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A B S T R A C T   

This study investigates choices of statistical distributions to represent the threshold exceedance frequency and 
magnitude of peaks-over-threshold (POT) series from a national dataset of extreme hydrological events from 842 
gauging stations in the UK. From the initial POT series, two new series were created, POT1 and POT3, repre
senting POT series with an average of, respectively, one and three exceedances per year. Using a χ2 goodness-of- 
fit test, the choice of distributions for both the annual exceedance counts and the magnitude of threshold 
exceedances were explored for both the POT1 and POT3 datasets. The results show that the negative binomial 
and geometrical distributions provide a better fit to the annual exceedance count than the Poisson distribution 
typically assumed. These results are particularly pronounced when considering the POT3 dataset and in the 
South-East of the UK where many river flow series are dominated by slow responding groundwater dominated 
catchments. Finally, estimates of design floods with a return period of 2 and 100 years were obtained for each 
POT series and compared to the equivalent estimates obtained from direct at-site analysis of the annual 
maximum series. The results show a good alignment between the magnitude of the design floods estimated by the 
two methods, but a generally lower standard deviation of estimates obtained from the POT data, as quantified 
using a bootstrap procedure. The results presented here show that the POT series could beneficially replace the 
current operational guidelines based on annual maximum series for design flood estimation in the UK.   

1. Introduction 

A key quantity required for the design and maintenance of hydraulic 
structures is the so-called design event, a value which can be expected to 
be exceeded with a certain (typically small) annual exceedance proba
bility (AEP) p. The estimation of this quantity is the focus of frequency 
analysis which employs extreme value statistical methods to estimate 
design magnitude based on samples of observed extremes in long-term 
records. There are two main approaches for defining a series of ex
tremes within the extreme value statistical framework: block maxima, 
typically annual maxima, and peaks over threshold (POT) records (see 
for example, Bezak et al., 2014 and references therein for an introduc
tion). In the first approach extremes are found to be the largest values 
over a fixed period of time (often taken to be a year). In the peaks-over- 
threshold approach instead, events are considered extremes when they 
exceed a certain fixed high threshold. Basing the analysis on POT events 
is perceived to have a number of advantages over the use of AMS. Firstly, 
the POT series is giving a more credible selection of the most extreme 

events in the observed data, since choosing only one annual maximum 
event might result in the loss of large events from the same year which 
were larger than the annual maximum in other years (Caissie et al., 
2022). Secondly, with some care in the selection of the threshold over 
which events are defined as extremes, it is possible to allow more than 
one event per year, thereby basing the estimation on samples that are 
larger than the AMS (Pan et al., 2022). Based on extensive Monte Carlo 
simulation experiments, Madsen et al. (1997) concluded that POT 
models are preferable over models based on AMS for at-site frequency 
analysis when the mean annual number of threshold exceedances is 
greater than 1.67. More recently, Pan and Rahman (2022) also found the 
POT approach to be valuable and explored the difference in performance 
between the POT and AMS in terms of catchment characteristics. Despite 
these desirable properties, and efforts to standardise the creation of POT 
records (Lang et al., 1999), the use of POT data in operational hydrology 
is still limited (Castellarin et al. 2012). Reasons for this might include 
that extraction of POT data is more complicated than the annual 
maximum, in particular the choice of threshold value and the need to 
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ensure that sequential events are independent, but also the fact that the 
underlying statistical concepts of a POT model are more complex than 
the traditional annual maximum models. As a result, it appears that the 
volume of literature on the use of models based on annual maximum 
series far exceeds studies focussing on POT data and models. 

One of the first applications of POT models in hydrology considered 
the annual exceedance rate to follow a Poisson distribution, while the 
threshold exceedances were described by a one-parameter exponential 
distribution (Todorovic and Zelenhasic, 1970). More recently, the use of 
the negative binomial and geometric distributions have been proposed 
for the exceedances rate (e.g. Hosking, 1994; Estoe and Tawn, 2010), 
while the magnitudes have been taken to follow the Generalised Pareto 
distribution (GPA)and the log-normal distribution (Coles, 2001; Rosb
jerg, 1987). A number of previous studies have focussed specifically on 
the choice of distributions of POT series from British rivers. Cunnane 
(1979) investigated the distribution of the annual exceedance rate for 26 
British catchments and found the data to be over-dispersed; concluding 
that a negative binomial distribution is a more appropriate choice than 
the Poisson distribution. A similar conclusion was reported by the 
Institute of Hydrology (1999) based on analysis of 890 individual POT 
series with an average record length just below 20 years from the UK 
gauging network. In contrast, Bezak et al. (2014) reported no benefits 
when moving from a Poisson distribution to a binomial distribution but 
based on analysis of only a single flow record. 

The aim of this paper is to investigate the choice of statistical model 
underpinning the use of POT models across gauged catchments in the 
United Kingdom, the connection of these choices to the modelling 
assumption underpinning the analysis of annual maxima series, and the 
wider implications for design flood estimation. This is the first system
atic analysis of the kind for the UK and it is envisaged that it will be a 
first step towards updating flood estimation guidance in the country to 
employ POT rather than AMS data. 

