
Theory of polymers in binary solvent solutions: mean-field free energy and phase
behavior

Davide Marcato∗

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

Achille Giacometti†

Dipartimento di Scienze Molecolari e Nanosistemi,
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We present a lattice model for polymer solutions, explicitly incorporating interactions with a
bath of solvent and cosolvent molecules. By exploiting the well-known analogy between polymer
systems and the O(n)-vector spin model in the limit n → 0, we derive an exact field-theoretic
expression for the partition function of the system. The latter is then evaluated at the saddle point,
providing a mean-field estimate of the free energy. The resulting expression, which conforms to the
Flory-Huggins type, is then used to analyze the system’s stability with respect to phase separation,
complemented by a numerical approach based on convex hull evaluation. We demonstrate that
this simple lattice model can effectively explain the behavior of a variety of seemingly unrelated
polymer systems, which have been predominantly investigated in the past only through numerical
simulations. This includes both, single-chain and multi-chain, solutions. Our findings emphasize
the fundamental, mutually competing, roles of solvent and cosolvent in polymer systems.

I. INTRODUCTION

The coil-globule transition of a polymer chain in a bath
of solvent molecules is one of the paradigmatic exam-
ple of phase-transitions [1–3]. As the chemical affinity
between the polymer and the solvent decreases, the sol-
vent conditions are gradually moved from good to poor
and the polymer tends to collapse from a randomly ex-
tended coil to a structureless globule, the analogue of a
gas-liquid transition. The same collapse can be also ob-
tained at a fixed solvent quality and upon lowering the
temperature [4–9]. In theoretical descriptions, however,
the solvent microscopic degrees of freedom are usually
traced out to obtain an effective polymer-polymer inter-
action, usually referred to as “implicit solvent” descrip-
tion. While this approach is very convenient for analyt-
ical studies, it falls short in some cases where a detailed
description of the solvent is required [10]. Indeed, recent
numerical studies [11, 12] have shown that even a simple
Lennard-Jones polymer chain in explicit solvent displays
a non-trivial re-entrant collapse that defies the conven-
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tional interpretation based on the solvent quality. An-
other striking example of this is the phenomenon known
as cosolvency, where two different solvents compete with
one another [13] thus triggering a complex phase behav-
ior of the polymer chain [14–19] that is still not fully
understood [20]. Understanding this mechanism in this,
relatively simple, case would be of paramount importance
for protein stability [21, 22]. A counterpart of this phe-
nomenon also occurs in the presence of two solvents, each
of which separately is a good solvent for the polymer but
their combination triggers the collapse of the polymer
chain, and it is usually referred to as co-nosolvency. Fi-
nally a different, albeit clearly related, situation occurs
in the polymer-assisted condensation where phase sepa-
ration of two miscible liquids is induced by a preferential
attachment of a polymer chain to one of the solvents [23],
a phenomenon of outmost importance in the nucleation of
biomolecular condensates [24–26]. When these situations
occur in the presence of multiple chains, the behaviour is
clearly even more complex as self-assembly can occur in
the temperature-density plane [27, 28].

Rather surprisingly, the three phenomenology de-
scribed above have been discussed nearly always sep-
arately in the literature notwithstanding the evident
analogies between them. As a result, a general “big pic-
ture” is lacking, in spite of the significant numerical and
theoretical work that has been profused in this frame-
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work [11, 12, 14–19, 23, 29–32].
The aim of the present study is to address these is-

sues within a unified theoretical framework. Motivated
by these considerations, and contrary to the conventional
wisdom reckoning the above phenomenology as too com-
plex and too specific to be investigated within a single
analytical theory, in this paper we introduce a general
O(n)-vector spin model for polymer solutions on the d-
dimensional hypercubic lattice interacting with an ex-
plicit bath of two competing solvent species, generically
referred to as solvent and cosolvent, and derive the exact
partition function of the lattice model via a field the-
ory. Our approach builds on a classical scheme for a sin-
gle polymer chain [33], recently generalized to multiple
chains [34], but it extends it to incorporate the explicit
presence of solvent and cosolvent. We then provide a
mean-field solution of this model that reproduces several
phenomenological Flory-Huggins free energies [35, 36] in
the appropriate limits. When combined with a graphical
convex hull scheme, our mean-field theory is then shown
to be able to recapitulate and rationalize the numeri-
cal results relative to the systems alluded early above,
namely:

1. The re-entrant collapse behavior for a single poly-
mer chain immersed in a solvent triggered by strong
monomer-solvent affinity [11, 12]. In the same con-
text, we consider also the case of multi-chain sys-
tems.

2. The polymer co-nonsolvency occurring in a ternary
mixture with one polymer species and two solvents,
where each solvent is good for the polymer but the
disposed combination of the two turns out to be
not [14–19].

3. The polymer-assisted condensation [23] where
phase separation is observed in a two-component
liquid mixture, induced by the presence of a poly-
mer chain, as in nucleation of biomolecular conden-
sates [24–26].

Our unified analysis suggests that these three phenom-
ena, that have been studied as distinct entities in the
past, are just particular cases of the same “physics”.

The paper is structured as follows. In Section II, we de-
rive the O(n)-vector spin field theory (Sec. II A), that can
be solved within a mean-field approximation (Sec. II B)
leading to the free energy of the system (Sec. II C). In
Sec. III, we derive the equations describing the stability
of the free energy for single-chain systems with respect
to phase separation (Sec. III A) and the numerical con-
vex hull construction (Sec. III B) for the efficient explo-
ration of phase behavior as a function of the strength of
the interactions between the different molecular species.
In Sec. IV, we describe the main results following the
application of our theory to the three distinct systems
introduced above. Finally, in Sec. V we provide a brief
discussion of our formalism and of its applications con-
sidered here as well as of possible extensions of our work

𝝐𝒎𝒎

𝝐𝒔𝒔

𝝐𝒄𝒄

𝝐𝒎𝒔
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𝝐𝒔𝒄 (𝐯𝐢𝐚 𝐏𝐁𝐂)

FIG. 1. Illustration of a particular configuration on the
square lattice (d = 2), with N = 7× 7 = 49 sites. Monomers
and the bonds joining them into polymer chains are repre-
sented, respectively, by blue dots and solid black lines. Sol-
vent and cosolvent molecules are represented by red and green
dots, respectively. Some illustrative examples of nearest-
neighbour interactions between molecular species (including
one via periodic boundary conditions) are represented as
dashed lines. In the example here (Eq. (1)): Np = 3, Nb = 17,
Ns = 14.

in the future. The Supplemental Material (SM [37]) adds
some notes showing that classical, textbooks binary mix-
tures appear as particular cases of our formalism, to-
gether with a detailed account of how to derive the equa-
tions for phase stability in multi-chain systems as well as
a few additional figures that complement the ones in the
main text of the paper.

II. POLYMER-SOLVENT LATTICE MODEL

The first two Secs. IIA and IIB contain the necessary
definitions of the main quantities describing the systems
of interest, the formulation of the partition function and
its field-theoretic representation. All technical details can
be skipped on first reading, and the reader can move
to Sec. II C where the (approximate) free energy of the
system is presented and discussed in detail.

A. Definition and exact field-theoretic formulation

The model generalizes our field-theoretic formal-
ism [34] for self-interacting polymers on the d-
dimensional hypercubic lattice by introducing explicit
solvent and cosolvent molecules. By denoting with N the
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total number of sites of the lattice and by taking the ele-
mentary lattice step as our unit of length, we assume, for
simplicity, that monomers (m), solvent (s) and cosolvent
(c) molecules are of the same “size” equal to one single
lattice site (see Fig. 1). In order to enforce the natural
constraint of excluded volume, each lattice site is occu-
pied by one single molecule (be it a monomer, a solvent
or a cosolvent one), while two (non-bonded) molecules
sitting at nearest-neighbor lattice positions interact via
suitable pair interactions (so setting the stage for mod-
eling the systems of Refs. [11, 12, 14, 23], see below).

As seen in [34] and for mathematical convenience, we
adopt a grand canonical ensemble approach with given
fugacities κp, κb and κs that fix the expectation values
of the total number of, respectively, polymer chains Np,
bonded monomer pairs Nb and solvent molecules Ns. As
a result, the systems we consider are tipically polydis-
perse. Moreover, with no empty sites the total num-
ber of cosolvent molecules in a given configuration is
N − (Nb + Np) − Ns. Under these assumptions, with
β = 1/(kBT ) being the inverse thermal energy at tem-
perature T (kB is the Boltzmann constant) the grand
canonical partition function of the system reads

Z =
∑
{C}

κNp
p κNb

b κNs
s e−β(

1
2

∑
i̸=j ϵijNij+

∑
i ϵiiNii) , (1)

where the sum is for all possible configurations {C}, and
Nij denotes the total number of non-bonded pairs of
species i and j sitting at nearest-neighbor lattice po-
sitions (including also neighbors via periodic boundary
conditions, Fig. 1) with corresponding pair interactions
ϵij (where i, j ∈ {m, s, c}). Notice that for simplicity
(see however footnote [38]), chains are modeled as fully
flexible.

