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Abstract: From natural erosion to pollution-accelerated decay, stone cultural heritage deteriorates
constantly through interactions with the environment. Common protective treatments such as acrylic
polymers are generally prone to degradation and loss of performance, and they are often limited in
their ability to achieve uniform and conformal coverage across a stone’s topographical features. In
this work, atomic layer deposition (ALD) was explored to address these issues by growing protective
amorphous alumina coatings on compact carbonate (Istria) stone. ALD protective coatings, unlike
coatings produced by traditional methods, do not significantly alter morphology by filling open
pores or accumulating on the surface in more compact areas. Our morphological and spectroscopic
investigations revealed that the ALD alumina films deposited uniformly over the surfaces of Istria
stone, without significantly altering the topography or appearance. The protective effects of the
ALD coatings were investigated by aqueous acid immersion. The solution pH, along with the Ca?*
concentration, was tracked over time for a constant volume of acetic acid solution with an initial pH
of 4 with the stone samples immersed. We found that the protective effects of ALD alumina coatings
were extremely promising, slowing the average rate of pH evolution significantly. The eventual
failure of the ALD coatings during immersion was also investigated, with interesting morphological
findings that point to the role of defects in the coatings, suggesting new directions for improving the
use of ALD coatings in future research and applications.

Keywords: protective conservation; atomic layer deposition; cultural heritage

1. Introduction

While commonly considered to be a long-lasting and resilient material, limestone is
often subjected to hazards that can threaten its longevity. Of these hazards, the past and
recent literature suggest that environmental pollution has been and remains the most signif-
icant [1-4]. In past decades, a typical pattern of limestone degradation from environmental
pollution presented as black crusts of gypsum, CaSO4-2H,0, formed when SO, from acid
rain and particulates reacts with calcium carbonate. These black crusts are well documented
on limestone across Europe and correlate compositionally to human-generated pollutants
in the environment [5-7]. Today, this decay pattern has become less of a concern due to
SO, emissions being severely limited in western Europe since the 2000s [8,9]. Instead,
other pollutants such as NO,, which overall remains at high levels [10], and CO,, which
continues to increase in concentration globally [11], present larger threats. The effects of
these pollutants on limestone are still being investigated but are of significant concern for
their potential to increase rain acidification and promote stone washout.

Istria stone, the limestone investigated throughout this work, was chosen because it is
both specific to the interests of cultural heritage conservation and representative of compact
carbonate stones in general. As it relates to cultural heritage, Istria stone is commonly
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used as a building material throughout Venice, Italy, and has unique decay patterns due
to the stone’s morphology and the local environment in the Venetian lagoon. Istria stone
is a low-porosity (<1%), compact stone, which allows it to be relatively resistant to the
harsh marine environment [12]. Because of its compactness, the decay patterns are mainly
localized to the stone’s surface and tend to only penetrate the bulk by water infiltration
in clay veins, clay swelling, and stone piece detachments [13]. More recent work focusing
on deterioration patterns of Istria stone in connection with local environmental conditions
during the years 2000-2020 has revealed that the air pollutant of most significant concern
now in Venice is NO, produced by water traffic [14]. Additionally, for the entire Veneto
region, the abundance of PM; pollutants frequently exceeds the limits set by the European
air quality directives [15]. The negative effects of air pollutants are exacerbated by the
climate of Venice, which has high levels of humidity that cause particulates to remain in
the environment for long periods of time. The prolonged presence of pollutants favors
potential chemical interactions between particulate matter and stone surfaces. For these
reasons, Istria stone makes for a relevant case study to examine ALD’s protective effects on
stone cultural heritage.

In addition, Istria stone is representative of compact carbonate stones in general, which
allows this work to be applicable beyond the cultural heritage conservation field. Protecting
stone against deterioration (pollution-induced or otherwise) is relevant for many fields
including civil and industrial engineering. In this way, broader conclusions may be drawn
from this work to include a variety of stone applications.

