
Early Exit Strategies for Approximate 𝑘-NN Search in Dense
Retrieval

Francesco Busolin
∗

Ca’ Foscari University

Venice, Italy

Claudio Lucchese

Ca’ Foscari University

Venice, Italy

Franco Maria Nardini

ISTI-CNR

Pisa, Italy

Salvatore Orlando

Ca’ Foscari University

Venice, Italy

Raffaele Perego

ISTI-CNR

Pisa, Italy

Salvatore Trani

ISTI-CNR

Pisa, Italy

Abstract
Learned dense representations are a popular family of techniques

for encoding queries and documents using high-dimensional em-

beddings, which enable retrieval by performing approximate 𝑘

nearest-neighbors search (A-𝑘NN). A popular technique for mak-

ing A-𝑘NN search efficient is based on a two-level index, where

the embeddings of documents are clustered offline and, at query

processing, a fixed number 𝑁 of clusters closest to the query is

visited exhaustively to compute the result set.

In this paper, we build upon state-of-the-art for early exit A-

𝑘NN and propose an unsupervised method based on the notion

of patience, which can reach competitive effectiveness with large

efficiency gains. Moreover, we discuss a cascade approach where

we first identify queries that find their nearest neighbor within the

closest 𝜏 ≪ 𝑁 clusters, and then we decide how many more to

visit based on our patience approach or other state-of-the-art strate-

gies. Reproducible experiments employing state-of-the-art dense

retrieval models and publicly available resources show that our

techniques improve the A-𝑘NN efficiency with up to 5× speedups

while achieving negligible effectiveness losses. All the code used is

available at https://github.com/francescobusolin/faiss_pEE.

CCS Concepts
• Information systems → Information retrieval; Retrieval
effectiveness; Retrieval efficiency;

Keywords
Neural IR, Dense Retrieval, Efficiency/Effectiveness Trade-offs

ACM Reference Format:
Francesco Busolin, Claudio Lucchese, Franco Maria Nardini, Salvatore Or-

lando, Raffaele Perego, and Salvatore Trani. 2024. Early Exit Strategies for

Approximate 𝑘-NN Search in Dense Retrieval. In Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management
(CIKM ’24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3627673.3679903

∗
Corresponding author: francesco.busolin@unive.it

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679903

1 Introduction
The recent developments in pretrained large languagemodels (PLM)

have shown the effectiveness of learned representations for many

tasks, including ad-hoc text retrieval. In this context, one common

approach relies on learned “dense” representations, where neural

encoders are used to independently compute query and document

representations in the same latent vector space. So far, two different

kinds of dense representation have emerged: single-vector repre-
sentations, where queries and documents are encoded with a single

embedding [12, 14, 16, 27, 34, 37, 39], and multi-vector representa-
tions, where, conversely, questions and documents are represented

with multiple embeddings [11, 18, 28, 29].

We focus on state-of-the-art single-vector representations. Given

a collection of pre-computed document embeddings, retrieval of

relevant documents for a query embedding becomes finding the set

of documents that maximizes a similarity score, e.g., inner product,

or minimizes a distance, e.g., Euclidean distance. Top-𝑘 retrieval

thus becomes the problem of finding the 𝑘 closest objects to the

query in the multidimensional latent vector space, i.e., the 𝑘 nearest

neighbors (𝑘-NN) points.

RelatedWork.Approximate 𝑘 nearest neighbors search techniques

trade-off accuracy for efficiency by avoiding scanning the entire

collection thus accepting some loss in result quality [8, 20, 22, 30].

Indexing data structures for efficient A-𝑘NN search rely on quantiza-

tion or hashing/binning techniques [1, 25]. They typically partition

the data points into disjoint clusters and perform a two-step search.

First, the 𝑁 clusters whose centroids turn out to be closest to the

query are identified, where 𝑁 is a static A-𝑘NN hyperparameter

commonly called number of probes. Second, these 𝑁 closest clusters

are visited exhaustively to identify the 𝑘 closest data points to the

query vector. The computational cost of A-𝑘NN is proportional to

the number and cardinality of the clusters visited, while the approx-

imation error of the results retrieved decreases by increasing the

number of clusters visited.

To further reduce the computational cost of A-𝑘NN, Li et al. [19]
proposed an adaptive A-𝑘NN technique that dynamically chooses

the number of clusters to probe on a per-query basis. The rationale

of this strategy is to reduce the average query latency by limiting

the number of clusters visited for easy queries, compared to the

common A-𝑘NN strategy that always probes a fixed number 𝑁 of

clusters for all queries. The technique relies on a learned regression

model to estimate the number of probes and may be classified as

an early-exit method for A-𝑘NN, as it aims to stop the inspection

3647

https://orcid.org/0000-0002-3235-2524
https://orcid.org/0000-0002-2545-0425
https://orcid.org/0000-0003-3183-334X
https://orcid.org/0000-0002-4155-9797
https://orcid.org/0000-0001-7189-4724
https://orcid.org/0000-0001-6541-9409
https://github.com/francescobusolin/faiss_pEE
https://doi.org/10.1145/3627673.3679903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627673.3679903
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679903&domain=pdf&date_stamp=2024-10-21

CIKM ’24, October 21–25, 2024, Boise, ID, USA Francesco Busolin et al.

