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Abstract
We study a mean field game in continuous time over a finite horizon, T, where the state
of each agent is binary andwhere players base their strategic decisions on two, possibly
competing, factors: the willingness to align with the majority (conformism) and the
aspiration of sticking with the own type (stubbornness). We also consider a quadratic
cost related to the rate at which a change in the state happens: changing opinion may
be a costly operation. Depending on the parameters of the model, the game may have
more than one Nash equilibrium, even though the corresponding N-player game does
not. Moreover, it exhibits a very rich phase diagram, where polarized/unpolarized,
coherent/incoherent equilibria may coexist, except for T small, where the equilibrium
is always unique. We fully describe such phase diagram in closed form and provide
a detailed numerical analysis of the N -player counterpart of the mean field game. In
this finite dimensional setting, the equilibrium selected by the population of players
is always coherent (favoring the subpopulation whose type is aligned with the initial
condition), but it does not necessarily minimize the cost functional. Rather, it seems
that, among the coherent ones, the equilibrium prevailing is the one that most benefits
the underdog subpopulation forced to change opinion.
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1 Introduction

In this paper, we analyze a simple continuous-time dynamic multi-agent model and
study the limit as the number of agents goes to infinity. We consider a group of N
interacting agents (players), who are allowed to control their binary state choosing the
probability rate of “flipping” them. This rate is a feedback control that may depend on
the state of all players and (measurably) on time. Each player aims at minimizing an
individual cost, which is comprised by a running cost and a final reward. We consider
a standard quadratic running cost. At some final time T > 0, each player gets a reward
given as the sum of two different terms:

– the first mimics a social driver and favors imitation: the player gets a higher reward
if she conforms with the majority, and if the majority becomes polarized (close
to consensus); the majority is over the whole population, making the interaction
between players of mean field type;

– the second models the private (individual) desire to align the state with the sign of
a static and predetermined random variable denoting her personal type.

These two terms are possibly competing and represent a classical social dilemma: the
former mimics conformism, i.e., the adherence to social norms and is often referred to
as social utility; the latter models stubbornness, namely, the aspiration of the agent to
stay as close as possible to the prescription of personal traits, hencemimicking a private
(or individual) utility. As notion of optimality, we adopt that of Nash equilibrium, and
our aim is to understand the system’s behavior in the limit as N → +∞. This falls
into the realm of mean field games, introduced by J.-M. Lasry and P.-L. Lions and,
independently, by M. Huang, R.P. Malhamé and P.E. Caines (cf. [19, 20]), as limit
models for symmetric many player dynamic games as the number of players tends
to infinity; see, for instance, the lecture notes [6] and the two-volume work [7]. As
concerns the finite state mean field games, we refer the reader to [14, 15].

The variable representing the type is introduced in the model as a random field
and is treated as an observable static component of player’ state. Therefore, this term
introduces random disorder and, to the best of our knowledge, it is one of the first
attempts to do it in mean field games.

In literature, this dilemma has been analyzed from different perspectives: [5] is usu-
ally considered as a pioneering study on the trade-off between private and social drivers
in (static) binary choice models. In [4], a generalization to a dynamic continuous-time
setting is proposed, which is not a mean field game, as agents play static games at
random times. [11] proposes a model of consensus formation similar to our, where
only the social component is present and individual preferences are not considered.
[2] is one of the rare examples studying the interplay between stubbornness and imi-
tation drivers in the realm of mean field games. However, their mathematical setting
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is rather different from ours: in that paper state variables are real with Gaussian initial
distribution; moreover, their linear quadratic optimization problem is solved by affine
controls which preserve Gaussianity; as a consequence, their optimal control is always
unique. Models close to the one proposed here, but without individual preferences,
have also been introduced as examples of non-uniqueness of equilibria in mean field
games (see, e.g., [1, 3, 10, 12, 17, 18, 21]). Closed in spirit are also mean field games
of interacting rotators [8, 22, 23], which exhibit a synchronization/incoherence phase
transition.

Similarly to what is contained in the last cited references, the model that we are
proposing here has the following remarkable feature: for each N , there is a unique
Nash equilibrium for the N -player game; however, the correspondingmean field game
may have multiple equilibria. This is reminiscent of a common paradigm in Statistical
Physics: finite volumeGibbs states are uniquely defined, but thermodynamic limitmay
be non-unique, indicating a phase transition. The analogy with models in Statistical
Physics can be carried on further: the model that we propose corresponds to the mean
field Ising model (or Curie–Weiss one), when there are no private signals/types, and to
the random field Curie–Weiss model, when disorder is introduced. The time horizon
T plays a role similar to the inverse temperature in the models cited above: the higher
T , the smaller the contribution of the running cost. The N -player game as well as its
mean field limit are presented in Sect. 2, following the general theory developed in [10,
14, 15]. In remarkable analogy with the Curie–Weiss model, we show that the mean
field game has a unique equilibrium for small T , whereas several equilibria emerge
as T increases. For mean field games with multiple equilibria at least four criteria for
the selection of a “preferred” equilibrium have been proposed [12, 18, 21]:

– limit of the unique equilibrium of the N -player game,
– minimization of the player cost,
– regularization by vanishing common noise,
– stability for the best response map.

These criteria are not equivalent, and we are not aware of general results concern-
ing their relations. We stress that selecting one equilibrium does not imply that the
remaining equilibria are meaningless. Indeed, the feedback strategy corresponding to
any equilibrium of the mean field game is an “approximate” Nash equilibrium for the
N -player game, as shown in [9].

A detailed study of the different equilibria of the mean field limit is proposed
in Sect. 3. In particular, we will see that a number of different types of equilibria
can be identified: polarized/unpolarized (related to the size of the majority), coher-
ent/incoherent (alignment of the final population state with the initial state). In Sect. 4,
we discuss the selection of the equilibrium obtained by taking the limit of the unique
equilibrium of the N -player game. In [10], in the absence of individual preferences
and with a much simpler phase diagram, this question was rigorously answered, while
a rigorous analysis is presently out of reach here. We, therefore, run numerical sim-
ulations to capture this selection. We see that there is, indeed, a unique equilibrium
emerging from the N-player approximation: it is always coherent, but it could be
polarized or not, depending on some parameters of the model. Notably, the prevailing
equilibrium is not necessarily the one that minimizes the aggregate cost suffered by
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the population of interacting agents. Some remarks about the rationale behind the
selection of the equilibrium in the case of a finite population are collected in Sect. 4.2.
Section5 contains some concluding remarks. Appendix contains all technical proofs
of the results stated in Sect. 3.

2 A Continuous-Time Binary Strategic Game

In this section, we apply the general theory in [15] to study the equilibria of the
N -player game and of the mean field game in the specific model we propose.

2.1 The N-Player Game

We consider N players whose binary state vector is denoted by x := (x1, . . . , xN ) ∈
{−1, 1}N . To each player is also assigned a variable yi ∈ {−ε, ε}, where ε > 0 is a
given constant, and we set y := (y1, . . . , yN ); the components of y will be referred
to as local fields. The vector state x = x(t) evolves in continuous time, while y is
static. Each player is allowed to control her state with a feedback control ui (t, x, y)
which may depend on time, and on the values of x and y. We assume each ui , as
function of t , to be nonnegative, measurable and locally integrable. Thus, for a given
control u = (u1, . . . , uN ), the state of the system, x(t), evolves as a Markov process,
whose law is uniquely determined as the solution of the martingale problem for the
time-dependent generator

Lt f (x) :=
N∑

i=1

ui (t, x, y)
[
f (xi ) − f (x)

]
=:

N∑

i=1

ui (t, x, y)∇ i f (x),

where xi is the vector state obtained from x by replacing the component xi with −xi .
In order to fully define the dynamics, we prescribe the joint distribution of the initial
states x(0) and of the local fields y. For simplicity, we assume all these variables are
independent: all xi (0) have mean m0 ∈ [−1, 1], whereas all yi have mean 0. Each
player aims at minimizing her own cost, depending on the controls of all players,
which is given by

Ji (u) := E

[
1

2

∫ T

0
u2i (t, x(t), y)dt − xi (T )(mN (T ) + yi )

]
, (1)

wheremN (t) := 1
N

∑N
i=1 xi (t) is the mean state of the population. Here, T > 0 is the

time horizon of the game. Besides the standard quadratic running cost in the control,
two other terms contribute to the cost:

– the term−xi (T )mN (T ) favors polarization: each agent profits from being aligned
with the majority at the final time T ;
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– the term −xi (T ) yi incentivizes each agent to align with her own local field. As
y is uniformly distributed on {−ε, ε}N , this term inhibits alignment of behaviors,
hence polarization.

From a technical viewpoint, we note that, by rescaling time, one could normalize to 1
the time horizon and multiplying by T the reward. Thus, the time horizon T may be
seen as tuning the relevance of the final reward as compared to the “natural inertia”
expressed by the running cost.

Given a control vector u and a measurable and locally integrable function

β : [0, T ] × {−1, 1}N × {−ε, ε}N → [0,+∞),

we define the control vector
[
ui , β

]
by

[
ui , β

]

j
=

{
u j for j �= i
β for j = i

.

Definition 2.1 A control vector u is a Nash equilibrium if for each β as above,

Ji (u) ≤ Ji
(
[ui , β]

)
, ∀i = 1, . . . , N .

Nash equilibria may be obtained via the Hamilton–Jacobi–Bellman equation (see for
details [13])

{
∂vi
∂t (t, x, y) + ∑N

j=1 a∗(∇ jv j (t, x, y))∇ jvi (t, x, y) + 1
2a

2∗(∇ ivi (t, x, y)) = 0
vi (T , x, y) = −xi (mN + yi ),

(2)

where ∇ jv j (t, x, y) = v j (t, x j , y) − v j (t, x, y), mN = 1
N

∑N
i=1 xi , and

a∗(p) := argmin
a≥0

[
ap − 1

2
a2

]
= p−,

with p− denoting the negative part of p ∈ R. Note that (2) is a system of N ×2N ×2N

ordinary differential equations with locally Lipschitz vector field and global solutions.
Therefore, it admits a unique solution v := (v1, . . . , vN ); moreover, there exists a
unique Nash equilibrium u given by

ui (t, x, y) := a∗(∇ ivi (t, x, y)), i = 1, . . . , N .