A first step towards the evaluation of Z is done by
noticing that the Nij ’s are not independent quantities,
as it is easy to check that

Nmc = 2dNp + 2(d− 1)Nb − 2Nmm −Nms , (2)

Nsc = 2dNs −Nms − 2Nss , (3)

Ncc = dN − 2dNp − (2d− 1)Nb − 2dNs

+Nmm +Nss +Nms . (4)

Then, by Eqs. (2)-(4) and by redefining fugacities and
pair interactions as the following:

κ̃p = κp e
−β(2dϵmc−2dϵcc) , (5)

κ̃b = κb e
−β(2(d−1)ϵmc−(2d−1)ϵcc) , (6)

κ̃s = κs e
−β(2dϵsc−2dϵcc) , (7)

ϵ̃mm = ϵmm − 2ϵmc + ϵcc , (8)

ϵ̃ss = ϵss − 2ϵsc + ϵcc , (9)

ϵ̃ms = ϵms − ϵmc − ϵsc + ϵcc , (10)

Z can be rewritten as

Z = e−βdϵccN
∑
{C}

κ̃Np
p κ̃Nb

b κ̃Ns
s e−β(ϵ̃mmNmm+ϵ̃msNms+ϵ̃ssNss)

= e−βdϵccNZ0 , (11)
where Z0 is the grand canonical partition function of the
equivalent system where only mm, ss and ms interac-
tions appear while the various interactions involving the
cosolvent are set = 0. Therefore, in the following, we
concentrate on the evaluation of Z0.

The grand canonical ensemble approach allows us to
take advantage of the well known mapping between poly-
mer systems and the n → 0 limit of the O(n)-vector
model for interacting spins [33, 34, 39–42]. In fact, by in-
troducing [34] at each lattice position x the n-component
vector S(x) ≡ (S1(x), S2(x), ..., Sn(x)) with the internal
product S(x) ·S(x′) ≡ ∑n

i=1 S
i(x)Si(x′) between any two

vectors associated to lattice points x and x′ and by defin-
ing the trace operation (denoted by the symbol ⟨...⟩0)
through the formal rules:

⟨1⟩0 = 1 , (12)

⟨Si⟩0 = 0 , (13)

⟨SiSj⟩0 = δij , (14)

⟨Si1Si2 ... Sik⟩0 = 0 , if k ≥ 3 , (15)

with S-vectors at different sites being independent of
each other under the same trace operation, the follow-
ing identity holds (compare to Eq. (32) in [34])

Z0 =

∫ ∏
σ

Dψσ e−
1
2

∑
σ

∑
x⃗,x⃗′ ∆

−1(x,x′)ψσ(x)ψσ(x
′)

× lim
n→0

〈∏
x

(
1 +Hp(x)S

1(x) +Hs(x)(S
1(x))2

)
e

1
2

∑
x,x′ ∆(x,x′)h(x)h(x′)S(x)·S(x′)

〉
0

, (16)

where:

∆(x,x′) =

{
1 , if |x− x′| = 1 lattice step
0 , otherwise

, (17)

Hp(x) =
√
κ̃p e

√
β(ϵ̃ms−ϵ̃mm)

2 ψmm(x)+

√
−βϵ̃ms

2 ψms(x) , (18)

Hs(x) = κ̃s e
√
β(ϵ̃ms−ϵ̃ss)ψss(x)+

√
−βϵ̃msψms(x) , (19)

h(x) =
√
κ̃b e

βϵ̃mm
2 e

√
β(ϵ̃ms−ϵ̃mm)

2 ψmm(x)+

√
−βϵ̃ms

2 ψms(x) ,

(20)

Dψσ ≡ (2π)−N/2 (det∆)−1/2
∏
x⃗ dψσ(x) is the measure

associated to the auxiliary scalar fields ψσ = ψσ(x) with
σ = {mm,ms, ss} (i.e., there are 3 scalar fields per each
lattice site) and – importantly! – the “limn→0” opera-
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tion is required [34] to rule out all contributions to the
partition function that include chain topologies differ-
ent from the linear one. Then, the last step consists
in “removing” the dependence on the S-vectors in the
last term of Eq. (16) in favor of the vector field φ(x) ≡
(φ1(x), φ2(x), ..., φn(x)) with the associated measure

Dφ ≡ (2π)−nN/2 (det∆)
−n/2 ∏

x

dφ(x) , (21)

by means of a standard Hubbard-Stratonovich transfor-
mation [43, 44]. After some manipulations, and up to an
unimportant prefactor, we finally get:

Z0 = lim
n→0

∫ ∏
x

∏
σ

dψσ(x)

∫ ∏
x

dφ(x) e−A−B+
∑

x ln[1+C] ,

(22)
where:

A =
1

2

∑
σ

∑
x,x′

∆−1(x,x′)ψσ(x)ψσ(x
′) ,

B =
1

2

∑
x,x′

∆−1(x,x′)φ(x) ·φ(x′) ,

C = Hs(x) +
h2(x)

2
|φ(x)|2 +Hp(x)h(x)φ

1(x) .

(23)

The field-theoretic expression (22) cannot be evaluated
directly. It is, however, particularly amenable to a sys-
tematic expansion around the saddle-point [33, 34, 41, 42]
that will be outlined in the next Sec. II B.

B. Mean-field (saddle-point) formulation

In order to compute the first term of the saddle-point
expansion (equivalent to the mean-field approximation),
we differentiate the exponential in Eq. (22) with respect
to each φi(x) and ψσ(x) and set the obtained expres-
sions equal to 0. Then, we simplify the problem further
by looking only for those solutions that both (i) satisfy
translational invariance and (ii) break the O(n) symme-
try of the vector field [45], i.e. φ(x) = (φ, 0, . . . , 0) and
ψσ(x) = ψσ for every x. In the end, that leads to:

φ

2d
=

h2φ+Hph

1 +Hs +
h2

2 φ
2 +Hphφ

, (24)

ψmm
2d

=

√
β(ϵ̃ms − ϵ̃mm)

(
h2

2 φ
2 +Hphφ

)
1 +Hs +

h2

2 φ
2 +Hphφ

, (25)

ψss
2d

=

√
β(ϵ̃ms − ϵ̃ss)Hs

1 +Hs +
h2

2 φ
2 +Hphφ

, (26)

ψms
2d

=

√−βϵ̃ms
(
Hs +

h2

2 φ
2 +Hphφ

)
1 +Hs +

h2

2 φ
2 +Hphφ

, (27)

where Hp, Hs and h are the same quantities de-
fined in Eqs. (18)-(20), computed in correspon-
dence of the saddle-point. In terms of the solu-
tions [46] φ = φ(κ̃p, κ̃b, κ̃s, ϵ̃mm, ϵ̃ss, ϵ̃ms) and ψσ =
ψσ(κ̃p, κ̃b, κ̃s, ϵ̃mm, ϵ̃ss, ϵ̃ms) of the mean-field Eqs. (24)-
(27), the corresponding grand potential per lattice site,
βΩ ≡ − lnZ/N = βdϵcc− ln(Z0)/N (see Eq. (11)), reads
(up to an unimportant additive constant) as the follow-
ing:

βΩ(κ̃p, κ̃b, κ̃s, ϵ̃mm, ϵ̃ss, ϵ̃ms) = βdϵcc +
ψ2
mm

4d
+
ψ2
ms

4d
+
ψ2
ss

4d
+
φ2

4d
− ln

[
1 +Hs +Hphφ+

h2

2
φ2

]
. (28)

Eq. (28), alongside Eqs. (18)-(20) and Eqs. (24)-(27) cal-
culated at the saddle-point, defines completely the ther-
modynamics of the system. In particular, it is easy to
derive the expressions,

ϕb ≡ ⟨Nb⟩
N

= −βκb
∂Ω

∂κb
=
φ2

4d
, (29)

ϕp ≡ ⟨Np⟩
N

= −βκp
∂Ω

∂κp
=

Hphφ

2
(
1 +Hs +Hphφ+ h2

2 φ
2
) ,

(30)

ϕm ≡ ϕp + ϕb =
h2

2 φ
2 +Hphφ

1 +Hs +Hphφ+ h2

2 φ
2
, (31)

ϕs ≡ ⟨Ns⟩
N

= −βκs
∂Ω

∂κs
=

Hs

1 +Hs +Hphφ+ h2

2 φ
2
,

(32)

for, respectively, the (mean) bond, chain, monomer and
solvent fraction (or, density).

C. Free energy of the system

Instead of dealing with the grand potential βΩ (28), a
more transparent characterization of the thermodynam-
ics of the system is obtained in terms of the free energy
per lattice site (in units of kBT = β−1),

βf = βf(ϕp, ϕb, ϕs) ≡ βΩ+ϕp lnκp+ϕb lnκb+ϕs lnκs ,
(33)
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equivalent to the Legendre transform [34] of βΩ. By ex-
pressing the fugacities (5)-(7)

κ̃p =
2ϕ2p e

2βd(ϵ̃mmϕm+ϵ̃msϕs)

(ϕb − ϕp)(1− ϕm − ϕs)
, (34)

κ̃b =
(ϕb − ϕp) e

2βd(ϵ̃mmϕm+ϵ̃msϕs)−βϵ̃mm

2dϕb(1− ϕm − ϕs)
, (35)

κ̃s =
ϕs e

2βd(ϵ̃msϕm+ϵ̃ssϕs)

1− ϕm − ϕs
, (36)

as a function of densities ϕp, ϕm and ϕs (Eqs. (30)-(32))
and after a few simple manipulations, one gets the final
expression,

βf(ϕm, ϕs, ℓ) = βd(ϵmm − 2ϵmc + ϵcc)ϕ
2
m + βd(ϵss − 2ϵsc + ϵcc)ϕ

2
s + 2βd(ϵms − ϵmc − ϵsc + ϵcc)ϕmϕs

+(1− ϕm − ϕs) ln(1− ϕm − ϕs) +
ϕm
ℓ

ln(ϕm) + ϕs ln(ϕs)

+ϕm

[
ln

(
(1− 2/ℓ)1−2/ℓ (2/ℓ2)1/ℓ

((1− 1/ℓ)2d/e)1−1/ℓ

)
− βϵmm

(
1− 1

ℓ

)
+ 2dβ (ϵmc − ϵcc)

]
+2dβ(ϵsc − ϵcc)ϕs + βdϵcc (37)

as a function of monomer density (ϕm), solvent density
(ϕs) andmean chain contour length (ℓ ≡ ϕm/ϕp). Notice,
in particular, that the Legendre transform allows us to
switch to the ensemble where the populations of different
species are fixed, yet polydispersity is still unavoidable.

