benefits of
undeserved gains. Although this assumption seems plausible, the opposite may occur
(i.e. λ < 0). Thus, we complement Fu et al. (2022) by studying Tullock contests in
which players can be heterogenous in their productivities and reference-dependent
preferences. Specifically, we provide conditions for the uniqueness of equilibrium for a
larger, and possibly heterogenous, degree of loss aversion across players, λi ∈ (−1, 1)
allowing for convex effort costs. Finally, relaxing the assumption of symmetric pref-
erences across agents, we can account for the impact of different degrees of desert
concerns on players’ spending behavior, probability of winning, and rent dissipation.

The remainder of the paper is organized as follows. Section 2 introduces the
model; Section 3 provides the conditions for the uniqueness of equilibrium; Section
4 provides the comparative statics analysis; Section 5 concludes.

2 Preliminaries
There are n players participating in a Tullock contest, denoted by i = 1, 2, ..n. The
winner of the contest receives a monetary prize normalized to 1, whereas the losers
receive nothing. To win the contest, players exert an effort level denoted by xi, at a

2See Gill and Stone (2015) for an extension to a cooperative setting in which payoffs are deter-
ministic, and Daido and Murooka (2016) for applications to team incentives.

3Specifically, they study a multi-player lottery contest in which agents exhibit symmetric
reference-dependent loss aversion à la Kőszegi and Rabin (2006, 2007) They provide conditions for
the uniqueness of pure-strategy choice-acclimating personal Nash equilibrium, which corresponds
to the Desert equilibrium in Gill and Stone (2010).
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cost xr
i

vi
, where r ≥ 1 and vi > 0 represents the player’s productivity parameter. The

probability of player i winning the contest is σi = xi

X
, where X is the sum of all the

players’ efforts.
Following the approach of Gill and Stone (2010), we incorporate players’ desert

concerns by assuming that they not only care about their own monetary payoff,
but also about the comparison of their payoff with an endogenous reference point
ri(xi, xj) = σi = xi

X
. This reference point represents the monetary amount that

players feel they deserve, given the efforts chosen by all competitors. Moreover,
players share a common notion of fairness and agree on what each deserves to win,
i.e., ∑n

i ri(xi, xj) = 1.
Overall, the player i’s utility is assumed to be separable in money, desert concern,

and cost of effort, and it is given by

UW
i = 1 + gi(1 − σi) − xr

i

vi

,

if she wins, and

UL
i = 0 + li(0 − σi) − xr

i

vi

,

if she loses.
It is important to note that in a winner-takes-all contest, unless all players except

one exert zero effort, the winner always receives more than what she deserves, while
the losers receive less than what they deserve.4 Specifically, gi(1 − σi) represents
player i’s desert payoff for the undeserved gains, while li(0−σi) represents the desert
payoff for the undeserved losses.

We introduce a reasonable assumption regarding the slopes of the desert payoff:
0 ≤ gi < 1 and 0 ≤ li < 1. In other words, when a player experiences an undeserved
gain or loss, their desert payoff cannot exceed the monetary payoff associated with
that gain or loss.5

Overall, the player i’s expected utility is

EUi = [σi − λiσi(1 − σi)] − xr
i

vi

, (1)

4At least two players are active in equilibrium.
5For instance, if player i did not win and incurred a negative desert payoff, reimbursing her with

the expected monetary prize that she deserved but did not receive would more than compensate
for the negative desert payoff.
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where λi = li − gi and −1 < λi < 1. The sign of λi depends on whether the
desert payoff is steeper in the loss domain, as is consistent with Prospect Theory
(Kahneman and Tversky, 2013), or in the gain domain.

Before we proceed, it is essential to highlight some significant properties of the
expression −λiσi(1 − σi), which we shall henceforth refer to as the expected desert
payoff.
Lemma 1. Agent i’s expected desert payoff is given by −λiσi(1 − σi). If λi > 0
(undeserved losses hurt more), it is strictly negative, convex in σi, with the minimum
occurring at σi = 1

2 . Conversely, when λi < 0 (underserved benefits are more benefi-
cial), the expected desert payoff is strictly positive, concave in σi, and its maximum
occurs at σi = 1

2 .

