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Abstract To understand changes in land surface energy balance partitioning due to tropical
deforestation, we use a physically based analytical formulation of the surface energy balance. Turbulent
heat fluxes are constrained by the thermodynamic maximum power limit and a formulation for diurnal heat
redistribution within the land‐atmosphere system. The derived turbulent fluxes of sensible and latent
heat compare very well to in situ observations for sites with intact rainforest and soybean land cover in
southeastern Amazonia. The equilibrium partitioning into sensible and latent heat flux compares well with
observations for both sites, except for the soybean site during the dry season where water limitation
needs to be explicitly accounted for. Our results show that tropical deforestation primarily affects the
absorption of solar radiation and the water limitation of evapotranspiration, but not the overall magnitude of
turbulent heat fluxes that is set by the thermodynamic maximum power limit.

Plain Language Summary Tropical deforestation impacts the local energy and water exchange
between land surface and atmosphere, typically resulting in regionally warmer and drier climates.
General circulation models still disagree in reproducing these changes and little has been done to derive
them from first principles. Here, we present an alternative approach to describe the effects of tropical land
conversion from forest to soy agriculture, based on a physical theory of land‐atmosphere interactions. We
view land‐atmosphere exchange as the result of a heat engine strongly shaped by turbulent heat exchange.
This provides a framework to derive analytical expressions of the turbulent fluxes from the limit by how
much work this engine can maximally perform. By comparing these with observations from a tropical
rainforest and a soybean field in Amazonia, we find that the diurnal variations of turbulent fluxes are very
well estimated. This means that turbulent land‐atmosphere exchange is primarily constrained by the
thermodynamic limit, irrespective of surface roughness and evapotranspiration, and suggests that one can
estimate the primary impacts of tropical land use change from physical principles. Thus, using
thermodynamic limits represents an alternative approach to investigate the highly complex nature of
land‐atmosphere interactions and global change from first principles.

1. Introduction

Amazonian deforestation has surpassed 700 million km2 and substantially changed the surface energy bal-
ance, with important implications for the local and regional climate (e.g., D'Almeida et al., 2007; Gash &
Nobre, 1997; Lawrence & Vandecar, 2015; Nobre et al., 1991). As deep‐rooted forests are converted into
shallow‐rooted crops and pasturelands, surface albedo increase (Gash & Shuttleworth, 1991), aerodynamic
surface roughness decreases, and access to soil water becomes limited (Kleidon & Heimann, 2000; Nepstad
et al., 1994). Because of these changes, deforested areas typically evaporate less and are much warmer (see,
e.g., review by D'Almeida et al., 2007).

Althoughmany land surface models can reproduce changes in the regional surface energy balance caused by
Amazonian deforestation (Lawrence & Vandecar, 2015), there is still a major need to describe such changes
from first principles. Filling this knowledge gap would reduce the need for complex numerical simulation
models and providemethods to derive first‐order approximations of deforestation‐related effects on land sur-
face functioning and the water budget. Amajor difficulty in doing so is that calculations of the turbulent heat
fluxes in the surface energy balance seemingly depend on several meteorological variables, such as wind
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speed, atmospheric stability, temperature, and moisture gradients. One approach to address this challenge is
to use thermodynamic principles to constrain the magnitude of turbulent fluxes and thus provide an esti-
mate of them.

To constrain turbulent heat fluxes using thermodynamics, we view these fluxes as both the driver and the
result of an atmospheric heat engine operating between the warm surface and the cold atmosphere.
Assuming that this engine operates at its thermodynamic limit, we can then constrain the magnitude
of turbulent heat fluxes, yielding an analytic formulation of the surface energy balance. Previous applica-
tions of this thermodynamic framework were shown to provide reasonable estimates of the surface energy
and water balance across different climates (Kleidon et al., 2014) and the sensitivities of the hydrological
cycle and the land‐ocean temperature contrast to global warming (Kleidon & Renner, 2013; Kleidon &
Renner, 2017).