2. POT and AMS models for design flood estimation 

As already mentioned, two main different approaches are employed 
to estimate design events within extreme values statistics methods: the 
block (annual) maxima approach and the peaks-over-threshold (POT) 
approach. We briefly outline below how the two approaches are 
employed in practice, mostly relying on the presentation in Coles 
(2001), which refers to the original works which developed the theory 
underlying the different statistical approaches for design flood 
estimation. 

The variable of interest is the flow value X, which is measured at 
regular 15-minute intervals for t years, with a large number of ny records 
in each year. 

When employing annual maxima records, one assumes that the 
sample of t maxima is an iid realisation from a certain distribution: the 
data is used to fit such distribution and the T-years design flood can be 

obtained as the p = 1 − 1
T quantile of the resulting fitted distribution, i.e. 

xT = G− 1
(

1 −
1
T
; θ̂

)

(1)  

where G(x; θ) is the cumulative distribution function fitted to the AMS 
data and G− 1(p; θ), its inverse, is the quantile function of the distribu
tion. θ indicates the vector of distribution parameters, which need to be 
estimated, while θ̂ indicate the vector of estimated parameters. The 
flood distribution is often chosen from distributions with 2 to 3 pa
rameters such as the Gumbel (GUM), Generalised Extreme Value (GEV), 
Generalised Logistic (GLO) or the 4-parameter Kappa (KAP) distribution 
(Hosking and Wallis, 1997). The model parameters can be estimated, i.e. 
θ̂ is obtained, using methods such as maximum-likelihood, Bayesian 
methods, method of moments, or (popular in environmental science) the 
method of L-moments. 

The POT model arguably provides a more process-based approach to 
modelling extremes since it is based on all events in the record which are 
in some sense large since they exceed a pre-specified high threshold u 
(for the challenges related to the specification of the high threshold u see 
for example Scarrott and MacDonald, 2012). Once u has been selected, 
the framework requires the definition of two independent processes; one 
process, modelled by a discrete distribution, representing the number of 
exceedances above the threshold u, and a process representing the 
magnitude of the threshold exceedances (given that the peak exceeds the 
threshold) modelled with a conditional continuous distribution. We 
indicate the magnitude exceedance as Y = (X − u|X > u): the process 
which describes the event magnitude is specified on this random vari
able rather than the original X process: 

Pr(Y > y) = Pr(X > u+ y|X > u) = 1 − F(y) (2)  

where F(y) is the cdf of the distribution for the threshold exceedances. 
The corresponding unconditional probability for the original flow values 
is thus defined as 

Pr(X > x) = Pr(X > u)(1 − F(x − u) ) (3)  

For annual maxima the T-year design flood (or the event with annual 
exceedance probability 1/T) can be thought of as the event that is 
exceeded on average every T observations: this is no longer the case 
when dealing with POT records in which more than one event might be 
recorded in a given year. The derivation of the T-year event therefore 
requires taking this into account. It is assumed that for any year of the t 
years in the record a large number (ny) of events are available, including 
events that both exceed and do not exceed the threshold u, with a total of 
k events exceeding the threshold across the whole record. We take xm as 
the event which is exceeded with probability 1/m, which can be thought 
of as the event which would be exceeded on average once per m events 
(notice though that m does not need to be an integer): 

Pr(X > u)(1 − F(xm − u) ) =
1
m

(4)  

Over a time period (return period) of T years, the m’th observation 
corresponds to m = T*ny, where T is the return period and ny is the 
number of observations per year (again, events both over and below the 
threshold). Eq. (4) can be used to find estimates for the design levels 
associated with specific return periods T provided we can quantify ξu =

Pr(X > u) and F(x). An empirical estimate of ξu = Pr(X > u) based on 
the observed record o t years is given as 

ξ̂u =
k

nyt
=

λ̂
ny

(5)  

where ̂λ = k
t is the average number of events exceeding the threshold u in 

the observed record Combining Eqs. (4) and (5) with the realisation that 
m = T*ny gives 

Table 1 
Combinations of distributions for exceedance rates and magnitudes, and the 
associate distribution of the annual maximum. Details on the probability dis
tribution function of the distributions are provided in the appendix.  

Exceedance 
rate 

Exceedance 
magnitude 

Annual maximum Reference 

Poisson Exponential Gumbel (GUM) Todorovic and 
Zelenhasic (1970) 

Poisson Generalised 
Pareto (GPA) 

Generalised 
Extreme Value 
(GEV) 

Coles (2001) 

Geometric Generalised 
Pareto (GPA) 

Generalised Logistic 
(GLO) 

Eastoe and Tawn 
(2010) 

Neg binomial Generalised 
Pareto (GPA) 

Kappa (KAP) Eastoe and Tawn 
(2010) (as extended 
GL)  
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F(yT) = 1 −
1

λT
(6)  

The T-year design flood can therefore be found as: 

xT = u + yT = u + F− 1
(

1 −
1

λT

)

(7)  

and can be estimated once a suitable estimate is found for the distri
bution of Y. Notably, Eq. (7) shows that the design flood estimate, for a 
fixed threshold u, only depends on the distribution of the magnitude of 
the exceedances and the average number of events per year in the POT 
series. 