10 30 50 70 90
Clusters visited

94

96

98

100

In
te

rs
ec

tio
n

(%
)

All Continue Exit

10 30 50 70 90
Clusters visited

Figure 1: Average intersection size between consecutive result
sets. The shaded area shows the region between the 5th and
95th percentile. The subdivision into Exit and Continue is
obtained with 𝜏 = 10.

of the clusters before reaching the 𝑁 𝑡ℎ
one. Other early-exit strate-

gies for ad-hoc search have been investigated earlier [3–5, 35, 36].

Specifically, these strategies focus on document re-ranking with

learning-to-rank models based on additive ensembles of regres-

sion trees and passage re-ranking models based on pre-trained

language models. All these proposals aim to improve efficiency by

selectively stopping the scoring process for documents that are

likely not included among the top-𝑘 ones. In this paper, we fur-

ther elaborate the method proposed by Li et al. [19] to introduce

adaptiveness into the A-𝑘NN algorithms by proposing novel early-

exit methods for retrieval systems based on state-of-the-art single-

representation dense models. Reproducible experiments conducted

using three state-of-the-art dense representations, i.e., STAR [39],

CONTRIEVER [14], and TAS-B [12] on theMS-MARCO dataset [24]

show that our techniques improve the retrieval efficiency with

speedups ranging from 4.71× to 5.27× over the FAISS-based [15]

A-𝑘NN baseline.

2 Problem Statement & Methodology
Problem Statement. Given a collection of embeddings D ⊂ R𝑛
and a query 𝑞 embedded in the same latent space, we aim at iden-

tifying the 𝑘 elements in D that are closest to 𝑞 according to a

similarity score 𝜎 (𝑞, 𝑑). In the case of dense retrieval models, the

latent space is learned, and the function 𝜎 (𝑞, 𝑑) becomes a proxy

of query-document relevance. Therefore, the set 𝑘NN(𝑞,D) com-

puted using 𝜎 likely includes the 𝑘 most relevant documents for 𝑞.

However, computing the exact result set 𝑘NN(𝑞,D) can become

computationally very expensive with large datasets composed of

high dimensional vectors [13, 21, 33]. Thus, practical search sys-

tems commonly exploit approximate A-𝑘NN algorithms, which rely

on a precomputed partition of D, and probe only the small subset

of 𝑁 clusters whose centroids are the most similar to the query.

Let Q be a set of queries and 𝑞𝑖 ∈ Q be a generic query. We

denote by 𝑑𝑖 the document of D the most similar to 𝑞𝑖 retrieved

by an A-𝑘NN algorithm for a fixed number of probes 𝑁 , i.e., 𝑑𝑖 =

A-1NN(𝑞𝑖 ,D). We also denote by 𝑑𝑖
∗
the actual document of D

most similar to 𝑞𝑖 computed by a brute-force method exhaustively

searching D. If 𝑑𝑖 = 𝑑𝑖
∗
, the A-𝑘NN algorithm can identify the

document of D with the highest similarity to 𝑞𝑖 .

Given the retrieval task addressed with A-𝑘NN, we can measure

the recall of a result set A-𝑘NN(𝑞𝑖 ,D) of 𝑘 denoted by 𝑅∗@𝑘 or

𝑅@𝑘 , respectively. The former is computed against the exact result
set 𝑘NN(𝑞𝑖 ,D), whereas the latter by considering the set of relevant
documents for a query as identified by human assessors. Specifically,

we denote by 𝑅∗@1(𝑞𝑖) the recall at cutoff 1 using the exact 𝑘NN

algorithm, i.e., 𝑅∗@1(𝑞𝑖) = 1.0 if𝑑𝑖 = 𝑑𝑖
∗
, and 0 otherwise. Also, we

simply denote by 𝑅∗@1 the average recall, i.e.,

∑
𝑖 𝑅

∗
@1(𝑞𝑖)/|Q|.

A good practice in A-𝑘NN algorithms is to set 𝑁 as the minimum

number of probes so that 𝑅∗@1 ≥ 𝜌 , 𝜌 ∈ [0, 1] [19]. For example,

𝜌 = 0.95 means that at least 95% of the queries of Q returns 𝑑𝑖
∗

as the most similar document to 𝑞𝑖 . We can surely fix a very large

value of 𝑁 such that 𝑅∗@1 = 1.0, but this would severely hinder

query processing efficiency. To make the A-𝑘NN algorithm efficient

without hampering too much effectiveness, we now discuss the

baseline by Li et al. [19] and our proposed techniques to make A-

𝑘NN adaptive for the different queries 𝑞𝑖 ∈ Q. We call this family of

techniques Adaptive Approximate 𝑘NN methods, as they visit the

clusters ordered by similarity to a query 𝑞𝑖 , but adaptively choose,

for each query, the best number of clusters to probe. The hyper-

parameter 𝑁 of A-𝑘NN is still used in the adaptive techniques as an

upper bound of the number of clusters to visit by any given query.