2.2 TheMean Field Game

The mean field game is the formal limit of the above N -player game, as seen from a
representative player. Denote, respectively, by x ∈ {−1, 1} and y ∈ {−ε, ε} the state
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and the local field of a representative player. Given a (deterministic) m ∈ [−1, 1], the
player aims at minimizing the cost

J (u) := E

[
1

2

∫ T

0
u2(t, x(t), y)dt − x(T )(m + y)

]
(3)

under the Markovian dynamics with infinitesimal generator

Lu
t f (x, y) := u(t, x, y)[ f (t,−x, y) − f (t, x, y)], (4)

where E [ · ] denotes the expectation with respect to the noise of the dynamics and to
the distribution of the local field y. As above, admissible controls are measurable and
locally integrable functions. Consistently with the N -player game, the initial state x(0)
and the local field y are independent, with means m0 and 0, respectively. As we will
see below, the convexity of the running cost implies uniqueness of the optimal control
um∗ , which actually depends on the choice of m. Denoting by xm∗ (t, y) the evolution
of the state for the optimal control, the solution of the mean field game is completed
by finding the solutions of the Consistency Equation

m = E
(
xm∗ (T , y)

)
. (5)

Therefore, we handle the mean field game first by solving, for m fixed, the optimal
control problem (3)–(4) via Dynamic Programming. This leads to the Hamilton–
Jacobi–Bellman equation

{
∂V (t,x,y)

∂t + minu≥0
[
u∇V (t, x, y) + 1

2u
2
] = 0

V (T , x, y) = −x(m + y)
(6)

with ∇V (t, x, y) := V (t,−x, y) − V (t, x, y). The optimal feedback control is given
by

um∗ (t, x, y) = (∇V (t, x, y))− .

Then, we solve (5) using (4) to obtain the evolution of m(t, y) := Ey
(
xm∗ (t, y)

)
,

where Ey denotes the expectation conditioned to the local field y ∈ {−ε, ε}. It follows
that

E
(
xm∗ (t, y)

) = E(Ey(x
m∗ (t, y))) = 1

2
[m(t, ε) + m(t,−ε)] .

By (4), we obtain the Kolmogorov forward equation

d

dt
m(t, y) = Ey

[−2u∗(t, xm∗ (t, y), y)xm∗ (t, y)
]
. (7)

Now, we proceed with the explicit solutions of the steps just described. Next, we
discuss the solutions of the Consistency Equation (5) in terms of the three parameters
of the model: T , ε and m0.
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2.3 Solving the Hamilton–Jacobi–Bellman Equation

Our aim here is to determine the value function V (t, x, y) which solves (6). Note that
this value function also depends on m. It is convenient to set z(t, y) := V (t,−1, y)−
V (t, 1, y). Note also that ∇V (t, x, y) = xz(t, y). Using (6), we can subtract the two
equations for V (t,−1, y) and V (t, 1, y), obtaining a closed equation for z(t, y):

{ d
dt z(t, y) = 1

2 z(t, y)|z(t, y)|
z(T , y) = 2(m + y).

(8)

It is a key fact that the equations for z(t, ε) and z(t,−ε) are decoupled, so they can be
solved separately by separation of variables. Indeed, observing that, by uniqueness,
the sign of z(t, y) is constant in t ∈ [0, T ], we can rewrite (8) as

d

dt

(
1

z(t, y)

)
= 1

2
sign(m + y)

that, integrated over [t, T ], yields

z(t, y) = 2(m + y)

|m + y|(T − t) + 1
. (9)

At this point, we can also compute the value function V (t, x, y). Plugging the optimal
control in (6), we get

∂

∂t
V (t, 1, y) = 1

2

(
z−(t, y)

)2 =
{
0 if m + y ≥ 0(

2(m+y)
|m+y|(T−t)+1

)2
if m + y < 0.

Integrating this last identity from t to T , we get V (t, 1, y). Having V (t, 1, y) and
z(t, y) = V (t,−1, y) − V (t, 1, y), we can also obtain V (t,−1, y). The final result
is

V (t, x, y) =
{

−|m + y| if sign(m + y) ∈ {0, x}
−|m + y| + 2|m+y|

|m+y|(T−t)+1 if sign(m + y) = −x .
(10)

2.4 Solving the Kolmogorov Forward Equation

We begin by observing that

u∗(t, x, y) = (∇V (t, x, y))− = (xz(t, y))−

= 1 + x

2
z−(t, y) + 1 − x

2
z+(t, x) = 1

2
|z(t, y)| − x

2
z(t, y).
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Plugging this into (7), we obtain

{ d
dt m(t, y) = −m(t, y)|z(t, y)| + z(t, y)
m(0, y) = m0,

where we used the fact that x2 = 1. Recalling that the sign of z(t, y) is constant and
equals ρ := sign(m + y), we can rewrite this last equation as

−ρ
d

dt
log(1 − ρm(t, y)) = z(t, y) = 2(m + y)

ρ(m + y)(T − t) + 1
,

which, integrated from 0 to t , yields

m(t, y) = ρ

[
1 − (1 − ρm0)

( |m + y|(T − t) + 1

|m + y|T + 1

)2
]

. (11)

Hence,

E
(
xm∗ (t, y)

) = 1

2
(m(t, ε) + m(t,−ε)) . (12)

3 Equilibria and Phase Diagram

This section is entirely devoted to the analysis of the solutions to the Consistency
Equation (5). As said, m corresponds to a solution of the MFG if and only if it solves
such equation. Relying on (11) and (12), the Consistency Equation can be rewritten
as

1

2
sign(m + ε)

[
1 − (1 − sign(m + ε)m0)

(|m + ε|T + 1)2

]

+1

2
sign(m − ε)

[
1 − (1 − sign(m − ε)m0)

(|m − ε|T + 1)2

]
= m. (13)

Solutions of (13) will be called equilibria. We are now going to identify all such
equilibria. Moreover, depending on the values of the parameters of the model, we
classify them emphasizing the presence or the absence of two different features:

– polarization, which expresses the fact that agent alignment outscores individual
preference, namely, |m| > ε;

– coherence, which indicates the fact that the majority of the agents aligns with the
sign of the initial condition m0.

We begin by pointing out a symmetry property: if we denote by F(m, ε, T ,m0)

the l.h.s. of (13), then

F(−m, ε, T ,−m0) = F(m, ε, T ,m0). (14)
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Fig. 1 Full phase diagram for m0 = 0.25. Different regions identify different properties of the solutions to
(13), both in terms of numerosity and classification

Therefore, without loss of generality, in the remainder of this article we study (13) in
the case m0 ≥ 0. We can thus specify precisely four classes of equilibria:

– equilibria m ∈ (ε, 1] will be called polarized coherent;
– equilibria m ∈ [−1,−ε] will be called polarized incoherent;
– equilibria m ∈ (0, ε] will be called unpolarized coherent;
– equilibria m ∈ [−ε, 0] will be called unpolarized incoherent.

Before stating the formal results describing in detail all the solutions to (13), we
provide a visual example, where all the possible situations are depicted. To this aim, in
Fig. 1 we plot the full phase diagram in the parameters ε, T , having fixed m0 = 0.25.
The right picture is a zoom of the region within the dashed lines. We can identify nine
regions, each of them corresponding to a specific typology of solutions to (13). For
example, region 1, characterized by an intermediate value of T and ε small, shows
the presence of three equilibria, one polarized/coherent, one polarized/incoherent, and
one unpolarized/incoherent.

In Table 1, we summarize the results in terms of number of equilibria and their
typology for all the regions on the phase diagram as depicted in Fig. 1. We note that in
regions 6 and 9, for T small, there is a unique equilibrium which is always coherent,
and it is polarized in 6, for ε small, whereas it is unpolarized in 9, for ε large. On the
opposite, in zones 2, 3 and 4, for T large, there are five equilibria, and three of them
are always coherent. Finally, in zones 1, 5, 7 and 8 (for T intermediate), there are
three equilibria. In this situation, we see two different zones: in regions 1 and 5 (for ε

small), only one equilibrium is coherent; in regions 7 and 8 (for ε large), they are all
coherent.

Note that the way the number of equilibria depends of the parameters ε and T is far
from obvious. For instance, fixing ε � 0.5, the number of equilibria is not monotonic
in T . Similarly, fixing T � 3, there is no monotonicity in ε.

In the remainder of this section, we state the results describing the phase diagram,
specifying at what times the phase transitions occur. This will also serve to specify
the algebraic form of all the curves separating the regions depicted in Fig. 1. To ease
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readability, we organize them in four propositions, one for each type of equilibrium of
the MFG, i.e., one for each class identified by the possible polarization or coherence
of the equilibria, which are listed in Table 1. As already mentioned, we restrict to the
case m0 ≥ 0.

In Proposition 3.1, we study polarized coherent equilibria m, i.e., those for which
m > ε. We identify four regions for the parameter ε:

– Small ε: ε ≤ m0. For every value of T , there is a unique equilibrium.
– Low intermediate ε:m0 < ε ≤ ε

(1)∗ . There exists a critical time below which there
is no equilibrium, and above which there is a unique equilibrium.

– High intermediate ε: ε
(1)∗ < ε < 1+m0

2 . There are two critical times, and the
number of equilibria varies from zero to two to one as T increases and crosses
these critical values.

– Large ε: ε ≥ 1+m0
2 . There is a unique critical time with the number of equilibria

going from zero to two as T crosses it.