There is, however, a strong link between the statistical processes 
generating the POT series and the equivalent distribution of the annual 
maximum series: known combinations found in the literature are shown 
in Table 1. Readers are referred to the references in the Table for 
detailed mathematical derivations. The results in Table 1 illustrate that 
there is a relationship between the distributional choices for POT models 
and some common extreme-value distribution assumed for annual 
maxima series. In this manuscript we explore this relationship to 
investigate using the peaks over threshold series the suitability of 
different extreme value distributions as the assumed parent distribution 
for annual maxima. 

Rosbjerg (1987) investigated the use of the log-normal distribution 
to model exceedance magnitudes, but as the authors could not identify 
an equivalent distribution of the annual maximum event, this distribu
tion was not pursued further here. Similarly, Rossi et al. (1984) showed 
that assuming a mixture of two data-generating processes for extremes 
one can derive a Two-Component Extreme Value distribution for the 
annual maxima series. Hosking (1994) showed that a three-parameter 
generalised Pareto distribution of exceedance magnitude combined 
with a binomial arrival process resulted in a four parameter Kappa 
distribution of the annual maximum series. 

In this work we investigate the suitability of the different modelling 
choices underlying the models in Table 1 for a very rich record of POT 
and AMS records derived from gauged flow records in the UK. For each 
of the possible discrete (Poisson, geometric and negative binomial) and 
continuous (exponential and generalised Pareto) distributions used for 
characterising the threshold exceedance counts and magnitudes 
respectively in POT series the goodness of fit was assessed by means of 
the Pearson χ2 test. For each POT model, the goodness-of-fit of the 
equivalent model for AMS was tested, also using the Pearson χ2 goodness 
of fit test. For each of the four candidate models (Gumbel, GEV, GLO and 
Kappa) the parameters were estimated using the method of L-moments 
(Hosking and Wallis, 1997). Estimation of the four parameters of the 
Kappa distribution is constrained to situations where the L-kurtosis and 

L-skewness obey the constraints (t4 ≤
(5t23+1)

6 and t4 ≥
(5t23 − 1)

4 ). In cases 
where the sample moments fall above the theoretical GLO line or below 
the theoretical GPA line on an L-moment diagram, then the Kappa dis
tribution was constrained/enforced to be a three parameter GLO dis
tribution and a GPA distribution(i.e. a Kappa distribution with a fixed 
value for the second shape parameter), respectively. Finally, design 
floods (including uncertainty) for 2 and 100 year return periods will be 
estimated using statistical extreme value models fitted to both annual 
maximum and peak-over-threshold series of instantaneous peak flow 
from a national network of gauging stations. The method of L-moments 
was used in preference to other parameter estimation methods, such as 
for example maximum likelihood. As pointed out for example in Ner
antzaki and Papalexiou (2022), L-moments are a well-established esti
mation methods which has been used extensively for the flood frequency 
estimation due to the good performance with small samples for distri
butions with three or four parameters such as those employed in this 
study. From experience (e.g. Martins and Stedinger, 2000), the 
maximum likelihood method does not always converge to a solution, 
especially when considering 3 or 4 parameter distributions and 

relatively small samples, whereas the method of L-moments is more 
robust. Also, the method of L-moments is widely used in operational 
hydrology in the United Kingdom as per the Flood Estimation Handbook 
(Institute of Hydrology, 1999). 

3. National peak flow data sets 

The National River Flow Archive (NRFA, nrfa.ceh.ac.uk) maintains 
two high-quality Peak Flow datasets for use in flood frequency analysis 
in the United Kingdom: annual maximum series (AMS) and Peak-over- 
Threshold (POT) series of instantaneous peak flow. The Archive is the 
national UK’s focal point for river flow data and it collates, quality 
controls, and archives hydrometric data from gauging station networks 
across the UK. The dataset contains AMS from a total of 943 catchments 
where the individual annual maximum events have been extracted from 
the 15-minute flow records for the water year spanning from 01 October 
to 30 September the following year. These data are the backbone of the 
flood estimation procedure carried out at a national level and are 
therefore, the subject of a scrupulous continuous quality control process 
which ensures that these records are as reliable as possible. The POT 
records are also routinely quality controlled, but since their use in 
operational practice is less common, and the data management for these 
types of records is more demanding, there is less of a focus on ensuring 
that these records meet the higher possible standards. Details of the 
extraction of the initial POT dataset are provided in Bayliss and Jones 
(1993) including consideration of how to extract serially independent 
events. Here we use version 10 of the Peak Flow dataset made available 
by the NRFA, which only contains the summary datasets of the annual 
maxima and the peaks over threshold rather than the original 15-minute 
record. The POT series are available for 843 catchments. As also speci
fied in the NRFA website, the dataset creation follows the rules outlined 
in Bayliss and Jones (1993) and Flood Estimation Handbook (FEH) 
published by the Institute of Hydrology (1999), relying on the numerous 
quality check which the archive regularly employs to ensure that the 
data of the highest quality are provided. While the FEH stipulates to aim 
for the creation of POT series with an average of five exceedances per 
year, initial inspection showed a range of values between 2 and 8 events 
per year on average. It was therefore decided, following what is also 
done in Volume 3 of the FEH, to extract two datasets with consistent 
characteristics across all POT data, namely the POT1 dataset, in which 
the threshold is set so that there is an average of one event per year, and 
the POT3 dataset, in which the threshold is set so that there is an average 
of three events per year. A summary of the AMS and the two POT series 
(POT1 and POT3) are shown in Table 2. Since for some stations the 
original POT record contains less than 3 events per year on average, the 
POT3 series cannot be derived for some gauging stations. 