Regression Approach. The regression-based approach proposed

by Li et al. [19], which we call Reg, adaptively estimates the number

𝑟 (𝑞𝑖) of probes to process a query 𝑞𝑖 , where 𝑟 (𝑞𝑖) ≤ 𝑁 . To train

and test the regression model, the query set Q is subdivided into

train/validation/test partitions, and a golden standard 𝐶 (𝑞𝑖) is as-
sociated with each 𝑞𝑖 , where 𝐶 (𝑞𝑖) ≤ 𝑁 is the minimum number

of clusters to probe to find its closest vector 𝑑𝑖
∗ ∈ D. If 𝑑𝑖

∗
cannot

be found in the 𝑁 closest clusters, 𝐶 (𝑞𝑖) = 𝑁 . It is worth noting

that some features needed by the regression model depend on the

𝑘 neighbors obtained after a partial search; these features are re-

ported in groups (1), (2), and (3) of Table 1. To this end, besides 𝑁 ,

we introduce the positive parameter 𝜏 , with 𝜏 ≪ 𝑁 , that controls

the number of clusters to visit by all queries to extract the features.

Generally, small values of 𝜏 would improve the overall efficiency

at the expense of the effectiveness of the predictions. Due to the

imbalance of the dataset, characterized by a large fraction of queries

that need to probe very few clusters, the learned regression model

struggles to accurately predict the value of 𝐶 (𝑞𝑖).
Patience-based Approach. The notion of patience has been long

and widely explored for many tasks, primarily to prevent over-

fitting duringmodel training [6, 23, 26, 38] and for early termination

of inference [9, 10, 31, 32, 40–42]. We now discuss how to make

use of a patience-based method to early-terminate A-𝑘NN. During

the iterative visit to the 𝑁 clusters sorted by similarity to query

𝑞𝑖 , the 𝑘NN(𝑞𝑖 ,D) result set is progressively updated. Let 𝑅𝑆ℎ (𝑞𝑖)
be the result set of the 𝑘 documents obtained after visiting the

first ℎ clusters. Let 𝜙ℎ (𝑞𝑖) be the size, expressed in percentage, of
the intersection between 𝑅𝑆ℎ (𝑞𝑖) and the previous results set at

iteration ℎ − 1, i.e., 𝜙ℎ (𝑞𝑖) = 100 · |𝑅𝑆ℎ−1 (𝑞𝑖) ∩ 𝑅𝑆ℎ (𝑞𝑖) |/𝑘 .
Figure 1 (left) plots 𝜙ℎ , which is the mean 𝜙ℎ (𝑞𝑖) for all the

query 𝑞𝑖 ∈ Q. After around 30 clusters, the average 𝜙ℎ saturates

and quickly approaches 100%. This saturation phenomenon sug-

gests we can stop the visit of further clusters when the result set

does not change by much for a given number Δ of iterations, e.g.,

when 𝜙ℎ (𝑞𝑖) ≥ Φ ∈ [90, 100] for Δ consecutive iterations. In other

words, we stop the evaluation of 𝑞𝑖 if, for Δ consecutive iterations,

3648

Early Exit Strategies for Approximate 𝑘-NN Search in Dense Retrieval CIKM ’24, October 21–25, 2024, Boise, ID, USA

visiting the next cluster keeps at least Φ% of the 𝑘 closest documents

unchanged. The effectiveness of this heuristic still depends on the

cluster ℎ on which we stop the iterative search, which hopefully

should be equal to or slightly greater than 𝐶 (𝑞𝑖).
Classification Approach. To introduce this further technique,

we briefly discuss the frequency distribution of the labels 𝐶 (𝑞𝑖).
Independently of the dense encoders adopted, we can observe that

𝐶 (𝑞) follows a power-law distribution, where approximately 50%

of all the queries in Q need to explore just the closest cluster to

find and return their nearest neighbors, i.e., for about 50% of all the

queries we have that𝐶 (𝑞𝑖) = 1. Moreover, about 80% of the queries

𝑞𝑖 ∈ Q only need to probe at most 10 clusters to find 𝑑𝑖
∗
.

From this analysis, since most queries need only a handful of

clusters to retrieve their nearest neighbor document, we could take

advantage of a classifier aimed to early identify those queries. To

this end, we reuse 𝜏 , to stop at the 𝜏𝑡ℎ cluster the processing of all

queries 𝑞𝑖 for which 𝐶 (𝑞𝑖) ≤ 𝜏 , and proceed until 𝑁 for the others.

To prepare the training/validation/test dataset for the classifier, we

thus need to relabel the queries: a query 𝑞𝑖 is thus labeled as Exit
if 𝐶 (𝑞𝑖) ≤ 𝜏 , and as Continue otherwise. Since the queries labeled
as Exit form the majority class, we rebalance the two classes using

SMOTE [7].

Figure 1 (right) plots the average value 𝜙ℎ as a function of the

cluster visited. Indeed, we plot two curves, each relative to the

queries labeled either Exit or Continue when 𝜏 = 10. We observe

how 𝜙ℎ soon becomes saturated, approaching 100% in both cases.

Still, the curves are well separated. Also, on average, the Exit curve
shows an earlier saturation than the other and is more stable as it

has less variability. This also suggests that patience-based features

can be effective for our classification task. As such, we added these

features to the ones described by Li et al. [19] to train the classifica-

tion and the regression models. The full set of features is detailed

in Table 1.