Proposition 3.1 (Polarized coherent equilibria: m > ε)

(i) Suppose ε ≤ m0. Then, ∀T > 0, there is a unique equilibrium m = M(T , ε,m0)

in (ε, 1], [regions 6, 5, 1, 2 in Fig. 1]. Moreover, limT→+∞ M(T , ε,m0) = 1.
(ii) Suppose ε ≥ 1+m0

2 . Then, there exists a unique T (1)
c = T (1)

c (ε,m0) > 0 such that

the graph of the curve in the plane (z,m) of equation z = F(m, ε, T (1)
c ,m0) is

tangent to the line of equation z = 0. Moreover,

– for T < T (1)
c (ε,m0), there is no equilibrium in (ε, 1], [region 9];

– for T = T (1)
c (ε,m0), there is a unique equilibrium in (ε, 1], [separatrix of

regions 9 and 8];
– for T > T (1)

c (ε,m0), there are two equilibria in (ε, 1], [regions 8, 4].
(iii) Suppose m0 < ε < 1+m0

2 . Define

T ∗(ε,m0) := − 1

2ε
+ 1

2ε

√
1 − m0

1 + m0 − 2ε
> 0. (15)

Then, there exists a unique ε
(1)∗ ∈

(
m0,

1+m0
2

)
such that ∂

∂m F(ε, ε, T ∗(ε,m0),m0) =
0. Moreover, if m0 < ε ≤ ε

(1)∗ ,

– for T ≤ T ∗(ε,m0), there is no equilibrium in (ε, 1], [region 9];
– for T > T ∗(ε,m0), there is a unique equilibrium in (ε, 1], [regions 6, 7, 5, 3,
1, 2].

If ε
(1)∗ < ε < 1+m0

2 , there exists a unique T (1)
c (ε,m0) > 0 defined as for the

case ε ≥ 1+m0
2 . Furthermore, T (1)

c (ε,m0) < T ∗(ε,m0), for each m0 the map

ε 
→ T (1)
c (ε,m0) is continuous, T

(1)
c (ε,m0) → T ∗(ε(1)∗ ,m0) as ε ↓ ε

(1)∗ , T (1)
c

defined here for ε ∈ (ε
(1)∗ , 1+m0

2 ) connects continuously at ε = 1+m0
2 with T (1)

c

defined for ε ≥ 1+m0
2 , and
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– for T < T (1)
c (ε,m0), there is no equilibrium in (ε, 1], [region 9];

– for T = T (1)
c (ε,m0), there is a unique equilibrium in (ε, 1], [separatrix of 9

and 8];
– for T (1)

c (ε,m0) < T < T ∗(ε,m0), there are two equilibria in (ε, 1], [regions
8, 4];

– for T ≥ T ∗(ε,m0), there is a unique equilibrium in (ε, 1], [regions 7, 3].
In Proposition 3.2, we study polarized incoherent equilibriam, i.e., those for which

m < −ε: the population polarizes in disagreementwith the initialmajority.We identify
two regions for the parameter ε:

– Small ε: ε < 1−m0
2 . There are two critical times, and the number of equilibria

varies from zero to two to one as T increases and crosses these critical values.
– Large ε: ε ≥ 1−m0

2 . There is a unique critical time with the number of equilibria
going from zero to two as T crosses it.

Proposition 3.2 (Polarized incoherent equilibria: m < −ε)

(i) Suppose ε ≥ 1−m0
2 . Then,

– for T < T (1)
c (ε,−m0), there is no equilibrium in [−1,−ε), [regions 9, 6, 7,

8];
– for T = T (1)

c (ε,−m0), there is a unique equilibrium in [−1,−ε), [separatrix
of 6, 7, 8 from 5, 3, 4];

– for T > T (1)
c (ε,−m0)), there are two equilibria in [−1,−ε), [regions 5, 3,

4].

(ii) Suppose 0 < ε < 1−m0
2 . Then, T (1)

c (ε,−m0) < T (1)∗ (ε,−m0), and,

– for T < T (1)
c (ε,−m0), there is no equilibrium in [−1,−ε), [region 6];

– for T = T (1)
c (ε,−m0), there is a unique equilibrium in [−1,−ε), [separatrix

of 6 and 5];
– for T (1)

c (ε,−m0) < T < T (1)∗ (ε,−m0), there are two equilibria in [−1,−ε),
[region 5];

– for T ≥ T ∗(ε,−m0), there is a unique equilibrium in [−1,−ε), [regions 1,
2].

In Proposition 3.3, we study unpolarized coherent equilibriam, i.e., those for which
0 ≤ m ≤ ε. We identify five regions for the parameter ε:

– Small ε: ε ≤ m0. There is a unique critical time with the number of equilibria
going from zero to two as T crosses it.

– Low intermediate ε: m0 < ε ≤ ε
(2)∗ . There are two critical times, and the number

of equilibria varies from one to zero to two as T increases and crosses these critical
values.

– Intermediate ε: ε(2)∗ < ε < ε
(3)∗ . There are three critical times, and the number of

equilibria varies from one to two to two to zero to two as T increases and crosses
these critical values.

– High intermediate ε: ε
(3)∗ ≤ ε < 1+m0

2 . There are two equilibria for all values of
T .
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– Large ε: ε ≥ 1+m0
2 . There is a unique equilibrium for all values of T .

Proposition 3.3 (Unpolarized coherent equilibria: 0 ≤ m ≤ ε)

(i) Suppose ε ≤ m0. Then, there exists a unique T (2)
c = T (2)

c (ε,m0) > 0 such that
the graph of the curve in the plane (z,m) of equation z = F(m, ε, T (2)

c ,m0) is
tangent to the line of equation z = 0. Moreover,

– for T < T (2)
c (ε,m0), there is no equilibrium in (0, ε), [regions 6, 5, 1];

– for T = T (2)
c (ε,m0), there is a unique equilibrium in (0, ε), [separatrix of 1

and 2];
– for T > T (2)

c (ε,m0), there are two equilibria in (0, ε), [region 2].

(ii) Suppose ε ≥ 1+m0
2 . Then,∀T > 0, there is a unique equilibriumm = M(T , ε,m0)

in (0, ε), [regions 9, 8, 4]. Moreover, limT→+∞ M(T , ε,m0) = 0.
(iii) Suppose m0 < ε < 1+m0

2 and let T ∗(ε,m0) given by (15). For T ≤ T ∗(ε,m0),
there is a unique solution in (0, ε], [regions 9, 8, 4]; the solution is ε if and only
if T = T ∗(ε,m0). Consider now the function

V (s, ε,m0) :=
√
s

8

{
16 + √

s

[
16 + 3m0

(
2m0

εs

)1/3
]}

+ε

2
(1 + √

s)2
{

−2 − 4
√
s + s

[
−2 + 3

(
2m0

εs

)1/3
]}

.

Then,

– the equation for the unknown ε, V
(m0
4ε , ε,m0

) = 0 has a unique solution

ε
(2)∗ (m0) ∈

(
m0,

1+m0
2

)
(unless m0 = 0 for which ε

(2)∗ (m0) = 0);

– there is a unique ε
(3)∗ (m0) ∈

(
ε
(2)∗ (m0),

1+m0
2

)
such that the curve in the plane

(s, z) of equation z = V (s, ε(3)∗ (m0),m0) is tangent to the line of equation
z = 0.

Moreover,

(a) if m0 < ε ≤ ε
(2)∗ (m0), the critical time T (2)

c = T (2)
c (ε,m0) > 0 defined in

point (i) is well defined, and T ∗(ε,m0) < T (2)
c (ε,m0);

– for T ∗(ε,m0) < T ≤ T (2)
c (ε,m0), there is no equilibrium in (0, ε],

[regions 6, 5, 1];
– for T = T (2)

c (ε,m0), there is a unique equilibrium in (0, ε), [separatrix
of 1 from 2, 3];

– for T > T (2)
c (ε,m0), there are two equilibria in (0, ε), [regions 3, 2];

(b) if ε
(2)∗ (m0) < ε < ε

(3)∗ (m0), T
(2)
c is not well defined. This implies that there

are two times T (2)
c (ε,m0) < T (3)

c (ε,m0) such that the graph of the curve in
the plane (z,m) of equation z = F(m, ε, T (2)

c ,m0) is tangent to the line of
equation z = 0 and
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– for T ∗(ε,m0) < T ≤ T (2)
c (ε,m0), there are two equilibria in (0, ε],

[region 7 in Fig. 1];
– for T = T (2)

c (ε,m0), there is a unique equilibrium in (0, ε), [separatrix
of 7 and 6];

– for T (2)
c (ε,m0) < T < T (3)

c (ε,m0), there is no equilibrium in (0, ε),
[region 6];

– for T = T (3)
c (ε,m0), there is a unique equilibrium in (0, ε), [separatrix

of 6 and 7];
– for T > T (3)

c (ε,m0), there are two equilibria in (0, ε]), [region 3];
(c) if ε(3)∗ (m0) ≤ ε < 1+m0

2 , there are two equilibria in (0, ε]), ∀T > T ∗(ε,m0),
[regions 7, 3].

In Proposition 3.4, we study unpolarized incoherent equilibria m, i.e., those for
which −ε ≤ m < 0. We identify two regions for the parameter ε:

– Small ε: ε < 1−m0
2 . There is a unique critical time with the number of equilibria

going from zero to one as T crosses it.
– Large ε: ε ≥ 1−m0

2 . There is no equilibrium for all values of T .

Proposition 3.4 (Unpolarized incoherent equilibria: −ε ≤ m < 0)

(i) Suppose ε ≥ 1−m0
2 . Then, there is no equilibrium in [−ε, 0), ∀T > 0, [reg. 9, 6,

7, 8, 5, 3, 4].
(ii) Suppose ε < 1−m0

2 and let T ∗(ε,m0) be given by (15). Then,

– for T ≤ T ∗(ε,−m0), there is no equilibrium in (−ε, 0) and m = −ε is an
equilibrium if and only if T = T ∗(ε,−m0), [regions 9, 6, 5, 3];

– for T > T ∗(ε,−m0), there is a unique equilibrium in [−ε, 0), [regions 1, 2].

4 The N-Player Game: HJB and Numerical Results

In this section, we provide a different glance to the problem and consider again the
representative agent in a setting where she is best responding to a population of N
opponents (note that, in doing this, the population is thus formed by N + 1 players).
We now derive a new large dimensional HJB equation used to run simulations of a
finite population in order to identify the emerging (unique) equilibrium in the finite
dimensionalmodel. This approach is inspired by [17, 18].Different numericalmethods
for finite state N -player games are developed in [16].

