

Dottorato di ricerca
in Informatica
Scuola di dottorato in Scienze e Tecnologie
Ciclo XXIV
(A.A. 2010 - 2011)

Information Flow Analysis
by Abstract Interpretation

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: INF/01
Tesi di dottorato di Matteo Zanioli, matricola 955626

Coordinatore del Dottorato Tutore del dottorando

Prof. Antonino Salibra Prof. Agostino Cortesi
 Prof. Radhia Cousot

Università Ca’ Foscari di Venezia

Dipartimento di Scienze Ambientali, Informatica e
Statistica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Information Flow Analysis
by Abstract Interpretation

Matteo Zanioli

Supervisors

Prof. Agostino Cortesi
Prof. Radhia Cousot

PhD Coordinator

Prof. Antonino Salibra

March, 2012

Author’s Web Page: http://www.dsi.unive.it/~zanioli

Author’s e-mail: zanioli@dsi.unive.it

Author’s address:

Dipartimento di Informatica
Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it

http://www.dsi.unive.it/~zanioli
zanioli@dsi.unive.it

To Annarita, who offered me
unconditional love and support

throughout the course of this thesis.

Abstract

Protecting the confidentiality of information stored in a computer system or trans-
mitted over a public network is a relevant problem in computer security. The goal
of this thesis is to provide both theoretical and experimental results towards the
design of an information flow analysis for the automatic verification of absence of
sensitive information leakage.

Our approach is based on Abstract Interpretation, a theory of sound approxima-
tion of program semantics. We track the dependencies among program’s variables
using propositional formulae, namely the Pos domain. We study the main ways to
improve the accuracy (by combination of abstract domains) and the efficiency (by
combination of widening and narrowing operators) of the analysis. The reduced
product of the logical domain Pos and suitable numerical domains yields to an anal-
ysis strictly more accurate with respect to the ones already in the literature. The
modular construction of our analysis allows to deal with the trade-off between effi-
ciency and accuracy by tuning the granularity of the abstraction and the complexity
of the abstract operators.

Finally, we introduce Sails, a new information flow analysis tool for mainstream
languages like Java, that does not require any manual annotation. Sails combines the
information leakage analysis with different heap abstractions, inferring information
leakage over programs dealing with complex data structures too. We applied Sails to
the analysis of the SecuriBench-micro suite and the preliminary experimental results
outline the effectiveness of our approach.

Sommario

Proteggere la segretezza delle informazioni nei sistemi informatici o all’interno di
reti pubbliche è uno dei principali problemi riguardanti la sicurezza informatica.
L’obiettivo di questa tesi è fornire sia risultati teorici che sperimentali attraverso
la progettazione di un’analisi di flussi di informazioni volta a verificare che i dati
sensibili rimangano tali e non vengano resi pubblici.

Il nostro approccio si fonda sull’Interpretazione Astratta, una teoria riguardante
l’approssimazione della semantica dei programmi. Tracciamo le dipendenze tra le
variabili attraverso formule proposizionali, in particolare usando il dominio Pos.
Analizziamo i principali metodi per incrementare la precisione (tramite la combi-
nazione di domini astratti) e l’efficienza (tramite l’utilizzo degli operatori di widen-
ing and narrowing) dell’analisi. Il prodotto ridotto tra il dominio logico Pos ed
opportuni domini numerici fornisce un analisi più accurata rispetto quelle presenti
in letteratura. La costruzione modulare della nostra analisi permette di gestire al
meglio il trade-off tra efficienza e precisione regolando la granularità dell’astrazione
e la complessità degli operatori astratti.

In fine, introduciamo Sails, un nuovo strumento per l’analisi di flussi di infor-
mazioni per linguaggi tradizionali come Java, che non richiede nessuna annotazione
manuale. Sails combina l’analisi dei flussi con differenti astrazioni dell’heap, inferen-
do i flussi anche su programmi che utilizzano strutture dati complesse. Abbiamo poi
analizzato con Sails la suite SecuriBench-micro ottenendo dei risultati preliminari
che hanno confermato l’efficacia del nostro approccio.

Résumé

Protéger la confidentialité de l’information numérique stockée ou en transfert sur des
réseaux publics est un problème récurrent dans le domaine de la sécurité informa-
tique. Le but de cette thèse est de fournir des résultats théoriques et expérimentaux
sur une analyse de flue permettant la vérification automatique de l’absence de fuite
possible d’information sensible.

Notre approche est basée sur la théorie de l’Interprétation Abstraite et consiste à
manipuler une approximation de la sémantique des programmes. Nous détectons les
différentes dépendances entre les variables d’un programme en utilisant des formules
propositionnelles avec notamment le domaine Pos. Nous étudions les principales
façon d’améliorer la précision (en combinant des domaines abstraits) et l’efficacité
(en associant des opérateurs d’élargissement et de rétrécissement) de l’analyse. Le
produit réduit du domaine logique Pos et d’un domaine numérique choisi permet
une analyse strictement plus précise que celles précédemment présentent dans la
littérature. La construction modulaire de notre analyse permet de choisir un bon
compromis entre efficacité et précision en faisant varier la granularité de l’abstraction
et la complexité des opérateurs abstraits.

Pour finir, nous introduisons Sails une nouvelle analyse de flue destinée à des
langages de haut niveau sans annotation tel que Java. Sails combine une analyse
de fuite possible d’information à différentes abstraction de la mémoire (du tas), ce
qui lui permet d’inférer des résultats sur des programmes manipulant des structures
complexes. De premiers résultats expérimentaux permettent de pointer l’efficacité
de notre approche en appliquant Sails à l’analyse de SecuriBench-micro.

Acknowledgments

There are a number of people without whom this thesis might not have been written,
and to whom I am greatly indebted.

First of all, I would like to thank my PhD advisors, Agostino Cortesi and Radhia
Cousot. They introduced me to the field of Abstract Interpretation and supported
my work throughout all my thesis. Their encouragements and suggestions were very
helpful to me.

David A. Schmidt and Roberto Giacobazzi accepted to be the reviewers of my
thesis: I am very proud of that and I thanks them for the time spent to read and
comments my work.

During my thesis, I had the opportunity to work in the Abstract Interpretation
group at École Normale Supérieure. I would like to thank all the members for the
discussions about Abstract Interpretation and the suggestions which they gave me
about my work: Patrick Cousot, Jérôme Feret, Antoine Miné, Xavier Rival, Julien
Bertrane, Axel Simon, Liqian Chen and Ferdinanda Camporesi.

Special thanks go to Pietro Ferrara. I met him when I started my PhD and since
than he has always helped me. I’m very grateful to him for everything he did it.

Many thanks to all my french friends, and in particular Miriam, Federico, Jérémy,
Vincenzo, Cherine, Mohamed, Tao and Enrique. I will remember the time I spent
in Paris with them forever.

I will always be indebted to all the people who shared with me the doctoral
studies: it was a pleasure to work with Luca, Matteo, Raju, Gian-Luca, Alvise and
the others Ph.D. students.

I am particularly grateful to my family that supported me all along my life and
in particular in these last three years. In particular, I want to mention my mother
Maria Teresa, my father Antonio and my brothers Andrea and Alberto.

Last but not least, my deepest thank goes to Annarita, that strongly encouraged
and sustained me and my work.

Contents

1 Introduction 1
1.1 Key Concepts . 1
1.2 Contribution . 2

1.2.1 Dependency analysis . 2
1.2.2 Efficiency and Accuracy . 3
1.2.3 Domains’ combination . 3
1.2.4 Implementation . 3

1.3 Overview of the Thesis . 4

2 Computer Security and Information Flow 5
2.1 Introduction . 5
2.2 Noninterference . 6
2.3 Information Flow . 7

2.3.1 Type Systems . 7
2.3.2 Control Flow . 8
2.3.3 Abstract Interpretation . 8

2.4 Implementation . 8
2.5 Declassification . 9
2.6 Conclusions . 10

3 Abstract Interpretation Theory 11
3.1 Introduction . 11
3.2 General Definitions . 11

3.2.1 Set and Lattice Theory . 11
3.2.2 Functions, Fixpoints and Traces 12
3.2.3 Abstract Interpretation . 14

3.3 Combination of Domains . 17
3.4 Widening and Narrowing Operators 18

3.4.1 Introduction . 18
3.4.2 Widening Operator . 19
3.4.3 Narrowing Operator . 22
3.4.4 Combination of Widening and Narrowing Operators 24

3.5 Conclusions . 35

4 Information Flow Analysis by Abstract Interpretation 37
4.1 Introduction . 37
4.2 The Concrete Domain . 37

ii Contents

4.2.1 The Language . 37
4.2.2 Concrete Domain . 39

4.3 Abstract Domain of Propositional Formulae 41
4.3.1 Propositional Formulae . 41
4.3.2 Propositional Formulae Domain 43
4.3.3 Abstract Domain for Pos . 44
4.3.4 An Instrumented Concrete Domain 46

4.4 Properties . 48
4.4.1 Confidentiality . 49
4.4.2 Integrity . 49

4.5 Complexity of the Analysis . 49
4.6 Conclusions . 50

5 Enhancing the Information Flow Analysis by Combining Domains 51
5.1 Introduction . 51
5.2 Numerical Domains . 51

5.2.1 Intervals . 51
5.2.2 Karr Analysis . 52
5.2.3 Polyhedra . 52
5.2.4 Octagons . 53

5.3 The Reduced Product of Pos and Numerical Domains 53
5.3.1 Efficiency and Accuracy: Complexity of the Analysis 55

5.4 Further Refinements . 55
5.4.1 Subformulae Elimination . 56

5.5 Conclusions . 57

6 Experimental Results: SAILS 59
6.1 Introduction . 59
6.2 Presentation of Sample . 60

6.2.1 Scope of the Analyzer . 60
6.2.2 Architecture . 60

6.3 Integrating the Information Flow Analysis 60
6.3.1 Analysis extension for Object Oriented Languages 62
6.3.2 Implementation Choices . 63
6.3.3 Example . 66
6.3.4 Analysis Results . 67

6.4 Current Limits of the Analyzer . 68
6.5 Comparison with other Tools . 68

6.5.1 JIF - Java Information Flow 69
6.5.2 Julia - Software Verification for Java and Android 70

6.6 Conclusions . 71

Contents iii

7 Future Works 77
7.1 Information Flow Analysis of JavaScript Code 77
7.2 Declassification . 81
7.3 Multithreading . 81
7.4 Conclusions . 82

8 Conclusions 85

A Dependency Analysis - Formal Proofs 87

B Widening and Narrowing - Formal Proofs 89

Bibliography 105

iv Contents

List of Figures

4.1 Definition of the concrete transition semantics 42
4.2 Dependency analysis example . 44
4.3 Definition of abstract transitional semantics 46

5.1 Reduce product example . 54
5.2 Definition of transitional semantics for complex formulae 58

6.1 The structure of Sample . 61
6.2 Definition of transition semantics for object oriented languages 63
6.3 Definition of abstract transition semantics for object oriented languages 73
6.4 A CFG not supported by Sails . 74
6.5 A motivating example . 74
6.6 The initial state of the heap abstraction 75
6.7 Simple strings example . 76

7.1 Abstract semantics for JavaScript expressions - Part 1 83
7.2 Abstract semantics for JavaScript expressions - Part 2 84

vi List of Figures

List of Tables

4.1 Definition of the syntax for simple language 38
4.2 Definition of initial label function . 39
4.3 Definition of final label function . 39
4.4 Definition of action function . 40
4.5 Definition of variables functions . 40
4.6 Evaluation of expression . 41
4.7 Evaluated of boolean conditions . 41
4.8 Definition of BV function . 45

6.1 Syntax for Object Oriented Languages 72
6.2 SecuriBench-micro suite . 75
6.3 Jif case studies . 76

7.1 JavaScript expressions . 78
7.2 Table expression - identifier . 79

viii List of Tables

1
Introduction

Since the birth of computer science, writing correct programs has always been con-
sidered a great challenge. Nowadays, another important aspect is requested for
programs: the concept of security. The terms security means the collective pro-
cesses and mechanisms by which sensitive and valuable information are protected
from publication or tampering through unauthorized activities. Moreover, software
complexity seems to follow Moore’s law and grow exponentially with time, making
it harder to debug and verify. In order to ensure the correctness and security of
programs there are various formal methods which try to address these problems by
providing mathematically sound techniques that guarantee a full coverage of all pro-
gram behaviors. In this thesis, we wish to contribute to the field of formal methods
used in the verification of the security of programs.

1.1 Key Concepts

Program Semantics Semantics is the branch of computer science devoted to
associating a mathematical meaning to computer programs, providing a model of
all possible behaviors in interaction with any possible environment and allowing
formal reasoning about program and their properties [146, 134, 117].

Static Analysis The term static analysis denote the analysis of computer software
performed without run the program. This concept is strictly related with the term
static analyzer. Unlike testing or debugging, static analyzers can reason about
infinite sets of unbounded computations in arbitrary contexts. The perfect static
analyzer, by Rice’s theorem, cannot exist, therefore all static analyzers will use some
approximations. A sound static analyzer is one for which approximations do not
compromise the truth of its results: if can output either a definite “yes”, meaning
that the property is indeed true regardless of approximations, or “I don’t know”,
meaning that the approximations prevent the analyzer from issuing a definite answer
[115].

Abstract Interpretation Abstract Interpretation is a mathematical theory of
the approximation of program semantics developed by Patrick and Radhia Cousot

2 1. Introduction

about 30 years ago [48, 53]. It formalizes the idea that one formal proof can be
done at some level of abstraction where irrelevant details are ignored. It can be
applied to approximate undecidable or very complex problems in computer science.
In particular, applied to static analysis of programs, abstract interpretation allows
to approximate a concrete semantics with an abstract one [132, 133]. The main
concepts, in this field, are the correspondence between concrete and abstract se-
mantics, through Galois connection/insertion, and the feasibility of a fixed point
computation of the abstract semantics, through the combination of widening and
narrowing operators. Unlike other formal methods for reasoning on programs, once
an abstract domain is designed, the static analysis performs fully automatically and
directly on the source code.

Information Flow The focus of this thesis is the information flow analysis ap-
plied to the computer programs. Suppose that some sensitive information is stored
on a computer system. How can we prevent it from being leaked improperly? Limit
the access to the information by using encryption prevents that information being
released, but it does not prevent it from being propagated. The approach of secure
information flow analysis involves performing a static analysis of the program with
the goal of proving that it will not leak sensitive information. If the program passes
the analysis, then it can be executed safely [139].

1.2 Contribution

Our main goal during this thesis research is to design a static analysis tool, firmly
grounded mathematically and of practical interest, focused on secure information
flow. In order to achieve this goal, we combine, in a novel way, techniques generally
applied in the context of generic code analysis, to solve a specific security problem:
the detection of information leakage. We look into the possible way to perform
more precise analysis. Then, we merge the results of different analysis to improve
the results and, finally, we develop a tool which which works with mainstream
languages like Java and it does not require any manual annotation.

1.2.1 Dependency analysis

The approach of information flow analysis involves performing a static analysis of the
program with the aim of proving that there will not be leaks of sensitive information.
We propose a new domain based on propositional formulae in order to analyze the
dependencies among variables. The resulting analysis tracks all the dependencies in
the program, but it is not very accurate. In fact the obtained results contain different
kind of false alarms which makes the analysis unusable in real cases. Hence, we need
some methods to increase the precision of the analysis and then improve the results.

1.2. Contribution 3

1.2.2 Efficiency and Accuracy

The abstract interpretation framework allows to define the program analysis at var-
ious granularities. The main ways to get it are the combination of widening and
narrowing operators, and the combination of different abstract domains.
Widening and narrowing operators play a crucial role in particular when infinite
abstract domains are considered to ensure the scalability of the analysis to large
software system. We report a formal definition of the widening and narrowing
operations already introduced in the literature, the proof that the widening and
narrowing operators are preserved by abstraction and an indication as how to con-
struct widening operators for a product domain such as the reduced and cartesian
products. Moreover we prove that, for Galois Insertions, widening and narrowing
operators are preserved by abstraction and we show how the operators can be com-
bined in the cartesian and reduced product of abstract domains.
One of the key-concepts in which abstract interpretation is based consists in the
correspondence between concrete and abstract semantics through Galois connec-
tions/insertions and the possibility to combine different abstractions to each other.
In this case the more precise combination is the reduced product which permits to
each analysis in the abstract composition to benefit from the information brought
by the other analyses.

1.2.3 Domains’ combination

In order to obtain more accurate results we combine the variables dependency anal-
ysis, based on propositional formulae, and variables’ value analysis, based on nu-
merical domain, through a reduced product. The obtained analysis is strictly more
accurate than the previous one and it gives the possibility to be used in practical
cases. Moreover, its modular construction allows to deal with the tradeoff between
efficiency and accuracy by tuning the granularity of the abstraction and the com-
plexity of the abstract operators.

1.2.4 Implementation

We introduce a new tool, called Sails, that combines Sample, a generic static ana-
lyzer, and our dependency analysis. Differently from the other tools in literature,
Sails does not require to modify the original language, since it works with main-
stream languages like Java, and it does not require any manual annotation. Sails

can combine the information leakage analysis with various heap abstractions, in-
ferring information leakage over programs dealing with complex data structures.
Moreover, we applied Sails to the analysis of the SecuriBench-micro suite and the
results show the effectiveness of our approach.

4 1. Introduction

1.3 Overview of the Thesis

This thesis is organized as follows. Chapter 2 first gives the concepts of computer
security, information flow, noninterference, declassification and then presents the
main issues which we want to deal with this thesis. In Chapter 3 we recall the for-
mal framework of Abstract Interpretation and we shows an overview about methods
to refine the results: combination of different domains and the use of narrowing op-
erator, in combianation with widening operator. In Chapter 4 we introduce the
dependency analysis by Abstract Interpretation using Pos domain. The results ob-
tained in this last chapter is not enough precise, thus Chapter 5 presents some
numerical domains and it shows how we can combine them with our dependency
analysis presented in Chapter 4, in order to refine the results. Moreover, in the same
chapter, we propose an extension, using more complex formulae, which permits a
further improvements of results. Chapter 6 shows some experimental results: we im-
plemented a tool called Sails (Static Analysis of Information Leakage with Sample),
we tested it over a set of web applications established as security and performance
benchmarks and we compared it with other existing tools. In Chapter 7 we show
the on going work; an extension to the dependency analysis to analyze JavaScript
language, the implementation of declassification and some consideration about the
application of our analysis in multithreading programs. Finally, in Chapter 8 we
report the conclusions.

2
Computer Security and

Information Flow

2.1 Introduction

Protecting data stored in a computer system or transmitted over a public network
is a relevant issue in computer security.

In literature, attacks are commonly classified into three categories known as the
CIA of computer security [57, 83]:

• Confidentiality, the attacker attempts to steal confidential information.

• Integrity, the attacker attempts to illegally alter parts of the system.

• Availability, the attacker attempts to disrupt the normal operation of a system.

These three categories of attacks are related and usually results of attacks in one
category can be used to assist another attack in an other category. Information flow
control tracks how information propagates through the program during execution
to make sure that the program handles the information securely. More precisely,
the two related categories with information flow analysis are confidentiality and
integrity.

Most of the methods applied to secure information define some policy about the
secrecy of the messages during the phase of information moving, for example by
some particular cryptography protocols. In this way, the network communication
between two peers using a fresh shared secret key prevents a malicious user to steal
information by “listening” to the network traffic. Unfortunately we don’t have any
guarantee that one parts reveal in the clear all the exchanged messages. Secure
information flow tracks data propagation: an information flow policy specifies the
security classes (or security levels) for data in a system and a flow relation declares
the legal path which the information can follow among the given security classes.
Any information flow analysis involves performing a static analysis of the program
with the aim of detecting sensitive information leakage. The starting point in secure
information flow analysis is the classification of program variables into different

6 2. Computer Security and Information Flow

security levels. In the simplest case, two levels are used: public (or low, L) and
secret (or high, H). The main purpose is to prevent leak of sensitive information
from an hight variable to a lower one. More generally, we might work with a lattice
of security levels, and we would aim to ensure that sensitive information flows only
upwards in the lattice [56, 20].

Information flow analysis could also be applied in other different cases. For
example, if we consider some variables as containing possibly tainted information,
then we may wish to prevent that information from such variables flowing into
untainted variables [118]. Newsome and Song [114] used a lattice with untainted ≤
tainted to detect worms via a dynamic taint analysis.

This chapter provides general background on information flow security starting
from the generic definition of non-interference property and introducing the most
relevant literature about information flow analysis.

2.2 Noninterference

The first static information flow certification mechanism has been presented in 1977
by Denning and Denning [57] and was implemented by instrumenting the language
semantics to detect any leakage. They provide a certification mechanism for verifying
the secure flow of information. A program is certified if it does not involve flows in
violation of the flow policy. There is an information flow from object x to object y

whenever the information stored in x is transferred to, or used to derive information
transferred to, object y. More generally, data confidentiality demands that private
informations are never revealed to someone who is not authorized to access them.
A program aiming at preserving data confidentiality can access and modify secret
information but must not reveal anything about such data in its public outputs:
confidential data must not influence public ones so that variations on private data
does not produce any observable difference in the outputs. The prevailing basic
semantic notion of secure information flow is non-interference. This concept was
introduced in the 1982 by Goguen and Meseguer in [71] as follows: “one group of
users/processes/variables, using a certain set of commands, is noninterfering with
another group of users if what the first group does with those commands has no effect
on what the second group of users/processes/variables can see”. The idea behind
non-interference is that someone observing the final values of public variables cannot
conclude anything about the initial values of secret variables [139]. As the field has
matured, numerous variations of noninterference [126], as well as other semantic
characterizations have been explored [129].

Recently, information integrity has received attention [8, 23, 89]. Integrity has
frequently been seen as the dual of confidentiality [22], through it can be argued that
this description might ignore other important facets [23]. One important aspect of
integrity lies in its interaction with declassification in order to prevent the attacker
from controlling what information is declassified [112].

2.3. Information Flow 7

2.3 Information Flow

The language-based approach [126] is the most considered in the literature: this
means that the information flow analysis takes place within computations of pro-
grams. In this case, illegal flows may only occur transferring information between
variables in a given language. Such insecurity interferences may manifest themselves
in different ways. For example, an information leak could happen due to an illegal
assignment, e.g. public := private, or, more subtly through the program control flow:

if secret = 0 then public := 0 else public := 1.

Program can also leak information through their termination or nontermination.
Consider while secret! = 0 do skip, it is clear that whenever the program terminates
the value of secret is zero, therefore the private information is revealed by the fact
that the computation terminates or diverges.
Mechanisms for signaling information through a computing system are known as
channels. The covert channels can be divided into several categories [126]:

• implicit and explicit flows, through the control structure of a program;

• termination channels, through the termination or nontermination of a compu-
tation;

• timing channels, through the time at which an action occurs;

• probabilistic channels, through the changing the probability distribution of
observable data;

• resource exhaustion channels, through the possible exhaustion of a finite,
shared resource;

• power channels, through the power consumption.

2.3.1 Type Systems

There is a widespread literature on methods and techniques for checking secure
information flows in software, but, probably, the most used technique consists in
type systems [119, 148, 111, 76, 2]. In a security-typed language Volpano, Irvine
and Smith [148] were the first to develop a type system to enforce information flow
policies, where a type is inductively associated at compile-time with program state-
ments in such a way that well-typed programs satisfy the non-interference property.
The authors formulated the certification conditions of Denning’s analysis [57, 123]
as a simple type system for a deterministic language: basically, a formal system of
type inference rules for making judgments about programs. More generally, type-
based approaches are designed such that well-typed programs do not leak secrets.

8 2. Computer Security and Information Flow

A type is inductively associated at compile-time with program statements in such a
way that any statement showing a potential low disclosing secrets is rejected. Type
systems that enforce secure information flow have been designed for various lan-
guages, e.g. [138, 26, 120, 55, 154] and they have been used in different applications.
Some of these approaches are, for example, applied to specific system, e.g. mobile
ambients [27, 28], or to specific programs, e.g. written in VHDL [143], where the
analysis of information flow is closely related to the context. Moreover, the secure
information flow problem was also handled in different situation, for example with
multi-threaded programs [140] or with programs that employ explicit cryptographic
operations [66, 7].

2.3.2 Control Flow

A different approach is the use of standard control flow analysis to detect informa-
tion leakage, e.g. [25, 83, 5, 88]. The idea, of this technique, is to conservatively find
the program paths through which data may flow. Generally, the data flow analysis
approach consists in a translation of a given program to capture and facilitate rea-
soning about the possible information flows. For example, Leino and Joshi, in [83],
showed an application based on semantics, deriving a first-order predicate whose va-
lidity implies that an attacker cannot deduce any secure information from observing
the public inputs, outputs and termination behavior of the program.

2.3.3 Abstract Interpretation

The use of Abstract Interpretation in language-based security is not new [109], even
though there aren’t many works that use the lattice of abstract interpretations for
evaluating the security of programs (for example [153]).
The main work about information flow analysis by Abstract Interpretation is [68],
where Giacobazzi and Mastroeni generalized the notion of non-interference mak-
ing it parametric relatively to what an attacker can observe and use it to model
attackers as abstractions. A program semantics was characterized as an abstract
interpretation of its maximal trace semantics in the corresponding transition sys-
tem. The authors gave a method for verifying abstract non-interference and they
proved that checking abstract non-interference is a standard static program analysis
problem. This method allows both to compare attackers and program secrecy by
comparing the corresponding abstractions in the lattice of abstract interpretations,
and to design automatic program certification tools for language-based security.

2.4 Implementation

Despite the number of works about information flow analysis, the implementations
are very few. In early 2000, some works began the control of sensitive information in

2.5. Declassification 9

realistic languages [18, 110, 120], but, as far as we know, the main implementations
are Jif [9] and Flow CAML [137].

According to [139], in exploring this issue further, it seems be helpful to distin-
guish between two different application scenarios: developing secure software and
stopping malicious software. The first scenario is based on to secure information
flow analysis to help the development of software that satisfies some security prop-
erties. In this case, the analysis serves as a program development tool. The static
analysis tool would alert the programmer of potential leaks so that the developer
could rewriting the code as necessary. An example of this scenario can be found in
[9], where Askarov and Sabelfeld discusses the implementation of a “mental poker”
protocol in Jif. In the second scenario, instead, the secure information flow analysis
is used as a kind of filter to stop malicious software. In this case, we might imagine
analyzing a piece of untrusted code before executing it, with the goal of guaran-
teeing its safety. This is much more challenging than first scenario: probably we
would not have access to the source code and we would need to analyze the binary
code. Analyzing binaries is more difficult than analyzing source code and has not
received much attention in the literature (a Java bytecodes analysis is performed,
for instance, by Barthe and Rezk in [19]).