Interestingly, βf (37) is of the familiar Flory-Huggins
form [35, 36]. However, unlike most conventional pre-
sentations (for instance, see [2]), the derivation of (37)
presents two main advantages: (i) it proceeds from a
genuinely microscopic model; (ii) it can be improved be-
yond the saddle-point through the systematic inclusion
of higher-order corrections [47].

It may be noticed that the mean-field expression
Eq. (37) contains additional, non-trivial, contributions
with respect to the usual Flory-Huggins formula, which
are either linear in ϕm, linear in ϕs or constant. Among
these terms it is easy to distinguish between energetic
and entropic ones. The energy terms are proportional
to ϵij (for some i, j) and they essentially correct for the
overcounting of mm and cc interactions (the former by
considering that only non-bonded monomers interact).
Perhaps, less obvious is the entropic term. The lat-
ter can be further broken down into the sum of two
terms: the first is ϕm(1 − 1/ℓ) ln(2d/e), which resem-
bles the usual mean-field configurational entropy for a
single chain on a lattice [33, 41], while the other arises
from the entropy related to polydispersity. It is worth
noticing the consequence of the linear (or constant) de-
pendence of these terms upon the densities. In fact, the
free energy variation upon mixing (which is actually the
central quantity of the usual Flory-Huggins theory) is de-
fined [40] as ∆f(ϕm, ϕs, ℓ) ≡ f(ϕm, ϕs, ℓ)−[ϕmf(1, 0, ℓ)+

ϕsf(0, 1, ℓ) + (1 − ϕm − ϕs)f(0, 0, ℓ)]: it is then evident
that by this definition all the terms which are linear or
constant do not contribute to ∆f . Therefore, for what
concerns the free energy variation, our field-theoretic ap-
proach reproduces exactly the Flory-Huggins formula. Fi-
nally, the free energy βf (37) describes the thermody-
namics of a ternary mixture [48, 49] of polymers, solvent
and cosolvent, with the constraint ϕm + ϕs + ϕc = 1
where ϕc is the cosolvent density; it reduces to known
cases of binary mixtures when one species is absent (see
the discussion in Sec. S1 in SM [37]). Importantly, the
ratio ϕm/ℓ tunes the chain number density: at fixed ϕm
and in the thermodynamic limit N → ∞, a finite ℓ cor-
responds to a (polydisperse) multi-chain solution, while
ℓ→ ∞ gives the single-chain limit [50]. Eq. (37) is there-
fore valid for both, single and multiple chains, as it will
be discussed further below.

III. PHASE STABILITY AND BEHAVIOR:
METHODS

A. Single-chain systems

For a generic, complex ternary mixture of a single poly-
mer chain (ℓ → ∞ in Eq. (37)), solvent and cosolvent,
we detail first the thermodynamics of separation in two
phases (termed I and II) in Sec. III A 1 while three-
phase coexistence (termed I, II and III) is outlined in
Sec. III A 2. The generalization to multi-chain systems
(ℓ <∞ in Eq. (37)) is then straightforward and we leave
it to Sec. S2 in SM [37].
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In order to understand the coming formalism, it ought
to be stressed that the polymer coil state is equivalent
to a stable mixed phase whereas the globule state is a
phase-separate system where one phase has ϕm > 0 and
the other(s) have ϕm = 0 [40, 50]. To clarify this point,
consider for simplicity a binary polymer/solvent mixture
(Eq. (37) with ϕm+ϕs = 1): the critical point is for ϕ∗m =

1/(1 +
√
ℓ) [2, 51], with the two branches of the binodal

line lying to the left and to the right of it. As ℓ → ∞,
both ϕ∗m and the binodal left branch → 0, therefore the
value of ϕm for the polymer-poor phase must also be = 0
(see Fig. 1 in [50]).

1. Two-phase coexistence

Phase I is characterized by ϕIm = 0, ϕIs > 0 and oc-
cupies volume V I , while phase II is characterized by
ϕIIm > 0, ϕIIs > 0 and occupies volume V II . By general-
izing standard arguments for binary mixtures [51], these
phases and their regions of stability are determined by
minimizing the total free energy

V If(0, ϕIs) + V IIf(ϕIIm , ϕ
II
s ) , (38)

of the phase-separate system [52], with additional con-
straints on volume and particle number of each species:

V I + V II = V , (39)

V IIϕIIm = V ϕm , (40)

V IϕIs + V IIϕIIs = V ϕs , (41)

where V is the total volume of the system and ϕm and ϕs
are the densities at which the system is prepared. Then,
by introducing the expressions for the osmotic pressure

Π(ϕm, ϕs) ≡ ϕm
∂f

∂ϕm
+ ϕs

∂f

∂ϕs
− f(ϕm, ϕs) , (42)

and the chemical potential of the solvent

µs(ϕm, ϕs) ≡
∂f

∂ϕs
, (43)

minimization of Eq. (38) with constraints (39)-(41) via
standard Lagrange multipliers leads to 5 coupled equa-
tions with 3 constraints that, by some manipulations,
give:

Π(0, ϕIs) = Π(ϕIIm , ϕ
II
s ) , (44)

µs(0, ϕ
I
s) = µs(ϕ

II
m , ϕ

II
s ) , (45)

ϕIIm (ϕIs − ϕs) = ϕm(ϕIs − ϕIIs ) . (46)

Eqs. (44) and (45) can be easily identified as the balance
of the osmotic pressures and the chemical potentials of
the solvent in the two phases [53], while Eq. (46) is a
generalization of the usual Maxwell lever rule for binary
mixtures [2]. If, for a given pair (ϕm, ϕs), a solution
to Eqs. (44)-(46) exists, the system minimizes its free

energy by phase separating into two coexisting phases
and is in a biphasic region (for the triphasic case, see
Sec. III A 2 below); in polymer language, the chain col-
lapses to a globule. The solution to Eqs. (44)-(46) is then
used (Eqs. (39)-(41)) to infer V I and V II , so character-
izing the two phases completely.

2. Three-phase coexistence

In order to derive the conditions for the coexistence
of three phases in single-chain systems we proceed simi-
larly as for the case of two phases. The starting point is
again the total free energy of the phase-separated system
(compare to Eq. (38)),

V If(0, ϕIs) + V IIf(0, ϕIIs ) + V IIIf(ϕIIIm , ϕIIIs ) , (47)

with the constraints (compare to Eqs. (39)-(41)):

V I + V II + V III = V , (48)

V IIIϕIIIm = V ϕm , (49)

V IϕIs + V IIϕIIs + V IIIϕIIIs = V ϕs . (50)

This time, the minimization procedures leads to a sys-
tem of 7 equations (with 3 constraints), that can be re-
arranged into the following relations for the equilibrium
densities:

Π(0, ϕIs) = Π(0, ϕIIs ) , (51)

Π(0, ϕIs) = Π(ϕIIIm , ϕIIIs ) , (52)

µs(0, ϕ
I
s) = µs(0, ϕ

II
s ) (53)

µs(0, ϕ
I
s) = µs(ϕ

III
m , ϕIIIs ) . (54)

Again, if a non-trivial solution to Eqs. (51)-(54) exists,
then the system minimizes its free energy by separating
into three coexisting phases. An interesting difference
with respect to the biphasic case (compare to Eqs. (44)-
(46)) is that the solution to Eqs. (51)-(54) does not de-
pend explicitly on the average densities ϕm and ϕs.

B. Convex hull construction and Gibbs triangle

Solutions to Eqs. (44)-(46) for two-phase coexistence
and Eqs. (51)-(54) for three-phase coexistence require a
non-trivial numerical procedure [48, 49, 54]. The task,
however, can be greatly simplified by looking at the “ge-
ometrical” meaning [55, 56] of these equations, i.e. the
evaluation of the lower convex hull (l.c.h.) [57, 58] of
the free energy surface. In particular, the regions where
the l.c.h. differs from the free energy surface are those
where phase separation occurs (again, analogously to
the Maxwell construction in binary mixtures). In order
to identify those regions we follow [55, 56] and recon-
struct the shape of the l.c.h. by the accurate triangu-
lation procedure introduced therein. We implement this
method via the publicly available Quickhull package [58],
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C
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(b)

M’

S’

C’

O M’S’

C’

O≡S’ O≡M’

O≡C’

FIG. 2. (a) Gibbs triangle for a ternary mixture of
monomers (vertex M), solvent molecules (vertex S) and co-
solvent molecules (vertex C). A generic point O inside the
triangle stands for system’s composition with densities: ϕm =
|OM ′|/|MM ′|, ϕs = |OS′|/|SS′| and ϕc = |OC′|/|CC′|,
where “| · |” denotes the length of the segment. By elemen-
tary geometry, it is easily seen that ϕm + ϕs + ϕc = 1. (b)
Illustrative cases (dots’ color code is as in Fig. 1), featuring
(from left to right): equipopulation of the three species (O is
the barycenter) and when one species is absent.

and get an estimated phase diagram of the system that
is then used in concert with the numerical solutions of
Eqs. (44)-(46) and Eqs. (51)-(54). The obtained stable-
phase solutions are represented in terms of the charac-
teristic barycentric coordinates [48, 49, 59] of the Gibbs
triangle (Fig. 2). The described procedure is applied also
to the identification of two- and three-phase coexistence
in multi-chain systems (see Sec. S2 in SM [37]).