Currently, many of the treatments used to protect stone function as water repellents,
and work by preventing the infiltration of water by reducing the hydrophilicity of the
materials [16,17]. Common treatments include a variety of acrylic polymers that are ap-
plied to the stone surface [18]. When applied to stone, these products can also mitigate the
incursion of acids, salts, and biological organisms, all of which can otherwise be carried
to the stone’s surface by water and provide pathways for degradation. However, these
polymer treatments are not without drawbacks. Specifically, acrylic polymers tend to suffer
from photo-degradation, which limits their durability and effectiveness over time [19].
Moreover, polymer treatments do not always achieve uniform and conformal coverage
across a stone’s topographical features, potentially providing uneven protection [20]. Con-
sequently, examining novel protective solutions that can address the durability and the
unique morphological characteristics of stone cultural heritage is of great interest and the
focus of this work.

Atomic layer deposition (ALD) is a thin-film fabrication technique ubiquitous in the
microelectronics industry for its application of high-quality and conformal films that may
be grown with angstrom-level control [21]. The ALD process uses vapor-phase precursors
in a sequential manner to react with a surface in a self-limiting way. In theory, the self-
limiting nature of the reactions allows a single atomic layer to be grown with each cycle of
the process. A great variety of film compositions and crystallographic structures may be
grown with ALD by varying the temperature and the type of precursors used [22]. Perhaps
the most studied of these compositions is amorphous alumina, Al,O3, which is considered
a model system due to efficient and entirely self-limiting chemical reactions as well as
the strong nature of Al-O bonds [23]. Finally, although films of similar compositions can
also be produced using molecular beam epitaxy (MBE) [24] or chemical vapor deposition
(CVD) [25] ALD has the advantage of the potential for unmatched conformality owing to
the self-limiting nature of the individual reaction steps.

Figure 1 shows one complete, ideal cycle of ALD alumina growth. The process can
be explained as follows: First, the substrate surface, which is assumed to be uniformly
hydroxylated, is exposed to a pulse of the gaseous precursor tri-methyl-aluminum (TMA).
The TMA reacts with surface hydroxyl groups, resulting in chemisorbed (CH3),AlO, and
physisorbed TMA [26]. The second step is a purge in which the excess TMA and methane
are removed from the system with the help of a flux of inert carrier gas. In the third step, a
second precursor is introduced: water vapor is flowed into the chamber and reacts with the
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the surface methyl groups, generating methane gas along with a monolayer of hydroxyl
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A second aspect that makes ALD interesting for cultural heritage is the ability to create
coatings with extreme conformality, allowing for nearly complete and uniform coverage
on substrates with complex topography and high-aspect-ratio pores [32,33]. Conformality
of coatings is important for both uniform protection of an object and maintaining a uni-
form appearance. Bare or unevenly thin regions allow fast permeation pathways to the
underlying substrate, compromising the effectiveness of the treatment. In addition, the
bare and uneven regions can produce a non-uniform appearance if the coating is within a
thickness range that is able to be seen, by showing contrast between the coated and bare
regions. This is important for cultural heritage applications because not altering an object’s
appearance is a priority for protective interventions. ALD is particularly interesting in this
regard because in the absence of thin-film interference effects, many ALD metal oxide films
are transparent and colorless, including the alumina coatings applied in this work.

Finally, ALD has proven to be an incredibly versatile method of protection, show-
ing successful results in protecting a wide range of materials from diverse degradation
mechanisms. For examples, ALD films have been shown to be effective at preventing the
tarnishing of silver objects [34] and slowing the aqueous alteration of glass [35]. Finally,
they are capable of dramatically slowing acid attack of limestone, which is the focus of this
work and, to the best of our knowledge, the first report of its kind. For these reasons, ALD
treatments are potentially very attractive for the cultural heritage field.

