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II, I-80126 Napoli, Italy

cLow Temperature Laboratory (OVLL), Aalto University School of Science, P.O. Box
13500, FI-00076 Aalto, Finland

dInstitute of Chemical Physics, University of Latvia, LV-1586 Riga, Latvia

Abstract

We have realized YBa2Cu3O7−δ nanowires and nano Superconducting Quan-

tum Interference Devices (nanoSQUID). The measured temperature depen-

dence of the wire resistances below the superconducting transition tempera-

ture has been analyzed using a thermally activated vortex entry model valid

for wires wider than the superconducting coherence length. The extracted

zero temperature values of the London penetration depth, λ0 ' 270±15 nm,

are in good agreement with the value obtained from critical current modula-

tions as a function of an externally applied magnetic field in a nanoSQUID

implementing two nanowires.
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The recent advances in nanopatterning techniques applied to type II su-

perconductors allow to study the effect of single vortex dynamics on the elec-

trical transport properties of superconducting nanowires. Indeed, there has

been an increased interest in studying the transport properties of nanowires

of thickness t smaller than the London penetration depth λL and of width w

smaller than the Pearl length λP = λ2L/t in the search for quantum tunneling

of vortices [1, 2] and for the understanding of “dark-counts” in supercon-

ducting nanowire based single photon detectors [3]. In systems with reduced

dimensionality it can also be observed that the superconducting phase tran-

sition is frequently not sharp and the measured dependence of the sample

resistance R(T ) in the vicinity of TC may have a finite width, even in absence

of any sample inhomogeneity. This broadening is due to thermal fluctuations.

In 1D wires (w, t � ξ) such fluctuations, called thermally activated phase

slips (TAPS), with spatial extensions of the order of the coherence length ξ,

hence extending throughout the wire cross-section, disrupt locally the flow

of supercurrent, thereby imparting a non-zero resistance to the wire [4, 5, 6].

In the case of wide wires (w � 4.44ξ), vortex crossing from one edge of

the bridge to the other, perpendicular to the bias current, has been found

to be the dominant mechanism of dissipation [7, 8, 9]. In this paper we

analyze the role of thermally activated vortex dynamics on dissipation close

to the superconducting transition temperature TC in nanowires made of the

High critical Temperature Superconductor (HTS) YBa2Cu3O7−δ (YBCO)

and extract the zero temperature values λ0 and ξ0.

Following Ref. [9], and considering in addition the contribution of the

vortex core energy [10, 11], the vortex entry potential formed by the supercur-
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rents around the vortex center inside the wire and the Lorentz force induced

by the bias current Ib in the case of homogeneous current flow (w � λP ) is

given as a function of the position y, parallel to the width, by:

∆U(y, Ib, T ) = µ2ε0(T )

[
ln

(
2.94w

πξ
sin

πy

w

)
− Ib
µ2I0(T )

πy

w

]
, (1)

with I0(T ) = Φ0t/4µ0λ
2
L(T ) and ε0(T ) = Φ2

0t/4πµ0λ
2
L(T ) the characteristic

energy of a vortex in thin films. Here Φ0 = h/2e is the superconducting flux

quantum and µ0 is the vacuum permeability. The parameter µ2 describes the

order parameter suppression due to the bias current, which itself depends on

the phase difference φ between the two ends of the wire:

µ2 =
|Ψ|2

|Ψ∞|2
= 1−

(
φξ

l

)2

. (2)

Here Ψ∞ is the equilibrium order parameter in the absence of the external

field and transport current and l is the wire length. The bias current at

which the vortex entry barrier goes to zero and vortices can enter the su-

perconducting wire is approximately given by the depairing critical current

[9, 12, 13].

From the vortex crossing rate obtained in Ref. [9] in the framework of

the Langevin equation for viscous vortex motion and invoking the known

solution of the corresponding Fokker-Plank equation one can write for the

zero bias resistance of a nanowire with length l:

Rv(T ) = 7.1R�
lξ(T )

w2

(
ε0(T )

kBT

)3/2
exp

(
−ε0(T )

kBT
ln

1.47w

πξ(T )

)
, (3)

where R� is the sheet resistance of the wire, kB is the Boltzmann constant,

and considering that µ2 is equal to 1 in the zero bias limit.
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In this work we have patterned Au capped YBCO nanowires using e-

beam lithography from YBCO films grown on MgO (110) and MgO (001)

substrates (see Fig. 1(a)). Details of the nano-fabrication process have been

Figure 1: (a) Tilted angle scanning electron microscope (SEM) image of a 50 nm wide and

200 nm long Au capped YBCO nanowire grown on MgO (110). (b) R(T ) measurements

of two nanowires grown on MgO (110), having a width of 50 nm (squares) and 150 nm

(triangles). The length of both these wires is 200 nm.

published elsewhere [14, 15, 16]. The resistance of the YBCO nanowires

with various widths has been measured as a function of the temperature, in

a temperature range around TC (see Fig. 1(b)). The current and voltage
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probes of our 4-point measurement setup are situated at the far ends of the

two wide and long electrodes, with widths w > 104 nm and l > 105 nm,

connected to the nanowires, whose length is 200 nm and width is in the

range 50 − 150 nm. We attribute the first transition in the R(T ) at higher

temperatures to the electrodes and the second broader transition instead to

the nanowires. Differently from what previously reported in literature [17],

the onset temperature of the wire transition is typically only 1 K (or less)

below the one of the wide electrodes, even for the narrowest wires.