Fig. 1 compares the higher order (L-Skew and L-kurtosis) sample L- 
moment ratios derived from the annual maximum series and the ex
ceedance magnitudes in the POT3 datasets. The L-moment ratios 
derived from the POT3 series are relatively closely confined to the re
gion around the Generalised Pareto (GPA) distribution, while the cor
responding L-moment ratios derived from the annual maximum data 
shows a larger spread covering the region between the GLO and GPA 
distributions. 

A larger spread of the L-moment ratios is observed when using AMS 
when compared to the POT3 series. This highlights one of the perceived 
benefits of using the POT data; the fact that more data are potentially 
available and therefore the uncertainty of the estimated design flood 

Table 2 
Summary of POT peak flow datasets used in the study.  

Data set Number of gauges Average record length 

Annual maximum series 939  46.2 
POT1 842  42.3 
POT3 767  42.1  
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should be lower, even if Martins and Stedinger (2001) reported no added 
benefit in terms of quantile precision from adding additional small 
floods (lowering the threshold). This is particularly the case for the POT 
series used in this study, as the exceedance rate has been fixed at either 1 
or 3. This was done to ensure consistency across all sites. However, other 
studies have estimated the exceedance rate (e.g. Madsen and Rosbjerg, 
1997) and thus treated the exceedance rate as a random variable, rather 
than fixed as in this study. Notice though, that to maintain a fixed 
average number of events per year, one would need to update the 
threshold u every time the records are updated (for the UK this happens 
on a yearly basis), something that would be operationally hard to 
manage. 

4 Data analysis and results The result section starts by using the 
Pearson χ2 goodness-of-fit test to investigate what distributional as
sumptions aligns best with the observed POT and AMS series. Next, the 
results from the goodness-of-fit tests are carried forward to investigate 
the impact of these assumptions on the magnitude of design floods, 
including the uncertainty of these estimates. 

3.1. Distributional assumptions 

For each POT and AMS series in turn, the goodness-of-fit of the 
selected distributions was assessed using the Pearson χ2 test with a 
significance level of 10 %. The test divides the sample space into a 
number of bins and compares the observed number of observations in 
each bin to the number one would expect to find under a pre-specified 
distribution: under the null hypothesis that the parent distribution for 
the record is the pre-specified distribution the squared sum of differ
ences standardised by the expected counts follows a χ2 distribution 
(Freedman et al. 2007). This particular goodness-of-fit test was chosen 

as it provides a consistent framework for assessing the goodness of fit 
across all distributions considered in the study, including continuous 
and discrete distributions. For the case of continuous distributions, the 
bins were defined using the quantile function for the hypothesised dis
tribution. For all distributions the number of bins used in the test was 
estimated as the nearest integer value to record-length divided by 5. 

The χ2 test was applied to the exceedance rate and magnitude series 
for both POT1 and POT3 as well as the annual maximum series for each 
catchment where the POT series covers at-least 25 years. The test was 
employed to assess the goodness of fit of the many distributions sug
gested in the literature. Following the terminology employed, among 
others, by Hosking and Wallis (1997), we indicate that a distribution is 
accepted when the Pearson χ2 test can not reject the null hypothesis that 
the data originate from that distribution. It is therefore possible for 
several distributions to be accepted for the same series. The test results 
are summarised in Table 3, where the acceptance rate for the POT 
models indicates data series where the distributions for both the ex
ceedance rate and magnitude could not be rejected at the 10 % signifi
cance level. 

The results in Table 3 shows that there is relatively modest difference 
between the percentage of acceptance for the distributions commonly 
applied to annual maximum series (Gumbel, GEV, GLO and Kappa), 
making it difficult to ascertain if one distribution adapts to the data 
consistently better than any other distribution. The GLO distribution, 
which is the distribution recommended in the FEH for the British annual 
maxima peak flow, was found to be selected marginally more frequently 
than any of the other distributions. 

In contrast, the combination of distributions underpinning the 
Gumbel and GEV distribution, respectively, is accepted considerably less 
frequently than the combinations supporting the GLO and Kappa dis
tribution. In particular, the use of the Poisson distribution is hardly ever 
preferable when considering this POT dataset, which confirms previous 
results published by Cunnane (1979) and Institute of Hydrology (1999). 

The more detailed analysis of the processes underpinning the POT 
models confirms the recommendation of the GLO and Kappa distribu
tions for general use in frequency analysis of AMS from UK catchments 
rather than the Gumbel and GEV distributions (Kjeldsen and Prosdocimi, 
2015; Kjeldsen et al. 2017). 