Cascade Approach. If a pure classifier can successfully detect

which queries have to early exit at the 𝜏𝑡ℎ cluster, the natural

follow-up question would be about what to do with the remaining

Continue queries. A possible answer is a cascade technique, aimed

to early stop the processing of these queries possibly before the

𝑁 𝑡ℎ
cluster. Specifically, we employ either a regression-based or a

patience-based method for this second cascade stage, where the first

stage is the classifier. In this framework, note that between False
Exit and False Continue, only the former can affect effectiveness

since the classifier stops processing 𝑞𝑖 even though 𝑑𝑖
∗
has not yet

met. The latter only reduces efficiency, as the processing of 𝑞𝑖 is not

stopped and only ends when all the 𝑁 clusters have been explored.

When we train the classifier, we are more interested in reducing

the False Exits as not to penalize effectiveness. So, in addition to

using SMOTE, we also increase the training penalty of a False Exit
by weighting by a factor𝑤 ≥ 1 the instances of the Exit class. This
weighting strategy is particularly advantageous within a cascade

approach, where a large amount of False Continues can be early-

stopped by the next cascade stage.

3 Experimental Evaluation
The experiments discussed in this section aim to answer the fol-

lowing research questions:

Table 1: Features used by the learned methods. Reg [19] uses
groups (1), (2), and (3), while Reg+𝑖𝑛𝑡 and the Classifier em-
ploy all the features.

Type Feature Description

Query
(1)

768 query values the query vector

Centroid
(2) 𝜎 (𝑞, 𝑐ℎ) similarities of query to

ℎ ∈ {1..𝜏 } ∪ {10, 20, ..., 100} ℎ-th closest centroid

Result

after 𝜏

clusters
(3)

𝜎𝜏 (𝑞,𝑑1) max doc. similarity

𝜎𝜏 (𝑞,𝑑𝑘) 𝑘-th doc. similarity

𝜎𝜏 (𝑞,𝑑1) / 𝜎𝜏 (𝑞,𝑑𝑘) ratio of max and

𝑘-th doc. similarities

𝜎𝜏 (𝑞,𝑑1) / 𝜎 (𝑞, 𝑐1) ratio of similarities of

closest doc. and centroid

Stability
(4)

|𝑅𝑆ℎ−1 (𝑞𝑖) ∩ 𝑅𝑆ℎ (𝑞𝑖) |/𝑘 intersections between

ℎ ∈ {2, ..., 𝜏 } consecutive results

|𝑅𝑆1 (𝑞𝑖) ∩ 𝑅𝑆ℎ (𝑞𝑖) |/𝑘 intersections with

with ℎ ∈ {2, ..., 𝜏 } first result

RQ1: Does a heuristic patience-based method differ significantly

from a learned regression-based one?

RQ2: Can a cascade method improve single-stage approaches?

Experimental Settings. We experiment on the publicMS-MARCO
(MAchine Reading COmprehension) Passage (ver. 1) dataset [24].

We encode documents and queries in one 768-dimensional dense

vector using STAR [39], CONTRIEVER [14], and TAS-B [12], gen-

erating a single embedding for each document and query in the

collection. In this way, we build three collections of ∼8.8M vectors.

We divide the 101,093 queries into three sets to train our models.

For testing, we use the official 6,980 judged subset given by the

MS-MARCO maintainers
1
, whereas for training and validation we

divide the remaining 94,113 queries into training (67%) and valida-

tion set (33%). We use FAISS [15] to efficiently index and retrieve

passages encoded as dense vectors. Specifically, we build three IVF

two-level indexes to partition the collections in 65,536 clusters
2

each, based on the inner product between vectors.

Similar to Li et al. [19], we build our regression and classification

models using small additive forests of 100 trees using LightGBM [17]

and use HyperOPT [2] for hyperparameter tuning with an early

stopping window set to 10.

In particular, we modified FAISS 1.7.4 and used as-is openBLAS

0.3.26 and LightGBM 4.3.0. All our experiments were performed on

a machine with 504 GB of memory and two Intel Xeon Platinum

8276L CPU @ 2.20GHz with 56 physical cores. To ensure accurate

measurement of the execution time, we conduct each experiment 6

times in a row, discard the initial run, and then calculate the average

execution time as the average of the remaining 5 runs.

Parameter Selection. Due to space considerations, we forego a com-

prehensive discussion of all the parameter selections and present a

brief summary of the process followed to tune them. First, for all

techniques, we set the parameter 𝑘 , i.e., the size of the result set, to

100. We tuned parameter 𝜏 in {2, 5, 8, 10, 12, 15} for the classifier and
the regression model. The value 𝜏 = 10 consistently provides a good

1dev/small: ir-datasets.com/msmarco-passage.html#msmarco-passage/dev

2
We use the smallest power of two greater than 16 ×

√︁
|D | = 16 ×

√
∼8.8M.

3649

CIKM ’24, October 21–25, 2024, Boise, ID, USA Francesco Busolin et al.

trade-off between effectiveness and efficiency. Then, to compare

the methods, we align our proposals’ effectiveness to that obtained

by Reg [19]; we do so by choosing our parameters to minimize the

scoring time and, at the same time, match the 𝑅∗@1 obtained by

Reg. For example, considering STAR, Reg achieves 𝑅∗@1 = 0.93.