However, there are a few limitations on ALD’s application to cultural heritage. Per-
haps the most apparent limitation for stone is the size of monumental stone objects relative
to that of available reaction chambers. Using currently available commercial reactors, ALD
would only be applicable for smaller objects and fragments or for larger works that can
be disassembled and reassembled, such as mosaics or stone cover slabs. There is certainly
interest in creating larger-format ALD reaction chambers and scaling up the size of sub-
strates available for ALD [36]. Currently, however, large-format commercially available
ALD chambers are mainly designed for photovoltaic applications; this has resulted in the
production of large-area and short-height chambers that, while large in total volume, do
not have the correct dimensions to admit a larger object such as a stone sculpture [37]. Nev-
ertheless, the technology for scaling up the ALD process is growing and could potentially
be adapted to the needs of cultural heritage if a desire is present in the future.

A related limitation is the cost of ALD. The high upfront cost of the specialized
instrumentation, as well as the high cost of the consumable precursor gasses, can make
employing this technique a large investment, which can limit its use in a museum setting.

Finally, the temperature required for the ALD process is important to consider for
cultural heritage applications. ALD growth is based on thermally activated reactions, and
so the properties of the resulting films can be quite sensitive to the temperature at which the
depositions occur [38]. For cultural heritage, a deposition temperature must be compatible
with the cultural object for which it is being used. For amorphous alumina ALD films,
150 °C (the temperature used in this work) is considered well within the temperature range
for favorable growth [23]. It has been suggested that amorphous alumina has a large
acceptable temperature range due to the high exothermicity of the Al;O3 ALD surface
reactions, with one study showing depositions as low as room temperature with only
minor changes in the growth thickness per cycle [39]. Despite the promising results two
decades ago, more research on ALD in the low-temperature regime (<100 °C) is severely
lacking. While an exploration of lowering the ALD temperature is not the focus of this
work, it is the focus of our future investigations on ALD for the protection of cultural
heritage. These temperature investigations are important for a more complete picture of
ALD films as a protective method for stone because it is known that the strain behavior and
mechanical properties of stone can irreversibly change at temperatures above that of the
ambient [40]. In addition, low deposition temperatures mitigate potential thermal stresses
that can be introduced with the cooling of coated objects when the coating and object have
different coefficients of thermal expansion [41]. Further, to broaden the range of ALD
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applications in general to polymeric materials or biomaterials, more rigorous explorations
of low-temperature ALD are necessary.

In this work, we examine the potential of ALD coatings as protective barriers to
mitigate reactions with harmful particulates and acid rain and consider the aspects of such
a protective conservation treatment specific to cultural heritage objects. Considering that the
condjitions of pollution-induced stone deterioration are complex and impossible to exactly
replicate in a laboratory setting, we chose to implement a simple acidic aqueous immersion
method that is amenable to in situ monitoring. In this way, we explored the efficacy of ALD
alumina coatings in protecting limestone broadly from acidic aqueous solutions.

2. Materials and Methods
2.1. Sample Preparation

Istria stone is used throughout this work as a case study to test the effects of applying
protective ALD alumina coatings to limestone. Istria stone is very compact with an open
porosity of less than 1%. A typical chemical composition of Istria stone is calcium carbonate
with MgO, S5iO,, Fe; O3, and Al,O3 impurities as well as microfossils [42]. Samples were cut
from slabs of Istria stone into 1 cm cubes and polished with 180, then 320 grit silicon carbide
paper. They were then rinsed in deionized water and allowed to dry at room temperature.
The samples had final masses of 2.50 & 0.25 g.

The amorphous alumina ALD films were grown on the Istria stone samples using a
Beneq TFS 500 Atomic Layer Deposition (ALD) system (Beneq, Espoo, Finland), in a class
1000 clean room. TMA and H,O were used as the precursors, with 2 s pulses for each. Np
was used for 2 s purges. All the films in this work were grown at 150 °C for 50, 250, or
500 cycles of deposition. Samples were allowed to equilibrate within the chamber for at
least 30 min prior to deposition. Within the reaction chamber, custom holders were used to
support the samples by three points of contact. The samples were flipped halfway through
the depositions to mitigate any defects caused by contact with the holders.

