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Abstract

Ecological interactions are fundamental at the cellular scale, addressing the possibility of a

description of cellular systems that uses language and principles of ecology. In this work, we

use a minimal ecological approach that encompasses growth, adaptation and survival of

cell populations to model cell metabolisms and competition under energetic constraints. As

a proof-of-concept, we apply this general formulation to study the dynamics of the onset of a

specific blood cancer—called Multiple Myeloma. We show that a minimal model describing

antagonist cell populations competing for limited resources, as regulated by microenviron-

mental factors and internal cellular structures, reproduces patterns of Multiple Myeloma evo-

lution, due to the uncontrolled proliferation of cancerous plasma cells within the bone

marrow. The model is characterized by a class of regime shifts to more dissipative states for

selectively advantaged malignant plasma cells, reflecting a breakdown of self-regulation in

the bone marrow. The transition times obtained from the simulations range from years to

decades consistently with clinical observations of survival times of patients. This irreversible

dynamical behavior represents a possible description of the incurable nature of myelomas

based on the ecological interactions between plasma cells and the microenvironment,

embedded in a larger complex system. The use of ATP equivalent energy units in defining

stocks and flows is a key to constructing an ecological model which reproduces the onset of

myelomas as transitions between states of a system which reflects the energetics of plasma

cells. This work provides a basis to construct more complex models representing myelomas,

which can be compared with model ecosystems.
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Author summary

Ecological interactions at the scale of cell populations are important to understand the

emergent behavior of complex biological systems as diseases. Despite the extensive knowl-

edge of the molecular and cellular details of biomedical systems, understanding the mech-

anisms behind the onset of Multiple Myeloma and predicting its dynamic evolution is a

challenge. For diseases characterized by recurrent patterns and non-genetic plasticity, it is

not possible to eradicate the mechanism that sustains cancer onset and evolution, namely

they are defined as incurable. This mechanism is not typical of blood cancer itself, being a

general emergent behavior of ecological systems as determined by the complex interac-

tions between system’s elements and the environment. Unfolding the role of the competi-

tive interaction between normal, cancerous cell populations and the micro-environment

by quantifying the energetic constraints operating on them is of key relevance. Here,

adopting an energetic approach, we show that it is possible to reproduce stylized patterns

of Multiple Myeloma onset by means of a minimal stock-flow ecological model of com-

peting normal and malignant plasma cell populations. Our results suggest the potential of

this general approach to build more detailed models of Multiple Myeloma, as well as to

study biological systems and diseases.

1. Introduction

Ecological interactions at the cellular scale have been recognized as key elements to understand

and model cancer [1–5]. Despite the substantial amount of literature dealing with mathemati-

cal modeling of cancer and interacting cellular populations, a simple unifying framework

encompassing simultaneously the ecological and the evolutionary dynamics of cancer is lack-

ing [6–9], along with the fact that integrating dynamical models of biological systems with

energetic principles remains a challenge [10,11].

In this work, we use a minimal energetic approach based on stock-flow diagrams and ordi-

nary differential equations to model the metabolisms of antagonist cell populations competing

for common limited resources as regulated by microenvironmental factors and internal cellu-

lar structures. Our study focuses on the application of this formulation to simulate the evolu-

tion of a specific blood cancer, called Multiple Myeloma (MM). We represent the system as a

simple ecosystem by modeling the flows of available and dissipated energy in equivalent units

of ATP. In principle, this allows to link the typical patterns observed in the evolution of myelo-

mas with their irreversible behavior as formulated in terms of energy and dissipation.

Multiple Myeloma (MM) is a blood neoplasm growing due to uncontrolled proliferation in

the bone marrow (BM) of neoplastic plasma cells (PCs). Once mutations accumulate, neoplas-

tic PCs abrogate control by local tissue constraints, and their newly acquired individual fitness

is determined by the Darwinian interactions of their phenotype with critical properties of their

local environment that plays an active supportive role [12–14]. Normal and neoplastic PCs

compete for space within the bone marrow [15], with neoplastic PCs able to overcome the

micro-environment constraints to sustain their proliferation owing to their phenotypes [16].

This often results in an evolutionary advantage of malignant cells that relies on a metabolism

that facilitates the uptake and incorporation of nutrients into the biomass [17–21]. In patients,

myelomas emerge at different times relative to the malignancy of the disease that developed in

a clinical classification of its different asymptomatic and symptomatic phases [22–26].

When stocks are measured in energy equivalent units, stock-flow models give an effective

energetic representation of the dynamics of systems. The use of energy system diagrams allows
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to derive differential equations from symbolic language by modeling and estimating useful

and dissipated energy flows. In the case of cell population systems, this can be done by measur-

ing the cell stocks in ATP equivalent units (ATPeq). The unit of ATPeq, is a measure of the

available energy stored in the system that can be used by cells to perform work. It is a measure

of the chemical potential energy or free energy stored in stocks which grow according to

energy balance equations. This approach is tightly connected with quantitative ecosystems

ecology, and it has been extensively applied to understand the evolution of ecological systems

in connection with classical ecological modeling [27,28].

In the stock-flow formulation, cell populations are represented as cells stocks which pro-

duce and consume ATP owing to a self-regulation mechanism which prevents unlimited

growth, enables the maintenance of the biological structure and the existence of stable station-

ary states for the system. These features define the process of ATP production and biosynthesis

as the minimal set of dissipative processes required to define systems diagrams and general

mathematical models involving cells stocks. An additional stock of resources, internal to the

system, is needed to represent self-regulation as feedback that limits growth by controlling the

energy and resource inflow from the external microenvironment. The internal resource stock

defines the carrying capacity for the system and its accessible steady states, by providing a

mechanism for non-linearity and stability resulting in logistic growth of the cell stock, which

also depends on intrinsic growth rate and turnover time. Logistic growth and its extension to

two antagonist interacting populations are the mathematical models corresponding to the pre-

sented stock-flow formulation when using the classical notation of mathematical biology (deri-

vation and mapping in Methods). The model parameters are estimated from the literature as

the growth rates of normal and malignant plasma cells phenotypes and their proteome turn-

over times. The estimate of the carrying capacity by means of the average number of plasma

cells in the bone marrow in units of ATPeq reflects a reasonable upper limit for the PCs stocks

in energetic terms.

The model of two cells stocks competing for common limited resources imposes competitive

exclusion [29]. This model system is thought to be a sub-system of a larger one representing the

whole organism or the disease, as depicted in Fig 1. The malignant plasma cells stock outcompetes

normal cells owing to their ability to incorporate energy and resources from the external microen-

vironment on a shorter time scale with respect to their normal counterpart, reflecting a more dis-

sipative metabolism. By using single population estimates and by fine tuning the free parameter

which varies the strength of the antagonistic interaction among the stocks, the simulations show a

class of abrupt regime shifts leading to the extinction of the normal cells stock after a coexistence

period with malignant cells which rapidly grow. This behavior, which is known from ecological

models as regime shift [30,31], points out the existence of unstable stationary states of the system,

which are observed for myelomas as an asymptomatic phase of the disease [22–26].The times for

these transitions to occur are estimated in the range from few years to decades, consistently with

clinical observations of the emergence of symptomatic disease.

