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Introduction générale

La these porte sur des modeles économiques en présence d’externalités. En suivant Laffont (1988),

nous donnons la définition suivante d’externalité.

“Une externalité est chaque “effet indirect” d’une activité de consommation ou d’une
activité de production sur les préféerences individuelles, sur les possibilités de consom-

mation ou les possibilités de production.”

“Effet indirect” signifie que D'effet est créé par un agent économique différent de celui qui est af-
fecté, et que l'effet n’est pas produit par I'intermédiaire du systéeme de prix. Par conséquence, le
systeme des prix ne joue que le role d’égaler & ’équilibre I'offre globale et la demande globale.! La
définition ci-dessus montre que la présence d’effets externes nécessite une nouvelle description des
caractéristiques des agents, c’est-a-dire des préférences individuelles, des ensembles de consomma-

tion et des ensembles de production des producteurs.

La these se compose de trois chapitres. Le premier chapitre étudie les restrictions de testabilité
d’un modele spécifique avec des externalités et des biens publics. Dans le deuxiéme chapitre et le
troisieme chapitre, nous considérons un modele d’équilibre général avec des externalités au niveau des
préférences individuelles et des ensembles de production des producteurs. Dans le deuxiéme chapitre
nous traitons ’existence d’un équilibre concurrentiel en utilisant un approche différentiable, et dans

le troisieme chapitre nous donnons un résultat de régularité.

Chapitre 1 - La consommation privée par rapport a la consommation publique dans les groupes :

Tester la nature des biens a partir des données agrégées.

Les restrictions testables dans des modeles d’équilibre générale ont été étudiés par Brown and

Matzkin (1996) et Chiappori et al. (2004). Les premiers résultats de testabilité dans un modele

1Les externalités qui passent directement par le systéme de prix sont appelées externalités pécuniaires.
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qui prend en compte des externalités et des biens publics, sont donnés par Browning and Chiappori
(1998) pour un modele des choix collectifs. En particulier, les auteurs considerent un modele de
ménage (c’est-a-dire non-unitaire) dans lequel les décisions de consommation sont prises par deux

membres du ménage et elles sont Pareto efficaces.

Récemment, en ce qui concerne I'analyse des décisions de consommation des ménages, le modele des
choix collectifs est devenu tres populaire. La raison de cet intérét est basé sur le fait que les individus
qui font partie d’'un ménage sont hétérogenes (c’est-a-dire ils ont des préférences différentes) et un
processus de décision prend place dans le ménage. Dans le modele unitaire, un ménage est considéré
comme un seul décideur qui maximise ses préférences sous sa contrainte budgétaire. Cependant, il y
a des preuves empiriques qui montrent que le modele unitaire n’est pas suffisant pour modéliser les
décisions d’'un ménage. Le modele unitaire est évidemment trop restrictive, car il est implicitement
supposé que le ménage ait une seule préférence sur les biens de consommation, plutét que supposer

que les individus qui font partie du ménage aient des préférences individuelles.

Dans Browning and Chiappori (1998), on n’observe pas quels biens sont consommés en privé ou
quels biens sont consommés publiquement dans le ménage. Les auteurs supposent que seulement
les prix des biens et la demande agrégée, qui est générée par une distrubution de pouvoir entre les
deux membres du ménage, sont observés publiquement. En utilisant une “approche” basée sur des
techniques différentielles, les auteurs montrent que la demande globale est compatible avec un choix

optimal au sens de Pareto s’elle répond a certaines restrictions sur une matrice “pseudo-Slutsky”.

Ensuite, Chiappori and Ekeland (2006) généralisent le modele précédent. Les auteurs montrent qu’en
utilisant une approche “paramétrique” il n’est pas possible de tester le caractere privé ou publique de
la consommation. Plus précisément, le modele de consommation collective a exactement les mémes
implications testables que deux modeles spécifiques de consommation collective. Dans le premier
modele spécifique de consommation collective, tous les biens sont consommés publiquement au sein
du ménage, et dans le deuxieme modele spécifique de consommation collective tous les biens sont

consommés en privé par les membres du ménage.

Dans le Chapitre 1, en utilisant des restrictions “non-param’etriques” dérivée par Cherchye et al.
(2007), nous donnons des exemples qui montrent que la nature publique ou privée de la consomma-
tion est testable. Ainsi, contrairement a la littérature précédente, nous constatons que ’approche
“non-paramétrique” implique la testabilité du caractere privé ou publique de la consommation,

méme si on observe seulement la consommation agrégée du ménage. En outre, nous constatons que



le modele de ménage dans lequel tous les biens sont consommés publiquement est distinct du modele
dans lequel tous les biens sont consommés en privé par les membres du ménage. Plus précisément,
un ensemble de données qui satisfait les restrictions testables pour le premier modele de ménage, il
ne satisfait pas nécessairement les restrictions testables pour le deuxieme modele de ménage, et vice

versa.

Chapitre 2 - Economies de propriété privée avec externalités et l’existence de I’équilibre concurrentiel

: une approche différentiable.

Dans le Chapitre 2, nous considérons un modele d’économie de propriété privée avec des exter-
nalités de consommation et de production. En utilisant une approche différentiable, nous prouvons
que I’ensemble des équilibres concurrentiels avec des consommations et des prix strictement positifs

est non vide et compact.

Notre modele d’externalités est basé sur les travaux de Laffont and Laroque (1972), Laffont (1977,
1978, 1988), dans lequel les préférences des individus et les technologies des entreprises dépendent
des choix des autres individus et des choix des autres entreprises. Nous étudions une économie de
propriété privée ou la technologie de chaque entreprise est décrite par une fonction différentiable
appelée fonction de transformation. Les préférences individuelles sont représentées par une fonction
d’utilité. Les fonctions d’utilité et les fonctions de transformation sont affectés par la consommation

des autres individus et par les choix de production des autres entreprises.

Les agents économiques (individus et entreprises) prennent le systeme de prix et les choix des autres
comme donnés dans leur programme de maximisation. Le concept d’équilibre concurrentiel est un
concept d’équilibre a la Nash et I'allocation d’équilibre doit étre compatible avec les ressources ini-
tiales des agents. Ce concept couvre la notion classique d’équilibre en absence d’externalités. Le
résultat principal du Chapitre 2 est le Théoréme 2.8 qui énonce que pour toutes les dotations initiales,
I’ensemble des équilibres concurrentiels avec des consommations et des prix strictement positifs est

non vide et compact.

En suivant les travaux de Smale (1974, 1981) et les travaux plus récents de Villanacci and Zengi-
nobuz (2005) et de Bonnisseau and del Mercato (2008), nous démontrons le Théoréme 8 en util-
isant : lapproche élargie (extended approach) de Smale, un démonstration par homotopie et la
théorie du degré topologique modulo 2. L’approche élargie de Smale décrit les équilibres en termes

d’équations en utilisant les conditions du premier ordre associées aux problemes d’optimisation des



agents économiques et les conditions d’équilibre sur les marché. L’idée de ’homotopie est que chaque
économie avec des externalités est reliée par un arc a une économie sans externalités, et les equilibres

bougent de maniére continue tout au long de 'arc sans quitter la frontiere.

Chapitre 8 - Régularité des économies de propriété privée avec externalités.

Dans le Chapitre 3, nous considérons des économies de propriété privée avec externalités de con-
sommation et de production. Nous étudions des conditions suffisantes pour la régularité générique

de ces économies.

Nous rappelons qu'une économie est réguliere s’elle a un nombre fini d’équilibres et chaque équilibre
dépend localement de maniére continue ou différentiable des parametres qui décrivent 1’économie.
Par conséquence, dans une économie réguliere il est possible d’effectuer une analyse de statique
comparative.

L’importance des économies régulieres et les questions liées a ’approche globale de I'analyse des

équilibres peuvent étre retrouvés dans Smale (1981), Mas-Colell (1985), Balasko (1988).

En présence d’externalités, les économies régulieres sont également importantes pour étudier des
politiques d’amélioration au sens de Pareto et les restrictions testables qui sont encore des questions

ouvertes et importantes.

Comme il a été démontré dans Bonnisseau and del Mercato (2010), dans le cas des externalités de
consommation, la régularité peut échouer si les effets externes du second ordre sont trop forts. Donc,
nous introduisons également une hypotheése supplémentaire sur les effets externes du second ordre

sur les fonctions de transformation.

Dans le Chapitre 3, nous donnons deux exemples d’économie avec des externalités de production et
une infinité d’équilibres pour toutes les dotations initiales. Dans les deux exemples, les fonctions de
transformation satisfont nos hypothse sur les effets externes du second ordre. Ainsi, I’hypotheses de
base et hypothese supplémentaire sur les effets externes du second ordre mentionnées ci-dessus peu-
vent ne pas étre suffisantes pour garantir le résultat de régularité. Par conséquent, nous introduisons
des déplacements des frontieres des ensembles de production, c’est-a-dire de simples perturbations
des fonctions de transformation. Le résultat principal est le Théoreme 3.19 qui énonce que presque

toutes les économies perturbées sont régulieres.
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Chapter 1

Private versus public consumption within groups: testing the

nature of goods from aggregate data !

Abstract

We study the testability implications of public versus private consumption in collective models of
group consumption. The distinguishing feature of our approach is that we start from a revealed
preference characterization of collectively rational behavior. Remarkably, we find that assumptions
regarding the public or private nature of specific goods do have testability implications, even if
one only observes the aggregate group consumption. In fact, these testability implications apply
as soon as the analysis includes three goods and four observations. This stands in sharp contrast
with existing results that start from a differential characterization of collectively rational behavior.
In our opinion, our revealed preference approach obtains stronger testability conclusions because it
focuses on a global characterization of collective rationality, whereas the differential approach starts

from a local characterization.

JEL classification: D11, D12, D13, C14.
Keywords: multi-person group consumption, collective model, revealed preferences, public goods,

private goods, consumption externalities.

1.1 Introduction

Testable restrictions on the classical general equilibrium model have been widely studied in litera-

ture, see for example the seminal paper of Brown and Matzkin (1996), and Chiappori et al. (2004).

IThis Chapter is based on Cherchye et al. (2012) which has been presented at the “Dauphine
‘Workshop in Economic Theory — Recent Advances in Revealed Preference Theory: testable restrictions
in markets and games”, Université Paris-Dauphine, France. So, Chapter 1 has also benefited from the
comments of these audiences. We thank Georg Kirchsteiger and Paola Conconi for useful comments.

9
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The first testable restrictions in a model that involves externalities and public goods are provided
by Browning and Chiappori (1998a) for a collective consumption model. More precisely, the authors
consider a non-unitary household model in which the decisions taken by the two intra-household

members are Pareto efficient.

In the last decades, the collective consumption model for the analysis of household decisions has
become increasingly popular. The reasons for this interest stand in that individuals within a house-
hold are heterogeneous (i.e. they have different preferences) and an intra-household decision process
takes place within a household. The standard unitary model considers a household as a single de-
cision maker who maximizes his preferences subject to his budget constraint. The unitary model is
obviously too restrictive, since it implicitly endows households, rather than individuals, with prefer-
ences over consumption goods. There exists empirical evidence showing that the unitary model does
not hold for household decisions. In particular, the well-known properties of the classical demand

function and especially the symmetry of the Slutsky matrix are often rejected.?

In Browning and Chiappori (1998a), one does not observe what goods are privately consumed and
what goods are publicly consumed within the household. The authors assume that only prices and
aggregate demand with respect to some power distribution between the two intra-household mem-
bers are observed. Using a “parametric” approach based on differentiable techniques, they establish
that for a two-person household, collectively rational group behavior requires a pseudo-Slutsky ma-
trix that can be written as the sum of a symmetric negative semi-definite matrix and a rank one
matrix. The symmetric negative semi-definite matrix is the classical Slutsky matrix, which measures
the change in demand induced by the variation of prices and income. The rank one matrix measures
the change in demand induced by the variation of power distribution. Furthermore, the authors
show that a collective model with two intra-household members can be rejected if at least five goods

are present in the economy.

Building further on the original work of Browning and Chiappori (1998a), Chiappori and Ekeland
(2006) particularly focused on the testability conclusions regarding the private and public nature of
group consumption. Their main conclusion is that, following a differential approach, the private
and public nature of consumption is not testable. More precisely, the authors show that the
collective consumption model has exactly the same testability implications as two more specific col-
lective (benchmark) models. In the first benchmark model, all goods are publicly consumed within

the household and in the second benchmark model, all goods are privately consumed within the

2See for example, Browning and Chiappori (1998b) and Browning and Chiappori (1998a).
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household.

Differently from Browning and Chiappori (1998a), Cherchye et al. (2007) provide a “non-parametric”
characterization of the collective consumption model in the tradition of Afriat (1967) and Varian
(1982).3 This approach does not rely on any functional specification regarding the group consump-
tion process, and it typically focuses on revealed preference axioms (i.e. GARP or related axioms).
In Cherchye et al. (2007), assuming positive externalities the authors derive necessary and sufficient
conditions for a rationalization of a data set consistent with the collective consumption model. Fur-
thermore, the authors show that it is sufficient to have a data set with three observations and three

goods to reject collective rationality for a household with two members.

In Chapter 1, using the “non-parametric” restrictions found by Cherchye et al. (2007), we comple-
ment the results of Chiappori and Ekeland (2006). In particular, we provide examples showing that
the private and public nature of consumption have testable implications. So, in contrast
to the findings for the differential approach, we will conclude that our revealed preference approach
does imply testability of privateness versus publicness of consumption, even if one only observes
the aggregate group consumption. In addition, we will obtain that the model with all consumption
public is independent from (or non-nested with) the model that assumes all consumption is private
and preferences are egoistic: a data set that satisfies the revealed preference conditions for the first

model does not necessarily satisfy the conditions for the second model, and vice versa.

How can we interpret this difference between the testability conclusions of our approach and the
ones of the differential approach? Our explanation is that Chiappori and Ekeland’s differential
approach focuses on ‘local’ conditions for collective rationality (which apply in a sufficiently small
neighborhood of a given point). By contrast, the revealed preference conditions on which we focus
are ‘global’ by construction.? In this interpretation, the global nature of the revealed preference
conditions implies stronger testability conclusions. In fact, we believe our results may have inter-
esting implications from the viewpoint of practical applications. For example, they suggest that a
practitioner may usefully apply the revealed preference characterization to verify if the data satis-
fies a particular specification the collective model (in terms of publicly and/or privately consumed

goods), prior to the actual empirical analysis.

Following a similar revealed preference approach, Cherchye et al. (2010) also considered testability

3 See also Samuelson (1938), Houthakker (1950) and Diewert (1973) for seminal contributions on the revealed
preference approach to analyzing consumption behavior.

4See for example Hurwicz (1971) and Pollak (1990) for discussions on the difference between the global revealed
preference approach and the local differential approach.
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of the private versus public nature of consumption within groups. A specific feature of their analysis
is that it allowed for non-convex preferences of the individual group members. These authors obtain
the same nontestability conclusion as Chiappori and Ekeland (2006). Our following analysis differs
from the one of Cherchye et al. (2010) in that we assume that individual preferences are convex
(and represented by concave utility functions). This assumption of convex preferences follows the
original analysis of Chiappori and Ekeland. As indicated above, we now do obtain different testa-
bility implications under alternative assumptions on the (public or private) nature of goods. When
comparing this to the findings of Cherchye et al. (2010), we conclude that the assumption of convex

preferences is crucial for obtaining our testability conclusions.

The remainder of the paper unfolds as follows. To set the stage, Section 1.2 defines collectively
rational group consumption behavior in terms of the (general and specific) collective models that we
will consider. Section 1.3 discusses the revealed preference characterization of such rational behavior.
Section 1.4 shows our testability results on public versus private consumption in the group. Section

1.5 summarizes our main conclusions. Finally, in Appendix we provide some technical details.

1.2 Collective rationality

Following Chiappori and Ekeland (2006, 2009), we will concentrate on three collective consumption
models in what follows. We will consider the general collective model (general-CR) of Browning and
Chiappori (1998a) as well as two specific benchmark models, i.e. the collective model with all goods
public (public-CR) and the collective model with all consumption private and egoistic preferences
(egoistic-CR). In this section we introduce the necessary concepts to study these three collective

models.

Throughout, we consider groups (or households) that consist of two members.> We assume a group
that purchases the (non-zero) N-vector of quantities g € RY with corresponding prices p € RY,.
All quantities can be consumed privately, publicly, or both. For the general collective model, we
will assume that the empirical analyst has no information on the decomposition of the observed q
into the bundles of private quantities q', q and the bundle of public quantities q". Therefore, we
need to introduce (unobserved) feasible personalized quantities q that comply with the (observed)

aggregate quantities q. More formally, we define

5The results below can be generalized towards the setting of M members, with M > 2. However, we believe that
the core arguments underlying our results are better articulated for this simple case.
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d=(q",9%,9") with q*,¢%,q" € RY and q' +¢*> +4" =q.

Each g captures a feasible decomposition of the aggregate quantities q into private quantities and
public quantities. This will be useful for modeling general preferences that depend on private con-
sumption as well as public consumption. In the following, we consider feasible personalized quantities
because we assume the minimalistic prior that only the aggregate quantity bundle q and not the

‘true’ personalized quantities are observed. Throughout, we will use that each q defines a unique q.

The collective model explicitly recognizes the individual (convex) preferences of the group members.
For the general model, these preferences may depend not only on the own private quantities and the
public quantities, but also on the other individual’s private quantities. This allows for externalities
between the group members. Formally, this means that the preferences of each group member m
(m =1,2) can be represented by a well-behaved utility function of the form U™ (q',q?, q"), with
a=q'+q’>+q" and m=1,2.5

Suppose then that we observe T' choices of N-valued bundles. For each observation ¢ the vector
q: € Rf records the quantities chosen by the group under the prices p; € Rf + (with strictly positive
components). We let S = {(ps,q¢);t = 1,...,T} be the corresponding set of T observations.” A
collective rationalization of a set of observations S requires the existence of utility functions U' and
U? such that each observed quantity bundle can be characterized as Pareto efficient. Thus, we get

the following definition.

