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Abstract

In nutritional epidemiology, self-reported assessments of dietary exposure are prone to

measurement errors, which is responsible for bias in the association between dietary factors

and risk of disease. In this study, self-reported dietary assessments were complemented by

biomarkers of dietary intake. Dietary and serum measurements of folate and vitamin-B6 from

two nested case-control studies within the European Prospective Investigation into Cancer

and Nutrition (EPIC) study were integrated in a Bayesian model to explore the measurement

error structure of the data, and relate dietary exposures to risk of site-speci�c cancer. A

Bayesian hierarchical model was developed, which included: 1) an exposure model, to de�ne

the distribution of unknown true exposure (X); 2) a measurement model, to relate observed

assessments, in turn, dietary questionnaires (Q), 24-hour recalls (R) and biomarkers (M)

to X measurements; 3) a disease model, to estimate exposures/cancer relationships. The

marginal posterior distribution of model parameters was obtained from the joint posterior

distribution, using Markov Chain Monte Carlo (MCMC) sampling techniques in JAGS. The

study included 554 and 882 case/control pairs for kidney and lung cancer, respectively. In the

measurement error component, the error correlation between Q measurements of vitamin-B6

and folate was estimated to be equal to 0.82 (95% CI: 0.76, 0.87). After adjustment for age,

center, sex, BMI and smoking status, the kidney cancer odds ratios (OR) were 0.55 (0.16,

1.31) and 1.07 (0.33, 3.44) for one standard deviation increase of vitamin-B6 and folate,

respectively. For lung cancer ORs were 0.85 (0.27, 2.42) for vitamin-B6 and 0.55 (0.14, 1.39)

for folate. Bayesian models o�er powerful solutions to handle complex data structures. After

accounting for the role of measurement error, folate and vitamin-B6 were not associated to

the risk of kidney and lung cancer.

KEY WORDS: Hierarchical model; latent factors; Bayesian statistics; measurement error

model; EPIC study; biomarkers measurements; multicenter case-control study
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1 Introduction

In nutritional epidemiology, estimating unbiased associations between dietary and lifestyle factors

and the risk of chronic diseases presents statistical and epidemiological challenges. One long-

standing issue is the presence of measurement errors in self-reported assessments of dietary

exposure [9]. In the univariate case, with one error-prone exposure, the power to detect diet-

disease associations is reduced by measurement error. Under the classical measurement error

model, characterized by random errors with no systematic tendency to under- or over-report

intakes, measurement error causes attenuation of relative risk estimates. However, in more

common multivariate scenarios with more dietary variables, measurement errors can cause either

under- or over-estimation of risk estimates [4].

Due to the importance of measurement error in nutritional epidemiology, statistical models

have been developed to improve the estimation of the relationship between diet and disease risk.

These models rely on strong conditional independence assumptions. Chief among these is that

the measurement errors are non-di�erential with respect to disease status. This assumption

precludes the use of such models in retrospective studies but the non-di�erential error assump-

tion is well founded in prospective studies when dietary assessments and biological samples for

biomarker measurements are taken years before diagnosis. It is also common for models to

assume independence of measurement errors between di�erent dietary assessment methods.

Methodology has been developed to allow the potential dependence of the systematic com-

ponent of measurement errors to be dependent upon individual characteristics such as body

mass index, age, and ethnicity [31]. In addition, methods have been proposed to complement

self-reported measurements with objective measurements of exposure, but these were primarily

implemented in studies evaluating the performance of self-reported assessments and objective

measurements of dietary exposure [30, 32, 24] or physical activity [18, 7].

Biomarker measurements of dietary intake have been advocated in two studies using inte-

grated models [25, 8]. In the �rst study, biomarker measurements of a speci�c nutrient collected

on a sub-sample of the main study were used to calibrate self-reported questionnaire assessments

on the same nutrient available on the whole study population [25]. In that work, biomarker levels

were assumed to be related to unknown true intake by the classical measurement error model, an

assumption unlikely to hold for the vast majority of concentration biomarkers [15]. In the sec-

ond study, several models were evaluated involving interesting novel relationships between true

dietary intake and true biomarker levels, although the measurement error structure of quantities

involved was not evaluated [8].

In the current study, we evaluated the relationships between two B-vitamins � folate (vitamin-

B9) and vitamin-B6 � and the risk of, in turn, kidney and lung cancer. Data were generated in

two nested case-control studies within the European Prospective Investigation into Cancer and

Nutrition (EPIC) [27]. Previous analyses of these data showed that plasma levels of Vitamin

B6 were inversely associated with kidney cancer [13], and serum levels of Vitamin B6 were

inversely related to lung cancer [14]. We analysed serum and plasma vitamin levels, considered

as concentration biomarkers (M), along with self-reported dietary questionnaire (Q) and 24-hour

dietary recalls (24-HDR, R) as imperfect measurements of B-vitamin intake. Our approach

extended previous work using self-reported measurements only [5] in a Bayesian framework [28],
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and included three components: an exposure, a measurement error, and a disease models. Using

data from M measurements, the assumption used in previous work [5], i.e. that errors in Q and

R measurements were uncorrelated, was relaxed. The challenge and the limitations of using self-

reported and biomarker measurements in a Bayesian framework were illustrated and discussed.