All parameters and variables are as described in the previous sections. Recall that
each agent j is characterized by a predetermined local field y j ∈ {−ε, ε}, where
ε ∈ [0, 1] and by a time-varying state variable x j (t) ∈ {−1, 1}. We take agent i
playing the role of the representative agent. Concerning the remaining population of
N players, we introduce two summary statistics as the number of “ones” in the two
subpopulations with different local fields (i.e., different ε). To this aim, we define

n+
N =

∑

j �=i

I{x j=1}I{y j=ε}; n−
N =

∑

j �=i

I{x j=1}I{y j=−ε}; nε
N =

∑

j �=i

I{y j=ε}.
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Note that nε
N is a static variable, whereas n+

N and n−
N change in time and take values,

respectively, in {0, 1, . . . , nε
N } and {0, 1, . . . , N − nε

N }. By taking advantage of the
symmetries of the model, we search equilibrium controls that, for the representative
player i , are feedback depending on the state xi , on the local field yi and on the
aggregate variables n+

N , n−
N and nε

N , and symmetrically for all other players.We denote
by α(xi , yi , n+, n−, nε, t) the feedback control strategy of player i , while each other
player j �= i uses the feedback control

β(x j , y j , n
+ − I{x j=1}I{y j=ε} + I{xi=1}I{yi=ε},

n− − I{x j=1}I{y j=−ε} + I{xi=1}I{yi=−ε}, nε − I{y j=ε} + I{yi=ε}, t),

where, for instance, we have used the fact that

n+ − I{x j=1}I{y j=ε} + I{xi=1}I{yi=ε} =
∑

k �= j

I{xk=1}I{yk=ε}.

Under these assumptions, the triple (xi , n+, n−) is a sufficient statistics, in the sense
that its time evolution is Markovian, with transition rates:

(x, n+, n−) 
→ (−x, n+, n−) with rate u(t) = α(x, y, n+, n−, nε, t);
(x, n+, n−) 
→ (x, n+ + 1, n−) with rate γ +(x, n+, n−, nε, t)

=
(
nε − n+)

· β
(
− 1,+ε, n++ I{x=1}, n−, nε, t

)
;

(x, n+, n−) 
→ (x, n+ − 1, n−) with rate δ+(x, n+, n−, nε, t)

= n+ · β
(
1,+ε, n+− I{x=−1}, n−, nε, t

)
;

(x, n+, n−) 
→ (x, n+, n− + 1) with rate γ −(x, n+, n−, nε, t)

=
(
N − nε − n−)

· β
(
− 1,−ε, n+, n−+ I{x=1}, nε, t

)
;

(x, n+, n−) 
→ (x, n+, n− − 1) with rate δ−(x, n+, n−, nε, t)

= n− · β
(
1,−ε, n+, n−− I){x = −1}, t

)
.

This allows a considerable reduction in the cardinality of the state space, from 2N+1

to O(N 2). The best response u(t) = α(x(t), y, n+(t), n−(t), nε, t) for player i is the
one minimizing the cost

E

[∫ T

0

u2(t)

2
dt − x(T ) (mN+1(T ) + y)

]
,

with

mN+1(T ) = 2
(n+(t) + n−(t)) + I{x=1}

N + 1
− 1.
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By Dynamic Programming, the Value Function for this stochastic optimal control
problem solves

∂V

∂t
+ min

u

[
u2

2
+ u∇x V + γ +∇+

γ V + δ+∇+
δ V + γ −∇−

γ V + δ−∇−
δ V

]
= 0

V (x, y, n+, n−, T ) = −x

(
2(n+ + n− + I{x=1})

N + 1
− 1

)
.

The minimization over u leads to the optimal feedback

α∗(x, y, n+, n−, t) = [
V (−x, y, n+, n−, t) − V (x, y, n+, n−, t)

]−
(16)

and, finally, to the HJB equation

V̇ = 1

2

([
V (−x, y, n+, n−, t) − V (x, y, n+, n−, t)

]−)2

− γ +(x, n+, n−, t) · [V (x,+ε, n+ + 1, n−, t) − V (x,+ε, n+, n−, t)]
− δ+(x, n+, n−, t) · [V (x,+ε, n+ − 1, n−, t) − V (x,+ε, n+, n−, t)]
− γ −(x, n+, n−, t) · [V (x,−ε, n+, n− + 1, t) − V (x,−ε, n+, n−, t)]
− δ−(x, n+, n−, t) · [V (x,−ε, n+, n− − 1, t) − V (x,−ε, n+, n−, t)].

(17)

The unique Nash equilibrium of the game is obtained by setting α = β = α∗, under
which the HJB reduces to a system of 4 (nε + 1)(N − nε + 1) ordinary differential
equations in the state variables V and can be solved numerically. Specifically, we use
the software Matlab to solve an ODE system backward in time, meaning that the final
conditions play the role of initial conditions and the variation is inverted in time (the
r.h.s of (17) is multiplied by −1).

4.1 Simulations of the N-Player System

Having obtained the Nash equilibrium feedback control α∗ for N + 1 players, we
rescale the problem to N players and simulate the evolution of the sufficient statistics

n+(t) =
N∑

i=1

I{xi=1}I{yi=ε}, n−(t) =
N∑

i=1

I{xi=1}I{yi=−ε},

which has the Markovian evolution

(n+, n−) 
→ (n+ + 1, n−) with rate
(
nε − n+)

· α∗(−1,+ε, n+, n−, nε, t);
(n+, n−) 
→ (n+ − 1, n−) with rate n+ · α∗(1,+ε, n+ − 1, n−, nε, t);
(n+, n−) 
→ (n+, n− + 1) with rate

(
N − nε − n−)

· α∗(−1,−ε, n+, n−, nε, t);
(n+, n−) 
→ (n+, n− − 1) with rate n− · α∗(1,−ε, n+, n− − 1, nε, t).
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Initializing appropriately (n+(0), n−(0)), by independently assigning to each player
xi (0) = 1 with probability 1+m0

2 and yi = ε with probability 1
2 , we run simulations of

the above dynamics, eventually obtaining samples for mN (T ) = 2 n+(T ) + n−(T )
N − 1.

Averaging over S independent simulations we estimate the expectation E(mN (T )).
More in detail, in our first series of experiments we fix m0 = 0.25, and we take

different values of ε and T . Concerning the number of simulations, we set S = 100,
whereas the number of agents in the population is N = 30. This figure could appear too
small to describe a large population. However, what we see in our simulations is that
the expected values of mN are approximating very well the asymptotic equilibrium of
the mean field game, except for some transition windows that we will discuss in more
detail. Later, in a second series of experiments, we will also consider N = 60. Note
that, by increasing N , the numerical problem becomes quickly intractable because of
the high dimension of the HJB associated with the N -dimensional system.1

In Fig. 2, we compare E(mN (T )) (red circles, estimated by averaging over the S
simulations), the equilibrium emerging in the finite dimensional model, with the mean
field equilibria described as the solutions to the Fixed Point Equation (13) (black
lines). Specifically, we consider three different values of ε ∈ {0.5, 0.52, 0.6} and we
let T vary from T = 0 to a large time, where the largest equilibrium value of m(T ) is
approaching the limit value of 1.We expect thatE(mN (T )) converges in N towards one
of the mean field equilibria solving (13). This is verified in our simulations; notably,
for certain values of the parameter ε, we see a clear transition from a polarized to a
unpolarized equilibrium or vice versa. In fact, by looking at the four panels of Fig. 2,
if ε is large enough (see panel with ε = 0.6), the individual behavior prevails for all
T and the population sticks with the smallest (unpolarized and coherent) equilibrium.
When ε is small enough (see panel with ε = 0.5), the selected equilibrium changes
continuously in T , as in the large ε case, but this equilibrium is unpolarized for small
T and polarized for larger T . More interesting is the case of intermediate values
of ε (see panel with ε = 0.52). Here, we see a continuous branch of unpolarized
and coherent equilibria existing for all T > 0, while a branch of polarized coherent
equilibria emerges for T sufficiently large. In this case, the N -player game agrees
with the unique unpolarized equilibrium for small T , jumps to the branch of polarized
equilibria as it emerges, but for larger T it jumps back to the less polarized equilibrium.
We actually see “smooth transitions” rather than “jumps”, but this could be due to the
small value of N in simulations.

Note that this switch from polarized to unpolarized is not seen for all values of the
initial condition m0, as seen in Fig. 3.

In the next section, we provide a justification behind the emergence of one selected
equilibrium, in case that multiple equilibria are present in the mean field limit.

4.2 A Rationale Behind the Equilibrium Selection

In all the numerical experiments, we have performed aboutE(mN (T )), the equilibrium
emerging in the N -dimensional system, we can recognize two important properties:

1 For N = 30, we have a system of 1024 equations. For N = 60, the number increases to 3844.
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Fig. 2 Values of m(T ) (black dots) and E(mN (T )) (red large circles)

Fig. 3 Values of m(T ) (black
dots) and E(mN (T )) (red large
circles). Here, m0 = 0.2 and
ε = 0.48

Property 1. The equilibrium E(mN (T )) is always coherent. Namely, if m0 > 0,
then mN (T ) > 0.

Property 2. For some values of ε, E(mN (T )) switches from a polarized to an unpo-
larized equilibrium (or vice versa) depending on the length of the time horizon T .