2.2. Reflectance and Colorimetry

To examine any changes in the appearance of the Istria stone from applying the ALD
alumina coatings, spectrophotometric and colorimetric measurements were performed.
Measurements were taken from 3 spots on 7 samples for each condition: uncoated samples,
hereafter referred to as ‘No-ALD samples’, and samples treated with 50 cycles, 250 cycles,
and 500 cycles of ALD, hereafter referred to as ‘ALD samples.” The colorimetric coordinates
in CIE 1976 L'a’b" were acquired with a Konica Minolta CM-700d spectrophotometer
(Konica Minolta, Tokyo, Japan) (illuminant D65, observer 8-degree viewing angle geometry)
and analyzed with Spectra Magic NX 6 software. The equations used for calculating the
average chromatic coordinates and the associated uncertainty are as follows:

N
oL

L*
N 7

1)

where N is 21 from the measurements of 3 spots on 7 samples for each condition. a* and b*
are calculated similarly.
N kT2
2 _ Yizo (Li —L¥)
* = , 2
oL N (2)

The change in the chromatic coordinates and associated uncertainties were calculated
with the following equations:

AL" = Larp — Luo AL/ (3)
Aa* and Ab* are calculated similarly.

2 2 2
OaLs = 0Ly, + OLyy arp (4)
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AL*Z

op, and oy are calculated similarly.

AE = \/ AL*? 4+ Aa*? + Ab*?, (5)

2
OAE =<

*2 *2
* GAL2 + Aa * GMZ + Ab * GM2 . (6)
AL*2 + Aa*? + Ab*? AL*? + Aa*? + Ab*2 AL*2 + Aa*? + Ab*?

According to the literature, the limit for a chromatic variation to be considered visually
insignificant is AE < 3, while chromatic variations of AE > 5 are considered significant and
are not suitable for cultural heritage interventions [43,44].

2.3. FTIR-ATR

Because the presence of ALD alumina films on the Istria stone is not evident by visual
inspection, it was necessary to confirm the presence of the coating with spectroscopic
methods. Typically, the presence and thickness of ALD thin films are verified using spectro-
scopic ellipsometry. However, this technique is best suited for optically flat wafer substrates
(e.g., Si, GaAs, and Ge) [45]. Due to the highly rough nature of the stone substrates, this
method would not produce meaningful data regarding the presence or thickness of the
ALD alumina films. FTIR-ATR was used instead to analyze the presence of alumina on the
surface of Istria stone samples with increasing numbers of ALD cycles applied.

A portable ALPHA I spectrometer by Bruker Optics® (Bruker, Billerica, MA, USA)
equipped with an ATR modulus with a single-bounce diamond was used to collect the
spectra. Spectra acquired in the range between 4000 and 400 cm~! were obtained by
collecting 250 scans with 4 cm~! spectral resolution. These measurements were taken
for 7 samples, in 1 spot each, for each condition (No ALD and 50 cycles, 250 cycles, and
500 cycles of ALD).

A semi-quantitative analysis of the ALD alumina coating was performed as follows.
The spectra were normalized to the well-defined calcite peak at 867 cm~! according to the
equation:

)

Torm (w) = a(w) * a(8671cm—1)
where a = absorbance and w = wavenumber. Then, the spectra for each condition (No
ALD and 50 cycles, 250 cycles, and 500 cycles of ALD) were averaged and a standard
deviation was taken. Using an absolute baseline, the peak height at 920 cm~!, which
is an Al-O longitudinal optic (LO) mode [46], was measured. In addition, numerical
integrations were performed using the trapezoidal method and an absolute baseline in
the range 978-891 cm ™! for each of the normalized spectra. The areas resulting from the
integrations were also averaged, and the standard deviation was taken.

These points are representative of the Al-O signal in comparison with the C-O signal
and were taken as indicative of the concentration of ALD alumina coating present on the
calcium carbonate surface. The values obtained from this analysis were then graphically
related to the number of ALD cycles.