2 Statistical Methods

2.1 The EPIC data

EPIC is a large scale cohort study aimed at investigating the relationships between lifestyle

factors and risk of cancer, and other disease outcome and overall mortality. Its recruitment

procedures, collection of questionnaire data, anthropometric measurements, and blood samples

have been described in detail elsewhere [27]. In short, information on dietary and other lifestyle

factors was collected between 1992 and 2000 from 519,978 study participants in 10 countries

across Europe. Blood samples from 385,747 participants were collected at recruitment according

to a standardized protocol, and subsequently stored in liquid nitrogen tanks at the International

Agency for Research on Cancer (IARC), Lyon, France, at -196◦C. Information on habitual dietary

intakes was assessed at baseline using dietary questionnaire measurements, Q, developed and

validated in each participating country [27]. In addition, a single 24-HDR interview, R, was

conducted in EPIC to obtain a reference measurement from a subsample (8%) of each cohort

[29]. In contrast to Q, R measurements were highly harmonised across countries using the same

structure and interview procedure and a common computer program (EPIC-SOFT). Data on

anthropometry, physical activity, smoking habits and prevalent chronic conditions were collected

using country-speci�c lifestyle questionnaires.

In this study, the relationship between vitamin-B6 and folate (vitamin-B9) and the risk of

kidney and lung cancer was evaluated by modelling serum biomarker M measurements and self-

reported Q and R assessments of B-vitamins using data available in two EPIC nested case-control

studies [14, 13], and included a total of 2,872 study participants.

The lung cancer study included participants that provided blood samples at recruitment

from 8 participating countries: France, Germany, Greece, Italy, Spain, Sweden, the Netherlands,

United Kingdom [14]. A total of 882 lung cancer cases were selected on the basis of the In-

ternational Classi�cation of Diseases for Oncology, Second Edition (ICD-O-2), and included all

invasive cancers coded as C34. One control per case, matched on country of origin, sex, date of

blood collection (±1 month, relaxed to ±5 months for sets without available controls) and date

of birth (±1 year, or ±5 years), were selected for the analysis.

In the kidney cancer study, 554 renal cell cancer cases were selected, with the ICD-O-2 code

C64.9 [13]. One control was matched to each case according to the same matching criteria as in

the lung cancer study. All biochemical analyses were undertaken in the same laboratory under

the same conditions, at the same time for all cases and controls in the same batches, and were

performed at Bevital A/S (http://www.bevital.no), Bergen, Norway.
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2.2 The Bayesian hierarchical model

Hierarchical models are used to build complex models through the de�nition of simpler condi-

tional independence relationships, for which each variable in the model is conditionally related

to only a few others. In this way, models are generally characterized by the expression of a

marginal model through a sequence of conditional models. The marginal posterior distribution

of model parameters is obtained from the joint posterior distribution, using MCMC sampling

techniques[10, 21].In this way, complex problems are broken down into modular, possibly hi-

erarchical components that have a relatively simple structure, allowing the complex nature of

measurements, in this study dietary and biomarker data, to be accounted for. In extension to the

previous work in EPIC using self-reported dietary assessments only [5] and the seminal work of

Richardson and Gilks on measurement errors in a Bayesian framework [28], the following model

was developed in this study. Let i = 1, . . . , n denote study participants, k = 1, 2 indicate the

two dietary exposures, vitamin-B6 and folate, and p = 1, 2 express the disease outcome, in turn

kidney and lung cancer. The following notation was used for the various quantities involved in

the study:

Qik : dietary questionnaire,

Rik : 24-hour dietary recall,

Mik : dietary biomarker measurement,

Yip : the disease indicator,

Xik : true unknown habitual dietary intake.

While Q measurements assessed dietary intake during the year preceding the participants'

recruitment, and were assumed to provide and estimate of habitual intake, R measurements

provided estimates of dietary intake during the day preceding the interview. They are labour-

intensive and costly to collect, but they are assumed to provide common reference measurements

across country-speci�c dietary data [16]. R measurements were available only on a random

subsample of 8% of the study population. These data were considered missing completely at

random (MCAR). Biomarkers measurements M were de�ned as biochemical indicators of short- or

medium-term dietary intake [23], and were assumed to provide objective assessments of exposure,

as they do not rely on individuals' ability to recall past dietary exposure. For this reason, they

are assumed to be characterized by exposure misclassi�cation with respect to their relationship

with the (unknown) true intake, but errors in biomarker measurements are hypothesized to be

independent from errors in self-reported dietary assessments [15, 4].

All Q, R and M measurements were log transformed to approximate symmetric distribu-

tions. Control of potentially in�uencing factors was performed using the residual method for R

(regressed on age and sex), Q (age, sex and country) and M (age, sex, country, batch, study,

and a composite variable expressing smoking status and intensity) measurements. A Bayesian

hierarchical model was developed through three structural components [19], which entailed the

formulation of an exposure, a measurement error, and a disease model.