Here, we employ this thermodynamic approach to quantify differences in the surface energy balance
between a tropical rainforest and a soybean field, one of the most common land uses in southeastern
Amazonia. We use observations of the surface energy balance at two eddy flux sites at the Tanguro Ranch
(Balch et al., 2008; Nagy et al., 2018; Silvério et al., 2013). We focus the evaluation particularly on the mean
diurnal cycle during 1 month of the wet and dry season, respectively, using a recent extension of the thermo-
dynamic approach that accounts for diurnal variations in the surface fluxes (Kleidon, 2016; Kleidon &
Renner, 2018). We use observed solar radiation as the primary forcing and predict the turbulent heat fluxes,
which we then compare to observed net radiation at both sites. We further test the extent to which variations
in longwave emissivity of the atmosphere alter the estimates between the dry and the wet season, and
evaluate how well the sensible and latent heat flux can be derived from the estimated turbulent heat flux.
With this we aim to test how well this approach can capture surface energy balance partitioning for these
very different tropical land cover types.

In the following, we first provide a brief description of the thermodynamic approach and an extension to a
more detailed treatment of longwave radiation, and the observations we use at the two sites (details on
experimental setting and theoretical derivations are provided in the supporting information). The analysis
of the results focuses on the predicted diurnal cycles. We then evaluate the role of longwave radiation as well
as differences in the greenhouse effect during wet and dry season on the predicted turbulent heat fluxes. The
main effects of land cover change are then discussed in the context of previous studies. We close with an
outlook on potential future extensions of the thermodynamic approach and the utility of the approach in
understanding the climatic effects of land cover change.

2. Materials and Methods
2.1. Turbulent Fluxes From Thermodynamics

We estimate turbulent heat fluxes from the absorbed solar radiation at the surface (Rs) using a combination
of the thermodynamic limit for a heat engine, the surface energy balance, a parameterization for longwave
radiation, and the energy balance of the whole surface‐atmosphere system (Kleidon, 2016; Kleidon &
Renner, 2018). The thermodynamic limit is used to determine the maximum in mechanical power that
can be derived from the turbulent heat fluxes (J = H+LE), that is, the sum of the sensible (H) and latent
(LE) heat flux (with L being the latent heat of vaporization and E being evapotranspiration). The maximiza-
tion requires an expression for surface temperature (Ts) as greater turbulent heat fluxes result in cooler sur-
face temperatures. This relationship is obtained from the surface energy balance and a parameterization of
longwave radiation at the surface. For the thermodynamic limit, we use a formulation that considers the
strong diurnal variations of heat content in the lower atmosphere during the day (Kleidon & Renner, 2018).

The maximization of power yields the following analytic expression for the optimum turbulent heat flux in
the surface energy balance:

Jopt ¼ 1
2

Rs−Rl;0 τð Þ− dUs

dt
þ dUa

dt

� �
; (1)

where Rs is is the absorbed solar radiation at the surface, Rl,0(τ) = Rl,toa − Rl,d is a constant from the parame-
terization of net longwave radiation that decreases with the optical depth of the atmosphere, τ, dUs

dt is the
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change in the surface heat storage, and dUa
dt is the heat storage change in the lower atmosphere (inferred

from the daily variation of solar radiation). A more extensive treatment of the approach with derivation
of equation (1) is provided in S1 of the supporting information.

We then infer the sensible and latent heat fluxes as in Kleidon et al. (2014) using the equilibrium partitioning
(Penman, 1948; Priestley & Taylor, 1972; Schmidt, 1915)

Hopt ¼ γ
γ þ s

Jopt; (2)

LEopt ¼ s
γ þ s

Jopt; (3)

where γ is the psychrometric constant and s is the slope of the saturation vapor pressure curve. Note that
equation (3) describes conditions in which soil water availability does not limit evapotranspiration. To
account for water limitation, we introduce a factor (fw) to reduce the latent heat flux (with 0 ≤ fw ≤ 1) and
then apply this correction to the partitioning: LEopt,limit= fwLEopt andHopt,limit= Jopt− LEopt,limit. We assume
that the magnitude of turbulent fluxes, as set by the maximum power limit, is not affected, so Jopt,limit = Jopt.