Figure 1: Expected desert payoff for negative and positive λ.

When a player’s probability of winning equals zero (or one), her reference point
corresponds to the actual outcome of the contest, and the expected desert payoff is
equal to zero. However, as a player’s chances of winning increase, the expected dis-
tance between the contest’s outcome and her reference point also increases, resulting
in the expected desert payoff affecting the player’s utility. Intuitively, the extrema of
the expected desert payoff occur at σi = 1

2 , as the possible outcomes of the contest
are the farthest from the reference point. The sign of the expected desert payoff de-
pends on whether undeserved losses hurt more than the benefits of undeserved gains.
If λi > 0, the expected desert payoff is negative, whereas if λi < 0, it is positive.
Figure 1 displays the expected desert payoff for different values of λ.
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3 Equilibrium predictions
We restrict our attention to contests with a unique Nash equilibrium in pure strate-
gies. Our approach consists of first establishing conditions for the quasi-concavity of
the utility functions, followed by examining the necessary conditions for the equilib-
rium to be unique.

Player i’s FOC is given by

(1 − σi)
X

(1 + λi(2σi − 1)) − rxr−1
i

vi

≤ 0, (2)

with equality holding if xi > 0.6

Lemma 2. Player i’s utility is a quasi-concave function of xi for any xj if at least

one of the following conditions holds: −1 < λi ≤ 0.5, r ≥ 2, and r >
(2−

√
3λi

√
(1−λ2

i
)

λ2
i

)

λi

when 0.5 < λi < 1.

To provide conditions for the uniqueness of the equilibrium, it proves convenient
to divide both sides of (2) by Xr−1 > 0.7 The resulting equation implicitly defines
σi = σ(X, λi, vi), and it is given by

(1 − σi)
Xr

(1 + λi(2σi − 1)) − rσr−1
i

vi

≤ 0. (3)

The player’s probability of winning, denoted by si(X), is a function of the aggre-
gate effort X. Specifically, si(X) is defined as max{σ(X, λi, vi), 0}, where σ(X, λi, vi)
is the share function approach described in Cornes and Hartley (2005). It is impor-
tant to note that effort and probability of winning must be non-negative.

From equation (3), we can observe that as X approaches infinity, si(X) ap-
proaches zero when r > 1, and si(X) = 0 when r = 1. Conversely, as X approaches
zero, si(X) approaches one.

In equilibrium, the aggregate effort X must satisfy ∑n
i si(X) = 1, which also

provides the individual efforts through xi = σiX. Finally, for low values of X, we
have ∑n

i si(X) > 1, whereas for high values of X, we have ∑n
i si(X) < 1. As a

result, when ∑n
i si(X) is strictly decreasing in X, the equilibrium is unique by the

intermediate value theorem.
6Note that the equality always holds unless r = 1.
7In equilibrium at least two players exert a positive effort.
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Proposition 1. The contest has a unique Nash equilibrium in pure strategies if at
least one of the following conditions holds for each contestant i: λi ≤ 1/3, r ≥ 2,
and r > 2 −

√
8 (1−λi)λi

(λi+1)2 for 1/3 < λi < 1.

We proceed by assuming that at least one of the conditions outlined in Proposition
1, and hence those in Lemma 2, are satisfied.

4 Comparative Statics
In this section, we investigate how the inclusion of the desert payoff impacts players’
behavior. While our primary focus is on the novel implications of the desert payoff,
our analysis also reveals some behavioral regularities that align with those observed
in Tullock contests without desert concerns. For example, if r = 1, our model predicts
that at least two players will exert positive efforts in equilibrium, while contestants
with lower ability may opt out of the contest. Conversely, if r > 1, all players
are expected to exert a positive effort in equilibrium. Additionally, the higher a
player’s ability, the greater her probability of winning. Finally, when contestants are
symmetric, they are all predicted to exert a positive effort and have an equal chance
of winning (σi = 1

n
∀i).