Definition 1.1 (general-CR) Let S = {(pt,q:);t =1,...,T} be a set of observations. A pair of
utility functions U and U? provides a general-CR of S (i.e. a collective rationalization in terms of
the general collective model), if for each observation t there exist feasible personalized quantities q;
such that U™ (Z) > U™ (q;) implies U' (Z) < U' (qQ:) (m # 1) for all feasible personalized quantities
z with p;q; > psz.

The two benchmark cases considered below involve restrictions on the individual preferences and the
nature of the goods. In the first case we assume that all consumption is public. We formalize this by
assuming individuals preferences that are represented by a well-behaved utility function U;Zb(qh).
Clearly, in this case we have q" = q (or q' + ¢q> = 0), i.e. the true personalized quantities are

effectively observed. Given all this, Definition 1.1 directly leads to the following definition.

6As in the differential approach, we say that a function is well-behaved if it is concave, differentiable and mono-
tonically increasing.
"For ease of exposition, the scalar product p,q¢ is written as ptqq.
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Definition 1.2 (public-CR) Let S = {(p:,q:);t = 1,...,T} be a set of observations. A pair
of utility functions U;ub and Ugub provides a public-CR of S (i.e. a collective rationalization in
terms of the collective model with only public consumption), if for each observation t we have that

U, (2) > Uy (Qe) implies U;lmb (z) < U;lzub (ar) (m #1) for all z with piq: > piz.

The second benchmark case assumes that all consumption is private, i.e. q* + g% = q (or q" = 0).
In addition, the individuals have egoistic preferences, which implies that they only care for their
own consumption (i.e. no consumption externalities). We formalize this by assuming individual
preferences that are represented by a well-behaved utility function Ug’;o(qm), with m = 1,2. The

corresponding concept of collective rationality is as follows.

Definition 1.3 (egoistic-CR) Let S = {(ps,q:);t = 1,...,T} be a set of observations. A pair of
utility functions Uelgo and Uezgo provides an egoistic-CR of S (i.e. a collective rationalization in terms
of the collective model with all consumption private and egoistic preferences), if for each observation
t there exist feasible personalized quantities q;, with q"* = 0, such that U, (z) > U™, (q;) implies

ego ego

Ul (@z) < U, (d;) (m#1) for all feasible personalized quantities 7z with p;q; > Pz and 3" = 0.

ego ego
1.3 Revealed preference characterization

Cherchye et al. (2007, 2011) derived the revealed preference characterizations for the three models
discussed in the previous section. To formally define these revealed preference conditions, we will

use the concept of feasible personalized prices p* and p2.

p = (P17p2,ph) and p? = (p—pl,p—pQ,p—ph) with
plopZp" € Rf and p¢ < p for c=1,2h.

This concept complements the concept of feasible personalized quantities defined above: p' and p>
capture the fraction of the price for the personalized quantities q that is borne by the respective
members. p' and p? refer to private quantities and are used to express the willingness to pay for the
externalities related to these private quantities; p” refers to the public quantities and are similarly

used to express the willingness to pay for the public quantities.

The revealed preference conditions make use of the Generalized Aziom of Revealed Preference
(GARP). Varian (1982) introduced the GARP condition for individually rational behavior for ob-
served prices and quantities; i.e. he showed that it is a necessary and sufficient condition for the

observed quantity choices to maximize a single utility function under the given budget constraint.
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We focus on the same condition in terms of feasible personalized prices and quantities; the next
Proposition 1.5 will establish that collective rationality as defined in the above definitions requires

GARP consistency for each individual member.

Definition 1.4 Consider feasible personalized prices and quantities for a set of observations S =
{(pt,q¢);t=1,...,T}. For m=1,2, the set {(p}*,aq}*); t =1,...,T} satisfies GARP if there exist
relations R{*, R™ that meet:

(Z) if f);"ae > ﬁTaf then s Ri d;

(ii) if 4s Ry* Qu, Qu Ry Qu, ---, Q. RY Q¢ for some (possibly empty) sequence (u, v, ..., z) then
as R™ at;

(i) if 4s R™ qy, then PiQy < Peds-

We can now state the revealed preference characterization of the general collective model (i.e.

general-CR) that is derived in Cherchye et al. (2007).

Proposition 1.5 Let S = {(ps,q:);t =1,...,T} be a set of observations. The following conditions

are equivalent:

(i) there exists a combination of well-behaved utility functions U' and U? that provide a general-CR
of S
(i) there exist feasible personalized prices and quantities such that for each member m = 1,2, the

set {(py",qr); t =1,...,T} satisfies GARP.

Essentially, condition (ii) states that collective rationality requires individual rationality (i.e. GARP
consistency) of each member in terms of personalized prices and quantities. In general, however,
the true personalized prices and quantities are unobserved. Therefore, it is only required that there

must exist at least one set of feasible personalized prices and quantities that satisfies the condition.

The characterization in Proposition 1.5 is easily adapted to the two benchmark cases considered in
the previous section; see also Cherchye et al. (2011) for more discussion. For a public-CR of the
data we need to include that all consumption is public. The implication is that only the willingness
to pay for the public consumption will be relevant for the GARP test. This is contained in the

following result.

Proposition 1.6 Let S = {(ps,q:);t =1,...,T} be a set of observations. The following conditions

are equivalent:

i) there exists a combination of well-behaved utility functions U' ., and U? , that provide a public-
pub pub

CR of S;
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(ii) there exist feasible personalized prices and quantities, with qf = q7 = 0, such that for each

member m = 1,2, the set {(py",qr); t = 1,...,T} satisfies GARP.

Similarly, for an egoistic-CR of the data we need to add to the second condition that all consumption
is private (i.e. q = 0) and that the preferences are egoistic, implying that the willingness to pay

for externalities is zero (i.e. p; = p; and p? = 0).

Proposition 1.7 Let S = {(ps,q:);t =1,...,T} be a set of observations. The following conditions

are equivalent:

(i) there exists a combination of well-behaved utility functions Uelgo and U, 6290 that provide an egoistic-
CR of S;

(ii) there emwist feasible personalized prices, with p; = p; and p? = 0, and feasible personalized
quantities, with qF = 0, such that for each member m = 1,2, the set {(p7*,q:); t = 1,..., T} satisfies
GARP.

1.4 Testing the nature of goods

We next show that the nature of goods is testable, even if we only observe the aggregate group
behavior. More specifically, we will prove two main results by means of example data sets. Firstly,
we provide data sets for which there exists a general-CR but not a public-CR or, respectively,
an egoistic-CR. This implies that consistency with the general model does not necessarily imply
consistency with any of the specific benchmark models. Putting it differently, rejection of the
specific benchmark models in these examples is caused by the corresponding assumptions on the
nature of the goods and not by the Pareto efficiency assumption as such. Secondly, our example
data sets will show that the two benchmark models are independent from (or non-nested with) each
other, i.e. data consistency with one benchmark model does not necessarily imply data consistency

with the other benchmark model.

1.4.1 General-CR does not imply public-CR

The following example contains a data set for which there exists a general-CR but not a public-CR.

The Appendix proves our claims in the examples.
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Example 1 Suppose that the dataset S contains the following 8 observations of bundles consisting

of 8 quantities:
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This dataset S satisfies the conditions in Proposition 1.5 (i.e. there exists a general-CR), but it

rejects the conditions in Proposition 1.6 (i.e. there does not exist a public-CR).

This example has two important implications. Firstly, as discussed in the introduction, it contrasts
with the results of Chiappori and Ekeland (2006): following a (local) differential approach, these
authors show that the general collective model and the collective model with only public consump-
tion are indistinguishable if one only observes aggregate group behavior. Example 1 illustrates that

this is no longer the case if one adopts the (global) revealed preference approach.

Secondly, the example demonstrates that we need only three goods and three observations to obtain
our conclusion. In fact, these numbers provide absolute lower bounds on the number of goods and
observations for the collective models to have testable implications. Indeed, it can be verified that
the conditions in Propositions 1.5 and 1.6 cannot be rejected if the number of observations or the
number of goods is smaller than three.® Thus, as soon as collective rationality can be rejected, we can
distinguish the specific model with all consumption public from the general collective consumption
model. In this respect, it is also worth noting that the differential approach needs at least five
goods for verifying the testable implications of the collective consumption model characterized in
Propositions 1.6; see Browning and Chiappori (1998a) and Chiappori and Ekeland (2006). The fact
that our revealed preference approach requires a smaller number of goods illustrates once more that
the (global) revealed preference approach can yield stronger testability conclusions than the (local)

differential approach.

1.4.2 General-CR does not imply egoistic-CR

We next provide an example with a data set for which there exists a general-CR but not an egoistic-
CR.

8If T = 2, one can easily verify that pi” = p1 and pg = 0 is a solution for the GARP conditions in Proposition
1.6 (and thus a fortiori also for the GARP conditions in Proposition 1.5). Next, if N = 2, one can again verify that
member 1 paying for the first good (i.e. (pP')1 = (p1)1) for all observations ¢ and, similarly, member 2 paying for the
second good (i.e. (p/)2 = 0) for all observations ¢ obtains a solution for the GARP conditions in Proposition 1.6.
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Example 2 Suppose that the dataset S contains the following 4 observations of bundles consisting

of 4 quantities:

qi = (1,0,0,0)/, qz2 = (0, 1,0,0)/, as = (0,0, 1,0)/7 qs = (0,0,0, 1)/;
P1 = (7747474)/7 P2 = (47774a4)/a P3 = (47477a 4)/5 P4 = (474a4a 7)/

This dataset S satisfies the conditions in Proposition 1.5 (i.e. there exists a general-CR), but it

rejects the conditions in Proposition 1.7 (i.e. there does not exist an egoistic-CR).

Two remarks are in order. Similar to before, we conclude that the general collective model and the
model with only private consumption and egoistic preferences are distinguishable from each other.
Inter alia, this implies that the private nature of the goods is testable. Again, this conclusion con-
trasts with the one for the differential approach. Next, for mathematical elegance we have used four
goods in Example 2.2 Similar (but less elegant) examples exist for data sets that only consider three

goods.

A final observation applies to the number of observations in Example 2. We have now used four ob-
servations, which contrasts with Example 1. In fact, in general we need minimally four observations
for the collective model with private goods and egoistic preferences to be distinguishable from the
general collective model. This result is formalized in the following proposition, which we prove in

the Appendix.

Proposition 1.8 Let S = {(ps,ar);t = 1,2,3} be a set of three observations. Suppose that there
exists a general-CR of S, then there also exists an egoistic-CR of S.

1.4.3 Independence of egoistic-CR and public-CR

So far, we have shown that the general collective model is distinguishable from the two specific
benchmark models. In the Appendix we argue that a similar conclusion also holds for the two
benchmark cases. More precisely, we show that there exists an egoistic-CR for the data set considered
in Example 1 and a public-CR for the data set considered in Example 2. Generally, this obtains
that data consistency with one benchmark model does not necessarily imply data consistency with
the other benchmark model.

Another interesting implication of this result is that we need no more than four observations and
three goods to distinguish between the three collective consumption models under study. This

conclusion directly carries over to ‘intermediate’ collective models that are situated between the two

9A similar qualification applies to the use of zeroes in Example 2.
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benchmark cases, i.e models which assume that part of the goods is privately consumed (without
externalities) while all other goods are publicly consumed. See Cherchye et al. (2011) for a detailed

discussion (including revealed preference characterizations) of these intermediate models.

1.5 Conclusions

We have shown that the revealed preference approach implies different testability conclusions for
collective consumption models with alternative assumptions on the (public or private) nature of
goods. In particular, we obtain different testable implications as soon as we have three goods and
four observations. Interestingly, these conclusions stand in sharp contrast with the existing results
for the differential approach. As indicated before, our explanation is that we focus on revealed
conditions that are global in nature, whereas the differential approach focuses on local testability
conditions. As for practical applications, our results suggest that the practitioner may fruitfully
apply revealed preference conditions to verify if the data satisfies a particular specification of the

collective model that (s)he wants to use in the empirical analysis.

1.6 Appendix
1.6.1 FExample 1

There exists a general-CR of S. Consider the following personalized quantities and prices:

~ ~ 1 1 =N
q1 = (q170a0)7q2 = (§q27 §q270)7q3 = (O7q3a0)a

p; =p1,p; =0fort=1,2,3.

Then one can easily verify that the GARP conditions in Proposition 1.5 are satisfied for both mem-

bers. This implies that there exists a general-CR of S.

There exists an egoistic-CR of S. By Proposition 1.7 we can conclude that the above construction

also shows that there exists an egoistic-CR of S.

There does not exist a public-CR of S. Let us prove this ad absurdum and assume that we have a

construction of feasible prices that satisfy condition (ii) in Proposition 1.6.
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Observe that for the given set of observations we have for any ¢,s € {1,2,3}, with ¢ # s, that
pP:d; > piqs. Therefore we must have for our solution of feasible prices that either pq; > plqs

r (pr — pM)a: > (pr — p)as. As a result the GARP conditions in Proposition 1.6 require that if
plq: > plqs, we must have that p2qs < plq; and thus (ps —p?)qs > (ps — p?)qs. Or, alternatively,
if q;R{qs, then we must have qsR3q,. Given that this holds for any t,s € {1,2,3}, with ¢t # s,
we may therefore conclude that, without losing generality, the solution of feasible prices leads to (i)

q1R}da and g2 Riqs3 for member 1; and (ii) g3 R3q2 and g2 R3q; for member 2.

Assume that p = (71, m,73)". The GARP condition for member 1 in Proposition 1.6 requires that

phas <phqr & 2m + 5mo + 213 < By + 2ma + 273

& 0<m —mo.
The GARP condition for member 2 in Proposition 1.6 requires that

(P2 = pH)a2 < (P2 —Ph)as & 2(1—m) +5(4 — m) +2(1 — m3)
§2(1—7T1)+2(4—7T2)+5(1—7T3)

& 3 < my —ms.

Together this implies that 3 < w3 < 71, which gives us the wanted contradiction since by construction

m < 1. We thus conclude that there cannot exists a public-CR of the data set in Example 1.

1.6.2 FExample 2

There exists a general-CR of S. Consider the following personalized quantities and prices:
al = (07 03 q1)7 aQ = (03 07 q2)7 afﬁ - (07 07 qS); 614 = (07 05 q4)7
ph = (6,2,2,2),ph = (4,3.5,0,0),p% = (4,4,3.5,0),p} = (2,2,2,1)".

Then one can easily verify that the GARP conditions in Proposition 1.5 are satisfied for both mem-

bers. This implies that there exists a general-CR of S.

There exists a public-CR of S. By Proposition 1.6 we can conclude that the above construction also

shows that there exists a public-CR of S.

There does not exist an egoistic-CR of S. Let us prove this ad absurdum and assume that we have

a construction of feasible prices that satisfy condition (ii) in Proposition 1.7.
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Again we observe that for the given set of observations we have for any ¢, s € {1,2,3,4}, with ¢ # s,
that pyq; > piqs. Therefore, without losing generality, we can as before assume that the solution
of feasible prices leads to (i) qi1 R}d2, 42 Rids and q3Riqs for member 1; and (ii) q4R3q3, Gz Rid2

and q2R3q; for member 2.

Assume that q = (0,,0,0) and g3 = (0,0,3,0). The GARP conditions for the two members in
Proposition 1.7 require that the following holds:

P22 < P Ta < 4

Pids < Pido 78 < da < 4
T(1—a) <4(1- ) < 4

7(1-B) < 4.

Psda < P3ds

r ¢t 0

ﬁ%@% < ﬁ§a4

This implies that % <a< %7 % <pg< % and % < « and thus also that o > %. As such we obtain
the wanted contradiction and we conclude that there cannot exist an egoistic-CR of the data set in

Example 2.

1.6.3 Proof of Proposition 1.8

Example 1 of Cherchye et al. (2007) shows that there cannot exist a general-CR of S if we observe
that p1q; > p1(q2+4qs), P29z > p2(q1 +493) and psqs > p3(q1+qz) holds simultaneously. Without
losing generality, we assume that paqs < p2(q1 + q3).

Consider the following personalized quantities and prices for an « € [0, 1]:

al = (q1’0’0)7a2 = (aq27 (1 - a)‘l270)7as = (07Q370);
pi =p1,p; =0fort=1,23.

These feasible prices and quantities are consistent with the collective model with only private goods

(i.e. qf = 0) and egoistic preferences (i.e. p} = p; and p? = 0).

Given that paqa < p2(qi + q3), there must exist an @ € [0,1] such that apaqs < p2q; and
(1 — a)p2g2 < p2qs. Omne can then easily verify that for such an o the GARP conditions in
Proposition 1.7 are satisfied for both members. This implies that there exists an egoistic-CR of S.
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Chapter 2

Private ownership economy with externalities and existence

of competitive equilibria: A differentiable approach!

Abstract

We consider a general model of private ownership economies with consumption and production
externalities. Each firm is characterized by a technology described by a transformation function.
Each household is characterized by a utility function, the shares on firms’ profit and an initial
endowment of commodities. Describing equlibria in terms of first order conditions and market
clearing conditions, and using a homotopy approach based on the seminal work by Smale (1974),
under differentiability and boundary conditions, we prove the non-emptiness and the compactness

of the set of competitive equilibria with consumptions and prices strictly positive.

JEL classification: C62, D50, D62.

Keywords: externalities, production economies, competitive equilibrium, homotopy approach.