2.2. Field Sites

We use observations from an intact broadleaf evergreen transitional rainforest between Amazonia and
Cerrado and a soybean site at the southeastern Amazonian agricultural frontier, a region that experienced
large‐scale deforestation in the 1970s, with cattle pastures being converted to soybean fields since the early
2000s (Silvério et al., 2013). Data on energy and water fluxes come from two eddy covariance flux towers
placed in intact forest and soybean fields roughly a kilometer apart. The towers are located at the Tanguro
Ranch, Mato Grosso, Brazil (13°04′35.39″S, 52°23′08.85″W) at an elevation of 380 m above sea level. The
mean annual temperature of the region is 25 °C and the annual precipitation is about 1,770 mm per year
(Rocha et al., 2014). This region is subject to highly seasonal rainfall, with precipitation during the dry sea-
son being less than 10 mm per month fromMay to August. The soybeans are generally planted in October or
November and harvested in March or April. During the noncropping season, fields were bare or had a sparse
cover crop of millet. Further details on the sites are provided in Balch et al. (2008), Silvério et al. (2013), Nagy
et al. (2018), and S2 of the supporting information.

2.3. Data Analysis

We focused our analysis on the mean diurnal cycle of 2 months of June 2016 (dry season) and January 2017
(wet season) at time intervals of 30 min. The estimate of the optimum turbulent heat flux (equation (1))

requires information about surface absorption of solar radiation (Rs, from which dUa
dt is derived, equation

S5 in S1 of the supporting information), the ground heat flux (dUs
dt ) and the value of Rl,0(τ) derived from

the parametrization of longwave radiative transfer. For the first two variables, we directly use the observed
quantities. We estimate the value of Rl,0(τ), and τ, using an expression for the atmospheric emissivity from
Brutsaert (1975) that depends on observations of near‐surface air temperature (Ta) and water vapor pressure
(ea) (details in S1 of the supporting information). We set a value of Tr = 268 ± 17°K (details in S2 of the
supporting information). This parametrization of longwave radiation captures the seasonal variations in
the greenhouse effect due to changes in emissivity (denoted as “derived optical thickness” estimate, see

Table 1). For comparison, we also estimate the turbulent heat flux J′opt ¼ 1
2 Rs−

dUs
dt þ dUa

dt

� �
without varia-

tions in τ (i.e., Rl,0(τ) = 0 with τ = 4/3, denoted as “fixed optical thickness” estimate). A more extensive
description of the parameterization of longwave radiation is provided in S1 of the supporting information.

To estimate the sensible and latent heat fluxes we use equations (2) and (3) with a value of γ= 65 Pa K−1. We

derived the skin temperature from surface longwave emission (Rl,up), Ts ¼ Rl;up

σ

� �1
4
, and calculated the slope

of the saturation vapor pressure curve, s, using the expression of Bohren and Albrecht (1998). We estimated
the water limitation factor by comparing the observed latent heat flux, LEobs, with the optimum latent heat
flux (equation (3)), fw = LEobs/LEopt and applied this to our expressions as described above.
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We evaluated the agreement between the estimated and observed fluxes by means of ordinary least square
regression. An ideal agreement is described by a correlation coefficient of r2 = 1, a slope of 1 and an intercept
of zero. We only consider daytime values of the fluxes in the statistics to avoid a nighttime bias when con-
vection is not generated by buoyancy due to the lack of heating by solar radiation.

3. Results and Discussion

Overall, the turbulent heat fluxes estimated from our thermodynamic approach reproduce observations for
the forest and soybean sites very well (see Figure 1 and Table 2). Figure 1 compares the mean diurnal

Table 1
Monthly Mean Forcing Variables for Each Site and Season

Forcing variables

Dry season (June 2016) Wet season (January 2017)