3.2. Process control on threshold exceedances counts 

This section explores the possible existence of links between catch
ment characteristics and the distribution assumptions describing the 
number of threshold exceedances in a given year. With reference to the 
three models listed in Table 2 it is noticed that the geometrical distri
bution is a special case of the more general negative binomial distri
bution. The section therefore focuses on the difference between the 

Fig. 1. L-moment ratio diagrams showing sample L-moment ratios derived from the annual maximum series (Left) and the magnitude of exceedances above the 
threshold in the POT1 (Centre) and POT3 dataset (Right). 

Table 3 
Summary of results from Pearson χ2 test on distributional assumptions for POT 
and annual maximum peak flow series.  

POT models Annual maxima 

Exceedance 
rate 

Exceedance 
magnitude 

Accept 
(%), 
POT1 

Accept 
(%), 
POT3 

Distribution# Accept 
(%), 
AMS 

Poisson Exponential 22 43 Gumbel (2) 82 
Poisson GPA 23 44 GEV (3) 87 
Geometric GPA 33 71 GLO (3) 88 
Neg. 

Binomial 
GPA 71 75 Kappa (4) 85& 

#Number in () denote number of parameters in AMS distribution. 
&For cases where the sample L-kurtosis is located above the theoretical GLO line 
on the L-moment diagram, the Kappa distribution was reduced to the GLO 
distribution. 
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Poisson distribution and the Negative binomial distribution only. 
Considering both the POT1 and POT3 datasets, the χ2 test (10 % 

significance level) can result in acceptance of: none either or both the 
Poisson and the negative binomial distribution. The result for each 
catchment was plotted on a map of the UK as shown in the left-most plot 
in Fig. 2 and Fig. 3 respectively. The grey dots represent catchment 
where the Negative Binomial distribution is accepted while “+” indicate 
that the Poisson distribution is accepted; note both can be true for a 
particular catchment (dot overlayed by a “+” on the plots). 

Comparing the two maps (left) on Figs. 2 and 3 shows regional dif
ferences in acceptance results of the χ2 test. While in the majority of the 
country both distributions are suitable in the South Eastern part of the 
United Kingdom the Poisson distribution is generally not applicable. 
This is particularly true for the POT3 dataset. This region is generally 
characterised by catchments where the hydrological response is 
groundwater dominated, resulting in a slower and more protracted 

response to rainfall, which leads to relatively high values of the baseflow 
index (BFI) as discussed by Gustard et al. (1992). Subsequently, Boor
man et al. (1995) developed a more general catchment descriptor, 
BFIHOST, linking the BFI to the hydrology of soil types (HOST). The 
right-most plots in Figs. 2 and 3 show BFIHOST plotted against catch
ment area for each catchment, where again the plot-point indicates the 
distribution which better adapts to the data. The plots support the 
pattern shown on the maps, as there are generally little or no catchments 
with high values of BFIHOST where the Poisson distribution is accepted. 
Catchments with high values of BFIHOST can also be found in other 
regions of the UK, notably the midlands and the north-west. Finally, the 
middle plot shows standard annual rainfall as measured between 1960 
and 1990 (SAAR) plotted against catchment area, and again, point-type 
indicating accepted distribution type. These plots show no strong rela
tionship between either SAAR nor catchment area and distribution type. 
In summary, these plots suggest that the hydrological processes at the 

Fig. 2. Accepted Poisson (“+”) and negative binomial (dot) distributions for POT1 dataset. (Left) Spatial distribution, (Centre) as a function of catchment area (km2) 
and standard annual average rainfall 1960–1990 (SAAR), and (Right) as a function of catchment area (km2) and baseflow index derived from HOST soils 
data (BFIHOST). 

Fig. 3. Accepted Poisson (“+”) and negative binomial (dot) distributions for POT3 dataset. (Left) Spatial distribution, (Centre) as a function of catchment area (km2) 
and standard annual average rainfall 1960–1990 (SAAR), and (Right) as a function of catchment area (km2) and baseflow index derived from HOST soils 
data (BFIHOST). 
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catchment scale appear to have an influence on the behaviour of the POT 
series. In particular, the POT3 series extracted from groundwater 
dominated catchments are not well-represented by the Poisson 
distribution. 

3.3. Design flood estimation, including uncertainty 

The distribution found to be best fitting of the POT data were used to 
estimate the design flood magnitude with a return period of T = 2 and 
T = 100 years, i.e. AEP = 0.5 and AEP = 0.01. Once the combination of 
the exceedance rate and threshold exceedance magnitudes were iden
tified the equivalent distribution of the AMS (as per details in Table 1) 
were fitted to the available AMS for the same catchment. In cases where 
more than one combination of distributions for magnitude and ex
ceedance rate were found to be acceptable, the final model choice was 
based on the ranking: Gumbel (first), GEV (second), GLO (third) and 

Kappa (last). The percentage of sites where each distribution is accepted 
(and several distributions can be accepted for each series) is shown in 
Table 4. 

Note that the Kappa distribution is accepted slightly less often than 
the GEV and the GLO in-part because the critical interval of the χ2 test is 
derived using one fewer degrees of freedom owing to the additional 
(fourth) parameter of the Kappa distribution. Note that the GEV distri
bution is not selected as the distribution in most cases. 