2.1 Introduction

We consider a general model of private ownership economies with consumption and production
externalities. In a differentiable framework, our purpose is to prove the non-emptiness and the com-

pactness of the set of competitive equilibria with consumptions and prices strictly positive.

IThis Chapter is based on del Mercato and Platino (2013b). We are indebted and very grateful
to the participants of the “Public Economic Theory (PET 10) and Public Goods, Public Projects,
Externalities (PGPPE) Closing Conference” in Bogazici University (2010), and of the “Fifth Economic
Behavior and Interaction Models (EBIM) Doctoral Workshop on Economic Theory”, in Bielefeld
University (2010), for useful comments.

25



26

Why do we care about the existence of equilibria from a differentiable viewpoint? The starting point
of studying the set of reqular economies is the non-empty and compact set of equilibria in a differ-
entiable setting. The relevance of reqular economies and issues related to the global approach of the
equilibrium analysis can be found in Smale (1981), Mas-Colell (1985), Balasko (1988), Villanacci
et al. (2002). So, because of the differentiable approach, this paper is a first step to study regular

economies in production economies with externalities from a global viewpoint.

Our model of externalities is based on the seminal works by Laffont and Laroque (1972), Laffont
(1977, 1978, 1988), where the choices of all households and firms affect individual preferences and
production technologies. We consider a private ownership economy with a finite number of commodi-
ties, households and firms. Each firm is characterized by a technology described by an inequality on
a differentiable function called the transformation function. Firms are owned by households. Each
household is characterized by a consumption set which coincides with the strictly positive orthant of
the commodity space, preferences, shares on firms’ profit and an initial endowment of commodities.
Individual preferences are represented by a utility function. Utility and transformation functions

depend on the consumption of all households and on the production activity of all firms.

Facing a price, each firm chooses in his production set a production plan which solves his profit
maximization problem taking as given the choices of the others, i.e., given the level of externality
created by the other firms and households. Facing a price, each household chooses a consumption
bundle which solves his utility maximization problem under the budget constraint taking as given
the choices of the others, i.e., given the level of externality created by the other households and
firms. The associated concept of competitive equilibrium is nothing else than an equilibrium a la
Nash, the resulting allocation being feasible with the initial resources of agents. This notion includes

as a particular case the classical equilibrium definition without externalities at all.

Our main result is Theorem 2.8 (Section 2.4) which states that for all strictly positive initial endow-
ments, the set of competitive equilibria with consumptions and prices strictly positive is non-empty
and compact. Following the seminal work by Smale (1974), and more recent contributions by Vil-

lanacci and Zenginobuz (2005) and Bonnisseau and del Mercato (2008), we prove Theorem 2.8 using:

(1) Smale’s extended approach.
(2) Homotopy arguments.
(3) The topological degree modulo 2.
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Smale’s extended approach describes equilibria in terms of equations using the first order conditions
associated to the individual optimization problems and market clearing conditions. This approach is
used is different settings, such as incomplete markets, public goods and externalities, see for example
Cass et al. (2001), Villanacci and Zenginobuz (2005), and del Mercato (2006). In the presence of
externalities, this approach overcomes the following difficulty: the individual demand and supply
functions depend on the individual demand and supply functions of the others, which depend on the
individual demand and supply functions of the others, and so on. So, it would be problematic to
define an aggregate supply and an aggregate excess demand which depend only on prices and initial

endowments.

The homotopy idea is that any economy with externalities is connected by an arc to some economy
without externalities at all. Along this arc, equilibria move in a continuous way without sliding off
the boundary. In different settings, the homotopy approach is used, for instance, in Villanacci and
Zenginobuz (2005), del Mercato (2006), Mandel (2008), Bonnisseau and del Mercato (2008) and
Kung (2008).

Our homotopy approach is based on the topological degree modulo 2.2The degree modulo 2 is sim-
pler than the Brouwer degree used in Mas-Colell (1985), which requires the concepts of oriented
manifold.> The reader can find a brief review of the degree theory, for example, in Geanakoplos and
Shafer (1990). In Section 2.6, we recall the definition and the fundamental properties of the degree

modulo 2.

We now compare our contribution with previous works. The existence results by Laffont and Laroque
(1972), Bonnisseau and Médecin (2001), and Mandel (2008) are more general than ours since in these
works individual consumption sets or/and firms technologies are represented by correspondences.
The contributions by Laffont and Laroque (1972), and Bonnisseau and Médecin (2001) are based
on fixed point arguments. Furthermore, in Bonnisseau and Médecin (2001) and Mandel (2008),
non-convexities are allowed on the production side. For that reason, their existence results involve
the concept of pricing rule and more sophisticated techniques than those we use. In Mandel (2008),
the author uses a homotopy approach which differs from ours for two main reasons, the author uses
an excess demand approach and the Brouwer degree. In order to use an excess demand approach,
the author has to enlarge the commodity space treating externalities as additional variables. In
our mild context, we provide an existence proof simpler than the ones provided in Bonnisseau and
Médecin (2001), and Mandel (2008).

2See Milnor (1965), Chapter 4.
3See also Milnor (1965), Chapter 5.



28

The paper is organized as follows. In Section 2.2, we present the model and the assumptions. In
Section 2.3, the concept of competitive equilibrium is adapted to our economy. Then, we focus on
the equilibrium function which is built on first order conditions associated with households and firms
maximization problems, and market clearing conditions. In Section 2.4, we first present our main
result Theorem 2.8 which states that for all initial endowments, the set of competitive equilibria
with consumptions and prices strictly positive is non-empty and compact. Second, we provide the
general homotopy theorem, namely Theorem 2.9, which is used to prove Theorem 2.8. In order to
apply Theorem 2.9, in Subsection 2.4.1, fixing the externalities, we construct an appropriate private
ownership economy that has a unique equilibrium and that is a regular economy. In Subsection 2.4.2,
we provide our homotopy and its properties. All the lemmas are proved in Section 2.5. Finally, in

Section 2.6, the reader can find a brief review on the degree modulo 2.

2.2 The model and the assumptions

There is a finite number C' of physical commodities labeled by the superscript ¢ € C := {1,...,C}.
The commodity space is R¢. There are a finite number J of firms labeled by the subscript j €
J :={1,...,J} and a finite number H of households labeled by the subscript h € H := {1,...,H}.
Each firm is owned by the households and it is characterized by a technology described by a trans-
formation function. Each household is characterized by preferences described by a utility function,
the shares on firms’ profit and an endowment of commodities. Utility and transformation functions
may be affected by the consumption choices of all households and by the production activities of all

firms. The notations are summarized below.

° y; = (yjl, s Yy yjc) is the production plan of firm j, as usual output components are positive
and input components are negative, y_; := (yy)rz; denotes the production plan of firms other
than j, y := (y;)je7-

o 1y = (2},..,25,..,2%) denotes household h’s consumption, z_j, := (21 )rzn denotes the consump-
tion of households other than h, z := (xp)pen.

e Following Mas-Colell et al. (1995), the production set of firm j is described by an inequality on a
function ¢; called the transformation function. The transformation function is a convenient way
to represent a production set using a function. We remind that, in the case of a single-output
technology, the production set is commonly described by a production function f;. That is, if
¢(j) € C denotes the output of firm j, then the production function f; gives the maximum amount

of output that can be produced using a bundle of inputs (yjl, . ,y]c-(j)_l, y]c-(j)H, . ,yJC) The
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transformation function is the counterpart of the production function in the case of production

processes which involve several outputs.

The main innovation of this paper comes from the dependency of the transformation function
t; with respect to the production activities of other firms and households consumption. So, we
assume that ¢; describes both the technology of firm j and the way firm j’s technology is affected
by the actions of the other agents. More precisely, given y_; and z, the production set of the firm

j is given by the following set,
Yj(y—j,2) = {y; €RY : t;(y;,y-5,2) <0}

where the transformation function ¢; is a function from RY x REU=1 x RCH to R, ¢ := (¢;) e
In the particular case of a single-output technology, the transformation function of firm j is given
by

j =1 c(j)+1
ti(Yj, y—j, ) = y;(j) - fj(yjl7~-~,y]c-(J) ,yjc-(j) s US Y=g ) (2.1)

where the dependency of the production function f; with respect to the input amounts

(yjl», ey y;(j)fl, yj(j)+1, . 7yJC) has the usual meaning whereas the dependency with respect to
(y—j, ) simply means that the production function of firm j is affected by the actions of the other
agents.

Household h has preferences described by a utility function,
un : (Th, -p,y) € RE, X Ri(Hil) x R — up(wp, x-p,y) €R

up(zp, _p,y) is the utility level of household h associated with (zp,z_p,y). So, up, describes the
way household h’s preferences are affected by the actions of the other agents, u := (up)pen.

s;jn € [0,1] is the share of firm j owned by household h; s5, := (s;1)jes € [0, 1]7 denotes the vector
of the shares owed by household h; s := (sp)nen € (0,177 §:={s € (0,177 : Y s =1,Vj €

heH
J} denotes the set of shares.

en = (e}, ..,e5,..,e5) denotes household h’s endowment, e := (ep,)nen-
E := ((u,e,s),t) is a private ownership economy with externalities.
C

p¢ is the price of one unit of commodity ¢, p := (p', .., p¢, .., p%) € R£+.
1 c 1

Given w = (w?, .., w®, ..,w®) € RY, we denote w\ := (w',..,w,..,w""1) € RE~1,

We make the following assumptions on the transformation functions.

Assumption 2.1 Forall j € J,
(1) The function t; is a C* function.
(2) For every (y_;,z) € REV=D x RYH  ¢,(0,y_;,z) <0.
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(3) There is at least one commodity c(j) € C such that for every (y_j,x) € REV-D x R{H,
Dyc<j>tj(y;-,y,j7x) >0 for all y; € RC.
i
(4) For every (y_;,x) € RE-1) ngf, the functiont;(-,y—;,x) is C? and it is differentiably strictly

quasi-convez, i.e., for all y; € R, DZJ_ t; (Y, y—j, ) is positive definite on Ker D, t;(y’, y—;, x).4

We remark that, fixing the externalities, the assumptions on ¢; are standard in “smooth” general
equilibrium models. Indeed, from Points 1 and 3 of Assumption 2.1 the production set is closed
and smooth, from Point 4 of Assumption 2.1 it is convex. Point 2 of Assumption 2.1 states that
inaction is possible. Point 3 of Assumption 2.1 means that ¢; is strictly increasing with respect to
some commodity ¢(j). That is, it represents the “free disposal” property with respect to at least one
commodity. In the particular case of a single-output technology, since the transformation function
is given by (3.1), Point 3 of Assumption 2.1 is consistent with the fact that commodity ¢(j) is the
output of firm j. We also remark that we do not require any strong convexity assumption on the

production sets, i.e., t; is not required to be quasi-convex with respect to the externalities.

Let € = (ep)hen € RYH and r = Z en, consider the set of feasible allocations
heH

F(r) = {(z,y) e RY x R | t;(y;,y_j,2) <0,¥j € Jand Yz — > y; <7}
heH Jjeg
and notice that F(r) is obviously non-empty by Point 2 of Assumption 2.1. However, Point 2 of

Assumption 2.1 does not guarantee the non-emptiness of the following set
Z(r) ={(z,y) € Rgf x R | ti(y;,y_j,2) = 0,V € J and Z Tp — Zyj =r}
heH JjET

which is a necessary condition for the non-emptiness of the set of equilibrium allocations that belong
to the boundary of all production sets and satisfy market clearing conditions. So, we make the

following assumption.
Assumption 2.2 For every r € RS, the set Z(r) is non-empty.

We remark that the assumption above is obviously satisfied if the production allocation y = 0 be-
longs the boundary of all production sets whatever is the consumption externality = € Rgf , which

is an assumption of possibility of inaction stronger than Point 2 of Assumption 2.1.

4Let v and v’ be two vectors in R™, v - v’ denotes the scalar product of v and v'. Let A be a real matriz with m
rows and n columns, and B be a real matriz with n rows and | columns, AB denotes the matrixz product of A and B.
Without loss of generality, vectors are treated as row matrices and A denotes both the matriz and the following linear
application A : v € R" — A(v) := AvT € RI™ where vT denotes the transpose of v and RI™ = {wT : w € R™}.
When m =1, A(v) coincides with the scalar product A - v, treating A and v as vectors in R™.
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For any given externality (z,y) € Rgf x R’ we define the set of the production plans which

belong to the production sets,
Y(z,y) = {y € R t;(y},y-5,2) <0, Vje T} (2.2)

We make the following assumption which is in the same spirit as Assumption UB (Uniform Bound-

edness) in Bonnisseau and Médecin (2001), and Assumption P(3) in Mandel (2008).

Assumption 2.3 (Uniform Boundedness) For everyr € RY_, there exists a bounded set C(r) C

RC7 such that for every (z,vy) € Rgf x R¢Y,
/ cJ . !
Y(oy) 0 {y €RY D yf+r>01CC)
The following lemma is an immediate consequence of Assumption 2.3.

Lemma 2.4
1) For every r € RS, there exists a bounded set K(r) C RS x R such that for every (x,y) €
++ ++

R(jf x RC | the following set is included in K (r).

Az, y;r) == {(2,y) e R xRy € V(w,y) and Y af = o) <7}
heH jedJ

(2) For every r € RS, the set of feasible allocations F(r) is bounded.

It is well known that the boundedness of the set of feasible allocations is a crucial condition for
the non-emptiness and the compactness of the equilibrium set. Fixing the externalities, from As-
sumption 2.3, one easily deduces that the set of feasible allocations is bounded. So, in this sense,
Assumption 2.3 is standard. Assumption 2.3 also guarantees that the set of feasible allocations
A(z,y;r) is uniformly bounded with respect to any possible externality. In particular, it implies that
the set of feasible allocations F(r) is bounded. However, for the non-emptiness of the equilibrium
set it would not be sufficient to only assume the boundedness of the set of feasible allocations.’

Lemma 2.4 is used to prove Steps 1.1 and 2.1 in the proof of Proposition 2.15, Section 2.5.

We make the following assumptions on the utility functions.

Assumption 2.5 For all h € H,

(1) The function uy, is continuous in its domain and it is C' in the interior of its domain.

C

(2) For every (x_p,y) € R+(+H_1) x RY7, the function up (-, x_p,y) is differentiably strictly increas-

ing, i.e., Dy, up (), x_p,y) >0 for all z}, € RY, .

5See also Bonnisseau and Médecin (2001) and Mandel (2008), where the authors need uniform boundedness as-
sumptions in order to prove the non-emptiness of the equilibrium set.
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(3) For every (x_p,y) € RESFHA) x RC7 | the function up(-,x_p,y) is C% and it is differentiably

strictly quasi-concave, i.e., for all xj, € RY,, D2 wy(x), x—p,y) is negative definite on
Ker Dy, up (2}, 2—pn,y).

(4) For every (x_p,y) € RE(H_U x RCY and for every uw € Imup(-,x_p,y), clpe{z, € R£+ :

uh(xhax—hvy) Z U’} g R$+

Fixing the externalities, the assumptions on uy are standard in “smooth” general equilibrium mod-
els. In particular, Point 4 of Assumption 2.5 is the classical Boundary Condition (BC) which means
that uj;, has upper counter sets with closure in RE . We notice that in Points 1 and 4 of Assumption

2.5, we consider consumption externalities x_; on the boundary of the set Ri&Hil)

in order to look
at the limit of the behavior of u;, with respect to the consumption externalities. It means that BC
is still valid whenever consumption externalities converge to zero for some commodity.5 We also
remark that we do not require any strong convezity assumption on the preferences, i.e., up is not

required to be quasi-concave with respect to the externalities.

T denotes the set of t satisfying Assumptions 2.1, 2.2 and 2.3, U denotes the set of u satisfying
Assumption 2.5, and £ := U X Rgf x 8§ x T denotes the set of economies. From now on, F =

((u, e, s),t) is any economy belonging to the set £.

2.3 Competitive equilibrium and equilibrium function

In this section, we provide the definition of competitive equilibrium & la Nash and the notion of

equilibrium function.”

Without loss of generality, commodity C is the “numeraire good”. So, given p\ € Rill with

innocuous abuse of notation, we denote p := (p\,1) € Rg ey

Definition 2.6 (Competitive equilibrium) (z*,y*,p*\) € R x RE/ x Rg;l 18 a competitive

equilibrium for the economy E if for all j € J, y; solves the following problem

max p* -y,
y; ERC / (23)
subject to t;(y;,y*;,z*) <0

6See Step 2.2 in the proof of Proposition 2.15, Section 2.5.
7See Debreu (1952) for a game theoretical framework in which the preferences and the strategy set of an agent are
affected by the choices of the others.
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for all h € H, x}, solves the following problem
max  up(xp,z*,,y*
on€RS, ACTR )

subject to p* - xp < p* - (ep + Z Sihy;)
JjeT

(2.4)

and (x*,y*) satisfies market clearing conditions, that is

Soap=ent >y (2.5)

heH heH JjeET

Using the first order conditions, one easily characterizes the solutions of firms and households max-
imization problems. The proof of the following proposition is standard since in problems (2.3) and

(2.4), each agent takes as given the price system and the actions of the other agents.

Proposition 2.7

(1) From Assumption 2.1, if y; s a solution to problem (2.8), then it is unique and it is completely
characterized by KKT conditions.®

(2) From Assumption 2.5, if x} is a solution to problem (2.4), then it is unique and it is completely
characterized by KKT conditions.