4.1 Rent-dissipation
Assuming that all n contestants are symmetric in ability and desert concern, i.e.,
vi = v and λi = λ for all i, and that they exert the same effort in equilibrium, we
can simplify the first-order condition to obtain

xr

v
= 1

r
(1 − σ)σ(1 + λ(2σ − 1)), (4)

where σ = 1
n
. As long as n ≥ 2, the system of FOCs in (4) is satisfied, and by Propo-

sition 1, the symmetric equilibrium is the unique pure strategy Nash equilibrium of
the game.

Equation (4) allows us to express the equilibrium cost of effort, xr
i

v
, as a function

of σi and λ:

c(σ, λ) = 1
r

(1 − σ)σ(1 + λ(2σ − 1)). (5)
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When λ = 0 or σi = 1
2 , the cost of effort is equivalent to that of the standard

Tullock contest, namely c(σ, 0) = 1
r
(1 − σ)σ. By observing that together with c(σ, λ)

decreasing in λ, we can derive the following result.

Proposition 2. For n = 2 symmetric contestants, the equilibrium cost of effort is
c(1

2 , λ) = 1
4r

for all λ. For n > 2, the equilibrium cost of effort c( 1
n
, λ) is strictly

decreasing in λ. Moreover, we have the following:

i) if λ > 0, c( 1
n
, λ) < c( 1

n
, 0);

ii) if λ < 0, c( 1
n
, λ) > c( 1

n
, 0) .

Similarly to findings in Gill and Stone (2010), Proposition 2 reveals that in a
symmetric two-player contest with desert concerns, the equilibrium efforts are the
same as those in the standard Tullock contest. Additionally, Lemma 1 shows that the
extrema of the expected desert payoff occur at σ = 1/2, indicating that its marginal
effect is zero at that point. Therefore, the optimal effort is not affected by desert
concerns, as the best response functions intersect at the same point, σ = 1

2 , for any
value of λ (see Figure 2).

The second result in Proposition 2 is that the equilibrium cost of effort varies
with λ and is influenced by the shape of the expected desert payoff, as discussed in
Lemma 1. In particular, part i) of the proposition states that if λ > 0 (undeserved
losses hurt more), the equilibrium effort is lower than that in the absence of desert
concerns. This is because the unique equilibrium of the game is symmetric with
σ = 1

n
< 1

2 , and the expected desert payoff decreases from σ = 0 to σ = 1/2, with a
negative marginal effect that is more pronounced for higher values of λ. The same
reasoning applies to part ii) of the proposition, where λ < 0.

We conclude this subsection by discussing the implications of desert concerns on
rent dissipation.

Proposition 3. In equilibrium, the proportion of rent dissipated is nc(σ, λ) =
1
r

n−1
n

(1 + λ(2−n
n

)). As n approaches infinity, this proportion tends to 1−λ
r

.

The level of rent dissipation varies depending on the signs of λ and n. If λ > 0
(undeserved losses hurt more), the portion of rent dissipated is always less than or
equal to one. On the other hand, if λ < 0 (undeserved gains are more beneficial),
even a small number of contestants can cause the portion of rent dissipated to exceed
one.
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Figure 2: Best response functions for different λ in contest with n = 2 symmetric
players.

4.2 Heterogeneous players
In the previous section, we demonstrated that in a symmetric contest, players exert
the same effort in equilibrium, which decreases as λ increases. Since each player’s
probability of winning in a symmetric contest is 1

n
≤ 1

2 , desert concerns captured by λ
affect all players equally. However, this result only provides a partial understanding
of the effect of desert concerns on players’ behavior.

To better understand the results of this section, we present a simple analogy based
on non-strategic environments, although we must keep in mind that in our analysis,
we move towards different equilibria. Specifically, suppose we have a group of players
with heterogeneous abilities, and we ignore desert concerns for the moment. We refer
to the player with a probability of winning σD > 1

2 , if any, as the “dominant player”
D.

