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Abstract

Ensembles of meteorological quantities obtained from numerical mod-
els can be used for forecasting weather variables. Unfortunately, such
ensembles are often biased and under-dispersed and therefore need to be
post-processed. Ensemble Model Output Statistics (EMOS) is a widely
used post-processing technique to reduce bias and dispersion errors of
numerical ensembles. In the EMOS approach, a full probabilistic pre-
diction is given in the form of a predictive distribution with parameters
depending on the ensemble forecast members. Parameters are then esti-
mated and substituted, thus obtaining a so-called estimative predictive
distribution. Nonetheless, estimative distributions may perform poorly
in terms of the coverage probability of the corresponding quantiles.
In this work, we suggest the use of calibrated predictive distributions
based on a bootstrap adjustment of estimative predictive distributions,
in the context of EMOS models. The corresponding calibrated quan-
tiles give exact coverage probabilities. We evaluate the performance of
the suggested calibrated EMOS in two simulation studies, comparing
the different predictive distributions using the log-score, the continu-
ous ranked probability score, and the coverage of the corresponding
predictive quantiles. The results of these simulation studies show that
the proposed calibrated predictive distributions improve estimative solu-
tions, both reducing the mean scores and producing quantiles with exact
coverage levels. The good performance of the new calibrated EMOS
is further stressed in two real data applications, one about maximum
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daily temperatures at sites located in the Veneto region (Italy) and the
other one about wind speed forecasts at weather stations over Germany.

Keywords: calibration, Continuous Ranked Probability Score (CRPS),
Ensemble Model Output Statistics (EMOS), log-score, predictive distribution

1 Introduction

In every field of knowledge, successful decisions need the support of accurate
representations of the future. In particular, weather forecasts play a fundamen-
tal role nowadays, since meteorological conditions are of primary importance
in almost all aspects of our lives. In the last decades, forecasts - in the form
of Numerical Weather Predictions (NWP) ([7] and [32]) - have gradually
improved their accuracy, mainly due to advances in technology and the coming
of powerful computers. Despite this, simulated ensembles of forecasts based
on physic models exhibit systematic bias and are often under-dispersive ([10],
[23]).

To refine, improve, and calibrate NWP, statistical post-processing methods
have been introduced in literature, including frequentist and Bayesian meth-
ods ([18, 31]). Among the most popular post-processing techniques, we focus
on a parametric frequentist approach, the Ensemble Model Output Statistics
(EMOS) ([18]). The EMOS is based on a heteroschedastic regression model,
the parameters of which are determined by the ensemble forecasts. It is capable
of reducing systematic biases and dispersion errors.

Different EMOS have been suggested in literature to model different
weather quantities. For example, classic EMOS based on normal distribu-
tion may provide a reasonable model for temperature and pressure ([18]).
To model high wind speed values, [34] propose an extended EMOS based on
truncated normal distribution, [1] suggest log-normal distribution, [2] and [3]
propose a combination of different EMOS models, and [5] and [25] use gener-
alised extreme value distribution. [4] model rainfalls using censored and shifted
gamma EMOS.

In all these applications, the unknown parameters of the EMOS model
are estimated using past observations and then replaced to obtain a whole
predictive distribution for the variable of interest. Despite its simplicity, this
estimative approach does not take into account the uncertainty introduced by
estimating the unknown parameters. As a result, estimative predictive distri-
butions may be excessively concentrated, in particular when the number of
past observations is small compared to the number of ensemble members.

This paper proposes an adjustment of the extended estimative EMOS
based on a bootstrap calibration procedure introduced by [14]. The superi-
ority of the bootstrap calibrated EMOS over the usual estimative EMOS is
evaluated in different settings using suitable measures of calibration and sharp-
ness, the most desirable properties that should characterise every predictive
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model ([20]). In particular, we perform two simulation studies to evaluate and
compare estimative and calibrated EMOS models, one with truncated normal
and one with log-normal distributions. We assess the goodness of the con-
sidered models using the log-score, the Continuous Ranked Probability Score
(CRPS), and the true coverage of the corresponding predictive quantiles. We
then address the analyses of two real datasets. The first one regards maxi-
mum daily temperatures at measurement sites located in the Veneto region,
northern Italy. The aim of this study is to explore more in depth the effect of
bootstrap calibration in the context of classic EMOS, as already suggested in
[16]. In the second application, we consider wind speed data for stations located
in Germany. This data set includes the exchangeable 50-member ensemble of
the European Center for Medium-range Weather Forecasts (ECMWF) and has
been recently investigated in [11]. This example allows to more fully assess
and compare the performance of various extended EMOS, with non-normal
distributions. Our analyses show that calibrated EMOS is more accurate than
estimative EMOS both in the presented simulation studies and in the applica-
tions. Moreover, they suggest the new technique’s great potential in providing
calibrated and sharp predictive models.