It is important to note that the measured onset temperature of the wide

electrodes, and consequently that of the wire, is 1-2 K lower than the expected

one, corresponding to the value of the bare YBCO films. As already pointed

out and discussed in detail in Ref. [18], this is only due to the additional

resistive shunt of the Au film (which can be roughly approximated by the re-

sistance Rsh of the gold strip of length lAu = lwire and width wAu = wwire, on

top of the YBCO wire) and not to a change of the superconducting transition

temperature of the film.

The temperature broadening in the R(T ) of the wires (see Fig. 1(b)) can

be analyzed according to the model previously discussed, thence considering

vortices crossing the wires as the dominating source of resistance during the

superconducting transition. According to this model, the resistive transition

gets broader in temperature for decreasing wire width, in complete agree-

ment with what we observe in our nanowires (see Fig. 1(b)). Indeed the

barrier for vortex entry, expressed by eq. (1), depends explicitly on the wire

width. Thence, we have ruled out models like the Berezinskii-Kosterlitz-

Thouless (BKT) theory [19], related to vortex-antivortex pair dissociation in
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2-dimensional systems with lateral extensions smaller than λP , which does

not predict any size dependence in the R(T ) broadening.

In order to describe the broadening of the resistive transition in terms of

vortex slips, we have considered the energy barrier for vortex entry expressed

by eq. (1) [9]. As a consequence, the resistance of a YBCO wire is given by

eq. (3). For the temperature dependence of the London penetration depth

in the full temperature range we have used the two fluid model λL(T ) =

λ0 (1− (T/TC)2)
−1/2

[20]. An approximate expression for the temperature

dependence of the coherence length can be obtained from the formula of the

Ginzburg Landau depairing current density [21]

Jd =
Φ0

3
√

3πµ0λ2L(T )ξ(T )
, (4)

and from the Bardeen expression for the temperature dependence of the

depairing current density Jd(T ) ∝ (1− (T/TC)2)
3/2

[22], characteristic of our

nanowires [15] and of YBCO nanowires reported in literature [23], resulting

in ξ(T ) = ξ0 (1− (T/TC)2)
−1/2

, which is valid in the full temperature range.

Since our wires are covered by a gold capping layer acting as a shunt, the

final resistance can be expressed as:

R(T ) =
[
R−1v (T ) +R−1sh

]−1
. (5)

We have fitted the R(T ) of the wires, both grown on MgO (110) and MgO

(001), with eq. (5), inserting the dimensions determined with AFM/SEM and

extracting as fitting parameters the zero temperature values λ0 and ξ0, and

the onset TC of the critical temperature of the bare YBCO nanowires (see

Fig. 2).
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Figure 2: We have fitted with the vortex slip model (solid line) and with the Little model

(dashed line) the R(T) curve of (a) a 85 nm wide wire grown on MgO (110); (b) a 67 nm

wide wire grown on MgO (001).

A summary of the parameters extracted by the fits on different wires

grown both on MgO (110) and MgO (001) is shown in Table 1.

Substrate λv0 ξv0 Jvd λps0 ξps0 Jpsd Jexpc (4.2 K)

(nm) (nm) (A/cm2) (nm) (nm) (A/cm2) (A/cm2)

MgO (110) 255-290 2-3 ≈ 5.5 · 107 325-350 2-3 ≈ 3.6 · 107 ≈ 6− 9 · 107

MgO (001) 225-255 2-3 ≈ 7 · 107 300-325 2-3 ≈ 4 · 107 ≈ 8− 10 · 107

Table 1: Summary of the parameters extracted from the fits of the R(T ) of nanowires with

widths in the range 50 − 150 nm, considering vortex slip (v) and phase slip (ps) models.

The values of Jv
d and Jps

d have been derived using eq. (4). The measured Jexp
d values have

been taken from Ref. [15].