In the absence of any desert concern, players choose the amount of effort such
that marginal costs equal marginal monetary gains. However, let us now introduce
desert concerns for player D only. As illustrated in Figure 3, if λD > (<)0, the
marginal effect of the desert for player D is positive (negative). Therefore, the
dominant player will increase (decrease) their effort until the marginal cost equals
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the sum of the marginal gains, which include both the monetary and desert concerns.
Consequently, when undeserved losses hurt more (λD > 0), the dominant player
exerts more effort than in the absence of desert. The same reasoning applies to non-
dominant players, with the only difference being that their marginal effect of the
desert is negative (positive) if λi 6=D > (<)0. These results are formally stated in the
following proposition.

Proposition 4. Consider a contest with n heterogeneous players. A change in desert
concern such that λ′

D > λD implies σ′
D > σD, X∗∗ > X∗, and x′

D = σ′
DX∗∗ > xD =

σDX∗. On the other hand, a change in desert concern such that λ′
i 6=D > λi 6=D implies

σ′
i 6=D ≤ σi 6=D, X∗∗ ≤ X∗, x′

i 6=D = σ′
i 6=DX∗∗ ≤ xi 6=D = σi 6=DX∗.

Figure 3: The marginal expected desert concern.

Note that if σi = 0.5, a change in λi does not affect player i’s probability of
winning. This means that, just like in the symmetric scenario, the marginal effect of
desert concern at σi = 1

2 is always zero, regardless of the value of λi. For example,
in a contest between two players with equal abilities and different λ values, both
players have equal chances of winning, with σi = σj = 0.5.

Proposition 4 provides an outline of how players’ behavior is influenced by varying
degrees of desert concerns. By utilizing these findings, we can directly infer the
effect that a change in players’ symmetric desert concerns has on their probability
of winning.

Proposition 5. Consider a contest with n players with heterogeneous abilities but
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symmetric λ. A change in desert concerns such that λ′ > λ implies σ′
D − σ′

i 6=D >
σD − σi 6=D ∀i.

When players are heterogeneous only in terms of their abilities, desert concerns
can either exacerbate or reduce the disparity in their probability of winning. As we
have discussed earlier, the impact of an increase in λ varies depending on whether a
player’s probability of winning is higher or lower than 1

2 . For the dominant player,
if any, an increase in λ positively affects her marginal desert concerns, leading to
greater effort exertion. Conversely, for non-dominant players, the opposite effect
occurs.

5 Applications: Two players contest
Suppose there are only two contestants with abilities vD > vL = 1, but they share
the same λ value. We can express players’ effort in Equation 2 in terms of their
probability of winning, as shown in Equation 3. Since the FOCs conditions hold
with equality in a contest between two players, we can take their ratio and use
σD = 1 − σL to obtain:

(1 − σD)r

σr
D

[1 + λ(2σD − 1)]
[1 + λ(1 − 2σD)] = 1

vD

. (6)

Equation (6) implicitly defines the equilibrium probability of winning for the
dominant player as a function of desert concern, where σD(λ) > 1

2 because vD > 1.
As σD(λ) strictly increases in λ, and σD(0) = (1−σD)r

σr
D

8, we can directly infer the
following corollary from Proposition 4.

Corollary 1. In a contest with n=2, the probability of winning of the dominant
player D is strictly increasing in λ. Furthermore, σD(λ) > σD(0) for all λ > 0, and
σD(λ) < σD(0) for all λ < 0.

5.1 Cost-ratio
Finally, we investigate whether there are any differences in the cost of effort for
players when considering desert concerns. Player i’s cost of effort is

xr
i

vi

= 1
r

(1 − σi)σi(1 + λ(2σi − 1)). (7)

8The left-hand side of Equation (6) is decreasing in σD and increasing in λ
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We also introduce the cost-of-effort ratio, which compares the dominant player’s
cost of effort to that of the non-dominant player. The cost-of-effort ratio is

ĉ(σD, λ) = [1 + λ(2σD − 1)]
[1 + λ(1 − 2σD)] . (8)

It is well known that in a Tullock contest without desert concerns (λ = 0),
heterogenous players expend the same resources in equilibrium, i.e. ĉ(σD, 0) = 1 for
all σD. However, this is not the case when taking into account desert concerns.