Generally, secure information flow analysis has focused on enforcing noninterfer-
ence, but in both scenarios the noninterference property does not seem to be what
we want. Noninterference requires absolutely no flow of information and in many
practical situations “small” information leaks are acceptable in practice. For exam-
ple, a password checker must allow a user to enter a purported password, which it
will either accept or reject. Of course, rejecting a password leaks some information
about the correct password, by eliminating one possibility. Similarly, encrypting
some secrets information would seems to make them public, but there is a flow
of information from the plaintext to the ciphertext, since the ciphertext depends
on the plaintext. We can conclude that, in many practical situations, enforcing
non-interference on a static lattice of security levels is too heavy-handed. At the
same time, it seems difficult to allow “small” information leaks without allowing a
malicious program to exploit such loopholes to leak too much.

2.5 Declassification

For many applications a complete separation between secret and public is too re-
strictive. Consider for instance the login screen of an operating system; when a user
tries logging in the response of the system gives away information about the pass-
word. If access is refused we know that the attempted password was not the correct
one. Even though this gives away partial information about the password, we deem
this secure. Another important class of examples is data aggregation. Consider
for instance a program that computes average salaries; even though each individual
salary may be secret we might want to be able to publish the average.

10 2. Computer Security and Information Flow

We need a way to declassify information, i.e. lowering the security classification of
selected information [17]. Sabelfeld and Sands [128] identify four different dimen-
sions of declassification: what is declassified, who is able to declassify, where the
declassification occurs and when the declassification takes place.

What is important to be able to specify what information is declassified, e.g., the
four last digits of a credit card number. Policies for partial release must guarantee
an upper limit on what information is released. Some works related to the what
dimension are [94, 127, 69]. Another important aspect is who controls the release
of information. This pertains, in particular, to information integrity and has been
investigated in the context of robustness [112], which controls on whose behalf de-
classification may occur. Works about this dimension are [95, 111]. Sabelfeld and
Sands identify two principal forms of released locality (so the where dimension). Re-
lated to the what and when dimension, the where dimension is the most immediate
interpretation of where in terms of code locality. The other form is level locality,
describing where information may flow relative to the security levels of the system.
Some works on this topic are [103, 100]. The temporal dimension of declassification
is about when information is leaked. Always in [128], the authors identify three
classes of temporal release classifications: time-complexity based, probabilistic and
relative. The first one indicates that information will not be released until after a
certain time, with the second one we can talk about the probability of a leak being
very small and in the last one the leakage is related to other events in the system.
Some works about this dimension are [149, 32].

2.6 Conclusions

A major challenge for secure information flow analysis is to develop a good formalism
for specifying useful information flow policies that are more flexible than noninter-
ference. The formalism must be general enough for a wide variety of applications,
but not too complicated for users to understand.

In the rest of the thesis we combine various techniques, generally applied in the
context of generic code analysis, in a novel way to provide a different approach to
analyze the information flow within computer programs, which permits us to obtain
more accurate results than existed systems. Moreover, we provide a new tool (called
Sails, Chapter 6) to perform an information flow analysis on Scala language or Java
Bytecode.

3
Abstract Interpretation Theory

3.1 Introduction

In this chapter, we introduce the mathematical background used in the rest of the
thesis, in particular we recall some basic notation and some well-know results in
lattice, fixpoint and Abstract Interpretation theory. Moreover, we investigate the
combination of widening and narrowing operators. One of the main features of Ab-
stract interpretation framework consists on defining the program analysis at various
granularities, achieving a different trade-offs between efficiency and precision. In
some practical cases, it is possible to refine the results through the combination of
different domains and the combination of widening and narrowing operators. When
the abstract domain does not satisfy the ascending chain condition, widening and
narrowing operators should be used to ensure convergence and tune the cost/preci-
sion compromise. In this chatpter we investigate also the possible combination of
wdening and narrowing operators ([41], extension of [35]).

3.2 General Definitions

3.2.1 Set and Lattice Theory

A partially ordered set (or poset) �D,�� is a non-empty set D together with a partial
order �, a binary relation such that it is:

• reflexive: ∀d ∈ D : d � d

• antisymmetric: ∀d0, d1 ∈ D : d0 � d1 ∧ d1 � d0 ⇒ d0 = d1

• transitive: ∀d0, d1, d2 ∈ D : d0 � d1 ∧ d1 � d2 ⇒ d0 � d2

Given D
� ⊆ D, d ∈ D is an upper bound of D

� iff ∀d� ∈ D
� : d

� � d. It is the least
upper bound (lub), denoted by

�
D
�, if ∀d� ∈ D such that d

� is a an upper bound of
D
�, then d � d

�. Symmetrically we can define the lower bounds and greatest lower
bounds (glb), denoted by

�
D
�.

The poset �D,�� has a top element (or greatest element) � iff � ∈ D∧∀d ∈ D : d �

12 3. Abstract Interpretation Theory

�. Dually, it has a bottom element (or least element) ⊥ iff ⊥ ∈ D∧∀d ∈ D : ⊥ � d.
A poset with a least element will be called a pointed poset and it is denoted by
�D,�,⊥�. Note that any poset can be transformed into a pointed poset by adding
a new element that is smaller then everyone.
A cpo is a poset which is complete, that is, every increasing chain of elements
(Xi)i∈N, i ≤ j ⇒ Xi � Xj has a least upper bound �i∈NXi , which is called the limit
of the chain. Note that a cpo is always pointed as the least element can be defined

by ⊥
def
=

�
∅.

A lattice �D,�,�,�� is a poset where each pair of elements a, b ∈ D has a least
upper bound, denoted by a � b, and a greatest lower bound, denoted by a � b. A
lattice is said to be complete if any set D

� ⊆ D has a least upper bound. A complete

lattice is always a cpo; it has both a least element ⊥
def
=

�
∅ and a greatest element

�
def
=

�
D; also, each set D

� ⊆ D has a greatest lower bound
�

D
� def

=
�
{X ∈ D |

∀Y ∈ D
�, X � Y }. In this case, it is denote by �D,�,�,�,⊥,��. An important

example of complete lattice is the power-set �℘(S),⊆,∪,∩, ∅, S� for any set S. A join
semi lattice and a meet semi lattice are poset �D,�� such that each pair of elements
a, b ∈ D has, respectively, least upper bound (a � b) and great lower bound (a � b).

3.2.2 Functions, Fixpoints and Traces

A function is a relation r which relates each element of the domain to at most one
element of the co-domain, i.e. if (x, y0) ∈ r and (x, y1) ∈ r , then y0 = y1. Therefore,
given an element x ∈ dom(r) we denote the element in the co-domain by r(x).
In order to define functions we use the lambda notation: by f = λx.expr we denote
the function f which maps x to the value of the expression expr where x is a free
variable. We will sometimes use the explicit notation [x0 �→ expr0, . . . , xn �→ exprn]
to denote the application that associates the value of expri to xi , or the notation
f [x �→ y] to represent a function that behaves as f except for the input x, for which
it returns y. By the notation f : X → Y we mean that the domain of the function f
is included in X and its co-domain is included in Y. Let f : X → Y and g : Y → Z,
then g ◦ f : X → Z represents the composition of functions f and g , i.e. λx.g(f (x)).
Let �X,�X� and �Y,�Y� be two posets, a function f : X → Y is:

• monotonic iff ∀x0, x1 ∈ X : x0 �X x1 ⇒ f (x0) �Y f (x1)

• join preserving iff ∀x0, x1 ∈ X : f (x0 �X x1) = f (x0) �Y f (x1) where �X and �Y

are, respectively, the lub on �X,�X� and �Y,�Y�

• complete join preserving (or complete �-morphism) iff ∀X� ⊆ X such that
�

X X
�

exists, then f (
�

X X
�) =

�
Y f (X�)

• complete meet preserving (or complete �-morphism) iff ∀X� ⊆ X such that�
X X

� exists, then f (
�

X X
�) =

�
Y f (X�)

3.2. General Definitions 13

• continuous iff for all chains C ⊆ X we have that f (
�

X C) =
�

Y{f (c | c ∈ C}

A poset �D,�� satisfies the ascending chain condition (ACC) if every ascending chain
c0 � c1 � · · · of elements in D is eventually stationary, i.e. ∃i ∈ N : ∀j > i : cj = ci .
Dually, a poset satisfies the descending chain condition (DCC) if there is not any
infinte decreasing chain.

An operator f : D → D, which is a function from a poset D to the same poset,
is said to be extensive if ∀X, X � f (X). A fixpoint of an operator f is an element x

such that f (x) = x. Let f be a function on a poset �D,��. The set of fixpoints of f
is FP = {x ∈ D | f (x) = x}. An element x ∈ D is:

• a pre-fixpoint iff x � f (x)

• a post-fixpoint iff f (x) � x

In particular, ⊥ and � are, respectively, a pre-fixpoint and a post-fixpoint for all
operators. Moreover, we denote by lfp�x f the least fixpoint of f that is greater than
x with respect the order � and by gfp�x f the greatest fixpoint of f smaller than x

with respect the order �.
The existence of the least and greatest fixpoints on a monotonic map is guaranteed
by the following theorems.

Theorem 3.1 (Tarski’s theorem [142]). Let �D,�,⊥,�,�,�� be a complete lattice.
Let f : D → D be a monotonic function on this lattice. Then the set of fixpoints is
a not-empty complete lattice, and:

lfp�⊥ f = �{x ∈ D | f (x) � x}

gfp�x f = �{x ∈ D | x � f (x)}

Theorem 3.2 (Constructive version of Tarski’s theorem [49]). Let �D,�,⊥,�,�,��
be a complete lattice. Let f : D → D be a monotonic function on this lattice. Define
the following sequence:

f 0 = ⊥

f δ = f (f δ−1)for every successor odrinal δ

f δ =
�

α<δ

f αfor every limit ordinal δ

Then the ascending chain {f i | 0 ≤ i ≤ δ} (where δ is an ordinal) is ultimately
stationary for some ρ ∈ N that is f ρ = lfp≤⊥ f .

An important notion, in abstract interpretation, is the concept of trace. Infor-
mally, we can define a trace as an ordered sequence of elements such that it is defined
on the first k elements. More formally, a trace is define as follows.

14 3. Abstract Interpretation Theory

Definition 3.1 (Trace [60]). Given a set S, a trace τ : N → S is a partial function
such that:

∀i ∈ N : i /∈ dom(τ) ⇒ ∀j > i : j /∈ dom(τ)

The definition implies that the domain of all non-empty traces is a segment of
N. The empty trace, i.e. the trace τ such that dom(τ) = ∅, is denoted by �. Let be
S a generic set of elements, we denote by S

+ the set of all the finite traces composed
of elements in S. len : S

+ → N is the function that, given a trace, returns its length.
Formally: len(τ) = i + 1 : i ∈ dom(τ) ∧ i + 1 /∈ dom(τ). If τ = �, then len(τ) = 0.
Notice that a trace can be represented by a succession of states, i.e. σ0 → σ1 → · · · .
We define by S

+
T
−→

the set of traces in S
+ ending with a final state with respect to

the transition relation
T
−→, i.e. S

+
T
−→

= {σ0 → · · · → σi | σ0 → · · · → σi ∈ S
+, �σj ∈

S
+ : σi

T
−→ σj}.

Given a set of initial elements S0 and a transition relation
T
−→⊆ Σ × Σ, the partial

trace semantics builds up all the traces that can be obtained by starting from traces
containing only a single element from S0 and then iteratively applying the transition
relation until a fixpoint is reached.

Definition 3.2 (Partial trace semantics [50]). Let Σ be a set of states, S0 ⊆ Σ a set

of initial elements, and
T
−→⊆ Σ×Σ a transition relation. Let f : ℘(Σ) → (Σ+ → Σ+)

be the function defined as:

F (S0) = λX.{σ0 | σ0 ∈ S0}∪

{σ0 → · · ·→ σn−1 → σn | σ0 → · · ·→ σn−1 ∈ X ∧ σn−1
T
−→ σn}

The partial trace semantics is defined as

PT�S0� = lfp�∅ F (S0)

3.2.3 Abstract Interpretation

Abstract Interpretation is a mathematical theory of semantics approximation devel-
oped by Patrick and Radhia Cousot about 30 years ago [43, 48, 50]. A core principle
in the abstract interpretation theory is that all kinds of semantics can be expressed
as fixpoints of monotonic operators in partially ordered structures, would it be oper-
ational, denotational, rule-based, axiomatic, based on rewriting systems, transition
systems, abstract machines, etc [135, 136, 102]. In this way, beside comparing al-
ready existing semantics, Abstract Interpretation allows building new semantics by
applying abstractions to existing ones. A key property of the semantics designed
by abstraction is that they are guaranteed to be sound, by construction. Thus,
a sound and fully automatic static analyzer can be designed by starting from the

3.2. General Definitions 15

non-computable formal semantics of a program language, and composing abstrac-
tions until the resulting semantics is computable. Notice that the approximation is
required, then the result is correct but incomplete, i.e. if a property is not inferred
in the abstract semantics, it may still be satisfied by the concrete one.

The concrete semantics belongs to a concrete semantic domain D which is a
partially ordered set �D,��. The abstract semantics also belongs to a partial order
�D�,���, which is ordered by the abstract version �� of the concrete approximation
order � and which is called abstract semantic domain. We denote the abstract
counterparts for concrete entities by a superscript, generally �, � or �.

Galois connection/insertion

Let D and D
� be two posets1 used as semantic domains. A Galois connection, as

introduced in [48], between D and D
� is a function pair (α,γ) such that:

Definition 3.3 (Galois connection).

1. α : D → D
� is monotonic;

2. γ : D
� → D is monotonic;

3. ∀X, X�, α(X) ��
X

� ⇐⇒ X � γ(X�).

This is often pictured as follows: D −−−→←−−−
α

γ
D

�.

As a consequence, we have (α ◦ γ)(X�) ��
X

�, i.e. α ◦ γ is reductive, and X � (γ ◦
α)(X), i.e. γ◦α is extensive. The fact that α(X) ��

X
�, or equivalently that X � γ(X�),

formalizes the fact that X
� is a sound approximation (or sound abstraction) of X. α

and γ are called, respectively, abstraction function and concretization function.
If the concretization γ is one-to-one, i.e. α ◦ γ = Id , then (α,γ) is called a

Galois insertion, denoted by D −−→−→←−−−−
α

γ
D

�. Design an abstract domain linked to
the concrete one through a Galois insertion corresponds to choosing, as abstract
elements, a subset of the concrete ones and, as the abstract order, the order induced
by the concrete domain [107].

Sometimes, it is not necessary to define both the concretization and the ab-
straction functions in a Galois connection: the missing function can be defined in a
canonical way. We can use the following theorem.

Theorem 3.3 (Canonical α, γ [52]).

1From now, a poset �Dx �x� will only refereed to as Dx when there is no ambiguity, that is,
when there is only one partial order of interest on Dx. The same also holds for cpo, lattice and
complete lattice: the same superscript x as the one of the set Dx is used when talking about its
order (�x) ,lub (�x), glb (�x), least (⊥x) and greatest (�x) element, when they exists.

16 3. Abstract Interpretation Theory

1. If D has lubs for arbitrary sets and α : D → D
� is a complete �-morphism,

then there exists a unique concretization γ that forms a Galois connection
D −−−→←−−−

α

γ
D

�. This γ is defined as:

γ(X)
def
= �{Y | α(Y) ��

X}

2. Likewise, if D
� has glbs for arbitrary sets and γ : D

� → D is a complete �-
morphism, then there exists a unique α that forms a Galois connection D −−−→←−−−

α

γ

D
�. It is defined as:

α(X)
def
= �

�
{Y | X � γ(Y)}

An interesting property of Galois connection is that they are compositional, i.e.,
the composition of two Galois connections is still a Galois connection.

Theorem 3.4 (Composition of Galois connection). Let �A �A� −−−→←−−−
α1

γ1
�B �B� and

�B �B� −−−→←−−−
α2

γ2
�C �C� be two Galois connection. Then

�A �A� −−−−−→←−−−−−
α2◦α1

γ1◦γ2
�C �C�

Fixpoint Approximation

Usually in abstract interpretation the concrete and abstract semantics are defined
as the fixpoint computation of monotonic functions.
Given the concrete and abstract semantics, respectively, A : D → D and A� : D

� →

D
�, where D −−→←−−

α

γ
D

�, we want to prove the correctness of the abstract semantics
with respect to the concrete one. The abstract semantics is sound iff for all the
pre-fixpoints p

� ∈ Pfp
� ⊆ D

� of A�, we have that γ ◦ A��p�� ≥ A�γ(p�)�.
When applied to the static analysis of programs, the transfer function depends

on a program P . There are many different ways to prove that an abstract semantics
is sound, based on some different properties of transfer functions, concrete and
abstract lattices, concretization and abstraction functions [53]. In this thesis, we
will rely on the following thorem.

Theorem 3.5 (Kleene-like, join-morphism-based fixpoint approximation [48]). Let
�L,�,�� and �L�,��,��� be complete lattices. Let F : L → L and F � : L

� → L
� be two

monotone functions with respect to � and �� respectively. Let α : L → L
� be a join-

morphism such that α ◦ F �̇�F � ◦ α, where �̇� is the lifting of the ordering operator
��to functions. Let a ∈ L be a pre-fixpoint of F . Then α(lfp�a F) �� lfp�α(a) F �.

Properties

According to [46], by the term program property we mean a property of program
executions, i.e. a property of program trace semantics. Given a program semantic
domain S, the corresponding program properties belong to ℘(S).

3.3. Combination of Domains 17

Definition 3.4 (Valid property for a program). We said that a property Prop ∈ ℘(S)
is valid for a program P (or that P satisfies/has property Prop) if and only if property
Prop is implied by the semantics of the program that is {PT�P�} ⊆ Prop.

Abstraction is the process of considering part of the program semantic properties
which are of interest in some reasoning or computation. This considered subset of
all possible program properties is called the set of abstract properties.

3.3 Combination of Domains

Since abstract interpretation framework was defined, an its important feature has
been the possibility to combine different abstractions to each other. As write in
[50], the ideal method in order to construct a program analyzer consist in a separate
design and implementation of various complementary program analysis frameworks
which could then be systematically combined using a once for all implemented assem-
bler. In fact, one commonly used method to create more precise abstract domains
is by combining simpler ones.

There are two frequently used notions of lattice combinations in the literature:
the cartesian product (or direct product), and the reduced product [75]. Both these
combinations yield a lattice whose elements are a cartesian product of the elements
of the individual lattices. The difference is that the lattice operations in the direct
product are performed component-wise, while in case of the reduced product the
lattice operations take into account both components simultaneously.

Cartesian Product. Let �C,�,��, �D�
0,�

�
0� and �D�

1,�
�
1� be three complete lat-

tices. More precisely, C is a concrete domain and D0 and D1 are two abstract
domains such that C −−−→←−−−

γ0

α0
D

�
0 and C −−−→←−−−

γ1

α1
D

�
1. The cartesian product of D

�
0 and

D
�
1 is �D�

0 × D
�
1� and it is in relation with C by the functions α : C → �D

�
0 × D1�

and γ : �D�
0 × D

�
1� → C defined as follows. Consider c ∈ C and �d�

0, d
�
1� ∈ �D

�
0 × D

�
1�,

α(c) = �α0(c), α1(c)� and γ(�d�
0, d

�
1�) = γ0(d

�
0) � γ1(d

�
1). In this way we find the

information about both domains at the same time, but we do not learn more by
performing all analyses simultaneously than by compute them one after another
and finally taking their conjunctions.

Reduced Product. Differently, the advantage of the reduced product is that each
analysis in the abstract composition benefits from the information brought by the
other analyses. The reduced product was proposed by Cousots [50] to overcome
some of the limitations of the direct product. It is based on clustering into equiva-
lence classes the elements of the direct product having the same concretization and
working on the more precise representative of each class. Formally, consider the
three complete lattice �C,�,��, �D�

0,�
�
0� and �D�

1,�
�
1� and the respective relations,

18 3. Abstract Interpretation Theory

C −−−→←−−−
γ0

α0
D

�
0 and C −−−→←−−−

γ1

α1
D

�
1. Let � : D

�
0 × D

�
1 → D

�
0 × D

�
1 be the reduce operator,

defined as follows.

�(�d�
0, d

�
1�) = �{�e

�
0, e

�
1� | γ0(e

�
0) � γ1(e

�
1) = γ0(d

�
0) � γ1(d

�
1)}

The reduced product domain is the domain D
� = {�(�d�

0, d
�
1�) | d

�
0 ∈ D

�
0 ∧ d

�
1 ∈ D

�
1}.

It’s clear that, in this way, we obtain a domain which is more precise than the
cartesian product.

Concluding, the abstract domains combination provides a good way to increase
the accuracy of the analysis. In some cases, specializations of these combined do-
mains are developed. For instance, the open product [40] was defined to improve the
direct product by letting the domains interact, by letting operations in one domain
asks queries to other domains.

3.4 Widening and Narrowing Operators

3.4.1 Introduction

Abstract Interpretation is a general theory of approximation of mathematical struc-
tures based on two main key-concepts: the correspondence between concrete and ab-
stract semantics through Galois connections/insertions, and the feasibility of a fixed
point computation of the abstract semantics, through, the combination of widening
(to get fast convergence) and narrowing operators (to improve the accuracy of the
resulting analysis).

Galois connections have been widely studied, yielding to a suite of general tech-
niques to manage the combination of abstract domains, e.g. different kind of prod-
ucts [50, 74, 40], and more sophisticated notions like the quotient [37], the comple-
ment [36], and the powerset [70] of abstract domains, but not much attention has
been given to provide general results about widening and narrowing operators.

Nevertheless, widening and narrowing operators play a crucial role in particular
when infinite abstract domains are considered to ensure the scalability of the analysis
to large software systems, as it has been shown in the case of the Astrée project for
analysis of absence of run-time error of avionic critical software [45].

The first infinite abstract domain (that of intervals) was introduced in [47]. This
abstract domain was later used to prove that, thanks to widening and narrowing
operators, infinite abstract domains can lead to effective static analyses for a given
programming language that are strictly more precise and equally efficient than any
other one using a finite abstract domain or an abstract domain satisfying chain
conditions [51].

Specific widening and narrowing operators have been also designed not only
for numerical domains but also for type graphs [145], in domains for reordering
CLP(RLin) programs [121], and in the analysis of programs containing digital filters
[61], just to name a few. More recently, widenings have been used also to infer loop

3.4. Widening and Narrowing Operators 19

invariants inside an STM solver [125], in trace partitioning abstract domains [122]
and in string analysis for string-generating programs [78].

The main challenge for widening and narrowing operators is when considering
numerical domains. For instance, the original widening operator proposed by Cousot
and Halbwachs [54] for the domain of convex polyhedra, has been improved by re-
cent works by Bagnara et al [12], and further refined for the domain of pentagons
by Logozzo et.al. in [93]. In [13], the authors define three generic widening method-
ologies for a finite powerset abstract domain. The widening operators are obtained
by lifting any widening operator defined on the base-level abstract domain. The
proposed techniques are instantiated on powersets of convex polyhedra, a domain
for which no non-trivial widening operator was previously known.

We observed that, with the noticeable exception of [51, 13], there is still a lack
of general techniques that support the systematic construction of widening and
narrowing operators. This is mainly due to the fact that the definition of widening
provides extremely weak algebraic properties, while it is extremely demanding with
respect to convergence and termination.

This section presents the results obtained in [41], which filled this gap, and to
set the ground for a systematic design of widening and narrowing operators either
when they are defined on sets and when they are redefined on pairs. The advantages
of suitable combinations of widening and narrowing operators are illustrated on a
suite of examples, ranging from interval to powerset domains.

Note that all the proofs of the theorems presented in this Chapter are in Ap-
pendix B.

3.4.2 Widening Operator

In Abstract Interpretation, the collecting semantics of a program is expressed as a
least fix-point of a set of equations. The equations are solved over some abstract do-
main that captures the property of interest to be analyzed. Typically, the equations
are solved iteratively; that is, successive approximations of the solution is computed
until a fix-point is reached. However, for many useful abstract domains, such chains
can be either infinite or too long to let the analysis be efficient. To make use of these
domains, abstract interpretation theory provides very powerful tools, the widening
operators, that attempt to predict the fix-point based on the sequence of approxi-
mations computed on earlier iterations of the analysis on a cpo or on a (complete)
lattice. The degradation of precision of the solution obtained by widening can be
partly restored by further applying a narrowing operator [51].

Definition 3.5 (set-widening [50, 53]). Let (P,≤) be a poset. A set-widening oper-
ator is a partial function ∇� : ℘(P) � P such that

(i) Covering: Let S be an element of ℘(P). If ∇�(S) is defined, then ∀x ∈ S,
x ≤ ∇�(S).

20 3. Abstract Interpretation Theory

(ii) Termination: For every ascending chain {xi}i≥0, the chain defined as

y0 = x0, yi = ∇�({xj | 0 ≤ j ≤ i})

is ascending too, and it stabilizes after a finite number of terms.

The definition above has been used in [59], for fix-point computations over sets
represented as automata, in a model checking approach.

Example 1. Consider the lattice of intervals L = {⊥}∪{[�, u] | � ∈ Z∪{−∞}, u ∈
Z ∪ {+∞}, � ≤ u}, ordered by: ∀x ∈ L,⊥ ≤ x and [�0, u0] ≤ [�1, u1] if �1 ≤

�0 and u0 ≤ u1. Let k be a fixed positive integer constant, and I be any set of
indices. Consider the threshold widening operator defined on L by:

∇k
�({⊥}) = ⊥

∇k
�({⊥}∪ S) = ∇k

�(S)
∇k

�({[�i, ui] : i ∈ I}) = [h1, h2]

where
h1 = min{�i : i ∈ I} if min{�i : i ∈ I} > −k, else −∞

h2 = max{ui : i ∈ I} if max{ui : i ∈ I}) < k, else +∞.

Observe that for all k, ∇k
� is associative, and monotone. Observe that ∇k

∗ may widen
also the singletons. For instance, we get ∇7

�({[−8, 4]}) = [−∞, 4].