Concerning Property 1, when we look at the finite dimensional system, the equilib-
rium E(mN (T )) converges, for N large, to one of the values m(T ) solving (13). Note
that, among those values, there is at least one coherent equilibrium (i.e., an equilibrium
with the same sign asm0). It is then plausible to presume that the finite population will
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select one of the coherent equilibria, in that conveying to an incoherent equilibrium
would ask for a (implausible) mobilization of the subpopulation ex-ante aligned with
the sign ofm0. Property 2., instead, deals with the eventual polarization of the coherent
equilibrium selected when playing the finite dimensional game. Here, the discussion
is more subtle, since we do not have a clear and trivial explanation of the evident
phase transitions we see in the simulations. The simplest explanation could be that the
population chooses the equilibrium which minimizes the total cost, J (u), defined in
(3). Interestingly, this functional, being a function of the control, can be rewritten in
terms of m(T ). We can take advantage of (10) to see that, depending on the value of
x ∈ {−1,+1} and y ∈ {−ε,+ε}, we can specify the cost needed to reach a certain
equilibrium value m(T ):

vm(T )(x, y) =
{

−|m(T ) + y| if sign(m(T ) + y) ∈ {0, x}
−|m(T ) + y| + 2|m(T )+y|

T |m(T )+y|+1 if sign(m(T ) + y) = −x,
(18)

where vm(T )(x, y) = V (0, x, y) evaluated atm = m(T ). This functional describes the
total cost sustained by each subpopulation indexed by x and y to reach the equilibrium
m(T ). We can now derive the costs sustained by the underdog subpopulation (the one
whose local filed is opposite in sign tom0) and by its opponent, namely the one whose
local filed is alignedwithm0.With a slight abuse of notation, we denote such quantities
with J (−ε)(m(T )) and J (+ε)(m(T )) to emphasize the dependence on the prevailing
equilibrium. Accordingly, we will also write J (m(T )) as the total cost sustained by
the entire system. We have

J (−ε)(m(T )) = 1 − m0

2
vm(T )(−1,−ε) + 1 + m0

2
vm(T )(+1,−ε)

J (+ε)(m(T )) = 1 − m0

2
vm(T )(−1,+ε) + 1 + m0

2
vm(T )(+1,+ε)

and

J (m(T )) = 1

2
J (−ε)(m(T )) + 1

2
J (−ε)(m(T )).

It is not difficult to see that, when considering only coherent equilibria (i.e., m(T )

such that sign(m(T )) = sign(m0)), J (m(T )) decreases in m(T ), in the sense that
the more polarized the equilibrium is, the lower the cost to reach it. Therefore, we
could expect the polarized equilibrium to prevail. However, as said, for certain values
of the parameters, this is not the case. In line with our simulations, we now shape a
different conjecture. We see that the prevailing equilibrium is the one that, among the
coherent ones, minimizes the functional J (−ε), namely the cost related to the underdog
subpopulation.We rephrase this conjecture in the following fact, which embraces both
the previous properties.

Property 3. The equilibrium E(mN (T )) of the N -dimensional system converges to

the coherent solution of (13) that minimizes J (−ε).
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In some sense, abstracting a two-player game played between the favorite player
(y = +ε) and the underdog one (y = −ε), we can say that the former imposes that
the equilibrium will be coherent (and this minimizes her effort), whereas the latter
decides about polarization (again, minimizing effort given the previous selection).

To provide evidence about the goodness of Property 3, in Fig. 4, we plot the phase
diagram of J (−ε) for m0 = 0.25 and for the same values of ε and T seen in Fig. 2.
As said before, for each equilibrium value m(T ) of the mean field limit, we have the
corresponding value of J (−ε).

Note that, for ε = 0.52, we see two transitions corresponding to the points where
the two branches of J (−ε) related to the polarized and unpolarized coherent equilibria
intersect themselves. In the lower panel of Fig. 4, we zoom on the right-bottom panel
to better recognize such intersection. We see that the two branches of J (−ε) related
to the polarized and unpolarized coherent equilibria intersect themselves at T ≈ 8.9.
Notably, this point lies in the time interval, where the emerging equilibrium of the
N -dimensional system jumps from the polarized equilibrium to the unpolarized one
(panel with ε = 0.6 of Fig. 2). We do not report all the figures related to the other
values of ε, but the same fact still appears, thus corroborating Property 3.

Finally, we show that the solution m(T ) related to the prevailing solution mN (T )

does not necessarilyminimize to total cost J (m(T )). In Fig. 5 (left panel), for ε = 0.52,
we plot the value of m(T ) that minimizes J (−ε) (bold blue circles) and J (thin black
line). It can be seen that the two cases coincide as soon as T exceed the value T ≈ 8.9
discussed above. In the right panel of the same figure, we plot two different branches
of J , one corresponding to m(T ) which minimizes J (−ε), and the second one related
tom(T )which minimizes J (thin black line). We see that the two curves differ exactly
for T larger than the intersection value depicted above; this is the value of T where
we know that the equilibrium mN (T ) in the finite dimensional model jumps from
the polarized to the unpolarized one. This shows that the equilibrium emerging in
the population dynamics does not always minimize the total cost. In some sense, the
unpolarized equilibrium partially favors the underdog subpopulation, in that J (−ε) is
minimized among the coherent equilibria.

We now run a second series of experiment; the aim is still to reinforce the goodness
of Property 3, showing that E(mN (T )) fairly well approximates the coherent mean
field game equilibrium minimizing J (−ε). For this round of simulations, we increase
the number of agents taking N = 60. Concerning the other parameters, we choose
different values ofm0, ε and T , in order to consider cases where there are one, three or
five solutions to (13). Specifically, in the first panel of simulations, we fix T = 1 and let
m0 and ε vary (cf. the first six experiments reported in Table 2); in the second panel, we
fixm0 = 0.2 and let T and ε vary (cf. the second six experiments reported in Table 2).
In Table 2, we report all results. The first three columns summarize the parameters
of each experiment. In the fourth, we report the value of m(T ) which matches what
prescribed by Property 3. Columns five and six pertain to the finite dimensional model;
we indicate by mN (T ) the average value of mN (T ) as resulting by running S = 100
simulations, with an indication of its standard deviation, SD(mN (T )). Finally, in
columns seven and eight, we measure the goodness of the approximation by reporting
|mN (T )−m(T )| and |mN (T )−m(T )|/SD(mN (T )), respectively. By looking at these
latter columns, it is evident that the equilibrium prevailing in the finite dimensional
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Fig. 4 Phase diagram for m(T ) (left panels) and J (−ε) (right panels) for two different values of ε. Here,
ε = 0.5 (top panels) and ε = 0.52 (bottom panels). In the left panels, the red points denote the solution
m(T ) corresponding to the minimum value of J (−ε) (depicted in red in the corresponding right panel)

model aligns with what prescribed by Property 3. This is testified by the fact that
the difference between mN (T ) and m(T ) is close to 0 (the highest value is 0.038 in
experiment n.7) and that such difference is always below one standard deviation (the
highest ratio is, again, in experiment n.7).
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Fig. 5 Left: The value ofm(T ) minimizing the functional J (−ε) (bold blue circles) and minimizing J (thin
black line). Right: The functional J computed for m(T ) minimizing J (−ε) (bold circles) and the minimum
level of J (thin black line). Here, ε = 0.52

Table 2 Results of numerical experiments run to check the goodness of Property 3

T m0 ε m(T ) mN (T ) SD(mN (T )) |mN (T ) − m(T )| |mN (T )−m(T )|
SD(mN (T ))

1 0.1 0.42 0.8261 0.8240 0.0794 0.0021 0.0264

1 0.1 0.45 0.8126 0.8020 0.0859 0.0106 0.1234

1 0.1 0.5 0.0506 0.0390 0.0765 0.0116 0.1516

1 0.5 0.55 0.8962 0.9171 0.0553 0.0209 0.3779

1 0.5 0.6 0.8818 0.8860 0.0569 0.0042 0.0738

1 0.5 0.7 0.1276 0.1080 0.0783 0.0196 0.2503

2.3 0.2 0.5 0.8552 0.8173 0.0788 0.0379 0.4810

2.3 0.2 0.58 0.0583 0.0460 0.0818 0.0123 0.1504

2.8 0.2 0.5 0.8925 0.8827 0.0715 0.0098 0.1371

3.5 0.2 0.7 0.0203 0.0173 0.0473 0.0030 0.0634

5.5 0.2 0.7 0.0094 0.0077 0.0307 0.0017 0.0554

9 0.2 0.7 0.0039 0.0030 0.0171 0.0009 0.0526

5 Conclusions

We have studied a simple mean field game on a time interval [0, T ], where players can
control their binary state according to a functional made of a quadratic cost and a final
reward. This latter depends on two competing drivers: (i) a social component rewarding
conformism, namely, being part of the majority (conformism) and (ii) a private signal
favoring the coherence of individuals with respect to a personal type (stubbornness).
The trade-off between these two factors, associated with the antimonotonicity of the
objective functional, leads to a fairly rich phase diagram. Specifically, the presence of
multiple Nash Equilibria for the mean field game has been detected; moreover, when
looking at the aggregate outcome of the game, several different types of equilibria can
emerge in terms of polarization (fraction of conformists) and coherence (sign of the
majority at the final time T compared to the sign of the initial condition).
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We have described and characterized the full phase diagram and discussed the role
of all the parameters of the model with respect to the aforementioned classification of
possible equilibria. We have also analyzed a N -player version of the same mean field
game. It is a well-known that in this latter case, the Nash Equilibrium is necessarily
unique. It becomes, therefore, interesting to identify which equilibrium is selected by
the N -finite population, in case the corresponding mean field game exhibits multiple
equilibria. In this respect, we detected phase transitions, in the sense that, depending
on one or more parameters of the model, the equilibrium emerging in the finite-
dimensional game is always coherent, but it may turn from an unpolarized one to a
polarized and vice versa, depending on the length of the time horizon, T . This fact
seems to be new in themean field game literature. At a first glance, we could expect the
finite dimensional population to select the equilibrium minimizing the cost associated
with the equilibrium for the entire system (interpreted as the collective cost). By
contrast, what emerges from our simulations is that the equilibrium prevailing in the
finite dimensional game is the one converging, for N large, to the coherent equilibrium
thatminimizes the cost functional associatedwith the ex-ante underdog subpopulation,
namely, the collection of such players whose private signal opposites the sign of the
majority at time zero. Put differently, it seems that the ex-ante favorite subpopulation
(namely, the one whose private signal is aligned with the initial condition) imposes
the selection of a coherent equilibrium, whereas the ex-ante underdog subpopulation
(namely, the onewhose private signal opposites the sign of the initial condition) decides
about polarization.
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A Proof of Results

Proof of Proposition 3.1: Polarized Coherent Equilibria (m > �)

For m > ε, (13) can be rewritten as

F(m, ε, T ,m0) := 1 − m − 1 − m0

ε2T 2 ϕ

(
1 + mT

ε T

)
= 0, (19)

where

ϕ(y) = y2 + 1

(y2 − 1)2
.
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Before describing the solutions of the equation F(m, ε, T ,m0) in (ε, 1], we give some
simple facts that will be useful in the proof.

Fact 1. The map m 
→ F(m, ε, T ,m0) is strictly concave for m ∈ (ε, 1], for each
ε, T ,m0.