Thus, we select our parameters to obtain the lowest execution times

that show a 𝑅∗@1 ≥ 0.93. To penalize the prediction of False Exits,
we increase the instance weight𝑤 of the Exit class during the clas-

sifier’s training. We tried with 1, the default option, 3, 5, and 7, and

observed that 3 permits to match Reg with STAR and TAS-B, while

for CONTRIEVER we use 7. We evaluated our patience-based strat-

egy by trying different values of Δ and Φ, i.e., Δ ∈ {5, 7, 10, 12, 14},
and Φ ∈ {90%, 95%, 100%}. Ultimately, we chose Δ = 7 for STAR,

Δ = 12 for CONTRIEVER, and Δ = 14 for TAS-B. Finally, we set

the tolerance Φ = 95% for all of them.

Discussion. The experimental results are reported in Table 2, sub-

divided into three blocks, each associated with a different encoder

(STAR, CONTRIEVER, and TAS-B). The first two rows of each block

report the results obtained by the two baselines, namely A-𝑘NN

and the Adaptive A-𝑘NN using Reg [19]. Following the method-

ology of Li et al. [19], we choose the minimum value of 𝑁 that

allows A-𝑘NN to achieve a given 𝑅∗@1: we chose 𝑅∗@1 = 95% and

thus denote the strategy by A-𝑘NN95. For example, considering

STAR, A-𝑘NN95 reaches 𝑅
∗
@1 = 95% when all queries in Q are

processed by always exploring the 𝑁 = 80 closest clusters. The

metrics 𝑅@100 and𝑚𝑅𝑅@10 refer instead to the MSMARCO rele-

vant passages, thus estimating the "real" effectiveness of the ranked

result set. Finally, 𝐶 and T are the per-query average number of

clusters probed and measured execution times (in ms), whereas Sp
is the speedup obtained over the baseline A-𝑘NN95. In the third row

of each table block, we report the results of an additional baseline

denoted as Reg+𝑖𝑛𝑡 . Reg+𝑖𝑛𝑡 is obtained by adding to the feature

set of Reg the ones related to the stability of the result set, i.e.,

the features based on the intersection of the result sets inspired

by our patience-based heuristic technique. As regards RQ1, the
patience-based heuristic technique, denoted by PatienceΔ=𝑥 , does

not significantly differ from the Reg-based competitors in terms

of effectiveness. However, our technique is much more efficient,

with speedups ranging from 2.95× to 5.13×. The shorter processing
times compared to both the Reg-based approaches are primarily

due to the fewer clusters probed, as PatienceΔ=𝑥 visits, on aver-

age, between 35 and 84 fewer clusters per query, depending on the

Reg version and encoder used. As expected, the classifier-based

approach, where the training instances are weighted, can reduce

the False Exits and is non-significantly worse than A-𝑘NN95 for all

three encoders.

Finally we answer RQ2, by observing that a cascade method can

increase, sometimes substantially, the efficiency of a non-cascade

one. In particular, we compare a pure Reg+𝑖𝑛𝑡 and a pure patience-
based early exit method with the corresponding cascade ones. For

example, if we consider STAR, the relative speedups of the two cas-

cade methods over the non-cascade ones are 1.89× and 1.39×. Anal-
ogously, with CONTRIEVER, we observe that the relative speedups

of the cascade method over a pure Reg+𝑖𝑛𝑡 and our patience-based
strategy are 2.19× and 1.52×. Conversely, with TAS-B, we observe

speedups of only 1.26× and 1.10×. However, we observe that the ef-
fectiveness of cascade methods generally degrades, thus becoming

significantly worse than A-𝑘NN95, with the only exception being

the cascade using Reg+𝑖𝑛𝑡 on TAS-B. In conclusion, the more effec-

tive encoders CONTRIEVER and TAS-B need a large value of 𝑁 to

allow A-𝑘NN to reach 𝑅∗@1 = 0.95. Thus, both can benefit greatly

from adaptive methods that permit to inspect, on average, much

less than 𝑁 clusters. For these two encoders, a pure patience-based
heuristic can achieve speedups of 4.04× and 5.13×, getting a value

of mRR@10 comparable to the one obtained by A-𝑘NN95, while

the corresponding cascade method further improves the speedup

at the cost of lower effectiveness.

Table 2: Effectiveness/efficiency results. Statistical signifi-
cance onmRR@10 for the EE strategy against the correspond-
ing A-𝑘NN95 is tested with a pairwise t-test with Bonferroni
correction (* and ** indicate p-values of < 0.05 and < 0.01).

𝑅∗
@1 R@100 mRR@10 T (ms) 𝐶 Sp

S
T
A
R

(
𝑁

=
8
0
)

A-𝑘NN95 0.951 0.791 0.296 0.835 80.0 1.00

Reg [19] 0.932 0.769 0.291 0.737 69.6 1.13

Reg+𝑖𝑛𝑡 0.934 0.769 0.291 0.616 53.9 1.36

PatienceΔ=7 0.933 0.772 0.291 0.283 18.7 2.95

Classifier 0.916 0.751 0.284** 0.338 25.1 2.47

Classifier𝑤=3 0.930 0.763 0.289 0.305 24.2 2.74

+ Reg+𝑖𝑛𝑡 0.922 0.756 0.287* 0.325 23.5 2.57

+ PatienceΔ=7 0.918 0.753 0.286* 0.203 12.2 4.11

C
O
N
T
R
I
E
V
E
R

(
N
=
1
4
0
)

