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Davide Crippa (Venice)  

LEIBNIZ’S PROOF OF THE IMPOSSIBILITY OF SQUARING                   

THE HYPERBOLA1 

1. Introduction 

In his treatise “De quadratura arithmetica circuli ellipseos et hyperbolae” (A VII, 6, 

51), Leibniz provides proof of the impossibility of finding an algebraic solution to 

the “universal quadrature of the circle, ” which states that the relation between the 

arc and the chord cannot be expressed analytically or algebraically. For his proof, 

Leibniz crucially relied on the problem of dividing an arbitrary angle into an equal 

number of parts.2 Based on Viete’s posthumous treatise on angular sections, Leib-

niz assumed that the problem of general angular division was algebraically unsolv-

able; that is, it was impossible to reduce it to a finite-degree polynomial equation. 

He then argued that if the quadrature of the circle could be reduced to a finite-degree 

polynomial equation, the problem of dividing an angle into an arbitrary number of 

parts would also admit such a reduction, running into a contradiction. 

Leibniz’s proof that the quadrature of the hyperbola cannot be squared algebra-

ically follows a similar structure to his proof of the quadrature of the circle. How-

ever, this proof has not been studied in Lützen and has only been sketched by 

Crippa.3 This study aims to provide a thorough analysis of Leibniz’s argument. 

2. The impossibility theorem 

After proving the impossibility of the “universal” or “general” quadrature of the 

circle, Leibniz enunciates a similar impossibility result that concerns the quadrature 

of the hyperbola as follows: 

In the same way, once a general relation between arcs and cords has been found, the universal 

section of the angle could be given by one equation of determinate degree; so once a general 

 

1 This project has received funding from the European Union’s Horizon 2020 research and inno-

vation programme under the Marie Sklodowska-Curie grant agreement No 101024431-LEGIT-

IMATH. 

2 Eberhard Knobloch: “Beyond Cartesian Limits: Leibniz’s Passage from Algebraic to ‘Trans-

cendental’ Mathematics”, in: Historia Mathematica, 33/1 (2006), pp. 113–31, here pp. 127ff.; 

Jesper Lützen: “17th century arguments for the impossibility of the indefinite and the definite 

circle quadrature”, in: Revue d’Histoire Des Mathématiques, 20/1 (2014), pp. 211–251, here p. 

235; Crippa, Davide: The Impossibility of Squaring the Circle in the 17th Century: A Debate 
Among Gregory, Huygens and Leibniz, Cham: Springer International Publishing, 2019, 

pp. 146ff. 

3 Lützen: “17th century Arguments”; Crippa: The Impossibility, p. 152ff.  
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quadrature of the hyperbola (generali inventa quadratura hyperbolae), namely a relation be-

tween a number and its logarithm, has been found, any number of mean proportions could be 

found by one equation of determinate degree; which is absurd, as mathematicians know (...) 

thus it is impossible to find a general quadrature, or a construction applying to any given sector 

of the hyperbola, or of the circle and the ellipse, which is more geometrical than our own.4 

For Leibniz, the “general” quadrature of the hyperbola refers to the quadrature of 

an arbitrary sector, namely a portion of the hyperbola included between the curve, 

one asymptote, and two parallels to the other asymptote (in the simplest case, we 

can take the rectangular hyperbola with equation   ' ⁄ , such as in figure 1, where 

sector A is marked).  In modern terms, Leibniz’s impossibility theorem may be read 

as referring to the familiar integral G


H
 ln,x-, whose solution is represented by 

a transcendental function.  

3. Logarithms 

Leibniz’s earliest knowledge of logarithms likely came from his trip to London in 

winter 1673, when he encountered the work of Mercator and Briggs.5 During his 

time in Paris (1673–1676) he familiarized himself with the standard definition of 

logarithms and computational techniques through the works and friendship with 

Huygens, and the works by Pardies and Mercator, J. Gregory, Gregoire of St. Vin-

cent, A. de Sarasa which are all referenced in many of his manuscripts from that 

period. In De Quadratura Arithmetica (A VII 6, 51), Leibniz dedicates at least two 

scholia to logarithms and their properties (scholium to proposition XIII; “definitio” 

and the rest of the scholium to proposition XLIII). He introduced logarithms using 

the standard early modern construction of matching an arithmetical with a geomet-

rical progression (Briggs, Arithmetica Logarithmica), as follows: 