2.4. Aqueous Acid Immersion and pH and pCa Tracking

To characterize how well the ALD coatings protect the Istria stone from acid attack,
samples with and without ALD were immersed in 100 mL of an aqueous solution of
acetic acid with a starting pH of 4 while stirring. A pH of 4 was chosen to approximate
the conditions of severe acid rain. Of the coating thicknesses studied in this work, ALD
films resulting from 500 cycles, corresponding to approximately 90 nm, were chosen for
the immersion experiments as providing good visual appearance and the highest likely
effectiveness of protection against acid attack based on preliminary experiments.
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A Crison GLP 21 pH meter (Crison Instruments, Alella, Spain) was used to continu-
ously measure the pH of the acid immersion solution. This was used as a method to track
how much limestone was available for reaction with the acid.

Additionally, aliquots of acid solution from the acid immersion experiments were
analyzed for Ca®* ion concentration with a Perkin Elmer Optima 5300SV Inductively
Coupled Plasma Optical Emission Spectrometer (ICP-OES) (PerkinElmer, Waltham, MA,
USA). The [Ca?*] was quantified by means of a seven-point calibration curve with acetic
acid solution used as the diluent. For the samples with no ALD coating, 5 mL aliquots were
collected from the immersion experiment at each 0.5 increase in pH. For the ALD-coated
samples, the aliquot collection intervals were less regular because of the long duration of
the immersion experiments, spanning days and nights. Aliquots for these samples were
collected as regularly as possible, but with up to pH = 1.0 variance in the collection interval
for some samples.

To make a comparison to pH, pCa was calculated from the Ca?* concentration data
according to the equation:

pCa = —logo[Ca®*], 8)

For additional analysis, the pCa data for each condition (500 cycles of ALD and no
ALD) were averaged using linear interpolation and graphically related to pH data treated
in the same way. One standard deviation was used in estimating the uncertainties.

2.5. Optical Microscopy

A Dino-Lite digital microscope AM4113 series (VIDY OPTICAL (WUXI) CO., LTD.,
Wuxi, China) was used for optical imaging of the samples throughout the experiments.
All samples were analyzed after the ALD coating was applied. The samples that were
immersed in acid were rinsed in deionized water and allowed to dry at room tempera-
ture, then analyzed with the digital microscope again. Some of the samples were briefly
examined during the acid immersion; these samples were taken out of the acid solution
at various times and dried with paper before being quickly imaged and returned to the
acid solution. Two different magnifications, namely, x25 and x50, were used throughout
the analyses.

2.6. SEM-EDX

An FEI Quanta 200 Scanning Electron Microscope (SEM) (FEI company, Hillsboro, OR,
USA) equipped with an EDAX Element-C2B Energy Dispersive X-ray (EDX) detector was
used to examine the morphological characteristics and the presence and distribution of
aluminum for various samples. No-ALD samples with and without acid immersion as well
as 500-cycle ALD-coated samples with and without acid immersion were examined.

3. Results and Discussion
3.1. Appearance Changes

The applied ALD alumina films in this work are transparent across the visible part
of the electromagnetic spectrum; however, changes in color can arise from thin-film inter-
ference and scattering effects. As light passes through the ALD film and reflects from the
substrate surface, constructive or destructive interference can occur as described by the
Fresnel equations [47]. According to the refractive index of the film and substrate, the film
thickness, and the angle of incidence of light, color changes from applying the ALD coating
may be present. In addition, coatings that make a rough surface smoother and have an
index of refraction intermediate between that of the substrate and that of air can partially
suppress light scattering. Alternatively, if the coating increases roughness, light scattering
will increase.

Slight variations in the color of the Istria stone from sample to sample made distin-
guishing the change in appearance due to the ALD coating challenging. Figure 2 shows the
resulting average reflectance spectra of Istria stone samples with no ALD and 50 cycles,
250 cycles, and 500 cycles of ALD alumina applied. While systematic differences are evi-
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there is likely no change in the morphology of the stone surface from the ALD coatings
contributing to appearance changes [48].