(8) As usual, from Point 2 of Assumption 2.5, household h’s budget constraint holds with an equality.
Thus, at equilibrium, due to the Walras law, the market clearing condition for commodity C' is
“redundant”. So, one replaces condition (2.5) by ZIZ\ = Zez + Zy;\

heH heH JjET

Let Z:= (R, xRy )7 x (RO x R4y )7 x Ri;l be the set of endogenous variables with generic ele-

ment € := (z,\,y,,p") := ((Zn, \n)nen, (y;, O[j)jej,p\) where A\, denotes the Lagrange multiplier

associated with household h’s budget constraint, and «; denotes the Lagrange multiplier associated
with firm j’s production constraint. We can now describe the competitive equilibria associated with

the economy E using the equilibrium function F : & — RYI™E,

F (&) := (F"1 (&), F"2 (&) new, (FI1 (€) , FI2(€))jeq, FM (€)) (2.6)
where F™1(€) := Dy, un(xn, x_n,y) — A\up, FP2(€) = —p - (zn — en — Zsjhyj)7 Fil(¢) =
JjET
p— oDyt (Y, y—j, @), FI2(€) = —t;(y5.y—j,x), and FM (€)== > zp = > yh = ey
heH jeTg heH

€ = (5, N\, y*, o, p*\) € Z is an extended equilibrium for the E if and only if F (¢*) = 0. We
remark that, by Proposition 3.7, (z*,y*, p*\) is a competitive equilibrium for E if and only if there

exists (A", a*) such that £* is an extended equilibrium for E. We simply call £* an equilibrium.

8 From now on, “KKT conditions” means Karush—Kuhn—Tucker conditions.
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2.4 Existence and compactness

In this section, we show that the set of competitive equilibria with consumptions and prices strictly

positive is non-empty and compact. The result is provided by the following theorem.
Theorem 2.8 The equilibrium set F~1(0) is non-empty and compact.

In order to prove Theorem 2.8, following the seminal paper by Smale (1974) we use a homotopy
approach, that is, the following theorem which is a consequence of the homotopy invariance of
the topological degree. Following Chapter 4 in Milnor (1965), and more recent contributions by
Villanacci and Zenginobuz (2005), and Bonnisseau and del Mercato (2008), our homotopy approach
is based on the theory of degree modulo 2. The theory of degree modulo 2 is simpler than the
one used in Mas-Colell (1985) which requires the concepts of oriented manifold and the associated
topological degree — the Brouwer degree.” The reader can find a brief review of the degree theory,
for example, in Geanakoplos and Shafer (1990). In Section 2.6, we recall the definition and the

fundamental properties of the degree modulo 2.1°

Theorem 2.9 (Homotopy Theorem) Let M and N be C? manifolds of the same dimension con-
tained in euclidean spaces, y € N and f,g : M — N be such that f is a continuous function, g is
a C* function, y is a regular value for g and #g~'(y) is odd, there exists a continuous homotopy L

from g to f such that L=1(y) is compact. Then,

(1) g~ '(y) is compact and degy(g,y) = 1,
(2) f~(y) is compact and degy(f,y) = 1.

To apply Theorem 2.9, the equilibrium function F' plays the role of the function f. In order to
construct the function playing the role of the function g, we proceed as follows. We fix the exter-
nalities and we construct the so called “test economy”. The test economy is an appropriate private
ownership economy & la Arrow—Debreu without externalities at all. G is the equilibrium function
associated with the test economy and it plays the role of g. In Subsection 2.4.1, we construct the
test economy and the function G, and we provide the main properties of G in Proposition 2.12, i.e.,
#G~1(0) = 1 and 0 is a regular value of G. In Subsection 2.4.2, we provide the required homotopy H
from G to F playing the role of the homotopy L, and Proposition 2.15 which states the compactness
of H=1(0). Using Propositions 2.12 and 2.15, all the assumptions of Theorem 2.9 are satisfied, and

so one gets the following lemma.

9 Also see Milnor (1965), Chapters 4 and 5.
10The reader can find a survey of the theory of degree modulo 2 in Villanacci et al. (2002).
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Lemma 2.10 F~1(0) is compact and degy(F,0) = 1.

Using Lemma 2.10 and the non-triviality property of the topological degree one gets F~1(0) # 0,

and so Theorem 2.8 is completely proved.

Finally, we remark that if E is a reqular economy (i.e., the equilibrium function F is C! and 0 is
a regular value of F'), then using Lemma 2.10 and the computation of the degree modulo 2, one
obviously finds that, at a regular economy, the number of equilibria is finite and odd.'* However,
this paper does not address regularity issues. In the presence of externalities, the analysis of regular
economies is a sensitive topics, see Bonnisseau (2003), Kung (2008), Mandel (2008), and Bonnisseau
and del Mercato (2010). With regard to our model, in the context of the extended approach, it

deserves a separate analysis, see del Mercato and Platino (2013a).

2.4.1 The “test economy” and its properties

We construct the test economy in two steps. First, fixing the externalities, we consider a standard
production economy E and a Pareto optimal allocation of E. Second, using the Second Welfare
Theorem, we construct an appropriate private ownership economy F that has a unique equilibrium.

E is the test economy and it is an economy without externalities at all.

Fix (7,7) € R{H x RY7. Define uy(zp) := up(zn

,Tp,y) for all h € H, t;(y;) = t;(y;,¥_;,7) for
all j € J, and the production economy E := (1, , Z er) which is a standard production economy
heM

without externalities at all.

As stated in the following proposition, it is well known that, under Assumptions 2.1, 2.3 and 2.5,
there exists a Pareto optimal allocation (Z,7) of the economy E and Lagrange multipliers (5, ~, 5)

such that (z, 7, 5, 9, 5) is completely characterized by the first order conditions for Pareto optimality.

Proposition 2.11 There exists a Pareto optimal allocation (Z,7y) € Rff x REY of the economy
E and (E, 0, 5) = ((Ej)jej, (gh)h#ﬁ) eR], x Rf;l x RS, such that (7,7, 3, FGVﬁ) is the unique

solution to the following system.

(1) Dy,ur(x1) =, VR £ 1: (2) 0Dy, un(zn) =, (3) un(zp) =1un(Th)
Vied: (4)v=BDyT(y) (5) —Tiy) =0, 6) Y an—S 5= en 27)

heH JjeJ heH

' The computation of the degree modulo 2 for C! functions and regular values is provided by Proposition 2.17,
Section 2.6.
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Also, it is well known that the Pareto optimal allocation (Z,y) can be supported by some price
system p.'2 From system (2.7), one easily deduces a supporting price p, a redistribution of initial
endowments € = (€p,)pen and the equilibrium equations satisfied by (Z,y) for appropriate Lagrange

multipliers (X, &) € R, x R{,. More precisely, define €, := ), — Z s;ny; and the function

j€T
G:E - RIME,
G (&) = (G" (), G"* ()nen: (G (€), G2 (€))jeq, GM (€)) (2.8)
where G"!(€) = D, un(@n, Ton, ) — np, G"2(8) = —p- (wn — e — Y sjny;), G (§) =
ieT
p— 0Dyt (Y5, 75, T), G2 () = —t;(y;, 75, 7) and GV (€) := Y wy = Yy — Y @
her  jeT  heH

G is nothing else than the equilibrium function associated with the private ownership economy
E := ((m,¢,5),F). Now, define £ := (Z,),7,& ") with f 1= =&, A =37, & 1= 1 for all h # 1

h

and a; = %B—é for all j € J. Using system (2.7), it is an easy matter to check that G(g) =0. As
stated in the following lemma, 5 is the unique equilibrium for the economy Eand E is a regular

economy.
Proposition 2.12 G~1(0) = {¢}, G is C* and 0 is a regular value for G.

Remark 2.13 We remark that the economy E does not necessarily belong to the set of economies
E since the initial endowment €y is not necessarily strictly positive. However, at equilibrium, the
individual wealth is equal to p - T, which is strictly positive. One might consider different redistri-
butions which also involve the shares and give rise to positive endowments.'> The redistributions
we consider do not involve the shares. So, we do not need to homotopize the shares (see the next

subsection).

2.4.2 The homotopy and its properties

The basic idea is to homotopize the endowments and the externalities by an arc from the equilibrium
conditions associated with the test economy E to the ones associated with our economy FE. But,
one finds the following difficulty. At equilibrium, the individual wealth is positive at the beginning

as well as at the end of the homotopy arc.'* However, since the production sets are not required

12Using Debreu’s vocabulary, (%, ) is an equilibrium relative to some price system P, see Section 6.4 of Debreu
(1959).

13 For example, Sjp = = PTh

s n and €y 1= 8n Y p e Ch-
1At the economy E, the individual wealth is positive because of the possibility of inaction (Point 2 of Assumption
2.1) and standard arguments from profit maximization.
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to be convex with respect to the externalities, the individual wealth may not be positive along the
homotopy arc. Consequently, the individual budget constraint may be empty. We illustrate the

details below.

Homotopize the endowments by a segment. Then, for every 7 € [0, 1] the individual wealth is given
by p-[ren + (1 —7)ép] +p- Z sjpy; which is equal to
JjET
pelren+ (1 =7)Zn] +p- Y sinly; — (1 —7)75]

JjeT
So, the individual wealth is positive if p-y; > p-(1—7)y; for all j € J. Using standard arguments from
profit maximization, at equilibrium, this condition is satisfied if (1 — 7)y; belongs to the production
set of firm j. On the other hand, if at same time, one homotopizes the externalities by a segment,

the production set becomes
Yi(ry—j + (1 =7)y_j, 7o+ (1 - 7)T)

But, one does not know whether or not the production plan (1 — 7)y; belongs to the production set
given above unless it satisfies strong convexity assumptions, i.e., the production set is also convex

with respect to the externalities.

To overcome the difficulty described above, we define the homotopy H in two times using two ho-

motopies ® and I". Namely,

e in the first homotopy ®, we homotopize the endowments without homotopizing the externalities,

e in the second homotopy I', we homotopize the externalities in preferences and production sets

without homotopizing the endowments.

Remark 2.14 We remark that,
(1) Under strong convezity assumptions on the production side, endowments and externalities can

be obviously homotopized at the same time.

(2) If the externalities are fived, then only one homotopy is needed, namely the homotopy ®. So,
our homotopy proof covers the case in which the economy E is a standard private ownership

economy without externalities at all.*®

15 In the absence of externalities, in Chapter 9 of Villanacci et al. (2002), one finds a homotopy proof for classical
private ownership economies. Our proof is simpler than the latter one since we do not homotopize the shares.
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Formally, define the following convex combinations
en() :==Ten + (1 —=7)en, a(r) =7+ (1 —7)T, y(7) =7y + (1 = 7)y (2.9)

and the homotopies ®,I": Z x [0,1] — RIME

O (&7) o= ((B"1(&7), "2 (&, 7)nen, (B (&6,7), 872 (€,7))jeq, @M (€,7)) (2.10)
where &1 (¢,7) = Dy, up(wn, Y, &) = Mnp, @2 (€,7) = —p- [1n —en(T) = D sn;); ,T) =
p— oDy ti(y;, 55 T), B2 (E,T) = —t;(y;. 55, 7), @M (E,7) = Y @) — ZJ:EZJE - Zeh(T)\

heH jeT heH
T (&7) == (T (7)), T (&, T)ner, (T2 (6,7), T2 (€, 7)) e, TV (7)) (211)

where "1 (¢,7) = Dy, un(wn, 2-n(7),y(7)) = Anp, T"2 (6, 7) = —p-[zn—en— > _ s;ny;], 9 (§,7) =

JjeT
p— aJD t (yjay—j(T)ax(T))7 Fj.2 (577-) = _tj (yjay—j(T) ( ) FM 57 th Zyj Zeh
heH JjeET heH

Finally, define the homotopy H : = x [0,1] — R4mE,
(&, 2¢) if 0< ¥

H(& ) == )
(&2 — 1) if

The homotopy H is continuous since ¢ and I are composed by continuous functions. Importantly,
H (5, %) is well defined since

1
<3
1
5 <9 <1

®(¢,1) =I'(¢,0)
Furthermore, H (£,0) = ® (£,0) = G(§) and H (£,1) =T (&,1) = F (£). We conclude providing the

following lemma.

Proposition 2.15 H~1(0) is compact.

2.5 Proofs

Proof of Lemma 2.4. Let (¢/,y) € A(x,y;r). Since Z x}, > 0, y’ belongs to the bounded set
heH
C(r) given by Assumption 2.3. Furthermore, for every h € H, 0 < z), < Z z), < Zy; +r.
heH jeg
Thus, there exists a bounded set K(r) C Rff x RY7 such that for every (z,y) € Rgf x R€7,
A(z,y;r) C K(r). Let (x,y) € F(r). By definition, the allocation (z,y) belongs to the set A(x,y;r).

So, Point 1 of Lemma 2.4 implies that F(r) C K(r).
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Proof of Proposition 2.11. Let E be the production economy defined in Subsection 2.4.1.

Denote r := Z en and remind that A(Z,7;7) = {(«/,y') € RYY x R : §;(y)) <0, Vj €
heH

J and Zxﬁl — Zy§ < r}. Consider the set U(r) := {(u})hen € H Imay, | 3(2',y) €
heH Jjeg heH
AT, y;r): ap(x),) > uj, Yh € H}

By Point 2 of Assumption 2.1, the set U, is non-empty. Fix (u})nen € U(r) and consider the

following maximization problem

max uy(x
L 1(21)
subject to ti(y;) <0, VjieJ

2.12
ﬂh(xh) > ’LL;“ Vh e H ( )

Z Tp — Z y; <r

heH JjeJ
Step 1. Problem (2.12) has at least a solution. Let K be the set determined by the constraints of
problem (2.12). K is non-empty since (uj,)nen € Ur. We claim that K is compact. Define the set
N := {(z,y) € R¢Y x R wy,(zp,) > u), Vh € H} and notice that K = N N A(Z,7;7). So, K is
bounded by Lemma 2.4. Furthermore, K is a closed set included in Rif x RE7. Indeed, take a
sequence (z”,y"),en in K converging to some (z,y). Since (z”,y”),en € N, (z,y) belongs to the
closure of N which is included in R{% x R/ by Point 4 of Assumption 2.5. So, (z,y) € R xR/,
Since the functions @, and ¢; are continuous, (z,y) € K which completes the proof of the claim. By

Weierstrass’ Theorem, there exists a solution to problem (2.12).

Step 2. Let (z,y) be a solution to problem (2.12). Then, (z,y) solves the following problem and it

is a Pareto optimal allocation of the economy E.

max ur(x
B . 1(21)
subject to —ti(y;) >0, VjeJ

ﬂh(.’bh) —ﬂh(fh) >0, Vh 75 1 (213)

T*ZZ’thZijO

heH JjET

Let K; be the set determined by the constraints of problem (2.13), (Z,y) obviously belongs to Kj.
Consider now (z,y) € K; and remind that K is the set determined by the constraints of problem
(2.12). Tty (x1) > uf, then (x,y) € K and so Uy (Z1) > @y (z1). Uy (xr) < uf, then wy (1) > Uy (21)
since w1 (71) > u). Thus, (Z,y) solves problem (2.13). Now, suppose by contradiction that (z,7y) is

not a Pareto optimal allocation of E. Then, there is another allocation (Z,%) € Rgf x RE7 such
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that ;(7;) < 0 for all j, > & <r+ > §j, Un(Zn) > Wp(Fn) for all b, and W(Zy) > () for
heH jeTJ
some k € H. If k = 1, then we get a contradiction since (Z,%) solves problem (2.13). If k # 1,

using the continuity of @y, there exists € > 0 such that ug(Zr — £1¢) > ur(ZTx) where the vector
1¢ e RJC; has all the components equal to 0 except the component ¢ which is equal to 1. Consider
the allocation (z,y) defined by x1 := Ty 4+ €1¢, x := Ty — €1¢, xp, := T for all h # 1, h # k, and
y; =17, for all j. (z,y) € Ky and ©y(z1) > Ti(Z1) since U is strictly increasing. So, once again we

get a contradiction since (Z,y) solves problem (2.13).

Step 3. Let (Z,7) be a solution of problem (2.12). Then, there exists (3,0,7) := ((Ej)jgj, (ah)h;élﬁ)
]R_JH_ X Rf;l X R£+ such that (T, 9, B, 5, J) is the unique solution to system (2.7). We first prove

the existence of (E, 5, ¥), afterwards we show the uniqueness of (z, 9, 5, 9~, J).

Ezistence of (3,6,7) > 0. By Step 2, (Z,) solves problem (2.13). The KKT conditions associated
with problem (2.13) are given by

Dq;lﬂl(lld) =, Vh 7é 1: ehD:chﬂh(:L’h) =7 eh(ﬂh(wh) _ﬂh(ih)) =0

Vi €T s v=B8Dyti(y;), Bi(—Ei(y;) =0, Ve €C: v°(r° = > af+ > y5) =0
heH €T

(2.14)

where (8,0,7) := ((8)je7, (On)nz1, (Y¢)eec) € RL x Rffl xRY are the Lagrange multipliers associated with
the constraint functions of problem (2.13). We first claim that KKT conditions are necessary conditions
to solve problem (2.13). It is enough to verify that the Jacobian matrix associated with the constraint
functions of problem (2.13) has full row rank equal to N := J + (H — 1) + C. The matrix given below is the
N x N square sub-matrix which is obtained considering the partial derivatives of the constraint functions
with respect to ((y;<j))je], (2} )h1, 1), where for every j € J, ¢(j) denotes the commodity given by Point
3 of Assumption 2.1.16 Point 3 of Assumption 2.1 and Point 2 of Assumption 2.5 imply that the determinant

of this square sub-matrix is different from zero, which complete the proof of the claim.