 

numeri 1/16 1/8 1/4 1/2 1/1 2 4 8 A 

Logs -4 -3 -2 -1 0 1 2 3 B 

Logs -8 -6 -4 -2 0 2 4 6 C 

Logs 0 1 2 3 4 5 6 7 D 

 

4 Crippa: The Impossibility, p. 152. The original can be read in De Quadratura Arithmetica (A 

VII, 6, 51, p. 674): “nam, quemadmodum generali relatione inter arcum et latera inventa posset 

haberi sectio anguli universalis, per unam aequationem certi gradus; ita generali inventa quad-

ratura hyperbolae sive relatione inter numerum et logarithmum, possent inveniri quotcunque 

mediae proportionales ope unius aequationis certi gradus, quod etiam absurdum esse, analyticis 

constat (. . . ) Impossibilis est ergo quadratura generalis sive constructio serviens pro data qua-

libet parte Hyperbolae aut Circuli adeoque et Ellipseos, quae magis geometrica sit, quam nos-

tra.” 

5 See: “Observata philosophica in itinere Anglicano sub initium anni 1673”; A VIII, 1, 1; “Ob-

servatio de logarithmis”; A VII, 8, 1. 
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Table 1. See A VII 6, 51, p. 622. 

As it appears from the table above, the first row displays a sequence “A” of terms 

in a geometric progression, and the second, third and fourth rows display sequences 

of terms in an arithmetic progression, respectively B, C, D. The terms of the geo-

metric progression are called by Leibniz “numbers” (numeri), and the correspond-

ing terms of the arithmetic progressions are called “logarithms” (logarithmi) or “ex-

ponents” (exponentes). In order to distinguish the early-modern notion of loga-

rithms from our own, we shall employ the notation: “L,$-  M” for “the logarithm 

of the number a is x.”  

It should be noted that early modern logarithms presented at least three out-

standing differences with respect to our own logarithms. First, they were defined 

using two matching sequences and, as Leibniz’s example shows, a number could 

have an infinity of logarithms depending on the chosen sequence. Moreover they 

were defined discretely, although the sequences can be made arbitrarily dense (A 

VII, 6, 51, p. 624). Leibniz also conceived a representation of the logarithmic rela-

tion on a continuous curve, namely the linea logarithmica, which corresponds to 

the graph of an exponential. Likely sources were Gaston Pardies ’ Elemens de Géo-
métrie (1671), and James Gregory’s Geometriae pars universalis (1668), both stud-

ied by Leibniz during his Parisian years. A linea logarithmica can be constructed 

pointwise by interpolating a net of points obtained by pairing a geometric progres-

sion and an arithmetic one. By inserting an increasing number of proportionals be-

tween two give points, the net can be made denser.6 A continuous graph can be 

produced only by combining physical motions.7 

Finally, among early-modern geometers there was no shared, general assump-

tion that the logarithm of 1 is 0. For example, in sequence D of the table above, 

L,1
16N -  0. Postulating L,1-  0 would become customary only after Euler.8  

However, assuming L,1-  0 had a clear computational advantage. It can be 

proved that, for every four numbers  $, %, 8, (, … belonging to a geometrical Pro-

gression we have that: 

$ × %  8 × ( iff L,$-  L,%-  L,8-  L,(-, and 

O

P


Q

R
 iff L,$-  L,%-  L,8-  L,(-. 

This result is proven in Burn.9 If we pose L,1-  0, we obtain the well-known prop-

erty of logarithms: 

 

6 Leibniz observes that the point wise construction of the linea logarithmica is the same as that

of other transcendental curves, such as the quadratrix (A VII, 6, 51, p. 625).

7 Cf. Leibniz’s construction of the logarithmica by motions in “De Curia Logarithmica”; A VII,

7, 67; and in G. W. Leibniz, “Schediasma de Resistentia Medii, & Motu projectorum gravium 

in medio resistente”, Acta eruditorum (1689): fasc. 1–12.