Owing to the energetic approach and systems diagrams we define a minimal model able to

reproduce a coarse-grained dynamics of myelomas evolution directly accounting for the

metabolism of plasma cell populations, involving a small set of measurable parameters and, in

principle, observable energy flows. The minimal model can be used to build more complex

representations of myelomas. The transition to more dissipative states reduces the total avail-

able energy for the functioning of the whole system in which the competing cells stocks are

embedded. It reflects the selective advantage of malignant cells as determined by the strength

of the self-regulation feedback and by the strength of the antagonistic interaction which both

set the timescale for the regime shift. The distance of the PCs steady states from a maximum

power-dissipation limit, emerging as one of the possible stationary states compatible with self-
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regulation under mass balance constraints, is in principle an energetic measure of the evolu-

tionary advantage of neoplastic PCs at the scale of the bone marrow. On the other hand, neo-

plastic cells appear to break down this regulation, acquiring the selective advantage needed to

proliferate uncontrolled by means of more dissipative metabolisms.

Our approach is generalizable to the study of biological systems using symbolic energy lan-

guage which allows the construction and the comparison of models at different spatial and tempo-

ral scales. By formulating the dynamics of systems in terms of energy and dissipation, and relating

it to a physical limit, may help to identify general rules of organization in complex systems, no

matter whether we look at the small scale of how cells interact within an organism, or at larger

scales of plants and animals within an ecosystem, or the biosphere and the whole Earth system.

2. Results

2.1 The metabolism of normal and malignant plasma cells as stationary

states

We model a system representing a self-regulating cell population with the self-limited autocat-

alytic cycle model explicitly accounting for mass and energy balance [28] as shown in Fig 2.

The effective dynamics is logistic growth. In this formulation, the stock of resources N plays a

central role of mass balance constraint providing the mechanism required for non-linearity

and stability, as derived in Methods. If Q(t) is the stock of energy stored in a cell population

measured in ATPeq at time t, then its change in time (dQ/dt) is given by the balance between

the net ATP production inflow, P(Q), and the ATPeq outflow driving biosynthesis, R(Q), as:

dQ
dt
¼ P Qð Þ � R Qð Þ ¼ rQ � 1 �

Q
K

� �

�
Q
t

ðEq 1Þ

Fig 1. Energetic description of interacting cells stocks embedded in an organism. The diagram shows competing

cells stocks as determined by the main process of ATP production, biosynthesis, and by the antagonistic interaction. It

shows the associated flows of dissipated and useful energy, the latter being able to generate feedback for self-regulation

on a higher hierarchical scale. The flow of energy and resources directed toward the rest of the organism is reduced by

the inflows of the sub-system of competing cells stocks. The picture represents the interaction of plasma cells at

myelomas onset which we define as being the core of the representation of Multiple Myeloma in the energy system

language.

https://doi.org/10.1371/journal.pcbi.1011607.g001
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being r the intrinsic growth rate of Q, K the carrying capacity of the system and τ the stock

turnover time from which the steady states depend as derived from Eq 1:

Pss ¼
Qss

t
¼

K
t
� 1 �

1

r � t

� �

ðEq 2Þ

with Pss and Qss the steady state values for P(Q) and Q.

Fig 2. Self-regulating cell population system. The diagram in (A) represents a self-regulating cell population seen as a

system that produces and consumes ATP from primary energy and microenvironmental resources, respectively

through the processes of ATP production and biosynthesis. The cells stock exerts feedback on the ATP production

process needed for proliferation. From the biosynthesis process develops feedback on growth represented by the

population’s ability to: 1) regulate limiting factors coming from the interaction with the micro-environment, as

cofactors and dissolved ions; 2) produce functional proteins, molecular machines and enzymes that enable reactions

and control their rates. From (A) we define in (B) the modeled quantities: the primary energy inflow, Jin; the ATP

production efficiencies, η; the cells stock Q that grows according to dQ
dt ¼ P � R with P(Q) = ηJin = rQ�(1−Q/K), net

power inflow (with r intrinsic growth rate, K carrying capacity), and R(Q) = Q/τ energy outflow, being τ the proteome

turnover time; the stock of resources, N = K−Q, for the mass balance to hold; the total heat flow Jh = P/η = Jin in steady

state.

https://doi.org/10.1371/journal.pcbi.1011607.g002
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We model the stationary states of normal and neoplastic plasma cells populations with Eq 2

and classify them on the quadratic curves P(Q) and Jh(Q), the latter modeling the total dissipa-

tive heat produced by the system. The expression Jh(Q) is obtained by balancing the energy

flows in the diagram in Fig 2 (details in Methods), assuming a general efficiency relation

between the energy inflow Jin and the power P as P = η�Jin, with η being the efficiency of ATP

production, so that Jh(Q) = P(Q)/η. The maximum of P represents the maximum rate at which

energy and resources can be converted and stored in the cell stocks given r, K and τ, resulting in

the maximum rate of energy dissipated. We evaluate the stability of the system by means of the

analytical stability potential V(Q) derived using the physical concept of scalar potential [32,33].

The stationary states that model the metabolisms of normal and neoplastic plasma cell pop-

ulations according to Eq 2 are shown in Fig 3. The parameters in Eq 2 are estimated through

reported indirect measures of intrinsic growth rates and proteome turnover times of plasma

cells. The carrying capacity is estimated from the average number of cells which can be plasma

cells in the bone marrow, measured in ATPeq. The efficiency of ATP production is estimated

accounting for the pathway of oxidative phosphorylation. The blue dot identifies the stationary

state for normal PCs, while the dots of red hues identify the stationary states for neoplastic PCs

for phenotypes of increasing malignancy, identified in the model by a greater growth rate.

Increases in growth rates lead to higher stock values that have access to higher power inflows

corresponding to higher dissipative heat flows. These states are more stable the greater the

stock value, according to the logistic growth model. Among all phenotypes of PCs, normal PCs

occupy the steady state corresponding to the smallest stock value, the lowest ATP production

flow, the lowest dissipative heat flow, and the least stability, as compared to neoplastic PCs in

shades of red. Neoplastic plasma-cells set on pathways of increasing power generation, increas-

ing dissipations, and increasing stability for increasing malignancy. Malignant PCs popula-

tions have a higher ability to convert the primary energy inflow into useful power to grow

population structure. This corresponds, in the model, to more dissipative and stable metabo-

lisms. The absolute values of power generation (and heat flows) are comparable among all the

phenotypes and range within the same order of magnitude.

The increasing ability of neoplastic PCs in generating useful power by increasing malig-

nancy—parametrized by the growth rates—reflects the general biomedical observations of

myeloma onset at the level of the bone marrow. In our model, given the constraints of

resources availability and the estimated growth regimes, increasing power generation corre-

sponds–at the same time–to:

• increasing ability of neoplastic PCs populations to grow, incorporate nutrients and occupy

space with respect to normal PCs, characterized by increases in Q and decreases in N (being

N = K−Q);

• increasing ability to absorb external primary energy inflow Jin, being P = η�Jin with fixed η,

corresponding to increasing dissipations in the steady state, as Jh = Jin.

Increases in the primary energy inflow, in the incorporation of nutrients and in the occupa-

tion of space in the bone marrow reflect the ability of neoplastic PCs to change the micro-envi-

ronmental constraints operating on the system in advantage of their growth. Moreover,

malignant cell states appear to be more dissipative and stable providing, in principle, an ener-

getic measure for their selective advantage.

2.2. Scenarios of uncontrolled growth of malignant cells

We model two cell populations competing for common resources as a simple ecological system

composed of two interacting metabolisms [28] as shown in Fig 4. The extension of Eq 1 for
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Fig 3. Stable stationary states for normal and neoplastic plasma cells. Panel (A) shows the actual steady states

(colored dots) occupied by the PCs system in the state space defined by the bell-shaped curves P(Q) = r�Q�(1−Q/K) and

Jh(Q) = P(Q)/η, depending on the intrinsic growth rates r of normal PCs (r = 1.39�10−2h−1, in blue) and malignant PCs

(r = 1.43�10−2h−1−1.53�10−2h−1, red hues), with K = 4.05�1021 ATPeq, τ = 72 h (parameter estimation in Methods).