[ -D cyfalv) - 0 0 0 0
Y1
0 co =D (nyEslup) o o 0
Yy
0 0 D 1ua(w2) ... 0 0
2
0 0 0 DI}JHH(@H) 0
[1C(1>]T [1C(J>]T 7[11]T - 11}T —Ic |

Therefore, there exists (B, 67, ) > 0 such that (,7, B, 5, ¥) solves system (2.14). Furthermore, Point 3 of
Assumption 2.1 and Point 2 of Assumption 2.5 imply that all the Lagrange multipliers (E, 5, 7) must be
strictly positive. Consequently, all the constraints of problem (2.13) are binding, and so (7,7, 57 5, J) is a

16We remind that for every commodity ¢, the vector 1¢ € Rg has all the components equal to 0 except the
component ¢ which is equal to 1.
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solution to system (2.7).

Uniqueness of (Z,7, 57 67, 7). Define 0, = 1, by equations (1) and (2) of system (2.7), for all h one

gets Dg, Un(ZTn) = gi. So, for every h, Tj solves the maximization problem: max ap (xp) subject to
h Tp €R++
ol

cxp < gi - T, because KKT are sufficient conditions to solve this problem. Thus, the uniqueness of Zp,
h h

obviously follows from the strict quasi-concavity of u,. Analogously, by equations (4) and (5) of system

>

(2.7), y; solves the maximization problem: max Ei -y;j subject to t;(y;) < 0 for every j. Thus, the unique-

y; ERC Pj
ness of y; follows from the continuity and the strict quasi-convexity of ¢;. Therefore, (Z,7) is unique, and

consequently, the uniqueness of (3,6, 7) obviously follows by equations (1), (2) and (4) of system (2.7).

Proof of Proposition 2.12. For the proof we use the functions %y, and t; defined in Subsection 2.4.1. We
have already pointed out that G(g) =0. Let & = (', X,9,a',p") € 2 be such that G(¢') = 0, we show
that £ = ¢'.

First, notice that

DoTh— D Y= en (2.15)

heH jeg heH
Indeed, summing G"2(¢') = 0 over h, by GM (¢/) = 0, one gets Z xh, — Z Yy = Z'éh. Using the definition
heH jeT heH

of e, and Proposition 2.11, one easily deduces (2.15).

Second, we show that
ﬂh(l’/h) =un(Tr),Yh € H (2.16)

From G"1(¢') = G"2(¢') = 0, x}, solves the following maximization problem

max Up(zh)
, ER
e o o (2.17)
subject to p'-xp <p «xh+Zsjhp (Y5 —Y5)
JjeT
. . . i1 j.2
because KKT are sufficient conditions to solve this problem. Analogously, from G7'(¢') = G7#(¢') = 0, y;

solves the maximization problem: max, p’ - y; subject to £;(y;) < 0. Notice that y; satisfies the constraint
y,; ER

of this problem because Gj‘2(§~) = 0. Thus, p - (y; — ;) > 0 for all j, and consequently, Z5 belongs to the
budget constraint of problem (2.17). So, U (x},) > Un(Zp) for all h. Now, suppose that ux(z}) > Uk (Tx) for
some k € H. From (2.15) and G72(¢’) = 0 for all 5, one deduces that (z',%’) is a feasible allocation of the
production economy E, and so one gets a contradiction since (#,%) is a Pareto optimal allocation of E by

Proposition 2.11. Thus, (2.16) is completely proved.

Now, define 8’ := (Bj)jes where 8 = Naj for all j, ' := (6})n»1 where 6}, := ;—,,1 for all h # 1
h
and 4" := Ap'. From G™'(¢) = 0 for all h, G71(¢') = G73(¢') = 0 for all 5, (2.15) and (2.16), it
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is an easy matter to check that (z',y',’,60',7") solves system (2.7). So, Proposition 2.11 implies that
(Z,7,5,0,7) = (2',y/, B,0',7"), and consequently, one obviously deduces that & = ¢’

We remark that G is C* by Point 4 of Assumption 2.1 and by Point 3 of Assumption 2.5. Finally, in order

to show that 0 is a regular value for G, one proves that D¢G (E ) has full row rank. In this regard, we show
that if AD¢G(€) = 0, then A = 0 where A := ((Axh, AN)ner, (Ay;, Aay)jers Ap\) € RE™E. The system

AD:G(§) = 0 is given below.

(h.1) AzpDZ, n(Tn) — AXeD + Ap\ [Ic-1]0] =0, Vh € H

(h2) —Azy-p=0,VheH

(1) Y Adnssnb — @;Ay; Dy 15(F5) — Aoy Dy, 1) — Ap' [Ie—1|0] = 0, ¥V j € T
heH

(7:2) —Ay;-Dy,t;(y;) =0, VjeT

(M) = > XAzy + > Ayy =0

heH JjeT

We first prove that Az, = 0 for all h € H. Otherwise, suppose that there is h € H such that Azy #0. The

proof goes through the two following claims that contradict each others.

We first claim that Ap\ - (Z XhAxZ) > 0. Multiplying (h.1) by AnAzy, and summing over h, from (h.2) we
heH
get Z XhAthzhﬂh(ih)(Azh) = —Ap"- (Z F)v\hAmz). From (h.2), multiplying G"(€) = 0 by Az, we
heH heH
get Az, - Dy, un(Zr) = 0 for all h. Therefore, Point 3 of Assumption 2.5 completes the proof of the claim

since Xh > 0 for all h and Az # 0.

Second, we claim that Ap - Az < 0. From (5.2), multiplying both sides of G’ E =0 by Ay;, we
h i

heH
get Ay;-p = 0. So, multiplying (j.1) by Ay; and summing over j, from (j.2) we get — Z &jijDijfj(ﬂj)(ij) =
Jj€T
Ap\ - ZAy}. Since, @, > 0 for all j, Point 4 of Assumption 2.1 and (5.2) imply that Ap" - Zij\- <o.
j€eJ jeJ

Using (M), the claim is completely proved.

Since p¢ = 1 and Axj, = 0 for all h € H, from (h.1) we get A\, = 0 for all h, and so Ap\ = 0. Thus,
multiplying (j.1) by Ay;, Point 4 of Assumption 2.1 and (j.2) imply that Ay; = 0. So, using once again
(7.1), we get Aa; = 0 by Point 3 of Assumption 2.1. Therefore, A = 0.

Proof of Proposition 2.15. Observe that H~*(0) = ®'(0) UT*(0). Since the union of a finite number

of compact sets is compact, it is enough to show that ®~*(0) and I'"*(0) are compact.

Claim 1. ®*(0) is compact.
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We prove that, up to a subsequence, every sequence (£7,7"),en C ®1(0) converges to an element of ®~1(0),
where £ := (2", N\, y",a”, p” \)VEN~ Since {7” : v € N} C [0, 1], up to a subsequence, (7"),en converges to
some 7° € [0,1]. From Steps 1.1, 1.2, 1.3 and 1.4 below, up to a subsequence, ("), en converges to some

& = (", N y", ", p" \) € Z. Since ® is continuous, taking the limit, one gets (¢*,7*) € ®~1(0).
We remind that for every 7 € [0, 1], ex(7) is given by (2.9).

Step 1.1. Up to a subsequence, (x”,y")ven converges to some (z*,y*) € RSH x RY7. We first show that
for some r = (1) cec > 0, the sequence (z”,y"”)ven is included in the bounded set K (r) given by Point 1 of
Lemma 2.4. By ®72(¢¥,7%) = 0, for every j we have that,

tj(y;7@7j,§) = O7 Yv € N

Thus, the sequence (y”)ven is included in the set Y (Z,7y) given by (2.2). Now, for every h and for every
commodity ¢, define the set E. := {ef(7"): v € N} U {ef(7*)} which is a compact set. Then, there ex-

ists ¢ > 0 such that max Z ey < r°. Summing ®"2(¢¥,77) = 0 over h, by ®M(£”,7%) = 0, we get
heF Che?-t

Sah >yl = en(r") <7, YreN. So, (2¥,y")ven C AF, ;) C K(r).
heH jeg heH
Consequently, (z",y")ven is included in ¢l K(r) which is a compact set. Then, up to a subsequence,

(z¥,y")ven converges to some (z*,y*) € cl K (r) C R{¥ x R/ and so (z*,y*) € R{H¥ x R,

Step 1.2. The consumption allocation x* is strictly positive, i.e. * > 0. By ®"1(¢V,1¥) = ®"2(¢¥,7¥) =0

and KKT sufficient conditions, zj, solves the following problem for every v € N.

max uh(Th, T—h,7)
zp ERS
} o v v v v\~ v v v\~ (218)
subject to p” - xn <p” - [ten + (1 —7")Tn] +p 'Zth(yj - (1=7")7;)
JjeT
We first claim that for every v € N, the bundle 77¢ej, + (1 — 77)Z), belongs to the budget constraint of the
problem above. By ®7-'(¢” ) = ®92(¢” %) = 0 and KKT sufficient conditions, y7 solves the following
problem for every v € N.
max p” - y;
y; ERC (2.19)
subject to ¢;(y;,¥_;,7) <0
tj(¥;,9_;,®) = 0 since Gj‘2(g) =0, see (2.8). By Point 2 of Assumption 2.1, ¢;(0,7_;,7) < 0. So, we get
t; (1 —1)7;,9_;, %) < 0 since t;(-,§_;,T) is strictly quasi-convex, that is, the production plan (1 — 7")y;
belongs to the constraint set of problem (2.19). Thus, p” - (yj — (1 — 7")y;) > 0 for every j, and so
p” Z sin(y; — (1 —77)g;) > 0 which completes the proof of the claim.
JjET
Therefore, for every v € N, up (25, ZT—1,7) > un(t’en + (1 — 7°)Tp,T_p, 7). By Point 2 of Assumption 2.5,
for every € > 0 we get up(zl + €1, T—pn,7) > un(’en + (1 — 7°)Tn, T—n,7) where 1 := (1,...,1) € RY,
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Taking the limit over v and using Point 1 of Assumption 2.5, z; > 0 since it belongs to the closure of
the upper counter set associated with up(7*ep, + (1 — 7°)@n, T_n,7) which is included in RY by Point 4 of

Assumption 2.5. Thus, z* > 0.

Step 1.3. Up to a subsequence, (A", p” \)yeN converges to some \* € ]Rf+ X Ri;l. The proof is similar to

the proof of Step 2.3 in Claim 2.

Step 1.4. Up to a subsequence, (a),cn converges to some a* € Ri’hL. The proof is similar to the proof of

Step 2.4 in Claim 2.
Claim 2. T~%(0) is compact.

Let (£”,7%)ven be a sequences in T1(0). As in Claim 1, (7¥),en converges to 7° € [0, 1]. From Seps 2.1,

2.2, 2.3 and 2.4 below, up to a subsequence, ({”), .y converges to an element £ := (2™, A", y*,a*,p*\) €E.

Since T is a continuous function, taking limit, we get (¢*,7*) € T™1(0).
We remind that for every 7 € [0,1], z(7) and y(7) are given by (2.9).

Step 2.1. Up to a subsequence, (x”,y")ven converges to some (z*,y") € REH x RY7. We show that for

7= Z en, the sequence (z¥,y"),en is included in the bounded set K(r) given by Lemma 2.4. Then, one
heH
completes the proof as in Step 1.1 of Claim 1. By I'V-2(¢¥,7%) = 0, for every j we have that

ti(yy,y2; (), 2" (7)) =0, Vv € N

Thus, for every v € N, the production allocation y” belongs to the set Y (z”(7"),y"(7")) given by (2.2).

Now, summing I'*?(£”, 7%) = 0 over h, by T"™ (¢”,77) = 0, we get Z Th — Z y; =r. So, for every v € N,
heH i€eJ
the allocation (z”,y") belongs to the set A(x”(7"),y”(7");r) C K(r), and consequently, (z”,y")ven C K(r).

Step 2.2. The consumption allocation x* is strictly positive, i.e. x* > 0. The argument is similar to
the one used in Step 1.2 of Claim 1 except for the last part which is quite different due to the presence of

consumption externalities in the utility functions.

According to I'"1(¢¥,77) = T™2(¢¥, %) = 0, replace problem (2.18) with the following problem

max uh(xh,xih(Tu)vyu(Tu))
ach,ER++ (2 20)
subject to p” - zp <p” -en +p” - Z Sy
jegJ
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According to TV (¢7 1) = T72(¢¥,77) = 0, replace problem (2.19) with the following problem

max p” - y;
y; ERC

subject to t;(y;,yZ,;(77),z" (")) <0

In order to prove that zj > 0 for every h, we show that x; belongs to the closure of the upper contour
set associated to (en,z™,(7"),y"(7")). One should notice that if 7% = 1, then z*,(7") = z, which a
priori is not necessarily strictly positive. For this reason, in Points 1 and 4 of Assumption 2.5 we allow for

consumption externalities on the boundary of RC(H D,

Since t5(0,y%; ("), 2" (7")) < 0 (Point 2 of Assumption 2.1), one easily checks that e, belongs to the budget
constraint of problem (2.20). So, for every v € N, up(xy,z”,(77),y" (7)) > un(en, 22, (77),y" (7). By
Point 2 of Assumption 2.5, for every € > 0 we have that up (z),+el,z , (77), y" (7)) > un(en, 2, (77),y" (77)).
Taking the limit over v and using the continuity of u, (Point 1 of Assumption 2.5), we get un(z} +
el,x™, (t7),y" (")) > un(en,zZ,(7%),y"(7")). That is, for every € > 0 the point (z} + 1) belongs to

the upper contour set
{zn € RS, s un(@n, 2" 0 (77), 4" (7)) > un(en, ™ o (77), 4" (7))}
So, the point x7, belongs to the closure of set above which is included in ]R$+ by Point 4 of Assumption 2.5.

p* ) € R xRETY By I (€7, 7") =

¥),y”(7")). Taking the limit, by

Step 2.3. Up to a subsequence, (A”,p” \),en converges to some (A* )
0, fixing commodity C, for every v € N we have A}, = D cuh(:vh,:v w(T

Points 1 and 2 of Assumption 2.5, we get A}, := Dmguh(xh,m_h(r*),y*(T*)) > 0.

Dgeup(xy, x , (77), y" (7"
By I'"! (¢¥,7%) = 0, for all commodity ¢ # C and for all v € N we have p” ¢ = —2~ n(@h )\ﬁ( )y ))
h

Dyeun(xy, 2™, (77), y" (7™
Taking the limit, by Points 1 and 2 of Assumption 2.5, we get p* ¢ = iun (2h )\f( )y (™) > 0.
h

Therefore, p* \ > 0.

Step 2.4. Up to a subsequence, (a”),en converges to some o* € R By T7! (¢¥,77) = 0, for every v € N
we have that
p¥ c(5)

v
Q; =

T Doty ()2 (7))

for some commodity c(j) given by Point 3 of Assumption 2.1. Taking the limit, we get
* c(4)
. p°

aj = — > 0 by Points 1 and 3 of Assumption 2.1.
DT Dot Wy, () ()
J
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2.6 Appendix

We introduce a definition of the degree modulo 2 of continuous functions, see Appendix B in Geanakoplos

and Shafer (1990), and Chapter 7 in Villanacci et al. (2002).

Let M and N be two C? manifolds of the same dimension contained in euclidean spaces. Let A be the set
of triples (f, M,y) where,
(1) f: M — N is a continuous function,

(2) y € N and f'(y) is compact.

Theorem 2.16 There exists a unique function, called degree modulo 2 and denoted by deg, : A — {0, 1}
such that
(1) (Normalisation) deg,(idnr, M,y) =1

where y € M and idy denotes the identity of M.

(2) (Non-triviality) If (f, M,y) € A and deg,(f, M,y) = 1, then f~*(y) # 0.

(3) (Excision) If (f, M,y) € A and U is an open subset of M such that f~*(y) C U, then

deg, (f, M,y) = deg,(f,U,y)

(4) (Additivity) If (f,M,y) € A and Uy and Uz are open and disjoint subsets of M such that f~'(y) C
U, UUs, then

deg2(f7 Mv y) = degQ(f? Ulvy) + deg?(f? U27y)

(5) (Local constantness) If (f,M,y) € A and U is an open subset of M with compact closure such that
f~1(y) C U, then there is an open neighborhood V of y in N such that for everyy €V,

degQ (f7 U7 yl) = deg2(f7 U7 y)

(6) (Homotopy invariance) Let L : (z,7) € M x [0,1] — L(z,7) € N be a continuous homotopy. If y € N
and L™ (y) is compact, then
degQ(L07 U, y) = degQ (Lla U, y)

where Lo :== L(-,0) : M — N and Ly := L(-,1) : M — N.

If there is no possible confusion, we denote by deg,(f,y) the degree modulo 2 of the triple (f, M,y).

As stated in the following proposition, in the case of C' functions and regular values, the degree modulo 2

is computed using the residue class modulo 2.

Proposition 2.17 If (g, M,y) € A, g is a C* function and y is a regular value of g (i.e., for all 2* € g~ (y),
the differential mapping Dg(z*) is onto), then g~ (y) is finite (possibly empty) and the degree modulo 2 of



g is given by

deg, (g, M,y) = [#g ' (y)]2 = { 0

1

if #9 1 (y) is even
if #97 " (y) is odd
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Chapter 3

Regularity of competitive equilibria in a production economy

with externalities!

Abstract

We consider a general equilibrium model of private ownership economy with consumption and production
externalities. Each firm is owned by the households and it is characterized by a technology described by
a transformation function. Each household is characterized by a utility function, the shares on the firms
profits and an endowment of commodities. The choices of all agents (households and firms) affect utility
functions and production technologies. Showing by two examples that basic assumptions are not enough to
guarantee a regularity result in the space of the initial endowments, we provide sufficient conditions for the

regularity in the space of endowments and perturbations of the transformation functions.
JEL classification: C62, D50, D62.

Keywords: externalities, production economies, competitive equilibrium, regular economies.