Proposition 6. In a game with n = 2 players, the ratio cost of effort ĉ(σD, λ) is
strictly increasing (decreasing) in vD if λ > (<)0. Furthermore, ĉ(σD, λ) > ĉ(σD, 0) =
1 for all λ > 0, and ĉ(σD, λ) < ĉ(σD, 0) = 1 for all λ < 0.

Proof. Recall that σD(vD)′ > 0. Thus, ĉ(σD, λ)′ > 0 if λ2(1 + ĉ(σD, λ)) > 0.

In other words, when undeserved losses hurt more (less) than undeserved gains,
the dominant player expends more (less) effort than the non-dominant player. This
result is in contrast to the standard Tullock contest, where both players spend the
same amount of resources regardless of their abilities.

6 Discussion and Conclusions
Gill and Stone (2010) introduced fairness concerns in Lazear and Rosen (1981) tour-
naments between two loss-averse (λ > 0) players. Recently, Fu et al. (2022) intro-
duced symmetric desert concerns into the Tullock contest. The authors show that
under the assumption of linear costs the pure-strategy Nash equilibrium is unique
under moderate concerns for desert, λ ∈ [0, 1

3 ]. In this framework, allowing for con-
vex costs of effort, we provide conditions under which the resulting equilibrium is
unique regardless of whether contestants have different and less moderate concerns
for fairness, λi ∈ (−1, 1). The wider range of preferences allows us to provide new
insightful results.

In a large contest between symmetric players, we show that rent-dissipation can
either exceed or fall behind the value of the prize depending on players’ fairness
concerns. If undeserved losses hurt more than undeserved gains, players reduce their
efforts compared to the standard case, and there is no full rent dissipation. On
the other hand, if undeserved gains are more beneficial than undeserved losses, the
marginal effect of desert concern is positive, and players increase their contributions.
As a result, rent-dissipation exceeds the value of the prize. Furthermore, we extend
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our analysis to the contests with heterogeneous players and show that high-enough
ability players increase (decrease) their contribution when undeserved losses hurt
more (less) than the benefits of undeserved gains. Additionally, we provide condi-
tions under which desert concerns can either exacerbate or reduce the probability of
winning between the dominant player and other competitors. Finally, our analysis
of a contest between heterogeneous agents leads to results that better resemble those
from economics experiments, as early proposed by Fonseca (2009). In particular, we
prove that in a contest between two players with heterogenous in ability, concerns
for fairness lead to expenditures that are not symmetric. This result contrasts with
the standard scenario in which contestants expend the same resources regardless of
their abilities in equilibrium. If undeserved gains are more beneficial than unde-
served losses, the advantaged players reduce their effort while the disadvantaged one
increases it. In addition, the low-ability player expends more resources and has a
higher probability of winning than in the standard Tullock contest. These results
are in accordance with recent experimental evidence by Kimbrough et al. (2014) and
Fallucchi et al. (2021) among others.

Our model seems to provide a more realistic prediction of contestants’ behavior
that considers “emotions” driven by the gap between the expected and the realized
outcomes. A further step involves checking under what condition the total rent-
seeking increases in contests with multi-prize structures (Fu et al., 2021) when agents
have heterogeneous productivities and desert concerns.
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7 Appendix A
A.1 Proof of Lemma 2

Player i’s expected utility is

EUi = σi − λiσi(1 − σi) − xr
i

vi

(9)

When r = 1, we have

EU ′
i = σ′

i − λiσ
′
i(1 − σi) + λiiσiσ

′
i − 1 (10)

and

EU ′′
i = σ′′

i − λiσ
′′
i (1 − σi) + 2λi(σ′

i)2 + λiσiσ
′′
i , (11)

where σ′′
i = −2 xj

X3 and σ′
i = xj

X2 . After some rearrangements, the SOC boils down
to

1 − 2λi + 3λiσi > 0, (12)

which is satisfied for any xj iff λi ≤ 1
2 .