IV. RESULTS

A. Re-entrant collapse of polymer chains in solvent
of varying quality

We start by applying our theory to the following prob-
lem [11]: a single chain described by the Kremer-Grest
bead-spring polymer model [60] in explicit solvent con-
ditions, where mm and ss interactions are described by
the same attractive Lennard-Jones interaction. As the
strength of the ms attraction (also of the Lennard-Jones
type) increases, the chain swells as expected in stan-
dard good solvent conditions. However, by increasing

FIG. 3. Phase behavior of a single chain in a one-solvent
bath of varying quality (Eq. (37) for d = 3, ϵmm = ϵss =
−ϵ < 0, ϵms = −λϵ (λ > 0), ϵcc = ϵmc = ϵsc = 0 and
temperature kBT/ϵ = 2.5). The dark- and light-shaded areas
correspond, respectively, to the stable (coil) and the biphasic
(globule) region as identified from the convex hull procedure
(see text for details). Large blue dots correspond to 9 chosen
mean compositions of the system with the same ϕm = 0.1,
while tiny black dots (connected by black lines) denote the
compositions of the two stable phases in which the system
separates. The positions of the black dots are calculated by
solving numerically Eqs. (44)-(46).

the ms attraction even further, the polymer is observed
to fold back thus giving a re-entrant collapse (Fig. S1(a)
in SM [37]).
In order to rationalize this polymer behavior, consider

Eq. (37) with ℓ → ∞, ϵmm = ϵss = −ϵ < 0 and with
ϵms = −λϵ < 0 where λ tunes the ms attraction. In ad-
dition, as no other species was considered in the original
set-up [11], we fix ϵmc = ϵsc = ϵcc = 0; noticeably, this
allows us to “interpret” the cosolvent molecules as lattice
vacancies. To emphasize this aspect, in this as well as
in Sec. IVC on polymer-assisted condensation, the letter
“c” for “cosolvent” is replaced by the letter “v” for “va-
cancy” in all quantities and figures of pertinence. Then,
we focus on the phase stability of βf (37) as a function
of densities ϕm and ϕs, parameter λ and temperature T
and, hereafter, in spatial dimensions d = 3. When the
chosen densities (defining the mean composition of the
system) do not belong to the stable region (as identi-
fied by the convex hull procedure), we solve numerically
Eqs. (44)-(46) and Eqs. (51)-(54) to determine the stable
phases and represent the corresponding phase separation
by a solid black line (a.k.a. a tie-line) in the Gibbs trian-
gle. To fix the ideas, we consider the stability of 9 repre-
sentative coordinates (ϕm, ϕs, ϕv = 1 − ϕm − ϕs) in the
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Gibbs triangle with the same ϕm = 0.1, ϕs ∈ [0.05−0.85]
(large blue dots in Fig. 3).

We start by fixing the temperature kBT/ϵ = 2.5 and
increase λ systematically (Fig. 3): this corresponds to
changing the solvent quality from “poor” to “good”. For
λ = 0.6 (panel (a)), none of the points is stable as they
all lay in the biphasic region (light shaded area). This
means that at this monomer concentration and temper-
ature the system always phase separates in two different
phases represented by the end small dots of each black
line. One of these phases (lying on the SV edge) contains
only solvent molecules and vacancies, mixed. The other
phase (lying on the edge of the dark shaded region) is a
polymer globule mixed with solvent molecules and vacan-
cies. As λ increases, the dark shaded region first touches
the SV edge, and two of the original state points become
stable (panel (b) for λ = 0.76) with the chain in the coil
conformation as described earlier [50]. Upon further in-
crease of λ more and more points are incorporated in the
stable region up to λ = 1.0 (panel (c)); notice that for
low ϕs the system still phase-separates. Increasing λ fur-
ther (panel (d)), a new feature emerges: the extension of
the stable region decreases and some of the former sta-
ble points switch back to phase separation. This indeed
represents the re-entrant globule phase described in [11]
and it can be regarded as the counterpart of a similar
phenomenon observed in colloids [61]. Intriguingly, this
re-entrance can be observed only for “intermediate” ϕs.
At high solvent densities the system remains in a coil
state (at least, up to the value λ = 2.3 considered here),
while at low ϕs the polymer never experiences the coil-
globule transition and the system remains in the biphasic
region at all λ’s; the only significant modification is the
compactness of the globule with the latter becoming more
and more swollen as λ increases. Once more, this matches
the findings of computer simulations by Garg et al. [12],
that were performed at a much lower solvent density than
Ref. [11]. There, however, the authors claimed a direct
“transition” from a compact globule to a less compact
one inflated by solvent molecules (Fig. S1(b) in SM [37]).
Our result, instead, makes clear that the expansion is
not a true thermodynamic transition but rather the re-
sult of the continuous modification of the coexistence line
upon varying λ, with the system always remaining in a
biphasic region.

Polymer collapse can be also studied by fixing the ms
interaction while decreasing the temperature. Here, this
translates in fixing λ (we choose λ = 0.7) and decreas-
ing temperature T (Fig. 4). At high T (panel (a)),
the system separates in two phases only for very low
ϕs. Then, as temperature drops (panel (b)), more and
more points are incorporated in the two-phase region un-
til, for kBT/ϵ < 1.5 (see Sec. S1 in SM [37]), a tripha-
sic domain appears and extends progressively. The lat-
ter corresponds to the white triangle in panels (c) and
(d), whose corners identifies the stable compositions into
which the system separates; one phase is a polymer glob-
ule that becomes more and more compact with decreas-

FIG. 4. Phase behavior of a single chain in a one-solvent bath
of fixed quality and upon varying temperature (Eq. (37) for
d = 3, ϵmm = ϵss = −ϵ < 0, ϵms = −0.7ϵ, ϵcc = ϵmc = ϵsc = 0
and selected values of kBT/ϵ). Symbols, color code and no-
tation are as in Fig. 3. At high temperatures (panels (a)
and (b), system’s behavior is as seen in the two-phase situa-
tion. For kBT/ϵ < 1.5 (panels (c) and (d)), triphasic stability
(white triangular region, identified by the convex hull proce-
dure) becomes possible: if the system is prepared inside this
region, it separates into 3 coexisting phases whose composi-
tions (obtained by solving numerically Eqs. (51)-(54)) lie at
the corners of the white region.

ing temperature, while the other two are a solvent-poor
and a solvent-rich phase. Three-phase coexistence was
not studied in past numerical simulations [11, 12] and
our analysis indicates that it ought to be seen at suffi-
ciently low temperatures.

Notably, the picture and numerical methodologies de-
scribed so far can be extended to systems of multiple
chains with a finite mean contour length (ℓ < ∞). Here
one has to solve a larger number of equations charac-
terizing equilibrium (see Sec. S2 in SM [37]) in order to
determine the coexistence lines, but otherwise there are
no significant complications with respect to the single-
chain case. Also for a multi-chain system, our mean-field
theory predicts re-entrant phase behavior for increasing
λ (Fig. S2 in SM [37]) that differs from the single-chain
case since the polymer-poor phase is now characterized
by a small, yet non-zero, value of the monomer density.
In general, this is also in agreement with numerical simu-
lations of polymer solutions [11]. Finally, as in the single-
chain case, the temperature dependence is also of partic-
ular interest and was not analyzed numerically before.
Our theory predicts again that upon cooling there is a
large region of the parameter space guaranteeing tripha-
sic stability (white regions in Fig. S3 in SM [37], espe-
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FIG. 5. Phase behavior of co-nonsolvency (Eq. (37) for
d = 3 and for all pair interactions set to 0 except ϵmc = −ϵ
with ϵ > 0, so mimicking the conditions of [14]). Symbols,
color code and notation are as in Fig. 3. As kBT/ϵ is lowered,
a biphasic region appears and the chain collapses to a globule
for a range of values of the cosolvent density ϕc. Reading
the diagrams at fixed kBT/ϵ and fixed ϕm, the coil-globule-
coil polymer behavior upon increasing ϕc as reported in [14]
becomes apparent.

cially panel (e)). Notice that, being the multi-chain sys-
tem polydisperse within the context of our model, we can-
not rule out the possibility of polymer fractionation [62],
namely that the mean chain length ℓ differs according to
the phase. For simplicity however, we do not consider
this phenomenology here and postpone the discussion of
the effects of polydispersity in future work.

B. Polymer co-nonsolvency

As a second relevant application to single-chain sys-
tems, we consider the phenomenon known as co-
nonsolvency. Here (see Fig. S4 in SM [37]), a polymer
chain in a mixture formed by a solvent and a cosolvent
(each of which, individually, would maintain the poly-
mer in a swollen, coil-like conformation) undergoes, quite
surprisingly, a re-entrant coil-globule-coil behavior upon
systematically changing the concentration of the cosol-
vent [14–19].

To capture the physics behind co-nonsolvency, it is im-
portant to realize that solvent and cosolvent are, in gen-
eral, not perfectly equivalent and that, under suitable
conditions, the second can constitute a better solvent for
the polymer than the first. In order to account for this
mechanism, we follow the numerical work [14] and set in

FIG. 6. Phase behavior of polymer-assisted condensation
(Eq. (37) in the main text for d = 3, ϵmm = 0, ϵss = −ϵ < 0,
ϵms = −λϵ (λ > 0), ϵcc = ϵmc = ϵsc = 0 and kBT/ϵ = 1.3).
The gray dashed line denotes the miscibility gap [2] of the
binary SV mixture: its extremities correspond to the binodal
concentrations. The three large blue dots denote correspond-
ing mean compositions of the system with the same monomer
density ϕm = 0.04 and as many values of ϕs outside the mis-
cibility gap.

the free energy (37) all pair interactions = 0 except for
ϵmc = −ϵ with ϵ > 0. Fig. 5 illustrates the correspond-
ing phase diagram of the system for different values of
kBT/ϵ. Below a certain critical value of kBT/ϵ a bipha-
sic region appears and the chain collapses to a globule.
When this happens, for a fixed value of kBT/ϵ and for
increasing values of ϕc the coil-globule-coil transition re-
ported in [14] can be observed. This is also in accordance
with other works (see for instance [15, 18, 19]) where
the authors argued that the co-nonsolvency effect can in
fact be explained in terms of a Flory-Huggins-like theory,
challenging what appear to be other alternative views on
the topic [14, 16, 17].