3.1 Introduction

We consider a general model of private ownership economy with consumption and production externalities.

Our purpose is to provide sufficient conditions for the regularity of such economies.

Why do we care about regular economies? We recall that an economy is regular if it has a finite set of
equilibria and if every equilibrium locally depends in a continuous or differentiable manner on the param-

eters describing the economy. Therefore, at a regular economy it is possible to perform comparative static

IThis Chapter is based on del Mercato and Platino (2013) which has been presented at the “37
Simposio de la Asociacién Espafiola de Economa (SAEe 2012)”, in Vigo, “European Economic As-
sociation and the Econometric Society European meeting (EEA-ESEM)”, in Malaga, “XX European
Workshop on General Equilibrium Theory, 2011 (EWGET 2011)”, in Vigo and “l11th Society for
the Advancement of Economic Theory (SAET 2011) Conference”, in Faro. So, Chapter 3 has also
benefited from the comments of theese audiences. We thank Paolo Siconolfi for useful comments.
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analysis. The relevance of regular economies and issues related to the global approach of the equilibrium

analysis can be found in Smale (1981), Mas-Colell (1985), Balasko (1988).

Regular economies are also important for two key aspects listed below.

(1) Pareto improving policies. It is well known that several sources of market failures such as incomplete
financial markets, externalities, public goods prevent competitive equilibrium allocations to be Pareto
optimal. In recent works, the achievement of Pareto improving policies is based on the set of regular
economies. In different settings, see for instance Geanakoplos and Polemarchakis (1986, 2008), Citanna
et al. (1998), Citanna et al. (2006), Villanacci and Zenginobuz (2006, 2012).

(2) Testable restrictions. An economic model is testable if it generates restrictions that must be satisfied
by the observable data. It is well known that there are two ways to construct testable restrictions.
The “parametric” approach is based on differentiable techniques which give rise to conditions remindful
Slutsky conditions. This approach focuses on the local structure of the equilibrium manifold, that is, on
regular economies, see for instance Chiappori et al. (2004).

It is an important and still open issue to study Pareto improving policies and testable restrictions in the

presence of externalities from a differentiable viewpoint.

We remark that, the model, the equilibrium concept and the approach are the same as in Chapter 2. Now we
describe our contributions. We start our analysis by considering the case in which there are only production
externalities among firms. As shown in Bonnisseau and del Mercato (2010), in the case of only consumption
externalities, regularity may fail whenever the second order external effects are too strong. Thus, in the
spirit of Bonnisseau and del Mercato (2010), in Subsection 3.3.1, we introduce an additional assumption on

the second order external effects on the transformation functions.

Furthermore, we provide two examples of a private ownership economy with externalities and an infinite
set of equilibria for all the initial endowments. In both examples, the transformation functions satisfy our
assumption on the second order external effects. So, the additional assumption mentioned above may be
not sufficient to guarantee a regularity result. Thus, we also introduce displacements of the boundaries of

the production sets, that is, simple perturbations of the transformation functions.

Our main result is Theorem 3.19 which states that almost all perturbed economies are regular, where the
term almost all means in a open and full measure.? We remark that in order to prove our results, we follow

Smale’s extended approach as in Chapter 2.

Finally, we compare our contribution with previous contributions. Concerning recent works on externalities
and public goods, in Bonnisseau (2003), Villanacci and Zenginobuz (2005), Kung (2008) and Bonnisseau
and del Mercato (2010), the authors use Smale’s extended approach too. Villanacci and Zenginobuz (2005)

2See Smale (1981) for details.
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focus on a specific kind of externalities, namely public goods. In Kung (2008), differently from our paper,
there are no externalities on the production side. Furthermore, in order to get a regularity result, the author
does not make any additional assumptions on the utility functions, but perturbations of the utility functions
are also needed. In Bonnisseau and del Mercato (2010), only consumption externalities are considered. So,

our model extends the latter one to the case of production economy.

In Mandel (2008), the contribution mainly concerns an existence result. At the end of the paper, the author
just mentions an assumption on the demand and supply functions to get the classical regularity result in the
space of the endowments, namely Assumption TR2. But, this assumption implicitly involves endogenous

variables, that is, equilibrium prices and Lagrange multipliers.

The paper is organized as follows. To set the stage, Section 3.2 introduces the model. In Subsection 3.2.1, we
present the basic assumptions. In Subsection 3.2.2, we briefly provide the definitions of competitive equilibria
and equilibrium function. In Subsection 3.2.3, we remind the definition of a regular economy. Section 3.3 is
devoted to the case in which there are only production externalities among firms. In Subsection 3.3.1, we
introduce an assumption on the second order external effects on the transformation functions. In Subsection
3.3.2, we provide two examples of a private ownership economy with externalities, where for all endowments
one gets infinitely many equilibria. Section 3.4 is devoted to the analysis of the general model. In Subsection
3.4.1, we introduce the perturbations of the transformation functions and we adapt the basic assumptions
and the notion of equilibrium function to the case of the perturbed economies. In Subsection 3.4.2, we
consider the second order external effects assumption made by Bonnisseau and del Mercato (2010) on the
utility functions, and we adapt our second order external effects assumption to the case of the perturbed
economies. In Subsections 3.4.3, we provide our main result, that is Theorem 3.19 which states that almost
all perturbed economies are regular. All the lemmas are proved in Section 3.5. Finally, in Section 3.6, the

reader can find classical results from differential topology used in our analysis.

3.2 The model

There is a finite number C' of physical commodities labeled by the superscript ¢ € C := {1,...,C}. The
commodity space is RY. There are a finite number J of firms labeled by the subscript j € J := {1,...,J}
and a finite number H of households labeled by the subscript h € H := {1,...,H}. Each firm is owned
by the households and it is characterized by a technology described by a transformation function. Each
household is characterized by preferences described by a utility function, the shares on firms’ profit and
an endowment of commodities. Utility and transformation functions may be affected by the consumption
choices of all households and by the production activities of all firms. The notations are summarized below.
° y; = (yjl-, Y5y yjc) is the production plan of firm j, as usual if 37 > 0 then commodity c is produced

as an output, if yf < 0 then commodity £ is used as an input, y—; := (ys) s, denotes the production plan

of firms other than j, y := (y;)jes.
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Th = (x,ll, . Th, ,xf) denotes household h’s consumption, z_; := (zk)kzn denotes the consumption of
households other than h, x := (x4 )hen-

Following Mas-Colell et al. (1995), the production set of firm j is described by an inequality on a function
t; called the transformation function. The transformation function is a convenient way to represent a
production set using a function. We remind that, in the case of a single-output technology, the production
set is commonly described by a production function f;. That is, if ¢(j) € C denotes the output of firm
j, then the production function f; gives the maximum amount of output that can be produced using a
bundle of inputs (yj,..., yjc.(j)_l, y;f(j)H, ..,y5). The transformation function is the counterpart of the

production function in the case of production processes which involve several outputs.

The main innovation of this paper comes from the dependency of the transformation function ¢; with
respect to the production activities of other firms and households consumption. So, we assume that ¢;
describes both the technology of firm j and the way firm j’s technology is affected by the actions of the
other agents. More precisely, given y_; and z, the production set of the firm j is given by the following
set,

Yi(y—j,x) = {yj eR : 4;(y;,y-5,2) < 0}
where the transformation function ¢; is a function from RY x RE~1 x RYY to R, t := (t;)jes. In the

particular case of a single-output technology, the transformation function of firm j is given by

(4 1 c()=1  c(s)+1 c
(Wi y—iz) = yi = fily, ST SOy Y e) (3.1)
where the dependency of the production function f; with respect to the input amounts

(Yis---, yjc.(j)_l, y;(j)H, ..+,95) has the usual meaning whereas the dependency with respect to (y—j, )

simply means that the production function of firm j is affected by the actions of the other agents.

Household h has preferences described by a utility function,
un : (@h,2-n,y) € RS, x RET™ X R — wp(wn, 2-n,y) € R

un(Th, x—nh,y) is the utility level of household h associated with (zp,z_p,y). So, un describes the way

household h’s preferences are affected by the actions of the other agents, u := (un)nen.
sjn € [0,1] is the share of firm j owned by household h; sp, := (s;n)jes € [0,1]7 denotes the vector of the

shares owed by household h; s := (sp)newn € [0,1]77. S := {s € [0,1)"" : Zth =1, Vj € J} denotes
heH
the set of shares.

en = (er,..,e5,..,eS) denotes household h’s endowment, e := (en)nen-

E := ((u,e,s),t) is a private ownership economy with externalities.

p° is the price of one unit of commodity ¢, p := (p', .., p%, ..,pc) € ]R$+.
Given w = (w?, .., w®, ..,w%) € R, we denote w" := (w, .., w®,..,w""!) e R

3.2.1 Basic assumptions

We make the following assumptions on the transformation functions ¢t = (¢;);e7.
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Assumption 3.1 Forall j € 7,
(1) The function t; is a C* function.
(2) For every (y—j,l') € RC(J_I) X Rif: 7] (07 y_j,I) <0.
(8) There is at least one commodity c(j) € C such that for every (y—;,z) € REV™Y x RGH
Dycmtj(y;-,y_j,m) > 0 for all y; € RC.
j
(4) For every (y—j;,x) € REV-D Rgf, the function t;(-,y—;,x) is differentiably strictly quasi-convez, i.e.,

for all y; € R, D;J. t; (5, y—s,x) is positive definite on Ker Dy t;(y;, y—;,x).>

Assumption 3.1 is identical to Assumption 2.1 of Chapter 2. We remark that, in order to study regularity

properties, we also required t; to be a C? function.

Let e = (ep)nen € Rif and r := Z en, and define the following sets
heH

F(r) = {(z,y) e RSY xR | t;(y;,y-5,2) <0,¥j € T and > wpn— Y y; <7}
heH jeT

Z(r) = {(z,y) e RTY xR | t;(y;,y—j,2) =0,¥j € T and Y mp— » y; =1}
hEH JjeT

and for any given externality (z,y) € R§¥ x R,
Y(z,y) = {y' € R : t;(yj,y-5,2) <0, Vj € T}
Ae,yr) = (@ y) €RSE xR yf € Y(a,y) and 3" ah— g <)
heH jeg

The following two assumptions are identical to Assumption 2.2 and 2.3 of Chapter 2.

Assumption 3.2 For every r € RS, , the set Z(r) is non-empty.

Assumption 3.3 (Uniform Boundedness) For cvery r € RS, , there exists a bounded set C(r) C R/

such that for every (z,y) € R{H x R/,
’ CcJ ., /
Y(wy)n{y €RY D7 yi+r>01CCr)
The following lemma is an immediate consequence of Assumption 3.3.*

Lemma 3.4

(1) For everyr € RS, there exists a bounded set K (r) C REY xR such that for every (z,y) € REHE xR,
Az, y;r) € K(r).

(2) For every r € R£+, the set of feasible allocations F(r) is bounded.

3Let v and v' be two vectors in R™, v-v' denotes the inner product of v and v'. Let A be a real matriz with m
rows and n columns, and B be a real matriz with n rows and | columns, AB denotes the matrixz product of A and B.
Without loss of generality, vectors are treated as row matrices and A denotes both the matriz and the following linear
application A : v € R — A(v) := AvT € RI"™ where vT denotes the transpose of v and RI™ = {wT : w € R™}.
When m = 1, A(v) coincides with the inner product A - v, treating A and v as vectors in R™.

4See for instance, the proof of Lemma, 2.4 in Section 2.5 of Chapter 2.
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We make the following assumptions on the utilities functions v = (un)nen.

Assumption 3.5 For all h € H,

e function uyp, is continuous in its domain an in the interior of its domain.
1) Th ti j ti in its domain and C* in the interi its domai

(2) For every (x—_pn,y) € RESrH_l)
Doy un(ah, ©—n,y) >0 for all xj, € RY,.

(8) For every (z_p,y) € Ring_U

x R, the function un(-,x_n,y) is differentiably strictly increasing, i.e.,

x R the function un (s, x—n,y) is differentiably strictly quasi-concave,
i.e., for all z}, € RS, Dihuh(x;ﬂm_h,y) is negative definite on Ker Dy, up(z),, T—n,y).

(4) For every (x—n,y) € RE(H_U x R and for every u € Imup (-, z_n,y),
clpe {zn € RYy : un(zn, 2-n,y) > u} CRY

Assumption 3.5 is identical to Assumption 2.5 of Chapter 2. We remark that, in order to study regularity

properties, we also required uj, to be a C? function on the interior of its domain.

T denotes the set of ¢ satisfying Assumptions 3.1, 3.2 and 3.3, U denotes the set of u satisfying Assumption
3.5, and £ := U x RY¥ x S x T denotes the set of economies. From now on, E = ((u, e, s),t) is any economy

belonging to the set £.

3.2.2  Competitive equilibrium and equilibrium function

In this section, we remind the definitions of competitive equilibrium & la Nash and equilibrium functions

provided in Chapter 2.

Without loss of generality, commodity C' is the “numeraire good”. So, given p\ € Rfjrl with innocuous

abuse of notation, we denote p := (p\7 1) e R$+.

Definition 3.6 (Competitive equilibrium) (:c*7y*,p*\) € Rff x R x Ri;l is a competitive equilib-
rium for the economy E if for all j € J, y;j solves the following problem
max p*-y;

v; €ERC (3.2)
subject to t;(y;,y~;,2") <0

for all h € H, xj, solves the following problem

max  up(zh, 74, y")
z;L€R++ (3 3)
subject to p* -z <p* - (en + Z SinY;)
JjeT
and (z*,y") satisfies market clearing conditions, that is

sz = Zeh + Zy; (3.4)

heH heH JET
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Using the first order conditions, one easily characterizes the solutions of firms and households maximization
problems. The proof of the following proposition is standard since in problems (3.2) and (3.3), each agent

takes as given the price system and the actions of the other agents.

Proposition 3.7

(1) From Assumption 3.1, if y; is a solution to problem (3.2), then it is unique and it is completely char-
acterized by KKT conditions.’

(2) From Assumption 3.5, if x7, is a solution to problem (8.3), then it is unique and it is completely char-
acterized by KKT conditions.

(8) As usual, from Point 2 of Assumption 3.5, household h’s budget constraint holds with an equality. Thus,

at equilibrium, due to the Walras law, the market clearing condition for commodity C' is “redundant”.
So, one replaces condition (5.4) by Zzz\ = Zez + Zy;\.
heH heH jeg
Let 2 := (RY, x Ry ) x (R x Ry4)7 x Ri;l be the set of endogenous variables with generic element
€= (z, Ny, 0,p") == (@n, A\ )hen, (yj,aj)jeg,p\) where )\, denotes the Lagrange multiplier associated
with household h’s budget constraint, and a; denotes the Lagrange multiplier associated with firm j’s
production constraint. We can now describe the competitive equilibria associated with the economy E using

the equilibrium function Fg : = — Rdi"‘57
Fp (&) == (FE" (&), FE2 () nen, (FL (€), FL2 (€))jer, Fa' (€)) (3.5)

where Ff! (€) := Day, un(wn, 2—n,y)—=Anp, FE° (&) 1= —p-(xn—en— Y siny5), FE' (&) 1= p—a; Dy t;(ys,y—5, ),
jes
FE2 (€)= —t;(yj,y—y, @), and Fp' (&)= > z) = > y; — > ey

heH €T heH

£ = (", A%, y%,a*,p*\) € 2 is an extended equilibrium for the E if and only if Fi (€*) = 0. We remark
that, by Proposition 3.7, (x*, y*,p*\) is a competitive equilibrium for E if and only if there exists (A", a™)

such that £ is an extended equilibrium for E. We simply call £* an equilibrium.

Theorem 3.8 (Existence and compactness) For every economy E € &, the equilibrium set Fg'(0) is

non-empty and compact.

In Chapter 2, one can find a proof of Theorem 3.8 by homotopy arguments.

3.2.3 Regular economies

We recall below the formal notion of a regular economy.

Definition 3.9 (Regular economy) E is a reqular economy if Fr is a C* function and 0 is a regular

value of Fr, i.e., for every £ € F5'(0), the differential D¢ Fg(£*) is onto.

5From now on, “KKT conditions” means Karush—Kuhn—Tucker conditions.



o8

Using the extended approach, the definition of a regular economy becomes a very natural notion. The fact
that D¢ Fg(£*) is a nonsingular matrix simply means that the linear approximation at £* of the equilibrium
system Fgr(¢) = 0 has a unique solution. So, applying the Implicit Function Theorem, around £, the
equilibrium system has a unique solution which is a continuous or differentiable function of the parameters
describing the economy.® If the equilibrium set F = 1(0) is also non-empty and compact, as a consequence of
the Regular Value Theorem (see Corollary 3.25 in Section 3.6), one easily deduces that a regular economy

has a finite number of equilibria.

In the presence of externalities, the possibility of infinitely many equilibria cannot be excluded by making
the previous basic assumptions. Indeed, the equilibrium notion given in Definition 3.6 has the following
characteristics. All the agents take as given the price and the choices of the others. So, given the price and
the choices of the others, the individual optimal solutions are completely determined since the transformation
functions and the utility functions are respectively strictly quasi-convex and strictly quasi-concave with
respect to the individual choices. This is trivial. But, for a given price, the equilibrium allocation (z*,y™)
has a feature of a Nash equilibrium, and the problem is that, under the previous basic assumptions, for a

given price, one might get infinitely many Nash equilibria (z*,y*).

3.3 The analysis of only production externalities among firms

We first focus our analysis to the case in which there are only production externalities among firms and no

externalities at all among consumers.