8 See Robert P. Burn: “Alphonse Antonio de Sarasa and Logarithms”, in: Historia Mathematica
28/1 (2001), pp. 1–17. https://doi.org/10.1006/hmat.2000.2295. 

9 Burn: “Sarasa and Logarithms”, p. 5.
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L,$%-  L,$-  L,%-. 

Another key concept for understanding Leibniz’s proof of the impossibility of 

squaring the hyperbola is the notion of “dividing a ratio”. In De Quadratura Arith-
metica (A VII, 6, 51, Scholium to proposition XIII), Leibniz parallels the “division 

of the ratio” with the division of the angle, and claims that both problems stem from 

the most conceptually difficult subjects in geometry, namely “ratio” and “angle”. 

As it appears in extant manuscripts, in particular A VII, 6, 51, p. 556) Leibniz’s 

tacit reference could be to the conntroversy between Wallis and Hobbes on the sub-

ject of ratios and curvilinear angles.10 

Manipulating ratios have a long history predating Leibniz’s work, which goes 

back to Euclid and has been commonly used since the Middle Ages.11 For instance, 

a ratio ,': T- was customarily called the “duplicate” of a second, given ratio ,': )- 

if Tis the third proportional between ' and ), and a ratio ,': - the “triplicate” of 

,': )- if d is the fourth proportional, namely if:  ,': )- ∷ ,): T- ∷ ,T: -. Therefore, 

to “duplicate” a ratio meant to construct a third proportional, and to “triplicate” a 

ratio meant to construct a fourth proportional, if a third proportional is also given. 

If the terms of the proportion are line segments, these operations can be performed 

using a ruler and a compass. In algebraic terms, to duplicate the ratio 
O

P
 meant to 

calculate the square of the ratio and to triplicate means to determine the cube of the 

ratio.12 

Inversely, bisecting a ratio ,': T- meant inserting one mean proportional be-

tween 'and T, and to trisect a ratio means constructing two mean proportionals. If 

the ratio is taken between numbers or, for example in Cartesian geometry, between 

segments, then the n-th section of the ratio can be interpreted as the extraction of 

its n-th root.13 Unlike the operation of duplicating or triplicating a ratio, the division 

of a ratio is not always constructible by ruler and compass but requires high-order 

curves, as Descartes showed in book three of the Géométrie. 

Leibniz employs the terminology of composition and division of ratios in his 

De Quadratura Arithmetica (see for instance A VII 6, 51, p. 556ff). He may have 

drawn inspiration from Meibom and Wallis, who are also cited in the same passage. 

Furthermore, because the insertion of mean proportionals between numbers 

amounts to constructing a geometric progression, by virtue of the definition of log-

arithms, dividing a ratio ,': T- into an equal number of parts can be performed by 

 

10 See also Douglas, M, Jesseph: Squaring the Circle: The War Between Hobbes and Wallis, Uni-

versity of Chicago Press, 1999; François Loget: “Wallis between Hobbes and Newton. The 

question of the horn angle in England”, in: Revue d’histoire des mathématiques, 8/2 (2002), 

pp. 207–262. 

11 Dudley E. Sylla: “Compounding ratios: Bradwardine, Oresme, and the first edition of Newton’s 

Principa”, in: E. Mendelsonn (ed.): Transformation and Tradition in the Sciences, Essays in 
Honour of I Bernard Cohen, 1984, pp. 11–43; Sabine Rommevaux-Tani: “Une théorie de la 

mesure des rapports dans le Chilias logarithmorum de Kepler (1624)”, Revue d’Histoire des 
Mathématiques, 24/2, 6 (2018), pp. 107–20. 

12 John Wallis: Mathesis Universalis, in Opera Mathematica, vol. I, Oxford, 1695, p. 156. 

13 John Wallis: Mathesis Universalis, p. 156. 
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dividing the interval L,T-  L,'- into the same number of parts, and finding the cor-

responding “number” in the geometric progression. 

Just as the division of the angle is essential for Leibniz’s proof of the impossi-

bility of giving a universal quadrature of the circle, the division of the ratio is crucial 

for the impossibility of squaring the hyperbola. 