C. Polymer-assisted condensation

Finally, we consider the recent numerical study on
“polymer-assisted condensation” [23] at the basis of the
formation of biomolecular condensates within cell nuclei.
Here, phase separation of a two-component liquid mix-
ture, otherwise in a single stable phase, is catalyzed by
the presence of a single polymer chain that displays pref-
erential attachment to one of the two components (see
Fig. S5 in SM [37] for an illustration of the phenomenon).

Within our theoretical approach, the conditions of
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Ref. [23] can be easily reproduced by modeling, similar to
Sec. IVA, the original two-component mixture as made of
solvent molecules and vacancies. Again then, in the free
energy (37) we fix the parameters ϵmc = ϵsc = ϵcc = 0,
while we assume purely stericmm interactions (ϵmm = 0)
and ss and ms attractions (ϵss = −ϵ < 0 and tuneable
ϵms = −λϵ via λ > 0). By setting kBT/ϵ = 1.3 (<
than the critical value = 1.5 for phase separation in the
solvent-vacancy binary system, see Sec. S1 in SM [37]),
we select 3 representative coordinates (ϕm, ϕs, ϕv) with
solvent densities outside the so called miscibility gap [2]
of the binary solvent-vacancy set-up and study their sta-
bility by varying λ. Remarkably (Fig. 6), our theory re-
produces the simulation results of Ref. [23]: in particular,
for low λ (panel (a)) all three points are stable, while as
λ increases (panels (b)-(d)) the early stable compositions
phase-separate, beginning with those with the highest ϕs.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a new O(n → 0)-
vector spin model leading to the exact grand canonical
partition function of lattice polymers with explicit sol-
vent and cosolvent molecules (Eq. (1)), and mapped it to
a field-theoretic form that is amenable to a saddle-point
approximation. The Legendre transform of the resulting
expression gives the mean-field free energy of the system
(Eq. (37)) that generalizes earlier work [33, 34] and, no-
tably, is of the Flory-Huggins form [35, 36] for a ternary
mixture of polymer, solvent and cosolvent.

A systematic stability analysis of the equilibrium
relations for two (Eqs. (44)-(46) and Eqs. (S2)-(S5)
in SM [37]) and three phases (Eqs. (51)-(54) and
Eqs. (S6)-(S11) in SM [37]) coupled with the convex
hull method [55, 56] reproduces transparently recent re-
sults from extensive numerical simulations for single- and
multi-chain systems in explicit solvent [11, 12, 23]. In
particular, we provide a unified explanation for three,
seemingly unrelated, observations: (i) a re-entrant poly-
mer coil-globule transition (Fig. 3), (ii) polymer co-

nonsolvency (Fig. 5), (iii) polymer-assisted condensation
of the solvent (Fig. 6).
It is particularly worth emphasizing how in both (i)

and (iii) cases the transition is triggered by the increas-
ing ϵms-attraction between the polymer and the solvent,
and yet the role of the third component (the vacancies
in this case) remains essential. As a matter of fact, nei-
ther of these two phenomena would occur in a pure poly-
mer/solvent binary mixture. More generally, our ap-
proach underscores the delicate “solvent/cosolvent” in-
terplay and highlights the important regions in the tem-
perature/density plane, thus providing a powerful guide-
line to specific numerical simulations. In particular,
we have unveiled whole new regions of low-temperature
three-phase stability (Fig. 4 and Fig. S3 in SM [37]) that
were never studied before, to the best of our knowledge.
To conclude, we highlight some ideas for future work.

First, the main tools introduced here can be readily gen-
eralized to mixtures with more species, to polymers with
intrinsic bending stiffness [34] or with complex architec-
tures [63]. Another potential avenue for this method con-
cerns the so-called crowding effect or depletion interac-
tion. As the ratio between the size of the solvent and
the size of the polymer decreases, a collapse of the poly-
mer is expected below a certain asymmetry, purely for
entropic reasons [64]. Although a rigorous field-theoretic
treatment of this problem along the lines of the present
work appears far from trivial, it may still be possible to
account for this effect even within a lattice model, and we
plan to address this point in a future dedicated study. A
final perspective is related to the extension of the present
theory beyond mean-field [39, 65], particularly with the
inclusion of finite-size effects [6] that become important
in the vicinity of continuous transitions, and the study
of the kinetics of phase separation [56].
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[28] T. Arcangeli, T. Škrbić, S. Azote, D. Marcato, A. Rosa,

J. R. Banavar, R. Piazza, A. Maritan, and A. Giacometti,
Phase behaviour and self-assembly of semiflexible poly-
mers in poor-solvent solutions, Macromolecules 57, 8940
(2024).

[29] J. M. Polson and N. E. Moore, Simulation study of the
coil-globule transition of a polymer in solvent, J. Chem.
Phys. 122, 024905 (2004).

[30] J. M. Polson, S. B. Opps, and N. Abou Risk, Theoretical
study of solvent effects on the coil-globule transition, J.
Chem. Phys. 130, 244902 (2009).

[31] J. Heyda, A. Muzdalo, and J. Dzubiella, Rationalizing
polymer swelling and collapse under attractive cosolvent
conditions, Macromolecules 46, 1231 (2013).

[32] Y. Zhao, M. K. Singh, K. Kremer, R. Cortes-Huerto, and
D. Mukherji, Why do elastin-like polypeptides possibly
have different solvation behaviors in water–ethanol and
water–urea mixtures?, Macromolecules 53, 2101 (2020).

[33] S. Doniach, T. Garel, and H. Orland, Phase diagram of
a semiflexible polymer chain in a θ solvent: Application
to protein folding, J. Chem. Phys. 105, 1601 (1996).

[34] D. Marcato, A. Giacometti, A. Maritan, and A. Rosa,
Phase behaviour of semiflexible lattice polymers in poor-
solvent solution: Mean-field theory and monte carlo sim-
ulations, J. Chem. Phys. 159, 154901 (2023).

[35] P. J. Flory, Thermodynamics of high polymer solutions,
J. Chem. Phys. 10, 51 (1942).

[36] M. L. Huggins, Some properties of solutions of long-chain
compounds., J. Phys. Chem. 46, 151 (1942).

[37] See Supplemental Material at http://XXX for details on
binary mixtures as limit cases, phase stability relations
for multi-chain systems and additional figures.

[38] In other words, the formalism here applies to polymer
contour lengths beyond the so called Kuhn length [2]
of the chain. As noticed in our work [34], at the mean-
field level the introduction of a bending penalty term in
the partition function (1) implies only a “redefinition”
of chain and bond fugacities κp and κb that does not af-
fect the main outcomes of the theory. Beyond mean-field,
bending fluctuations may however play quite an impor-
tant role as also suggested by computer simulations [28].

[39] P. G. de Gennes, Exponents for the excluded volume
problem as derived by the wilson method, Phys. Lett.
A 38, 339 (1972).

[40] P. G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, 1979).

[41] H. Orland, C. Itzykson, and C. de Dominicis, An eval-
uation of the number of hamiltonian paths, J. Physique
Lett. 46, 353 (1985).

[42] J. Bascle, T. Garel, and H. Orland, Mean-field theory
of polymer melting, J. Phys. A Math. Gen. 25, L1323
(1992).

[43] J. Hubbard, Calculation of partition functions, Phys.
Rev. Lett. 3, 77 (1959).

[44] P. M. Chaikin and T. C. Lubensky,
Principles of Condensed Matter Physics (Cambridge
University Press, 2000).

[45] Specifically, by this ansatz every dependence on n disap-
pears, therefore the limit n→ 0 becomes trivial.

[46] For the parsimony of notation, we adopt the same sym-
bols “φ” and “ψσ” also for the solutions of MF equa-
tions (24)-(27).

[47] M. G. Bawendi and K. F. Freed, Systematic corrections
to flory–huggins theory: Polymer–solvent–void systems
and binary blend–void systems, J. Chem. Phys. 88, 2741

https://doi.org/https://doi.org/10.1002/pol.20210526
https://doi.org/10.1063/5.0140721
https://doi.org/10.1063/5.0140721
https://link.aps.org/doi/10.1103/PhysRevLett.81.373
https://link.aps.org/doi/10.1103/PhysRevLett.81.373
https://doi.org/10.1021/ma302320y
https://doi.org/10.1063/1.472031
https://doi.org/10.1063/5.0171911
https://doi.org/10.1063/1.1723621
http://dx.doi.org/10.1021/j150415a018
http://www.sciencedirect.com/science/article/pii/0375960172901491
http://www.sciencedirect.com/science/article/pii/0375960172901491
https://doi.org/10.1051/jphyslet:01985004608035300
https://doi.org/10.1051/jphyslet:01985004608035300
https://dx.doi.org/10.1088/0305-4470/25/23/010
https://dx.doi.org/10.1088/0305-4470/25/23/010
https://link.aps.org/doi/10.1103/PhysRevLett.3.77
https://link.aps.org/doi/10.1103/PhysRevLett.3.77


12

(1988).
[48] H. Tompa, Phase relationships in polymer solutions,

Trans. Faraday Soc. 45, 1142 (1949).
[49] F. W. Altena and C. Smolders, Calculation of liquid-

liquid phase separation in a ternary system of a poly-
mer in a mixture of a solvent and a nonsolvent, Macro-
molecules 15, 1491 (1982).

[50] W. Paul, T. Strauch, F. Rampf, and K. Binder, Unex-
pectedly normal phase behavior of single homopolymer
chains, Phys. Rev. E 75, 060801 (2007).

[51] D. Qian, T. C. Michaels, and T. P. Knowles, Analytical
solution to the flory–huggins model, J. Phys. Chem. Lett.
13, 7853 (2022).