Panel (B) shows the associated stability curve V(Q) defined by dV(Q)/dQ = −dQ/dt (Eq 8, derived in Methods).

https://doi.org/10.1371/journal.pcbi.1011607.g003
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two cells stocks is given by the system of coupled differential Eqs 3 and 4. If Q1(t) and Q2(t)
represent stocks of energy stored in the populations of cells measured in ATPeq at the time t,
the changes in time of the stocks (dQ1/dt and dQ2/dt) are given by the balance equations:

dQ1

dt
¼ P1 Q1;Q2ð Þ � R1 Q1ð Þ � I1 Q1;Q2ð Þ ¼ r1Q1 1 �

Q1

K
�

Q2

K

� �

�
Q1

t1

� a1Q1 � Q2 ðEq 3Þ

Fig 4. Competing cell populations system. The diagram in (A) represents a system made of normal cells competing

with its malignant (cancerous) counterpart for common limited resources. Each single population is seen as a system

that produces and consumes ATP, following the model in Fig 2. In addition, populations compete for space in the

tissue and interact by means of an effective biochemical interaction which favors the death of the competitor. Each

process dissipates energy under the form of heat that sinks at the bottom of the diagrams. Panel (B) shows the

mathematical model for the system. It highlights the physical observables: external primary energy inflow, Jin, the net

power inflows, P1 and P2, for the respective cells’ stocks, Q1 (normal PCs) and Q2 (neoplastic PCs), and the heat flow,

Jh, the stock N of resources (shared by Q1 and Q2); the biochemical antagonistic interaction is parametrized by I1 and

I2.

https://doi.org/10.1371/journal.pcbi.1011607.g004
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dQ2

dt
¼ P2 Q1;Q2ð Þ � R2 Q2ð Þ � I2 Q1;Q2ð Þ ¼ r2Q2 1 �

Q1

K
�

Q2

K

� �

�
Q2

t2

� a2Q1 � Q2 ðEq 4Þ

being P1, P2 the net ATP production inflows, R1, R2 the ATPeq outflows driving biosynthesis,

I1, I2 the biochemical antagonistic interaction respectively for the stocks Q1 and Q2, and being

r1, r2 the intrinsic growth rates, τ1, τ2 the turnover times, α1, α2 the strength of the biochemi-

cal interaction, respectively for the stocks Q1 and Q2, and being K the carrying capacity of the

system. The model has 2 non-trivial stationary states (a) and (b) for the stocks given by:

Q1;ss
ðaÞ ¼ K � 1 �

1

r1 � t1

� �

;Q2;ss
ðaÞ ¼ 0 ðEq 5Þ

Q2;ss
ðbÞ ¼ K � 1 �

1

r2 � t2

� �

;Q1;ss
ðbÞ ¼ 0 ðEq 6Þ

The state (a) is unstable with respect to small perturbation with the parameter setting repre-

senting normal and neoplastic plasma cells in competition, while the state (b) is stable. This

provides the conditions for the transition of the system from the initial state Q1,0 = K�(1−1/

r1�τ1) and Q2,0 = 5�1010 ATPeq to the stable stationary state Q1,ss = 0 and Q2,ss = K�(1−1/r2�τ2).

The unstable initial condition represents the time the first mutation of one single plasma cell

occurs with normal cells in steady state in the bone marrow. The final stable state represents

the extinction of normal cells due to the uncontrolled proliferation of malignant cells.

The total heat flow Jh(Q1,Q2) is derived by balancing the energy flows in the diagram in Fig

4 as shown in Methods. In steady state, Jh(Q1, Q2) = P1/η1+P2/η2, being η1 and η2 the efficien-

cies of ATP production for Q1 and Q2.

The numerical integration of Eqs 3 and 4 provide minimal dynamics of Multiple Myeloma

onset based on the competition between normal (Q1, in blue) and neoplastic plasma cells (Q2,

in the red hues) in the bone marrow. By setting up the parameters defining the steady states

for normal and malignant plasma cells and by fine tuning the parameters α1 and α2, we derive

stylized scenarios of myelomas evolution. The transition is due to a mutation of one normal

cell perturbing the stationary state of the system modeled by the initial conditions, as shown in

Fig 5.

Fig 5 shows the irreversible regime shifts for the stocks for different values of growth rate of

the malignant cells. After a coexistence period between an unperturbed normal cells stock

with a slowly growing malignant one, the originally adapted plasma-cells population rapidly

extinguishes, while the malignant cells grow within the bone marrow, exceeding the original

steady state. It can be shown from the simulations that the patterns for the ATP production

flows, and the total heat flow resemble the regime shift dynamics, following an abrupt growth

due to neoplastic PCs growth (see Methods). The coexistence times, and thus the critical time

for the regime shift, depends in turn on the growth rates of the malignant population. The

faster neoplastic PCs grow, the shorter the coexistence time with normal PCs, and the sooner

the regime shift occurs with respect to the time of the first mutation.

The trajectories in Fig 5B show the dynamics of the system for configurations defined by

fixed growth rates (with neoplastic PCs advantaged over normal ones) and different values of

the strengths of I1 and I2. The initial conditions are the same as for Fig 5A, and so for the car-

rying capacity and the turnover times. Fig 5B shows that, depending on the strength of I1 and

I2, the system undergoes or not a regime shift within the time window considered. The regime

shift patterns in Fig 5B are analogous to the one in Fig 5A in terms of the dynamics of stocks

PLOS COMPUTATIONAL BIOLOGY Population ecology of cells
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and flows. In these configurations, the stronger the interaction the longer is the critical time

for the regime shift. Fig 5B also shows that increasing the interaction strength can lead to sur-

vival of the originally adapted and more abundant population, although the malignant popula-

tion is advantaged by its growth regime. In this case, normal PCs survive the perturbation of

neoplastic ones by maintaining their steady state. The interaction terms I1 and I2 act as delays

of the overall dynamics because these are terms that deplete both stocks (appear in Eqs 3 and 4

with the minus sign), reducing the values for both Q1 and Q2 and thus indirectly reducing the

growth rates, slowing down the dynamics. This explains why the regime shift time is longer

Fig 5. Coexistence and regime shifts for interacting normal and neoplastic plasma-cells. Panel (A) shows the time evolution of stock Q1 (in blue)

and Q2 (in red hues) according to Eqs 3 and 4 on yearly time scale for configurations defined by the different values of r2 = 1.43�10−2−1.53�10−2h−1 for

neoplastic PCs as in Fig 4, and with K = 4.05�1021 ATPeq, r1 = 1.39�10−2h−1, τ1 = τ2 = 72 h, α1 = α2 = 0, Q1(0) = Qss = 0.02�K, Q2(0) = 5�1010 ATPeq.

Panel (B) shows the time evolution of stock Q1 (blue) and Q2 (red) for configurations defined by the different values of α1 = c�r1/K and α2 = c�r2/K
with c = 0, 1, 2 (solid, dashed, dot dashed lines) and by r2 = 1.47�10−2h−1, r1 = 1.39�10−2h−1, K = 4.05�1021 ATPeq, τ1 = τ2 = 72 h, Q1(0) = Qss = 0.02�K,

Q2(0) = 5�1010 ATPeq.

https://doi.org/10.1371/journal.pcbi.1011607.g005
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the stronger the antagonistic interaction. In this sense, I1 and I2 measure an additional free

energy cost for the competing stocks to sustain antagonistic interaction by means, for example,

of apoptosis control. Overall, the timescale of the regime shift is set by the depletion of the

stock Q1, thus it depends on all flows and on the initial conditions. It is a systemic property of

the configuration, which indirectly depends on the parameters that define the flows as well as

on the initial values of the stocks.