Proof This comes immediately from the fact that ϕ is strictly convex in (1,+∞).
Indeed,

ϕ′(y) = −2y(3 + y2)

(y2 − 1)3
, ϕ′′(y) = 6(y4 + 6y2 + 1)

(y2 − 1)4
. (20)

Note also that ϕ is strictly decreasing. ��
As a consequence of Fact 1, (19) can have at most two solutions in (ε, 1].

Fact 2. The map T 
→ F(m, ε, T ,m0) is strictly increasing for T ∈ [0,+∞), for
each m, ε,m0, with m > ε.

Proof To see this, note that

∂F

∂T
(m, ε, T ,m0) = 2(1 − m0)

[
m(1 + Tm)3 − 3ε2T (1 + Tm) − ε4T 3

]
(
(1 + Tm)3 − ε2T 2

)3 ,

which has the same sign as h(m, ε, T ,m0) := m(1+Tm)3 −3ε2T (1+Tm)− ε4T 3.

Observing that h(ε, ε, T ,m0) = ε, that

∂h

∂m
(m, ε, T ,m0) = (1 + Tm)3 + 3Tm(1 + Tm)2 − 3ε2T 2

is increasing inm and ∂h
∂m (ε, ε, T ,m0) = 4ε3T 3+6ε2T 2+6ε T +1 > 0,we conclude

that ∂F
∂T (m, ε, T ,m0) > 0 for m ∈ (ε, 1]. This proves Fact2. ��

Fact 3. ∀m, ε,m0, with m > ε,

F(m, ε, 0+,m0) := lim
T↓0 F(m, ε, T ,m0) = m0 − m

and

lim
T↑+∞ F(ε, ε, T ,m0) = 1 + m0 − 2ε

2
,

whereas for m ∈ (ε, 1],

lim
T↑+∞ F(ε, ε, T ,m0) = 1 − m.

These are simple asymptotics, and the proof is omitted.
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Now, we can prove Proposition 3.1. We begin with the case ε ≤ m0. By Fact 3,
F(ε, ε, 0+,m0) = m0 − ε ≥ 0; thus, by Fact 2, F(ε, ε, T ,m0) > 0, ∀T > 0. Since,
clearly, F(1, ε, T ,m0) < 0 and m 
→ F(m, ε, T ,m0) is strictly concave by Fact 1,
the uniqueness of the solution to (19) follows readily and case (i) is proved.

Now, consider the case ε ≥ 1+m0
2 (which implies ε > m0). By Facts 2 and 3,

F(ε, ε, T ,m0) < 0, ∀T > 0. Since F(m, ε, 0+,m0) = m0 − m, by continuity (19)
has no solution in (ε, 1] for T small enough. Now, we claim that there exists a unique
T (1)
c = T (1)

c (ε,m0) > 0 such that the graph of z = F(m, ε, T (1)
c ,m0) is tangent to

the line z = 0. Since F(m, ε, T ,m0) is strictly increasing in T (Fact 2), such T (1)
c , if

any, is unique. To prove the existence of T (1)
c by continuity, it is enough to show that

there are values of m ∈ (ε, 1] and T > 0 such that F(m, ε, T ,m0) > 0: this is true
∀m ∈ (ε, 1) as F(m, ε, T ,m0) → 1 − m for T ↑ +∞ (Fact 3). The conclusions in
case (ii) are now obvious consequences of concavity and T -monotonicity of F .

Consider, finally, the case m0 < ε < 1+m0
2 . We first investigate the following

equation in the unknown T > 0:

F(ε, ε, T ,m0) = 0, (21)

that can be rewritten as

1 − ε − 2ε2T 2 + 2ε T + 1

4ε2T 2 + 4ε T + 1
(1 − m0) = 0.

This can be cast as a quadratic equation in T : it has real solutions if and only if
ε < 1+m0

2 , and in this case the only positive solution is T ∗(ε,m0) given in (15). Note
that ε > m0 implies that T ∗(ε,m0) > 0. Now, T -monotonicity and m-concavity of
F(m, ε, T ,m0) and the fact that

∂

∂m
F(ε, ε, T ,m0) = −1 + 2(1 − m0)

T (ε T + 1)(4ε2T 2 + 2ε T + 1)

2ε T + 1
(22)

is strictly increasing in T , show that there are two alternatives:

(a) if ∂
∂m F(ε, ε, T ∗(ε,m0),m0) ≤ 0, then,

– for T ≤ T ∗(ε,m0), the map m 
→ F(m, ε, T ,m0) is less than or equal to 0 at
m = ε and it is decreasing: there are no solutions to (19) in (ε, 1];

– for T > T ∗(ε,m0), themapm 
→ F(m, ε, T ,m0) is strictly positive atm = ε,
concave and negative at m = 1, so (19) has a unique solution in (ε, 1];

(b) if ∂
∂m F(ε, ε, T ∗(ε,m0),m0) > 0, then by continuity there exists T (1)

c =
T (1)
c (ε,m0) ∈ (0, T ∗(ε,m0)) such that the graph of z = F(m, ε, Tc,m0) is tangent

to the line z = 0; as above, this T (1)
c is unique. Thus,

– for T < T (1)
c (ε,m0), (19) has no solutions in (ε, 1];

– for T = T (1)
c (ε,m0), (19) has a unique solution in (ε, 1];

– for T (1)
c (ε,m0) < T < T ∗(ε,m0), (19) has two solutions in (ε, 1];
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– for T ≥ T ∗(ε,m0), (19) has a unique solution in (ε, 1].
Note that T (1)

c is defined as in case (ii), and by the Implicit Function Theorem it is
continuous at ε, ∀ε in its domain. To complete the proof of case (iii), we are left to

show that there exists ε
(1)∗ ∈

(
m0,

1+m0
2

)
such that

∂

∂m
F(ε, ε, T ∗(ε,m0),m0) > 0 if and only if ε ∈

(
ε(1)∗ ,

1 + m0

2

)
,

so that T (1)
c (ε,m0) is defined for ε ∈ (ε

(1)∗ , 1]. Moreover, if this is the case, continuity
implies that

lim
ε↓ε

(1)∗
T (1)
c (ε,m0) = T ∗(ε∗,m0).

To complete the proof we are left to show the existence of such ε
(1)∗ . This is established

by proving that themap ε 
→ ∂
∂m F(ε, ε, T ∗(ε,m0),m0) is strictly increasing, negative

at ε = m0 and diverging to +∞ at ε = 1+m0
2 . We use the expressions (22) and (15),

and the change of variable y := 1 + 2ε T ∗(ε). Note that, by (15),

ε T ∗(ε) = −1

2
+ 1

2

√
1 − m0

1 + m0 − 2ε
,

so y =
√

1−m0
1+m0−2ε . It is easily seen that dy

dε > 0, y(m0) = 1 and lim
ε↑ 1+m0

2
y(ε) =

+∞.

We can write, using (22),

G(ε,m0) := ∂

∂m
F(ε, ε, T ∗(ε,m0),m0) = −1 + (1 − m0)

(y2 − 1)(y2 − y + 1)

2εy
.

This shows that G(m0,m0) = −1 and that G(ε,m0) diverges to +∞ as ε ↑ 1+m0
2 .

So the last step is to prove that G is strictly increasing in ε. We have

∂G

∂ε
(ε,m0) = 1 − m0

2ε

d

dy

(
(y2 − 1)(y2 − y + 1)

y

)
dy

dε
− 1 − m0

2ε2
(y2 − 1)(y2 − y + 1)

y
.

Using the facts that dy
dε = y3

1−m0
and ε = (1+m0)y2−(1−m0)

y2
, it follows that ∂G

∂ε
(ε,m0)

has the same sign as

εy3

1 − m0

3y4 − 2y3 − y2 + 1

y2
− (y2 − 1)(y2 − y + 1)

y

=
1+m0
1−m0

y2 − 1

y
(y2(y − 1)(3y + 1) + 1) − (y2 − 1)(y2 − y + 1)

y

123



Journal of Optimization Theory and Applications

≥ y2 − 1

y
(y2(y − 1)(3y + 1) + 1) − (y2 − 1)(y2 − y + 1)

y

= (y2 − 1)(y − 1)(3y2 + y − 1) > 0, ∀ y > 1, (23)

where we have used the fact that m0 ≥ 0 and the expression in the second line of (23)
is increasing in m0. This completes the proof. ��

Proof of Proposition 3.2: Polarized Incoherent Equilibria (m < −�)

The proof repeats some of the arguments seen in the proof of Proposition 3.1. It is
convenient to take advantage of the symmetry relation (14). This implies that we can
equivalently find the equilibria in (ε, 1] after replacing m0 by −m0. For the regime
ε ≥ 1−m0

2 , the proof of part (ii) of Proposition 3.1 applies with no changes, as the
assumption m0 ≥ 0 was not used. For the case 0 < ε < 1−m0

2 , we can adapt the proof
of part (iii) of Proposition 3.1, where the assumption m0 ≥ 0 was only used to prove
the existence of ε

(1)∗ . Here, we obtain the same behavior seen for ε
(1)∗ < ε < 1+m0

2 in
Proposition 3.1: to repeat the same argument we need to show that

∂

∂m
F(ε, ε, T ∗(ε,−m0),−m0) > 0, ∀ε : 0 < ε <

1 − m0

2
.

Indeed, as seen in the proof of Proposition 3.1,

∂

∂m
F(ε, ε, T ∗(ε,−m0),−m0) = −1 + (1 + m0)

(y2 − 1)(y2 − y + 1)

2εy
,

with y =
√

1+m0
1−m0−2ε . Note that, asm0 ≥ 0, y > 1 for all 0 < ε < 1+m0

2 . In particular,

y2 − y + 1 > 1 so that, with a further simple computation we get

∂

∂m
F(ε, ε, T ∗(ε,−m0),−m0) > −1 + (1 + m0)

y2 − 1

2εy
= −1 + ε + m0

ε
y > 0.