The paper is organised as follows. In Section 2 we outline the methodol-
ogy used in this research. In Section 3 we study the performance of calibrated
EMOS conducting two simulation studies on extended EMOS with various
distributions. In Section 4 we introduce and analyse temperature data in
Veneto (Italy) and we assess the superiority of calibrated classic EMOS in
comparison with estimative classic EMOS. In Section 5 we present wind speed
data for Germany, and we evaluate the superiority of calibrated extended
EMOS versus estimative extended EMOS based on the truncated normal, the
truncated logistic, the log-normal, and the generalized extreme value (GEV)
distributions. Finally, in Section 6 we present some concluding remarks.

2 The method

In this section, we present our proposal which consists of a bootstrap procedure
for calibration in the context of EMOS. We first recall some basics about
EMOS and then we revise the bootstrap calibration method.

2.1 Ensemble Model Output Statistics

EMOS produces probabilistic forecasts of weather variables by pooling
together the raw ensembles in a parametric predictive distribution with param-
eters depending on the ensemble forecast members ([18]). In its basic version,
EMOS is nothing but a normal linear regression model with heteroschedas-
tic errors. The EMOS mean is a linear combination of the ensemble member
forecasts, with unknown coefficients that represent the contributions of each
member of the ensemble to the relevant weather variable. The EMOS variance
is a linear function of the ensemble variance that accounts for the spread rela-
tionship. Formally, it is assumed that the weather variable Z depends on the
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ensemble forecasts X1, . . . , Xm in such a way that

Z = β0 + β1X1 + . . .+ βmXm + ε,

where ε is a normally distributed error term with 0 mean and variance σ2 =
γ0+γ1S

2 to account for dispersion errors in the ensemble members. Here, S2 =∑m
j=1(Xj − X̄)2/(m− 1) denotes the ensemble variance and X̄ =

∑m
j=1 Xj/m

the ensemble mean. The parameters β0, . . . , βm, γ0 and γ1 are non-negative
unknown coefficients. The distribution of Z is given by

Z ∼ Φ

(
z − µ

σ

)
, (1)

with mean µ = β0 + β1X1 + . . .+ βmXm and variance σ2 = γ0 + γ1S
2, where

Φ(·) denotes the standard normal distribution function. In the sequel, we refer
to model (1) as the classic EMOS.

Classic EMOS can also be extended beyond the normal case, allowing for
skewed or heavier tail distributions like log-normal, truncated normal, gamma,
and generalised extreme value distributions. The unknown parameters of the
chosen distribution for Z are then written as suitable functions of the ensemble
members X1, . . . , Xm. We call all these models extended EMOS, in contrast to
classic EMOS (1). Two examples of the application of EMOS with log-normal
and truncated normal distributions are considered in the simulation section of
this paper and the application to wind speed data, together with the truncated
logistic and generalised extreme value distributions.

The unknown parameters of EMOS are usually estimated by minimising
proper scoring rules such as the log-score and the CRPS. Minimisation of
the log-score corresponds to the well-known Maximum Likelihood Estimator
(MLE). The CRPS is given by the general formula:

CRPS(F, x) =

∫
R
[F (u)− I(u ≥ x)]2du,

where F is a predictive distribution function to be evaluated at the observed
value x and I(A) denotes the indicator function of the set A. Minimisation of
the CRPS gives rise to the minimum CRPS estimator, with good robust prop-
erties and prediction ability, see [19]. The scores are minimised by using the
ensemble forecasts and the corresponding observed values referring to suitably
chosen training periods ([18]). Training sets are selected basically by using two
approaches: the local and the regional methods. In the local approach, only
observations from a single station of interest are considered for parameter esti-
mation, while in the regional approach observations from all available stations
are considered. Although local estimation generally yields better predictive
performance, it may suffer from numerical instability due to the limited avail-
ability of training data ([34]). In contrast, regional estimation has typically no
numerical instability issues, but in such conditions, a single set of parameters



Springer Nature 2021 LATEX template

Calibrated EMOS 5

is found for all the stations, without taking into account geographical and cli-
matological variability ([1]). An intermediate solution is proposed by [26] with
similarity-based semilocal models to estimate the EMOS coefficients. Here,
we limit our discussion to the local estimation approach since our proposal
overcomes the problem of numerical instability due to small sets of training
data.

In the classic EMOS, after minimising the log-score or the CRPS, the
estimated parameters are replaced in (1) obtaining what is known as an esti-
mative distribution for the future weather quantity Z: Φ ((z − µ̂)/σ̂), with

µ̂ = β̂0 + β̂1X1 + . . . + β̂mXm, and σ̂2 = γ̂0 + γ̂1S
2, where β̂0, β̂1, . . . , β̂m, γ̂0,

and γ̂1 are the estimates of β0, β1, . . . , βm, γ0, and γ1, respectively. A similar
procedure is easily applied for obtaining estimative predictive distributions in
the case of extended EMOS.