3. Discussion

We provide a self-consistent approach to model cellular systems that is based on energy system

diagrams and the associated ordinary differential equations. We focus on the application of

this approach to simulate the onset of a blood cancer called Multiple Myeloma, as determined

by the uncontrolled proliferation of cancerous plasma cells in the bone marrow. In this work,

we reproduce the stylized patterns observed in Multiple Myeloma evolution with a minimal

competition model accounting for the basic metabolism and phenotypic traits of plasma cells.

In the model, neoplastic PCs use in a different way elements, processes and flows that already

exist in their normal counterpart (corresponding to a different parameter setting). Genetic

mutations create the conditions for the system to access states of uncontrolled proliferation of

malignant cells by perturbing the stationary states of normal cells (translated into the initial

conditions of the system dynamics). The dynamics of the model is characterized by irreversible

shifts of regimes that lead to the extinction of normal plasma cells. The scenarios are consistent

with biomedical knowledge and observations of the different stages and emergence of the MM

disease [22–26]. The model parameters and flows are, in principle, measurable by clinicians.

The presented approach can capture the complexity of a system in terms of the feedback

network’s dynamics, allowing it to represent the system as the network of energy flows that

ultimately determines its resilience, stability and reaction to external perturbations. We apply

this to study the evolution of a biomedical system exhibiting highly complex behaviors, such is

the case of Multiple Myeloma. In this sense, the capacity for generating new insights about

cancer evolution derives from the novelty of the language it uses, that describes a complex dis-

ease starting from the description of functional units connected by real flows, all measured

using the same energetic unit. Stock-flow systemic representation has the capability of consid-

ering and estimating thermodynamic quantities, including heat dissipation. Most of all, since

the network of feedback is what ultimately determines the dynamics of the system, a final com-

prehensive diagram can effectively capture it, thus offering predictive responses to the "what if"

questions.

3.1 Energetic constraints and the metabolism of plasma cells

The interaction between the cell stocks and the micro-environment sets the constraints on the

dynamics of both single and competing PCs populations. In our models, the microenviron-

ment plays a central role in terms of systems dynamics. It represents the source of non-linear-

ity that forces stocks to self-organize to survive on limited resources, by developing a self-

regulating feedback that controls growth through the internal stock N. This mechanism gener-

ates a trade-off between the limited available resources and the population biomass from

which the existence of the maximum power state derives. This state represents the maximal

rate at which energy and resources can be converted into biomass. Using N as a single stock of

limiting factors is an approximation based on the system description in energy units and the

scale, we choose to model the system, which is the scale of the bone marrow tissue. This is rea-

sonable so far, we want to describe the very basic control mechanism that decouples the cellu-

lar system from the external environment by providing the adaptive mechanism needed to
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reach a steady state through self-regulation. This is indeed a first-step description which

depends on the level of abstraction of the model, but already captures the dynamics of what

can be observed, namely competitive advantage. The aim of the representation is to provide a

constraint which is general enough to be compatible with growth and can address a represen-

tation of limiting factors needed to benchmark more complex ones. Moreover, the limited

availability of resources imposes a constraint on the abundance of interacting populations that

controls the conditions for coexistence and survival of the two. In this formulation, with simi-

lar growth rates, only the population that is faster in resource acquisition (power generation)

survives in the long run, however, this inevitably requires a more dissipative metabolism that

reduces the total available energy for the larger system in which the competing cells are

embedded.

The stationary states of normal and neoplastic plasma cells are represented as steady states

of the self-limiting autocatalytic cycle model, which provides a minimal model of growth that

accounts for the basic mechanism for self-regulation of cells and their energetics, as measured

by ATP equivalent units (ATPeq). The model parametrizes logistic growth of a cells stock

which only depends on two measurable typical timescales, namely, the relative growth rate of

the cell population and its proteome turnover time. By estimating the parameters for the differ-

ent phenotypes of normal and cancerous plasma cells, we show that, for increasing malig-

nancy, neoplastic plasma cells set on more dissipative and stable states, reflecting a breakdown

of regulation at the scale of the bone marrow which, according to the competition model,

drives the onset of Multiple Myeloma. In our formulation, owing to a change in the growth

rate, malignant cells are able to incorporate more nutrients into biomass by changing the

boundary conditions for the system dynamics, namely the energy and resources inflow, in line

with the biomedical phenomenology [17–20]. In the model, higher energy and resource

inflows correspond to greater dissipations, reflecting open boundary conditions and a more

dissipative metabolism for neoplastic PCs, an hypothesis which may be tested through the

observation of heat shock proteins in neoplastic plasma cells [34] connected with measures of

temperatures and heat flows [35]. Notably, in Fig 3, the growth regimes of single normal and

malignant populations are differently located along the power-dissipation curves derived from

the energy diagrams, by providing, in principle, an energetic measure of the evolutionary

advantage of cancerous plasma cells, based on a small number of observable parameters and

real flows. Despite phenotypic diversity, normal and malignant PCs appear to operate in a nar-

row portion of the state space, suggesting that the conditions for the survival of PCs are signifi-

cantly constrained by the microenvironment on which they depend. This ultimately results

from the fact that the typical time for which PCs protein synthesis reactions take place does

not change upon accumulation of genomic alterations for malignant plasma cells [36]. What

changes is the strength of the related resource flows, due to the interaction of cells with the

microenvironment. This result is in line with the biomedical literature highlighting the funda-

mental active role of the bone marrow in PCs evolution [12–14].

3.2 Competition and evolution in Multiple Myeloma

We represent the onset of Multiple Myeloma as a class of dynamical transitions from the stable

stationary state of normal plasma cells to more dissipative states of proliferating cancerous

plasma cells, eventually causing the extinction of the normal ones. These patterns of uncon-

trolled proliferation of neoplastic plasma cells are modeled by extending the self-limiting auto-

catalytic cycle to interacting normal and neoplastic plasma cells competing in the bone

marrow. The dynamics of this system is governed by the competitive Lotka-Volterra model.

The transitions reflect a breakdown of self-regulation in the bone marrow as measured by the
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increased dissipations, namely, the total energy used in the system estimated by balancing the

energy flows in the diagram of Fig 4. The model is characterized by the presence of unstable

stationary states for the system, which are observed for myelomas as an asymptomatic phase of

the disease [22,26]. The times for these transitions to occur are estimated in the range from

few years to decades, consistently with clinical observations of the emergence of symptomatic

disease. The mathematical model supporting our description is minimal, yet the use of ATP

equivalent energy units in defining stocks and flows is a key to constructing an ecological

model which reproduces reasonable timescales for the onset of Multiple Myeloma. In this

sense, the energetic accounting of plasma cells may provide a building-block description to

construct more complex models representing the whole system. The interaction terms act as

delays of the overall dynamics as these deplete both energy stocks by indirectly reducing their

growth rates, explaining why the regime shift time is longer the stronger the antagonistic inter-

action. In this sense, the flows measure an additional free energy cost for the competing stocks

to sustain antagonistic interaction, for example, by means of apoptosis control between plasma

cells which interact through the synthesis of antibodies and cytokines.