2.2.1 The exposure model

True unknown habitual dietary intake (Xik) is not identi�able without making strong assump-

tions about the unbiasedness of the dietary assessment methods. Xik represents the latent factor
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in the hierarchical model. The distribution of true intake was therefore de�ned on an abstract

scale as a bivariate normal distribution Xik ∼ MVN(0,ΣX) where

ΣX =

(
1 ρX

ρX 1

)
. (1)

Hence Xi1 and Xi2 had marginal standard normal distributions and the correlation parameter

ρX allowed for the possibility that the true intakes of vitamin-B6 and folate were correlated.

2.2.2 The measurement error model

The Q, R and M measurements were related to unknown true intakes by the following linear

functional relationships, jointly for vitamin-B6 and folate, as

Qik = αQik
+ βQik

·Xik + ϵQik

Rik = αRik
+ βRik

·Xik + ϵRik

Mik = αMik
+ βMik

·Xik + ϵMik

(2)

The coe�cients α and β in equation (2) expressed constant and proportional scaling biases,

respectively [16], while the ϵ terms modelled the random measurement errors in Qik, Rik and

Mik, and were assumed to be uncorrelated with the true level, Xik [15, 6].

We assumed that the error terms were unbiased E(ϵQik
| Xik) = E(ϵRik

| Xik) = E(ϵMik
|

Xik) = 0 and homoskedastic V ar(ϵQik
) = σ2

ϵQk
, V ar(ϵRik

) = σ2
ϵRk

, V ar(ϵMik
) = σ2

ϵMk
. A strong

assumption in model (2) was that αQik
, αRik

, αMik
= 0, indicating that there were no intercept

parameters, since the measurements (Q,R,M) were already centered by applying the residual

method on them.

Equation (2) also assumes a non-zero error correlations between self-reported dietary mea-

surements, Q and R, for ∀k, j = 1, 2, as also assumed in equation 2, implying

Cov(ϵQik
, ϵRik

) ̸= 0,Cov(ϵRik
, ϵRij ) ̸= 0,Cov(ϵQik

, ϵQij ) ̸= 0 (3)

while it was assumed that errors in vitamin-B6 and folate M measurements for were mutually

uncorrelated and uncorrelated with errors in Q and R measurements, as

Cov(ϵMik
, ϵMij ) = 0,Cov(ϵMik

, ϵRij ) = 0,Cov(ϵMik
, ϵQij ) = 0. (4)

A unique vector of measurements, Diet = (Qik, Rik,Mik), was modelled with the assumption

that

ϵDietik
∼ MVN (0,ΣϵDiet

) (5)

where ΣϵDiet
was a 6×6 matrix modelled with prior distributions detailed in section 2.3.1. Under

the MCAR assumption, missing data in R measurements were handled in MCMC, sampling from

the full conditional distribution, given available Q and M measurements at each iteration. The

full conditional distribution can be derived from equations (2) and (5). The facility to sample

from partly observed multivariate normal distributions was added as a new feature to JAGS [21]

in response to this requirement.
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2.2.3 The disease model

The probability πip of participant i to develop disease p, in turn kidney and lung cancer, was

related to latent estimates of vitamin-B6 (Xi1) and folate (Xi2) in analyses that accounted for

the study-speci�c matched design, and adjustment for BMI (continuous) and smoking status

(categorical: never, former, current, unknown), denoted by Zip, as

πip = P (Yip = 1 | Xi1, Xi2,Zip)

= H
(
γ1pXi1 + γ2pXi2 + γT

3pZip

)
where H indicated the logistic function. The πip terms were summed up all individuals in the

same case-control stratum Si, as

πip =
exp

(
γ1pXi1 + γ2pXi2 + γT

3pZip

)
∑

j∈Si exp
(
γ1pXj1 + γ2pXj2 + γT

3pZjp

)
.

SinceXi1 andXi2 had marginal standard deviation of 1 according to equation (1), the parameters

γ1 and γ2 correspond to a log relative risk for one standard deviation change in true intake since

X has unitary variance as speci�ed in (1).

2.3 Implementation and validation of the Bayesian model

The marginal posterior distribution of model parameters was obtained from the joint posterior

distribution, using MCMC [22]. The Bayesian model was implemented in JAGS [21], a program

for analysis of Bayesian hierarchical models that can be launched through the R Software [26].

In this work, three chains were run simultaneously using initial values for model parameters that

were randomly generated according to normal distributions. After a burn-in of 15,000 iterations

and a thinning of 10, a total of 10,000 samples were generated.

2.3.1 Prior distributions

The following prior distributions were assumed for the model parameters:

Σ−1
ϵDiet

= ΩϵDiet ∼ Wishart
(
DDiet, rDiet

)
;

DDiet =

 2 · s2Q 0 0

0 2 · s2R 0

0 0 2 · s2M

 ;

sQ = sR = sM = 1; rDiet = 8;

A = (αQ, αR, αM ) = (0, 0, 0);

B = (βQ, βR, βM )
i.i.d.∼ N

(
0.01, 1

)
> 0.01;

G = (γ1p, γ2p,γ3p)
i.i.d.∼ N

(
0, 1
)
;

ρX ∼ U(−1, 1).