Unfortunately, estimative distributions can perform poorly, particularly
when the number of past observations is small in comparison to the number
of ensemble members because estimates can be highly unstable in this case. In
particular, the calibration requirement is not met by estimative distributions.
In fact, the estimative procedure does not account for the variability intro-
duced by substituting fixed parameter values with estimates. Thus, estimative
distributions are often under-dispersed and too sharp.

2.2 Calibrated predictive distributions

There are many different properties that a good predictive distribution should
possess. As suggested in [20], here we focus on a calibration that is a sort of con-
sistency between a predictive distribution and future observations. It is based
on the fact that a good predictive distribution F̂ (z) should resemble the true
distribution F (z) so that, for the integral transform theorem, F̂ (Z) ∼ U(0, 1),
at least approximately, where U(0, 1) denotes a uniform distribution in (0, 1).
The PIT (Probability Integral Transform) histogram is a graphical represen-
tation useful for checking calibration ([31]). For the construction of a PIT
histogram, each observed data z is transformed through the predictive distri-
bution F̂ (·), and then the histogram of transformed values F̂ (z) is displayed.
The histogram should be flat and similar to the histogram of random values
from a uniform distribution in (0, 1).

It can be shown that a predictive distribution whose quantiles give the cor-
rect coverage probability is always calibrated. Thus, in this section, we briefly
review the calibrating approach proposed by [14], which provides predictive
distributions whose quantiles give well-calibrated coverage probabilities. The
approach has recently been adapted to the EMOS context in [16], where only
the classic EMOS (1) has been considered.

Suppose that {Zi}i≥1 is a sequence of independent continuous random
variables. We assume that Z(n) = (Z1, . . . , Zn), n > 1, is observable, while Z =
Zn+1 is a future or not yet available variable of the process, with probability
distribution F (z; θ) depending on an unknown parameter θ. This general
setting includes the basic EMOS specified in (1) and all the extended EMOS
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as particular cases. We indicate with zα(θ) the α-quantile of Z, so that zα(θ) =
F−1(α; θ). Given the observed sample z(n) = (z1, . . . , zn), an α-prediction
limit for Z is a function cα(z

(n)) such that, exactly or approximately,

PZ(n),Z{Z ≤ cα(Z
(n)); θ} = α,

for every θ ∈ Θ and for every fixed α ∈ (0, 1). The above probability is called
coverage probability and it is calculated with respect to the joint distribution
of (Z(n), Z).

Consider a suitable asymptotically efficient estimator θ̂ = θ̂(Z(n)) for θ and

the estimative prediction limit zα(θ̂), which is obtained as the α-quantile of the

estimative distribution function F (z; θ̂). The associated coverage probability
is

PZ(n),Z{Z ≤ zα(θ̂(Z
(n))); θ} = EZ(n) [F{zα(θ̂(Z(n))); θ}; θ] = C(α, θ)

and, although its explicit expression is rarely available, it is well-known that
it does not match the target value α even if, asymptotically, C(α, θ) = α +
O(n−1), as n → +∞, see e.g. [6]. As proved in [14], the function

Fc(z; θ̂, θ) = C{F (z; θ̂), θ}, (2)

which is obtained by substituting α with F (z; θ̂) in C(α, θ), is a proper pre-
dictive distribution function, provided that C(·, θ) is a sufficiently smooth

function. Furthermore, it gives, as quantiles, prediction limits zcα(θ̂, θ) with
coverage probability equal to the target nominal value α, for all α ∈ (0, 1).

The calibrated predictive distribution (2) is not useful in practice, since it
depends on the unknown parameter θ. However, a suitable parametric boot-
strap estimator for Fc(z; θ̂, θ) may be readily defined. Let θ̂b, b = 1, . . . , B,
be estimates obtained from B bootstrap samples generated from the estima-
tive distribution of the data. Since C(α, θ) = EZ(n) [F{zα(θ̂(Z(n))); θ}; θ], we
define the bootstrap calibrated predictive distribution as

F boot
c (z; θ̂) =

1

B

B∑
b=1

F{zα(θ̂b); θ̂} |α=F (z; θ̂) . (3)

The corresponding α-quantile defines, for each α ∈ (0, 1), a prediction limit
having coverage probability equal to the target α, with an error term that
depends on the efficiency of the bootstrap simulation procedure. This makes
F boot
c (z; θ̂) a well calibrated predictive distribution for Z.
In the following, we show that the proposed bootstrap adjustment on the

EMOS estimative distributions significantly outperforms the estimative EMOS
both in terms of calibration and sharpness, the most desirable properties that
characterise predictive models ([20]).
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3 Simulation studies

In this section, we present two simulation studies to compare estimative predic-
tive distributions with their calibrated counterparts, in the context of EMOS
with log-normal and truncated normal distributions. The classic EMOS with
normal errors has already been considered in [16]. Both the considered models
are estimated with the R package ensembleMOS ([35]). For the optimisation of
the log-score and of the CRPS over the training data, we use the constrained
optimisation algorithm L-BFGS-B ([8]). In both simulations, we have chosen
a small training sample size with a quite high number of ensemble members.
This is a setting where estimates of the unknown parameters suffer instability
due to a small number of observations. Typically, in this situation the esti-
mative distribution is under-dispersed with U-shaped PIT histograms. Indeed,
this is where the bootstrap calibration is more compelling.