Since the height of the vortex entry barrier has been demonstrated to be

similar to that of phase slips for sufficiently narrow nanowires (w < 5 ξ(T )

at temperatures close to TC , which is actually our case) [10], we have also

fitted the R(T ) curves of our nanowires with the Little model, which is gen-
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erally used to describe the non-zero resistance present below the transition

temperature in terms of thermally activated phase slips [24], and compared

the values of the extracted parameters with those of the vortex entry model

(see Fig. 2). According to the Little model, the resistance of the nanowires

can be written as in eq. (5), substituting the vortex entry resistance Rv(T )

with the Little resistance RLittle(T ):

RLittle(T ) = RN exp

(
−∆F (T )

kBT

)
. (6)

Here, RN is the normal resistance of the wire and ∆F (T ) is the energy barrier

for phase slip nucleation, which writes analytically as:

∆F (T ) =
4ε0(T )

3π
√

2

w

ξ(T )
. (7)

A summary of the extracted parameters is shown in Table 1: in particular,

the λ0 values we obtain by fitting with the Little expression are more than

20% higher than those extracted from the vortex slip fit.

To obtain a confirmation on the validity of the used models, we have

calculated the expected Ginzburg-Landau depairing current density Jd of

the nanowires (eq. 4) using the values of ξ0 and λ0 extracted from both the

fits, which are typical of YBCO thin films [25, 26]. In particular if one is

considering vortex slips as the main source of resistance, the expected values

of the critical current density, Jvd , are rather consistent with the Jexpc we

have extracted from the IV curves at 4.2 K [15, 18]. Moreover, comparing

nanowires grown on MgO (110) and MgO (001), the difference between the

extracted Jd is consistent both with the difference between the measured JC

at 4.2 K [15] and with the lower TC measured on films grown on MgO (110),

as a consequence of the large mismatch between the film/substrate in-plane
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lattice parameters. On the contrary, the discrepancy with the measured

Jexpc values significatively increases when calculating the expected Ginzburg-

Landau depairing current density Jd of the nanowires with the ξ0 and λ0

values extracted from the Little fit (see Table 1).

As a further proof of the validity of the parameters extracted by using the

thermally activated vortex entry model, we also extracted the London pene-

tration depth from the critical current modulations of a YBCO nanoSQUID

patterned on a MgO (110) substrate as a function of an externally applied

magnetic field [27]. Our devices, made by two parallel nanowires connect-

ing two wider electrodes (Dayem bridge configuration) (see Fig. 3(a)), are

characterized by a modulation of the critical current as a function of an

external magnetic field in the whole temperature range from 300 mK up

to their critical temperature (see Fig. 3(b)). By numerically calculating

the magnetic field pattern of the critical current of a nanoSQUID using

the Likharev-Yakobson expression for the current phase relation of a long

nanowire [28, 29, 30], I(φ) = Φ0wt [(ξ/l)φ− (ξ/l)3φ3] /2πµ0ξλ
2
L, we obtain

that, from the critical current modulation depth γ = ∆IC/I
max
C , the screening

inductance factor βL of the devices can be determined for each temperature

as 1/γ (see Fig. 3(c)). The parameter βL(T ), defined as ImaxC (T )Lloop(T )/Φ0,

with Lloop total inductance of the SQUID loop and Φ0 flux quantum, can be

numerically calculated by solving the Maxwell and London equations describ-

ing the Meissner state on our SQUID geometry [31]. For the temperature

dependence of the loop inductance we have again used the two fluid model for

the London penetration depth, on which the kinetic inductance of the wires

(which gives the main contribution to Lloop) is strongly dependent. Thence,
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Figure 3: (a) SEM picture of a Dayem bridge nanoSQUID, patterned on MgO(110), with

a loop area of 130 × 150 nm2. (b) Critical current of the same device measured at 300

mK as a function of the applied magnetic field. (c) From the critical current modulation

depth ∆IC/I
max
C we have estimated for each temperature the screening inductance factor

βL. This experimentally determined parameter can be fitted with a numerically calculated

screening inductance factor, using λ0 as the only fitting parameter. The agreement between

data and numerical calculation is very good using λ0 = 260 nm, in accordance with the

value extracted by the vortex entry fit of the R(T ) of YBCO nanowires grown on MgO

(110).

the experimentally determined βL can be fitted with the numerically calcu-

lated one, using λ0 as the only fitting parameter. As shown in Fig. 3(c),

the agreement between data and numerical computations is very good using

λ0 = 260 nm. Such a value is in the range, shown in Table 1, of the λ0 values

we can extract, by using the vortex entry model, from the R(T ) of the YBCO

nanowires grown on MgO (110) substrates.

All these results give a confirmation of the validity of the vortex slip fit-

ting procedure to extract physical quantities, as ξ0 and λ0, representing the

nanowire. The possibility to explain the broadening in the resistive transi-

tion only in terms of the dissipation due to vortices crossing the wire proves

the high quality of our nanostructures, preserving pristine superconducting
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properties because of the presence of the gold capping layer. Moreover, the

magnetic field response of the critical current observed in our nanowire based

nanoSQUIDs in the full temperature range below TC makes them very at-

tractive as magnetic flux detectors in the field of nano-magnetism [32].
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