Definition 3.6 (pair-widening [51], [116]). Let (P,≤) be a poset. A pair-widening
operator is a binary operator ∇ : P× P → P such that

(i) Covering: ∀x, y ∈ P : x ≤ x∇y, and y ≤ x∇y.

(ii) Termination: For every ascending chain {xi}i≥0, the ascending chain defined
as

y0 = x0, yi+1 = yi∇xi+1

stabilizes after a finite number of terms.

Definition 3.7 (extrapolator). Let (P,≤) be a poset. A binary operator • : P×P →

P is called extrapolator if it satisfies the covering property, i.e. ∀x, y ∈ P : x ≤ x • y,
and y ≤ x • y.

Observe that pair-widening operators are not necessarily neither commutative nei-
ther monotone, nor associative, while these properties are crucial for chaotic iteration
fixpoint algorithms [116].

Example 2. Consider the binary operator introduced in [47] on the same lattice of
Intervals of Example 1:

⊥∇x = x

x∇⊥ = x

[�0, u0]∇[�1, u1] = [if �1 < �0 then −∞ else �0,
if u0 < u1 then +∞ else u0].

3.4. Widening and Narrowing Operators 21

∇ is a pair-widening operator, as it satisfies both covering and termination require-
ments of Def.3.6.
Observe that the operator is not commutative, as for instance

[2, 3]∇[1, 4] = [−∞, +∞]
[1, 4]∇[2, 3] = [1, 4]

Moreover, in order to see that it is not monotone, consider [0, 1] ≤ [0, 3]. We have:

[0, 1]∇[0, 2] = [0 +∞]
[0, 3]∇[0, 2] = [0, 3].

and of course [0, +∞] is not smaller or equal to [0, 3]. Finally, observe that asso-
ciativity does not hold either:

[0, 2]∇([0, 1]∇[0, 2]) = [0 +∞]
([0, 2]∇[0, 1])∇[0, 2] = [0, 2].

Let us come back to the two definitions of widening operators introduced before.
We see how to build a set-widening out of a pair-widening operator.

Theorem 3.6. Let (P,≤) be a poset, and let ∇ : P × P → P be a pair-widening
operator on P. Define ∇� : ℘(P) � P such that:

- dom(∇�) = R1 ∪ R2, where
R1 = {{x, y} | x, y ∈ P}, and
R2 = {S ⊆ P | S is a finite ascending chain}.

- ∀{x, y} ∈ R1,

∇�({x, y}) =def

�
x∇y if x ≤ y

z ∈ {x∇y, y∇x} randomly, otherwise.

- ∀S = {xi | x0 ≤ x1 ≤ · · · ≤ xj} ∈ R2,
∇�(S) =def (((x0∇x1)∇x2 . . .)∇xj).

Then ∇� is a set-widening operator.

The notion of set-widening is weaker than the notion of pair-widening. This is why,
in general, there is no way to prove the dual of Theorem 3.6, which can be stated
only under restricted conditions.

Theorem 3.7. Let (P,≤) be a poset, and let ∇� : ℘(P) � P be a set-widening
operator on P such that

- dom(∇�) ⊇{{ x, y} | x, y ∈ P}, and

- ∀S ⊆ P, ∀x ∈ P, if S ∪ {x} ⊆ dom(∇�) then also S ⊆ dom(∇�)

22 3. Abstract Interpretation Theory

- ∀S ⊆ P, ∀x ∈ P, ∇�(S ∪ {x}) = ∇�({∇�(S), x}).

Then, the binary operator ∇ : P × P → P defined by x∇y = ∇�({x, y}) is a pair-
widening operator.

Observe that the set-widening operator ∇k
� of Example 1 satisfies the conditions of

Theorem 3.7 above, yielding to a corresponding pair-widening operator.

3.4.3 Narrowing Operator

Similarly, two different general definitions of narrowing operator have been intro-
duced. The first one defines a narrowing operator as a partial function on the
powerset of a poset P, while the second one defines it as a binary (total) function
on a poset P.

Definition 3.8 (set-narrowing [53, 58]). Let (P,≤) be a poset. A set-narrowing
operator is a partial function ∆� : ℘(P) � P such that

(i) Bounding: Let S be an element of ℘(P). If ∆�(S) is defined, then glb(S) exists
and there exists s ∈ S such that glb(S) ≤ ∆�(S) ≤ s.

(ii) Termination: For every decreasing chain x0 ≥ x1 ≥ . . ., the chain defined as

y0 = x0, yi = ∆�({xj | 0 ≤ j ≤ i})

is descending too, and it stabilizes after a finite number of terms.

Example 3. Let L be the lattice of intervals introduced in Example 1. We can define
∆�, a narrowing operator, on L as follows.

∆�({⊥}) = ⊥

∆�({⊥}∪ S) = ∆�(S)
∆�({[�i, ui] : i ∈ I}) = [h1, h2]

where
h1 = max{�i : i ∈ I}
h2 = min{ui : i ∈ I}

It is easy to verify that it satisfy the termination condition, as it converges immedi-
ately on decreasing chains.
Observe that ∆� is associative, and monotone. Observe that ∆� may narrow also the
singletons. For instance, we get ∆�({[−8, 4]}) = [−8, 4] and ∆�({[−8, 6], [1, 5], [−9, 11]}) =
[1, 5].

Example 4. Observe that both conditions (bounding and termination) are required
in order to get a narrowing operator. For instance, on the lattice of intervals on R
instead of Z, the operator ∆∗ defined in Example 3 fulfills the bounding condition but
it does not satisfy the termination one. Therefore, it is a not narrowing operator.

3.4. Widening and Narrowing Operators 23

Definition 3.9 (pair-narrowing [50, 51]). Let (P,≤) be a poset. A pair-narrowng
operator is a binary operator ∆ : P× P → P such that

(i) Bounding: ∀x, y ∈ P : (x ≤ y) =⇒ (x ≤ (y∆x) ≤ y).

(ii) Termination: For every decreasing chain x0 ≥ x1 ≥ . . ., the decreasing chain
defined as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.

Observe that pair-narrowing operators are not necessarily neither commutative nei-
ther monotone, nor associative. Moreover observe also that if P is a meet-semi-lattice
(the greatest lower bound x� y exists for all x, y ∈ P) satisfying the decreasing chain
condition (no strictly decreasing chain in P can be infinite), then � is a narrowing.

Example 5. Consider the binary operator introduced in [51] on the same lattice of
intervals on Z of Example 1:

⊥∆x = ⊥

x∆⊥ = ⊥

[�0, u0]∆[�1, u1] = [if �0 = −∞ then �1 else �0,
if u0 = +∞ then u1 else u0]

∆ is a pair-widening operator, as it satisfies both bounding and termination require-
ments of Definition 3.9.

[−∞, +∞]∆[−∞, 101] = [−∞, 101]
[1, +∞]∆[50, 100] = [1, 100]

[1, 4]∆[2, 3] = [1, 3]

Let us come back to the two definitions of narrowing operators introduced above.
Like in the case of widening, we study how we can build a set-narrowing operator
out of a pair-narrowing operator, and viceversa.

Theorem 3.8. Let (P,≤) be a poset, and let ∆ : P × P → P be a pair-narrowing
operator on P. Define ∆� : ℘(P) � P such that:

- dom(∆�) = R1 ∪ R2, where
R1 = {{x, y} | x, y ∈ P : ∃ glb(x, y)}, and
R2 = {S ⊆ P | S is a finite descending chain}.

- ∀{x, y} ∈ R1,

∆�({x, y}) =def

�
y∆x if x ≤ y

glb({x, y}) otherwise.

- ∀S = {xi | x0 ≥ x1 ≥ · · · ≥ xj} ∈ R2,
∆�(S) =def ((((x0∆x1)∆x2)∆) . . . ∆xj).

24 3. Abstract Interpretation Theory

Then ∆� is a set-narrowing operator.

Theorem 3.9. Let (P,≤) be a poset, and let ∆� : ℘(P) � P be a set-narrowing
operator on P such that

1. dom(∆�) ⊇{{ x, y} | x, y ∈ P}, and

2. ∀S ⊆ P, ∀x ∈ P, if S ∪ {x} ⊆ dom(∆�) then also S ⊆ dom(∆�)

3. ∀S ⊆ P, ∀x ∈ P, ∆�(S ∪ {x}) = ∆�({∆�(S), x}).

Then, the binary operator ∆ : P × P → P defined x∆y = ∆�({x, y}) is a pair-
narrowing operator.

3.4.4 Combination of Widening and Narrowing Operators

Widening and Narrowing

In order to better understand how widening and a narrowing operators can be
combined in an effective way, consider the following example on the finite powerset
domain of intervals.

The design of a successful widening is a very delicate task that is not only de-
pendent on the considered abstract domain but also on the particular analysis or
verification application. An important contribution in such context is [13], which
introduces three methodologies for the design of widening operators. All of these
methodologies are based on the same extrapolator, while they differ on the termi-
nation property: the first one poses constraints on the cardinality of the arguments,
the second one uses connectors (as, for example, Egli-Milner Connectors), and the
last one is certificate-based.
Notice that these generic widening constructions are applicable to any finite power-
set abstract domain, encoding either numerical or symbolic information.

Example 6. Let L be the lattice of intervals introduced in Example 1, and let ℘
f (L)

be its finite powerset. For A, B ∈ ℘f (L), we say A � B if and only if ∀x ∈ A, ∃y ∈ B

such that x ≤ y. Consider the function reduce : ℘f (L) → ℘f (L) defined as ∀A ⊆ L,
reduce(A) is the maximal subset of A such that ∀x, y ∈ A : x < y ⇒ x /∈ reduce(A).
Observe that reduce(A) � A and A � reduce(A).
The closure of A ⊆ L, denoted by A, is the superset of A such that ∀x, y ∈ A, such
that x ∩ y �= ∅, the least upper bound x � y ∈ A.
For X ⊆ L, we denote by min(X) the minimal value, and by max (X) the maximal
value, e.g. min({[3, 8], [2, 5], [1, 4]}) = 1 and max ({[3, 8], [2, 5], [1, 4]}) = 8.
By minInt(X) we denote the interval which have min(X) as bottom value and, anal-
ogously, by maxInt(X) the interval having max (X) as top value, e.g. minInt({[3, 8],
[2, 5], [1, 4]}) = [1, 4] and maxInt({[3, 8], [2, 5], [1, 4]}) = [3, 8].
For any positive constant k, we can define the pair-widening ∇k : ℘f (L) × ℘f (L) →
℘f (L) as follows.
Let A, B be elements of ℘f (L).

3.4. Widening and Narrowing Operators 25

• If the cardinality of reduce(A ∪ B) is smaller or equal to k, then A∇k
B =

reduce(A ∪ B).

• Otherwise, let R = reduce(W) where W is obtained by:

– W = A ∪ B

– If the cardinality of reduce(W) is greater than k and ∃s� ∈ B such that
max(s�) > max(A) then:
let r ∈ A be the interval such that max(r) = max(A) then W = W ∪

[min(r), +∞].

– And if the cardinality of reduce(W) is greater than k and ∃s� ∈ B such
that min(s�) < min(A) then:
let r ∈ A be the interval such that min(r) = min(A) then W = W ∪

[−∞, max(r)].

• While the cardinality of R is greater than k:
let s, s� ∈ R such that |min(s�)−max(s)| is minimal in R, then R = (R\{s, s�})∪
{(s � s

�)}.

• A∇k
B = R.

Observe that if Y = A∇k
B, then the cardinality of Y is always smaller or equal to k.

For instance, if

A = {[−5, 2], [1, 6], [11, 23], [27, 33], [30, 35], [36, 40]}

and
B = {[−2, 3], [9, 15], [32, 35], [37, 42]}

then
A∇

3
B = {[−5, 6], [9, 23], [27, +∞]}.

In fact , as the cardinality of reduce(A∪B) is 4, which is greater than k = 3, and there
exists an interval s in B (namely [37, 42]) such that min(s) > max(A), the set W =
A∪B∪ {[36, +∞]} is computed. Then, its closure W = W∪ {[−5, 6], [−5, 3], [−2, 3],
[9, 23], [27, 35], [36, 42]} is computed. Finally, the reduce operator is applied, yielding
to reduce(W) = {[−5, 6], [9, 23], [27, +∞]}.

Notice that this widening operator satisfies the constraints in [13], as it merges
an extrapolation heuristics “∇-covered” and a “k-collapsor”, as requested to obtain
a “cardinality-based” widening. In addition, our operator can be applied also on not
comparable elements, whereas the generic construction provided by Bagnara et.al.
requires that the first element is less than second one.

Similarly, we can define a corresponding pair-narrowing operator ∆k : ℘f (L) →
℘(L). Let A, B ∈ ℘f (L) such that A � B, B∆k

A is defined as follows.

26 3. Abstract Interpretation Theory

• Let A
� = reduce(A) = {s1, . . . , sn}, B

� = reduce(B) = {q1, . . . , qm} and R = A
�.

• If min(A�) = −∞ then R = R\{minInt(A�)}∪{minInt(B�)}, and if max(A�) =
+∞ then R = R \ {maxInt(A�)} ∪ {maxInt(B�)}.

• For each qi ∈ B
�.

– Let Hi = {sj ∈ R | sj ≤ qi}

– If cardinality of Hi is greater than 1.

• Let a, b ∈ Hi such that |min(b)−max(a)| is minimal in Hi.

• R = reduce(R \ {a, b} ∪ {lub(a, b)}).

– If the cardinality of R is smaller than k then break.

• B∆k
A = R.

Observe that ∆k is a pair-narrowing operator, as it satisfies both bounding and
termination properties.
For instance, if

A = {[−10,−6], [−5,−2], [−1, 0], [1, 3], [9, 13], [18, 20], [23, 27], [29, +∞]}

and
B = {[−10, 3], [7, 13], [16, +∞]}

then we have
B∆3

A = {[−10, 3], [9, 13], [16, +∞]}

As an example on how the widening and narrowing operators just introduced can be
combined in order to accelerate the fix-point computation without loosing too much
accuracy, consider the function F : ℘f (L) → ℘f (L) defined by

F ≡ λX.((((X � {[1, 2]}) ∪ {(maxInt(X)⊕ [2, 2])}) \ {⊥}) � {[100, 100]})

where ⊕ : L×L → L such that ⊥⊕X = X⊕⊥ = ⊥ and [�0, u0]⊕[�1, u1] = [�0+�1, u0+
u1]. The computation of the fix-point of F starting from the ⊥ element, would require
at least 50 steps, getting to the fixpoint element {[1, 2], [3, 4], . . . , [100, 100]}. In order
to accelerate the fix-point computation of F , first we use the widening operator ∇3

defined above.

X0 = {⊥}

X1 = X0∇
3((((X0 � {[1, 2]}) ∪ {(maxInt(X0)⊕ [2, 2])}) \ {⊥}) � {[100, 100]})

= {[1, 2]}
X2 = {[1, 2], [3, 5]}

...
X4 = {[1, 2], [3, 4], [5, +∞]} = X5

3.4. Widening and Narrowing Operators 27

The fix-point is obtained in 5 steps, but the accuracy of the result is not satisfactory
as it completely looses the rightmost bound. Nevertheless, this lack of precision can
be recovered by applying the narrowing operator ∆3.

Y0 = X4

Y1 = Y0∆3((((Y0 � {[1, 2]}) ∪ {(maxInt(Y0)⊕ [2, 2])}) \ {⊥}) � {[100, 100]})
= {[1, 2], [3, 4], [5, 100]}

Y2 = {[1, 2], [3, 4], [5, 100]} = Y1

Observe that ∆3 requires only 3 steps to converge. We obtain as a final result the
set {[1, 2], [3, 4], [5, 100]}, which is not as precise as the least fix-point computation
mentioned above, but that has the advantage of being reached dramatically quicker,
and of preserving accuracy about the rightmost bound of the possible values of F .

Widening, Narrowing and Cartesian Product

The next theorems show how pair-widening and pair-narrowing operators can be
combined when considering the cartesian product of posets.

Theorem 3.10. Let ∇A and ∇D be pair-widening operators defined on the posets
A and D, respectively.
The binary operator ∇ : (A × D) × (A × D) → (A × D) defined by ∀�a, d�, �a�, d�� ∈
A× D : �a, d�∇�a�, d�� = �a∇Aa

�, d∇Dd
�� is a pair-widening operator.

Theorem 3.11. Let ∆A and ∆D be pair-narrowing operators defined on the posets
A and D, respectively.
The binary operator ∆ : (A × D) × (A × D) → (A × D) defined by ∀�a, d�, �a�, d�� ∈
A× D : �a, d�∆�a�, d�� = �a∆Aa

�, d∆Dd
�� is a pair-narrowing operator.

A corresponding result can be obtained also for set-widening and set-narrowing
operators.

Widening and Narrowing Operators on the same poset

What happens when more than one widening (or narrowing) operators are defined
on a poset P? Is it possible to get a more precise and/or a more efficient operator
by combining them in a suitable way? Unfortunately, in general the answer is
negative. And the reason relies on the fact that the possibly non monotonic behavior
of the widening (or narrowing) operators becomes an issue when trying to prove
termination of their combination on an ascending (and descending for narrowing)
chain. However, as soon as stronger termination conditions are guaranteed on the
poset P , some positive results can be easily derived.

28 3. Abstract Interpretation Theory

Theorem 3.12. Let (P,≤) be a lattice satisfying the ascending chain property. Let
∇1,∇2 be two pair-widening operators on P. Then, the binary operators ∇�,∇�
defined by

x∇� y = (x∇1 y) � (x∇2 y)
x∇� y = (x∇1 y) � (x∇2 y)

are pair-widening operators.

This result may apply for instance to widening operators defined on the (infinite)
domain of congruences [73], where prime factorization is an issue, in order to tune
performance vs. accuracy of the analysis. In fact, ∇� may gain in efficiency with
respect to both ∇1 and ∇2, while ∇� may better keep accuracy, thus returning a
more accurate result.
A corresponding result can be obtained with narrowing operators.

Theorem 3.13. Let (P,≤) be a lattice satisfying the descending chain property. Let
∆1, ∆2 be two pair-narrowing operators on P. Then, the binary operators ∆�, ∆�
defined by

x ∆� y = (x ∆1 y) � (x ∆2 y)
x ∆� y = (x ∆1 y) � (x ∆2 y)

are pair-narrowing operators.

Similar results can be easily derived by similar proofs also for set-widening and
set-narrowing operators.

Theorem 3.14. Let (P,≤) be a lattice satisfying the ascending chain property. Let
∇∗1,∇∗2 be two set-widening operators on P. Then, the operators ∇∗�,∇∗� defined
by

∇∗�({S}) = (∇∗1({S})) � (∇∗2({S}))
∇∗�({S}) = (∇∗1({S})) � (∇∗2({S}))

are set-widening operators.

Theorem 3.15. Let (P,≤) be a lattice satisfying the descending chain property. Let
∆∗1, ∆∗2 be two set-widening operators on P . Then, the operators ∆∗�, ∆∗� defined
by

∆∗�({S}) = (∆∗1({S})) � (∆∗2({S}))
∆∗�({S}) = (∆∗1({S})) � (∆∗2({S}))

are set-narrowing operators.

Strong Widening and Narrowing Operators

For numerical domains like polyhedra, where the abstract elements computed at each
iteration of the analysis are not necessarily ordered, stronger notions of widening
and narrowing are used for forcing the termination of the analysis. This is the
case, for instance, of the trace partitioning abstract domain of Astrée, an abstract

3.4. Widening and Narrowing Operators 29

interpretation-based analyzer aiming at proving automatically the absence of run
time errors in programs written in the C programming language, which has been
applied with success to large safety critical real-time software for avionics [24, 45].

Definition 3.10 (strong pair-widening [122]). Let (P,≤) be a poset. A strong pair-
widening operator is a binary operator ∇ : P× P → P such that

(i) Covering: ∀x, y ∈ P : x ≤ x∇y, and y ≤ x∇y.

(ii) Termination: For every sequence {xi}i≥0, the ascending chain defined as y0 =
x0, yi+1 = yi∇xi+1 stabilizes after a finite number of terms.

Observe that this definition is strictly stronger than Definition 3.6, as termination
is required starting from every (not necessarily increasing) sequence.

Example 7. The octagon domain [106, 108] is based on invariants of the form
±x±y ≤ c, where x and y are numerical variables and c is a numeric constant. Sets
described by such invariants are special kind of polyhedra called octagons because they
feature at most eight edges in dimension 2. These constraints are expressed through
Difference Bound Matrices, which are adjacency matrices of weighted graphs. The
widening operator defined on this domain consists on removing unstable constraints.
In this case, termination has to be guaranteed for the chain of widened elements
starting from a sequence of elements possibly incomparable. This is why the strongest
notion of pair widening has to be used.
Notice however that as an alternative to the strong pair-widening, Bagnara et.al.
[11] introduced a different representation of the octagons to ensure that the standard
pair-widening can be applied. This approach is applied in [11] to several weakly-
relational domains, but it can be generalized to other domains.

The two notions of Pair-widening and Strong pair-widening are equivalent for
a lattice P, under associativity conditions, as shown in Theorem 3.16. In order to
prove it, we introduce the following auxiliary Lemma.

Lemma 3.1. Let ∇ be a pair-widening operator on a lattice (P,≤), such that for
every finite set {xi}0≤i≤n and for every y ∈ P, (((x0∇x1)∇ . . .)∇xn) ∇ (x0�x1� · · ·�

xn � y) = (((x0∇x1)∇ . . .)∇xn)∇y, then ∇ is a strong pair-widening operator.

Theorem 3.16. Let ∇ be an associative pair-widening operator on a lattice (P,≤),
such that for ∀x, y ∈ P : x∇y = x∇(x�y), then ∇ is a strong pair-widening operator.

Example 8. The pair-widening operator on intervals obtained from the set-widening
of Example 1 following the construction of Theorem 3.7, satisfies the condition of
Theorem 3.16, and it is in fact a strong pair widening operator.
However, not every pair-widening operator is also a strong one. On the same lattice
of intervals, consider for instance the pair-widening ∇ defined by:

30 3. Abstract Interpretation Theory

⊥∇x = x and x∇⊥ = x

[�0, u0]∇[�1, u1] = =

[−∞, +∞]
if [�0, u0] ≤ [�1, u1] or [�1, u1] ≤ [�0, u0]

[min(�0, �1), max(u0, u1)]
otherwise

On increasing sequences, the widened sequence terminates immediately, whereas if we
consider for instance the sequence {[i, i + 1]}i≥0, ∇ yields to the ascending sequence
{[0, i]}i≥1, which does not terminate.

Definition 3.11 (strong pair-narrowing). Let (P,≤) be a poset. A strong pair-
narrowing operator is a binary operator ∆ : P× P → P such that

(i) Bounding: ∀x, y ∈ P : (x ≤ y) =⇒ (x ≤ (y∆x) ≤ y).

(ii) Termination: For every sequence {xi}i≥0, the decreasing chain defined as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.

Example 9. The following strong narrowing operator has been introduced in [47].

x∆⊥ = ⊥

[�0, u0]∆[�1, u1] = [if �0 = −∞ then �1 else min(�0, �1),
if u0 = +∞ then u1 else max(u0, u1)]

∆ is a pair-narrowing operator, as it satisfies both bounding and termination re-
quirements of Def.3.11. For instance:

[−∞, +∞] ∆ [−∞, 101] = [−∞, 101]
[−∞, 101] ∆[0 , 100] = [0, 101]

[0, 100] ∆[0 , 99] = [0, 100]

The two notions of pair-narrowing (Definition 3.9) and strong pair-narrowing
(Definition 3.11) are equivalent for a lattice P, under associativity conditions, as
shown in Theorem 3.17. In order to prove it, we introduce the following auxiliary
Lemma.

Lemma 3.2. Let ∆ be a pair-narrowing operator on a lattice (P,≤), such that for
every finite set {xi}0≤i≤n and for every y ∈ P, (((x0∆x1)∆ . . .)∆xn) ∆ (x0�x1� · · ·�

xn � y) = (((x0∆x1)∆ . . .)∆xn)∆y, then ∆ is a strong pair-narrowing operator.

Theorem 3.17. Let ∆ be an associative pair-narrowing operator on a lattice (P,≤),
such that for ∀x, y ∈ P : x∆y = x∆(x�y), then ∆ is a strong pair-narrowing operator.

3.4. Widening and Narrowing Operators 31

Lower Bound Pair-Narrowing

When considering narrowing operators for numerical domains other slightly different
notions of narrowing have been introduced in the literature, where different bounding
constraints are considered: x∆y is bound to be greater than x� y and lower than x.

Definition 3.12 (lower-bound pair-narrowing [107]). Let (P,≤) be a meet-semi-
lattice. A lower-bound pair-narrowing operator is a binary operator ∆ : P× P → P

such that

(i) Bounding: ∀x, y ∈ P : (x � y) ≤ (x∆y) ≤ x.

(ii) Termination: For every decreasing chain x0 ≥ x1 ≥ . . ., the decreasing chain
defined as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.

Observe that not every pair-narrowing operator is also a lower-bound pair-narrowing.
For example, the pair-narrowing of Example 5 doesn’t satisfy the above condition.
When modifying the termination constraints in Definition 3.12, we get:

Definition 3.13 (strong lower-bound pair-narrowing [107]). Let (P,≤) be a poset.
A strong lower-bound pair narrowing operator is a binary operator ∆ : P × P → P

such that

(i) Bounding: ∀x, y ∈ P : (x � y) ≤ (x∆y) ≤ x.

(ii) Termination: For every sequence x0 ≥ x1 ≥ . . ., the decreasing chain defined
as

y0 = x0, yi+1 = yi∆xi+1

stabilizes after a finite number of terms.

Example 10. This notion of narrowing operator is introduced, for the octagon do-
main, in [106, 108], with the strong widening operator defined in Definition 3.10.

Under particular conditions, the two notions of pair-narrowing and strong lower-
bound pair-narrowing are equivalent.

Theorem 3.18. Let (P,≤) be a meet-semi-lattice (the greatest lower bound x � y

exist for all x.y ∈ L) satisfying the descending chain condition (no strictly decreasing
chain in L can be infinite). Let ∆ : P × P → P be a pair-narrowing operator such
that x∆y = x � y. Then ∆ is a strong lower-bound pair-narrowing.

We can bind pair-narrowing and lower-bound pair-narrowing throught next two
theorems.