A-𝑘NN95 0.950 0.834 0.316 1.392 140.0 1.00

Reg [19] 0.933 0.811 0.310 1.178 118.6 1.18

Reg+𝑖𝑛𝑡 0.939 0.817 0.313 0.969 97.9 1.44

PatienceΔ=12 0.933 0.812 0.310 0.345 23.1 4.04

Classifier 0.911 0.787 0.302** 0.354 25.9 3.93

Classifier𝑤=7 0.939 0.819 0.311 0.522 52.8 2.67

+ Reg+𝑖𝑛𝑡 0.930 0.807 0.308* 0.442 36.9 3.15

+ PatienceΔ=12 0.925 0.801 0.306* 0.227 13.6 6.13

T
A
S
-
B

(
𝑁

=
1
9
0
)

A-𝑘NN95 0.951 0.826 0.323 2.027 190.0 1.00

Reg [19] 0.920 0.796 0.315 1.655 123.1 1.22

Reg+𝑖𝑛𝑡 0.928 0.799 0.316 1.265 111.9 1.60

PatienceΔ=14 0.921 0.798 0.314 0.395 28.3 5.13

Classifier 0.905 0.773 0.306** 0.635 49.2 3.19

Classifier𝑤=3 0.926 0.792 0.315 1.207 118.5 1.68

+ Reg+𝑖𝑛𝑡 0.915 0.780 0.312 1.007 81.9 2.01

+ PatienceΔ=14 0.903 0.772 0.307* 0.356 22.1 5.69

4 Conclusions
This work addresses adaptive A-𝑘NN in the context of dense, single-

representation retrieval. We presented a simple, fast, and adaptable

heuristic method based on the concept of patience that can achieve

the same effectiveness as learned regression-based approaches with

lower evaluation times and higher speedups. In future work, we

will explore the behavior of clustered indexes when reducing the

approximation tolerance with respect to an exact, exhaustive search.

We observe that as we increase the number of clusters, the mar-

gin between our patience approach and the Reg-based approaches

increases, and it is not clear if that is due entirely to the different

encoders we considered or if it is a more general pattern.

Acknowledgements. This work was partially supported by the EU
RIA project EFRA (Grant 101093026), and by the followingNext Gen-

eration EU (EU-NGEU) projects: SERICS (Grant NRRP M4C2 Inv.1.3

PE00000014), iNEST (Grant NRRP M4C2 Inv.1.5 ECS00000043), and

FAIR (Grant NRRP M4C2 Inv.1.3 PE00000013).

3650

Early Exit Strategies for Approximate 𝑘-NN Search in Dense Retrieval CIKM ’24, October 21–25, 2024, Boise, ID, USA

References
[1] Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. Communications of the ACM 51(1), 117–122 (2008)
[2] Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python

library for model selection and hyperparameter optimization. Computational

Science & Discovery 8(1), 014008 (2015)
[3] Busolin, F., Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Trani, S.: Learn-

ing early exit strategies for additive ranking ensembles. In: Diaz, F., Shah, C.,

Suel, T., Castells, P., Jones, R., Sakai, T. (eds.) SIGIR ’21: The 44th Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, Virtual Event, Canada, July 11-15, 2021. pp. 2217–2221. ACM (2021).

https://doi.org/10.1145/3404835.3463088, https://doi.org/10.1145/3404835.3463088

[4] Busolin, F., Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Trani, S.: Early

exit strategies for learning-to-rank cascades. IEEE Access 11, 126691–126704
(2023). https://doi.org/10.1109/ACCESS.2023.3331088

[5] Cambazoglu, B.B., Zaragoza, H., Chapelle, O., Chen, J., Liao, C., Zheng, Z., Degen-

hardt, J.: Early exit optimizations for additive machine learned ranking systems.

In: Proc. WSDM. pp. 411–420. ACM (2010)

[6] Caruana, R., Lawrence, S., Giles, C.: Overfitting in neural nets: Backpropa-

gation, conjugate gradient, and early stopping. In: Leen, T., Dietterich, T.,

Tresp, V. (eds.) Advances in Neural Information Processing Systems. vol. 13.

MIT Press (2000), https://proceedings.neurips.cc/paper_files/paper/2000/file/

059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf

[7] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic mi-

nority over-sampling technique. Journal of artificial intelligence research 16,
321–357 (2002)

[8] Chierichetti, F., Panconesi, A., Raghavan, P., Sozio, M., Tiberi, A., Upfal, E.: Finding

near neighbors through cluster pruning. In: Proceedings of the Twenty-Sixth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.

p. 103–112. PODS ’07, Association for Computing Machinery, New York, NY, USA

(2007). https://doi.org/10.1145/1265530.1265545, https://doi.org/10.1145/1265530.