(6)

For the precision matrix of the Diet vector, representing the error terms for the measurement

error model, an unscaled Wishart prior distribution with scale matrix DDiet and rank rDiet
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was used. The scale matrix has dimension 6 × 6 = m × m due to the bivariate (vitamin�

B6 and folate) measurements for (Q,R,M). It is characterized by a diagonal matrix, were

the o�-diagonal element are null, and the main ones are described by twice the square of a

scale parameter sQ = sR = sM = 1. The importance of the scale parameters for the Wishart

prior distribution, that achieve arbitrarily high noninformativity of all standard deviation and

correlation parameters, is described in [11]. While the rank of the Wishart distribution is set to

8 since the rule of thumb is the m + 1, however in this case was bumped up by 1 to penalize

error correlations near [1,−1].

The vectors A and B refer respectively to the constant and proportional scaling biases. The

�rst one, A, is assigned to zero, since residuals data are used. While for the second one, B,

each of the β priors parameters is bounded away from zero (B > 0.01) to avoid a singularity

(i.e. model collapses so that all observed variation is explained by measurement error). This is

consistent and possible with our prior beliefs, N(0.01, 1), i.e. we believe that these measurements

have a non-zero correlation with true intake. Sensitivity analyses were performed to choose the

right cut-o� point such that no singularity and/or exclusion of plausible values occurs. The

vectors G refer to the γ parameters in the disease model, respectively, for the �true� intake and

the further covariates. The priors for each element in G are weakly informative with a standard

normal distribution N(0.01, 1).

The prior distribution for �true� intake X is bivariate normal with mean zero, unit standard

deviation and correlation ρ, as described in (1). The true intake is unidenti�able so we de�ne it

on an arbitrary scale where its mean and standard deviation are �xed. For this reason, we set

an uniform distribution within the interval (1,−1) on ρX , the correlation between true intakes

of vitamin-B6 and folate.

The choice of the prior distribution is crucial. Initially we used the scaled Inverse-Wishart dis-

tribution as a prior for the variance-covariance matrix of the errors. Assigning hyper-parameters,

i.e. prior scale and degrees of freedom, is straightforward, as they can be interpreted in terms of

the standard deviation of each error component [11].

Assigning hyper-parameters, i.e. prior scale and degrees of freedom, was straightforward,

given the conjugate family of prior distributions. As shown in [11], members of the family pos-

sess the attractive property of all standard deviation and correlation parameters being marginally

non-informative for particular hyper-parameter choices.

However, it was not possible to use the Inverse-Wishart distribution for our measurement-

error model due to identi�ability, which led to over-parameterization and to an unidenti�able

model. Also, a scaled Wishart prior distribution resulted in error variances for any of the measure-

ments to collapse to zero, causing mixing problems. Therefore, a standard Wishart distribution

allowed the identi�ability and the mixing problems to be solved. A non-informative standard

Wishart prior distribution for the elements of the variance-covariance matrix was initially used,

and then we moved to a more informative standard Wishart prior distribution to have more

stable estimates. The hyper-parameters of the Wishart were chosen by conducting sensitivity

analyses, where results were checked in relation to model assumptions, including the linearity of
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the relationships in the measurement error model and the hypothesis of reference measurement

for the 24-hour dietary recall, R.

The �nal hyper-parameters of the standard Wishart, as in (2.3.1), were chosen by applying

the model assumptions (3) and (4) in the symmetry of the variance-covariance matrix and in the

choice of null values for the o�-diagonal elements. Sensitivity analyses were conducted, with small

perturbations of the initial values, to check that results veri�ed the other model assumptions of

the measurement error model (2): the linearity and the reference measurement for the 24-hour

dietary recall, R.

2.3.2 Frequentist analysis

In order to evaluate the identi�ability of model parameters, moment estimators were derived from

the structural equations formulation for speci�c quantities of the exposure and measurement error

model components (Supplementary Material). Given the linear associations in model (2) and

the related assumptions on error variances and covariances, the population covariance matrix

(Σ) of a set of observed variables (Q, R, M) is a function of a set of parameters q = (q1, . . . , qp),

as Σ̂ = Σ(q̂) [1, 2]. In particular, the variance of true exposure was estimated as a function of

the covariance between the biomarkers of the vitamin-B6 and folate, i.e. Cov(Mi1,Mi2), and the

covariance between biomarker and 24-HDR measurements, i.e. Cov(Mi1, Ri1) and Cov(Mi1, Ri2).

The terms were usually very weakly related to each other, especially in the case of one replicate

of R measurements, due to the large within-person variability, as in our study. This observation

calls for the availability of replicates of R measurements in future studies to make data most

informative [20]. Conditional logistic regression models were used to estimate the odds ratio (OR)

and associated 95% con�dence intervals (CI) of, in turn, kidney and lung cancer in relation to

Q and M measurements of vitamin-B6 and folate. Models were minimally adjusted by matching

factors, and also fully adjusted by BMI and smoking status. The comparison with RR estimates

from the Bayesian model allowed the extent of measurement error correction to be evaluated.

In line with Freedman and colleagues [8], principal component scores obtained from Q, R and

M measurements of, in turn, vitamin-B6 and folate were related to the risk of kidney and lung

cancers in conditional logistic models. All analyses were performed in R [26] and JAGS [21].