Forest Soybeans Forest Soybeans

Observed net shortwave absorption at the surface Rs,avg(W/m2) 181 ± 51 192 ± 51 223 ± 46 227 ± 51
Observed 2 m‐air temperature Ta(K) 301 ± 2 299 ± 1 300 ± 1 299 ± 1
Observed 2 m‐air water vapor pressure ea(hPa) 21 ± 4 20 ± 3 29 ± 1 29 ± 1
Derived long wave optical thickness τ 2.20 ± 0.10 2.13 ± 0.08 2.27 ± 0.04 2.25 ± 0.03
Estimated longwave downwelling radiation a Rl,d(W/m2) 412 ± 20 395 ± 15 425 ± 6 421 ± 5
Observed longwave downwelling radiation Rl,d,obs(W/m2) 389 ± 16 400 ± 13 414 ± 7 422 ± 5
Estimated longwave radiative cooling b Rl,toa(W/m2) 292 ± 19
Estimated radiation parameter Rl,0(W/m2) c −110 ± 20 −93 ± 15 −124 ± 6 −119 ± 18
Estimated water limitation factor fw

d 1.3 ± 0.1 1.1 ± 0.2 0.2 ± 0.1 1.2 ± 0.1

aRl;d ¼ 3
4 τσT

4
r .

bRl;toa ¼ σT4
r .

cRl,0 = Rl,toa − Rl,d. Derivations in S1 of the supporting information. dEstimation in S2 of the supporting information.

Figure 1. Estimated and observed surface energy balance partitioning for the rainforest and soybean sites for 1 month in the dry and wet season. The top row
(a–d) shows the observations of the absorbed solar radiation at the surface (Rs, red), net long wave radiation (Rl,net, blue), the ground heat flux (

dUs
dt , gray), turbulent

heat fluxes (Rnet− G, circles), and the two estimates of turbulent heat fluxes from the maximum power limit with derived (Jopt, black) and fixed (J′opt, cyan) optical
thicknesses. The bottom row (e–h) shows scatter plots between the estimated turbulent heat fluxes (Jopt, derived (black) and fixed (cyan)) against observations
(Rnet − G). Nighttime values are not shown in the scatterplots.
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variation of the turbulent fluxes together with the other observed surface energy balance components.
Correlation coefficients and slopes are generally close to one for both sites and seasons (Table 2). We find,
however, that the turbulent heat flux is somewhat overestimated during the dry season for the soybean site
by about 12%. This bias is likely to be related to the greater transparency of the atmosphere, which could be
dealt with by a more detailed parameterization of radiative transfer. From this agreement we can neverthe-
less conclude that turbulent fluxes appear to operate near their thermodynamic limit and can be estimated
from our approach.

Variations in the longwave optical depth affect primarily the intercept in the linear regression but do not

alter the slope and correlation coefficient. The fixed optical thickness estimate results in offsets of about 33:5

−38:8 W
m2 in the dry season and a greater offset of 73:9−79:6 W

m2 during the wet season (Table 2). This

comparatively uniform offset can be understood directly by our expression for the optimum turbulent heat

flux (equation (1)). There, the optical thickness affects Rl,0(τ) which adds a constant offset to Jopt that is
independent of the instantaneous solar forcing. When the variations in atmospheric emissivity are
accounted for using the parameterization of Brutsaert (1975) and by estimating the radiative temperature

of the atmosphere, then the offsets are considerably reduced in magnitude to 13:20−26:30 W
m2 (dry season)

and −6:84−−14:63 W
m2 (wet season), respectively. We find that in this parameterization, it is particularly

the variation in water vapor pressure between June (about 20 hPa for both sites, Table 1) and January (about
29 hPa for both sites, Table 1) that accounts for most of this variation in optical thickness. What this implies
is that although variations in longwave radiation affect the turbulent heat flux to some extent, their overall
effect on diurnal variations is comparatively minor.

Figure 2 compares the sensible and latent heat fluxes derived from the optimum turbulent heat fluxes using
equations (2) and (3) with observations. The agreement is, again, very good, except in few cases for the soy-
bean site. Correlation coefficients are above 95% for the latent heat flux, and a somewhat poorer correlation
for the sensible heat flux (Table 2). The slope of the latent heat flux is near one, while it appears that the sen-
sible heat flux is somewhat underestimated. Water limitation only plays an important role during the dry
season at the soybean site, with an estimated limitation factor fw ≈ 0.2 derived from observations (see S2
of the supporting information). The reduced latent heat flux is then compensated for by a higher sensible
heat flux. For the rainforest site in both seasons and for the soybean site in the wet season, the estimated lim-
itation factor is fw ≈ 1, so that water limitation did not play a major role in shaping the latent heat flux. This
means that one of the major differences between the rainforest and soybean sites is soil water availability
associated with deep‐rooted tropical rainforests, an aspect that is well recognized to play an important role
in land cover changes in Amazonia (e.g., Kleidon & Heimann, 2000; Nepstad et al., 1994). What our analysis
also shows is that water availability change due to land cover change mainly affects the partitioning of tur-
bulent heat fluxes into sensible and latent heat, but not the overall magnitude of turbulent heat fluxes that is