3.1 Log-normal EMOS

In [1] an EMOS approach based on the log-normal distribution is proposed for
modelling wind speed values. The density of the log-normal distribution with
parameters µ and σ > 0 is

f(z; µ, σ) =
1

σ
ϕ

(
log z − µ

σ

)
, z > 0,

where ϕ(·) denotes the density of a standard normal distribution. The mean
m and the variance v of the interest variable Z are related to µ and σ through
the equations m = eµ+σ2/2 and v = e2µ+σ2

(eσ
2 − 1), respectively. In the log-

normal EMOS proposed by [1] m and v are affine functions of the ensemble
members and the ensemble variance, respectively:

m = β0 + β1X1 + . . .+ βmXm and v = γ0 + γ1S
2, (4)

where β0 ∈ R and β1, . . . , βm, γ0, γ1 ≥ 0. Model parameters β0, . . . , βm and
γ0, γ1 may be estimated by optimising the log-score or the CRPS over the train-
ing data. Here, we show the results of a simulation study based on M = 5000
Monte Carlo replications, with B = 200 bootstrap samples for calibration. The
sample size, that is the length of the sliding window of training observations, is
n = 25 with m = 10 ensemble members. We have simulated 5025 outcomes of
the ensemble, using a multivariate normal distribution for the log-transformed
ensemble members, with mean 0 and variance 1 for each component, and pair-
wise correlation ρ = 0.75. The same number of observations for a weather
variable following the log-normal EMOS have been generated with regression
coefficients set to βj = j+1, j = 0, . . . , 10, and γ0 = 100, γ1 = 100. We report
the PIT histograms (Figure 1), the mean values of the log-score and the CRPS
(Table 1) and the coverage probabilities of upper limits of level α = 0.9, 0.95,
and 0.99 (Table 2), for the estimative distributions obtained with the MLE
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and the minimum CRPS estimator, and the corresponding calibrated versions.
All the results show the improvement of the calibrated procedures over the
estimative ones. We have repeated the simulation study using different cor-
relations between the ensemble members. The results, not reported here, are
not affected by this choice and always show the improvement of the bootstrap
calibrated procedure over the estimative one. We have also repeated the study
varying the sample size and the number of ensemble members. The results, not
presented here, show a better improvement when the sample size n is small
with respect to the number of ensembles m.

Table 1 Log-normal EMOS: Average log-score and CRPS values for the four predictive
distributions. Standard errors in brackets. Est log denotes the estimative EMOS with MLE
estimates and Est CRPS the estimative EMOS with CRPS estimates, while Cal log and
Cal CRPS are the respective calibrated counterparts.

Est log Cal log Est CRPS Cal CRPS

Log-score 10.45 4.84 14.65 4.90
(0.81) (0.16) (1.27) (0.12)

CRPS 14.34 12.79 15.09 13.15
(0.33) (0.27) (0.35) (0.28)

Table 2 Log-normal EMOS: coverage probabilities of upper prediction limits for the four
predictive distributions. Standard errors in brackets. Est log denotes the estimative EMOS
with MLE estimates and Est CRPS the estimative EMOS with CRPS estimates, while Cal
log and Cal CRPS are the respective calibrated counterparts.

α Est log Cal log Est CRPS Cal CRPS

0.90 0.739 0.887 0.715 0.894
(0.006) (0.004) (0.006) (0.004)

0.95 0.797 0.936 0.772 0.937
(0.006) (0.003) (0.006) (0.003)

0.99 0.872 0.977 0.848 0.975
(0.005) (0.002) (0.005) (0.002)

3.2 Truncated normal EMOS

[34] propose a truncated normal model to model wind speed. The truncated
normal distribution with location µ, scale σ > 0, and lower truncation at 0,
has density function

f(z; µ, σ) =
1

σ
ϕ

(
z − µ

σ

)
/Φ

(µ
σ

)
, z > 0,
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Fig. 1 Log-normal EMOS: PIT histograms of the four predictive distributions. Est log
denotes the estimative EMOS with MLE estimates and Est CRPS the estimative EMOS with
CRPS estimates, while Cal log and Cal CRPS are the respective calibrated counterparts.

where ϕ(·) is the density function and Φ(·) is the cumulative distribution func-
tion of the standard normal distribution. In the truncated normal EMOS, the
location and scale are linked to the ensemble members through the following
formulas

µ = β0 + β1X1 + . . .+ βmXm and σ2 = γ0 + γ1S
2, (5)

where β0 ∈ R and β1, . . . , βm, γ0, γ1 ≥ 0. Again model parameters
β0, β1, . . . , βm and γ0, γ1 can be estimated by optimising the log-score and the
CRPS over the training data.