3.2. Verifying the Presence of ALD Alumina with FTIR-ATR
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Figure 3. Average change in chromatic coordinates (specular component included) of Istria stone
from applying 50, 250, and 500 cycles of ALD alumina.

Coatings 2024, 14, 931 In addition, the colorimetric measurements showed that for all thickness condisiefs
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3.3. Mwinhoegy e Homegensity of the ALD Coatings on Istria

SEM was used to visualize any morphological changes in the stone surface as a result of
applying the ALD coating. As can be seen in Figure 5, the morphology of the stone did not
change significantly with the application of 500 cycles of ALD alumina. In fact, no apparent
morphological differences were perceptible at 500 x magnification, as in Figure 5a,c. At
higher magnification, 4000 %, as in Figure 5b,d, some slight differences in morphology
could be detected; overall, the ALD-coated samples appeared slightly smoother, with
some of the calcium carbonate grains less distinct. However, these differences appeared
to be extremely subtle and supported the reflectance and colorimetric findings that the
appearance of the stone surfaces was not altered by morphological changes from application
of the ALD coating.

In addition, SEM-EDX was performed to characterize the presence and distribution of
ALD coating. The elemental aluminum signal was found to be very uniform over the ALD-
treated surfaces. Point spectra were taken across various areas with diverse morphological
features, such as the smoother regions and the distinct calcium carbonate grains for the
ALD coated samples resulting in an average Al wt% of 7.2 & 1.0. These spectra showed
consistent Al wt% signal across the differing features, indicating that the ALD alumina
was dispersed homogenously and was not preferentially located in specific areas defined
by morphology, such as the smooth or textured areas. The SEM-EDX are is provided in
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SEM was used to visualize any morphological changes in the stone surface as a result
of applying the ALD coating. As can be seen in Figure 5, the morphology of the stone did
not change significantly with the application of 500 cycles of ALD alumina. In fact, no
apparent morphological differences were perceptible at 500x magnification, as in Fghté

5a,c. At higher magnification, 4000x, as in Figure 5b,d, some slight differences in morphol-

ogy could be detected; overall, the ALD-coated samples appeared slightly smoother, w1th
mspiﬁ@ea@wat%ﬁg@gmﬁémé&éhﬁéwé;@g sHesedtFeopioEnaibe

homegsarindry thapielicaiionop shred H Rt dsrin SRR e resHiES mm tlia%
?aﬁ%ﬁﬁem%ﬁ%&%gmmemw %ﬁﬁﬁ%ﬁlg)ﬁ%mﬁmﬁgm wasimat
Rikicse by Atersddaiffye ALD coating,

Figure 5 SEM mick S @ aNOALD sarplleatsidx maghifieation;
ANS-ALD sampis af i@@@x‘%%}{%@&t%h( Q@o%’;‘;‘%‘f&&ﬁf?%‘%@é%%}ﬁ@%?%ﬁQ“%%{‘g%fﬁ-
ca%dﬂﬂg 5@80% ‘ﬂfo °a5 ed S ‘feaf % magnitic igalitn, salt, aafrss%&%;ggi‘éa g j%%}

um o anes (a,c m or anes elma es capture scattere

ane 100 pum for p nels (a,cf and 10 pum for pane dels (b,d). The images aptu backscattered electrons.
or c arls ectra f%r an u %oa ed Isttrla, sample were also sur d and
et f R e 1%%/3%%25&%‘? ity