32 3. Abstract Interpretation Theory

Theorem 3.19. Let (P,≤) be a poset and ∆ be a pair-narrowing (Definition 3.9).
If ∀v, w : v∆(v � w) = v∆w, then ∆ is a lower bound pair-narrowing (Definition
3.12).

Theorem 3.20. Let (P,≤) be a poset and ∆ be a lower-bound pair-narrowing (Def-
inition 3.12).
Consider x∆y, it’s simple to prove that ∀x, y ∈ P : y ≤ x than ∆ is a pair-narrowing
(Definition 3.9).

Widening and Narrowing Operators wrt Galois Insertions

Widening operators have already been used in order to derive abstract domains [147].
The next results show how to derive Galois insertions by introducing an abstrac-
tion function built on top of a widening operator. In order to do that, additional
requirements have to be assumed on the widening operator, like idempotence and
order-preservation on pairs/singletons.

Theorem 3.21. Let ∇ be a pair-widening operator on a complete lattice (L,≤)
such that ∀x, y ∈ L : x ≤ y ⇒ x∇x ≤ y∇y. Let A be the set {x∇x | x ∈ L}. Then
α

LA(x) = x∇x is the lower adjoint of a Galois insertion between L and A, with the
upper adjoint being the identity function.

A corresponding result can be obtained also for set-widening operators.

Theorem 3.22. Let ∇� be a set-widening operator on a complete lattice (L,≤) such
that ∇�({x}) is defined for each x in L, and such that ∀x, y ∈ L : x ≤ y ⇒ ∇�({x}) ≤
∇�({y}). Let A be the set {∇�({x}) | x ∈ L}. Consider the function αLA : L → A

defined by αLA(x) = ∇�({x}). Then, αLA is the lower adjoint of a Galois insertion
between L and A, with the upper adjoint being the identity function.

Widening, Narrowing and Abstraction

The following theorem shows that pair widening is preserved through abstraction.

Theorem 3.23. Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a Galois

insertion. Let ∇C be a pair-widening on C. The binary operator ∇D defined by
∀d1, d2 ∈ D, d1∇Dd2 = αCD(γDC(d1)∇CγDC(d2)) is a pair-widening operator on D.

A corresponding result can be obtained also for set-widening operators.

Theorem 3.24. Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a Galois

insertion. Let ∇∗C be a set-widening on C. The operator ∇∗D defined by ∀S ∈ D,
∇∗D(S) = αCD(∇∗C(γDC(S)) is a set-widening operator on D.

As a corollary of Theorem 3.23, we can prove that pair-widening operators are
preserved also when projecting a cartesian product of lattices on one of its compo-
nents.

3.4. Widening and Narrowing Operators 33

Corollary 3.1. Let A and D be complete lattices, and let ∇ be a pair-widening
operator over the cartesian product A × D. Let π1 be the projection on the first
argument. The binary operator ∇A : A× A → A defined by

a∇Aa
� = π1(�a,��∇�a

�,��)

is a pair-widening operator.

Similarly, also, we can prove that narrowing operators are preserved by abstrac-
tion.

Theorem 3.25. Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a Galois

insertion. Let ∆C be a pair-narrowing on C. The binary operator ∆D defined by
∀d1, d2 ∈ D, d1∆Dd2 = αCD(γDC(d1)∆CγDC(d2)) is a pair-narrowing operator on D.

A corresponding result holds also for set-narrowing operators.

Theorem 3.26. Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a Galois

insertion. Let ∆∗C be a set-narrowing on C. The operator ∆∗D defined by ∀S ∈ D,
∆∗D(S) = αCD(∆∗C(γDC(S)) is a set-narrowing operator on D.

As for widening operator, we can prove that pair-narrowing operators are pre-
served also when projecting a cartesian product of lattices on one of its components.

Corollary 3.2. Let A and D be complete lattices, and let ∆ be a pair-narrowing
operator over the cartesian product A × D. Let π1 be the projection on the first
argument. The binary operator ∆A : A× A → A defined by

a∆Aa
� = π1(�a,��∆�a

�,��)

is a pair-narrowing operator.

Widening, Narrowing and Reduced Product

A very important operator for combining abstract domains in Abstract Interpre-
tation, is the reduced product [50]. We have already seen in Theorem 3.10 and in
Theorem 3.11 that the pair-widening and pair-narrowing operators can be combined
when considering the cartesian product of two posets. Unfortunately, this result can-
not be fully extended to the reduced product, due to the fact that pair-widening
and pair-narrowing operators in general are not required to be monotone. However,
getting results relating widening and narrowing operators in case of reduced product
may have great impact on abstract domains used for the analysis of critical software.
For instance, the octagon domain [108] can be seen as the reduced product of 2n2

abstract domains, each one of them focusing on an invariant of the form ±x± y ≤ c.

34 3. Abstract Interpretation Theory

Definition 3.14. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Consider the function reduce:A×D → A×D defined by reduce(�a, d�) = �{�a�, d�� |
γAC(a) � γDC(d) = γAC(a

�) � γDC(d
�)}

The reduced product A � D is defined as follows:

A � D = {reduce(�a, d�) | a ∈ A, d ∈ D}.

Moreover, the function γ : A � D → C defined by γ(�a, d�) = γAC(a) � γDC(d) is the
upper adjoint of a Galois insertion between A � D and the domain C.

We can prove (Lemma 3.4) that by combining two pair-widening operators in
the reduced product at least covering is preserved, i.e. we can obtain an extrapola-
tion operator (which does not necessarily terminate on ascending sequences, see for
instance the domain of octagons [108]). The following auxiliary Lemma says that
reduce behaves well with respect to the ordering in the reduced product A � D.

Lemma 3.3. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC
A

be Galois insertions. For â ∈ A, d̂ ∈ D, �a, d� ∈ A � D, if a ≤ â and d ≤ d̂, then
�a, d� ≤ reduce(�â, d̂�).

Lemma 3.4. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC
A

be Galois insertions.
Let ∇A and ∇D be pair-widening operators defined on the lattice A and D, respec-
tively.
The binary operator • : (A�D)×(A�D) → (A�D) defined by ∀�a, d�, �a�, d�� ∈ A�D :
�a, d� • �a�, d�� = reduce(�a∇Aa

�, d∇Dd
��) is an extrapolator operator.

The last Theorem shows that if the pairwise application of the pair-widening
operators is always an element of the reduced product, the extrapolator of Lemma
3.4 enjoys also the termination property, thus resulting into a pair-widening operator
too.

Theorem 3.27. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∇A and ∇D be pair-widening operators defined on the lattice A and D, respec-
tively, such that ∀�a, d� ∈ A � D, ∀a� ∈ A, ∀d� ∈ D : �a∇Aa

�, d∇Dd
�� ∈ A � D.

Then the binary operator ∇ : (A�D)×(A�D) → (A�D) defined by ∀�a, d�, �a�, d�� ∈
A � D : �a, d�∇�a�, d�� = reduce(�a∇Aa

�, d∇Dd
��) is a pair-widening operator.

For narrowing operators, we can define a theorem corresponding to theorem 3.27.
Also in this case we need some auxiliary lemma.

Lemma 3.5. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC
A

be Galois insertions. For a ∈ A, d ∈ D, reduce(�a, d�) ≤ �a, d�.

3.5. Conclusions 35

Lemma 3.6. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC
A

be Galois insertions. For â ∈ A, d̂ ∈ D, �a, d� ∈ A � D, if â ≤ a and d̂ ≤ d, then
reduce(�â, d̂�) ≤ �a, d�.

Theorem 3.28. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∆A and ∆D be pair-narrowing operators defined on the lattice A and D, respec-
tively, such that ∀�a, d� ∈ A � D, ∀a� ∈ A, ∀d� ∈ D : �a∆Aa

�, d∆Dd
�� ∈ A � D.

Then the binary operator ∆ : (A�D)×(A�D) → (A�D) defined by ∀�a, d�, �a�, d�� ∈
A � D : �a, d�∆�a�, d�� = reduce(�a∆Aa

�, d∆Dd
��) is a pair-narrowing operator.

We can also obtain the corresponding results for set-widening and set-narrowing
operators.

Theorem 3.29. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∇∗A and ∇∗D be set-widening operators defined on the lattice A and D, respec-
tively, such that ∀S ⊆ A � D, �∇∗A({ai | �ai, di� ∈ S}),∇D({di | �ai, di� ∈ S})� ∈
A � D.
Then the operator ∇∗ : ℘(A � D) � (A � D) defined by ∀S ⊆ A � D : ∇∗({S}) =
reduce(�∇∗A({ai | �ai, di� ∈ S}),∇∗D({di | �ai, di� ∈ S})�) is a set-widening operator.

Theorem 3.30. Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∆∗A and ∆∗D be set-narrowing operators defined on the lattice A and D, respec-
tively, such that ∀S ⊆ A � D, �∆∗A({ai | �ai, di� ∈ S}), ∆∗D({di | �ai, di� ∈ S})� ∈
A � D.
Then the operator ∆∗ : ℘(A � D) � (A � D) defined by ∀S ⊆ A � D : ∆∗({S})
= reduce(�∆∗A({ai | �ai, di� ∈ S}), ∆∗D({di | �ai, di� ∈ S})�) is a set-narrowing
operator.

3.5 Conclusions

In this chapter, we recalled some basic elements of Abstract Interpretation theory
and the main methods to increase the efficiency and the accuracy of the analyses.
On the one hand we have the combination of different domains, whereas on the
other one we can combine widening and narrowing operators to improve fix-point
computation. In particular, the combination of abstract domains will permit us to
refine the results will be obtained by the dependency analysis which will be presented
in Chapter 4.

36 3. Abstract Interpretation Theory

4
Information Flow Analysis by

Abstract Interpretation

4.1 Introduction

In this chapter, we introduce a new proposal of dependency analysis by abstract
interpretation based on [151]. A simple imperative language, defined in Section 4.2,
permits us to define the analysis and prove its correctness easily. We introduce the
positive propositional formulae, we present the new the abstract domain Pos and
finally, the Galois insertion between the concrete and abstract domains.

4.2 The Concrete Domain

4.2.1 The Language

For the sake of simplicity we consider a simple imperative language where programs
are written by labelled commands (similar to [46]) and the syntax is defined in Table
4.11. We use this language to define the analysis and prove its correctness. After-
wards, in Chapter 6, we will present the experimental results based on mainstream
object-oriented languages like Java and Scala.

Let in : C → L and f : C → L be two function. By in�c� and f �c� we denote,
respectively, the initial and final label of command c, respectively. The two function
are formally defined in Table 4.2 and 4.3.

At each command corresponds one or more actions. The set of actions, denoted
by A, consists in {�

skip, �
v := exp, �

b, �
not b, �

endif, �
done}. Let a : C → ℘(A) be

the function that, given a commands, returns the set of actions. The function a is
defined in Table 4.4.
The variables appearing in a program are implicitly declared. By the notation V(P)
we denote the set of variables in the program P and, similarly, by V(exp) and V(b)

1In the following of the thesis, we will omit the initial and final labels of statements when we
will not need them.

38 4. Information Flow Analysis by Abstract Interpretation

Table 4.1 Definition of the syntax for simple language

Variables:
v ∈ V

v ::= x | y | . . .
Expressions

exp ∈ E

exp ::= n where n ∈ N
| v

| exp1 ⊕ exp2 where ⊕ = {+,−, ∗, /}
Conditions

b ∈ B

b ::= true

| false

| b1 ⊗ b2 where ⊗ = {and, or}
| ¬b

| b1 � b2 where � = {≤, >, =}
Labeled command

� ∈ L the set of labels
c ∈ C

c ::= �
skip

| �
v := exp

| if
�
b then c1 else c2

��
endif

| c1; c2

| while
�
b do c

��
done

P ::= c
� is a program which end

with label �

the variables contained in expression exp and conditions b. The definition of these
sets is in Table 4.5.

In order to better understand the above definitions consider Example 11.

Example 11. Let P be the labelled program defined as follows.

0
x := 1;

while
1
x > 10 do

2
x := x + 1;

3
done

4

The initial and final label of P are in�P� = 0 and f �P� = 4, respectively. Whereas
the set of actions A contains {0

x := 1, 1
x > 10, 2

x := x + 1, 3
done}.

4.2. The Concrete Domain 39

Table 4.2 Definition of initial label function
Initial label function

in��
skip� def

= �

in��
v := exp� def

= �

in�if �
b then c1 else c2

��
endif� def

= �

in�c1; c2� def
= in�c1�

in�while
�
b do c

��
done� def

= �

Table 4.3 Definition of final label function
Final label function
P ::= c

� f �P� ≡ �
f �c� ≡ f �P �

c ::= �
skip f ��

skip� ≡ f �c�
| �

v := exp f ��
v := exp� ≡ f �c�

| if
�
b then c1 else c2

��
endif f �if �

b then c1 else c2
��
endif� ≡ f �c�
f �c1� ≡ ��

f �c2� ≡ ��

| c1; c2 f �c1; c2� ≡ f �c�
f �c1� ≡ in�c2�
f �c2� ≡ f �c�

| while
�
b do c

��
done f �while

�
b do c done� ≡ f �c�

f �c� ≡ �

4.2.2 Concrete Domain

An environment ρ ∈ E is a function ρ : V → N which assign to each variable the
respective value. A state σ ∈ Σ ≡ (L × E) is a pair ��,ρ � where the program label
� is the label of the statement to be executed, and the environment ρ defines the
current values of program variables.

In Example 11, the states are2: �0, ε�, �1, {x �→ 1}�, �3, {x �→ 1}�, �2, {x �→ 1}�,
�1, {x �→ 2}�, �2, {x �→ 2}�, · · · , �3, {x �→ n}�, �4, {x �→ n}�, �4, {x �→ 1}�.

We denote by E�exp�ρ and B�b�ρ the expression and the condition evaluation of
exp ∈ E and b ∈ B, respectively. Their definition are reported by Table 4.6 and 4.7,
respectively.

At the beginning of the execution, variables could be related to any value. There-
fore, the set I of possible initial states of a program P is I�P� ≡{� in�P�, ρ� | ρ ∈ E}.
In the same way, we can define F�P� as the set of possible final states of P :
F�P� ≡{� f �P�, ρ� | ρ ∈ E}.

Consider again Example 11: I�P� = {�0, ε�} and F�P� = {�4, {x �→ 1}�, �4, {x �→
2}�, · · · , �4, {x �→ n}�}.

2The symbol ε indicates an empty environment

40 4. Information Flow Analysis by Abstract Interpretation

Table 4.4 Definition of action function
Action function

a��
skip� def

= {�skip}

a��
v := exp� def

= {�
v := exp}

a�if �
b then c1 else c2

��
endif� def

= {�
b, �

not b,�
�
endif} ∪ a�c1� ∪ a�c2�

a�C1; C2� def
= a�c1� ∪ a�c2�

a�while
�
b do c

��
done� def

= {�
b,� not b,�

�
done} ∪ a�c�

Table 4.5 Definition of variables functions

V�n� def
= ∅

V�v� def
= {v}

V�exp1 ⊕ exp2�
def
= V�exp1� ∪ V�exp2�

V�true� def
= ∅

V�false� def
= ∅

V�b1 ⊗ b2� def
= V�b1� ∪ V�b2�

V�exp1 � exp2�
def
= V�exp1� ∪ V�exp2�

V�skip� def
= ∅

V�v := exp� def
= {v} ∪ V�exp�

V�if b then c1 else c2 endif� def
= V�b� ∪ V�c1� ∪ V�c2�

V�c1; c2� def
= V�c1� ∪ V�c2�

V�while b do c done� def
= V�b� ∪ V�c�

The labelled transition semantics T�c� of a command c in a program P is a set of
transitions �σ1, a, σ2� between a state σ1 and its next states σ2 by an action a. The
triples �σ1, a, σ2� of states could be denoted by σ1

a
−→ σ2. The transition function

T : C → ℘(Σ × A × Σ), aimed at tracking all reachable states, is defined in Figure

4.1. For instance, a transition based on Example 11 is �0, ε�
x:=1
−−→ �1, {x �→ 1}�.

A labelled transition system is a tuple �Σ, I, F, A, T�, where Σ is a nonempty set
of states, I ⊆ Σ is a nonempty set of initial states, F ⊆ Σ is a set of final states, A is
a nonempty set of actions and T ∈ ℘(Σ× A× Σ) is the labelled transition relation.

We define the partial trace semantics of a transition system as the set of all
possible traces, of element in Σ and denoted byΣ �, recording the observation of an
execution during a finite time, starting from an initial state and possibly reaching a
final state.

Σ�
∈ ℘(Σ× A× Σ)

Σ� = {σ0
a0
−→ . . .

an−1
−−→ σn | n ≥ 1 ∧ σ0 ∈ I ∧ ∀i ∈ [0, n− 1] : σi

ai
−→ σi+1 ∈ T}

4.3. Abstract Domain of Propositional Formulae 41

Table 4.6 Evaluation of expression

E ∈ E → (E → ℘(N))

E�n�ρ def
= {n}

E�v�ρ def
= {ρ(v)}

E�exp1 ⊕ exp2�ρ ≡ {v1 ⊕ v2 | v1 ∈ E�exp1�ρ ∧ v2 ∈ E�exp2�ρ}

Table 4.7 Evaluated of boolean conditions
B ∈ B → (E → ℘(N))

B�true�ρ def
= {true}

B�false�ρ def
= {false}

B�b1 ⊗ b2�ρ def
= {b1 ⊗ b2 | b1 ∈ B�b1�ρ ∧ b2 ∈ B�b2�ρ}

B�exp1 � exp2�ρ
def
= {true | ∃v1 ∈ E�exp1�ρ : v2 ∈ E�exp2�ρ : v1 � v2}∪

{false | ∃v1 ∈ E�exp1�ρ : v2 ∈ E�exp2�ρ : not(v1 � v2)}

Let π0, π1 ∈ Σ� be two partial traces. We define the following lattice operators:

• π0 � π1 if and only if π0 is a subtrace of π1

• π0 � π1 = π such that (π � π1) ∧ (π � π2)
and (∀π� : (π� � π1) ∧ (π� � π2)).π� � π.

Σ� equipped with the order relation “�” and meet operator “�” forms the meet
semi lattice �Σ�,�,��.
This partial trace semantics can be expressed also in fixpoint form.

Σ� = lfp⊆F where

F ∈ ℘(Σ× A× Σ) → ℘(Σ× A× Σ)

Where

F (X)
def
= {σ

a�
−→ σ� ∈ T | σ ∈ I}∪

{σ0
a0
−→ . . .

an−2
−−→ σn−1

an−1
−−→ σn | σ0

a0
−→ . . .

an−2
−−→ σn−1 ∈ X ∧ σn−1

an−1
−−→ σn ∈ T}

Let �℘(Σ�),⊆, ∅, Σ�,∩,∪� be a complete lattice of partial execution traces, where
“⊆” is the classical subset relation, “∪” is the set union and “∩” the set intersection.

4.3 Abstract Domain of Propositional Formulae

4.3.1 Propositional Formulae

Among all the abstract domains which are used in abstract interpretation of logic
programs, two that have received considerable attention are Pos and Sharing. The

42 4. Information Flow Analysis by Abstract Interpretation

Figure 4.1 Definition of the concrete transition semantics

T��
skip� = {��,ρ �

�skip
−−→ �f ��

skip�, ρ� | ρ ∈ E}

T��
v := exp� = {��,ρ �

�v:=exp
−−−−→ �f ��

v := exp�, ρ[v ← v]� | ρ ∈ E ∧ v ∈ E�exp�ρ}
T�if �

b then c1 else c2
��
endif� = T�c1� ∪ T�c2�∪

{��,ρ �
�b
−→ �in�c1�, ρ� | ρ ∈ E ∧ true ∈ B�b�ρ}∪

{��,ρ �
�not b
−−−→ �in�c2�, ρ� | ρ ∈ E ∧ false ∈ B�b�ρ}∪

{���, ρ�
��endif
−−−→ �f �if �

b then c1 else c2
��
endif�, ρ� | ρ ∈ E}

T�c1; c2� = T�c1� ∪ T�c2�

T�while
�
b do c

��
done� = {��,ρ �

�not b
−−−→ ���, ρ� | ρ ∈ E ∧ false ∈ B�b�ρ}∪

{��,ρ �
�b
−→ �in�c�, ρ� | ρ ∈ E ∧ true ∈ B�b�ρ} ∪ T�c�∪

{���, ρ�
��done
−−−→ �f �while

�
b do c

��
done�, ρ� | ρ ∈ E}

former, originally introduced by Marriott and Søndergaard [86] consists of the class
of positive Boolean functions [6, 39, 38, 101]. Our approach involves only the Pos

domain. This domain is most commonly applied to the analysis of groundness
dependencies for logic programs and it is considered a clean and an intelligible
abstract domain. In [34], the authors showed that Sharing and Pos are isomorphic,
even though the interpretation of the Boolean functions differ from one to the other.

Let V = {x, y, z, · · · } be a countably infinite set of propositional variables and
let FP(V) be the set of finite subset of variables of V(FP(V) = ℘(V)). The set of
propositional formulae constructed over the variables of V and the logical connectives
inΓ ⊆{∧ ,∨,→,¬} is denoted by Ω(Γ). For any U ∈ FP(V),Ω U(Γ) consists of
formulae using only the variables of U and the connectives of Γ.

A truth-assignment is a function r : V → {T, F} that assign to each propositional
variable the value true (T) or the value false (F). Given a formula f ∈ Ω({∧,∨,→
,¬}), r � f means that r satisfies f, and f1 � f2 is a shorthand for “r � f1 implies
r � f2”. Ω({∧,∨,→,¬}) is ordered by f1 � f2 if f1 � f2. Two formulae f1 and f2 are
logically equivalent, denoted f1 ≡ f2 if f1 � f2 and f2 � f1.

The unit assignment u is defined by u(x) = T for all x ∈ V. We define the set of
positive formulae by: Pos = {f ∈ Ω({∧,∨,→,¬}) | u � f} Some obvious examples:
T, x1 ∈ Pos and F,¬x1 /∈ Pos.

We can consider the propositional formula φ as a conjunction of subformulae
(ζ0 ∧ . . .∧ ζn). We denote the set of subformulas of φ as Subφ. Let � be least upper
bound operator on propositional formula, �{φ0, . . . , φn} =

�
{Subφ0 , . . . , Subφn}.

4.3. Abstract Domain of Propositional Formulae 43

Therefore (Pos, �,�) is a join semi lattice. Moreover, consider � : Pos×Pos → Pos:
a binary operator defined as simplification between two propositional formulae: φ0�

φ1 =
�

(Subφ0 \ Subφ1). This simplification permits us to obtain all the implication
in φ0 which are not contained in φ1. For an introduction to the basic concepts of
propositional logic, we refer the interested reader to [21].

4.3.2 Propositional Formulae Domain

The idea is to use logic formulae to represent dependency between variables (prop-
agation of sensitive/insensitive information) and detect information leakages evalu-
ating formulae on truth-assignment functions. The analysis of a program involves
the following steps:

• For each program instruction construct a propositional formula (φi), through
a fixpoint algorithm, which show an over-approximation of dependencies that
occur between variables.

• Consider the public/private partitions of variables and the truth-assignment
function ψ, that assigns to a propositional variable the value T (true) or the
value F (false) if the corresponding variable is respectively private or public. If
ψ does not satisfy φi for all program states i, there could be some information
leakages.

The logic formulae, obtained from program’s instructions, are in the form:
�

0≤i≤n 0≤j≤m

{xi → yj}

which means that the values of variable yj could depend on the values of variable xi.
For instance, consider the statement x := y: we obtain the formula y → x, while for
the instruction if(x == 0) then y := z the corresponding formula is (x → y)∧(z → y).
Notice that the propositional variable u corresponds to the program variable u.

In order to better understand how our new dependency analysis works, consider
the following example.

Example 12. When the PIN reaches the issuing bank, its correspondence with the
validation data (i.e. user PAN and possibly other public data, such as the card
expiration date or the customer name) is checked via a verification API. Consider
the case study showed in [30]. The authors consider a strict subset of the real PIN
verification function named Encrypted PIN Verify [80].

This function checks the equality of the actual user PIN and the trial PIN inserted
at the ATM and returns the result of the verification or an error code. The former
PIN is derived through the PIN derivation key pdk and from the public data offset,
vdata, dectab, while the latter comes encrypted under key k as EPB (Encrypted
PIN Block). Note that the two keys are pre-loaded in the HSM (Hardware Security

44 4. Information Flow Analysis by Abstract Interpretation

Figure 4.2 Dependency analysis example

PIN V(PAN, EPB, len, offset, vdata, dectab) {
x1 := encpdk(vdata);
x2 := left(len, x1);
x3 := decimalize(dectab, x2);
x4 := sum mod10(x3, offset);
x5 := deck(EPB);
x6 := fcheck(x5);
if (x6 = ⊥){

result := ��format wrong ��;
return result;

}

if (x4 = x6)
result := ��PIN correct ��;

else
result := ��PIN wrong ��;

return result;
}

Module) and are never exposed to the untrusted external environment. The code is
in Figure 4.2.

When we apply the steps defined above we obtain, at the end of the code the
following formula:

φ =(vdata → x1) ∧ (len → x2) ∧ (x1 → x2) ∧ (dectab → x3) ∧ (x2 → x3)∧

(offset → x4) ∧ (x3 → x4) ∧ (EPB → x5) ∧ (x5 → x6)∧

(x6 → result) ∧ (x4 → result) ∧ (x6 → result)

Let ψ : V → L, H be a function that assign H class to all xn variables and L class
to other variables. In this way ψ, the correspondent truth-assignment function, does
not satisfy φ. In fact, in both if statements, the public variable result depends by one
or more private variables (namely x6 in one case and x4 and x6 in the other one).

4.3.3 Abstract Domain for Pos

An abstract state σ� ∈ Σ� def
= L × Pos is a pair ��,φ � in which φ ∈ Pos denotes the

dependencies that occur among program variables, up to label � ∈ L. Given a pair
σ� = ��,φ �, we define l(σ�) = � and r(σ�) = φ. Let BV (c), defined in Table 4.8, be
the set of bound variables of command c.
The abstract transition semantics of command c is defined by T�c�. Similarly to the
concrete domain we denote this transition by σ�

1 → σ�
2 and we define it in Figure

4.3.