1265545

[9] Gao, X., Liu, Y., Huang, T., Hou, Z.: Pf-berxit: Early exiting for bert with parameter-

efficient fine-tuning and flexible early exiting strategy. Neurocomputing 558,
126690 (2023). https://doi.org/https://doi.org/10.1016/j.neucom.2023.126690, https:

//www.sciencedirect.com/science/article/pii/S0925231223008135

[10] Gao, X., Zhu,W., Gao, J., Yin, C.: F-pabee: Flexible-patience-based early exiting for

single-label and multi-label text classification tasks. In: ICASSP 2023 - 2023 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

pp. 1–5 (2023). https://doi.org/10.1109/ICASSP49357.2023.10095864

[11] Hofstätter, S., Khattab, O., Althammer, S., Sertkan, M., Hanbury, A.: Intro-

ducing neural bag of whole-words with colberter: Contextualized late inter-

actions using enhanced reduction. In: Proceedings of the 31st ACM Inter-

national Conference on Information & Knowledge Management. p. 737–747.

CIKM ’22, Association for Computing Machinery, New York, NY, USA (2022).

https://doi.org/10.1145/3511808.3557367, https://doi.org/10.1145/3511808.3557367

[12] Hofstätter, S., Lin, S.C., Yang, J.H., Lin, J., Hanbury, A.: Efficiently Teaching an

Effective Dense Retriever with Balanced Topic Aware Sampling. In: Proc. of SIGIR

(2021)

[13] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium

on Theory of Computing. p. 604–613. STOC ’98, Association for Computing

Machinery, New York, NY, USA (1998). https://doi.org/10.1145/276698.276876,

https://doi.org/10.1145/276698.276876

[14] Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski, P., Joulin, A., Grave,

E.: Unsupervised dense information retrieval with contrastive learning (2021).

https://doi.org/10.48550/ARXIV.2112.09118, https://arxiv.org/abs/2112.09118

[15] Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE

Transactions on Big Data 7(3), 535–547 (2019)
[16] Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., Yih, W.t.:

Dense passage retrieval for open-domain question answering. In: Proc. EMNLP.

pp. 6769–6781 (2020)

[17] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: Light-

gbm: A highly efficient gradient boosting decision tree. In: Advances in Neural

Information Processing Systems. pp. 3149–3157 (2017)

[18] Khattab, O., Zaharia, M.: ColBERT: Efficient and Effective Passage Search via

Contextualized Late Interaction over BERT. In: Proc. SIGIR. p. 39–48 (2020)

[19] Li, C., Zhang, M., Andersen, D.G., He, Y.: Improving Approximate Nearest Neigh-

bor Search through Learned Adaptive Early Termination. In: Proceedings of the

2020 ACM SIGMOD International Conference onManagement of Data (SIGMOD)

(2020)

[20] Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.: Approximate

nearest neighbor search on high dimensional data — experiments, analyses, and

improvement. IEEE Transactions on Knowledge and Data Engineering 32(8),
1475–1488 (2020). https://doi.org/10.1109/TKDE.2019.2909204

[21] Li, W., Zhang, Y., Sun, Y., Wang, W., Zhang, W., Lin, X.: Approximate nearest

neighbor search on high dimensional data — experiments, analyses, and improve-

ment. IEEE Transactions on Knowledge and Data Engineering 32, 1475–1488
(2016), https://api.semanticscholar.org/CorpusID:1364239

[22] Mikulík, A., Perdoch, M., Chum, O., Matas, J.: Learning a fine vocabulary. In:

Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision – ECCV 2010. pp.

1–14. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

[23] Morgan, N., Bourlard, H.: Generalization and parameter estimation in feedforward

nets: Some experiments. Advances in neural information processing systems 2
(1989)

[24] Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L.:

Ms marco: A human generated machine reading comprehension dataset. choice

2640, 660 (2016)
[25] Pan, Z., Wang, L., Wang, Y., Liu, Y.: Product quantization with dual codebooks

for approximate nearest neighbor search. Neurocomputing 401, 59–68 (2020)
[26] Prechelt, L.: Early stopping-but when? In: Neural Networks: Tricks of the trade,

pp. 55–69. Springer (2002)

[27] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence Embeddings using Siamese

BERT-Networks. In: Proc. EMNLP. pp. 3980–3990 (2019)

[28] Santhanam, K., Khattab, O., Potts, C., Zaharia, M.: Plaid: An efficient en-

gine for late interaction retrieval. In: Proceedings of the 31st ACM Interna-

tional Conference on Information & Knowledge Management. p. 1747–1756.

CIKM ’22, Association for Computing Machinery, New York, NY, USA (2022).

https://doi.org/10.1145/3511808.3557325, https://doi.org/10.1145/3511808.3557325

[29] Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C., Zaharia, M.: ColBERTv2:

Effective and efficient retrieval via lightweight late interaction. In: Carpuat, M.,

de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Proceedings of the 2022 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies. pp. 3715–3734. Association for Computational Lin-

guistics, Seattle, United States (Jul 2022). https://doi.org/10.18653/v1/2022.naacl-

main.272, https://aclanthology.org/2022.naacl-main.272

[30] Singitham, P.K.C., Mahabhashyam, M.S., Raghavan, P.: Efficiency-quality trade-

offs for vector score aggregation. In: Nascimento, M.A., Özsu, M.T., Koss-

mann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) (e)Proceedings of the

Thirtieth International Conference on Very Large Data Bases, VLDB 2004,

Toronto, Canada, August 31 - September 3 2004. pp. 624–635. Morgan Kauf-

mann (2004). https://doi.org/10.1016/B978-012088469-8.50056-5, http://www.vldb.