&e§ s%?ﬁ [8is 3 mo SR f‘re “a“}tesu Stenal A3 Fqund g as.x g, Aot %ﬁ? Ver
eate aCﬁme (%mt spectra were taken across various areas wit erse mor-

pffipcl)(s)lgfc‘a\il features, such as the smoother regions and the distinct calcium carbonate
mipEfpsshaitlld seatedemplessasling inan Average Al wt% of 7.2 £ 1.0. These spec-

tra shawed consisient O wWarigRehasrsiihsdiffesngfse %ggﬁeapﬁ&safeﬁgﬁ%s%em
ARMming cveRdiRersed Apnessne sl Ande ves BRRIpieteRtipdnosated dnsRecificargs
Ssfingsl bpparrbRlagin SHSh i oHFBIPNAL LB IFBrSaR st D TR PR e
ALD alumina (curves labeled S7-11_ALD), it seems we can locate a point in time for each
sample when the ALD coating begins to fail dramatically, as evidenced by a sudden change
in the rate of pH evolution with time as seen in Figure 6c¢.
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v 4

attack, No-ALD samples and 500-cycle ALD samples were immersed in an aqueous solu-
tion of acetic acid with a starting pH of 4 while stirring. For most samples coated with
ALD alumina (curves labeled S7-11_ALD), it seems we can locate a point in time for each
sample when the ALD coating begins to fail dramatically, as evidenced by a sudden
change in the rate of pH evolution with time as seen in Figure 6c. 11of19
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penetrate to the stone and react, then these reaction sites could slowly grow, building up
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is through small defect sites in the ALD coating, allowing localized sites for the acid to
penetrate to the stone and react, then these reaction sites could slowly grow, building up
reaction products and eventually leading to faults in the ALD layer and delamination of
undercut regions of film due to the action of convection currents. The formation of larger
scale faults via outward etching of the film and/or delamination might be indicated by the
inflection point in each curve. If the population of defects varies greatly from sample to
sample, which seems likely due to the compositional heterogeneity of Istria stone, then this
could result in a large variance when a critical mass of reaction products is reached and
when the ALD coating begins to fail dramatically.

Additionally, the natural variation in the Istria stone’s chemical composition and
morphology may contribute to variation in pH evolution. For example, samples S1, S3,
and S4 had prominent silica veins as seen in Figure 6b, which created chemical and
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3.6. ICP-OES Analysis

To complement the in situ method of pH tracking, aliquots of the acid solutions were
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Figure 8. Average pH over time of S2-6 and S8-12_ALD and average pCa over time of S2-6 and
S58-10_ALD. Data were averaged using linear interpolation, and the error bars indicate the standard
deviation.

Comparing the pH with the pCa over the etching time suggests that there are more
contributing factors than simply reactions of acid with calcium carbonate causing a rise
in pH over time. Some fraction of the Ca?* almost certainly goes into forming secondary
reaction species with low solubility in the acid solution, which settle out to the bottom of
the reaction vessel [50] such that the measured rate of change of the pCa does not mirror
that of the pH as the former increases.

3.7. Elemental and Morphological Changes from Acid Immersion

The result of the immersion of the No-ALD samples appeared to be mainly an en-
hanced delineation and rounding of the shape of grains nearly uniformly across the surface
as a result of acid etching, as seen by comparing Figure 9a,b. In contrast, the ALD-coated
samples that were immersed in acid displayed distinct, approximately circular, pitted
features as shown in Figure 9d. It seems there was a selective etching process where the
acid has mainly reacted with the stone surface at certain sites, likely beneath defects in the
initial ALD film. These defect sites appear to have acted as preferential sites for initiation
of pits, which grew outward, nearly isotropically, into pits of various sizes. The variation is
likely due to a statistical variation in the time at which each pit nucleated. We discuss the
origin of the departure of the pit geometry from isotropy below. For the areas outside of
the pitted regions, it appeared the calcium carbonate grains had not evolved in size as seen
for the uncoated samples, Figure 9c. Instead, the grain shapes were preserved, suggesting
a level of continued protection of the ALD-coated stone outside of the pitted regions.
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variation is likely due to a statistical variation in the time at which each pit nucleated. We
discuss the origin of the departure of the pit geometry from isotropy below. For the areas
outside of the pitted regions, it appeared the calcium carbonate grains had not evolved in
size as seen for the uncoated samples, Figure 9c. Instead, the grain shapes were preserved,
suggesting a level of continued protection of the ALD-coated stone outside of the b‘liﬁfe](?
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ALD alumina coating. This local redeposition results in a departure of the pit shapes from
hemispherical, as mentioned above. The model of dissolution and redeposition of the
ALD coating is supported by the Pourbaix diagram for alumina dissolution in bulk crys-
talline form, which predicts instability of alumina outside the pH range of 5.8-7.3 [52].