Table 2
Ordinary Least Squares Regression Statistics for the Turbulent Heat Fluxes

Dry season (June 2016) Wet season (January 2017)

Turbulent heat fluxes
Intercept
(W/m2) Slope (−) r2 (−)

NRMSE
(%)

Intercept
(W/m2) Slope (−) r2 (−)

NRMSE
(%)

Forest
Turbulent fluxes J′opt (fixed optical thickness) −34.02 ± 1.27 1.03 ± 0.01 0.99 2 −73.89 ± 1.14 1.01 ± 0.01 1.00 2
Turbulent fluxes Jopt (derived optical thickness) 26.30 ± 1.58 1.02 ± 0.01 0.99 2 −6.84 ± 1.23 1.01 ± 0.01 1.00 2
Latent heat flux LEopt −4.37 ± 5.96 0.97 ± 0.02 0.96 6 −19.06 ± 4.61 1.02 ± 0.01 0.98 4
Sensible heat flux Hopt 54.52 ± 2.97 0.57 ± 0.05 0.51 18 29.42 ± 3.46 0.70 ± 0.04 0.73 15

Soybeans
Turbulent fluxes J′opt (fixed optical thickness) −38.42 ± 1.27 1.12 ± 0.01 0.99 2 −79.58 ± 1.14 1.03 ± 0.01 0.99 2
Turbulent fluxes Jopt (derived optical thickness) 13.20 ± 1.31 1.12 ± 0.01 0.99 2 −14.63 ± 1.36 1.03 ± 0.01 0.99 2
Latent heat flux LEopt 32.97 ± 3.72 0.38 ± 0.05 0.32 23 −12.02 ± 4.64 0.96 ± 0.01 0.95 6
Sensible heat flux Hopt 17.61 ± 4.65 0.89 ± 0.02 0.94 7 34.38 ± 2.94 0.48 ± 0.04 0.37 19

Note. Statistics are computed from half‐hourly, daytime values of the whole month. NRMSE = normalized root mean square error.
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set by the thermodynamic maximum power limit. A somewhat surprising implication of this finding is that
the substantial difference in surface roughness between the tropical rainforest and soybean sites apparently
has little effect on the magnitude of the turbulent heat fluxes and their partitioning.

While our approach captures the overall differences in surface energy balance partitioning between forest
and cropland sites, it has some limitations. First, we are not yet able to infer changes in surface and air tem-
peratures from our approach. To accomplish this, one would need to explicitly link the heat storage varia-
tions in the lower atmosphere to boundary layer dynamics and to air temperature variations. This,
however, would require additional work. Second, our approach does not apply to the stable nighttime con-
ditions when the absence of surface heating does not generate buoyancy and convection. Currently, our
approach does not consider atmospheric stability explicitly, which could in principle be inferred from sur-
face and air temperatures. Third, we do not account for irreversible losses associated with evaporation
and other transient effects that affect the power available for convection. Dissipation due to the evaporation
into unsaturated air reduces the total power available for turbulent exchange and this may alter the outcome
of the maximization. In principle, a fully thermodynamic description of the soil‐vegetation‐atmosphere sys-
tem would help to overcome these limitations. Addressing these aspects would certainly improve model pre-
dictions and have the potential to infer more variables and aspects of land‐atmosphere dynamics from first
principles. Yet, the high explained variance of our simple expression for the turbulent heat flux (equation (1))
and its partitioning (equations (2) and (3)) suggests that these capture the basic physical factors shaping tur-
bulent land‐atmosphere exchange and can provide relevant insights into the dominant changes associated
with tropical deforestation.