For each design flood estimate (both POT and AMS based), a simple 
non-parametric bootstrap procedure (resampling with replacement) was 
used to estimate the standard deviation (SD) of the estimated design 
flood (Efron and Tibshirani, 1994). A total of 1000 bootstrap replica 
were used for each uncertainty assessment. 

Figs. 2 and 3 show the comparison between the design flood mag
nitudes (left) and the associated standard deviation (right) for the AMS 
and the POT1 (top) and POT3 (bottom) datasets, respectively. Fig. 4 
shows the results for a return period of T = 2 years while Fig. 5 shows the 
results for a return period of T = 100 years. 

In general, there is a strong alignment between the estimated design 
flood using the AMS, POT1 and POT3 datasets. For the moderate return 
period of T = 2 years, the standard deviation obtained from the POT1 
and POT3 are generally lower than the corresponding estimates ob
tained from the AMS. This is particularly evident when using the POT1 
data. 

Table 4 
Percentage of AMS distribution type accepted.  

Distribution Accept (%) Selected (%) 

Gumbel 69 28 
GEV 73 4 
GLO 75 39 
Kappa 71 29  

Fig. 4. Return period T = 2 years: Comparison of estimates of design flood derived from Annual maximum data vs POT data (left) and the associated standard 
deviation of these estimates (right). The red line indicates the bisect. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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4. Discussion and conclusion 

This study has investigated the feasibility of migrating from annual 
maximum series of peak flow to peaks-over-threshold data as the 
foundation for design flood estimation in the United Kingdom. The 
investigation was based on the currently best available national dataset 
of peak flow (both AMS and POT series) available open access from the 
National River Flow Archive (NRFA) and underpinning the current in
dustry standard methods for flood frequency estimation in the United 
Kingdom (e.g. Institute of Hydrology, 1999; Kjeldsen et al. 2008). These 
national guidelines are dominated by the use of the AMS, while POT 
data plays only a minor role and are seldom evoked for design flood 
estimation. However, the POT series are available for use in operational 
hydrology and provide a more process-based description of the extreme 
events. The results in this paper support the potential for migrating from 
the use of the AMS datasets towards POT data and models for use in 
operational hydrology. This will require the development of methods for 
regional analysis of POT records to replace the current methods in the 
UK based on the regional analysis of AMS records, along the lines of 
what is proposed for example in Roth et al (2016) or Pan et al (2023). 

The applicability of the different combinations of models for repre
senting the frequency and magnitude of peaks over threshold were 
tested. The results show that, in general, the POT series displayed a 
tendency for over-dispersion and, consequently, the Poisson distribution 

was often found not to be suitable. This is particularly true in 
groundwater-dominated catchments in the South East of the country. In 
contrast, the binomial distribution was found to be an acceptable model 
across most of the country. Combined with the general finding that the 
magnitude of the threshold exceedances is generally well-described by a 
Generalised Pareto distribution, this leads to the conclusion that the 
GLO or the Kappa distribution are preferable over the Gumbel and GEV 
distribution for describing the annual maximum peak flow. This 
conclusion supports previous studies focussing on AMS only (e.g. 
Kjeldsen et al. 2017) identifying the Kappa/GLO model as the preferred 
national model. However, conclusions regarding goodness-of-fit derived 
from the POT series appear more conclusive than possible from the AMS 
series. This highlights a potentially important, and under-utilised, aspect 
of the POT series that could support the practical choice of models in 
operational hydrology. 

The magnitudes of the T-year events obtained from both the POT1 
and POT3 datasets are generally aligned with the magnitude obtained 
directly from the annual maximum data. The corresponding estimates of 
the standard deviation obtained from the POT1 and the annual 
maximum data is also comparable, but generally lower than the esti
mates obtained from the POT3 data. This is particularly true for mod
erate return periods where the sampling variance dominates. For higher 
return periods, the amplification of the variance from extrapolation 
reduces the difference. However, lower sampling variance of the design 

Fig. 5. Return period = 100 years: Comparison of estimates of design flood derived from Annual maximum data vs POT data (left) and the associated standard 
deviation of these estimates (right). The red line indicates the bisect. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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floods is a very desirable feature that can help in the future to derive 
better models linking flood statistics to catchment descriptors, thereby 
supporting the improvements in prediction in ungauged catchment. 
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Appendix A. Details on distribution functions employed in the study 

Discrete distributions employed to model the count process 

Poisson distribution: X ∼ Pois(λ): p(x; λ) = λxe− λ

x!
Binomial distribution: X ∼ B(n, p): p(x; n,p) = n

xp
x(1 − p)n− x 

Negative binomial distribution:.X ∼ NB(n, p) : p(x; n, p) =
Γ(x+n)
Γ(n)x! p

n(1 − p)x 

Continuous distributions employed to model the flow magnitude process (both in peaks over threshold and annual maxima) 

Notice that for the GEV, GLO and Kappa distribution we employ the notation used in Hosking and Wallis (1997) which differs from the one used in 
Coles (2001) and many other references in the sign of the shape parameter. 