3 Results

The characteristics of the study population of the kidney and lung cancer nested case-control

studies are shown in Table 1. Our study included 554 and 882 case-control pairs in the kidney and

lung cancer studies, respectively. The correlation coe�cients between Q, R and M measurements

of vitamin-B6 and folate are displayed in Table 2. Values indicate fairly weak level of agreement

overall, not only between biomarker and self-reported measurements (consistently below 0.15),

but also between Q and R measurements (consistently below 0.25).

Estimates from the exposure model are reported in Table 3, for the observed measurements

(i.e., Q, R and M) and the latent factors (X) of vitamin-B6 and folate. After log-transformation

and computation of residuals, the standard deviations (σ) were larger for R measurements, 0.452

and 0.487, than Q measurements, 0.290 and 0.314, for vitamin-B6 and folate measurements
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Table 1: Characteristics of the study population in the EPIC kidney and lung cancer nested

case-control studies.

Kidney cancer Lung cancer

Cases Controls Cases Controls

Sample Size 554 554 882 882

Sex

Men 308 (55.6%) 308 (55.6%) 548 (62.1%) 548 (62.1%)

Women 246 (44.4%) 246 (44.4%) 334 (37.9%) 334 (37.9%)

Smoking status

Never 225 (40.6%) 244 (44.0%) 96 (10.9%) 327 (37.0%)

Former 160 (28.9%) 179 (32.3%) 256 (29.0%) 351 (39.8%)

Current 164 (29.6%) 128 (23.1%) 523 (59.3%) 193 (21.9%)

Unknown 5 (0.9%) 3 (0.5%) 7 (0.8%) 11 (1.3%)

Alcohol intake

Never 37 (6.7%) 22 (4.0%) 34 (3.9%) 42 (4.8%)

Ever 460 (83.0%) 474 (86.5%) 732 (83%) 733 (83.1%)

Unknown 57 (10.3%) 58 (10.5%) 116 (13.1%) 107 (12.1%)

Alcohol, g/day (Q) 7.41 (3.9) 8.3 (3.7) 8.1 (4.4) 7.8 (3.8)

Age 56.52 (7.5) 56.5 (7.5) 58.1 (8.5) 58.1 (8.5)

BMI 27.4 (4.3) 26.5 (4.1) 26.0 (4.0) 26.5 (4.0)

Vitamin B6, g/day (Q) 2.9 (1.2) 2.9 (1.2) 2.9 (1.3) 2.9 (1.2)

Vitamin B6, g/day (R) 2.7 (1.3) 2.5 (1.3) 2.7 (1.4) 2.8 (1.3)

Vitamin B6, nmol/L (M) 32.8 (1.8) 38.7 (1.8) 34.2 (1.8) 42.7 (1.8)

Folate, g/day (Q) 276.6 (1.4) 281.1 (1.4) 281.8 (1.5) 291.3 (1.4)

Folate, g/day (R) 257.5 (1.6) 222.3 (1.6) 236.2 (1.6) 250.4 (1.7)

Folate, nmol/L (M) 12.7 (1.8) 13.3 (1.7) 14.0 (1.6) 16.3 (1.8)

1 Mean and standard deviation; 2 Geometric mean and and standard deviation

respectively, likely re�ecting large within-person variability of one replicate of R measurements

compared to Q assessments. The standard deviation of M measurements was 0.594 for vitamin-

B6 and 0.530 for folate.

Estimates of the measurement error model are presented in Table 4. For vitamin-B6 error

terms are particularly large for M measurements (0.213, 95%CI: 0.182�0.242) than R (0.065,

95%CI 0.054�0.078) and Q (0.033, 95%CI 0.031�0.035) measurements. Error terms for folate
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intake are more comparable across the three types of assessment. Error correlations between

vitamin-B6 and folate were particularly large for Q than R measurements, while independence

of errors was assumed between the two biomarkers.

Parameter estimates obtained in the disease model are shown in Tables 5 and 6. Estimates

express, in turn, kidney and lung cancer relative risk (RR) associated to a change of one standard

deviation (1-SD) of vitamin-B6 and folate Q and M measurements, and the latent factors X.

For kidney cancer, no association was observed for Q measurements, while M measurements of

vitamin-B6 were inversely related to the risk, with RR equal to 0.77 (95% CI: 0.67, 0.88). For lung

cancer and lung cancer (0.77, 95%CI 0.67�0.88), and M measurements of folate were inversely

related to the risk of lung cancer (). After measurement error correction, and adjustment for

BMI and smoking history, X measurements of vitamin-B6 and folate intakes were not associated

with the risk of, in turn, kidney and lung cancer.

The principal component scores of vitamin-B6 were borderline inversely related to the risk

of kidney cancer (RR=0.88, 95% CI: 0.77, 1.00) and lung cancer (RR=0.88, 95% CI: 0.78, 1.00),

while no association was observed for folate.

Table 2: Observed correlation coe�cients, ρ̂, between Q, R and M measurements for vitamin-B6

and folate intakes.