4.3. Abstract Domain of Propositional Formulae 45

Consider two set of abstract states S1 and S2 such that

S1 = {��1
0, φ

1
0�, . . . , ��

1
n, φ

1
n�} S2 = {��2

0, φ
2
0�, . . . , ��

2
m, φ2

m�}

The partial ordering is define by S1 �
�

S2 ⇐⇒ n ≤ m, ∀i ∈ [0, n], �1
i = �2

i and
∀i ∈ [0, n], φ1

i � φ2
i .

Let S0, . . . Sn ∈ ℘(Σ�) be sets of abstract states. The join operation “��” is defined
by:

�
�
{S0, . . . , Sn} =

�
(S0, . . . , Sn)

∪{� �,φ � | φ = �{φ� | ��,φ �
� ∈

�
(S0, . . . , Sn)}}

\ {��,φ � ∈
�

(S0, . . . , Sn) | ∃��,φ
�
� ∈

�
(S0, . . . , Sn) ∧ φ �= φ�}

and the meet operation “��” by:

�
�
{S0, . . . , Sn} ={��,φ � ∈ S

�
| S

�
∈ {S0, . . . , Sn}∧

∀i ∈ [0, n].∃��,φ �
i� ∈ Si ∧ φ � φ�i}

�℘(Σ�),��, ∅, Σ�,��,��� is a complete lattice.
Let I

��P� = {�in�P�, φ� | φ ∈ Pos} be the set of possible initial abstract state of
program P . We define the abstract semantics as the set of all finite sets of abstract
states, denoted byΣ ��, reachable during one or more execution, in a finite time.
For each element S ∈ Σ�� we can denote by S

� the set of terminal states, defined as
S
� = {σ�

0 | �σ�
1 ∈ S.σ�

0 → σ�
1 ∈ T} and by �(S) all labels of S. Let Sσ�

0,σ�
n

denote a set

of states, called abstract sequence, that contains a starting state σ�
0 and an ending

state σ�
n such that ∀i ∈ [0, n− 1], σ�

i → σ�
i+1 ∈ T. Notice that S

�
σ�

0,σ
�
n
= {σ�

n}.

We express the abstract semantics in fixpoint form.

Σ�� = lfp�F �where

F �
∈ Σ��

→ Σ��

Table 4.8 Definition of BV function
BV (�

skip) = {∅}

BV (�
v := exp) = {x}

BV (c0; c1) = BV (c0) ∪ BV (c1)
BV (if �

b then c0 else c1
��
endif) = BV (c0) ∪ BV (c1)

BV (while
�
b do c

��
done) = BV (c)

46 4. Information Flow Analysis by Abstract Interpretation

Figure 4.3 Definition of abstract transitional semantics

T��
skip� = {��,φ � → �f ��

skip�, φ�}
T��

v := exp� = {��,φ � → �f ��
v := exp�, φ0�}

T�c0; c1� = T�c0� ∪ T�c1�
T�if �

b then c0 else c1
��
endif� = T�c0� ∪ T�c1�∪

{��,φ � → �in�c0�, φ�} ∪{� �,φ � → �in�c1�, φ�}∪
{���, φ� → �f �if �

b then c0 else c1
��
endif�, φ1�}

{���, φ� → �f �if �
b then c0 else c1

��
endif�, φ2�}

T�while
�
b do c

��
done� = T�c� ∪{� �,φ � → �in�c�, φ�}∪

{���, φ� → �f �while
�
b do c

��
done�, φ3�}

where

φ0 =
�

{y → x | y ∈ V�exp� ∧ y �= x}

�
{z → w | z → x, x → w ∈ φ} ∧ (φ�

�
{y → x | y ∈ V ∧ x /∈ V�exp�})

φ1 =
�

{y → x | y ∈ V�b� ∧ x ∈ BV (c0) ∧ y �= x} ∧ φ

φ2 =
�

{y → x | y ∈ V�b� ∧ x ∈ BV (c1) ∧ y �= x} ∧ φ

φ3 =
�

{y → x | y ∈ V�b� ∧ x ∈ BV (c) ∧ y �= x} ∧ φ

where

F �(X)
def
={σ�

| σ�
∈ I

�
}∪

{Sσ�
0,σ�

n
| n ≥ 1 ∧ σ�

0 ∈ I
�
∧ Sσ�

0,σ�
n−1

∈ X ∧ σ�
n−1 → σ�

n ∈ T}∪

{�
�
{Sσ�

0,σ�
n
| Sσ�

0,σ�
n
∈ X}}

We will denote by the lattice �℘(Σ��),��, ∅, Σ�,��,��� the abstract states set.

4.3.4 An Instrumented Concrete Domain

In order to simplify the correctness proof, we introduce another domain, isomorphic
to the concrete domain. Let σ� ∈ Σ� ≡ L × A be a pair ��, a� where a is the

4.3. Abstract Domain of Propositional Formulae 47

action which occur at program label � ∈ L. Consider the setΣ �� which contains
all the possible sequence of σ� that can occur during a finite computation, and the
lattice �℘(Σ��),⊆, ∅, Σ��,∩,∪�. We can relate ℘(Σ�) and ℘(Σ��) by an abstraction
α� ∈ ℘(Σ�) → ℘(Σ��), and a concretization γ� ∈ ℘(Σ��) → ℘(Σ�) function.

Let X = {π0, . . . , πn} ∈ ℘(Σ�) be a set of partial trace and let Y = {π�0, . . . , π
�
n} ∈

℘(Σ��) be a set of sequences of σ�.

α�(X) ≡{��0, a0� → . . . → ��m, am� | σ0

�0a0
−−→ . . .

�mam
−−−→ σm+1 ∈ X}

γ�(Y) ≡{π ∈ ℘(Σ�) | α�({π}) ⊆ Y}

Notice that ℘(Σ�) −−−→−→←←−−−−
α�

γ�

℘(Σ��) is an isomorphism: in fact it’s simple to prove

that γ� ◦α� = α� ◦ γ� = id, where id is the identity function (proof in Appendix A).
Now we define the relation between ℘(Σ��) and ℘(Σ��) by α� and γ�. α� :

℘(Σ��) → ℘(Σ��) is defined by α�(X) = ��{θ(π�) | π� ∈ X}, where θ : Σ�� → ℘(Σ��)
is defined as follows.

θ(X) ={��,φ � | ∀π ∈ X.∀π� = ��0, a0� → ��m, am� �
� π :

m ≥ 0 ∧ � = �m ∧ φ = f0 ∧ . . . ∧ fn}

such that:

1. (∀��, v := exp� ∈ π� : ∀���, v := exp
�� ∈ π�.�� ≤ �).∃fi = y → v : y ∈ V�exp�

2. ∀((��i, b� → . . . → ��j, endif�) ∨ (��i, not b� → . . . → ��j, endif�)) �� π� which
represents an if statement and ∀��k, v := expk� : i < k < j exists fh = y → v

such that y ∈ V�b�.

3. ∀((��i, b� → . . . → ��j, done�) ∨ (��i, not b� → . . . → ��j, done�)) �� π� which
represents an while statement and ∀��k, v := expk� : i < k < j exists fh = y → v

such that y ∈ V�b�.

Basically, the function θ transform each action (or sequence of actions) in one or
more propositional formulae. The easiest case (1) applies when the action is an
assignment statement (v := exp): we simply obtain the corresponding formula as
defined in the transition semantics T. Instead, for if statements (case 2), we track all
the assignment actions that are between if and endif. while statements are threated
in a similar way (case 3). Notice that ��i, b� → . . . → ��j, endif� (or ��i, not b� →

. . . → ��j, endif�) represents an if statement if and only if ∀(��p, b�∨ ��p, not b�) : i <
p < j.∃(��q, endif� ∨ ��q, done�) : p < q < j and ∀(��q, endif� ∨ ��q, done�) : i < q <
j.∃(��p, b� ∨ ��p, not b�) : i < p < q. Similarly for while statement.

Informally, the pair if and endif (while and done) is an if (while) statement if and
only if between these two actions, there are only assignments or other pairs if-endif

48 4. Information Flow Analysis by Abstract Interpretation

or while-done which correspond to nested if and while statements. To better under-
stand, consider the sequence · · · ��0, b0� → ��1, b1� → ��2, v := exp� → ��3, endif� · · · :
the pair ��0, b0� and ��3, endif� is not an if statement because between these two
actions there is ��1, b1�, which does not represent an assignment action neither an if

statement.
On the other hand, the concretization function γ� : ℘(Σ��) → ℘(Σ��) is defined

as follows. Let Y ∈ ℘(Σ��):

γ�(Y) = {π� ∈ Σ��
| θ(π�) ��

Y ∧ l(π��) ∈ �(Y�)}

It’s simple to prove that γ� and α� are monotone, γ� ◦ α� is extensive, α� ◦ γ� is

equivalent to the identity and that ℘(Σ��) −−−→−→←−−−−

α�

γ�

℘(Σ��) is a Galois insertion (Proof

in Appendix A).
Finally, we can express the relation between ℘(Σ�) and ℘(Σ��) by the composition

of above functions, α = α� ◦ α� and γ = γ� ◦ γ�.
By property of function composition we can assert that ℘(Σ�) −−→−→←−−−−

α

γ
℘(Σ��) is a

Galois insertion.

4.4 Properties

As described in Chapter 2, the aim of information flow analysis is verify the confiden-
tiality and the integrity of the information in computer programs. Both properties
are implemented in the analysis and in the next two subsection we show how they
are verified.

An information flow analysis can be carried out by considering different attacker
abilities. In this context we consider two different scenarios: when the attacker can
read public variables only at the beginning and at the end of the computation, and
when the attacker can read public variables after each step of the computation. Note
that the attacker, in both cases, knows the source code of the program.

Both the properties and the types of attacker are checked through the definition
of, and the satisfiability of the propositional formulae (Pos) with respect to the
truth-assignment function. Let ΥP : V → {T, F} be a truth-assignment function
associated with the program P . The security properties are modeled by the function
definition, while the attacker is modeled by the the set of propositional formulae we
consider for the satisfiability. For the first case, in which the attacker can read public
variables only at the beginning and at the end of the computation, the set of states to
consider involves only the terminal states of each sequence ({S ∈ Σ�� | ΥP � r(S�)}).
Whereas in the second case, when the attacker can read public variables at each
step of the computation, the set of states to consider involves all the propositional
formulae in the sequence ({S ∈ Σ�� | ∀σ� ∈ S : ΥP � r(σ�)}).

4.5. Complexity of the Analysis 49

4.4.1 Confidentiality

Confidentiality refers to limiting information access and disclosure to authorized
users. For example, we require when we buy something online that our private
data, e.g. credit card number, are sent to the merchant without third persons can
read them during the transmission.

LetΥ P : V → {L, H} be a function which assign to each variable of program
P a security class: public (L) or private (H). We say that program P respects the
confidentiality property, if and only if it does not contain any information leakage
with respect to the functionΥ P, i.e. there is no information that moves from private
to public variables. To verify this property, we define the corresponding truth-
assignment function ΥP as follows.

ΥP(x) =

�
T ifΥ P(x) = H

F ifΥ P(x) = L

4.4.2 Integrity

Typically, information security systems provide message integrity in addition to data
confidentiality. By integrity we indicate that data cannot be modified undetectably.
More precisely, unauthorized people can’t modified a message when it is moving.

ConsiderΥ P : V → {L, H}, a function which assign to each variable of program
P a security class. The integrity property is verified if and only if public variables
does not modify private variables, i.e. there is no information leakage from public
variables to private variables. The corresponding truth-assignment function ΥP , to
check this property, is defined as follows.

ΥP(x) =

�
T ifΥ P(x) = L

F ifΥ P(x) = H

Notice that is exactly the opposite of the truth-assignment function for the confi-
dentiality property.

4.5 Complexity of the Analysis

The complexity of variables dependency analysis showed above is strictly correlated
to the complexity of propositional formulae. Logical domains, in literature, are
widely treated and generally, the logical equivalence of two boolean expression is
a co-NP-complete problem. However, this complexity issue may not matter much
in practice because the size of the set of variables appearing in the program is
reasonably small [77]. Hence, on the one hand, work with propositional formulae
requires the solving of a co-NP-complete problem, while on the other hand, in many

50 4. Information Flow Analysis by Abstract Interpretation

frameworks (included our system), Pos only deal with the variables appearing in the
programs, reducing in this way the complexity.

Moreover, it is possible to increase the efficiency of the computation using the
binary decision diagrams (BDDs) for the implementation of propositional formulae.
In fact, the binary decision diagrams are a data structure that is used to represent
boolean functions in a compressed way: the idea consists to represent them as a
rooted, directed and acyclic graph, which consists of decision nodes and two ter-
minal nodes called 0-terminal and 1-terminal. Each decision node is labeled by a
propositional variable and has two child called low and high child, respectively. The
edge from a node to a low (high) child represents an assignment of the variable to F
(T). Normally, a BBD is called ordered if different variables appear in the same order
on all paths from the root. For more information about binary decision diagrams
see [4, 104, 3].

4.6 Conclusions

In this Chapter we presented a dependency analysis by abstract interpretation. The
main limit of this analysis is that it does not track the variables values, and this
might cause many false alarms. In order to get over this limit, we apply the results
presented in Chapter 3 and, in Chapter 5, we propose a solution based on the
combination of numerical domain. The practical experiments reported in Chapter
6 will allow us to validate our approach.

5
Enhancing the Information Flow

Analysis by Combining Domains

5.1 Introduction

Many abstract domains have been designed and implemented to analyze the possible
values of numerical variables during the execution of a program. As described in
[151], in order to refine the results obtained by the dependency analysis presented
in the previous section, we can combine the propositional formulae domain with a
numerical domain through a reduce product. The modular construction allows to
tune efficiency and accuracy changing the domain which represents the relations
among variables value. For instance, if we use the analysis proposed by Karr in
[85], we may get a loss of precision with respect to polyhedra analysis, as this
domain represents only linear combination of the variables, but we improve the
computational cost of the analysis (which becames polynomial).

In this chapter, we provide a brief presentation of the most significant domains
with their features and their limitations. Moreover, in Section 5.3 we present the
reduced product of dependencies and numerical analysis [151], and in Section 5.4
we draw a novel intuition about how to obtain further refinements of the results
through more complex formulae.

5.2 Numerical Domains

5.2.1 Intervals

The interval domain introduced in [47], approximates any subset of the integer
number by the least single interval enclosing them. A set Z ⊆ Z is approximated
by [a, b] where a = min Zi∈N and b = max Zi∈N. Obviously, sometimes it is not
possible to know about the upper/lower limit of a set of integer so a and b may
be −∞ and ∞, respectively. This domain is a lattice, with the ordering � such
that [a, b] � [c, d] if and only if the whole interval [a, b] is contained in of [c, d] and
where the top element is the interval [−∞,∞] and the bottom element is an empty
interval which contains no element. This lattice has infinite height and contains

52 5. Enhancing the Information Flow Analysis by Combining Domains

infinite chains and therefore it needs a widening operator. The analyses with this
domain are fast and easy to deal with. However, the drawbacks of this domain
consists in a lower precision and in some cases the approximation may be very high.

5.2.2 Karr Analysis

Michael Karr, in 1976, presented a practical approach to detect equality relationships
between linear combinations of the variables of the program, by considering the
problem from the viewpoint of linear algebra. The method developed in [85] is
a polynomial-time algorithm to discover affine relationship (Σkakxk = c). This
algorithm can be also understood as an abstract domain of affine equalities under
the framework of abstract interpretation. The main feature is that it has a finite
height, thus no widening is needed to ensure termination of the analysis, which
makes it suitable for particular analysis. The affine equality domain is still one of
the most efficient relational numerical abstract domains.

Notice that, to permit an efficient analysis which works with rational implemen-
tation Chen et al in [31] proposed a specific implementation using floating-point
numbers.

5.2.3 Polyhedra

Convex polyhedra are regions of some n-dimensional space that are bounded by a
finite set of hyperplanes. A convex polyhedron in Rn describes a relation between n
quantities. In the seminal work [54], P. Cousot and N. Halbwachs applied the theory
of abstract interpretation to the static determination of linear equality and inequality
relations among program variables and introduced the use of convex polyhedra as a
domain of descriptions to solve a number of important data-flow analysis problems.

For n > 0 we denote by v = (v0, . . . vn−1) ∈ Rn an n-tuple (vector) of real
numbers; v · w denotes the scalar product of vectors v,w ∈ Rn; the vector 0 ∈ R
has all components equal to zero. Let x be a n-tuple of distinct variable. Then
β = (a · x ��b) denotes a linear equality and inequality constraint, for each vector
a ∈ Rn, where a �= 0, each scalar b ∈ R and ��= {=,≥, >}. A linear inequality
constraint β defines an affine half-space of Rn, denoted by con({β}).

A set P ∈ Rn is a (convex) polyhedron if and only if P can be expressed as
the intersection of a finite number of affine half-spaces of Rn, i.e. as the solution
P = con(C) of a finite set of linear inequality constraints C. The set of all polyhedra
on the vector space Rn is denoted as Pn. Let �Pn,⊆, ∅, Rn,�,∩� be a lattice of
convex polyhedra, where “⊆” is the set inclusion, the empty set ∅ and Rn as the
bottom and top elements, respectively; the binary meet operation, returning the
greatest polyhedron smaller than or equal to the two arguments, corresponds to the
set intersection and “�” is the binary join operation and return the least polyhedron
greater than or equal to the two arguments, called convex polyhedral hull.

5.3. The Reduced Product of Pos and Numerical Domains 53

For more details about polyhedra analysis, see [16, 12, 15] for the use of polyhedra
domains and relative Galois connectino, and [14, 10, 92, 81] for their implementation.

5.2.4 Octagons

In the 2001, Antoine Miné presented in [106] a new numerical abstract domain for
static analysis by abstract interpretation. The author extended a former numerical
domain based on Difference-Bound Matrices ([105]) and showed practical algorithms
to represent and manipulate invariants of the form (±x± y ≤ c), where x and y are
program variables and c is a real constant. Such invariants describe sets of point
that are special kind of polyhedra called octagons because they feature at most eight
edges in dimension 2. This new domain works well for real and rational numbers.
During the analysis integer variables can be assumed to be real one in order to find
approximate but safe invariants.

The set of invariants which the analysis discovers can be seen as special cases of
linear inequalities, but it is more efficient with respect to the one used in polyhedron
domain. In fact, this domain allows to manipulate the invariants with a O(n2) worst
case memory cost per abstract state and a O(n3) worst case time cost per abstract
operation, where n is the number of variables in the program.

5.3 The Reduced Product of Pos and Numerical
Domains

We combine the abstract domain �℘(Σ��),��, ∅, Σ�,��,��� and a numerical domain
�ℵ,�ℵ,⊥ℵ,�ℵ,�ℵ,�ℵ� through a reduced product operator [50].

Let ℘(Σ�) −−−→←−−−
γ0

α0
℘(Σ��) and ℘(Σ�) −−−→←−−−

γ1

α1
ℵ be two Galois connections and let

� : ℘(Σ��)×ℵ → ℘(Σ��)×ℵ be a reduce operator defined as follows: let X ∈ ℘(Σ��)
be a set of partial traces and let N ∈ ℵ be an element of a numerical domain, i.e,
a set of intervals, an octagon or a polyhedron. Notice that whatever domain you
choose, N can be seen as a set of relations among variables’ values.

�(�X,N�) = �X
�, N�

such that

X
� ={σ�

new | ∀σ�
∈ X.l(σ�

new) = l(σ�)∧

∧ r(σ�
new) = (r(σ�)� {x → y | y = z ∈ N, z ∈ V ∪ Z ∧ z �= x})}

The reduce operator is aimed at excluding pointless dependencies for all variables
which have the same value during the execution, without loosing purposeful rela-
tions, using the condition “x �= z”. Basically, the reduce operator removes from
propositional formulae, contained in X, the implications which have at the right side

54 5. Enhancing the Information Flow Analysis by Combining Domains

Figure 5.1 Reduce product example

foo(){
0n = 0; 1x = 1; 2i = 0; 3y = x− 1; 4sum = p;
while(5i ≤ k) do

if(6n%2 == 0) then
7sum = y + p; 8n = n + 1;

else
9sum = x + (p− 1); 10n = n + 3;

11endif
12i = i + 1;

13done
}14

a variable that has a constant value. In fact if the variable has a constant value, it
cannot depend on other variables.

Then, the reduced product D
� is defined as follows:

D
� = {�(�X,N�) | X ∈ ℘(Σ��),N ∈ ℵ }

Consider X0, X1 ∈ ℘(Σ��),N0, N1 ∈ ℵ and �X0, N0�, �X1, N1� ∈ D
�. Then �X0, N0� �

�

�X1, N1� if and only if X0 �
�
X1 and N0 ⊆ N1. We define the least upper bound and

greatest lower bound operator by �X0, N0� �
� �X1, N1� = �X0 �

�
X1, N0 � N1� and

�X0, N0� �
� �X1, N1� = �X0 �

�
X1, N0 ∩N1�, respectively.

�D�,��, ∅, �(�Σ��, Rn�),��,��� forms a complete lattice.

In order to better understand the improvements yielded by the combination of the
two domains consider the following example.

Example 13. Consider the code in Figure 5.1. For the sake of simplicity, we show a
partial representations through propositional formula and polyhedra of the variables
dependency. In particular we take in account the labels 4, 5, 8, 10, 12 and 14.

Polyhedra
4 n = 0; x− 1 = 0; i = 0; y = 0
5 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0; 3i− n ≥ 0;
8 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0;−i + k ≥ 0; 3i− n ≥ 0;
10 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0;−i + k ≥ 0; 3i− n ≥ 0;
12 −p + sum = 0; y = 0; x− 1 = 0;−i + n− 1 ≥ 0;−i + k ≥ 0;

i ≥ 0; 3i− n + 3 ≥ 0;
14 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0;−i + k − 1 ≥ 0; 3i− n ≥ 0;

5.4. Further Refinements 55

Propositional formula
4 x → y
5 p → sum
8 (x → y) ∧ (p → sum) ∧ (y → sum)
10 (x → y) ∧ (p → sum) ∧ (x → sum)
12 (x → y) ∧ (p → sum) ∧ (x → sum) ∧ (y → sum)
14 (x → y) ∧ (p → sum) ∧ (x → sum) ∧ (y → sum) ∧ (n → sum)∧

(i → sum) ∧ (i → n) ∧ (k → sum) ∧ (k → n)
When we apply the reduce operator defined above we obtain the following proposi-
tional formulae:

4 T
5 p → sum
8 p → sum
10 p → sum
12 p → sum
14 (p → sum) ∧ (i → n) ∧ (k → n)

By using the reduce operator we simplified the propositional formulae, removing some
implication which could in fact generate false alarms when using the direct product
of the domains instead of the reduced product.

5.3.1 Efficiency and Accuracy: Complexity of the Analysis

In order to evaluate the efficiency of our analysis, we have to consider its two main
components: Pos formulae and polyhedra. Pos complexity has already been consid-
ered in Section 4.5, while for polyhedra analysis, the complexity is well and com-
pletely treated in many works, e.g. [14], and heavily depends on its implementation.
For example many implementations, e.g. Polylib and New Polka, use matrices of co-
efficients, that cannot grow dynamically, and the worst case space complexity of the
methods employed is exponential. In PPL library, instead, all data structures are
fully dynamic and automatically expanded (in amortized constant time) ensuring
the best use of available memory. Comparing the efficiency of polyhedra libraries is
not a simple task, because the pay-off depends on the targeted applications: in [14]
the authors presented many test results about it.

The complexity of reduced product, and more precisely of reduction operator
�, is strictly connected with the complexity of the operations on the domains we
combine.

5.4 Further Refinements

By the combination of the domain introduced in Chapter 4 with numerical domains
we can refine the results and remove some false alarms. In some cases, unfortunately,

56 5. Enhancing the Information Flow Analysis by Combining Domains

this technique is useless. For example, consider the following program.

l = 0; if(l == 1) then l = h;

The analysis track the information flow from h to l of the assignment, but it does not
detect that this assignment is true if and only if the condition (l == 1) is satisfied.
In this program the condition will never be satisfied so the information flow from
private to public will never be happened.

The idea consists in bind the propositional formulae to a set of condition. The set
of condition has already been defined in 4.2.1 and it is represented by B. Consider

x = 0; if(x == 0) then y = 0; else z = 1;

by these new formulae we can obtain at the end of the analysis the following relation:
((x == 0) ⇒ (x → y))∧ ((x! = 0) ⇒ (x → z)). In this way, by the combination with
numerical domain through reduced product, we can refine our result and say that
only relation we have consist in x → y. We denote the set of these new formulae by
Pos

�.
More formally, by abuse of notation, we define the abstract state definition as

σ� ∈ Σ� def
= L × ℘(B) × Pos

�, where L is the set of label, ℘(B) is the powerset of
condition, implemented by an ordered list, and represents the condition in which
the next command will be executed and Pos

� is the set of new formulae. The empty
list of condition will be denoted by [ε].
We define the new transitional semantics in Figure 5.2.

The boolean expressions before the implications indicate under which condition
the relations are verified. It is easily to extend the definition of ℘(Σ��) given in Sec-
tion 4.3 to this context. Hence we can consider the lattice �℘(Σ��),��, ∅, Σ�,��,���

as an abstract domain. Moreover, in the same way, we can assert that ℘(Σ�) −−→←−−
γ

α

℘(Σ��) is a Galois insertion between concrete and abstract domain.

5.4.1 Subformulae Elimination

Given the new abstract domain which uses more complex propositional formulae de-
fined above, �℘(Σ��),��, ∅, Σ�,��,���, and a numerical domain �ℵ,�ℵ,⊥ℵ,�ℵ,�ℵ,�ℵ�,
we can define a new reduce operator, denoted by ��, which combines the two domains
and increases the precision of results. Let ℘(Σ�) −−−→←−−−

γ0

α0
℘(Σ��) and ℘(Σ�) −−−→←−−−

γ1

α1
ℵ be

two Galois connection and let �� : ℘(Σ��)×ℵ → ℘(Σ��)×ℵ be a reduction operator.
We can observe that, since the numerical analysis tracks the relation among values
of variables, we can consider an element of ℵ as a set of boolean conditions.