The differences in phenotype of plasma cells may be used as a diagnostic to build scenarios

for the evolution of Multiple Myeloma, if supported by clinical observations. In the case of

Multiple Myeloma, slow growing neoplastic PCs are known to be at the origin of asymptom-

atic manifestations of the disease, linked to their long coexistence periods with normal PCs.

On the other hand, faster growing ones lead to symptomatic states with an abrupt and irrevers-

ible emergence of the disease [23–26]. Moreover, the proposed taxonomy can be in principle

validated by cytometry experiments routinely performed by clinicians. Model validation

schemes based on laboratory experiments have to be designed to fully address the potential of

the formulation. Flow cytometry, calorimetric techniques and proteomics may be valuable

approaches to make an advance in hypothesis testing [35]. This may give the possibility to

develop ecology inspired early warning systems–based on dynamical systems simulations and

energetic measures–able to support prognosis formulation, risk analysis and clinical decision

making, as also suggested by (5) and (1).

It is worth underlining that the energy systems language plays in our modeling a central

epistemic role. Indeed, stock-flow diagrams:

• Allow to determine the set of coupled differential equations necessary to create a computa-

tional simulator, starting from the symbolic language of energetics. We think that this per-

spective has great potential in bridging the community of modelers, clinicians and

biologists, by providing an established and (in principle) common language able to make

advances in research starting from knowledge of biological and biomedical systems without

the specific knowledge of mathematics.

• Allow to consider and estimate thermodynamic quantities, in particular, dissipations (heat

flows), which play a major role in ecological systems and that are typically not considered in

more classical mathematical biology and mathematical oncology approaches.

• Capture the dynamics of the system, since diagrams are not some kind of static “photo-

graph” of it, but rather a representation of the network of feedback operating at different

scales which ultimately determine the system behavior.

In perspective, our approach may:

• In the simulation procedure, allow to localize the action of drugs and therapeutic strategies,

even at different times of administration.
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• Can be studied as the basis for simulating the response to the “what if” questions, making

them a potentially important tool for the study of the role of both environment and

therapies.

• Address positive and negative systemic leverage points, thanks to the sensitivity analysis car-

ried out by the simulators.

It is finally worth underlining those minimal models–such as for example self-limiting

cycles, balancing feedback, stocks local competitions, etc. are commonly used in Systems

Thinking diagramming as dynamics functional units (building blocks) for setting up a more

complex coherent description of the overall dynamics [28,37]. Our resulting model, despite its

apparent simplicity, is not a standard one. It is not aimed at studying the evolution of specific

cell populations, but rather the overall evolution of a system that we identify with the disease.

Differently from existing approaches, in our formulation the mathematics of cancer evolution

emerges by our description of how the complex system we identify as “the core” of the disease

manages the real flows exchanging energy between the stocks, through processes that are in

turn ruled by virtually all the other stocks entering in the disease definition.

3.3 Future development

Indeed, the development of more comprehensive models requires a systematic reference to

actual observations. Accounting for more than two interacting populations, to represent diver-

sity in PCs phenotypes as well as the interactions with other cells, and having a more refined

representation of multiple limiting factors, which may influence growth on different time-

scales, will be a necessary and natural extension of the present formulation, in order to charac-

terize the evolution of Multiple Myeloma, as an example of complex disease with multifactorial

etiopathology. To enhance the representation of the dynamics of cell population systems, a sto-

chastic formulation of the derived non-linear dynamical equations can be included, to account

for the uncertainty in the parametrization of the flows and in the evolutionary processes that

shape cell phenotypes and so the model parameters.

The original view of tumor metabolism proposed by Warburg in 1927—when he suggested

that “The resistance of single tumor cells is not to be compared with that of single normal cells,

but rather the tumor as a whole with the organism as a whole”—helps as well to frame this

study in a systems perspective. In the last years, the application of systemic approaches in biol-

ogy and medicine has drawn considerable attention. Nevertheless, they are mostly based on

computational tools using big data sets to perform Network Analysis procedures. Concepts

like system biology [38–41], bioinformatics [42], network medicine [43,44], network pharmacol-
ogy [45], deep learning [46], are used for example in several fields of biomedical research, often

interpreting incurable diseases as some network perturbation [47] to be addressed by compu-

tational means [48,49]. These approaches are somewhat limited, being for instance unable to

address the origin of “The enormous non-genetic plasticity of tumor cells” [50]. The need for a

novel perspective has been claimed in recent years by several scholars [8,9], the latter claiming

that “We urge a rethinking of systems biology as it develops toward systems medicine.. . . We

need to balance the pathway-centric approach, focusing on cellular mechanisms, by ‘zooming

out’ to actively seek law-like principles”. Indeed, the complementarity between Systems Think-

ing and Network Analysis has a strong potential.

The approach proposed here is at the same time abstract in nature and open to experimen-

tal observations and activity. It is worth mentioning that the Systems Thinking approach has

been recently used by some of the Authors to describe the dynamical configuration of the

virus-host interaction in the case of Covid-19 contagion [51]. In this framework, SARS is not
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classifiable as a complex disease, but the Systems Thinking description allows quantitative

studies–by means of a computational simulator–on how the effectiveness of different thera-

peutic strategies may differ significantly depending on the time schedule of administration.

We emphasize what we think is the real novelty of the presented approach: the system to be

studied is not the cancer cell, the genome, the tissues, the organs, the patient or the set of

patients, but the disease itself. From the study, a possible representation of complex disease is

provided as the set of elements inside the boundary of a diagram able to self-organize in a sub-

set of specific configurations that represent what we call Multiple Myeloma (in case of plasma

cell populations). This is because the disease is regarded as a systemic property or dynamical
pattern. So, we can explore–inter alia–why some people do not develop organ damage, staying

without symptoms for all their lives (the patterns characterized by coexistence of normal and

few malignant plasma cells), since the configuration will be that of the disease, but in a state for

which the pattern of feedback allows to prevent clinical symptoms from occurring (before the

system undergoes a regime shift). It is therefore a new way to describe the disease, since it inte-

grates the biochemical degrees of freedom with which it is born and develops, and the details

of what locally acts in the system. On the other hand, this approach allows to understand how

and why the disease may proceed, right because we study the dynamics of the state configura-

tions, expressed by cells stocks that are in principle measurable and inevitably subjected to

thermodynamic constraints.

The picture of myelomas emerging from this work is that the distance of the stationary

states of plasma cells from a maximum power-dissipation limit, as one of the possible steady

states compatible with self-regulation under mass balance constraints, is in principle an ener-

getic measure of the evolutionary advantage of neoplastic plasma cells at the scale of the bone

marrow. At the scale of the whole organism, in the absence of cancerous cells, normal PCs

occupy steady states of least dissipation among the PCs phenotypes, due to a a self-regulating

control of metabolism which suggests a maximization of power on a larger temporal and spa-

tial scale, possibly involving the immune system and the whole organism that we do not

resolve with the actual model.

4. Methods

4.1 Derivation of model equations form systems diagrams

The state of the system at any time is defined by an N-ple of stocks that evolve according to a

system of coupled differential equations given by

dQk

dt
¼ fk Q1 . . . QNð Þ ¼

Xn

i¼1
J;ki
�
Xm

j¼1
Jout;kj

; with k ¼ 1; . . . N ðEq 7Þ

with fk(Q1,. . .QN) being in principle a nonlinear model function of Q1. . ..QN, that depends

on the inflows Jin,ki and the outflows Jout,kj for the stock Qk (with i = 1,. . .n and j = 1,. . .m
counting the number of flows).