[52] Notice that Eq. (38) neglects surface contributions be-
tween different phases; this approximation is not crucial
here. Conversely, surface terms need to be taken explicitly
into account for characterizing the detailed morpholo-
gies of the different phases as well as non-equilibrium
effects [56].

[53] Notice that where one phase is characterized by the ab-
sence of one species (as it is the case of monomers here),
the expression for the equilibrium of the related chemical
potential is absent [40]. Instead, the balance of chemical
potentials between different monomer phases needs to be
enforced for multi-chain systems (see Sec. S2 in SM [37]).

[54] The numerical solution to Eqs. (44)-(46) and
Eqs. (51)-(54) (and analogues in Sec. S2 in
SM [37]) has been programmed in-house by using
Mathematica. The codes are freely available at:
https://github.com/davideMarcato/coexistence equations.

[55] J. Wolff, C. M. Marques, and F. Thalmann, Ther-
modynamic approach to phase coexistence in ternary
phospholipid-cholesterol mixtures, Phys. Rev. Lett. 106,
128104 (2011).

[56] S. Mao, D. Kuldinow, M. P. Haataja, and A. Košmrlj,
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S1. BINARY MIXTURES AS SPECIAL CASES

It is instructive to specialize the free energy βf (Eq. (37) in the main text) to binary mixtures, namely when
one of the three considered species (monomers (m), solvent molecules (s) or cosolvent molecules (c)) is absent. In
particular, after subtracting the contribution of the free energy of the corresponding phase-separated system, one gets
the functional form of the free energy of mixing and the related Flory parameter, χ, recapitulating the interaction
between the two species (for reference, see [2, 40]). Essentially, two situations are possible:

1. ϕc = 1 − ϕm − ϕs = 0: βf(ϕm, ℓ) = dβ (ϵmm − 2ϵms + ϵss) ϕ
2
m + ϕm

ℓ ln(ϕm) + (1 − ϕm) ln(1 − ϕm) +

ϕm

[
ln
(

(1−2/ℓ)1−2/ℓ (2/ℓ2)1/ℓ

(2d eβϵmm−1(1−1/ℓ))1−1/ℓ

)
+ 2dβ (ϵms − ϵss)

]
+ dβϵss corresponds to the free energy of a mixture of poly-

mer chains of mean contour length ℓ and solvent molecules. Such a mixture is represented as a point on the
MS side of the Gibbs triangle (Fig. 2 in the main text).

By the free energy of mixing – β∆f(ϕm) ≡ βf(ϕm)−ϕmβf(ϕm = 1)−(1−ϕm)βf(ϕm = 0) – the Flory parameter
for the polymer/solvent mixture is given by χ = dβ(2ϵms−ϵmm−ϵss). By standard methods, it is easy to derive

the critical temperatures for phase separation for the two following cases: (i) for ℓ = 1, T ∗ = d(2ϵms−ϵmm−ϵss)
2kB

;

(ii) for ℓ→ ∞, T ∗ = 2d(2ϵms−ϵmm−ϵss)
kB

.

With reference to the case of Fig. 3 in the main text (ℓ → ∞, d = 3, ϵmm = ϵss = −ϵ < 0 and ϵms = −λϵ with
λ > 0), the critical temperature kBT

∗

ϵ = 12(1 − λ). The system may then phase-separate only for λ < 1 while
for λ > 1 the entire MS side is in the stable region regardless of the value of the temperature T , as confirmed
by the figure.

Obviously, the situation in which ϕs = 0 (and thus ϕc = 1 − ϕm) is specular to the one just

discussed, so one gets βf(ϕm, ℓ) = dβ (ϵmm − 2ϵmc + ϵcc) ϕ
2
m + ϕm

ℓ ln(ϕm) + (1 − ϕm) ln(1 − ϕm) +

ϕm

[
ln
(

(1−2/ℓ)1−2/ℓ (2/ℓ2)1/ℓ

(2d eβϵmm−1(1−1/ℓ))1−1/ℓ

)
+ 2dβ (ϵmc − ϵcc)

]
+ dβϵcc, which is identical to the previous expression except

for the fact that the solvent s has been replaced by the cosolvent c.

2. ϕm = 0: βf = βf(ϕs) = dβ(ϵss−2ϵsc+ϵcc)ϕ
2
s+(1−ϕs) ln(1−ϕs)+ϕs ln(ϕs)+2dβ(ϵsc−ϵcc)ϕs+dβϵcc corresponds

to the free energy of a binary mixture of solvent and cosolvent molecules. Such a mixture is represented as a
point on the CS side of the Gibbs triangle (Fig. 2 in the main text).

By the free energy of mixing – β∆f(ϕs) ≡ βf(ϕs)−ϕsβf(ϕs = 1)−(1−ϕs)βf(ϕs = 0) – the Flory parameter for
the solvent molecules is χ = dβ(2ϵsc − ϵss − ϵcc). Accordingly, phase separation takes place at the critical Flory

parameter χ∗ = 2, corresponding to the critical temperature T ∗ = d(2ϵsc−ϵss−ϵcc)
2kB

(obviously, physical values of

T ∗ are possible only for χ > 0, namely when the effective interaction among solvent molecules is attractive).

With reference to the case of Fig. 4 in the main text (d = 3 and ϵss = −ϵ < 0), the critical temperature
kBT

∗

ϵ = 3
2 : accordingly, for T < T ∗ some points on the SC side become non-stable and a triphasic region

appears.

S2. PHASE-STABILITY: MULTI-CHAIN SYSTEMS

In this Section, we describe the conditions for two-phase (Sec. S2A) and three-phase (Sec. S2B) stability for a
polymer solution in explicit solvent, assuming chains of finite mean contour length (i.e., ℓ < ∞ in Eq. (37) in the
main text). Now, contrary to the single-chain case, in the derivation of the equations for the equilibrium densities
(namely, the equivalent of Eqs. (44)-(46) and Eqs. (51)-(54) in the main text) we take ϕIm > 0. As a consequence,
in addition to the balance of the chemical potential of the solvent (see Eq. (43) in the main text), we have here one
additional equilibrium condition to impose coming from the balance of the monomer chemical potential,

µm(ϕm, ϕs) ≡
∂f

∂ϕm
. (S1)
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A. Two-phase stability

By adopting the same notation of the main text and with the additional constraint from Eq. (S1), the new set of
equilibrium equations becomes:

Π(ϕIm, ϕ
I
s) = Π(ϕIIm , ϕ

II
s ) , (S2)

µs(ϕ
I
m, ϕ

I
s) = µs(ϕ

II
m , ϕ

II
s ) , (S3)

µm(ϕIm, ϕ
I
s) = µm(ϕIIm , ϕ

II
s ) , (S4)

ϕm − ϕIm
ϕIIm − ϕIm

=
ϕs − ϕIs
ϕIIs − ϕIs

. (S5)

Notice in particular, and in comparison to Eqs. (44)-(46) in the main text, the “new” Eq. (S4) as the consequence
of having ϕIm > 0. Moreover, and as already noticed for ℓ → ∞, also in this more general case the solution to
Eqs. (S2)-(S5) depends explicitly on the preparation conditions of the system, ϕm and ϕs.

Two-phase stability for multi-chain systems is illustrated in Fig. S2 for the same set of parameters considered in
Fig. 3 in the main text and chain mean length ℓ = 10. The major difference with respect to the single-chain case is in
the appearance of a dilute, yet strictly > 0, polymer phase that, intuitively, is expected to become more pronounced
for lower values of ℓ. Finally, as it can be noticed in Fig. S2, a re-entrance condition does still exist for λ > 1.0, in
agreement with the results of molecular dynamics computer simulations by Huang and Cheng [11].

B. Three-phase stability

The last case that needs to be addressed is that of three-phase coexistence in multi-chain systems. Again, the
main difference with respect to the single-chain counterpart is that we can no longer assume that ϕm = 0 in any of
the phases in which the system separates. Therefore, in total we need now to compute 6 equilibrium densities. By
implementing the same procedure of the minimization of the free energy (Eq. (37) in the main text) with the proper
constraints leads to the following set of equations:

Π(ϕIm, ϕ
I
s) = Π(ϕIIm , ϕ

II
s ) , (S6)

Π(ϕIm, ϕ
I
s) = Π(ϕIIIm , ϕIIIs ) , (S7)

µs(ϕ
I
m, ϕ

I
s) = µs(ϕ

II
m , ϕ

II
s ) , (S8)

µs(ϕ
I
m, ϕ

I
s) = µs(ϕ

III
m , ϕIIIs ) , (S9)

µm(ϕIm, ϕ
I
s) = µm(ϕIIm , ϕ

II
s ) , (S10)

µm(ϕIm, ϕ
I
s) = µm(ϕIIIm , ϕIIIs ) . (S11)

Once again, we point out that Eqs. (S6)-(S11) (to be compared to Eqs. (51)-(54) in the main text) imply the equality
of the osmotic pressure and the chemical potentials of both species (monomers and solvent molecules) in all 3 phases.

Three-phase stability for multi-chain systems is illustrated in Fig. S3 for the same set of parameters considered in
Fig. 4 in the main text and chain mean length ℓ = 10. Qualitatively the behavior appears similar to the single-chain
case, the major difference is (as in two-phase behavior) the appearance of a dilute, strictly > 0, polymer phase.
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example is shown in Figure 2B. When ϵps is increased fur-
ther, chains adopt swollen conformations. The case in
Figure 2C for ϵps = 1.5ϵ is one such example.

A surprise is revealed in the simulations with large
values of ϵps. As shown in Figure 2D, the chain becomes
less extended at ϵps = 2.0ϵ compared with the case at

ϵps = 1.5ϵ. The trend is clearer when ϵps is increased fur-
ther. For example, the snapshot in Figure 2E is for
ϵps = 4.0ϵ, where the chain is apparently collapsed. This
result is unexpected as a large value of ϵps indicates that
the monomer beads interact strongly with the solvent
atoms, where we would naively expect the polymer chain
to be well solvated by the solvent and therefore to adopt
extended conformations. Below we further quantify the
variation of chain sizes as ϵps is increased and then
discuss the implication of our results.