Then, we can use a new function simplify : Pos
�
× ℵ → Pos

� that removes from
the propositional formula the sub-formulae that do not respect the conditions in ℵ.
More formally,

simplify(φ�, B) = {ϕ = [b0, · · · , bn] ⇒ φ | ϕ ∈ Subφ� ∧ B �
ℵ [b0, · · · , bn]}

5.5. Conclusions 57

Let X ∈ ℘(Σ��) and B ∈ ℵ be a set of partial traces and a set of boolean conditions,
respectively. The reduced product is defined as ��(�X, B�) = �X�, B� where

X
� = {σ�

new | ∀σ� = ��, [b0 · · · bn], φ
�
� ∈ X.σ�

new = ��, [b0 · · · bn], simplify(φ�, B)�}

The product D
�
new is defined as D

�
new = {�(�X, B�) | X ∈ ℘(Σ��) ∧ B ∈ ℵ }. As

presented in Section 5.3, we can define a new equivalence relation (��
new), a least

upper bound (��
new) and a greatest lower bound (��

new), a bottom (�∅,⊥ℵ�) and a
top (�Σ�,�ℵ�). In this way �D�

new,��
new, �∅,⊥ℵ�, �Σ�,�ℵ�,��

new,��
new� is a complete

lattice.
The new product over-approximates, like the previous one, the reduce product:

it has the advantage of excluding pointless dependencies, providing more precise
results through an more efficient computation.

5.5 Conclusions

In this chapter we presented the combination of the dependency analysis (described
in Chapter 4) and numerical analyses, through reduced product. As introduced in
Chapter 3, we refine the results, obtained from the first analysis, adding the tracking
of relations among the value of variables. Moreover, in Section 5.4, we proposed some
preliminary results about further refinement using more complex formulae.

58 5. Enhancing the Information Flow Analysis by Combining Domains

Figure 5.2 Definition of transitional semantics for complex formulae

T
���skip� = {��, [b], φ�

� → �f ��skip�, [b], φ�
�}

T
���x := E� = {��, [b], φ�

� → �f ��x := E�, [b], φ�
0�}

T
��C0; C1� = T

��C0� ∪ T
��C1�

T
��if �b� then C0 else C1

��endif� = T
��C0� ∪ T

��C1�∪
{��, [b], φ�

� → �in�C0�, [b, b�], φ�
�} ∪{� �, [b], φ�

� → �in�C1�, [b,¬b�], φ�
�}∪

{���, [b, b�], φ�
� → �f �if �b� then C0 else C1

��endif�, [b], φ�
1�}

{���, [b,¬b�], φ�
� → �f �if �b� then C0 else C1

��endif�, [b], φ�
2�}

T
��while �b� do C ��done� = T

��C� ∪{� �, [b], φ�
� → �in�C�, [b, b�], φ�

�}∪

{��, [b], φ�
� → �f �while �b� do C ��done�, [b], φ�

�}∪

{���, [b, b�], φ�
� → �f �while �b� do C ��done�, [b], φ�

3�}

where:

φ�
0 =

�
{([b] ⇒ (y → x)) | y ∈ V�E�}

�
{([b, b0, b1] ⇒ (z → w)) | ([b0] ⇒ (z → x)), ([b1] ⇒ (x → w)) ∈ φ�

}

∧ (φ�
�

�
{([b] ⇒ (y → x)) | y ∈ V ∧ x /∈ V�E�})

φ�
1 =

�
{([b, b�] ⇒ (y → x)) | y ∈ V�b�� ∧ x ∈ BV (C0) ∧ y �= x} ∧ φ�

φ�
2 =

�
{([b,¬b�] ⇒ (y → x)) | y ∈ V�¬b�� ∧ x ∈ BV (C1) ∧ y �= x} ∧ φ�

φ�
3 =

�
{([b, b�] ⇒ (y → x)) | y ∈ V�b�� ∧ x ∈ BV (C) ∧ y �= x} ∧ φ�

6
Experimental Results: SAILS

6.1 Introduction

Language-based information flow security has been longly studied during the last
decades [148, 140]. Proving that a program enforces noninterference has been the
goal of several static analyses [66, 68]. Nevertheless, despite this deep and extensive
work, its practical applications have been relatively poor. Usually these approaches
work on an ad-hoc programming language [9], and they do not support mainstream
languages. This means that one should completely rewrite a program in order to
apply them to some existing code.

Generally, works on information flow fall into two categories: dynamic, instru-
mentation based approaches such as tainting, and static, language-based approaches
such as type systems. The disadvantage of the dynamic approaches is that they typ-
ically incur significant run-time overhead [33, 91]. The disadvantage of the static
approaches is that they typically require some changes to the language and the run-
time environment, as well as non-trivial type annotations [126], making the adoption
of these approaches difficult in practice.

We refer to a new generic static analyzer (Sample) based on abstract interpre-
tation. The overall idea of this analyzer is to split and combine the abstraction
of the heap and the approximation of other semantic information, e.g., string [42]
and type [65] abstractions. In this chapter, we present Sails (Static Analysis of In-
formation Leakage with Sample), an extension of Sample

1 to information leakage
analysis. We slightly modify the theoretical approach to information flow analysis
presented in Chapter 4, in order to analyse object oriented programs using different
heap abstractions (e.g., shape analysis [130, 67]), and some of the most powerful
numerical abstract domains [82]. Unlike other works, our tool provides an informa-
tion flow analysis without any changes to the language, since it tracks information
flows between variables and heap locations over programs written in mainstream
object-oriented languages like Java and Scala. We tested Sails over a set of web ap-
plications established as security and performance benchmarks. The experimental
results show that the analysis is fast and effective in most of the code we analyzed.

1http://www.pm.inf.ethz.ch/research/semper/Sample

60 6. Experimental Results: SAILS

The results presented in this chapter are published in [152].

6.2 Presentation of Sample

6.2.1 Scope of the Analyzer

Sample (Static Analyzer of Multiple Programming LanguagEs) is a novel generic an-
alyzer based on the abstract interpretation theory. Relying on compositional anal-
yses [44], Sample can be plugged with different heap abstractions, approximations
of other semantic information (e.g., numeric domains or information flow), prop-
erties of interest, and languages. Several heap analyses [67, 63], semantic [42, 65]
and numerical [82] domains have been already plugged. The analyzer works on an
intermediate language called Simple. Up to now, Sample supports the compilation
of Scala and Java bytecode [131] to Simple.

6.2.2 Architecture

Picture 6.1 depicts the overall structure of Sample. Source code programs are com-
piled to Simple. A fixpoint engine receives a heap analysis, a semantic domain, and
a program, and it produces an abstract result over a control flow graph for each
method. This result is passed to a property checker that produces some output
(e.g., warnings) to the user. The integration of an analysis in Sample allows one to
take advantage of all aspects not strictly related to the analysis but that can im-
prove its final precision (e.g., heap or numerical abstractions). For instance, Sample

is interfaced with the Apron library [82] and contains an heap analysis based on
TVLA [130].

The Simple language, a fixpoint engine that computes an overapproximation of
all possible executions, and the representation of the results of the analysis on a
control flow graph are the core of Sample. Differently to these components, which
can neither be modified nor extended, other parts permits more flexibility. In partic-
ular: the compiler can be extended by the support for other languages, the semantic
analysis can be extended by new properties, the heap analysis permits the implemen-
tation of specific abstractions and it is possible to develop the inference of specific
contracts and checks of new properties. Moreover, the analyzer provides warnings
(if the analysis is not able to prove that all executions respect a given property) or
inferred contracts.

6.3 Integrating the Information Flow Analysis

In this section, we present the main issues we have to deal with in order to combine
the information leakage analysis with Sample.

6.3. Integrating the Information Flow Analysis 61

Figure 6.1 The structure of Sample

62 6. Experimental Results: SAILS

6.3.1 Analysis extension for Object Oriented Languages

First of all, we need to extend our domains and define a new semantics for object
oriented languages. Several authors proposed different approaches to the semantics
of object oriented languages: through types [29], object calculi [79, 1], Abstract
State Machine [141] and denotational semantics [84]. For the sake of simplicity, we
based our work on the definition given by Francesco Logozzo in [60] and we tried to
minimize the number of difference with the domain presented in Chapter 4.

Sintax

According to [60], an environment, e, is a map from variables to memory address,
and a store, s, is a map from addresses to memory elements. In its turn, a memory
can be a primitive value of an environment. The object environment is stored in
a certain memory location whose address represents the object identity. In such a
setting, two distinct variables are aliases for an object if they reference the same
object, i.e. the same memory address. Let Var be a set of variables and let Addr ⊆ N
be a set of address. Then the set of environments is Env : Var → Addr. Let Val be a
set of values such that Env ⊆ Val. Then the set of store is Store : Addr → Val. The
new syntax is formally described in table 6.1.
The definitions of the functions in and f are the same we have already presented in
Section 4.2.1, with the addition of new command (i.e. the function call). Moreover,
the set of actions is updated with the new element �fun(v0, · · · , vn).

Semantics

A state σ ≡ ��, e, s� ∈ Σ is a triple of label, �, environments, e, and store, s. Observe
that we require Env to be included in the possible memory values: this permits us
to treat an object as a memory address and access to its environment through the
store. The semantics of a program P is a set of traces that represents the executions
of the program starting from a set of initial state and, as defined in Section 4.2.2, it
can be expressed it in fixpoint form:

F (X) ≡ {σ
a�
−→ σ� ∈ T | σ ∈ I}∪

{σ0
a0
−→ . . .

an−2
−−→ σn−1

an−1
−−→ σn | σ0

a0
−→ . . .

an−2
−−→ σn−1 ∈ X ∧ σn−1

an−1
−−→ σn ∈ T}

Where the transition relation, T, is defined in Figure 6.2. Observe that the val-
ues of e

� and s
� are related to the contracts defined, by the user, for the function

fun(v0, · · · , vn).
In fact, according to Sample implementation, the interprocedural semantics relies

on contracts. In this way, we can simplify the semantics and some issues like the
dynamic dispatch problem.

6.3. Integrating the Information Flow Analysis 63

Figure 6.2 Definition of transition semantics for object oriented languages

T��
skip� ≡{� �, e, s�

�skip
−−→ �f ��

skip�, e, s�}

T��
x := exp� ≡{� �, e, s�

�x:=exp
−−−−→ �f ��

x := exp�, e[x �→ a0], s[a0 �→ E(exp)]� | exp /∈ Addr}

{��, e, s�
�x:=exp
−−−−→ �f ��

x := exp�, e[x �→ E(exp)], s� | exp ∈ Addr}

T��
if b then c0 else c1

��
endif� ≡{� �, e, s�

�b
−→ �in�c0�, e, s� | true ∈ B�b�e}∪

{��, e, s�
�not b
−−−→ �in�c1�, e, s� | false ∈ B�b�e} ∪ T�c0� ∪ T�c1�∪

{���, e, s�
��

−→ �f ��
if b then c0 else c1

��
endif�, e, s�}

T��
c0; c1� ≡ T�c0� ∪ T�c1�∪

T��
while

�
b do c

��
done� ≡{� �, e, s�

�b
−→ �in�c�, e, s� | true ∈ B�b�e}∪

{��, e, s�
�not b
−−−→ ���, e, s� | false ∈ B�b�]e} ∪ T�c�

T��
fun(v0, · · · , vn)� ≡{� �, e, s�

�fun(v0,··· ,vn)
−−−−−−−→ �f ��

fun(v0, · · · , vn)�, e�, s��}

Abstract Domain

Despite the abstract domain presented in 4.3.3, the dependency relations do not
involve the variables but they are associated to the set of addresses (Addr). Each
information is univocally related to an address (i.e. where it is stored): if two vari-
ables, obj0 and obj1, point to the same address, e(obj0) = e(obj1), then they are the
same information.

The new transition relation is defined in Figure 6.3 and permits us to keep the
same abstract domain, �℘(Σ�),��, ∅, Σ�,��,���, and to use, in practice, the same
Galois insertion presented in Chapter 4.

6.3.2 Implementation Choices

Representing Propositional Formulae

To work with object oriented languages entailed to introduce some slight modifica-
tions on the domain for information leakage analysis described in Chapter 4. We can
consider a propositional formula φ as a conjunction of subformulae (ζ0 ∧ . . . ∧ ζn).
In the implementation, each subformula is an implication between two identifiers
(an identifier is a variable abstraction, see next paragraph). Then we represent a
subformula as a pair of identifiers and a formula as a set of subformulae. Consider

64 6. Experimental Results: SAILS

the command if(x > 0) y = z;. The formula obtained after the analysis consists in
two pairs: (y, z) and (x, y), where by ū we denote the identifier of the variable u. The
order relation “�” is defined by: let φ0 and φ1 be propositional formulae, φ0 � φ1 is
equivalent to φ0 ⊆ φ1, where “⊆” is the classical subset relation.
Consequently, in the new abstract domain, the set of propositional variables V

consists in the set of identifier Id a single propositional formula is represented by
℘(Id × Id) and an abstract state σ� ∈ Σ� is a conjunction of propositional formulae
represented by ℘(℘(Id× Id)).

Heap Abstraction

In Sample heap locations are approximated by abstract heap identifiers. While the
identifiers of program variables are fixed and represents exactly one concrete variable,
the abstract heap identifiers may represent several concrete heap locations (e.g., if
they summarize a potentially unbounded list), and they can be merged and split
during the analysis. In particular we have to support (i) assignments on summary
heap identifiers, and (ii) renaming of identifiers.

In order to preserve the soundness of Sails, we have to perform weak assignments
to summary heap identifiers. Since a summary abstract identifier may represent
several concrete heap locations and only one of them would be assigned in one
particular execution, we have to take the upper bound between the assigned value,
and the old one.

Any heap abstraction requires to rename, summarize or split existing identifiers.
This information is passed through a replacement function rep : ℘(Id) → ℘(Id). In
TVLA, [130] two abstract nodes represented by identifiers a1 and a2 may be merged
to a summary node a3, or a summary abstract node b1 may be splitted to b2 and
b3. Our heap analysis will pass {a1, a2} �→{ a3} and {b1} �→{ b2, b3} to Sails in these
cases respectively. Given a single replacement S1 �→ S2, Sails removes all subformulae
dealing with some of the variables in S1, and for each removed subformula s it inserts
a new subformula s� in the resulting state renaming each of the variables in S1 to
with each of the variables in S2. Formally:

rename : (Pos× (℘(Id) → ℘(Id))) → Pos

rename(σ�, rep) = {(i�1, i�2) : (i1, i2) ∈ σ�&

i
�
1 =

�
i1 if �R1 ∈ dom(rep) : i1 ∈ R1

k1 if ∃R1 ∈ dom(rep) : i1 ∈ R1 & k1 ∈ rep(R1)
,

i
�
2 =

�
i2 if �R2 ∈ dom(rep) : i2 ∈ R2

k2 if ∃R2 ∈ dom(rep) : i2 ∈ R2 & k2 ∈ rep(R2)
}

Implicit Flow Detection

An implicit information flow occurs when there is an information leakage from a
variable in a condition to a variable assigned inside a block dependent on that
condition. For instance, in if(x > 0) y = z; there is an explicit flow from z to y, and

6.3. Integrating the Information Flow Analysis 65

an implicit flow from x to y. To record these relations we relate the variables in
the conditions to the variables that have been assigned in the block. When we join
two blocks coming from the same condition, we discharge all implicit flows on the
abstract state.

On the other hand, Sample programs are represented by control flow graphs (cfg),
and therefore we could have conditions that do not join in a well-defined point. For
instance, in the cfg of Figure 6.4 is not clear if the condition of block 1 is joined at
block 4 or 6. For this reason, Sails does not support all cfgs that can be represented
in Sample but only the ones coming from structured programs, i.e., that corresponds
to programs with if and while statements and not with arbitrary jumps like goto.

Property

An information flow analysis can be carried out by considering different attacker
abilities. We implemented two scenarios: when the attacker can read public variables
only at the beginning and at the end of the computation, and when the attacker
can read public variables after each step of the computation2. Moreover, to each
attacker we implemented two security properties: secrecy (i.e., information leakage
analysis) and integrity.
The verification of these properties happens after the computation of the analysis
and the declaration of private variables (at run time, by a text files writing the
variables name or by a graphical user interface selecting the variables in a list).

Numerical Analyses

The information flow analysis is based on the reduced product of a dependency
and a numerical analysis. Thanks to the structure of Sample, we can naturally
plug Sails with different numerical domains. In particular, Sample supports the
Apron library [82]. In this way, we can combine Sails with all numerical domains
contained in Apron (namely, Polka, the Parma Polyhedra Library, Octagons, and a
deep implementation of Intervals).

In addition, we can apply different heap abstractions to the analysis of a program
without changing Sails. For instance, if we are not interested to the heap structure,
we can use a less accurate domain that approximates all heap locations with one
unique summary node, as in Section 6.3.4. Instead, if we look at a precise abstraction
of the heap structure, we can adopt more precise approximations, as illustrated in
the next section.

66 6. Experimental Results: SAILS

6.3.3 Example

Consider the Java code in Figure 6.5. Class ListWorkers models a list of workers
of an enterprise. Each node contains the salary earned by the worker, and some
other information (e.g., name and surname of the person). Method updateSalaries

is defined as well. It receives a list of employees and a list of managers. These two
lists are supposed to be disjoint. First method updateSalaries computes the maximal
salary of an employee. Then it traverses the list of managers updating their salary
to the maximal salary of employees if manager’s salary is smaller than that.

Usually managers would like not to leak information about their salary to em-
ployees. This property could be expressed in Sails specifying that we do not want
to have a flow of information from managers to employees. More precisely, we want
to prove the absence of information leakage from the content of field salary of any
node reachable from managers to any node reachable from employees.

We combine Sails with a heap analysis that approximates all objects created by
a program point with a single abstract node[63]. We start the analysis of method
updateSalaries with an abstract heap in which lists managers and employees are ab-
stracted with a summary node and they are disjoint. Figure 6.6 depicts the initial
state, where n2 and n4 contains the salary values of the ListWorkers n1 and n3, respec-
tively. In the graphic representation we adopt dotted circles to represent summary
nodes, rectangles to represent local variables, and edges between nodes to represent
what is pointed by fields of objects. Note that the structure of these two lists does
not change during the analysis of the program, since method updateSalaries does not
modify the heap structure.

Sails infers that, after the first while loop at line 15, there is a flow of information
from n2 to maxSalary. This happens because variable it points to n1 before the loop
(because of the assignment at line 9), and it iterates following field next (obtaining
always the summary node n1) eventually assigning the content of it.salary (that is,
node n2) to maxSalary. Therefore, at line 15 we have the propositional formula
n2 → maxSalary.

Then updateSalaries traverses list managers. For each node, it could potentially
assign maxSalary to it.salary. Similarly to what happened in the previous loop,
variable it points to n3 before and inside the loop, since field next always points to
the summary node n3. Therefore the assignment at line 18 could potentially affects
only node n4. For this reason, Sails discovers a flow of information from maxSalary

to n4, represented by the propositional formula maxSalary → n4.
At the end of the analysis, Sails soundly computes that (n2 → maxSalary) ∧

(maxSalary → n4). By the transitive property, we know that there could be a flow
of information from n2 to n4, that is, from employees to managers. This flow is
allowed by our security policy. On the other hand, we also discovered that there
is no information leakage from list managers to list employees, since Sails does not

2Notice that, as in [151], we assume that the attacker, in both cases, knows the source code of
the program.

6.3. Integrating the Information Flow Analysis 67

contain any propositional formula containing this flow. Therefore Sails proves that
this program is safe.

Notice that, almost 10 years ago, Sabelfeld and Myers stated: “Noninterference
of programs essentially means that a variable of confidential (high) input does not
cause a variation of public (low) output”[126]. Thanks to the combination between
a heap abstraction and an abstract domain tracking information flow, Sails deals
directly with the structure of the heap, extending the concept of noninterference
from variables to portions of the heap represented by abstract nodes. This opens a
new scenario since we can prove that a whole data structure does not interfere with
another one, as we have done in this example. As far as we know, Sails is the only
tool that performs a noninterference analysis over a heap abstraction, and therefore
it can prove properties like “there is no information flow from the nodes reachable
from v1 to the nodes reachable from v2”.

6.3.4 Analysis Results

Sails implements the analysis introduced in Chapter 4, therefore the violations which
are detected by it correspond to respond the possible information leakages through
either implicit and explicit flows. A well-established way of studying the precision
and the efficiency of information flow analyses is the SecuriBench-micro suite [144].
We applied Sails to this test suite; the description and the results of these benchmarks
are reported in Table 6.2. Column fa reports if the analysis did not produce any false
alarm. We combined Sails with a really rough heap abstraction that approximates
all concrete heap locations with one abstract node. Sails detected all information
leakages in all tests, but in three cases (Pred1, Pred6 and Pred7) it produced false
alarms. This happens because Sails abstracts away the information produced when
testing to true or false boolean conditions in if or while statements. Using more
complex formulae defined in Section 5.4, we could avoid this kind of false alarms
and obtain better results.

Since these benchmarks cover only problems with explicit flows, we performed
further experiments using some Jif [113] case studies. The results are reported in
Table 6.3: we discovered all flows without producing any false alarm. These results
allow us to conclude that Sails is precise, since in 90% of the cases (28 out of 31
programs) it does not produce any false alarm.

About the performances, the analysis of all case studies takes 1.092 seconds
(0.035 sec per method in average) without combining it with a numerical domain.
When we combine it with Intervals it takes 3.015 seconds, whereas it takes 6.130
seconds in combination with Polka. All tests are performed by a MacBook Pro, Intel
Core 2 Duo 2.53 GHz, 4 GB Memory. Therefore the experimental results underline
the efficiency of Sails as well.

The modular construction of this tool permits further refinements using more
precise domains. For instance, a plugin to interface TVLA with Sample has been
developed recently [67]. A more sophisticated shape analysis that avoids the sum-

68 6. Experimental Results: SAILS

marization of nodes with different level of confidentiality may in fact enhance the
precision of the Sails analysis.

6.4 Current Limits of the Analyzer

In previous session we present some preliminary results based on SecuriBench-micro.
Unfortunately, at the moment we cannot apply Sails over large programs or wide-
scale tests like, e.g., the whole SecuriBench. In fact, Sails is not a complete analyzer,
but it is an extension of the generic analyzer Sample the latter being still under
development.

The main lacks in this version of the Sample analyzer concern two key features:
contracts and data structures. Sample interprocedural semantics relies on contracts:
generally for each function call developers define pre and post condition and through
them the analyzer know the state at the end of the function. But, at this point of
the development, Sample does not yet fully support contracts, in particular it does
not support contracts dealing with levels of confidentiality. For this reason, Sails

can analyze only code without function calls (intraprocedural analysis). Currently,
we are working on to define an annotation language to introduce contracts like “x.f
is confidential”.

The second weakness point of Sample consists in its limits about data structures:
the compiler cannot analyze arrays or more complex structures, yet. This limitation
restricts the complexity of the programs that might be currently analyzed.

SecuriBench, unlike SecuriBench-micro, is a set of web applications which use
some external libraries and professional frameworks (e.g., Struts3 and Log4j4). The
complexity of this set of software is one of the main features and makes impossible
a simplification of the code without trivializing it. Moreover, SecuriBench treats
strings and not integers: then an analysis based on numerical domains becomes
pointless. For this purpose, we are planning to combine positive formulae domain
with a domain for strings, like [42], to refine the results. In this way, we should able
to detect all the cases. For instance, on the simple code in Figure 6.7 we should keep
the fact that the value of public does not depend on secret, because the functions
computed in both branches give the same results.

6.5 Comparison with other Tools

The approach adopted in Sails is quite different from existing tools that deal with
information flow analysis. The most known tool in this field is Jif [9]. It is a security-
typed programming language that extends Java with support for information flow
and access control, enforced at compile time. Jif is an ad hoc analysis that requires

3http://struts.apache.org/
4http://logging.apache.org/log4j/

6.5. Comparison with other Tools 69

to annotate the code with some type information. Obviously, it is more efficient than
Sails, but on the other hand our analysis does not require to annotate the program
and take all advantages of compositional analyzers.

Other security-typed languages emerged over the years to prevent insecure infor-
mation flows. The possibility of regulating the propagation of sensitive information
by security type systems in realistic languages came from [18, 110, 120, 137] and
their implementations.

“Despite this rather large (and growing!) body of work on language based infor-
mation flow security, there has been relatively little adoption of the proposed tech-
niques”[90]. According to Li and Zdancewic, one of the reasons that limited the
application of these systems is that they require to re-write the whole system in
the new language. In addition, usually only a small part of the system deals with
critical information. Therefore developers choose the programming language that
best fits the primary functionality of the system.

Our approach does not require to change the programming language, since it
infers the flow of information directly on the original program, and it asks what are
the private data that have not to be leaked to the user during the analysis execution.

6.5.1 JIF - Java Information Flow

In [110], A. Myers introduced JFlow, an extension to the Java language [72] that
adds statically-checked information flow annotations. JFlow provides several new
features that make information flow checking more flexible and convenient than in
previous models. Moreover it supports many language features that have never
been integrated successfully with static information flow control, including objects,
subclassing, dynamic type tests, access control and exceptions. JFlow treats static
checking of flow annotations as an extended form of type checking. Programs written
in this language can be statically checked by the JFlow compiler, which prevents
information leaks through storage channels [87]. JFlow is intended to support the
writing of secure servers and applets that manipulate sensitive data. The JFlow
compiler is structured as a source-to-source translator, so its output is a standard
Java program that can be compiled by any Java compiler.

Jif [9] extends Java by adding label that express restrictions on how informa-
tion may be used (technically, it use JFlow) and it provides static information flow
checking via a type system, based on the Decentralized Label Model [111]. The
programmer must annotate variables, methods, and class declaration with a label.
Jif can also infers labels not explicitly declared, and sets them to be as restrictive
as possible. A label specifies who owns data and who can read it. For example,
the label {Alice :} means that Alice owns the data and only she can read it, whereas
{Alice : Bob} means that Alice owns the data and Bob can read it too. The entities
that own and read data are called principals. Principals are defined by the program-
mer and they could be related to each other by the acts-for relation, i.e. a principal
Alice may delegate authority to another principal Bob. The acts-for relation is re-

70 6. Experimental Results: SAILS

flexive and transitive and it can be used to model groups and roles conveniently.
Through the labels it is possible to express security policies. For instance, consider
int {Alice → Bob} x;. In this case the security policy says that the information in x

is controlled by the principal Alice, and that Alice permits this information to ben
seen by the principal Bob. In addition, Jif supports a declassify operation, which
enables the owner of a piece of data to give it a less restrictive label in certain
circumstances.