System diagrams are used to construct the model equations describing the time evolution

of the stocks Qk (with k = 1. . .N defining their number). The diagram in Fig 6A represents a

system with self-reinforcing feedback: a boundary is defined separating the external source, E,

from the stock, Q, that is filled owing to the main inflow from the external source reinforced

by the control flow (of energy, matter or information) from the stock. The net inflow for Q is

given by Pnet. The stock is then depleted by an outflow, Jout, whereas the flow to the heat sink,

Jh, represents the energy lost in the process occurring. The dynamical model associated with

the diagram is given by dQ/dt = Pnet−Jout. At the level of the process the flows are all propor-

tional to E�Q because of the pairwise interaction between the source, E, and the stock, Q. The

PLOS COMPUTATIONAL BIOLOGY Population ecology of cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011607 November 8, 2023 15 / 26

https://doi.org/10.1371/journal.pcbi.1011607


partitioning of the flows must fulfill the laws of thermodynamics and is regulated by the

strength of the kinetic constants, the ks. Of course, the non-zero heat flow, Jh, is a measure of

the dissipation in the process, and, in a nutshell, implements the second law of thermodynam-

ics, whereas the balance Jh = Jin−Pnet is a consequence of the first law. The outflow is propor-

tional to Q following the setting of linear irreversible thermodynamics [52,53]. The time

evolution of the stock is modeled as a first-order time dependent balance equation for Q(t),
that defines the system state at any time t.

4.2 The self-limited autocatalytic cycle model

The dynamics of a self-regulating cell population constrained by limited resources is modeled

as the self-limiting autocatalytic cycle shown in the diagram in Fig 7. In Fig 7B we explicitly

show the energetic constraints obtained by balancing the energy flows through the diagram.

Two stocks are involved in the system’s dynamics, N, the stock of resources, and Q, the stock

of cells. The dynamics of N is prescribed to ensure the conservation of mass during cycling,

Fig 6. Diagram and model for autocatalytic growth. This figure shows how to derive differential equations for the

evolution of the stock Q from the elementary diagram in A. Diagram (A) represents a system with self-reinforcing

feedback. Panel (B) shows the dynamical model associated with the diagram in (A). The time evolution of the stock is

modeled as a first-order time dependent differential equation for Q, that defines the system state at any time.

https://doi.org/10.1371/journal.pcbi.1011607.g006

Fig 7. Self-limiting autocatalytic cycle model. The figure shows how to constrain and balance the stock-flow model

used to describe the growth of a single cell population. Diagram (A) represents a self-limiting autocatalytic cycle with

the relevant flows interacting through the production process and proportional to E�N�Q and the outflow proportional

to Q. Upper right a summary of the system dynamics for the stock N and Q with the first law constraining the kinetic

coefficients. Panel (B) shows the non-equilibrium thermodynamics representation for the self-limiting cycle in

diagram (A). We define: the primary energy inflow, Jin = k0ENQ; the stock of limiting factors, N, with its inflow and

outflow from the external environment JN,in = JN,out; the production and consumption processes efficiencies, η and ξ;

the cells stock, Q, with its net power inflow, P = k1ENQ = ηJin, and energy outflow, R = k2Q = Q/τ; the recycling and

control feedback flows, ξ�R and P–(1–ξ)�R; the total heat flow, Jh = P/η = Jin, which is the sum of the heat flows

associated to the production, P/η–(1–ξ)�R, and consumption process, (1–ξ)�R. Jh is a measure of the irreversibility of

the modeled growth process.

https://doi.org/10.1371/journal.pcbi.1011607.g007
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that is constrained by the total available limited resources, NT:

N ¼ NT � f � Q; ðEq 8Þ

where f is defined as the fraction of N that Q stores in its structure. N is defined as the stock of

available resources participating in the production process. In the model, N represents a stock

of resources made of biological matter needed to produce ATP (recycled within the cell popu-

lation system through self-regulation or coming from the specific micro-environment), which

is represented, in an abstract way, by the physical space needed for the proliferation of the

cells. A decrease of Q makes more space available, thus increasing N, even though Q and N are

in this case of different nature. The replacement of a cell in Q with a new cell coming from the

production process is from a systemic point of view a recycling of one unit of available space,

going back to the N stock. It is worth noting how this kind of representation actually captures

the self-limiting dynamic. N works as an internal stock that decouples the dynamics of Q from

the external sources different from the primary (virtually unlimited) energy source, E. This

constrains the growth of Q. Following the rules of energy diagrams, we define the growth equa-

tion for Q:

dQ
dt
¼ P � R ¼ k1E � N � Q � k2Q ðEq 9Þ

were P = k1E�N�Q is the net inflow in the stock Q and R = k2Q is the outflow (k1 and k2, are

respectively the kinetic coefficients regulating the inflow and the outflow rates for Q). In Eq 9,

we assume the production process to work as a self-reinforcing feedback for Q which involves

the interaction between E, N and Q itself. The process of Q proliferation is a direct reinforcing

feedback, playing the role of a driving force for the use of further resources and therefore

entering the expression of P. The factors E and N represent the resources available, while the

factor Q measures the individuals within the cell stock, whose proliferation will depend on the

Q value independently of its role in the provision of N. All the flows interacting in this process

are proportional to E�N�Q and their partitioning must be balanced. This is imposed by a condi-

tion on the kinetic constants–as shown in Fig 7A–so that k0+k3 = k1+k4, where k0, k3 and k4
respectively regulate the strength of the total inflow, the feedback and the heat flow. The

expression P is at the origin of the self-limiting dynamics of Q. The inflow is directly propor-

tional to N, which decreases as Q grows because of cycling for structure maintenance. This rep-

resents the fundamental feedback from which we derive the logistic growth equation for Q by

combining Eqs 6 and 7 so that

dQ
dt
¼ k1E � NT � Q � k1fE � Q

2 � k2Q ðEq 10Þ

Stock N works as an overall control for the system that ensures the existence of a stable-steady

state for Q. Moreover, it plays a major role in defining the non-linearity of the system dynam-

ics. Using N as a single stock of limiting factors is an approximation based on the system

description in energy units at the scale of the tissue. This is reasonable so far, we want to

describe the very basic control mechanism that decouples the cellular system from the external

microenvironment by providing the adaptive mechanism needed to reach a steady state

through self-regulation. We reformulate Eqs 6 and 8 by redefining its parameters (28)] to

obtain the classical form of the logistic growth model in Eq 1 as shown in Table 1.
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The stability of Q is determined by the potential V(Q) defined by dQ/dt = −dV/dt, obtained

by integrating Eq 1 using the physical concept of scalar potential [32,33]

V Qð Þ ¼
Z

R � Pð Þ � dQ ¼
Q3

3 � K
þ

Q2

2 � t
� r �

Q2

2
ðEq 11Þ

4.3 The maximum power limit

The maximum power state generally represents one of the possible steady states that can be

reached by a growing population under such conditions, and it can be a transient state for pop-

ulations growing up to the carrying capacity. It represents the state in which the primary energy

inflow is converted into free energy (ATP) at the maximum possible rate, establishing a limit to

energy conversion as shown in Fig 8. The existence of a maximum power (MP) limit in the sys-

tem is a consequence of resource limitation under mass balance constraint. The energy stored

into the stock Q is used by the cells stock to perform work. Part of it is used to grow in volume

and duplicate, hence for proliferation, parametrized and estimated by the growth rate, r. Part of

it is used to develop feedback on the production process by means of biosynthesis on a typical

timescale, τ, we estimate as the proteome turnover time. The latter defines the flow of energy

that is used to maintain the living structure, R = Q/τ, as work per unit time. R measures part of

the energy flow used by cells to counteract the degradation of the living structure. The parame-

ter ξ represents the fraction of R (0<ξ<1) that is recycled within the system, ξ�R, and feeds back

into the stock N, by directly regulating the dissipation flow due to biosynthesis. Conservation of

mass is imposed by Eq 8. This control feedback represents the overall system regulation mecha-

nism that allows the whole system to function and survival. The recycling flow is associated

with the chemical energy stored in functional biomolecules, enzymes, molecular machines,

energetic molecules and other biosynthesis products that restore the membrane potentials and

chemical potential gradients that drive, fuel and allow cellular respiration pathways and control

the interaction of cells with the external environment. In this sense, it is reasonable to use a sin-

gle stock, although it is a first order approximation.