In order to assess and compare the performance of the estimative and the
calibrated predictive distributions we have performed several experiments with
simulated ensembles. The ensemble members are drawn from a 10-variate trun-
cated normal distribution with location 0 and scale 1 for each component, and
correlation ρ = 0.75 between pairs of the ensemble members. The observa-
tions are generated from a truncated normal random variable with parameters
specified in (5) with βj = j + 1, j = 0, . . . , 10, and γ0 = 0, γ1 = 1. The sam-
ple size is n = 25 and the bootstrap calibrating procedure is based on 200
bootstrap samples. The number of Monte Carlo replications is 5000. We evalu-
ate the estimative and calibrated predictive distributions in terms of coverage
probabilities, PIT histograms, and also using the mean log-score and CRPS.

Table 3 provides the results of the simulation study for comparing cov-
erage probabilities of upper limits of level α = 0.9, 0.95, and 0.99 obtained
from the estimative and the calibrated distributions with minimum CRPS and
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maximum likelihood estimates. It can be noted that the coverage probabili-
ties associated with the calibrated quantiles are very accurate, being almost
equal to the nominal values. The same conclusions can be drawn from the PIT
histograms (Figure 2). We also assess the improvement of the calibrated pre-
dictive distributions over the estimative ones by computing the log-score and
the CRPS, averaged over the 5000 replicates, as shown in Table 4. The superior
performance of the calibrated distributions is evident. Indeed, average values
of the scores for estimative distributions are higher with respect to their cali-
brated counterparts. As in the previous example, we do not report the results of
other simulation studies performed by using different settings. However, these
results indicate that when the sample size is small with respect to the number
of ensembles, the improvement of the calibrated predictive distribution on the
estimative one is more evident.
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Fig. 2 Truncated normal EMOS: PIT histograms of the four predictive distributions. Est
log denotes the estimative EMOS with MLE estimates and Est CRPS the estimative EMOS
with CRPS estimates, while Cal log and Cal CRPS are the respective calibrated counter-
parts.

4 Temperature forecasts in Veneto

In order to assess and compare the performance of different EMOS predictive
distributions, we analyse maximum daily temperatures for stations located
throughout the Veneto region in the northeast of Italy, see Figure 3.
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Table 3 Truncated normal EMOS: coverage probabilities of upper prediction limits for
the four predictive distributions. Standard errors in brackets. Est log denotes the
estimative EMOS with MLE estimates and Est CRPS the estimative EMOS with CRPS
estimates, while Cal log and Cal CRPS are the respective calibrated counterparts.

α Est log Cal log Est CRPS Cal CRPS

0.90 0.752 0.898 0.730 0.895
(0.006) (0.004) (0.006) (0.004)

0.95 0.805 0.948 0.785 0.945
(0.006) (0.003) (0.006) (0.003)

0.99 0.889 0.987 0.866 0.987
(0.005) (0.002) (0.005) (0.002)

Table 4 Truncated normal EMOS: Average log-score and CRPS values of the four
predictive distributions. Standard errors in brackets. Est log denotes the estimative EMOS
with MLE estimates and Est CRPS the estimative EMOS with CRPS estimates, while Cal
log and Cal CRPS are the respective calibrated counterparts.

Est log Cal log Est CRPS Cal CRPS

Log-score 1.88 1.02 2.37 1.05
(0.05) (0.02) (0.07) (0.02)

CRPS 0.39 0.36 0.40 0.37
(0.005) (0.004) (0.005) (0.004)

4.1 Data description

Two sources of information about maximum daily temperatures are used
in this application: ground measurements and numerical forecasts. The first
includes historical maximum daily temperatures provided by the Italian
national system for the collection, processing, and dissemination of cli-
mate data, created by ISPRA (http://www.scia.isprambiente.it/). The second
source consists of numerical forecasts (the ensemble predictions) available from
the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/,
last accessed on February 2022). We use the World Climate Research Pro-
gramme’s Coupled Model Intercomparison Project Phase 6 system (CMIP6).
The project delivers a huge number of simulations from global climate mod-
els at high spatial resolution; in fact, it comprises over 120 global climate
models and approximately 45 universities and organizations globally (https:
//pcmdi.llnl.gov/CMIP6). One of the scientific focuses of the CMIP6 exper-
iment is to understand past, present, and future climate changes ([12]). The
CMIP6 models used for this study are given in the Supplementary Material.
Although some CMIP6 models have a large number of members, we use a single
member for each CMIP6 model as in [24]. Therefore in this application, each
CMIP6 model is considered a single member of our ensemble. Thus, all ensem-
ble members have individually distinguishable physical features and are not
exchangeable. The ISPRA historical datasets are available from 1850, but for

http://www.scia.isprambiente.it/
https://esgf-node.llnl.gov/search/cmip6/
https://pcmdi.llnl.gov/CMIP6
https://pcmdi.llnl.gov/CMIP6
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evaluation purposes, this study focuses on the period 2009-2012 to match the
timespan of CMIP6 numerical simulations. Ground measurement data from
ISPRA are used as benchmarks and are collected at different meteorological
stations in the Veneto region.