Vitamin-B6 Folate

Q1 R1 M1 Q2 R2 M2

Q1 1

Vitamin-B6 R1 0.222 1

M1 0.132 0.113 1

Q2 0.856 0.180 0.072 1

Folate R2 0.182 0.644 0.150 0.221 1

M2 0.100 0.087 0.319 0.101 0.194 1

Table 3: Observed standard deviation terms, σ̂, between Q, R and M measurements for vitamin-

B6 and folate intakes.

Vitamin-B6 Folate

σ̂ σ̂

Q 0.186 0.313

R 0.277 0.479

M 0.474 0.423
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Table 4: Measurement error model: estimated error variance (σ2
ϵ ) and correlation (ρϵ) terms for

Q, R and M measurements.

Vitamin-B6 Folate

σ̂2
ϵ (95% CI1) σ̂2

ϵ (95% CI1) ρ̂ϵ

Q 0.035 (0.033, 0.037) 0.098 (0.092, 0.103) 0.804

R 0.077 (0.064, 0.091) 0.229 (0.181, 0.278) 0.589

M 0.224 (0.126, 0.305) 0.179 (0.122, 0.222) 0

1Credible Intervals

Table 5: Disease model: relative risk (R̂Rk = exp(γ̂k)) estimates for kidney cancer associated to

a 1-SD increase in exposure.

Vitamin-B6 Folate

R̂R1 (95% CI1) R̂R2 (95% CI1)

Q 1.08 (0.84, 1.38) 0.90 (0.71, 1.15)

R - - - -

M 0.77 (0.67, 0.89) 0.99 (0.84, 1.07)

X 0.59 (0.21, 1.15) 1.01 (0.47, 2.66)

1Credible Intervals; X∗ = Principal component scores

Table 6: Disease model: relative risk (R̂Rk = exp(γ̂k)) estimates for lung cancer associated to a

1-SD increase in exposure.

Vitamin-B6 Folate

R̂R1 (95% CI1) R̂R2 (95% CI1)

Q 1.03 (0.81, 1.32) 0.93 (0.81, 1.32)

R - - - -

M 0.76 (0.67, 0.88) 0.87 (0.76, 0.99)

X 0.71 (0.21, 2.33) 0.42 (0.12, 1.25)

4 Discussion

In epidemiological studies evaluating the relationship between disease risk and exposure a�ected

by measurement errors, Bayesian models o�er �exible opportunities to handle complex data

structure, for example integrating information from self-reported assessments and biomarker

concentrating levels together with disease indicators, thus combining features of validation and

risk models in a single analytical framework [28]. In the EPIC study, a Bayesian latent factor

hierarchical model extended previous work [5] to evaluate the relationships between vitamin-B6
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and folate intakes with risk of, in turn, kidney and lung cancers. Within the model, the mea-

surement error structure of all observed quantities was investigated, including error correlations

in self-reported assessments, and the variability of true intakes was estimated. The model also

included an etiological component to estimate the association between dietary exposures and

risk of disease.

Dietary biomarkers have become increasingly popular because they can provide information

about nutrients' bioavailability, de�ned as the available e�ective internal dose after absorption

and metabolism [12]. Two classes of dietary biomarkers can be distinguished. First, biomarker

based on the metabolic balance between intake and excretion of speci�c chemical components,

i.e. the percent recovery of the compound or its metabolites in excretion products, mostly in

urinary samples, over a �xed period of time [17]. They are de�ned recovery biomarkers, and they

provide estimates of absolute intakes. It is customarily assumed that the classical measurement

error model applies, as Mi = Ti + ϵM . The list of recovery biomarkers is very limited, i.e. the

doubly labelled water collected in urines to estimate absolute levels of total energy intake, urinary

nitrogen and urinary potassium for dietary protein and potassium, respectively [12]. The second

class of biomarkers are measured as concentration of speci�c compounds in biological �uids [17],

and are known as concentration markers. They do not have the same quantitative relationship

with dietary intake levels for each study participants, and they cannot be translated into absolute

levels of intake [12].

In this study, concentration biomarkers were modelled with dietary assessments, thus allow-

ing for components of random (ϵM ) systematic errors (αM and βM , constant and proportional

scaling bias, respectively) in Model (2) [15]. These terms capture analytical variation and tech-

nical errors. The combined use of self-reported dietary assessments and objective biomarker

measurements in etiological models has been the object of research. Freedman and colleagues

developed relevant work hypothesizing a relationship between true dietary intake (TDI) as a

determinant of true biomarker level (TBL) [8]. Reported dietary intake and measured (concen-

tration or recovery) biomarker levels were linearly related, respectively, to TDI and TBL, under

the assumption of independent and non-di�erential (to disease status) error structure. The Au-

thors advocate the use of feeding studies to quantify the relationship between TDI and TBL. In

the same study, the use of principal component analysis for self-reported and biomarker mea-

surements was suggested as a good strategy to model biomarker and dietary data jointly. In our

work, the principal component score of vitamin-B6 provided an inverse borderline statistically

signi�cant association for, in turn, kidney and lung cancer.