The analytical expression for P is quadratic and admits a unique maximum that we define

as the maximum power state (MP state). This state is a benchmark for the evolution of the

whole system as a function of the parameters r, τ and K. The following analytical expressions

are obtained from Eq 1 for Q, P and Jh in steady state:

Qss ¼ K � 1 �
1

r � t

� �

ðEq 12Þ

Pss ¼
K
t
� 1 �

1

r � t

� �

ðEq 13Þ

Table 1. Relevant quantities and parametrization for the growth model of a single cell population.

Biophysical quantity ST-based parametrization Energetics Parameters

ATP production flow (P) with resources stock (N) P = k1 E�N�Q with N = NT–f�Q P = ηJin = rQ�(1–Q/K) with N = K–Q K = NT/f (*) r = k1 E�NT (**)
ATP investment flow for structure maintenance (R) R = k2 Q R = Q/τ τ = 1/k2 (***)

Q, cells stock; η, efficiency of ATP production; Jin, primary energy inflow

*carrying capacity

**growth rate

***turnover time

https://doi.org/10.1371/journal.pcbi.1011607.t001
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Jh;ss ¼
K
Z � t
� 1 �

1

r � t

� �

ðEq 14Þ

The steady states in Eqs 12, 13 and 14 reflect open boundary conditions, as shown in Fig 2.

For fixed K, the quantity r�τ controls the steady states, parametrizing a minimal rK-selection

mechanism characterized by the following growth regimes:

• a sub-optimal regime for 1< r�τ< 2 with logistic growth of Q, P and Jh (Fig 8, in azure)

approaching stable steady states characterized by 0< Qss< K/2, 0< Pss< Pmax and

0< Jh,ss< Jh,max;

• an optimal regime for r�τ = 2, defined as the maximum power state, with logistic growth for

Q, P and Jh (Fig 8, in blue) approaching a unique stable steady state characterized by Qss,
opt = Nss,opt = K/2, Pss = Pmax = K�r/4 and Jh,ss = Jh,max = Pmax/η;

• a super-optimal regime for r�τ> 2 with logistic growth for Q, while P and Jh undergo an

overshoot dynamics (Fig 8, in dark blue) reaching stable-steady states characterized by K/
2< Qss< K, 0< Pss< Pmax and 0< Jh,ss< Jh,max;

Fig 8. Stable stationary states and dynamics of the self-limiting autocatalytic cycle. Panel (A) shows the model state space defined by the curves for the

power (bold black), P(Q) = r�Q�(1−Q/K), the heat flow (black), Jh(Q) = P(Q)/η and the stability potential (dot dashed), V(Q) = a�Q3+b�Q2 (coefficients in Eq 8).

The colored dots on the curves represent the steady-states for P, Jh and V as a function of Q (0<Q<K) for the three possible different growth regimes,

respectively, defined by the product r�τ: sub-optimal, r�τ = 1.5 (azure), optimal or maximum power state (Pmax), r�τ = 2 (blue), and super-optimal, r�τ = 10
(dark-blue). This is associated with the stock N = K-Q (dashed lines) that decreases for increasing Q to fulfill the mass balance constraint. Panels (B) and (C)

show the time evolution associated with the configurations defined by the three different growth regimes (azure, blue, dark blue), respectively, for the stocks Q
and N (dashed), and for the flows P and Jh. Panel (D) shows the application of the formulation to estimate the stationary states of normal and neoplastic plasma

cells.

https://doi.org/10.1371/journal.pcbi.1011607.g008
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The growth of Q increases the P inflow while depleting the stock N. This dynamic generates

a trade-off between P and N from which the maximum power state emerges. The quadratic

expression for P as a function of Q (Table 1) reflects this limitation. In terms of the stability,

the higher r�τ, the more the potential well defined by Vm deepens (Fig 8A, dot dashed lines),

the more stable the system is.

4.4 The competition model

We define the competition model extending the self-limited autocatalytic cycle model for two

interacting stocks competing for limited resources. Three stocks are involved in the system

dynamics: two population stocks, Q1 and Q2, and the stock of the limited available resources,

N. The model is built upon the self-limiting growth archetype in Eq 9 as follows:

dQ1

dt
¼ P1 � R1 � I1 ¼ k1ENQ1 � k3Q1 � a1Q1 � Q2 ðEq 15Þ

dQ2

dt
¼ P2 � R2 � I2 ¼ k2ENQ2 � k4Q2 � a2Q1 � Q2 ðEq 16Þ

N ¼ NT � f1Q1 � f2Q2 ðEq 17Þ

were P1 = k1ENQ1 and P2 = k2ENQ2 are the net inflows in the stock Q1 and Q2, respectively,

with outflows R1 = k3Q1 and R2 = k4Q2 (k1 and k2, are the kinetic coefficients regulating the

inflow rates in Q1 and Q2, k3 and k4 regulates the correspondent outflow rates). The terms I1

= α1Q1Q2 and I2 = α2Q1Q2 represent the biochemical interaction between the populations.

Both terms have the structure of Lotka-Volterra interactions with strengths α1 and α2. As for

Eq 9, we assume the production processes to work as a self-reinforcing feedback for both Q1
and Q2, involving the interaction between E, N and Q1 or Q2, as shown in Fig 9. For compet-

ing populations, the resource dynamics (Eq 17) changes, with respect to Eq 8, as a consequence

of competition for space. The total available resources NT are reduced by the growth of both

Q1 and Q2, that incorporate respectively a constant fraction of nutrients f1 and f2 within them.

Fig 9. Competition dynamics and energetic constraints. This figure shows how to constrain and balance the stock-

flow model used to describe the growth of interacting cell populations. Both (A) and (B) represent a system of stocks

competing for space. In diagram (A), the upper right shows the mass balance constraint on N, with power inflows

proportional to ENQ1 or Q2 and respectively with outflows proportional to Q1 or Q2. The interaction term is a Lotka-

Volterra-like proportional to Q1�Q2. The primary energy inflow, Jin = k0,1ENQ1+k0,2ENQ2 is transformed into useful

power flows P1 = k1ENQ1 = η1Jin,1 and P2 = k2ENQ2 = η2Jin,2 for the two stocks with efficiencies, η1 and η2; The

efficiencies ξ1 and ξ2 control the partitioning energy outflows R1 = k3Q1 = Q1/τ1; and R2 = k4Q2 = Q2/τ2 between

recycling feedback flows and the heat flows. The total heat flow Jh = Jin = P1/η1+P2/η2 sinks out of the boundary at the

bottom of the diagram, with 0<δ<1 being the phenomenological efficiency for the direct interaction term.

https://doi.org/10.1371/journal.pcbi.1011607.g009
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This results in the reduction of the net inflows P1 and P2 by an additional term proportional

to Q1�Q2 that parametrizes competition for space in both Eqs 15 and 16. These interaction

terms are also Lotka-Volterra-like. We redefine the parameters in Eqs 15–17 as for Eqs 8 and

10, obtaining Eqs 3 and 4 (see Table 2 for details).