In conclusion, Jif and Sails have different architecture and different target: the
first one is an ad-hoc tool that helps the programmer to write secure code, whereas
the second one is a component of a general purpose analyzer and provides a tool
dedicated to verification of security properties on already written code. If on the
one hand we have, in Jif, more complex security properties (and relative options,
e.g., declassification) and more efficiency, on the other one the definition and the
verification of the properties are strongly static, causing the decreasing the flexibility
of the tool.

6.5.2 Julia - Software Verification for Java and Android

Recently, a new tool has been developed: Julia5, a static analyzer for Java or An-
droid programs, written in Java. Its goal consists in to identifier in a fully automatic
way bugs without any help on the part of the programmer. It uses the abstract in-
terpretation technique and it is specialized to detect the following bugs:

• dead-code, methods or constructors that are not called;

• incorrect casts, a typical programming error, when the programmer assumes
that some data has a different nature than it actually has;

• null-pointer errors, a typical programming error, when the programmer ac-
cesses data that is actually missing;

• non-terminating loops or recursion, they are a waste of computing resources
or an actual bug;

• bad style, inappropriate class or method name, access of static data from a
non-static context, etc.;

• unused fileds, fields that are only read or only written are useless or can be
actual bug;

• wrong redefinitions, inappropriate types when a method is redefined, or inap-
propriate calls to super();

• bad equalities, use of equlas() instead of == or viceversa;

5http://www.juliasoft.com/

6.6. Conclusions 71

• bad definitions of equals/hashCode, missing hashCode() or equals();

• bad comparison, unsafe aproximated comparisons between float numbers.

The tool analyze only the compiled bytecode and it is possible to use Julia as a
command-line tool, run by any standard Java Virtual Machine or it can queried as
a web service, run inside a standard Tomcat container through SOAP protocol.

More details about the implementation are not specified. Julia is a software tool
produced by researchers from the University of Verona which have decided to offer
a service of software analysis only through a web site.

In this case the comparison is not possible. The architecture of this tool are very
similar to Sample (hence Sails too) but, the aim is completely different. Indeed, as
far as we know, Julia does not implement any information flow analysis yet.

Nowadays smartphones and their applications are very widespread and Julia, as
far as we know, is the first static analyzer for android programs. Therefore, the im-
plementation of our dependency analysis in Julia can lead interesting results. Adding
information flow analysis permits to verify the security aspects of applications before
their use and it may be crucial to protect the emerging data communication devices.

6.6 Conclusions

In this chapter we introduced Sails that applies and implements the information
flow analysis on object-oriented programs. Sails is an extension of Sample, therefore
it is modular with respect to the heap abstraction, and it can verify noninterference
over recursive data structures using simple and efficient heap analyses.

72 6. Experimental Results: SAILS

Table 6.1 Syntax for Object Oriented Languages

Variables:
v ∈ Var

v ::= x|y| . . .
Arithmetic Expression:

aexp ∈ Aexp

aexp ::= n ∈ N
| V

| Aexp⊕ Aexp where ⊕ = {+,−, ∗, /}
Addresses:

addr ∈ Addr

addr ::= n ⊆ N
| Addr ⊕ n where ⊕ = {+,−, ∗, /}

Expression:
exp ∈ Exp ≡ Addr ∪ Aexp

Conditions:
b ∈ B

b ::= true | false

| b0 ⊗ b1 where ⊗ = {∧,∨}
| ¬b
| Exp� Exp where � = {≤, >, =}

Labeled commands:
� ∈ L

c ∈ C

c ::= �
skip

| �
v := exp

| if
�
b then c0 else c1

��
endif

| c0; c1

| while
�
b do c

��
endif

| �
fun(v0, · · · , vn) where fun could be

a class constructor
Programs:

p ∈ P

p ::= c

6.6. Conclusions 73

Figure 6.3 Definition of abstract transition semantics for object oriented languages

T��
skip� = {��,φ � → �f ��

skip�, φ�}
T��

x := exp� = {��,φ � → �f ��
x := exp�, φ0� | exp /∈ Addr}∪

{��,φ � → �f ��
x := exp�, φ� | exp ∈ Addr}

T�c0; c1� = T�c0� ∪ T�c1�
T�if �

b then c0 else c1
��
endif� = T�c0� ∪ T�c1�∪

{��,φ � → �in�c0�, φ�} ∪{� �,φ � → �in�c1�, φ�}∪
{���, φ� → �f �if �

b then c0 else c1
��
endif�, φ1�}

{���, φ� → �f �if �
b then c0 else c1

��
endif�, φ2�}

T�while
�
b do c

��
done� = T�c� ∪{� �,φ � → �in�c�, φ�}∪

{���, φ� → �f �while
�
b do c

��
done�, φ3�}

T��
fun(v0, · · · , vn)� = {��,φ � → �f ��

fun(v0, · · · , vn)�, φfun�}

where, given a contract for the command fun(v0, · · · , vn) (denoted by Cont) which
contain the relation created inside the function call,

φ0 =
�

{e(y) → e(x) | e(y) ∈ V�exp� ∧ e(y) �= e(x)}
�

{e(z) → e(w) | e(z) → e(x), e(x) → e(w) ∈ φ}

∧ (φ�
�

{e(y) → e(x) | e(y) ∈ V ∧ e(x) /∈ V�exp�})

φ1 =
�

{e(y) → e(x) | e(y) ∈ V�B� ∧ e(x) ∈ BV (C0) ∧ e(y) �= e(x)} ∧ φ

φ2 =
�

{e(y) → e(x) | e(y) ∈ V�B� ∧ e(x) ∈ BV (C1) ∧ e(y) �= e(x)} ∧ φ

φ3 =
�

{e(y) → e(x) | e(y) ∈ V�B� ∧ e(x) ∈ BV (C) ∧ e(y) �= e(x)} ∧ φ

φfun =
�

{e(y) → e(x) | e(y) → e(x) ∈ Cont}

�
{e(z) → e(w) | e(z) → e(x), e(x) → e(w) ∈ φ ∧ ∃e(y) → e(x) ∈ Cont}

∧ (φ�
�

{e(y) → e(x) | e(x) ∈ V ∧ ∃e(y) → e(z) ∈ Cont.e(z) �= e(x)})

74 6. Experimental Results: SAILS

Figure 6.4 A CFG not supported by Sails

Figure 6.5 A motivating example

class ListWorkers {
int salary ;
ListWorkers next;
...

}

public void updateSalaries
(ListWorkers employees, ListWorkers managers){

int maxSalary = 0;
ListWorkers it=employees;
while(it!=null) {

if (it . salary>maxSalary)
maxSalary=it.salary;

it=it.next;
}

it=managers;
while(it!=null) {

if (it . salary < maxSalary)
it . salary=maxSalary;

it=it.next;
}

}

6.6. Conclusions 75

Figure 6.6 The initial state of the heap abstraction

Table 6.2 SecuriBench-micro suite
Name Description fa

Aliasing1 Simple aliasing ✓
Aliasing2 Aliasing false positive ✓
Basic1 Very simple XSS ✓
Basic2 XSS combined with a conditional ✓
Basic3 Simple derived integer test ✓
Basic5 Test of derived integer ✓
Basic6 Complex test of derived integer ✓
Basic8 Test of complex conditionals ✓
Basic9 Chains of value assignments ✓
Basic10 Chains of value assignments ✓
Basic11 A simple false positive ✓
Basic12 A simple conditional ✓
Basic18 Protect agains simple loop unrolling ✓
Basic28 Complicated control flow ✓
Pred1 Simple if(false) test ✗
Pred2 Simple correlated tests ✓
Pred3 Simple correlated tests ✓
Pred4 Test with an integer variable ✓
Pred5 Test with a complex conditional ✓
Pred6 Test with addition ✗
Pred7 Test with multiple variables ✗

76 6. Experimental Results: SAILS

Table 6.3 Jif case studies
Name Description fa

A Simple explicit flow test ✓
Account Simple explicit flow test ✓
ConditionalLeak Explicit flow in if statement ✓
Do Implicit flow in the loop ✓
Do2 Implicit flow if and loop ✓
Do3 Implicit flow loop and if ✓
Do4 Implicit flow loop and if ✓
Do5 Implicit flow loop and if ✓
If1 Simple implicit flow ✓
Implicit Simple implicit flow ✓

Figure 6.7 Simple strings example

. . .
public = “STRING

��;
if(secret)

public.trim();
else

public.upperCase();
endif

. . .

7
Future Works

In this chapter we present some research directions on which we are currently inves-
tigating.

7.1 Information Flow Analysis of JavaScript Code

Static techniques have benefits of reducing runtime overhead and dynamic tech-
niques have the benefits of permissiveness, which is of particular importance in
dynamic applications, where freshly generated code is evaluated. This setting is
becoming increasingly more important with the growing use of web browsers as ap-
plication platforms, since the client side language, JavaScript, is a highly dynamic
language. The main critical aspect, to perform a static analysis on JavaScript pro-
gram, are three. First, JavaScript is dynamically typed, therefore the type checking
can be performed only at runtime. Second, JavaScript allows the redefinition of
functions, methods and prototypes, both user defined and built-in; this means ,
for instance, that a program might run in not standard environment. And third,
JavaScript contains the function eval, which evaluates the code dynamically. Typ-
ically, the strings to be evaluated are not known at the time of analysis. Hence,
to provide an analysis for this language is an hard challenge. In this section we
present some preliminary results of analysis of JavaScript code developed by the
collaboration with Sergio Maffeis.

JavaScript is widely used in Web programming and it is implemented in ev-
ery major browser. Moreover, many contemporary web sites incorporate untrusted
content, for example, it serve third-party advertisements allow users to post com-
ments that are then served to others, or allow users to add their own applications
to the site. For this reason, recently, many different work about security problems
of JavaScript languages have been appeared [98, 97, 99, 124].

Notice that JavaScript is quite different from the languages treated in previous
chapter: JavaScript commands and programs are expressions which can be evaluated
in different environment. In order to apply the dependency analysis presented in
Chapter 4, we started from the operational semantics for JavaScript showed in [96]
and the concept presented in Section 5.4 to define an abstract representation to track
the information flows within the programs. Moreover, for the sake of simplicity, we

78 7. Future Works

Table 7.1 JavaScript expressions

e, e0, e1, e2 ∈ E
e, e0, e1, e2 ::= n n ∈ N

| x, y, z, · · · Variables
| e0 = e1 Assignments
| if(e0){e1}{e2} Conditional
| e0; e1 Sequential Composition
| while(e0){e1} Loop
| e0 ⊕ e1 Arithmetic Binary Operation
| e0&e1 Boolean Operation (and)
| e0 || e1 Boolean Operation (or)
| e.x Member Access
| λx.e Function
| e0(e1) Function Call
| {x1 : e1, · · · , xn : en} Literal Object

consider only a subset of the JavaScript expressions (denoted by E and showed in
Table 7.1).

In this new representation, each expression is abstracted by an identifier (�e�
is the abstraction of the expression e), generally by a natural number. Let Γ, φ,
S and P be a description of an expression, a propositional formula, an advanced-
substitution and a predicate, respectively. A predicate is an expression (or negated
expression) which have a boolean meaning1 and an advanced-substitution consists,
roughly speaking, in a multiple substitution. For instance, consider �e0�,�e1�/�e2� and
the propositional formula φ = �e2� → �e3�. The substitution will replace all occur-
rences of �e2� in the propositional formula φ with both �e0� and �e1�. This substi-
tution will duplicate each implication that involves �e2� and it will connect them by
the “and” (∧) operator; in this case we will obtain φnew = �e0� → �e3�∧�e1� → �e3�.
A propositional formula, differently from the version of the previous chapters, is
based on the identifier. Formally, Γ is defined as follows.

Γ : = (R, S)

| ((P) ⇒ Γ)

| Γ ∧ Γ

| ε

And the abstract semantics to obtain the abstract representation, Γ, from a program
is defined in Figures 7.1 and 7.2. Notice that, when we have a function e = λx.e�,
we denote by arg(�e�) the formal parameter x and by body(�e�) the body of the
function, e

�. In order to better understand, consider the following example.

1Notice that each expression could be evaluated as a boolean value.

7.1. Information Flow Analysis of JavaScript Code 79

Table 7.2 Table expression - identifier

x 0
x = 0 1

0 2
x = 0; while(y + x ≤ 10){x = x + 1; w = z + x} 3

while(y + x ≤ 10){x = x + 1; w = z + x; z = z− 1} 4
y 5

y + x 6
x 7

y + x ≤ 10 8
10 9
x 10

x = x + 1 11
x 12

x + 1 13
1 14

x = x + 1; w = z + x 15
w 16

w = z + x 17
z 18

z + x 19
x 20

Example 14. Consider the expression:

x = 0; while(y + x ≤ 10){x = x + 1; w = z + x; }.

First of all we assign to each sub-expression an identifier (a natural number), Table
7.2. Then we can apply the rules of abstract semantics to the program. The steps
are following.

Evaluated expression Obtained state
1 x ε
2 0 ε
3 x = 0 ε
4 y ε
5 x ε
6 y + x �T,(5,7) /6�

7 10 �T,(5,7) /6�

8 y + x ≤ 10 �T,(5,7) /6� ∧ �T,(6,9) /8�

9 x �T,(5,7) /6� ∧ �T,(6,9) /8�

10 x �T,(5,7) /6� ∧ �T,(6,9) /8�

11 1 �T,(5,7) /6� ∧ �T,(6,9) /8�

80 7. Future Works

12 x + 1 �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13�

13 x = x + 1 �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

14 w �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

15 z �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

16 x �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

17 z + x �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

�T,(18,20) /19�

18 w = z + x �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

�T,(18,20) /19�∧

�19 → 16,16 /17�

19 x = x + 1; w = z + x �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

�T,(18,20) /19�∧

�19 → 16,16 /17�∧

�T,(11,17) /15�

20 while(y + x ≤ 10){x = x + 1; w = z + x; } �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

�T,(18,20) /19�∧

�19 → 16,16 /17�∧

�T,(11,17) /15�∧

(y + x ≤ 10) ⇒ �8 → 15,15 /4�

21 x = 0; while(y + x ≤ 10){x = x + 1; w = z + x; } �T,(5,7) /6� ∧ �T,(6,9) /8�∧

�T,(12,14) /13� ∧ �T,10 /11�

�T,(18,20) /19�∧

�19 → 16,16 /17�∧

�T,(11,17) /15�∧

(y + x ≤ 10) ⇒ �8 → 15,15 /4�

∧�T,(1,4) /3�

At the end of the computation we obtain, as abstract representation:

�T,(5,7) /6� ∧ �T,
(6,9) /8� ∧ �T,

(12,14) /13� ∧ �T,
10 /11��T,

(18,20) /19� ∧ �19 → 16,16 /17�∧

�T,(11,17) /15� ∧ (y + x ≤ 10) ⇒ �8 → 15,15 /4� ∧ �T,
(1,4) /3�

7.2. Declassification 81

At this point we split the propositional formulae and the substitutions:

φ =(19 → 16) ∧ (y + x ≤ 10) ⇒ (8 → 15)

Subs =(1,4)/3;
15 /4;

(11,17) /15;
16 /17;

(18,20) /19;
10 /11;

(12,14) /13;
(6,9) /8;

(5,7) /6;

And, finally, we apply the advanced substitutions on the propositional formula:

φ = 18 → 16 ∧ 20 → 16∧

(y + x ≤ 10) ⇒ [(5 → 10) ∧ (7 → 10) ∧ (9 → 10) ∧ (5 → 16) ∧ (7 → 16) ∧ (9 → 16)]

In this way, we track all the information flow between identifiers.

Currently, we are working on to define more formally all steps presented inside
the example and, at the same time, to remove false alarms (9 → 10 and 9 → 16
are not information flow). The aim of this approach consists to track statically the
information flow and then use some dynamic analyses to refine the results.

7.2 Declassification

As described in Chapter 2, for many applications a complete separation between
secret and public is too restrictive. Consider the code in Example 12, to avoid the
warning and to pass the analysis we have to introduce a note which claims that the
information flow from x6 and x4 to results is necessary for the user authentication.

The declassification technique is based on the lowering security classification of
selected information. Reasoning on toy languages, like the one presented in Chapter
4, the implementation of declassification seems to be easy: through a renaming of
propositional variables. Considering the same example code (Figure 4.2, Example
12), by a renaming of some variables, more precisely x6 and x4 in the if statements,
with some new propositional variable, which have the right security classification,
the analysis can assert that there is not information leakage.

One of the issue that are introduced by the classical approach consists in the
adding of annotations, inside the code, to select the variables which have to be de-
classified. The modularity of our analysis should permits us to avoid the annotation
inside the code and to select the variables between the analysis of the code and the
properties verification.

Currently, we are investigating to formalize the declassification in the theoretical
analysis definition and to implement it in Sails.

7.3 Multithreading

Multithreading appears to be the most common way to build parallel applications
in commercial programming languages. Parallelism cannot be avoided it is the only

82 7. Future Works

immediate and native way in order to take advantage from multicore architectures,
that represent the most important trend of CPU market today [64]. Multithread-
ing consists in partitioning a large application into many different subtasks, each of
them possibly running in parallel. Threads can communicate through shared mem-
ory and they can synchronize each other through monitors, semaphores, etc. The
arbitrary interleaving occurring during the parallel execution of different threads
may lead to nondeterministic behaviors and it is often difficult to reproduce. Even
if researchers have worked on parallel computing during almost the last 30 years,
there are still important shortcomings in formal methods and static analysis with re-
spect to multithreading. Hence, we can assert that it is hard to debug multithreaded
programs.

The intuition about the extension of our analysis to multithreaded programs
seems, like for the declassification, to be easy. Consider the analysis which involves
the attackers that observe each steps of computation, in this case our analysis detects
all possible information flow in the program. When we execute a program in multi-
threaded way the information flows are, intuitively, always the same. Currently, we
are studying the literature to formalize and verify this intuition.

7.4 Conclusions

The section above described our current work, but there are a lot of different ways
to extends the analysis. For example it could be possible to apply information flow
analysis to perform program slicing [150], to analyze security policy (RBAC, [62])
or to add to the dependency between variable the probability.

7.4. Conclusions 83

Figure 7.1 Abstract semantics for JavaScript expressions - Part 1
Variable or Constant:

Γ, x → Γ

Assignment:

�

Γ, e0 → Γ1

�

Γ1, e1 → Γ2 Γ� = Γ2 ∧ ��e1� → �e0�,�e0� /�e0:=e1��

Γ, e0 := e1 → Γ�

Conditional:

�

Γ, e0 → Γ1

�

Γ1, e1 → Γ2

�

Γ1, e2 → Γ3

Γ, if(e0){e1}{e2}→ Γ�

whereΓ � = (e0 ⇒ ��e0� → �e1�,e1 /if(e0){e1}{e2}� ∧ Γ2) ∧ (¬e0 ⇒ ��e0� →

�e2�,e1 /if(e0){e1}{e2}� ∧ Γ3)

Sequential Composition:

�

Γ, e0 → Γ1

�

Γ1, e1 → Γ2 Γ� = Γ2 ∧ �∅,(�e0�,�e1�) /e0;e1�

Γ, e0; e1 → Γ�

Loop

�

Γ, e0 → Γ1

�

Γ, e1 → Γ2 Γ� = Γ1 ∧ (e0 ⇒ ��e0� → �e1�,e1 /while(e0){e1}� ∧ Γ2)

Γ, while(e0){e1}→ Γ�

Binary Operation - Arithmetic and Boolean (except for & and ||)

�

Γ, e0 → Γ1

�

Γ1, e1 → Γ2 Γ� = Γ2 ∧ �∅,(�e0�,�e1�) /e0⊕e1�

Γ, e0 ⊕ e1 → Γ�

84 7. Future Works

Figure 7.2 Abstract semantics for JavaScript expressions - Part 2
Binary Operation (Boolean - and)

�

Γ, e0 → Γ1

�

Γ, e1 → Γ2 Γ� = Γ1 ∧ (e0 ⇒ ��e0� → �e1�,(�e0�,�e1�) /e0&e1� ∧ Γ2)

Γ, e0&e1 → Γ�

Binary Operation (Boolean - or)

�

Γ, e0 → Γ1

�

Γ, e1 → Γ2 Γ� = Γ1 ∧ (¬e0 ⇒ ��e0� → �e1�,(�e0�,�e1�) /e0||e1� ∧ Γ2)

Γ, e0 || e1 → Γ�

Member Access:

�

Γ, e → Γ1 Γ� = Γ1 ∧ �∅,(�e�.�x�) /e.x�

Γ, e.x → Γ�

Function

�

Γ, e → Γ1 Γ� = Γ1

Γ, λx.e → Γ�

Function Call:

�

Γ, e0 → Γ1

�

Γ1, e1 → Γ2 Γ� = Γ2 ∧ �∅,(body(�e0�)) /e0(e1)�

Γ, e0(e1) → Γ�

Literal Object:

�

Γ, e1 → Γ1 . . .

�

Γ, en → Γn

Γ, {x1 : e1, . . . , xn : en}→ Γ�

whereΓ � = Γn ∧ ��e0� → �x0� ∧ . . . ∧ �e0� → �x0�, ∅�

8
Conclusions

Nowadays, the major challenge for secure information flow analysis is to develop a
good formalism for specifying useful information flow policies. This must be general
enough for a wide variety of applications, but not too complicated for users to
understand. In this thesis, we presented a static analysis tool, apt to verify secure
information flows, with a flexible construction and usable without adding any kind
of notation. In particular, thanks to its modular construction, we can deal with the
tradeoff between efficiency and accuracy by tuning the granularity of the abstraction
and the complexity of the abstract operators.

As a first contribution, we provided new results about the combination of dif-
ferent domains and the use of widening and narrowing operators. We provided a
formal definition of the widening and narrowing operations already introduced in
the literature, we proved that the widening and narrowing operators are preserved
by abstraction and we indicated a method to construct widening operators for a
product domain such as the reduced and cartesian products.

A second contribution of this thesis is the development of a variables’ depen-
dencies analysis based on a propositional formulae domain. Despite the analysis is
equivalent to the certification mechanism presented by Denning and Denning [57]
(and then it results to be equivalent to others analyses), we used the Pos domain,
originally design for the analysis of groundness dependencies for logic program, as
a powerful way to tracking the information flows among program’s variables.

Through the combination of the variables dependency analysis and the numerical
analyses, we obtained a strictly more accurate analysis and then more precise results.
The main goal of this refinement consists in the detection of some kind of false
alarms, which permits, in this way, to make applicable our analysis to practical
cases. Moreover, we afforded a modular construction which allows to deal with the
tradeoff between efficiency and accuracy by tuning the granularity of the abstraction
and the complexity of the abstract operators. Notice that further refinement are
possible by combination of our analysis with other domains.

Despite the number of works about information flow analysis, the implementa-
tions are very few. According to Li and Zdancewic [90], one of the reasons that
limited the application of information flow analysis in real cases is that they require
to re-write the whole system in the new language. The fourth contribution of this

86 8. Conclusions

thesis is in fact Sails: a new tool which aims an information flow analysis. Differ-
ently from the other tools in literature, Sails does not require to re-write the whole
program because it works with mainstream languages like Java. It does not require
to add any manual annotation, since it infers the flow of information directly on the
original program, and it asks what are the private data that have not to be leaked
to the user during the analysis execution. In order to evaluate Sails we applied the
SecuriBench-micro suite on it. The preliminary results gave us the confirmation of
theoretical results about efficiency and accuracy.

A
Dependency Analysis

Formal Proofs

Theorem A.1. θ : Σ�� → ℘(Σ��) is monotonic: x ��
y ⇒ θ(x) �� θ(y)

Proof. Let x0 = {σ0 → . . . → σn} and x1 = {σ�0 → . . . → σ�m} be two elements ofΣ ��

such that x0 �
�

x1 and consider θ(x0) = {σ�
0, . . . , σ�

n} and θ(x1) = {σ��
0, . . . , σ

��
m}.

By the definition of “��” we know that n ≤ m, ∀i ∈ [0, n].σi = σ�i. Therefore, by
the definition of θ, we have that ∀i ∈ [0, n].σ�

i = σ��
i. Then, by definition of “��”,

θ(x0) �� θ(x1).

Theorem A.2. α� : ℘(Σ��) → ℘(Σ��) is monotonic: X ⊆ Y ⇒ α�(X) �� α�(Y)

Proof. Consider X0, X1 ∈ ℘(Σ��) such that X0 ⊆ X1, α�(X0) = ��{θ(π�) | π� ∈ X0}

and α�(X1) = ��{θ(π�) | π� ∈ X1}. By definition of “⊆”, ∀π�0 ∈ X0.∃π�1 ∈ X1 such
that π�0 �

� π�1. By Theorem A.1, θ(π�0) �
� θ(π�1) for all π�0 ∈ X0 and π�1 ∈ X1. Then

we have α�(X0) �� α�(X1)

Theorem A.3. γ� : ℘(Σ��) → ℘(Σ��) is monotonic: X ��
Y ⇒ γ�(X) ⊆ γ�(Y)

Proof. Consider X0, X1 ∈ ℘(Σ��) such that X0 �
�

X1, γ�(X0) = {π� ∈ ℘(Σ��) |

θ(π�) ��
X0 ∧ l(π�) ∈ �(X�0)} and γ�(X1) = {π� ∈ ℘(Σ��) | θ(π�) ��

X1 ∧ l(π�) ∈
�(X�1)}. By definition of “��” and by Theorem A.1, for all π�0 ∈ γ�(X0) exists
π�1 ∈ γ�(X1). Therefore γ�(X0) �� γ�(X1).

Theorem A.4. α� ◦ γ� is the identity: α�(γ�(X)) = X

Proof. Let X be an element of ℘(Σ��). By definition of α�, α�(γ�(X)) = ��{θ(π�) |
π� ∈ γ�(X)}. By definition of γ�, α�(γ�(X)) = ��{θ(π�) | θ(π�) ��

X∧ l(π�) ∈ �(X�)}.
Then, by definition of “��” and “��”, α�(γ�(X)) = X.

Theorem A.5. γ� ◦ α� is extensive: X �� γ�(α�(X))

Proof. Consider X ∈ ℘(Σ��). By definition of γ�, γ�(α�(X)) = {π� ∈ ℘(Σ��) |

θ(π�) �� α�(X)∧ l(π�) ∈ �(α�(X)�)}. By definition of α�, γ�(α�(X)) = {π� ∈ ℘(Σ��) |
θ(π�) �� ��{θ(π�) | π� ∈ X} ∧ l(π�) ∈ �(α�(X)�)}. By definition of “��”, “��” and
by Theorem A.1, X �� γ�(α�(X)).