We compute the radius of gyration, Rg, of each poly-
mer chain as a way to quantify chain conformations.
Since the correlation time of Rg is found to be around or
shorter than 2.5τ, Rg is computed every 2.5τ and its aver-
age value is output every 50τ. A statistical analysis is then
performed for a sequence of such average values to
obtain the mean value and uncertainty of Rg reported
here. In Figure 3, Rg is plotted against the monomer-
solvent interaction strength, ϵps, for three chains with
Nm = 64, 128, and 256, respectively. Results for other
values of Nm studied are all included in the Supporting
information. Consistent with the snapshots shown in
Figure 2, Rg is initially small when ϵps is small. A first
sharp transition of Rg occurs at ϵps ’ 1.0ϵ, around which
point the solvent quality changes from poor to θ and then
to good. When ϵps is increased beyond about 2.0ϵ (i.e., the
monomer-solvent interaction is twice as strong as the
solvent-solvent and nonbonded monomer-monomer
interactions), Rg starts to decrease, indicating the collaps-
ing of the chain and the worsening of the solvent quality.
Therefore, there is another θ-point around ϵps ’ 2.0ϵ.
This second θ-transition is sharper for a longer chain.

FIGURE 1 Snapshot of a 50-bead chain suspended in the LJ
solvent at ϵps = 2.0ϵ

FIGURE 2 Representative snapshots of a 50-bead chain at
various values of ϵps: (A) 0.4ϵ, (B) 0.95ϵ, (C) 1.5ϵ, (D) 2.0ϵ, and
(E) 4.0ϵ

FIGURE 3 Radius of gyration (Rg) versus monomer-solvent
interaction strength (ϵps) for Nm = 64 (squares), 128 (triangles), and
256 (circles)
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ther. For example, the snapshot in Figure 2E is for
ϵps = 4.0ϵ, where the chain is apparently collapsed. This
result is unexpected as a large value of ϵps indicates that
the monomer beads interact strongly with the solvent
atoms, where we would naively expect the polymer chain
to be well solvated by the solvent and therefore to adopt
extended conformations. Below we further quantify the
variation of chain sizes as ϵps is increased and then
discuss the implication of our results.

We compute the radius of gyration, Rg, of each poly-
mer chain as a way to quantify chain conformations.
Since the correlation time of Rg is found to be around or
shorter than 2.5τ, Rg is computed every 2.5τ and its aver-
age value is output every 50τ. A statistical analysis is then
performed for a sequence of such average values to
obtain the mean value and uncertainty of Rg reported
here. In Figure 3, Rg is plotted against the monomer-
solvent interaction strength, ϵps, for three chains with
Nm = 64, 128, and 256, respectively. Results for other
values of Nm studied are all included in the Supporting
information. Consistent with the snapshots shown in
Figure 2, Rg is initially small when ϵps is small. A first
sharp transition of Rg occurs at ϵps ’ 1.0ϵ, around which
point the solvent quality changes from poor to θ and then
to good. When ϵps is increased beyond about 2.0ϵ (i.e., the
monomer-solvent interaction is twice as strong as the
solvent-solvent and nonbonded monomer-monomer
interactions), Rg starts to decrease, indicating the collaps-
ing of the chain and the worsening of the solvent quality.
Therefore, there is another θ-point around ϵps ’ 2.0ϵ.
This second θ-transition is sharper for a longer chain.

FIGURE 1 Snapshot of a 50-bead chain suspended in the LJ
solvent at ϵps = 2.0ϵ

FIGURE 2 Representative snapshots of a 50-bead chain at
various values of ϵps: (A) 0.4ϵ, (B) 0.95ϵ, (C) 1.5ϵ, (D) 2.0ϵ, and
(E) 4.0ϵ
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that are reported are for Nm = 100 unless otherwise stated. We
simulate systems with different interaction strengths ranging from
�mm = 0.1–1.0 and �mc = 0.1–4.0. For all these systems, we simulate
two crowder–crowder interaction strengths: �cc = 1.0 and 0.3. Most
of the results described are with �cc = 1.0 unless otherwise stated. All
the length scales are measured in terms of σmm.

The crowder number density, ρc, is defined as the ratio of
the number of crowders to the simulation box volume (40 × 40× 40). Most of the simulation results are for crowder number den-
sity ρc = 0.047. Higher values of ρc are explored to understand the
role of crowder density on the conformational phase diagram. The
monomer number density, defined as the ratio of the number of
monomers to the volume of the simulation box, is 1.562 × 10−3. The
equations of motion are integrated using the MD LAMMPS software
package,41 and visualization of images and trajectories has been done
in the visual molecular dynamics (VMD) package.42 Various analy-
ses have been performed with in house codes. All the systems are
simulated for 2 × 107 steps using a velocity Verlet algorithm with
time step δt = 0.001τ. The initial configurations were obtained by
setting up a dilute system of the neutral polymer simulated in an
NPT ensemble for 107 time steps to obtain desired density. Subse-
quently, simulations are performed under a constant volume and
temperature condition (T = 1.0) using a Nose Hoover thermostat.
The block average over the last 9000 frames is calculated to get the
average of each parameter in each simulation. We check that the sys-
tem reaches equilibrium by doing simulations with both extended
and collapsed initial conditions and verify that the equilibrium
configurations are independent of the initial conditions.

III. RESULTS
A. Conformational phase diagram
with attractive crowders

In this section, we explore the conformations of a neutral poly-
mer in the �mm–�mc plane. For all the simulations in this section,
crowder number density ρc = 0.047 and crowder–crowder interac-
tion �cc = 1.0. The conformations of the polymer are characterized
via its radius of gyration, Rg , as follows:

R2
g = 1

N

N�
i=1
(ri − rcm)2, (3)

where ri is the position vector of the ith monomer and rcm is the
position of the center of mass of the polymer.

Figure 1 shows the variation of Rg with monomer–crowder
interaction, �mc, for different values of monomer–monomer inter-
actions, �mm. For small values of �mc, the polymer is extended
for weak monomer–monomer interactions (�mm � 0.5) and col-
lapsed for higher values of �mm. When �mc is increased, for weak
monomer–monomer interactions, the polymer undergoes a transi-
tion from an extended phase to a collapsed phase around �mc ≈ 1.0
and remains in a collapsed conformation up to the largest �mc that
we have studied. For intermediate �mm, Rg increases slightly with �mc
before decreasing to a collapsed phase. For large �mc, regardless of
the �mm values, the polymer is in a collapsed phase. These features,
up to �mc = 1.0, are as reported in Ref. 33. However, in our simula-
tions, we show a second transition from a collapsed phase induced
by strong intra-polymer attraction to a collapsed phase induced by

FIG. 1. The variation of the mean radius of gyration, Rg with attractive
monomer–crowder interaction, �mc , for different inter monomer interaction, �mm.
In the snapshots along the collapse pathway, monomers are shown in red, and the
crowders that are within a distance of 2σmc of at least one monomer are shown in
yellow. All the snapshots are for �mm = 0.1 except for the bottom left, which is for
�mm = 1.0. The data are for �cc = 1.0 and ρc = 0.047.

bridging crowders, when �mc is increased. We will show that these
two collapsed phases differ in their Rg and their structure, aspects
that were not explored earlier.

From these observations, we identify three predominant phases
in the conformational phase diagram of neutral polymers with
attractive crowders: (1) an extended phase, E, in which both intra-
polymer and polymer–crowder interactions are weak (2) a collapsed
phase, CI, which is characterized by strong intra-polymer attraction,
and (3) a collapsed phase, CB, which is characterized by bridging
interactions due to strong polymer–crowder interactions. We now
explore the complete conformational �mm–�mc phase diagram and
identify the nature of the three phase lines, E–CB, CI–CB, and E–CI.

To obtain the phase diagram, we proceed as follows. We iden-
tify the transition points between different phases as those values of
�mm and �mc at which the radius of gyration Rg changes most rapidly,
i.e., dRg�d�mc or dRg�d�mm is maximum. To obtain these gradients,
we fit the region near the transition, in Fig. 1, to a hyperbolic tangent
function. The phase diagram, thus, obtained, is shown in Fig. 2. The
three phases extended E, collapsed due to intra-polymer attraction
CI, and collapsed due to bridging crowders CB, are shown in three
different colors. We now examine the polymer conformations and
crowder distributions in these three phases to rationalize the phase
lines.

For relatively smaller values of �mc and moving along the
increasing �mm values, there is a phase transition from extended
phase, E, to intra-polymer attraction dominated collapsed phase, CI
at a value of �∗mm ≈ 0.4, which is consistent with the transition point
found in Ref. 33. We find that the �∗mm is utmost weakly dependent
on �mc, which may be understood as follows. For the low value of
crowder density simulated, the typical monomer–crowder separa-
tion (ρ−1�3

c ≈ 2.77), being larger than the LJ minimum (≈1.12), and
the E–CI transition is largely independent of �mc.

J. Chem. Phys. 158, 114903 (2023); doi: 10.1063/5.0140721 158, 114903-3
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FIG. 2. Conformational phase diagram of the neutral polymers with attractive crow-
ders in the �mm–�mc plane. The simulated systems corresponding to extended
phase (E), strong intra-polymer interaction induced collapsed phase (CI), and
bridging crowder induced collapsed phase (CB) are colored in red, yellow, and
blue, respectively. The data are for �cc = 1.0 and ρc = 0.047.