org/conf/2004/RS17P1.PDF

[31] Sponner, M., Ott, J., Servadei, L., Waschneck, B., Wille, R., Kumar, A.: Temporal pa-

tience: Efficient adaptive deep learning for embedded radar data processing. ArXiv

abs/2309.05686 (2023), https://api.semanticscholar.org/CorpusID:261696875

[32] Sponner, M., Servadei, L., Waschneck, B., Wille, R., Kumar, A.: Temporal deci-

sions: Leveraging temporal correlation for efficient decisions in early exit neural

networks. arXiv preprint arXiv:2403.07958 (2024)

[33] Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. In: Proceedings of the

24rd International Conference on Very Large Data Bases. p. 194–205. VLDB ’98,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

[34] Wu, X., Ma, G., Lin, M., Lin, Z., Wang, Z., Hu, S.: Contextual masked auto-encoder

for dense passage retrieval. In: AAAI Conference on Artificial Intelligence (2022),

https://api.semanticscholar.org/CorpusID:251594591

[35] Xin, J., Nogueira, R., Yu, Y., Lin, J.: Early exiting BERT for efficient docu-

ment ranking. In: Proceedings of SustaiNLP: Workshop on Simple and Effi-

cient Natural Language Processing. pp. 83–88. Association for Computational

Linguistics, Online (Nov 2020). https://doi.org/10.18653/v1/2020.sustainlp-1.11,

https://aclanthology.org/2020.sustainlp-1.11

[36] Xin, J., Tang, R., Yu, Y., Lin, J.: BERxiT: Early exiting for BERT with better fine-

tuning and extension to regression. In: Proceedings of the 16th Conference of

the European Chapter of the Association for Computational Linguistics: Main

Volume. pp. 91–104. Association for Computational Linguistics, Online (Apr 2021).

https://doi.org/10.18653/v1/2021.eacl-main.8, https://aclanthology.org/2021.eacl-

main.8

[37] Xiong, L., Xiong, C., Li, Y., Tang, K.F., Liu, J., Bennett, P., Ahmed, J., Overwijk,

A.: Approximate nearest neighbor negative contrastive learning for dense text

retrieval. In: Proc. ICLR (2021)

[38] Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient de-

scent learning. Constructive Approximation 26(2), 289–315 (Aug 2007).

https://doi.org/10.1007/s00365-006-0663-2, https://doi.org/10.1007/s00365-006-

0663-2

[39] Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Optimizing dense retrieval

model training with hard negatives. In: Proc. SIGIR. p. 1503–1512 (2021)

[40] Zhang, Z., Zhu, W., Zhang, J., Wang, P., Jin, R., Chung, T.S.: PCEE-BERT:

Accelerating BERT inference via patient and confident early exiting. In:

Carpuat, M., de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Findings of the As-

sociation for Computational Linguistics: NAACL 2022. pp. 327–338. As-

sociation for Computational Linguistics, Seattle, United States (Jul 2022).

https://doi.org/10.18653/v1/2022.findings-naacl.25, https://aclanthology.org/2022.

findings-naacl.25

3651

https://doi.org/10.1145/3404835.3463088
https://proceedings.neurips.cc/paper_files/paper/2000/file/059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/059fdcd96baeb75112f09fa1dcc740cc-Paper.pdf
https://doi.org/10.1145/1265530.1265545
https://doi.org/10.1145/1265530.1265545
https://www.sciencedirect.com/science/article/pii/S0925231223008135
https://www.sciencedirect.com/science/article/pii/S0925231223008135
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/276698.276876
https://arxiv.org/abs/2112.09118
https://api.semanticscholar.org/CorpusID:1364239
https://doi.org/10.1145/3511808.3557325
https://aclanthology.org/2022.naacl-main.272
http://www.vldb.org/conf/2004/RS17P1.PDF
http://www.vldb.org/conf/2004/RS17P1.PDF
https://api.semanticscholar.org/CorpusID:261696875
https://api.semanticscholar.org/CorpusID:251594591
https://aclanthology.org/2020.sustainlp-1.11
https://aclanthology.org/2021.eacl-main.8
https://aclanthology.org/2021.eacl-main.8
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1007/s00365-006-0663-2
https://aclanthology.org/2022.findings-naacl.25
https://aclanthology.org/2022.findings-naacl.25

CIKM ’24, October 21–25, 2024, Boise, ID, USA Francesco Busolin et al.

[41] Zhou, W., Xu, C., Ge, T., McAuley, J., Xu, K., Wei, F.: Bert loses patience: Fast and

robust inference with early exit. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,

M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33,

pp. 18330–18341. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/

paper_files/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf

[42] Zhu, W.: LeeBERT: Learned early exit for BERT with cross-level optimization. In:

Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers).

pp. 2968–2980. Association for Computational Linguistics, Online (Aug 2021).

https://doi.org/10.18653/v1/2021.acl-long.231, https://aclanthology.org/2021.acl-

long.231

3652

https://proceedings.neurips.cc/paper_files/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://aclanthology.org/2021.acl-long.231
https://aclanthology.org/2021.acl-long.231

	Abstract
	1 Introduction
	2 Problem Statement & Methodology
	3 Experimental Evaluation
	4 Conclusions
	References