Exponential distribution: X ∼ Exp(σ) ;.f(x; σ) = e− x/σ

σ 

Generalised Pareto (GPA): X ∼ GPA(σ, γ);.f(x; σ, γ) =
(
1 +

γ x
σ
)− 1− 1/γ 

Generalised Extreme Value (GEV):X ∼ GEV(ξ, α, κ)

f (x; ξ,α, κ) = 1
α

(

1 −
κ(x − ξ)

α

)− 1+1/κ

exp

{(

1 −
κ(x − ξ)

α

)1/κ
}

Gumbel distribution (derived from the GEV when κ→0): X GUM(ξ,α)

f (x, ξ,α) = 1
α exp

{

−
x − ξ

α − exp
{

−
x − ξ

α

}}

Generalised Logistic (GLO):X ∼ GLO(ξ,α, κ)

f (x; ξ,α, κ) = 1
α

(

1 −
κ(x − ξ)

α

)− 1+1/κ
[

1 +

(

1 −
κ(x − ξ)

α

)1/κ
]− 2  

Kappa distribution (KAP): X ∼ KAP(ξ,α, κ, h): 

f (x; ξ,α, κ, k) = 1
α

(

1 −
κ(x − ξ)

α

)− 1+1/κ

[F(x)]1− h  

where F(x) indicates the CDF of the Kappa distribution, which is: 

F(x; ξ,α, κ, h) =

[

1 − h
(

1 −
κ(x − ξ)

α

)1/κ
]1/h  

Notice that the GEV and the GLO are special cases of the Kappa distribution which occur respectively when h→0 and h→ − 1. Eastoe and Tawn (2010) 
use an extended Generalised Logistic distribution, which after some manipulation can be shown to be the Kappa distribution. We show here this 
equivalence starting from the equation for the CDF of the distribution shown in Appendix A2 of Eastoe and Tawn (2010): 
(

1
1 + λα

)1/α{

1 −

(

1 −
1

1 + λα

)(

1 −
[
1 + ξ

x − u
ψ

]− 1/ξ
)}− 1/α 
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= (1 + λα)− 1/α
{

1 −

(
λα

1 + λα

)(

1 −
[
1 + ξ

x − u
ψ

]− 1/ξ
)}− 1/α  

=

{

1 + λα − λα + λα
[
1 + ξ

x − u
ψ

]− 1/ξ
}− 1/α  

=

{

1 + α
[
λ− ξ + λ− ξξ

x − u
ψ

]− 1/ξ
}− 1/α  

=

{

1 + α
[

λ− ξ

ψ

(

ψ + ξ(x − u) +
ψ

λ− ξ −
ψ

λ− ξ

)]− 1/ξ }− 1/α  

=

{

1 + α
[

1 +
λ− ξ

ψ ξ
(

x − u +
ψ
ξ
−

ψ
ξλ− ξ

)]− 1/ξ }− 1/α  

We can take ν = u − ψ
ξ +

ψ
ξλ− ξ = u+ψ

ξ

(
λξ − 1

)
and ρ = λξψ and rewrite the last term in the equation above as: 

{

1 + α
[
1 + ξ

x − ν
ρ

]− 1/ξ
}− 1/α  

which is a Kappa distribution, with a slight difference from the formulation in Hosking (1994) in the signs of the shape parameters. 
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Bezak, N., Brilly, M., Šraj, M., 2014. Comparison between the peaks-over-threshold 
method and the annual maximum method for flood frequency analysis. Hydrological 
Sciences Journal 59 (5), 959–977. 

Boorman D.B., Hollis J.M., Lilly A., 1995. Hydrology of soil types: a hydrologically-based 
classification of the soils of United Kingdom. Institute of Hydrology Report 126, 
Wallingford, UK. 

Caissie, D., Goguen, G., El-Jabi, N., Chouaib, W., 2022. Fitting flood frequency 
distributions using the annual maximum series and the peak over threshold 
approaches. Canadian Water Resources Journal/revue Canadienne Des Ressources 
Hydriques 47 (2–3), 122–136. 

Castellarin A., Kohnova S., Gaal L., Fleig A., Salinas J., Toumazis A., Kjeldsen T., 
Macdonald, N., 2012. Review of Applied-statistical Methods for Flood-frequency Analysis 
in Europe. WG2 Milestone Report, COST Action ES0901. 122p. iSBN 
9781906698324. 

Coles, S., 2001. An introduction to statistical modelling of extreme events. Springer 
Series in Statistics. 

Cunnane, C., 1979. A note on the Poisson assumption in partial duration series models. 
Water Resources Research 15 (2), 489–494. 

Eastoe, E.F., Tawn, J.A., 2010. Statistical models for overdispersion in the frequency of 
peaks over threshold data for a flow series. Water Resources Research 46 (2). 

Efron, B., Tibshirani, R.J., 1994. An introduction to the bootstrap. CRC Press. 
Freedman D., Pisani R., Purves R. (2007). Statistics. 4th edition. Norton & Company: New 

York. 
Gustard A., Bullock A., Dixon J.M. 1992. Low flow estimation in the United Kingdom. 