4. Squaring the hyperbola 

Gregoire de S. Vincent (1584–1667), called “profondissimus geometra” by Leibniz 

(A VII, 6, 51, p. 12), was one of the first mathematicians to address the problem of 

squaring the hyperbola. In his work Geometricum Quadraturae Circuli et Section 
Coni (1647) he demonstrated several important properties of hyperbolic sectors. In 

particular, he demonstrated the following proposition: 

If points were taken in geometric progression along one asymptote of a hyperbola, and lines 

drawn through these points parallel to the other asymptote, then the areas between the parallel 

lines, bounded at one end by the asymptote and at the other by the hyperbola, were equal.14  

Expanding on St. Vincent’s work, Alphonse de Sarasa (1618–1667) clarified the 

significance of this discovery by relating it to the properties of logarithms (Solutio 
problematis a R.P. Marinus Mersenno Minimo propositi from 1649). In short, De 

Sarasa proved that if segments are described in geometric progression (i.e. forming 

a continuous proportion) on one asymptote of an equilateral hyperbola and lines are 

drawn to their extremes parallel to the other asymptote, then the areas of the hyper-

bolic sectors (namely the sectors formed by the given asymptote, a portion of the 

curve, and two successive parallels) are equal to one another.15 This result grounds 

the relationship between hyperbolic areas and logarithms, as understood in the early 

modern period. In fact, an immediate corollary follows: The sequence formed by 

hyperbolic areas forms an arithmetic progression corresponding to the geometric 

progression formed by the sequence of their bases. Thus, the areas of these sectors 

are the logarithms of their respective bases. The hyperbola model provides a con-

tinuous representation of the logarithmic relation. 

This is the connection between logarithms and the quadrature of the hyperbola 

that Leibniz places at the center of his impossibility proof.16 Computing the area of 

a hyperbolic sector, as defined above, is equivalent to computing the logarithm of 

its base. 

 

14 I quote here the paraphrasis given in Burn: “Sarasa and Logarithms”, p. 2. 

15 De Sarasa’s result is examined in detail in Burn: “Sarasa and Logarithms”, pp. 10–11. 

16 Leibniz’s knowledge of Gregoire of St Vincent’s and De Sarasa’s work is confirmed in various 

places, e.g. A VII 6, 51, p. 556, 632, and in particular p. 12: “Caeterum cum ex inventis pro-

fundissimi Geometrae P. Gregorii a S. Vincentio, P. Sarrasa Analogiam Logarithmorum ad 

spatia Hyperbolica ingeniose admodum deduxerit .” 
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5. Leibniz’s impossibility proof  

We can now analyze Leibniz’s proof of the impossibility of finding a general quad-

rature for the hyperbola. Leibniz presumably followed the proof of the impossibility 

to find a universal quadrature of the circle, which will provide the layout for our 

analysis. We proceed by contradiction and assume that an algebraic formula exists 

that computes the area of any given hyperbolic sector (general quadrature of the 

hyperbola). If this were true, it would follow that the relation between the logarithm 

and its number is algebraic. Hence, let L denote, as before, the logarithm-relation, 

and assume L,1-  0. We would then have that for any number  and the corre-

sponding logarithm L,-, there is an algebraic equation: 

Φ,, L,--  0         (1) 

of a certain fixed degree. By hypothesis, we can replace L,- with any submultiple 

1/nL,-, where is a positive integer. We shall obtain an equation: 

Φ,,1/nL,--  0        (2) 

in the same degree (in fact, dividing the unknown by a known term does not change 

the degree), and where  denotes the unknown number corresponding to the n-th 

division of L(x). 

However, as demonstrated in the previous section, dividing a logarithm into  

equal parts ,i.e. dividing the interval L,-  L,1-, upon the assumption that L,1- 
0, corresponds to inserting   1mean proportionals between the number  and a 

given unit, or constructing the n-th root of . Bisecting L,- is equivalent to ex-

tracting the square root of ; trisecting L,- means to extract the (real) cube root of 

, or to construct two mean proportionals (as shown in book 3 of Descartes’ Géo-
métrie); for    5, the constructing of four means is needed, which corresponds to 

the extraction of a quintic root. Hence, for any : 

Φ,,


X
L,--  Φ,

Y
Z,



X
L,--  0      (3) 