The region, which is located in northern Italy, is characterised by large
elevation variations, with a mountainous area in the northwestern part, an
intermediate hill zone in the middle, and a broad flat area in the southeastern
part. Its elevation varies from sea level (and also below sea level) to around
3,300 meters, resulting in a wide range of temperatures. The elevation is used
in Figure 3 (right panel) to classify the various zones of the Veneto region
based on its quartile division, where higher elevation areas are represented in
darker tones. Numerical predictions are then interpolated to the station level
using elevation as a reference.

Fig. 3 Left panel: Geographical location of studied area in Italy. Right panel: Location
of the meteorological stations in the Veneto region. Crosses represent stations, while colors
outline the four elevation zones (elevation quartile base division). The darker the tone, the
higher the elevation. The red cross represents the Illasi station.
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4.2 Analysis and results for the Illasi station

We have considered four stations, see crosses in Figure 3 (right panel), one
for each of the four zones identified by the elevation quartile-based division.
We report here only the analysis of the Illasi station (Longitude: 11.17178°,
Latitude: 45.45954°) represented by the red cross in Figure 3 (right panel),
since for all the considered stations we have observed similar behaviors. Data
from Cavallino Treporti station have already been used in [17] as a real case
application in the context of confidence predictive distributions.

All CMIP6 climate models considered in this study show bias, namely
systematic difference between historical ground measurements and numerical
simulations, as can be observed in Figure 4. In this figure, the black line is
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Fig. 4 Temperature case study: differences between historical observations and numerical
forecasts. Time series of each numerical forecast from one CMIP6 model (gray lines) and
the corresponding ISPRA historical observations (black line) together with the numerical
forecasts obtained by the ensemble mean (red line).
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the time series of the true historical maximum daily temperatures at Illasi
station collected from the ISPRA website and used as benchmarks. Each grey
line represents the time series of numerical forecasts from one CMIP6 model
(the list of which is given in the Supplementary Material). The red line is
the time series of the numerical forecast obtained by averaging the forecasts
from the CMIP6 models (ensemble mean). The data cover a period of 3 years
from 16 May 2009 to 15 May 2012. After removing missing observations from
the selected station, the sample contains 1079 daily temperature observations
and 26 ensemble members. Following [18], we consider a sliding window of 40
observations as the training set. The remaining 1039 days will serve as a test
set. A short time period of training observations allows us to avoid considering
seasonality, since in such a short temporal window the generating process can
be assumed as stationary. The classic EMOS with normal distribution often
provides a reasonable model for temperatures ([18]). This is also the case for
the considered data.

The EMOS parameters are estimated by optimising both the log-score and
the CRPS over the sliding training period. Then the performance of the two
estimative distributions derived from the log-score and the CRPS, as well as
their bootstrap calibrated counterparts computed as in (3) are evaluated from
1 day up to 10 days ahead on the test set.
The different predictive models are compared at each lead time in terms of
the log-score and the CRPS. Figure 5 shows average log-score (left) and CRPS
(right) values at each lead time for the predictive EMOS models (the smaller
the better). The two calibrated EMOS result in the lowest average log-score
and CRPS values, for all lead times, significantly outperforming their esti-
mative competitors. We also evaluate the performances of the four predictive
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models in terms of the coverage probability of central intervals of level 0.67
and the coverage probabilities of upper prediction limits of levels 0.90, 0.95,
and 0.99; see Figure 6. It can be seen that the two calibrated EMOS result
in the best coverage for each target nominal level. They are much closer to
the nominal coverage level than the estimative EMOS. The PIT histograms of
calibrated EMOS forecasts, not presented here, show the positive effect of cal-
ibration, already shown in Figure 6. They are much closer to uniformity than
the PIT histograms of the estimative EMOS confirming the results obtained
with the coverage probabilities.

The normal EMOS models have been estimated with the R package
ensembleMOS [35]. For the optimization of the log-score and of the CRPS
over the training data, we have used the optimisation algorithm BFGS
([9, 13, 21, 33]).

Fig. 5 Temperature case study: Log-score (left) and CRPS average values (right) for the
four predictive distributions on different days. Est log denotes the estimative EMOS with
MLE estimates and Est CRPS the estimative EMOS with CRPS estimates, while Cal log
and Cal CRPS are the respective calibrated counterparts.
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Fig. 6 Temperature case study: Coverage probabilities for the four predictive distributions
on different days for different target nominal levels α = 0.67, 0.90, 0.95, 0.99. The ideal
coverage is indicated by the horizontal dashed-dotted line in each plot. Est log denotes the
estimative EMOS with MLE estimates and Est CRPS the estimative EMOS with CRPS
estimates, while Cal log and Cal CRPS are the respective calibrated counterparts.
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5 Wind speed forecasts in Germany

We examine wind speed data for stations in Germany in order to more thor-
oughly evaluate and contrast the performance of various extended EMOS based
on non-normal distributions.