Institute of Hydrology Report 108, Wallingford, UK. 
Hosking, J.R., 1994. The four-parameter kappa distribution. IBM Journal of Research 

and Development 38 (3), 251–258. 
Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis: An Approach Based on 

L-Moments. Cambridge University Press, Cambridge, UK.  
Institute of Hydrology, 1999. Flood Estimation Handbook, Vol. 3. Institute of Hydrology, 

Wallingford, United Kingdom.  
Kjeldsen, T.R., Ahn, H., Prosdocimi, I., 2017. On the use of a four-parameter kappa 

distribution in regional frequency analysis. Hydrological Sciences Journal 62 (9), 
1354–1363. 

Kjeldsen, T.R., Jones D.A. and Bayliss A.C. 2008. Improving the FEH statistical 
procedures for Flood Frequency Estimation. Environment Agency Science Report 
SC050050. Bristol, UK. 

Kjeldsen, T.R., Prosdocimi, I., 2015. A bivariate extension of the Hosking and Wallis 
goodness-of-fit measure for regional distributions. Water Resources Research 51 (2), 
896–907. 

Lang, M., Ouarda, T.B.M.J., Bobée, B., 1999. Towards operational guidelines for over- 
threshold modeling. Journal of Hydrology 225, 103–117. 

Madsen, H., Rasmussen, P.F., Rosbjerg, D., 1997. Comparison of annual maximum series 
and partial duration series methods for modeling extreme hydrologic events: 1. At- 
Site Modeling. Water Resources Research 33 (4), 747–757. 

Martins, E.S., Stedinger, J.R., 2000. Generalized maximum-likelihood generalized 
extreme-value quantile estimators for hydrologic data. Water Resources Research 36 
(3), 737–744. 

Martins, E.S., Stedinger, J.R., 2001. Generalized maximum likelihood Pareto-Poisson 
estimators for partial duration series. Water Resources Research 37 (10), 
2551–2557. 

Nerantzaki, S.D., Papalexiou, S.M., 2022. Assessing extremes in hydroclimatology: A 
review on probabilistic methods. Journal of Hydrology 605, 127302. 

Pan, X., Rahman, A., Haddad, K., Ouarda, T.B., 2022. Peaks-over-threshold model in 
flood frequency analysis: a scoping review. Stochastic Environmental Research and 
Risk Assessment 1–17. 

Pan, X., Rahman, A., 2022. Comparison of annual maximum and peaks-over-threshold 
methods with automated threshold selection in flood frequency analysis: a case 
study for Australia. Natural Hazards 111 (2), 1219–1244. 

Pan, X., Rahman, A., Haddad, K., Ouarda, T.B.M.J., Sharma, A., 2023. Regional flood 
frequency analysis based on peaks-over-threshold approach: A case study for South- 
Eastern Australia. Journal of Hydrology - Regional Studies 47, 101407. 

Prosdocimi I., Shaw L. 2022. winfapReader: an R package to interact with Peak Flow 
Data in the United Kingdom (version 0.1-4), https://CRAN.R-project.org/ 
package=winfapReader. 

Rosbjerg, D., 1987. Partial Duration Series with Log-Normal Distributed Peak Values. In: 
Hydrologic Frequency Modeling. Springer, Dordrecht, pp. 117–129. 

Rossi, F., Fiorentino, M., Versace, P., 1984. Two-component extreme value distribution 
for flood frequency analysis. Water Resources Research 20 (7), 847–856. 

Roth, M., Jongbloed, G., Buishand, T.A., 2016. Threshold selection for regional peaks- 
over-threshold data. Journal of Applied Statistics 43 (7), 1291–1309. 

Scarrott, C., MacDonald, A., 2012. A review of extreme value threshold estimation and 
uncertainty quantification. REVSTAT-Statistical Journal 10 (1), 33–60. 

Todorovic, P., Zelenhasic, E., 1970. A stochastic model for flood analysis. Water 
Resources Research 6 (6), 1641–1648. 

T. Rodding Kjeldsen and I. Prosdocimi                                                                                                                                                                                                     

http://refhub.elsevier.com/S0022-1694(23)01177-0/h0005
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0005
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0010
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0010
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0010
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0020
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0020
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0020
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0020
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0030
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0030
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0035
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0035
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0040
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0040
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0045
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0060
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0060
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0065
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0065
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0070
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0070
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0075
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0075
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0075
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0085
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0085
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0085
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0090
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0090
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0095
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0095
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0095
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0100
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0100
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0100
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0105
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0105
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0105
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0110
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0110
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0115
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0115
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0115
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0120
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0120
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0120
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0125
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0125
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0125
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0135
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0135
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0140
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0140
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0145
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0145
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0150
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0150
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0155
http://refhub.elsevier.com/S0022-1694(23)01177-0/h0155

	Use of peak over threshold data for flood frequency estimation: An application at the UK national scale
	1 Introduction
	2 POT and AMS models for design flood estimation
	3 National peak flow data sets
	3.1 Distributional assumptions
	3.2 Process control on threshold exceedances counts
	3.3 Design flood estimation, including uncertainty

	4 Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Details on distribution functions employed in the study
	Discrete distributions employed to model the count process

	Continuous distributions employed to model the flow magnitude process (both in peaks over threshold and annual maxima)
	References