The division of the ratio or the logarithm into 4,6 … 2 , thus an even number of 

parts (which corresponds to the insertion of 3,5 … 2  1 mean proportionals be-

tween two given quantities, with n>1) leads to algebraic equations which are in 

principle reducible using the geometric and algebraic techniques of Descartes’ Géo-
métrie.17 Likewise the division into an odd number of parts may also lead to reduc-

ible equations in case of non-prime numbers. For example, the problem of dividing 

the ratio into 9 parts, i.e. of inserting 8 mean proportionals, yields a 9th degree 

equation that can be factored into a system of cubics. On the contrary, just as he did 

for the angular divisions, Leibniz might have taken for granted that the problem of 

dividing the ratio or logarithm into a prime number of parts (hence, the insertion of 

2,4,6 … 2 mean proportionals) led to an irreducible equation of corresponding de-

gree. This result is not proven by Leibniz, but he may have been led to it upon 

reading Descartes’ book three of the Géométrie. Descartes claimed to have given a 

 

17 Marco Panza: “Rethinking Geometrical Exactness”, Historia Mathematica 38/1 (2011), 

pp. 42–95, here p. 75. 
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general method to classify problems “more and more complex, ad infinitum” fol-

lowing the examples of the problems of inserting two and four mean proportionals 

(or dividing the angle into three or five parts.18 In the case of the division of the 

ratio, Leibniz may have thought that an ever higher number of prime divisions 

would lead to equations whose degrees infinitely varied, depending on the number 

 (A VII 6, 51, p. 676). Therefore, for any prime , the equation (3) could not be a 

polynomial equation in a fixed, finite degree. Hence, (1) was not a polynomial equa-

tion in a fixed, finite degree. This contradicts the initial assumption and concludes 

the proof. 

6. Conclusions 

As argued in Lützen and Crippa, Leibniz’s impossibility results in the context of 

the quadrature of the circle and the hyperbola had the goal of securing that the pos-

itive solutions given in De Quadratura Arithmetica, namely those using infinite 

series, were the best solutions attainable. In other words, they excluded the exist-

ence of simpler solutions, i.e. algebraic ones. Thus, early modern impossibility re-

sults have quite a difference significance than contemporary one. 

Although Gregory had previously worked on this topic before Leibniz,19 the 

latter, in a clearer manner than Gregory, presented a distinction between two prob-

lems: that of determining the area quantitatively, and the problem of determining 

the nature (algebraic or not) of a relation between quantities, such as the relation 

between circular and linear quantities, like the arc of a circle and the chord or the 

tangent, or the relation between a logarithm and its number. 

Leibniz’s proofs of impossibility concern the impossibility of expressing the 

relation between a chord and the arc (namely circular functions) or the logarithms 

and its number (namely, logarithmic or exponential functions) in algebraic terms. 

In this sense, it can be understood by modern readers as stating the transcendental 

nature of logarithmic (or exponential) and circular functions. 

It is worth noting that arcs and segments, as well as logarithms and numbers, 

represent pairs of non-homogeneous magnitudes. Even logarithms can be consid-

ered as non-homogeneous if they are represented by areas of hyperbolic sectors 

with respect to the base segments. Leibniz’s impossibility proofs in De Quadratura 
Arithmetica demonstrate that Cartesian algebra is inadequate for studying relations 

that violate homogeneity requirements. By abandoning the requirement of dimen-

sional homogeneity for his transcendental mathematics,20 Leibniz appears to have 

contributed also in this way to the process of disentangling analysis from its geo-

metrical underpinnings, known as “degeometrization of analysis”.21 

 

18 René Descartes: The Geometry of René Descartes, ed. by David E. Smith and Marcia L. Lat-

ham. La Salle: Open Court, 1952 (facsimile of the original edition, 1637), p. 240. 

19 see Lützen: “17th century arguments for the impossibility of the indefinite and the definite 

circle quadrature” and Crippa: The Impossibility, chapter 2. 

20 For a general overview of Leibniz’s “transcendental mathematics”, see Knobloch: “Beyond 

Cartesian Limits”. 

21 Henk J. M. Bos: Redefining Geometrical Exactness. Springer, 2000, p. 10. 