The stability to small perturbations of the stationary states of Eqs 3 and 4 given by Eqs 5

and 6 is determined from the sign of the eigenvalues λ obtained from the characteristic equa-

tion (see [54] for the original study):

j

r2 �
1

t2

� �

� K � 1 �
1

r1t1

� �

�
r2

K
þ a2

� �
� l 0

� K � 1 �
1

r1t1

� �

�
r1

K
þ a1

� �
� r1 �

1

t1

� �

� l

j ¼ 0 ðEq 18Þ

which yields the following condition for the stability of (a) in Eq 5:

a2 >
r2

K

1 � 1

r2t2

� �

1 � 1

r1t1

� � � 1

2

4

3

5 ðEq 19Þ

that never holds for the parameter estimation shown in Table 3 and the simulations shown in

Fig 5. Thus, Q1;ss
ðaÞ ¼ K � 1 � 1

r1 �t1

� �
Q2;ss

ðaÞ ¼ 0 is an unstable stationary state, while Q2;ss
ðbÞ ¼

K � 1 � 1

r2 �t2

� �
Q1;ss

ðbÞ ¼ 0 is stable, being a2 >
r2

K

1� 1
r2t2ð Þ

1� 1
r1t1ð Þ
� 1

� �

always verified in our setting.

4.5 Parameter estimation and sensitivity analysis

Stocks are measured in ATP equivalent units. The procedure consists in converting cell stocks

into equivalent ATP stocks. The number of cells in a stock is converted to the correspondent

number of ATP molecules stored in it. The equivalence is based on the estimation provided in

[55]. The number of ATP molecules to build up a single cell is 5�1010 ATP, hence 1 cell~5�1010

ATPeq. In joules, 1ATP10−19 joules [56], thus 1cell5�1010ATPeq5�10−9 joules.

We estimate the parameters in Eqs 1, 3 and 4 to obtain plausible scenarios for the time evo-

lution of the cell population systems. As an application of our modeling scheme, we calibrate

the models based on biophysical and biomedical literature concerning human plasma-cells

(PCs) and malignant plasma-cells. Table 3 summarizes the parameter setting, calculation

Table 2. Biophysical quantities and parameterization for competing cell populations.

Biophysical quantity ST-based parameterization Energetics Parameters

ATP production flow (P1,P2)
with resources stock (N)

P1 = k1 E�N�Q1
P2 = k2 E�N�Q2

with N = NT–f1�Q1- f2�Q2

P1 = η1Jin,1 = r1Q1�(1-Q1/K–Q2/K)
P2 = η2Jin,2 = r2Q2�(1-Q1/K–Q2/K)

with N = K - Q1- Q2

K = NT/f1 = NT/f2 (*)
r1 = k1 E�NT

r2 = k2 E�NT (**)
ATP investment flow for structure maintenance (R1,R2) R1 = k3 Q1

R2 = k4 Q2
R1 = Q1/τ1
R2 = Q2/τ2

τ1 = 1/k3
τ2 = 1/k4 (***)

Biochemical interaction (I1,I2) I1 = α1Q1Q2
I2 = α2Q1Q2

Q1 and Q2, competing cells stock; η1 and η2, efficiencies of ATP production; Jin = Jin,1+Jin,2, primary energy inflow; α1 and α2, strength of apoptosis control

*carrying capacity

**growth rates

***turnover times

https://doi.org/10.1371/journal.pcbi.1011607.t002
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methods and the literature. More details about the calculations are available in Section A in

S1 Appendix.

Numerical sensitivity analysis consists in varying the values of one parameter at the time

(OAT) by keeping the others fixed while running a simulation. We perform a numerical sensi-

tivity analysis for the parameter r2, in Eq 4. We fix τ2 = 72 h and vary r2 within the typical

range estimated for neoplastic PCs (Table 3). The corresponding analytical sensitivities for the

stock (Q) and the power input (P) are computed from the single population model in Section

B in S1 Appendix.

We run a second numerical sensitivity analysis by changing the strength of the biochemical

interactions α1 and α2 in Eqs 3 and 4. We keep their ratio constant to α1/α2 = r1/r2 without

changing their order of magnitude, so that α1 = c�r1/K and α2 = c�r2/K with c = 0, 1, 2. This

choice reflects the ability of cells to perform physical work, parametrized through the produc-

tion rates r1 and r2. As an example of possible scenarios that can be constructed from Eqs 3

and 4, Fig 10 shows the patterns obtained by exploring the parameter space of the ratio α1/α2
by fixing all the other parameters in the equations. The figure shows the time evolution of the

power flows P1 and P2 and of the total heat flow Jh.

4.6 Initial conditions and integration scheme

The simulation study concerns the time integration of Eqs 3 and 4 for specific model configu-

rations defined by the parameters estimated in Table 3 and the initial conditions defined in

this section. As an integration scheme, we use a numerical implicit Runge-Kutta integration

method known as Radau method IIA [57]. The code is implemented in Python language

(available in the Section C in S1 Appendix) and the solver is available from Python numerical

methods library [58]. The integration time step is set to be Δt = 0.01 years as we aim at studying

the system dynamics on timescales comparable with the human lifespan. The initial condition

for the stock of malignant cells is set to 1 cell in ATP equivalent units, thus Q(0) = 5�1010

ATPeq. In the competition scheme defined by Eqs 3–4 the initial conditions are set in a way

that the initial presence of the neoplastic plasma-cells results as the smallest perturbation possi-

ble for the adapted population of normal PCs in steady-state. Thus, Q1(0) = Qss = 8.1�1019

ATPeq, for the stock of normal plasma cells initially in steady-state, and Q2(0) = 5�1010 ATPeq,

equivalent to 1 mutated (malignant) plasma cell in the bone marrow.

Table 3. Parameter setting.

parameter estimated value reference

K, carrying capacity* 4.05�1021 ATPeq [55,59]

Qss, normal PCs steady-state** 8.1�1019 ATPeq [55,59,60]

η, efficiency of ATP production (η1 = η2) 40% [61] (ox.-phos. pathway)

τ, proteome turnover time for normal and malignant PCs (τ1 = τ2 in Eqs10-11) 72 h [36,62–64]

rm, growth rate for malignant PCs*** (r2 in Eqs10-11) 1.43�10−2h−1−1.53�10−2h−1 [65–68]

rn, growth rate for normal PCs**** (r1 in Eqs10-11) 1.39�10−2h−1 this work

α1 and α2, strength of apoptosis control***** 10−18h−1ATPeq−1 this work

* Kffi(n. of cells in human body)�(% bone marrow volume in human body)�(ATP in a cell)

** Qss ffi 0.02�K
*** rm = RGR + 1/τ with RGR = 3%-4%-6%-10%

where dQ
dt ’ RGR � Q ¼ r � 1

t

� �
� Q small time approximation of Eq 6 resampling ideal in-vitro experiments

**** rn ffi 1/[τ�(1-Qss/K)]
***** α1 = c�r1/K and α2 = c�r2/K with c = 0,1,2

https://doi.org/10.1371/journal.pcbi.1011607.t003
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S1 Appendix. Section A: Parameter estimation. Section B: Analytical sensitivity analysis of the
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