This instability has also been demonstrated for amorphous alumina ALD films immersed
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the ALD alumina coating. This local redeposition results in a departure of the pit shapes
from hemispherical, as mentioned above. The model of dissolution and redeposition of
the ALD coating is supported by the Pourbaix diagram for alumina dissolution in bulk
crystalline form, which predicts instability of alumina outside the pH range of 5.8-7.3 [52].
Coatings 2024, 14, x FOR PEER REVIEWhjs instability has also been demonstrated for amorphous alumina ALD films immiéreéc9n
acidic conditions (IM H,50;) showing eventual dissolution of the alumina ALD film [53].
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Figure 11. SEM micrograph, at 8000x magnification, of a pitted region of Istria stone treated with
ALD alumina (S10_ALD) and immersed in acid solution. The area shown is in a pitted region with
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The pitted regions were examined at higher magnification to investigate the mor-
phology of the redeposited aluminum-containing species. As shown Figure 11, the visible
platelet morphology and the characteristic high elemental aluminum concentration are
evidence of aluminum hydroxide AI(OH)s in the gibbsite form, which has a characteristic
platelet structure and readily forms in acidic conditions when Al and OH are presetft {54
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4. Conclusions

In this work, atomic layer deposition has been explored as a method for applying
protective amorphous alumina coatings to a compact carbonate stone (Istria stone). Istria
stone is both representative of cultural heritage interests and representative of compact
carbonate substrates in general. It was found that an advantage of such coatings, with
respect to traditional polymeric protective treatments, is that the ALD alumina coatings
do not significantly alter the surface morphology by filling open pores or accumulating
on the surface in more compact areas. Additionally, the change in the appearance of the
stone as measured by colorimetry is minimal, i.e., below generally accepted standards
for cultural heritage interventions. We found that the protective effect of ALD alumina
coatings was extremely promising, slowing the average rate of pH evolution and Ca%*
leaching dramatically when samples were subjected to aqueous acid immersion with an
initial solution pH of 4. The eventual failure mechanisms of the ALD coatings during
immersion were also investigated, with morphological findings suggesting that the failure
mechanism involves the existence of small defect sites in the films, which lead to localized
permeation, pitting, and finally redeposition in those areas but sustained protection in
regions distant from such defects. Samples coated with the thickest films, formed by
500 cycles of ALD alumina, were most extensively studied in this work because they had
the best protective effects against acid immersion. Because even these thickest coatings
caused minimal appearance and morphological changes to the stone, the 500-cycle coatings
are deemed most promising of those we have studied for application purposes. However,
more in-depth analysis comparing the behavior of the different ALD coating thicknesses
could provide more insight into the underlying kinetics of the ALD coatings as diffusion
barriers and is the focus of future research. Further, our findings suggest new directions for
future research in improving ALD coatings on stone, for example, by focusing on ways to
eliminate the initial defects in the applied films. In addition, our future work will focus on
improving the statistics related to ALD-coated stone’s evolution in acid to better extrapolate
more general trends and focus on other aspects relevant to cultural heritage applications,
such as removability and direct comparison with current polymer treatments.

5. Patents
Patent disclosure in progress.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ coatings14080931/s1, Figure S1: Locations of the point spectra
taken across various morphological features of an Istria stone sample coated with 500 cycles of ALD
amorphous alumina; Figure S2: SEM-EDX point analysis results corresponding to locations in Figure
S1. The Al wt% across the various features results in an average Al wt% of 7.2 & 1.0. (a) Spectrum 7
(b) Spectrum 8 (c) Spectrum 9 (d) Spectrum 10.
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