Thus, the proof for the case 0 < ε < 1−m0
2 can be carried out in the same way as the

proof of part (iii) of Proposition 3.1 (case ε
(1)∗ < ε < 1+m0

2 ). ��

Proof of Proposition 3.3: Unpolarized Coherent Equilibria (0 ≤ m ≤ �)

For m ∈ [0, ε], equation (13) becomes:

F(m, ε, T ,m0) := 2(ε T + 1)Tm + m0
[
(ε T + 1)2 + m2T 2

]
(
(ε T + 1)2 − m2T 2

)2 − m = 0. (24)
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We begin by observing that

F(m, ε, T ,m0) = 1

(ε T + 1)2
ϕ

(
T

1 + ε T
m,m0

)
− m, (25)

where

ϕ(z,m0) := 2z + m0(1 + z2)

(1 − z2)2
. (26)

In particular, this allows to prove easily that, if m0 ≥ 0, then m 
→ F(m, ε, T ,m0) is
convex.

(i) Note first that F(0, ε, T ,m0) = m0
(ε T+1)2

> 0

(recall that here m0 ≥ ε > 0). Moreover,

F(ε, ε, T ,m0) = 2(ε T + 1)ε T + m0
[
(ε T + 1) + ε2T 2

]
(
(ε T + 1)2 − ε2T 2

)2 − ε = ψ(ε T ,m0) − ε,

with

ψ(y) := 2(y + 1)y + m0
[
(y + 1)2 + y2

]

(2y + 1)2
.

As ψ ′(y) = 2(1−m0)

(2y+1)3
, we deduce that F(ε, ε, T ,m0) is strictly increasing in T , except

form0 = 1 (in this case it is constant). In all cases, we have that, since F(ε, ε, 0,m0) =
m0 − ε ≥ 0, F(ε, ε, T ,m0) > 0, ∀T > 0. Thus, the map m 
→ F(m, ε, T ,m0) is
strictly positive at the endpoints of the interval (0, ε). We also have F(m, ε, 0,m0) =
m0 − m > 0 ∀m ∈ (0, ε). Moreover, it is easily seen that for each m ∈ (0, ε),

lim
T→+∞ F(m, ε, T ,m0) = −m < 0. (27)

Then, theremust be a timeT (2)
c (ε,m0) such that forT < T (2)

c (ε,m0), F(m, ε, T ,m0) >

0, ∀m ∈ (0, ε), and the graph of the convex function y = F(m, ε, T (2)
c (ε,m0),m0) is

tangent to the line y = 0. Set

T :=
{
T > 0 : min

m∈(0,ε)
F(m, ε, T ,m0) ≤ 0

}
.

The proof of this point (i) is completed as we show that T = [T (2)
c (ε,m0),+∞). If

this is not the case, by continuity, there must be a time T̂ ≥ T (2)
c (ε,m0), m̂ ∈ (0, ε)

and δ > 0 such that

F(m̂, ε, T̂ ,m0) = 0,
d

dm
F(m̂, ε, T̂ ,m0) = 0, (28)
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but F(m̂, ε, t,m0) > 0, ∀t ∈ (T̂ , T̂ + δ). To show that this is impossible, it is enough
to prove that

d

dT
F(m̂, ε, T̂ ,m0) < 0. (29)

To see this, it is convenient to perform the following change of variables: u := m
ε

∈
(0, 1) and r := ε T , so that

F(m, ε, T ,m0) = G(u, ε, r ,m0) := 1

(1 + r)2
ϕ

(
r

1 + r
u,m0

)
− εu, (30)

where ϕ is given in (26). Note that (29) is equivalent to

d

dr
G(û, ε, r̂ ,m0) < 0, (31)

where û := m̂
ε
and r̂ := εT̂ .

Claim r̂ > 1
2 .

Proof To see this, note that, being ε ≤ m0,

G(u, ε, r ,m0) ≥ H(u, r ,m0) := 1

(1 + r)2
ϕ

(
r

1 + r
u,m0

)
− m0u.

The claim follows if we show that, ∀r ≤ 1
2 ,

H(u, r ,m0) > 0, ∀u ∈ (0, 1). (32)

Since H(u, r ,m0) is linear in m0, it is enough to prove (32) for m0 ∈ {0, 1}. For
m0 = 0 this is obvious, so we show it for m0 = 1:

H(u, r , 1) =
(
1 + r

1+r u
)2

(1 + r)2
(
1 − r2u2

(1+r)2

)2 − u = (1 − u)(r2u2 − (r2 + 2r)u + 1)

(1 + r(1 − u))2
,

which has the same sign as p(u) := r2u2 − (r2 + 2r)u + 1). If r ≤ 1
2 (indeed here

r < 2 would suffice), p′(u) = 2r2u − r2 − 2r < 0, ∀u ∈ (0, 1), so, p(u) ≥ p(1) =
1 − 2r ≥ 0, ∀u ∈ (0, 1) and for r ≤ 1

2 . This completes the proof of the Claim. ��
We are now left with the proof of (31). Note that

d

dr
G(u, ε, r ,m0) = − 2

(1 + r)3
ϕ

(
r

1 + r
u,m0

)
+ u

(1 + r)4
ϕ′

(
r

1 + r
u,m0

)
, (33)
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where ϕ′(z,m0) = d
dzϕ(z,m0). By (28),

G(û, ε, r̂ ,m0) = 0 ⇒ ϕ

(
r̂

1 + r̂
û,m0

)
= εû,

and

d

du
G(û, ε, r̂ ,m0) = 0 ⇒ r

(1 + r)3
ϕ′

(
r̂

1 + r̂
û,m0

)
= ε.

Inserting these identities in (33), we obtain

d

dr
G(û, ε, r̂ ,m0) = εû

1 + r̂

(
−2 + 1

r̂

)
< 0, as r̂ >

1

2
.

(ii) Note that F(0, T , ε,m0) = m0
(ε T+1)2

> 0. Moreover, limT→+∞ F(ε, T , ε,m0) =
1+m0

2 −ε ≤ 0. Since, as shown in point (i), the map T 
→ F(ε, T , ε,m0) is strictly
increasing, then F(ε, T , ε,m0) < 0, ∀T > 0. Thus, m 
→ F(m, T , ε,m0) has
opposite sign at the endpoints of (0, ε): by convexity there is a unique solutionm =
M(T , ε,m0) to F(m, T , ε,m0) = 0. The fact that limT→+∞ M(T , ε,m0) = 0
follows from the fact that limT→+∞ F(0, T , ε,m0) = 0 and that limT→+∞ d

dm
F(0, T , ε,m0) = −1.

(iii) In this case, F(0, T , ε,m0) = m0
(ε T+1)2

≥ 0. Moreover, F(ε, T , ε,m0) < 0 ⇐⇒
T < T ∗(ε,m0), as already seen in the proof of Proposition 3.1, point (iii). By
convexity of m 
→ F(m, T , ε,m0), for T ≤ T ∗(ε,m0) Eq. (24) has a unique
solution in [0, ε). The fact that m = 0 is a solution if and only if m0 = 0 is
easily verified. Moreover, by (27), for T sufficiently large F(m, T , ε,m0) attains
negative values, it is positive at m = 0 and m = ε, so (24) has two solutions
in [0, ε). We need, however, a sharper analysis for T > T ∗(ε,m0). Note that,
in this case F(0, T , ε,m0) > 0 and F(ε, T , ε,m0) > 0. Thus, by convexity of
m 
→ F(m, T , ε,m0), (24) has zero or two solutions, except for the “special
times” T for which the graph of the map m 
→ F(m, T , ε,m0) is tangent to the
horizontal axis. Note that these special times are identified as (T -component of
the) solutions in (0, ε) × (T ∗(ε,m0),+∞) of the system

{
F(m, T , ε,m0) = 0
d
dm F(m, T , ε,m0) = 0.

(34)

Note that (34) has no solutions with T ≤ T ∗(ε,m0), so we may look for solutions
of (34) in (0, ε) × (0,+∞). The remaining part of the proof is based on the
following Lemma.

Lemma A.1 Let ε(2)∗ (m0) and ε
(3)∗ (m0) be as in the statement of Proposition 3.3. Then,

m0 < ε(2)∗ (m0) < ε(3)∗ (m0) <
1 + m0

2
,
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(unless for m0 = 0, where 0 = ε
(2)∗ (0) < ε

(3)∗ (0) < 1
2 ) such that

(a) for m0 < ε ≤ ε
(2)∗ (m0), (34) has a unique solution (m̃(ε,m0), T̃ (ε,m0));

(b) for ε
(2)∗ (m0) < ε < ε

(3)∗ (m0), (34) has two solutions (m̂(ε,m0), T
(2)
c (ε,m0)) and

(m̃(ε,m0), T
(3)
c (ε,m0)) with T (2)

c (ε,m0) < T (3)
c (ε,m0);

(c) for ε
(3)∗ (m0) ≤ ε < 1+m0

2 , (34) has no solutions.

The proof of this lemma is postponed after the end of this section. The desired
result of the solutions of (24) readily follows from this Lemma. Indeed, in case (a),
there is a unique special time T (2)

c (ε,m0). Since, for large T , (24) has two solutions,
necessarily for T ∗(ε,m0) < T ≤ T (2)

c (ε,m0) we must have F(m, T , ε,m0) > 0,
∀m ∈ (0, ε), so (24) has no solution.

In case (b), there are two special times T (2)
c (ε,m0) < T (3)

c (ε,m0): the only possi-
bility is that, for T ∗(ε,m0) < T < T (2)

c (ε,m0), the graph of m 
→ F(m, T , ε,m0)

crosses twice the horizontal axis (two solutions for (24)), for T (2)
c (ε,m0) < T <

T (3)
c (ε,m0) it stays above the horizontal axis (no solutions for (24)) and it crosses

again twice the horizontal axis for T > T (3)
c (ε,m0). The proof is therefore com-

pleted. ��

Proof of Lemma A.1

By the change of variables u := m
ε

∈ (0, 1) and r := ε T as in (30), we may replace
F(m, ε, T ,m0) by

G(u, ε, r ,m0) := 1

(1 + r + ru)2

[
m0 + 2(1 + m0)(1 + r)ru

(1 + r − ru)2

]
− εu = 0,

u ∈ (0, 1), r > 0, and (34) is equivalent to

{
G(u, ε, r ,m0) = 0
d
du G(u, ε, r ,m0) = 0.