As shown in Bonnisseau and del Mercato (2010), in the case of pure exchange economies with only consump-
tion externalities, regularity may fail because of the second order external effects on the utility functions,
see the example given in Section 4 of Bonnisseau and del Mercato (2010), for which one gets infinitely
many equilibria for all initial endowments. In order to guarantee a regularity result for almost all initial
endowments, Bonnisseau and del Mercato introduce an assumption on the second order external effects on
the utility functions.” So, in Subsection 3.3.1, we first introduce an assumption on the second order external
effects on the transformation functions, namely Assumption 3.10, which is the counterpart of the assumption
provided in Bonnisseau and del Mercato (2010) in the case of only production externalities among firms.
Second, in Subsection 3.3.1, we provide three examples of transformation functions that satisfy Assumption

3.10, namely Examples 3, 4 and 5.

One can easily verify that, if one considers the transformation functions given in Example 3, for a given
price, the Nash supply y™ is uniquely determined. Whereas, in Examples 4 and 5, for a given price, one

gets infinitely many Nash supplies. In Subsection 3.3.2, using Examples 4 and 5, we provide two examples

6Continuity or differentiability depends on whether the space of economies is a finite dimensional space or a
topological space.
7See also Assumption 3.17 in Subsection 3.4.2.
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of private ownership economies where for all initial endowments one gets infinitely many equilibria, namely
Examples A and B. Importantly, in Example B, the indeterminacy is “price relevant”. That is, one has
infinitely many equilibrium prices, and consequently, the indeterminacy has an impact on the welfare of the

economy.

So, differently from the case of a pure exchange economy with externalities, Examples A and B show that,
alone, an assumption on the second order external effects on the transformation functions is not enough
to guarantee a regularity result. Why so? Because of the first order external effects on the transformation
functions. Thus, we also introduce displacements of the boundaries of the production sets, that is, simple
perturbations of the transformation functions. In the case of only production externalities among firms, under
Assumption 3.10, the regularity result holds true for almost all perturbed economies. The perturbations of
the transformation functions are introduced for the general model in Section 3.4. In Section 3.4, we also
adapt the assumption of Bonnisseau and del Mercato (2010) and Assumption 3.10 to the general model.
Under these assumptions, we provide our main result, namely Theorem 3.19, which states that almost all
perturbed economies are regular. Finally, we remark that, under Assumption 3.10, the proof of Theorem

3.19 can be easily adapted to the case of only production externalities among firms.

3.8.1 Second order external effects: An additional assumption

Assumption 3.10 Lety € R’ such thatt;(y;,y—;) = 0 for every j € J and the gradients (Dy;ti(y5,y-4))jes
are positively collinear. Let z € RY” such that z; € Ker Dy,ti(yj,y-j5) for every j € J and sz =0. Then,
JjeT
szDifyjtj(yj,y,j)(Zf) > 0 whenever z; # 0
feg
In the absence of second order external effects, Assumption 3.10 is trivially satisfied because of the strict
quasi-convexity assumption of the second order on the transformation functions. In the presence of second
order external effects, Assumption 3.10 still is an assumption of the second order which in addition takes into
account the first order external effects on the marginal transformation Dy t;(y;,y—;) of firm j. It does not
mean that the Hessian matrix of the transformation function ¢; (with respect to all the variables) is positive
definite on Ker Dyt;(y;,y—;). That is, we are not requiring ¢; to be differentiably strictly quasi-convex with
respect to all its variables. We are using positive forms that may induce to think of strict quasi-convexity,

but actually we are taking into account only a partial block of rows of the Hessian matrix of ¢;.

In the case of a single-output technology, Assumption 3.10 means that the changes in the marginal productiv-
ities of firm j, that result from changing the production plans (yy)f-; of firms other than j, are “dominated”
by the changes in the marginal productivities of firm j that result from changing its own production plan

yj.g Indeed, consider the single-output technology given by (3.1). Without loss of generality, for simplicity

8 As usual, the partial derivatives of the production function of firm j with respect to the inputs of firm j are called
the marginal productivities of firm j.
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of exposition, assume that commodity C' is the output of firm j, so that we can write the transformation
function as
_,C \
ti (Wi y—5) = v — i, 9-3)

It is an easy matter to check that szZj ti(yj,y—;i)(z) = —z]\Dj\ fi (y]\, y,j)(z]\-) and szgfyj ti(ys,y—j5)(zf) =
J

_zj\ [Dyf (Dy; fj(yj\-,y,j))] (zf) for every f # j. So, under Point 4 of Assumption 3.1, Assumption 3.10

\

states that the absolute value of z]\.Dj\f]- (y]\, y—j,x)(z;}) is strictly greater than the remaining term, i.e.,
J

J

> |0y, (D, 50)0-)) | )

F#3

2 D2\ fiy),9-5)())
J

We provide below three examples of transformation functions that satisfy Assumption 3.10. In all the ex-

amples,

(1) there are two commodities and two firms, y; = (y;,y;) denotes the production plan of firm j,
(2) without loss of generality, for simplicity of exposition, the subscript f denotes the subscript —j, so that
Yr = (yjlc, yjzc) denotes the production plan of the firm other than j,

(3) both firms use commodity 2 to produce commodity 1.

Example 3 The production technology of firm j is affected by the amount of output y} of the other firm in
the following way. Given y}, the production set of firm j is Y;(y}) = {y; € R* : y7 <0 and yj < f;(y7,y})}
where the production function is defined by f; (y?-, y}) = 2y} (fy?)pjy} with p; > 0. So, for every firm j,

one considers the transformation function
1 1 .
ti (Y5, yr) = y5 — 2y5/(—y3)psy} with p; >0

pi(y;)?

Then, Dy t; (v, 7) = (1. o
Y5 )PiYy

). Take z = (21, 22) € R* such that

21+ 220 =0 (3'6)

and z; € Ker Dy, t;(y;,yy), that is,

()2
zj = __pilu)” 2 (3.7)

J
SR

We provide below the two matrices involved in Assumption 3.10, i.e.,

0 0 0 0
o182
Dy ti(ysur) =| o Ps(Yy) o Dy ti(ysun) = | 3y (—uD)psuk .
2(=y;)\/ (=¥} piv} 2(—y2)

Thus, 25Dy (Y5, y5)(25) + 23Dy 4, (45, 95)(25) is equal to

—2) ol
J

2=y /(—vpivy 2-y))
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By (3.7), if z; # 0 then 27 # 0. Thus, using (3.6) and (3.7), the quantity above is strictly positive. Indeed,
zj2 and zjl have opposite sign from (3.6), and zjl and z} have opposite sign from (3.7). So, 2:12 and z} have
the same sign. Then, Assumption 3.10 holds true. Finally, we remark that ¢;(y;,yy) is not differentiably

(strictly) quasi-convex with respect to all its variables. ]

Example 4 The production technology of firm j is affected by the amount of output yjlc of the other firm in
the following way. Given yj}, the production set of firm j is Y;(y}) = {y; € R* : y7 <0 and yj < f;(y7,y})}
where the production function is defined by f; (yf, y}) =2 fyjz. — y}. So, for every firm j, one considers
the transformation function
ti(y5,y5) == yj — 24/ =y +up

Assumption 3.10 is obviously satisfied. Indeed, the transformation function ¢; is strictly quasi-convex with
respect to the production plans of firm j, and there are no second order external effects, since the partial
derivatives of the marginal transformation D, t;(y;,yy) of firm j with respect to the production plan of the

other firm are equal to zero.

Example 5 The production technology of firm j is affected by the production plan y; of the other firm in
the following way. Given vy, the production set of firm j is Y;(y;) = {y; € R? : y]2- <0 and yjl- <f; (yf-,yf)}

1
Yy

where the production function is defined by f;(y7,vys) = 2¢;(ys) —y; with ¢;(yy) := . So, for
2\/~v7
every firm j, one considers the transformation function
t5(ys:y5) = y; — 26, (ys)\/—y?
Thus, Dy t;(y; = ¢3ys) vs) = 4
» Dy,ti(ys,u5) = (1, . Take z = (z1, 22) € R® such that
—y?

and z; € Ker Dy, t;(y;,yy), that is,

Zl :_¢J(yf)22 (3 9)

J J
/_yj2_

We provide below the two matrices involved in Assumption 3.10, i.e.,

0 0 0
D2 t;(yiur) =| o b5 (yy) . D2ty =] _%is) ¢;(yr)

A=)/ vh/ o 2

Using (3.8) and (3.9), it is an easy matter to compute szf,j ti(ys,ur)(z5) + ZjDnyj t;i(y;,ys)(zs) which is

given by

1 1 1 i

B e O 2/
By (3.9), if z; # 0 then 22 # 0. If Dy, t1(y1,y2) and Dy, t2(y2,y1) are positively collinear, then y; = y3, and
so, if in addition t;(y;,ys) = O for every firm j = 1,2, one gets y; = y2. Thus, the quantity given by (3.10)
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is strictly positive for every j, and Assumption 3.10 is completely verified. Finally, we remark that ¢;(y;,ys)

is not differentiably (strictly) quasi-convex with respect to yy. [ ]

3.8.2 A continuum of competitive equilibria: Two examples

In this subsection, using the transformation functions given in Example 4 and Example 5, we provide two
private ownership economies with production externalities among firms, where for all endowments one gets
infinitely many equilibria since, at equilibrium, there are infinitely many Nash supplies (y7,y3). Importantly,
in the second example, the indeterminacy is “price relevant”. That is, one has infinitely many equilibrium
prices, and consequently, the indeterminacy has an impact on the welfare of the economy. In both examples,
there are two commodities and one household, x = (:vl, w2) denotes the consumption of the household and
e = (e*, €?) is his initial endowment. The utility function of the household is given by u(z!,z?) = 2'z?. So,
there are no externalities on the consumption side. The price of commodity 2 is normalized to 1. As in the

previous subsection,

(1) there are two firms, y; = (y;,y;) denotes the production plan of firm j,
(2) without loss of generality, for simplicity of exposition, the subscript f denotes the subscript —j so that
yr = (y}c7 y?) denotes the production plan of the firm other than j,

(3) both firms use commodity 2 to produce commodity 1.

Example A Consider the two firms given in Example 4, Subsection 3.3.1. (z*,y71, y5, (p™, 1)) is a competitive

equilibrium if for every j, y; solves

*,1 2
 max  piy; +y;
yj>0, yj<0

subject to yj <2 —y: - Yy}

For each firm j = 1,2, Dy, t;(y;, y?) = (1, ) So, the associated KKT conditions provide the following

o
/,yJZ

equilibrium equations, p* = a;, 1 = aj——, and 2, /—y?. — yfl — yjl- = 0. Thus, at equilibrium, one gets
/.2
—y?

yit =2p" —y3' and 4 = —(p*)? (3.11)

and
ys' =2p" —yi' and y5° = —(p")? (3.12)
Consequently, at equilibrium, the aggregate profit is given by
2

Syt +ut) = @ - ) - )+ - () =0
=1
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So, household’s maximization problem is given by

max $1$2

2
I€R++

subject to p*z! +z? < p*e’ +€°
Thus, at equilibrium, the optimal solution of the household is given by

IH.: 1
2p*

* * 1 *
(p*e' 4+ €°) and z** = i(p el + %) (3.13)
Using market clearing condition for commodity 1, one finds the equilibrium price

p = (VEer 166 - ) (3.14)

Finally, using (3.11), (3.12), (3.13) and (3.14), any bundle
(", 1), 2", 95, y3) € R%, x RY, x R* x R® such that y3' € [0,2p"]

is a competitive equilibrium. Thus, for all initial endowments we have a continuum of equilibria parame-

trized by y3' € [0,2p*].

One should notice that without externalities at all, if the output price increases then the output supply
of both firms increases t00.? So, equilibria are completely determined. Whereas, in the previous example,
for given y3', if the output price p* increases by k units then the output supply 73’ of firm 1 increases
by 2k units, and consequently the output supply 33! of firm 2 does not change since the price increase is
compensated by firm 1’s output increase. Therefore, the output supply of firm 2 is indeterminate since the

two effects offset each others. [ |

Example B Consider the two firms given in Example 5, Subsection 3.3.1. (z*,y7,y5, (p*, 1)) is a competitive

equilibrium if for every j, y; solves

*_ 1 2
(max  pry; +y;
Y5 >0, y7<0

subject to yjl- < 26¢5(yF)y/ *yjz

2" solves the following problem

max $1$2

2
z€R++

* k1

2
subject to p*z' + 2 < p*e' +e’ + Z(p vyt %)
j=1

and markets clear.

9In that case, the transformation function of firm j is given for instance by t; (yjl., y]2) =2, /—y]2. - y]l..
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For each firm j = 1,2, Dy t;(y;,y5) = (1,@- (yf)%) So, the associated KKT conditions provide the
—y2
1

following equilibrium equations, p* = «a;, 1 = a;¢;(y}) and yj = ¢;(y})2 —y3. Consequently, at

_y]2
the optimal solution, one gets

yi? = —(p")?[¢5(yp)]” and y;' = 2p" (¢ (y)]”
Thus, at equilibrium, one easily deduces that

* * * * 1 * * *
y11 = yzl and 912 = y22 = —517 yzl for any yzl >0 (3.15)

So, at equilibrium, the aggregate profit is equal to p*y3', and consequently, the optimal solution of the

household is given by

* * >k * * 1 * * *
t= ope P el +e+pTys) and 27 = S(pTe! + € +p7ys") (3.16)
Using market clearing condition for commodity 1, the equilibrium price is
2
. e
= 3.17
P = (3.17)

Finally, using (3.15), (3.16) and (3.17), any bundle

((p*, 1), 2", y1,y3) with y5' >0

is a competitive equilibrium. Thus, for all initial endowments we get a continuum of equilibria parametrized

by y3' > 0. n

3.4 The regularity result

We now come back to the general model introduced in Section 3.2. The examples given in Subsection 3.3.2
suggest to introduce displacements of the boundaries of the production sets, that is, simple perturbations
of the productions sets. So, in Subsection 3.4.1, we introduce the perturbations of the transformation
functions and we adapt the basic assumptions and the notion of equilibrium function given in Subsections
3.2.1 and 3.2.2. Next, in Subsection 3.4.2, we consider the second order external effects assumption made by
Bonnisseau and del Mercato (2010) on the utility functions, and we adapt our second order external effects
assumption given in Subsection 3.3.1 to the case of the perturbed economies. Finally, we provide our main

result, that is Theorem 3.19 which states that almost all perturbed economies are regular.

3.4.1 Perturbations of the production sets, basic assumptions and equilibrium function for perturbed

economies

Let t; be the transformation function of firm j and b; be a positive number, we consider the perturbation

defined by
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which generates the production set Y;(y—;, z;b;) := {y; € R : t;(y;,y—;, ) < b; }.

For every b := (b;)jes € R, denote t(-;b) := (t;(-;b;))jes. The definition of a perturbed economy is

provided below.

Definition 3.11 (Perturbed economies) A perturbed production economy is given by E(b) := ((u, e, s),t(+;

and it is parametrized by (b,e) € R x RYH.

It is an easy matter to check that if t = (¢;),;es satisfies Assumption 3.1, then (-;b) satisfies Assumption
3.1 for all b € RY.

For any given externality (x,y) € Rif x RY’, define the set
Y(2,y:0) = {y' € R+ 1;(4j,y-j,2:b;) <0, ¥ j € T}

Using the notation above, one defines the sets Z(b,r), A(x,y;b,r) and F(b,r) as a natural adaptation of the
sets Z(r), A(x,y;r) and F(r) defined in Section 3.2.1. We introduce the following two assumptions which

are the counterpart of Assumptions 3.2 and 3.3 in the case of perturbed economies.
Assumption 3.12 For all b € R and for every r € R$+, the set Z(b,r) is non-empty.

Assumption 3.13 (Uniform Boundedness for perturbed economies) For all b € Ri and for every
e ]R{Sj+, there exists a bounded set C'(b,7) C R’ such that for every (z,y) € Rgf xR, Y(z,y;0)N{y €
RC . : - .

DT> 0Ok

The following lemma is an immediate consequence of Assumption 3.13.

Lemma 3.14

(1) For all b € R and for every r € RS, there exists a bounded set K(b,7) C REY x RYY such that for
every (x,y) € RYE x RYY, A(z,y;b,7) C K(b,7).

(2) For all b € R] and for every v € RS, the set of feasible allocations F(b,r) is bounded.

Lemma 3.14 is used to prove Theorem 3.16 and Step 1 in the proof of Lemma 3.20.

Under the previous assumptions, for every (b,e) € Ri X Rgf, t(-;b) € T, and so, the perturbed economy
E(b) € £. Consequently, all the notions and the results provided in Subsection 3.2.2 apply to the perturbed
economy E(b).

Remark 3.15 With innocuous abuse of notation, from now on we simply call (b,e) a perturbed economy,
and for every (b,e) € ]Ri X Rff, one defines in a natural way the equilibrium function Fy . associated with

(b, e), which is nothing else than the equilibrium function associated with E(b), i.e.,
Fye(§) = FE(b)(é-)

Theorem 3.16 (Existence and compactness for perturbed economies) For every perturbed economy

(be) € RY x REY, the equilibrium set Fbjel (0) is non-empty and compact.
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3.4.2  Assumptions on the second order external effects for perturbed economies

We remind below the assumption on the utility functions made by Bonnisseau and del Mercato (2010) —
Section 4, Assumption 9.(1) — where the reader can find its interpretation as well as an example of utility
functions that satisfy this assumption. Notice that this assumption concerns the second order external effects

due to the presence of consumption externalities on the utility functions.

Assumption 3.17 (Bonnisseau and del Mercato, 2010) Let (z,v) € RYY¥ x RE? such that v, €

Ker Dy, un(xh,z—n,y) for every h € H and th = 0. Then,
heH

thDikzhuh(mh,m,h,y)(vk) < 0 whenever vy, # 0
keEH
The following assumption is an adaptation of Assumption 3.10 to the case of the perturbed economies which
takes into account the second order external effects due to the presence of the production externalities on

the transformation and utility functions.