Changes in surface energy balance partitioning associated with tropical deforestation have been evaluated
thoroughly over the years based on both observations and different modeling approaches (e.g., reviews by
D'Almeida et al., 2007; Lawrence & Vandecar, 2015). We advance this understanding of land surface pro-
cesses by showing that the magnitude of turbulent heat fluxes of the two sites are shaped primarily by the
absorption of solar radiation and the thermodynamic limit. Our formulation (equation (1)) can explain

Figure 2. As Figure 1, but for the partitioning of the turbulent heat flux into sensible and latent heat. Shown are the turbulent heat flux (black, observations
(Rnet − G, circles) and estimated (Jopt, line)), the sensible (light red, observations (Hobs, squares) and estimated (Hopt, line)), and latent heat flux (blue, observa-
tions (LEobs, triangles) and estimated (LEopt, line)). For reference, absorbed solar radiation (Rs) is shown by the red line. The bottom row (e–h) shows scatter plots
between observed and estimated fluxes of sensible (H, red) and latent heat (LE, blue). Nighttime values are not shown in the scatterplot.
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turbulent fluxes at both sites and seasons, regardless of the highly contrasting land cover of the two sites. The
changes in longwave optical thickness during the dry and wet season have a comparatively minor effect on
this partitioning and merely alters the offsets in Figure 1, as shown in the correlation statistics in Table 2.

The equilibrium partitioning into sensible and latent heat then works well during the wet season, but for the
dry season, it shows the dominant role of water limitation for the soybean site due to the lack of vegetative
cover and access to soil water storage. The main difference in surface energy balance partitioning of the two
sites are then primarily the presence of water limitation during the dry season at the soybean site, apart from
differences in the absorption of solar radiation and soil heat fluxes. This water limitation resulted in a reduc-

tion in evapotranspiration of ΔLE
LE ≈ Δf w

f w
≈80% during the dry season, noting that the difference in turbulent

heat fluxes is small. To evaluate this impact of land cover change more generally would require a soil water
balance model to simulate the seasonal course of the reduction factor fw.

What is somewhat surprising in these results is that the difference in surface roughness between the sites
seems to play only a small role in shaping the magnitude of turbulent fluxes. This likely suggests that the
dominant driver of land surface‐atmosphere exchange at these sites is surface heating by the absorption of
solar radiation. This heating generates buoyancy and the associated fluxes of sensible and latent heat. Our
thermodynamic limit then sets the magnitude of the buoyancy flux, which is why the surface energy balance
partitioning can be explained so well by the combination of absorbed solar radiation and the thermodynamic
limit without knowing the wind conditions.

4. Conclusions

We showed that the turbulent heat flux of the surface energy balance across two different types of land cover
in southeastern Amazonia can be estimated very well from the maximum power principle. This provides a
novel, parameter‐sparse approach to estimate the effects of land cover change that can be used to benchmark
the performance of climate model simulations. The maximum in power is set by thermodynamics, a surface
energy balance trade‐off by which a greater turbulent flux leads to a lower surface temperature, and by
diurnal heat storage variations in the lower atmosphere. Our results show that the major effects of tropical
deforestation on the surface energy balance are changes in how much solar radiation is absorbed and
changes in water limitation at the non‐forested site. The turbulent heat flux was estimated very well by
the maximum power limit at both sites, suggesting that the turbulent heat flux over land operates at its
thermodynamic limit irrespective of water availability and differences in surface roughness.

What we conclude from this is that our approach represents an adequate basis to understand the first‐order
effects of land cover change. It yields a novel perspective on land‐atmosphere interactions at the diurnal
scale and how these are affected by land cover change. These interactions are reflected in our approach at
a basic level. It is the buffering of the strong diurnal variation of solar radiation by heat storage changes
in the lower atmosphere that intimately links the functioning of the land surface to the lower atmosphere,
yet with its magnitude well constrained by the energy balance of the surface‐atmosphere system. This buf-
fering then affects the thermodynamic limit quite substantially. What our results then indicate is that
land‐atmosphere exchange at the diurnal scale is thus predominantly constrained by this heat buffering
and the thermodynamic limit of how much work can be derived from the solar radiative heating. This con-
straint does not change with land cover change, while the partitioning of turbulent fluxes into sensible and
latent heat is strongly affected by the land cover.
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