(35)

Letting, as above, U (u, ε, r ,m0) := m0(1 + r − ru)2 + 2(1 + m0)r(1 + r)u −
εu

[
(1 + r)2 − r2u2

]2 = 0,wehave thatG(u, ε, r ,m0) = 1

[(1+r)2−r2u2]2
U (u, ε, r ,m0).

It is immediately seen that (35) is equivalent to

{
U (u, ε, r ,m0) = 0
d
duU (u, ε, r ,m0) = 0,

(36)

We use again the identity U (u, ε, r ,m0) = u d
duU (u, ε, r ,m0) + (

m0 − 4εr2u3
)

(
(1 + r)2 − u2r2

)
, which implies that (36) is equivalent to

{(
m0 − 4εr2u3

) = 0
d
duU (u, ε, r ,m0) = 0.

(37)
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Summing up, the number of pairs (m, T ) ∈ (0, ε) × (0,+∞) solving (34) equals the
number of solutions r to the equation

W (r , ε,m0) := d

du
U

(( m0

4εr2

)1/3
, ε, r ,m0

)
= 0 (38)

such that m0
4εr2

< 1, i.e., r >
√

m0
4ε . With the help of a symbolic calculator, we obtain

8W (r , ε,m0) = r

{
16 +

[
16 + 3m0

(
2m0

εr2

)1/3
]
r

}

+4ε(1 + r)2
{

−2 − 4r +
[
−2 + 3

(
2m0

εr2

)1/3
]
r2

}
.

Now, set V (s, ε,m0) := W (
√
s, ε,m0). Thus, we are left with the problem of finding

the solutions of

V (s, ε,m0) = 0 (39)

with s > m0
4ε . This last change of variable is a trick to get the following claim.

Claim The map s 
→ V (s, ε,m0) is strictly concave in
(m0
4ε ,+∞)

.

Proof Using again a symbolic calculator we get, letting k :=
(
2m0
ε

)1/3
,

−12s3/2
d2

ds2
V (s, ε,m0)

= 6 + m0ks
1/6 + ε

[
−12 + 4k2s−1/6 + 36s + 5k2s1/3 + 24s3/2 − 8k2s5/6

]
.

To prove the claim, we need to show that this last expression is positive. Note that

s > m0
4ε = ( k

2

)3
. Moreover, as m0 < ε < 1+m0

2 , then 4m0
1+m0

< k3 < 2. Again from

ε < 1+m0
2 , the inequality d2

ds2
V (s, ε,m0) < 0 follows if we show that

6 + m0ks
1/6 + 1 + m0

2

[
−12 + 4k2s−1/6 + 36s + 5k2s1/3 + 24s3/2 − 8k2s5/6

]
> 0. (40)

Using s >
( k
2

)3
and k3 > 4m0

1+m0
, we have that 1+m0

2 5k2 s1/3 > 1+m0
4 5k3 > 5m0, so

the l.h.s. of (40) is bounded from below by

m0ks
1/6 − m0 + (1 + m0)

[
2k2s−1/6 + 18s + 12s3/2 − 4k2s5/6

]
. (41)
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Now, for s ≤ 1
4 the expression in (41) is bounded from below by

−m0 + (1 + m0)
[
2k2s−1/6 − 4k2s5/6

]
= −m0 + 1 + m0

s1/6

(
2k2 − 4k2s

)

≥ −m0 + (1 + m0)k
2s−1/6

≥ −m0 + (1 + m0)

(
4m0

1 + m0

)2/3

≥ −m0 + (1 + m0)4
2/3 m0

1 + m0
> 0.

For s > 1
4 , the expression in (41) is bounded from below by

−m0 + 18s + 12s3/2 − 4k2s5/6 ≥ −m0 + s5/6
[
18

(
1

4

)1/6

+ 12

(
1

4

)2/3

− 4k2
]

≥ −m0 + s5/6
[(

1

4

)1/6

+ 12

(
1

4

)2/3

− 4 22/3
]

≥ −m0 + 8s5/6 ≥ −m0 + 2 > 0.

This proves (40) and therefore the claim. ��
Now, using concavity of V (s, ε,m0) and the fact that lims→+∞ V (s, ε,m0) =

limr→+∞ W (r , ε,m0) = −∞, we have that (39) has a unique solution whenever
V

(m0
4ε , ε,m0

)
> 0. We get

V
(m0

4ε
, ε,m0

)
= m0(1 + m0)

2ε
+ (1 + m0)

√
m0

ε
− ε

(
1 + e

√
m0

ε

)
,

so

V
(m0

4ε
, ε,m0

) ∣∣∣
ε=m0

= 3

2
(1 − m0) > 0,

V
(m0

4ε
, ε,m0

) ∣∣∣
ε= (1+m0)

2

= −1

2
(1 − m0) < 0 (42)

and

d

dε
V

(m0

4ε
, ε,m0

)
= −1 −

√
m0

ε
− m0(1 + m0)

2ε2
−

√
m0
ε

(1 + m0)

2ε
< 0.

Therefore, there is a unique ε
(2)∗ (m0), with m0 < ε

(2)∗ (m0) < 1+m0
2 , such that

V

(
m0

4ε(2)∗
, ε

(2)∗ ,m0

)
= 0. Moreover, for m0 < ε < ε

(2)∗ (m0), (39) has a unique

solution and, since
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d

ds
V (s, ε,m0)

∣∣∣
s=m0

4ε

=
2(1 + m0 − 2ε)

(
1 +

√
m0
α

)

√
m0
α

> 0,

it follows that (39) has two solutions as ε crosses ε
(2)∗ (m0). This actually occurs

until ε reaches ε
(3)∗ (m0), where ε

(3)∗ (m0) is characterized by the fact that the graph of
s 
→ V (s, ε(3)∗ (m0),m0) is tangent to the horizontal axis. This is a consequence of the
following monotonicity property:

d

dε
V (s, ε,m0) < 0, ∀s ≥ m0

4ε
. (43)

This suffices to characterize ε
(3)∗ (m0); to complete the proof, we need to show that

ε
(3)∗ (m0) < 1+m0

2 , which is equivalent to

V

(
s,

1 + m0

2
,m0

)
< 0, ∀s ≥ m0

2(1 + m0)
. (44)

We are therefore left to prove (43) and (44). We begin with (43).

d

dε
V (s, ε,m0)

= − 1

8ε

[
m0

(
2m0

ε

)1/3
s2/3 + 4ε(1 + √

s)2
(
2 + 4

√
s + 4s −

(
2m0

ε

)2/3
s1/3

)]
.

To show that this expression is negative, we just observe that, being 2m0
ε

≤ 2,

2 + 4
√
s + 4s −

(
2m0

ε

)2/3
s1/3 > 2 + 4

√
s + 4s − 2s1/3 >

{
2 − 2s1/3 ≥ 0 for s ≤ 1
4s − 2s1/3 > 0 for s > 1.

This establishes (43). Now, we show (44). We recall that s 
→ V
(
s, 1+m0

2 ,m0

)

is strictly concave for s ≥ m0
2(1+m0)

. Moreover, again with the help of a symbolic
calculator

d

ds
V

(
s,

1 + m0

2
,m0

) ∣∣∣
s= m0

2(1+m0)

= 0.

So it is enough to show that

V

(
m0

2(1 + m0)
,
1 + m0

2
,m0

)
< 0,

that has been seen already in (42). The proof is now complete. ��
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Proof of Proposition 3.4: Unpolarized Incoherent Equilibria (−� ≤ m < 0)

As done in Proposition 3.2, we use the symmetry (14). So we look for solutions
m ∈ (0, ε] of the equation F(m, ε, T ,−m0) = 0; this allows to reuse some of the
ideas in Proposition 3.3.

(i) We employ here the change of variables seen in (30), so

F(m, ε, T ,−m0) = G(u, ε, r ,−m0) := 1

(1 + r)2
ϕ

(
r

1 + r
u,−m0

)
− εu

= 2(1 + r)ru − m0
[
(1 + r)2 + r2u2

]
(
(1 + r)2 − r2u2

)2 − εu

= 1

(1 + r + ru)2

[
−m0 + 2(1 − m0)(1 + r)ru

(1 + r − ru)2

]
− εu.

We need to show that this last expression is strictly negative ∀u ∈ (0, 1); it is
enough to show this for ε = 1−m0

2 . This amounts to prove that

−m0 + 2(1 − m0)(1 + r)ru

(1 + r − ru)2
<

1 − m0

2
u(1 + r + ru)2,

which follows from

2(1 − m0)(1 + r)ru

(1 + r − ru)2

<
1 − m0

2
u(1 + r + ru)2

⇐⇒ 4r(1 + r) <
[
(1 + r)2 − r2u2

]2
,

∀u ∈ (0, 1). This last inequality follows if we show it holds for u = 1, i.e.,
4r(1 + r) < (1 + 2r)2, that is clearly true ∀r > 0.

(ii) As seen in the proof of point (i) of Proposition 3.3, F(ε, ε, T ,−m0) is strictly
increasing in T . Moreover, the same computation done after (21) shows that
F(ε, ε, T ,−m0) > 0 if and only if T > T ∗(ε,−m0). By the same change of
variables used in point (i), (24) is equivalent to the equation

1

(1 + r + ru)2

[
−m0 + 2(1 − m0)(1 + r)ru

(1 + r − ru)2

]
− εu = 0,

with u ∈ (0, 1), which is also equivalent to

U (u, ε, r ,m0) := −m0(1 + r − ru)2

+2(1 − m0)r(1 + r)u − εu
[
(1 + r)2 − r2u2

]2 = 0.

Our proof is based on the following claim.
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Claim Let u∗ ∈ (0, 1) be such thatU (u∗, ε, r ,m0) = 0. Then, d
duU (u∗, ε, r ,m0) > 0.

Proof We use the identity

U (u, ε, r ,m0) = u
d

du
U (u, ε, r ,m0) +

(
−m0 − 4εr2u3

) (
(1 + r)2 − u2r2

)

< u
d

du
U (u, ε, r ,m0)

which proves the claim. ��
This clearly implies that such u∗ exists if and only if U (1, ε, r ,m0) > 0 (as

U (0, ε, r ,m0) = −m0(1 + r)2 ≤ 0), i.e., if and only if r > ε T ∗(ε,−m0) and
in this case it is unique. This completes the proof. ��
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