Our study had several limitations. First, linear relationships in the measurement error model

were linking self-reported and objective (log-transformed) measurements to unknown true in-

take in the equations of measurement error model (2). Second, the error model relied on the

assumption that R provided reference measurements, an assumption that was shown to be weak

in validation studies that used recovery biomarkers as reference assessments ([18]). Nevertheless

our model included terms to incorporate components of systematic errors such as error correla-

tion between self-reported assessments. Third, R measurements were available by design only

in the 8% of the study population [29], i.e. for study participants that were part of the EPIC

calibration study. Although MCMC was technically handling missing data, this represents a

sizeable loss of information. Also, only one replicate of R measurements per participant was
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available, thus resulting in large variability attributable to within-person variation. Future ap-

plications on the model developed in this study should include more informative sets of data,

with several replicates of the reference measurements R, possibly available on the totality of

study participants.

Within this study, the time distance between the assessment of dietary measurements and

the collection of biological samples was evaluated. The consistency of correlation values between

Q and R measurements were evaluated, when dietary and biological measurements were collected

within one month, 6 months or within one year. Overall this evaluation showed marginal impact

of time on the stability of correlation estimates, a results at least partly attributable to the

nature of dietary components investigated in this work. It is likely that the intakes of dietary

sources of vitamin-B6 and folate were fairly stable within study participants' habitual diet.

Overall, the results of this study suggested that vitamin-B6 and folate were not associated

to the risk of, in turn, kidney and lung cancer, after accounting for the error structure of all

measurements involved in the estimation process. This evidence was not consistent with previous

observations reporting that biomarker measurements of these B-vitamins were associated to the

risk of developing kidney [13] and lung cancer [14]. Other than the limitations already discussed,

the lack of relationships assessed in this study could be due to the particularly challenging setting

of this study. Despite self-reported dietary and blood measurements of vitamin-B6 and folate

are supposed to quantify the same intake, in practice they estimate di�erent dietary quantities.

As a result, by imposing a common relational structure among Q, R and M measurements

around unknown true intake, the level of uncertainty outweighs the strength of the signal in the

relationship between exposure and risk of cancer. In line with [8], future extensions of our work

could relax the assumption of a unique common latent structure for Q, R and M measurements,

and rather adopt a more realistic model, where TDI is related to Q, and TBL is related to M

through the classical measurement error model. External information on the link between TDI

and TBL from feeding or functional studies could be fairly easily incorporated in the model.

Bayesian modelling lends itself as a powerful, and its implementation requires speci�c knowl-

edge due to the complex mathematical theory. In the last 30 years, MCMC sampling techniques

have transformed Bayesian statistical inference, allowing Bayesian statistical methods to become

widely used for data analysis and modelling [10]. MCMC allows approximate Bayesian inference

by drawing a sequence of random samples from the posterior distribution of the parameters,

the target of Bayesian inference. It is a computationally intensive method, but the growth in

computing power has led its routine application to increasingly large and complex problems. At

the same time, continuing theoretical developments have produced sophisticated and e�cient

sampling methods. In this study, the computing time was 6 hours for one Bayesian model to run

with a PC Intel(R) Core i5, CPU 2.40GHz, 8 GB RAM. The model had three chains, a burn-in

of 15,000 iterations, an adaptation of 10,000, and �nal estimates were based on 20,000, with thin

equal to 10. PF: Martyn, how do these numbers look like? Move some of these details to the

Methods? The JAGS package [21] was used in this study, and the R package coda [22] helped

evaluate the mixing of MCMC chains and the convergence of posterior distributions. Both visual

and statistical criteria were used with the Gelman and Geweke diagnostics [3].

This project triggered some relevant developmental work in the JAGS software, some of which

will be incorporated into future releases. As JAGS is general-purpose software for Bayesian
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modelling and is freely distributed under the terms of the GNU General Public License (GPL),

these advances will be available to implement future use of this methodology with other dietary

and biomarker variables, possibly displaying larger levels of agreement across di�erent types of

assessment, speci�cally and primarily in terms of Pearson correlation coe�cients. In this respect,

the growing interest towards biomarkery discovery, for example using metabolomics data (PMID:

28122782), could create novel opportunities to apply this model new sets of data.
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Appendix A

Speci�cally, the bivariate model equations for the measurement error model reported in detail

are:

V ar(M1) = β2
M1

σ2
T1

+ σ2
ϵM1

(7)

V ar(Q1) = β2
Q1

σ2
T1

+ σ2
ϵQ1

(8)

V ar(R1) = σ2
T1

+ σ2
ϵR1

(9)

Cov(M1, R1) = βM1σ
2
T1

(10)

Cov(M1, Q1) = βQ1βM1σ
2
T1

(11)

Cov(R1, Q1) = βQ1σ
2
T1

+ σϵR1
,ϵQ1

(12)

Cov(M1,M2) = βM1βM2σT1,T2 (13)

Cov(M1, R2) = βM1σT1,T2 (14)

Cov(M1, Q2) = βM1βQ2σT1,T2 (15)

Cov(M2, R1) = βM2σT1,T2 (16)

Cov(M2, Q1) = βM2βQ1σT1,T2 (17)

Cov(R1, R2) = σT1,T2 + σϵR1,ϵR2 (18)