When r > 1, the FOC is

σ′
i − λiσ

′
i(1 − σi) + λiσiσ

′
i − r

xr−1
i

vi

= 0, (13)

which can be rewritten as

(1 − σi)
X

(1 + λi(2σi − 1)) = r
xr−1

i

vi

. (14)

Note that, as long as −1 ≤ λi < 1 (and r > 1), xi > 0 ∀xj > 0.
The SOC is

EU ′′
i = σ′′

i − λiσ
′′
i (1 − σi) + 2λi(σ′

i)2 + λiσiσ
′′
i − r(1 − r)xr−2

i

vi

< 0, (15)

where σ′′
i = −2 xj

X3 and σ′
i = xj

X2 . It can be written as

σ′′
i (1 + λi(2σi − 1)) + 2λi(σ′

i)2 − r(1 − r)xr−2
i

vi

< 0, (16)

It is easy to check that the SOC is negative whenever λi < 0.
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Thus, the last step requires checking quasi-concavity when λi > 0. When the
FOC holds, the SOC boils down to

−2σi − 6λiσ
2
i + 4λiσi − (r − 1) − (r − 1)2λiσi + (r − 1)λi < 0, (17)

and it can be rewritten as

−6λiσ
2
i − [(r − 1)2λi + 2 − 4λi]σi − (r − 1)[1 − λi] < 0. (18)

After some tedious calculations, it is strictly negative if at least one of the fol-

lowing holds: r ≥ 2, 0 < λi ≤ 0.5, r >
(2−

√
3λi

√
(1−λi

2
i

)

λ2
i

)

λi
when 0.5 < λi < 1.

A.2 Proof of Proposition 1
When r = 1, the FOC can be written as

(1 − σi)(1 + λi(2σi − 1))
X

− 1
vi

≤ 0. (19)

Let σi = σ(X, λi, vi), then σ′(X, λi, vi) < 0 if λi ≤ 1/3.

When r > 1, EU ′
i(0) > 0. As a result, all players exert a positive effort xi =

σiX > 0. This allows us to rewrite the FOC as

1
Xr

= rσr−1
i

(1 − σi)(1 + λi(2σi − 1))
1
vi

. (20)

Let σi = σ(X, λi, vi), then X → ∞, implies σ(X, λi, vi) → 0, and X → 0,
implies σ(X, λi, vi) → 1. Finally, if σ(X, λi, vi) is strictly decreasing in X, then the
equilibrium is unique because by the intermediate value theorem, there is only one
X∗ such that ∑n

i σ(X∗, λi, vi) = 1.
We can check that σ(X, λi, vi) is decreasing in X by looking at the RHS of the

FOC: if it is increasing in σi, then σ(X, λi, vi) is strictly decreasing in X. After some
tedious calculations, the RHS is increasing in σi either when λi ≤ 1/3 for any r ≥ 1,
r ≥ 2 for any λi, or when r > 2 −

√
8 (1−λi)λi

(λi+1)2 for λi > 1/3.

A.3 Proof of Proposition 4
Here, we prove that player i’s probability of winning and aggregate effort increase

in λi iff σi > 1
2 . The same proofs can be used to show that player i’s probability of

winning and the aggregate effort decrease in λi iff σi < 1
2 .
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Let contestant i be an active player in equilibrium, then (3) holds with equality
and can be written as

1
Xr

= rσr−1
i

(1 − σi)(1 + λi(2σi − 1))
1
vi

, (21)

where the numerator equals one if r = 1. In equilibrium, we have that si(X∗, λi) =
max{σ(X∗, λi, vi), 0}, and ∑

si(X∗, λi) = 1. Suppose that the desert concern for
player i changes to λ′

i > λi. If σi > 0.5, the RHS decreases in λi. Fixing X∗, in order
for the equality to hold σi needs to increase. This implies that si(X∗, λ′

i) > si(X∗, λi).
Clearly, X∗ can not be the new equilibrium aggregate as si(X∗, λ′

i)+
∑

sj(X∗, λj) > 1.
Since s(X∗, λ) is strictly decreasing in X, the new equilibrium aggregate X∗∗ in-
creases until it satisfies si(X∗∗, λ′

i) + ∑
sj(X∗∗, λj) = 1, where ∑

sj(X∗∗, λj) <∑
sj(X∗, λj) and si(X∗∗, λ′

i) > si(X∗, λi).
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