For �mm = 0.1, the E–CB transition occurs at �∗mc ≈ 0.77. For
higher values of �mm, the phase line slopes slightly to the left (the
slope being larger when �cc is lowered, as in Sec. III B) showing
that bridging interactions start dominating at a smaller value of �mc.
The decrease of �∗mc with increasing �mm can be rationalized as fol-
lows. Since the intra-polymer interactions are attractive, an increase
in �mm enhances the propensity to collapse. An additional inclu-
sion of bridging crowder interaction (�mc) only further stabilizes the
CB phase and, hence, lowers the critical value of �∗mc needed for the
transition.

In contrast, for large �mm, �∗mc increases linearly with �mm for
the CI–CB transition. This can be rationalized as follows. In the
CI phase, every non-bonded monomer–monomer interaction low-
ers energy by �mm. The CI–CB transition requires the replacement
of a strong monomer–monomer interaction by at least an equiva-
lent monomer–crowder interaction, resulting in higher �mc values
for larger �mm.

We now quantitatively differentiate between the two collapsed
phases CI and CB. To do so, we compare the monomer–monomer
pair correlation function, g(r), for these two phases in Fig. 3. In the
calculation of g(r), the bonded pairs are excluded. In the CI phase,
there is a peak close to r ≈ 1.1, corresponding to a large number
of non-bonded monomer–monomer pairs leading to the collapsed
phase. In sharp contrast, this peak is completely absent in the CB
phase, showing that intra-polymer interactions are less significant.
In the CB phase, the dominant interactions are monomer–crowder
as shown in the peak at r ≈ 1.1 in the monomer–crowder gmc(r) in
Fig. 3. Furthermore, the larger extent of gmm(r) for the CB phase,
as compared to the CI phase, is consistent with a larger Rg . In addi-
tion, due to the dominant intra-polymer interactions in the CI phase,
we expect gmm(r) to depend strongly on �mm. However, when the
polymer–crowder interactions are dominant, as in the CB phase,
we expect gmm(r) to be largely independent of �mm. This aspect
is clearly seen in Fig. S1 (see the supplementary material), where

FIG. 3. The pair correlation function, g(r), for both monomer–monomer and
monomer–crowder in the CB phase (�mm = 0.1 and �mc = 4.0) and the CI phase
(�mm = 1.0 and �mc = 0.1). The data are for �cc = 1.0 and ρc = 0.047. The contri-
butions from the bonded monomers are excluded. The snapshots of the polymer
in CI and CB phases are shown in red with bridging crowders (shown in yellow).

gmm(r) for different �mm are shown. For �mc = 0.1, corresponding
to the CI phase, gmm has a strong dependence on the �mm, and the
emergence of a structure between monomers can be seen as �mm
is increased [see Fig. S1(a)]. However, for strong polymer–crowder
attraction, the structure of the collapsed phase CB is identical within
numerical error [Fig. S1(b)] and has a similar structure correspond-
ing to a collapsed phase. In addition, the overall size of the collapsed
state CB approaches a limiting value (independent of �mm and func-
tion of only polymer length). We conclude that the CB phase is
distinctly different from the CI phase and largely independent of
intra-polymer interactions.

We now look at bridging crowders to further differentiate
between the CB and CI collapsed phases. Although the concept
of attractive crowders acting as bridges or glue between distant
monomers has been invoked in earlier works,33,34,36–39 a quantitative
definition of the same is lacking. We define a crowder as a bridg-
ing crowder if it interacts with at least k monomers. It is a priori
not clear what the optimal value of k should be. If k is too small, the
crowders that are adsorbed on the surface of the collapsed polymer
will be incorrectly counted as bridging crowders. On the other hand,
if k is too large, very few crowders will satisfy the bridging criterion.
We determine the optimal value of k as follows. Let nk denote the
number of crowders that have exactly k monomers within a sphere
of radius 1.5σ centered about the crowder. We choose 1.5σ as it is
larger than the LJ minimum of 21/6σ and smaller than the position
of the second peak seen in the monomer–crowder pair correlation
function (see Fig. 3). The variation of nk with k is shown in Fig. 4(a)
for parameter values corresponding to both CI and CB phases. We
find that for the CI phase, nk is nearly zero for k > 2. On the other
hand, for the CB phase, we find that nk is comparable to the length of
the polymer for small values of k and decreases to zero for k > 10. To
distinguish surface adsorbed crowders from bridging crowders, we
calculate nk for three different values of polymer length Nm. We find
that the data for small k and different Nm collapse onto one curve
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FIG. S1. Phase-behavior of a single polymer chain in a one-solvent bath, insights from Molecular Dynamics computer
simulations. Polymers are modeled as linear chains of beads (or monomers) and solvent molecules as single particles; monomers
and solvent particles have the same linear size = b, and monomer-monomer (mm), solvent-solvent (ss) and monomer-solvent
(ms) interactions are of the Lennard-Jones type. (a) The first set-up is from Ref. [11], with a single chain immersed in a bath
of solvent molecules at density ρs = 0.64/b3. mm and ss pair interactions are attractive, with equal fixed strength defining
our energy scale (ϵmm = ϵss = −ϵ < 0); the ms interaction is attractive and of variable strength. The polymer mean gyration
radius in bond units (Rg/b, l.h.s.) as a function of the ms strength (−ϵms/ϵ) demonstrates that the polymer undergoes a
compact-swollen-compact re-entrant behavior upon increasing the polymer affinity with the solvent. The re-entrant globule
phase is characterized by the presence of solvent molecules inside the globule, which makes it more swollen. On the r.h.s., a
few representative chain conformations from low to high ms affinity (panels (A) to (E)). Notice that in the same work, the
authors discussed also multi-chain systems. Reprinted and adapted from [Y. Huang, S. Cheng, Journal of Polymer
Science 59, 2819 (2021); Ref. [11]], with the permission of John Wiley and Sons. (b) The second set-up is from
Ref. [12], with a single chain immersed in a bath of solvent molecules at density ρs = 0.047/b3 (i.e., very dilute conditions and,
so, much smaller than in the previous case). The ss interaction strength (ϵss = −ϵ) fixes the energy scale, and mm (ϵmm)
and ms (ϵms) are varied to characterize the mean chain gyration radius (l.h.s.) and the phase diagram (r.h.s.). For relevant
parameters here (ϵmm = ϵss, bottom line in the l.h.s. panel), by increasing the ms affinity the chain undergoes a transition
from two distinct compact phases, from one (CI) stabilized by intra-polymer interactions to that (CB) stabilized by bridging
(solvent-mediated) interactions. Reprinted and adapted from [H. Garg et al., Journal of Chemical Physics 158,
114903 (2023); Ref. [12]], with the permission of AIP Publishing.
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(a)λ = 0.3 (b)λ = 0.5 (c)λ = 0.6

(d)λ = 1.0 (e)λ = 1.3 (f)λ = 1.7

FIG. S2. Multi-chain phase behavior in a one-solvent bath of varying quality (Eq. (37) in the main text for chains of finite
mean contour length ℓ = 10, and for d, ϵmm, ϵss, ϵcc, ϵms ϵmc, ϵsc and T defined as in the caption of Fig. 3 in the main text).
Symbols (in particular, the blue points corresponding to 9 chosen mean compositions of the system with the same ϕm = 0.1),
color code and notation are as in Fig. 3 in the main text. The positions of the black dots are calculated by solving numerically
Eqs. (S2)-(S5).
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(a) kBT/ϵ = 3.0 (b) kBT/ϵ = 2.3 (c) kBT/ϵ = 1.8

(d) kBT/ϵ = 1.6 (e) kBT/ϵ = 1.4 (f) kBT/ϵ = 1.1

FIG. S3. Multi-chain phase behavior in a one-solvent bath of fixed quality and upon varying temperature (Eq. (37) in the
main text for chains of finite mean contour length ℓ = 10, for d, ϵmm, ϵss, ϵcc, ϵms, ϵmc, ϵsc defined as in the caption of Fig. 4
in the main text and for selected values of kBT/ϵ). At high temperatures (panels (a) to (c)) the behavior is similar to the
single-chain situation, with larger portions of the Gibbs triangle interested by two-phase separation as temperature drops. As
temperature drops below the critical value (panels (d) to (e)), the triphasic region (white triangular region) becomes stable:
the system at any mean composition inside this region separates into 3 coexisting phases of compositions (obtained by solving
numerically Eqs. (S6)-(S9)) lying at the corners of the white triangle. Symbols (in particular, the blue points corresponding to
9 chosen mean compositions of the system with the same ϕm = 0.1), color code and notation are as in Fig. 3 in the main text.
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FIG. S4. Phase-behavior of co-nonsolvency. A polymer chain in a binary mixture of a solvent and a cosolvent (both good
solvents for the polymer, but with the cosolvent a better solvent than the solvent) undergoes a coil-globule-coil phase behavior
(namely, the mean gyration radius of the chain, ⟨Rg⟩, first decreases and then increases again) as a function of the density of
the co-solvent, ϕc. This behavior is seen in experiments (PNIPAm and PAPOMe data) and well reproduced in conventional
computer simulations, either full-atom (PNIPAm) or more coarse-grain (KG-model) ones. Reprinted and adapted from
[D. Mukherji et al., Nature Communications 5, 4882 (2014); Ref. [14]] (the work is licensed under a Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 International License).
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FIG. S5. Phase-behavior of “polymer-assisted condensation”. In a binary (solvent/polymer) mixture, the solvent is set at
concentration ϕs (blue dot) outside the region (delimited by the blue line) where, for the given interaction parameter (χ), it
would demix. However, the presence of a favorable interaction with a polymer chain with monomer concentration ϕm shifts
(locally) the concentration to a higher value (ϕ′

s(ϕm), empty dot), enough to let formation of a high-concentration phase (ϕhigh
s ,

red dot) to happen. Reprinted and adapted with permission from [J.-U. Sommer et al., Macromolecules 55, 4841
(2022); Ref. [23]]. Copyright 2022 American Chemical Society.
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