Cov(R1, Q2) = βQ2σT1,T2 + σϵR1
,ϵQ2

(19)

Cov(R2, Q1) = βQ1σT1,T2 + σϵR2
,ϵQ1

(20)

Cov(Q1, Q2) = βQ1βQ2σT1,T2 + σϵQ1
,ϵQ2

(21)

V ar(M2) = β2
M2

σ2
T2

+ σ2
ϵM2

(22)

V ar(R2) = σ2
T2

+ σ2
ϵR2

(23)

V ar(Q2) = β2
Q2

σ2
T2

+ σ2
ϵQ2

(24)

Cov(M2, R2) = βM2σ
2
T2

(25)

Cov(M2, Q2) = βM2βQ2σ
2
T2

(26)

Cov(R2, Q2) = βQ2σ
2
T2

+ σϵR2
,ϵQ2

(27)

We have, in total, 21 equations and 19 parameters to estimate:

βM1 , βM2 , βQ1 , βQ2 , 4β parameters;

σ2
T1
, σ2

T2
, σ2

ϵR1
, σ2

ϵR2
, σ2

ϵQ1
, σ2

ϵQ2
, σ2

ϵM1
, σ2

ϵM2
, 8 variances;

σ2
ϵR1

,ϵQ1
, σ2

ϵR1
,ϵR2

, σ2
ϵR1

,ϵQ2
, σ2

ϵQ1
,ϵQ2

, σ2
ϵR2

,ϵQ2
, σ2

ϵR2
,ϵQ1

, σ2
T1,T2

, 7 covariances.

From (13) and (16), we have

β̂M1 =
Cov(M1,M2)

Cov(M2, R1)
(28)

From (13) and (14), we have

β̂M2 =
Cov(M1,M2)

Cov(M1, R2)
(29)
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From (10) and (28), we get:

σ̂2
T1

= Cov(M1, R1) ·
Cov(M2, R1)

Cov(M1,M2)
(30)

From (25) and (29), we get:

σ̂2
T2

= Cov(M2, R2) ·
Cov(M1, R2)

Cov(M1,M2)
(31)

From the combinations of (10) and (11) with (17) and (16), we get:

β̂Q1 =

[
Cov(M1,Q1)
Cov(M1,R1)

+ Cov(M2,Q1)
Cov(M2,R1)

]
2

(32)

From the combinations of (14) and (15) with (25) and (26), we get:

β̂Q2 =

[
Cov(M2,Q2)
Cov(M2,R2)

+ Cov(M1,Q2)
Cov(M1,R2)

]
2

(33)

Using the expressions of (28), (29), (32) and (33), we get the covariance estimate between

the two intakes. Hence, starting from (14), (17), (13), (15), (16):

σ̂T1,T2 =

[
Cov(M2,R1)

β̂M2

+ Cov(M2,Q1)

β̂M2
β̂Q1

+ Cov(M1,M2)

β̂M1
β̂M2

+ Cov(M1,R2)

β̂M1

+ Cov(M1,Q2)

β̂M1
β̂Q2

]
5

(34)
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Moreover, in a similar manner as done before, we get the remaining 6 variance estimates

related to Mk, Rk and Qk, where k = 1, 2.

From (7), we have: σ̂2
ϵM1

= V ar(M1)− β̂2
M1

σ̂2
T1
.

From (9), we have: σ̂2
ϵR1

= V ar(R1)− σ̂2
T1
.

From (8), we have: σ̂2
ϵQ1

= V ar(Q1)− β̂2
Q1

σ̂2
T1
.

From (22), we have: σ̂2
ϵM2

= V ar(M2)− β̂2
M2

σ̂2
T2
.

From (23), we have: σ̂2
ϵR2

= V ar(R2)− σ̂2
T2
.

From (24), we have: σ̂2
ϵQ2

= V ar(Q2)− β̂2
Q2

σ̂2
T2
.

We individuated all the 4β parameters, all the 8 variance estimates in total and one covariance

parameter. Only 6 estimates related to the food frequency questionnaires and the 24-hours recall

are missing. Let's try to individuate them.

From (12), we have: σ̂2
ϵR1

,ϵQ1
= Cov(R1, Q1)− β̂Q1 σ̂

2
T1
.

From (27), we have: σ̂2
ϵR2

,ϵQ2
= Cov(R2, Q2)− β̂Q2 σ̂

2
T2
.

From (18), we have: σ̂2
ϵR1

,ϵR2
= Cov(R1, R2)− σ̂2

T1,T2
.

From (19), we have: σ̂2
ϵR1

,ϵQ2
= Cov(R1, Q2)− β̂Q2 σ̂

2
T1,T2

.

From (20), we have: σ̂2
ϵR2

,ϵQ1
= Cov(R2, Q1)− β̂Q1 σ̂

2
T1,T2

.

From (21), we have: σ̂2
ϵQ1

,ϵQ2
= Cov(Q1, Q2)− β̂Q1 β̂Q2 σ̂

2
T1,T2

.

All the 19 parameters have been identi�ed. The bivariate measurement error model with the

aforementioned assumptions is identi�able.
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