Assumption 3.18 For everyb = (b;)jcs € R and for every (z,y) € RS xR such that t;(y;, y—;, x;b;) =
0 for every j € J and the gradients
(Dy;ti(yj,y—4,x;b5))jeg are positively collinear. Let (v, z) € REH xR such that vy, € Ker Dy, un(xh, —n,y)

Jor every h € H, z; € Ker Dy, t;(y;,y—j,x;b;) for every j € J, and th = sz. Then,
heH JET

(1) 23 ) Dyt (Y5, y—3, 3 b;)(27) > 0 whenever z; # 0,
fea

(2) U}LZDgfzhuh(mh»xfh»y)(zf) <0.
feg

From now on, 7 denotes the set of ¢t = (tj)jes satisfying Assumptions 3.1, 3.12, 3.13 and 3.18, and u
denotes the set of u = (un)nen satisfying Assumptions 3.5, 3.17 and 3.18.

3.4.3 Regularity for almost all perturbed economies

In this section, we prove the following theorem, which is our main result. The utility functions, the shares
and the transformation functions (u,s,t) € U xS x T are fixed. We focus our analysis on the open set of

perturbed economies defined by A :=R{, x RYH.

Theorem 3.19 (Regularity for almost all perturbed economies) The set A* of perturbed economies

(b,e) € A such that (b,e) is a reqular economy is an open and full measure subset of A.

In order to prove the theorem above, we introduce the following notations and we provide two auxiliary

lemmas, namely Lemmas 3.20 and 3.21.
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We remind that in Remark 3.15, we have defined the equilibrium function Fj . associated with any (b, e) € A.
By Point 1 of Assumptions 3.1 and 3.5 the equilibrium function Fj . is C' everywhere. So, by Definition

3.9, the economy (b, e) is regular if
V¢ € F, )} (0), rank DeFyo(€7) = dim =
Define the following set
B:={(&b,e) € F7'(0): rank DF(£,b,e) < dimE}
where the function F : 2 x A — RY™= js defined by
F(&,b,e) == Fy.c(8)
and denote IT the restriction to F~'(0) of the projection of Z x A onto A, i.e.
II: (&,be) € FH(0) = (&, b,e) := (be) € A
We can now write the set A* given in Theorem 3.19 as
A" =A\TI(B)

So, in order to prove Theorem 3.19, it is enough to show that II(B) is a closed set in A and II(B) is of

measure zero.

We first claim that II(B) is a closed set in A. From Point 1 of Assumptions 3.1 and 3.5, F and D¢F are
continuous on = x A. The set B is characterized by the fact that the determinant of all the square submatrices
of D¢ F(&,b,e) of dimension dim E is equal to zero. Since the determinant is a continuous function and D¢ F
is continuous on F~'(0), the set B is closed in F~*(0). Thus, TI(B) is closed since the projection IT is

proper.'® The properness of the projection II is provided in the following lemma.
Lemma 3.20 The projection I : F~1(0) — A is a proper function.

To complete the proof of Theorem 3.19, we claim that II(B) is of measure zero in A. The result follows by
Lemma 3.21 given below and a consequence of Sard’s Theorem (see Theorem 3.26 in Section 3.6). Indeed,
Lemma 3.21 and Theorem 3.26 imply that there exists a full measure subset 2 of A such that for each
(b,e) €  and for each £ such that F'(£*,b,e) =0, rank D¢ F(€*,b,e) = dim =. Now, let (b, e) € II(B), then
there exists £ € E such that F'(§,b,e) = 0 and rank D¢F(€,b,e) < dim =. So, (b,e) ¢ Q. This prove that
II(B) is included in the complementary of €2, that is in 0° .= A\ Q. Since QC has zero measure, so too does
II(B). Thus, the set of regular perturbed economies A is of full measure since Q@ C A*, which completes

the proof of Theorem 3.19.

Lemma 3.21 0 is a regular value for F'.

108ee Definition 3.27 in Section 3.6.
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Finally, one easily deduces the following proposition from Theorems 3.16 and 3.19, a consequence of the

Regular Value Theorem (i.e., Corollary 3.25 in Section 3.6) and the Implicit Function Theorem.

Proposition 3.22 (Properties of a regular economy) For each (b,e) € A*,

(1) the equilibrium set associated with the economy (b, e) is a non-empty finite set, i.e.
IreN\{0}: F, . (0)={¢&,...&}
(2) there exists an open neighborhood I of (b,e) in A*, and for each i = 1,...,r there exist an open neigh-
borhood U; of €' in 2 and a C* function g; : I — U; such that

(a) UlﬂUk :w Zfl#k),
(b) gi(b,e) =¢&" and ¢’ € FbT}C,(O) holds for (¢',b",¢e') € U; x I if and only if &' = g;(b',€’).

3.5 Proofs

In this section, we prove all the lemmas stated in Sections 3.4.1 and 3.4.3.

Proof of Lemma 3.14. See the proof of Lemma 2.4 in Section 2.5 of Chapter 2. m
Proof of Theorem 3.16. See the proof of Theorem 2.8 in Section 2.4 of Chapter 2. =

Proof of Lemma 3.20. We show that any sequence (£”,b”,¢e"),en € F~(0), up to a subsequence, con-
verges to an element of F~1(0), knowing that the sequence TI(¢”,b",e" ) en = (b”,€")en C A converges to

some (b*,e*) € A. We recall that £ = (2¥,\",y”,a”,p""\). By the definition of ¢;(-;b;), t; (%) = t;(-) — bY.

Step 1. Up to a subsequence, (z”,y")ven converges to (z*,y*) € REH x R, We show that for an ap-
propriate (b,7) € R, x RY,, the sequence (z,y").en belongs to the set F(b,7) which is bounded by
Lemma 3.14. Consequently, the sequence (z”,y"),en belongs to the compact set cl F(b,7). Thus, up to a

subsequence, (z”,y"),en converges to some (z*,y*) € cl F(b,7) € REH x R,

For every j € J, consider the following compact set {b%: v € N} U {b7} and define
bj :==max {bj: v e N}U{bj}Vj € T and b:= (b;)jes

By definition, t;(y;, y—;, ©;b;) < t; (v, y—, x; bY) for every (y;,y—j,x) € R x REU1) Rgf and for every
v € N. Since F72(¢¥,b",¢e”) = 0, for every v € N we get

ti (Y5 Yy, 2"0;) <0
Now, for every commodity ¢ consider the following compact set {e”“: v € N} U {e*“} and define

—=C

T = max E e, and T:= (T%)cec
c Ve . *
ef €{eve: veN}U{e*c} hea
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Summing F™2(£”,b",¢e”) = 0 over h, by FM(£”,b”,e") = 0 we have that Z Ty, — Z Y = Z ey, for all
heH jeT heH
v € N. By definition of 7, Z Ty — Z yy <7 for all v € N. Thus, (z",y")ven C F(b,T).
heH JjeT

Step 2. The consumption allocation x* is strictly positive, i.e. x* > 0. We show that for every h € H, x},

belongs to the closure of the following set
{zn € R$+ sun(Tn, ap,y") > unlen, 25n,y")} (3.18)

which is included in Rf_,_ by Point 4 of Assumption 3.5. Thus, xj, > 0.

By F™1(¢”,b",e") = F*2(¢”,b",¢") = 0 and KKT sufficient conditions, z¥ solves the following problem for

every v € N.
max  un(Th, 275, y")
eh€RY,
subject to p” - xp < p¥ - el +p¥ - Z SRy

€T
We claim that the point e} belongs to the budget constraint of the problem above. By FJ1(¢” b, e") =
FI2(¢” b, e) = 0 and KKT sufficient conditions, y7 solves the following problem for every v € N.
max_ p” - y;
4 RC P Y
subject to t;(y;,y%,;,x";0y) <0

By Point 2 of Assumption 3.1, p”-y; > p”-0 = 0. So, one gets p” - Z s;ny; > 0 which completes the proof
ieT
of the claim. Therefore, for every v € N

uh(xz, wlih, yV) > uh(e;/n xlihm y’/)

By Point 2 of Assumption 3.5, for every ¢ > 0 we have that up(xy + €l,2%,,9y") > un(er,x,,y") where

1:=(1,...,1) € RY,. So, taking the limit for v — 400 and using the continuity of us, one gets
’U,h(dl;: +el, ‘/I‘,i}w y*) > uh(627 xiha y*)

since (e}, )ven converges to ey,. Thus, for every € > 0 the point (x} 4+ 1) belongs to the set defined in (3.18),

which implies that z}, belongs to the closure of this set.

Step 3. Up to a subsequence, (A", p” \)VGN converges to some (\*, p* \) eRY, XREII. By FM1 (¢, b7, e") =
0, fixing commodity C, for every v € N we have \}, = Dz’c up(zh, x%p,,y"). Taking the limit over v, by Points

1 and 2 of Assumption 3.5, we get A}, := Dzlcuh(wﬁ,a?*_h,y*) > 0.

Dwi/uh(xym xih? yl/)
* *)\Z *
Dziuh(mhw’p—h,y )

Taking the limit over v, by Points 1 and 2 of Assumption 3.5, we get p* ¢ := : N > 0.
h

By F™! (£”,b",e") = 0, for all commodity ¢ # C and for all v € N we have p” © =
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Therefore, p* \ > 0.

Step 4. Up to a subsequence, (&”)yen converges to some o € R .. By FI' (¢/,b" ") = 0, for every
v e(d)
v € N we have that of = py >~ for some commodity c(j) given by Point 3 of Assumption
qu(j)tj(yj Y Y_ 55 TS bj)
J

p* c(7)

— - >0 =
Dy;‘«(j)tj(ijyfjvx ;bj)

3.1. Taking the limit, by Points 1 and 3 of Assumption 3.1, one gets o] :=

Proof of Lemma 3.21.
We show that for each (¢*,b*,¢*) € F~'(0), the Jacobian matrix Dg . F(£*,b*,e*) has full row rank. Tt is
enough to prove that AD¢ F(£*,b",e*) = 0 implies A = 0, where

A= ((Azn, AN )new, (Ayj, Aay)jeq, Ap') € RTETD 5 R7(ETD o RO

The computation of D¢ . F(£%,b",e") is described in Section 3.7 and the system AD¢p F(£,0%,e*) =0 is

written in detail below.

ZAthazckrhuh(xZ7xihvy*) - AAkp* - Za;ijDikyjtj(y;7yij7m*)+

heH ieg
- Z Ao Day ts(ys, vt z") + Ap) [Ic-1]0] =0, Vk e H
Jj€T

—Azp-p*=0,VheH
D AzDy L un(@h, T, y") + > Adnsyap® — > oAy Dy i (y7 yt s, 2"+

heH heH jeT
= " Aa;Dy ti (Y5 v, a") = Ap [Io1|0] =0, ¥ f €T
JjET

*ij . Dyjtj(y;vyiﬁx*) = 07 V] eJ
App® — Ap\[Ic-1|0] =0, Vh e H
DRI B A A SRS DEVIE

heH heH jeT JjeT
Aaj =0,VjeJ

Since p*© =1, we get A\, =0 for all h € H and Ap' = 0. So, the above system becomes

(1) ZAth?ck:thuh(m;vmthvy*) - Za;ijDazckyjtj(y;vyijax*) =0, VkeH

heH jegJ
(2) —-Azp-p"=0,VheH
2 * * * * 2 * * *
(3) };{Athyfzhuh(xh,xfh,y ) — ;OéjijDyfyjt]-(yj,y,ﬁm y=0,YfeJ (3.19)
j

() =Y NAzy+ > Ay =0

heH jeT

Multiplying both sides of equation F71(¢*,b* e*) = 0 by Ay; and using equation (4) in system (3.19), we get
Ay;-p* = ajAy;- Dyt (y7, y~;,2*)=0. Summing over j, we obtain Z ijc =— Z Ay} -p*\. Multiplying
jeTJ ISV
equation (2) in system (3.19) by A}, summing over h, we obtain Z A AzS = — Z XﬁAﬂf;\l . Finally
heH heH
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using equation (5) in system (3.19), we get Z)\;‘LAacg = Z ijc. Thus, using once again equation (5) in

heH jeg
system (3.19), we get
D Nidan =3 Ay
heH jeT

From F™'(¢*,b*,e*) = 0 and equation (2) in system (3.19), we get (Azp)nen € H Ker Dy, un(xp, 2, y").

heH
From equation (4) in system (3.19), we have that (Ay;)jes € H Ker D, t;(y;,y~;,z"). Now, for every
JjET
h € H and for every j € J, define
v 1= A\, Azxp, and zj := Ay (3.20)

Thus, the vector ((x},, vn)nen, (¥, 2j)jes) satisfies the following conditions.

Su=Y% (3.21)

hen jeT
(vr)hen € H Ker Dy, un(zh, 71, y") (3.22)
hen
(z))jeq € [ Ker Dy, t;(y;, 4% 5,2%) (3.23)
JET

Since F7'(€*,b*,e*) = F/2(€",b*,e*) = 0 for every j € J, it follows that ¢;(y},y";,z};b}) = 0 for each
J € J and the gradients (D,,t;(y;,y~;,x}));es are positively collinear. Thus, we remark that from (3.21),
(3.22) and (3.23), all the conditions of Assumption 3.18 are satisfied.

Multiplying both sides of equation (3) in system (3.19) by z;, we get
> AwnDy o un(@h, w,y") (2r) = Y i Ay Dy (Y5 v, 27 (2)
heH Jje€T
Since A, # 0 for all h € H, using the definition of v, given in (3.20), it follows that for each f € J
\; szzhuh(x;;»xth’ ZO‘JZJ vry;t (5,95, 27)(=r)
heH JjET

Summing over f € J, we get

th ZDnyhuh Th, T,y Za]z]ZDyny yj,y G )(zf)

heH Ah feg jeg feg

By Point 2 of Assumption 3.18, since Aj, > 0 for each h € H, we know that

v
S ST DR un () () 0

heH A feg

Thus, the equality above implies that

ZO‘]ZJZDyfy] y],y i )(zp) <0

JET feg



72

Since o > 0 for all j € J, Point 1 of Assumption 3.18 implies that z; = 0 for all j € J. Therefore, using
the definition of z; given in (3.20) we get Ay; = 0 for all j € J. So, condition (3.21) becomes

> =0 (3.24)

heH

and equation (1) in system (3.19) becomes ZAth2 up(z), 2" ,y") = 0 for every k € H. Multiplying

TRrTh
heH
both sides by v, using the definition of v, given in (3.20), one gets Z%Dikxhuh(xz,x*,h,y*)(vk) =0
e h
for every k € H. Summing up k € H, we obtain Z%ZDzwh“h(I;vl’th,y*)(vk) = 0. By (3.22) and

heH hken
(3.24), all the conditions of Assumption 3.17 are satisfied, and so v, = 0 for each h € H since Aj, > 0. Thus,

we get Axp = 0 for all h € H, and consequently A = 0 which completes the proof. m

3.6 Appendix A

Regular values and transversality

The theory of general economic equilibrium from a differentiable prospective is based on results from differ-
ential topology. First, we remind the definition of a regular value. Second, we summarize the results used in
our analysis. These results, as well as generalizations on these issues, can be found for instance in Guillemin

and Pollack (1974), Hirsch (1976), Mas-Colell (1985) and Villanacci et al. (2002).

Definition 3.23 Let M, N be C" manifolds of dimensions m and n, respectively. Let f: M — N be a C"
function, assume r > 1. An element y € N is a regular value for f if for every x* € f~(y), the differential

mapping D f(x*) is onto.

Theorem 3.24 (Regular Value Theorem) Let M, N be C" manifolds of dimensions m and n, respectively.
Let f : M — N be a C" function, assume r > 1. If y € N is a regular value for f, then

(1) ifm<n, 7 (y) =0,

(2) if m >n, either f~(y) =0, or f~ (y) is an (m — n)-dimensional submanifold of M.

Corollary 3.25 Let M, N be C" manifolds of the same dimension. Let f : M — N be a C" function.
Assume r > 1. Let y € N a regular value for f such that f~'(y) is non-empty and compact. Then, f~'(y)
is a finite subset of M.

The following results is a consequence of Sard’s Theorem for manifolds.

Theorem 3.26 (Transversality Theorem) Let M, Q and N be C" manifolds of dimensions m, p and n,
respectively. Let f: M x Q — N be a C" function, assume r > max{m —n,0}. Ify € N is a regular value
for f, then there exists a full measure subset Q* of Q such that for any w € Q*, y € N is a regular value for
fw, where

fo: €M — f,(§):=f(&w)EN
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Definition 3.27 Let (X,d) and (Y,d") be two metric spaces. A function m : X — Y is proper if it is

continuous and one among the following conditions holds true.

(1) = is closed and 7~ *(y) is compact for each y € Y,

(2) if K is a compact subset of Y, then m~'(K) is a compact subset of X,

(3) if (x")nen is a sequence in X such that (m(x™))nen converges in 'Y, then (z")nen has a converging
subsequence in X.

The conditions above are equivalent.

3.7 Appendix B

The computation of D¢y F(§*,b",€") is described below. Vectors are treated as row matrices. The symbol
“T” means transpose. 0 denotes the zero vector. With innocuous abuse of notation, the dimension of 0
is C or C' — 1 depending on the dimension of the respective block of columns. 0 denotes the zero matrix.
With innocuous abuse of notation, the size of 0 is C' x C or (C'— 1) x (C' — 1) depending on the size of the
respective block of rows and columns. 7= [Ic,1|0T](c_1)Xc where Ic_1 denotes the (C' — 1) x (C — 1)

identity matrix
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