5.1 Data description

This dataset has been recently studied by [11] and is available from https://
doi.org/10.6084/m9.figshare.19453622. It consists of forecasts of daily 10-meter
wind speed in 198 weather stations located all over Germany, produced by
the 50-member ensemble of the European Center for Medium-range Weather
Forecasts (ECMWF). The dataset also contains historical observations from
the Climate Data Center of the German weather service. In contrast with the
previous case-study, ensemble members in this application can be thought of
as exchangeable because they lack distinguishing physical characteristics. The
mean and standard deviation of the ensemble forecasts are then determined
and used to specify model parameters. A total of 10 years of daily forecasts and
observations ranging from the 2007 to the 2016 are available. This provides
a rich dataset for investigating the performance of the ensemble forecasting
methods. See [11] for further details about the data.

5.2 EMOS models for wind speed

In the following, we apply the calibration procedure presented in Section 2.2
to different extended EMOS for daily wind speed forecast in Germany. We
consider extended EMOS already proposed in the literature, such as those
based on the normal distribution left-truncated at zero [34], the logistic distri-
bution left-truncated at zero [28, 29], the log-normal distribution [1], and the
generalized extreme value distribution (GEV) [5, 25].

Usually, for all these models the unknown parameters are linked to the
ensemble members, as for instance in equations (4) and (5); however, in the
present case study, ensemble members are exchangeable, so unknown parame-
ters are written as functions of the ensemble mean X̄ and the ensemble variance
S2. In particular, for the normal and the logistic distributions left-truncated
at zero we have modeled the location parameter as

µ = β0 + β1X̄, (6)

where β0 ∈ R, β1 ≥ 0. The variance is a linear function of the ensemble
variance, as already specified in (5). Similarly, for the log-normal distribution,
the mean has been modeled as a linear function of the ensemble mean X̄, and
the variance as in (4). In the extended EMOS with the GEV distribution, the
location parameter is specified as in (6), the logarithm of the scale parameter
is considered as a linear function of the logarithm of the ensemble mean, that
is log σ = γ0 + γ1 log X̄, with γ0, γ1 ∈ R, and the shape parameter is an
unknown constant. Different ways for modelling the scale parameter have also

https://doi.org/10.6084/m9.figshare.19453622
https://doi.org/10.6084/m9.figshare.19453622
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been considered, but the final results do not seem to be much affected by
this choice, as also mentioned in [5]. In this case, it is possible to obtain non-
zero probabilities of negative wind speed. However, this rarely happens in this
dataset.

In the following sections, the truncated logistic and the truncated normal
EMOS models are estimated using the R package crch [27, 30]. Instead, the
log-normal and the GEV EMOS models are estimated using the R package
ensembleMOS [35], with the L-BFGS-B optimisation algorithm, and extRemes

[15], respectively.

5.3 Wind speed forecasts for stations 90 and 183

Here we only report the analysis of the two stations shown in Figure 7: station
90, located in the center of Germany (Longitude: 9.2583, Latitude: 50.7557),
and station 183, located in the north of Germany (Longitude: 13.4343, Lati-
tude: 54.6792). These two stations have been selected as examples of different
behavior in the distribution of wind speed.

Fig. 7 Location in Germany of stations 90 and 183 considered in this study.
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5.3.1 Station 90

The sample consists of 3576 observations of daily wind speed. The training
set is a sliding window with 25 observations, and the test set consists of the
remaining days. Here, we take into account extended EMOS with the GEV
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distribution ([5, 25]), and with the log-normal distribution ([1]). For both the
EMOS models, the parameters are calculated by maximising the log-score
over a training set of 25 observations. The performance of the two estimative
distributions obtained with the log-score — one based on the EMOS with
the log-normal distribution and the other with the GEV distribution — as
well as the corresponding calibrated counterparts obtained by the bootstrap
procedure (3) are then assessed using coverage probabilities for each of the days
available in the test set. In particular, we consider coverage probabilities of
central intervals of level 0.67 (Table 5) to assess the calibration and sharpness
in the central part of the predictive distributions. The log-normal and the
GEV distributions show similar results. Additionally, we also consider the
coverage probabilities of upper prediction limits of levels 0.90, 0.95, and 0.99
(Table 5). The findings indicate that when compared to estimative models,
calibrated predictive models have better coverage probabilities for both central
intervals and upper prediction limits. The PIT histograms in Figure 8, with the
log-normal distribution at the top and the GEV distribution at the bottom,
further support the superior performance of the calibrated models. For this
station, we have also considered extended EMOS with the truncated normal
and truncated logistic distributions, but the results are unsatisfactory because
the two distributions do not adequately fit the data. In fact, the proposed
calibration procedure is only effective under a good model specification.

Fig. 8 Wind case study for station 90. a) Log-normal distribution and b) GEV distribution.
PIT histograms of the estimative EMOS with MLE estimates (Est log), and the respective
calibrated counterpart (Cal log).
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Table 5 Wind case study for station 90. a) Log-normal distribution and b) GEV
distribution. Coverage probabilities of the central interval of level 0.67 and upper
prediction limits for the estimative EMOS with MLE estimates (Est log), and the
respective calibrated counterpart (Cal log). Standard errors in brackets.

a) Log-normal

α Est log Cal log
0.67 0.613 0.667

(0.008) (0.008)

0.90 0.878 0.906
(0.005) (0.005)

0.95 0.935 0.956
(0.004) (0.003)

0.99 0.981 0.992
(0.002) (0.002)

b) GEV

α Est log Cal log

0.67 0.593 0.652
(0.008) (0.008)

0.90 0.865 0.903
(0.006) (0.005)

0.95 0.916 0.953
(0.005) (0.004)

0.99 0.959 0.979
(0.003) (0.002)

5.3.2 Station 183

The sample contains 3610 observations of daily wind speed. We use a sliding
window of 25 observations as a training set, with the remaining days available
as a test set. Here, we consider extended EMOS with the normal distribution
left-truncated at zero [34], and with the logistic distribution left-truncated at
zero [28, 29]. The EMOS parameters for both models are estimated by opti-
mising the log-score over the sliding training period. The performance of the
two estimative distributions obtained with the log-score — one based on the
EMOS with the normal distribution left-truncated at zero and the other with
the logistic distribution left-truncated at zero — as well as the correspond-
ing calibrated distributions obtained using the bootstrap procedure (3) are
evaluated in terms of coverage probabilities of central intervals of level 0.67
(Table 6), and upper prediction limits of levels 0.90, 0.95, and 0.99 (Table 6).
The truncated normal and the truncated logistic distributions show similar
results. It is important to remark that the coverage probabilities for calibrated
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predictive models for both the truncated logistic and the truncated normal
distributions are much closer to the nominal values than those for the cor-
responding estimative models. The PIT histograms for the four investigated
predictive models are finally shown in Figure 9, with the truncated logistic dis-
tribution at the top and the truncated normal distribution at the bottom. The
U-shaped histograms of the estimative models are due to the excessive under-
dispersion. Instead, the effect of calibration results in a flat PIT histogram,
very close to the uniform one.

Fig. 9 Wind case study for station 183. a) Truncated logistic distribution and b) Truncated
normal distribution. PIT histograms of the estimative EMOS with MLE estimates (Est log),
and the respective calibrated counterpart (Cal log).
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6 Conclusions

In this work, we compare the estimative EMOS with the bootstrap calibrated
EMOS. We present some simulation studies and two real case applications
to temperature forecast in the Veneto region (Italy) and to wind speed fore-
cast in Germany. Appropriate verification measures such as CRPS, log-score,
and coverage probabilities of central and upper prediction intervals are used
for assessing the calibration and sharpness of the predictive models. From
the results of the analyses, one can conclude that calibrated EMOS remark-
ably improves on estimative EMOS in terms of all the most commonly used
measures of goodness.
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Table 6 Wind case study for station 183. a) Truncated logistic distribution and b)
Truncated normal distribution. Coverage probabilities of central intervals of level 0.67 and
upper prediction limits for the estimative EMOS with MLE estimates (Est log), and the
respective calibrated counterpart (Cal log). Standard errors in brackets.

a) Truncated logistic

α Est log Cal log

0.67 0.613 0.669
(0.008) (0.008)

0.90 0.865 0.898
(0.006) (0.005)

0.95 0.916 0.948
(0.005) (0.004)

0.99 0.971 0.989
(0.003) (0.002)

b) Truncated normal

α Est log Cal log

0.67 0.630 0.690
(0.008) (0.008)

0.90 0.866 0.901
(0.006) (0.005)

0.95 0.915 0.945
(0.005) (0.004)

0.99 0.962 0.984
(0.003) (0.002)

The analysis of maximum temperatures in Veneto and the analysis of wind
speed in Germany does not include either the temporal or the spatial com-
ponent in the model. As noticed in [18, 22], the temporal component can be
disregarded by using a short enough window of training observations. Indeed,
in a short period, the process can be assumed to be stationary, and in the
presence of few observations, the need for calibrating estimative solutions is
more compelling. The spatial structure could be included by allowing the coef-
ficients to depend on the location, as in geo-statistical output perturbation
models. This will be investigated in future work.

We would also like to note that, for the wind speed data, other stations
have been analysed. It has been observed that the underlying distribution used
to fit the data has a significant impact on the results. Indeed, the proposed cal-
ibrating procedure strongly relies on a good model specification. If the chosen
model does not fit the data well, the bootstrap calibrated solution is unable
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to correct the estimative solution. Further research is needed to develop a
calibration method that is more robust to model misspecifications.
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