88 A. Dependency Analysis - Formal Proofs

Theorem A.6. ℘(Σ��) −−−→−→←−−−−

α�

γ�

℘(Σ��) is a Galois insertion.

Proof. Notice that ℘(Σ��) and ℘(Σ��) are two complete lattices, γ� and α� are mono-
tonic (Theorems A.2 and A.3), α� ◦ γ� is the identity (Theorem A.4) and γ� ◦ α� is

extensive (Theorem A.5). Therefore ℘(Σ��) −−−→−→←−−−−

α�

γ�

℘(Σ��) is a Galois insertion.

Theorem A.7. ℘(Σ�) −−−→−→←←−−−−
α�

γ�

℘(Σ��)is an isomorphism.

Proof. We have to prove that γ�◦α� = α�◦γ� = id , where id is the identity function.
Let X and Y be an element of ℘(Σ��) and an element of ℘(Σ�), respectively.

α�(γ�(X)) = {��0, a0� → . . . → ��m, am� | σ0

�0a0
−−→ . . .

�mam
−−−→ σm+1 ∈ γ�(X)}

by definition of α�

= {��0, a0� → . . . → ��m, am� | σ0

�0a0
−−→ . . .

�mam
−−−→ σm+1 ∈ {π | α�({π}) ⊆ X}}

by definition of γ�

= {��0, a0� → . . . → ��m, am� | ��0, a0� → . . . → ��m, am� ∈ X}

= X

γ�(α�(Y)) = {π ∈ ℘(Σ�) | α�({π}) ⊆ α�(Y)}
by definition of γ�

= {π ∈ ℘(Σ�) | α�({π}) ⊆ {α�({π�}) | π� ∈ Y}}

by definition of α�

= {π ∈ ℘(Σ�) | π ∈ Y}

= Y

B
Widening and Narrowing

Formal Proofs

Theorem (3.6). Let (P,≤) be a poset, and let ∇ : P × P → P be a pair-widening
operator on P. Define ∇� : ℘(P) � P such that:

- dom(∇�) = R1 ∪ R2, where
R1 = {{x, y} | x, y ∈ P}, and
R2 = {S ⊆ P | S is a finite ascending chain}.

- ∀{x, y} ∈ R1,

∇�({x, y}) =def

�
x∇y if x ≤ y

z ∈ {x∇y, y∇x} randomly, otherwise.

- ∀S = {xi | x0 ≤ x1 ≤ · · · ≤ xj} ∈ R2,
∇�(S) =def (((x0∇x1)∇x2 . . .)∇xj).

Then ∇� is a set-widening operator.

Proof. We have to show that both covering and termination requirements hold for
∇�.

- Covering. Let S ⊆ P such that ∇�(S) is defined. We have to show that
∀s ∈ S : s ≤ ∇�(S).
Case S ∈ R1: it follows from the definition of ∇.
Case S ∈ R2: it follows by induction on the length of the ascending chain, and
by the transitivity of the partial order.

- Termination. Consider the ascending chain {xi}i≥0. Consider the correspond-
ing ascending chain {ŷi}i≥0 obtained by ∇ (see Definition 3.6), and the as-
cending chain {yi}i≥0 obtained using ∇� (see Definition 3.5). We can prove by
induction that for each index i, yi = ŷi.
The basis is true, as y0 = x0 = ŷ0.

90 B. Widening and Narrowing - Formal Proofs

Consider the inductive step:

yi+1 = ∇�({xj | 0 ≤ j ≤ i + 1}) by (ii) of Definition 3.5
= (((x0∇x1)∇x2 . . .)∇xi+1) by Definition of ∇�

= ∇�({xj | 0 ≤ j ≤ i})∇xi+1 again by Definition of ∇�

= ŷi∇xi+1 by inductive hypotesis
= ŷi+1 by (ii) of Definition 3.6

As the sequence {ŷi}i≥0 stabilizes after a finite number of terms, so does
{yi}i≥0.

Theorem (3.7). Let (P,≤) be a poset, and let ∇� : ℘(P) � P be a set-widening
operator on P such that

- dom(∇�) ⊇{{ x, y} | x, y ∈ P}, and

- ∀S ⊆ P, ∀x ∈ P, if S ∪ {x} ⊆ dom(∇�) then also S ⊆ dom(∇�)

- ∀S ⊆ P, ∀x ∈ P, ∇�(S ∪ {x}) = ∇�({∇�(S), x}).

Then, the binary operator ∇ : P × P → P defined by x∇y = ∇�({x, y}) is a pair-
widening operator.

Proof. First, observe that ∇ is well defined. The covering requirement follows im-
mediately from the definition of ∇ and the covering property of ∇�. Now, consider
an ascending chain {xi}i≥0 in P, and the ascending chain y0 = x0, yi+1 = yi∇xi. As
∇� is a set-widening, we know that the sequence y

�
0 = x0, y�i = ∇�({xj | 0 ≤ j ≤ i}

stabilizes finitely. We show by induction that for each i, yi = y
�
i. The basis is true,

as y0 = x0 = y
�
0. On the induction step,

y
�
i+1 = ∇�({xj | 0 ≤ j ≤ i + 1} by point (ii) of Definition 3.5

= ∇�({∇�({xj | 0 ≤ j ≤ i}), xi+1}) by hypothesis on ∇�

= ∇�({y�i, xi+1}) by point (ii) of Definition 3.5
= ∇�({yi, xi+1}) by inductive hypothesis
= yi∇xi+1 by Definition of ∇
= yi+1 by point (ii) of Definition 3.6.

As the sequence {y�i}i≥0 stabilizes after a finite number of terms, so does {yi}i≥0.

Theorem (3.8). Let (P,≤) be a poset, and let ∆ : P × P → P be a pair-narrowing
operator on P. Define ∆� : ℘(P) � P such that:

- dom(∆�) = R1 ∪ R2, where
R1 = {{x, y} | x, y ∈ P : ∃ glb(x, y)}, and
R2 = {S ⊆ P | S is a finite descending chain}.

91

- ∀{x, y} ∈ R1,

∆�({x, y}) =def

�
y∆x if x ≤ y

glb({x, y}) otherwise.

- ∀S = {xi | x0 ≥ x1 ≥ · · · ≥ xj} ∈ R2,
∆�(S) =def ((((x0∆x1)∆x2)∆) . . . ∆xj).

Then ∆� is a set-narrowing operator.

Proof. We have to show that both bounding and termination requirements hold for
∆�.

- Bounding. Let S ⊆ S such that∆ �(S) is defined. We have to show that
glb(S) ≤ ∆�(S) ≤ s.
Case S ∈ R1: it follows from the definition of∆.
Case S ∈ R2: it follows by induction on the length of the decreasing chain
(x0 ≥ x1 ≥ . . . ≥ xj), and by the transitivity of the partial order.

- Termination. Consider the decreasing chain {xi}i≥0. Consider the correspond-
ing decreasing chain {ŷi}i≥0 obtained by ∆ (see Definition 3.9), and the de-
creasing chain {yi}i≥0 obtained using∆ � (see Definition 3.8). We can prove
by induction that for each index i, yi = ŷi.
The basis is true, as y0 = x0 = ŷ0.
Consider the inductive step:

yi+1 = ∆�({xj | 0 ≤ j ≤ i + 1}) by definition of
the sequence {yj}j≥0

= (((((x0∆x1)∆x2)∆) . . . ∆xi)∆xi+1) by definition of∆ �

= ∆�({xj | 0 ≤ j ≤ i})∆xi+1 again by definition of∆ �

= ŷi∆xi+1 by inductive hypothesis
= ŷi+1 by (ii) of pair-narrowing def.

As the sequence {ŷi}i≥0 stabilizes after a finite number of terms, so does
{yi}i≥0.

Theorem (3.9). Let (P,≤) be a poset, and let ∆� : ℘(P) � P be a set-narrowing
operator on P such that

1. dom(∆�) ⊇{{ x, y} | x, y ∈ P}, and

2. ∀S ⊆ P, ∀x ∈ P, if S ∪ {x} ⊆ dom(∆�) then also S ⊆ dom(∆�)

3. ∀S ⊆ P, ∀x ∈ P, ∆�(S ∪ {x}) = ∆�({∆�(S), x}).

Then, the binary operator ∆ : P × P → P defined x∆y = ∆�({x, y}) is a pair-
narrowing operator.

92 B. Widening and Narrowing - Formal Proofs

Proof. First, observe that ∆ is well defined. The bounding requirement follows
immediately from the definition of ∆ and the bounding property of∆ �. Now,
consider an descending chain {xi}i≥0 in P, and the descending chain y0 = x0, yi+1 =
yi∆xi+1. As ∆� is a set-narrowing, we know that the sequence y

�
0 = x0, y�i = ∆�({xj |

0 ≤ j ≤ i}) stabilizes finitely. We show by induction that for each i, yi = y
�
i. The

basis is true, as y0 = x0 = y
�
0. On the induction step,

yi+1 = yi∆xi+1 by definition of the sequence {yj}j≥0

= ∆�({yi, xi+1}) by ∆ definition
= ∆�({∆�({xj | 0 ≤ j ≤ i}), xi+1}) by induction hypothesis
= ∆�({xj | 0 ≤ j ≤ i + 1}) by the property 3
= y

�
i+1 by (ii) of set-narrowing definition

As the sequence {y�i}i≥0 stabilizes after a finite number of terms, so does {yi}i≥0.

Theorem (3.10). Let ∇A and ∇D be pair-widening operators defined on the posets
A and D, respectively.
The binary operator ∇ : (A × D) × (A × D) → (A × D) defined by ∀�a, d�, �a�, d�� ∈
A× D : �a, d�∇�a�, d�� = �a∇Aa

�, d∇Dd
�� is a pair-widening operator.

Proof.

- Covering

a ≤ a∇Aa
� and d ≤ d∇Dd

� by covering of ∇A ,∇D

⇒ �a, d� ≤ �a∇Aa
�, d∇Dd

�� by definition of ≤ on A× D

⇒ �a, d� ≤ �a, d�∇�a�, d�� by definition of ∇.

- Termination Let {�ai, di�}i≥0 be an ascending chain in the cartesian product
A × D. We have to show that the sequence �u0, v0� = �a0, d0�, �ui+1, vi+1� =
�ui, vi�∇�ai, di� stabilizes after a finite number of terms.

By the termination property of ∇A and ∇D , both the sequence â0 = a0, âi+1 =
âi∇Aai, and the sequence d̂0 = d0, d̂i+1 = d̂i∇Ddi stabilize finitely.

It can be easily proved by induction that for each i, �ui, vi� = �âi, d̂i�. There-
fore, the sequence {�uj, vj�}j≥0 stabilizes finitely too.

Theorem (3.11). Let ∆A and ∆D be pair-narrowing operators defined on the posets
A and D, respectively.
The binary operator ∆ : (A × D) × (A × D) → (A × D) defined by ∀�a, d�, �a�, d�� ∈
A× D : �a, d�∆�a�, d�� = �a∆Aa

�, d∆Dd
�� is a pair-narrowing operator.

Proof.

93

- Bounding

∀a, a� ∈ A : (a ≤ a
�) =⇒ (a ≤ a

�∆a ≤ a
�) and

∀d, d� ∈ D : (d ≤ d
�) =⇒ (d ≤ d

�∆d ≤ d
�)

by bounding of∆ A and∆ B

⇒ �a, d� ≤ �a�∆Aa, d�∆Dd� ≤ �a�, d��
by definition of ≤ on A× D

⇒ �a, d� ≤ �a�, d��∆�a, d� ≤ �a�, d��
by definition of∆

- Termination Let {�ai, di�}i≥0 be a descending chain in the cartesian product
A × D. We have to show that the sequence �u0, v0� = �a0, d0�, �ui+1, vi+1� =
�ui, vi�∆�ai, di� stabilizes after a finite number of terms.

By the termination property of∆ A and∆ D , both the sequence â0 = a0, âi+1 =
âi∆Aai, and the sequence d̂0 = d0, d̂i+1 = d̂i∆Ddi stabilize finitely.

By induction we prove that for each i, �ui, vi� = �âi, d̂i�.
The basis is true: �u0, v0� = �a0, d0� = �â0d̂0�. On the induction step,

�ui+1, vi+1� = �ui, vi�∆�ai+1, di+1� by definition of �ui+1, vi+1�

= �âi, d̂i�∆�ai+1, di+1� by induction hypothesis
= �âi∆Aai+1, d̂i∆Ddi+1� by definition of∆
= �âi+1, d̂i+1� by definition of âi+1 and d̂i+1

Therefore, the sequence {�uj, vj�}j≥0 stabilizes finitely too.

Theorem (3.12). Let (P,≤) be a lattice satisfying the ascending chain property.
Let ∇1,∇2 be two pair-widening operators on P. Then, the binary operators ∇�,∇�
defined by

x∇� y = (x∇1 y) � (x∇2 y)
x∇� y = (x∇1 y) � (x∇2 y)

are pair-widening operators.

Proof. It follows by properties of � and �.

Theorem (3.13). Let (P,≤) be a lattice satisfying the descending chain property.
Let ∆1, ∆2 be two pair-narrowing operators on P. Then, the binary operators ∆�, ∆�
defined by

x ∆� y = (x ∆1 y) � (x ∆2 y)
x ∆� y = (x ∆1 y) � (x ∆2 y)

are pair-narrowing operators.

Proof. It follows by properties of � and �, as for the widening operators.

94 B. Widening and Narrowing - Formal Proofs

Lemma (3.1). Let ∇ be a pair-widening operator on a lattice (P,≤), such that for
every finite set {xi}0≤i≤n and for every y ∈ P, (((x0∇x1)∇ . . .)∇xn) ∇ (x0�x1� · · ·�

xn � y) = (((x0∇x1)∇ . . .)∇xn)∇y, then ∇ is a strong pair-widening operator.

Proof. We need to focus only on the termination property. Consider the sequence
{xi}0≤i≤n, and the increasing sequence

z0 = x0, zi+1 = x0 � . . . � xi+1

We show by induction that the two increasing sequences y0 = x0, yi+1 = yi∇xi+1

and h0 = z0, hi+1 = hi∇zi+1 are such that ∀i : yi = hi.
The basis is trivial, as y0 = x0 = z0 = h0.
The induction step:

hi+1 = hi∇zi+1 by def. of {hj}j≥0

= yi∇zi+1 by inductive hypothesis
= (((x0∇x1)∇ . . .)∇xi)∇zi+1 by def. of {yj}j≥0

= (((x0∇x1)∇ . . .)∇xi)∇(x0 � . . . � xi+1) by def. of {zj}j≥0

= (((x0∇x1)∇ . . .)∇xi)∇xi+1 by hypothesis on ∇
= yi+1 by def. of {yj}j≥0

As the increasing sequence {hj}j≥0 stabilizes after a finite number of terms, so does
{yj}j≥0.

Theorem (3.16). Let ∇ be an associative pair-widening operator on a lattice (P,≤),
such that for ∀x, y ∈ P : x∇y = x∇(x�y), then ∇ is a strong pair-widening operator.

Proof. By Lemma 3.1, it is sufficient to prove by induction that for every finite set
{xi}0≤i≤n and for every y ∈ P, (((x0∇x1)∇ . . .)∇xn) ∇ (x0 � x1 � · · · � xn � y) =
(((x0∇x1)∇ . . .)∇xn)∇y.
The basis (n = 1) follows immediately from the hypothesis.
Induction step:

(((x0∇x1)∇ . . .)∇xn) ∇ (x0 � · · · � xn � y) = by inductive hypothesis
(((x0∇x1)∇ . . .)∇(x0 � · · · � xn)) ∇ (x0 � . . . � xn � y) = by associativity of

∇ and of �
((x0∇x1)∇ . . .)∇((x0 � · · · � xn)∇((x0 � · · · � xn) � y)) = by applying

the hypothesis
((x0∇x1)∇ . . .)∇((x0 � · · · � xn)∇y) = by associativity of ∇
(((x0∇x1)∇ . . .)∇xn)∇y.

Lemma (3.2). Let ∆ be a pair-narrowing operator on a lattice (P,≤), such that for
every finite set {xi}0≤i≤n and for every y ∈ P, (((x0∆x1)∆ . . .)∆xn) ∆ (x0�x1� · · ·�

xn � y) = (((x0∆x1)∆ . . .)∆xn)∆y, then ∆ is a strong pair-narrowing operator.

95

Proof. We need to focus only on the termination property. Consider the sequence
{xi}0≤i≤n, and the decreasing sequence

z0 = x0, zi+1 = x0 � . . . � xi+1

We show by induction that the two increasing sequences y0 = x0, yi+1 = yi∆xi+1

and h0 = z0, hi+1 = hi∆zi+1 are such that ∀i : yi = hi.
The basis is trivial, as y0 = x0 = z0 = h0.
The induction step:

hi+1 = hi∆zi+1 by definition of {hj}j≥0

= yi∆zi+1 by inductive hypothesis
= (((x0∆x1)∆ . . .)∆xi)∆zi+1 by definition of {yj}j≥0

= (((x0∆x1)∆ . . .)∆xi)∆(x0 � . . . � xi+1) by definition of {zj}j≥0

= (((x0∆x1)∆ . . .)∆xi)∆xi+1 by hypothesis on∆
= yi+1 by definition of {yj}j≥0

As the increasing sequence {hj}j≥0 stabilizes after a finite number of terms, so does
{yj}j≥0.

Theorem (3.17). Let ∆ be an associative pair-narrowing operator on a lattice (P,≤
), such that for ∀x, y ∈ P : x∆y = x∆(x � y), then ∆ is a strong pair-narrowing
operator.

Proof. By Lemma 3.2, it is sufficient to prove by induction that for every finite set
{xi}0≤i≤n and for every y ∈ P, (((x0∆x1)∆ . . .)∆xn) ∆ (x0 � x1 � · · · � xn � y) =
(((x0∆x1)∆ . . .)∆xn)∆y.
The basis (n = 1) follows immediately from the hypothesis.
Induction step:

(((x0∆x1)∆ . . .)∆xn) ∆ (x0 � · · · � xn � y) = by inductive
hypothesis

(((x0∆x1)∆ . . .)∆(x0 � · · · � xn)) ∆(x0 � . . . � xn � y) = by associativity of
∆ and of �

((x0∆x1)∆ . . .)∆((x0 � · · · � xn)∆((x0 � · · · � xn) � y)) = by applying the
hypothesis

((x0∆x1)∆ . . .)∆((x0 � · · · � xn)∆y) = by associativity of∆
(((x0∆x1)∆ . . .)∆xn)∆y.

Theorem (3.18). Let (P,≤) be a meet-semi-lattice (the greatest lower bound x � y

exist for all x.y ∈ L) satisfying the descending chain condition (no strictly decreasing
chain in L can be infinite). Let ∆ : P × P → P be a pair-narrowing operator such
that x∆y = x � y. Then ∆ is a strong lower-bound pair-narrowing.

96 B. Widening and Narrowing - Formal Proofs

Proof. - Bounding: Consider y ≤ x:

x ≥ x∆y ≥ y by bounding property in Definition 3.9
⇒ x ≥ x∆y ≥ x � y by the relation between x and y

This result is true for each x, y ∈ P : x ≤ y, as request by bounding property
in Definition 3.13.

- Termination: Consider the sequence {xi}0≤i≤n and the decreasing sequence

z0 = x0, zi+1 = x0 � . . . � xi+1

We show by induction that the two increasing sequences y0 = x0, yi+1 =
yi∆xi+1 and h0 = z0, hi+1 = hi∆zi+1 are such that ∀i : yi = hi.

The basis is trivial, as y0 = x0 = z0 = h0.

The induction step:

hi+1 = hi∆zi+1 by definition of {hj}j≥0

= yi∆zi+1 by inductive hypothesis
= (((x0∆x1)∆ . . .)∆xi)∆zi+1 by definition of {yj}j≥0

= (((x0∆x1)∆ . . .)∆xi)∆(x0 � . . . � xi+1) by definition of {zj}j≥0

= (((x0 � x1) � . . .) � xi) � (x0 � . . . � xi+1) by definition of∆
= (x0 � . . . � xi+1) by properties of �
= (((x0∆x1)∆ . . .)∆xi)∆xi+1 by definition of∆
= yi+1 by definition of {yj}j≥0

As the increasing sequence {hj}j≥0 stabilizes after a finite number of terms, so
does {yj}j≥0.

Theorem (3.19). Let (P,≤) be a poset and ∆ be a pair-narrowing (Definition 3.9).
If ∀v, w : v∆(v � w) = v∆w, then ∆ is a lower bound pair-narrowing (Definition
3.12).

Proof. We need to focus only on the bounding property. By Definition 3.9, of∆,
we know that

(x ≥ y) =⇒ (x ≥ (x∆y) ≥ y)

We consider u, v ∈ P, with x = v and y = v � w.
Then we have

v ≥ v∆(v � w) ≥ v � w

By assumption, we have that ∀v, w

v∆(v � w) = v∆w

then we get
v ≥ v∆w ≥ v � w

That is the bounding property of lower-bound pair-narrowing operator.

97

Theorem (3.20). Let (P,≤) be a poset and ∆ be a lower-bound pair-narrowing
(Definition 3.12).
Consider x∆y, it’s simple to prove that ∀x, y ∈ P : y ≤ x than ∆ is a pair-narrowing
(Definition 3.9).

Proof. We have, by Definition 3.12, of∆:

(x � y) ≤ (x∆y) ≤ x

if we have that y ≤ x then x � y = y by definition. Therefore

(y ≤ x) =⇒ y ≤ x∆y ≤ x

as requested by Definition 3.9.

Theorem (3.21). Let ∇ be a pair-widening operator on a complete lattice (L,≤)
such that ∀x, y ∈ L : x ≤ y ⇒ x∇x ≤ y∇y. Let A be the set {x∇x | x ∈ L}. Then
αLA(x) = x∇x is the lower adjoint of a Galois insertion between L and A, with the
upper adjoint being the identity function.

Proof. According to Definition 3.3, we have to show that (γAL , L, A, αLA) is a Galois
insertion, with γAL being the identity function. Hence, it is sufficient to prove that
∀x ∈ L : x ≤ γAL(αLA(x)), and that ∀a ∈ A : a = αLA(γAL(a)).

∀x ∈ L : x ≤ x∇x, by (i) of Definition 3.6
⇒ x ≤ αLA(x), by definition of αLA

⇒ x ≤ γAL(αLA(x)), as γAL is the identity

∀a ∈ A : a = a∇a, by definition of A

⇒ a = (γAL(a))∇(γAL(a)), as γAL is the identity
⇒ a = αLA(γAL(a)), by definition of αLA

Theorem (3.22). Let ∇� be a set-widening operator on a complete lattice (L,≤)
such that ∇�({x}) is defined for each x in L, and such that ∀x, y ∈ L : x ≤ y ⇒

∇�({x}) ≤ ∇�({y}). Let A be the set {∇�({x}) | x ∈ L}. Consider the function
αLA : L → A defined by αLA(x) = ∇�({x}). Then, αLA is the lower adjoint of a Galois
insertion between L and A, with the upper adjoint being the identity function.

Proof. The proof is similar to the proof of Theorem 3.21.

Theorem (3.23). Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a

Galois insertion. Let ∇C be a pair-widening on C. The binary operator ∇D defined
by ∀d1, d2 ∈ D, d1∇Dd2 = αCD(γDC(d1)∇CγDC(d2)) is a pair-widening operator on D.

Proof.

98 B. Widening and Narrowing - Formal Proofs

- Covering. Let us show that ∀d1, d2 ∈ D : d1 ≤ d1∇Dd2.

γDC(d1) ≤ γDC(d1)∇CγDC(d2) by (ii) of Definition 3.6
αCD(γDC(d1)) ≤ αCD(γDC(d1)∇CγDC(d2)) by monotonicity of αCD

αCD(γDC(d1)) ≤ d1∇Dd2 by definition of ∇D

d1 ≤ d1∇Dd2 as GCD is a Galois insertion.

The same way, we can also prove that ∀d1, d2 ∈ D : d2 ≤ d1∇Dd2.

- Termination. Consider the ascending chain {di}i≥0 in D. Consider the cor-
responding ascending chain γDC(d0) ≤ γDC(d1) ≤ . . . in C. And consider the
sequence y0 = γDC(d0), yi+1 = yi∇CγDC(di+1). As ∇C is a pair-widening opera-
tor, this ascending sequence stabilizes after a finite number of terms. We have
to show that also the sequence ŷ0 = d0, ŷi+1 = ŷi∇Ddi+1 stabilizes after a finite
number of terms. By induction, we prove that for each i, ŷi = αCD(yi).

The basis is trivial, as ŷ0 = d0 = αCD(γDC(d0)) = αCD(y0).

Looking at the inductive step,

ŷi+1 = ŷi∇Ddi+1 by definition of the sequence {ŷj}j≥0.
= αCD(yi)∇Ddi+1 by inductive hypotesis
= αCD(yi)∇DαCD(γDC(di+1)) as GCD is a Galois insertion
= αCD(yi∇CγDC(di+1)) by definition of ∇D

= αCD(yi+1) by definition of the sequence {yj}j≥0.

Theorem (3.24). Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a Galois

insertion. Let ∇∗C be a set-widening on C. The operator ∇∗D defined by ∀S ∈ D,
∇∗D(S) = αCD(∇∗C(γDC(S)) is a set-widening operator on D.

Proof. The proof is similar to the proof of Theorem 3.23.

Corollary (3.1). Let A and D be complete lattices, and let ∇ be a pair-widening
operator over the cartesian product A × D. Let π1 be the projection on the first
argument. The binary operator ∇A : A× A → A defined by

a∇Aa
� = π1(�a,��∇�a

�,��)

is a pair-widening operator.

Proof. It is sufficient to observe that the monotone functions α : A × D → A and
γ : A → A× D defined by

∀(a, d) ∈ A× D : α(�a, d�) = a

∀a ∈ A : γ(a) = �a,��

form a Galois insertion between A and D. Therefore, by applying Theorem 3.23, the
binary operator ∇� = α(γ(a)∇γ(a�)) is a pair widening operator on A. To conclude,
it is sufficient to observe that ∇A = ∇�.

99

Theorem (3.25). Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a

Galois insertion. Let ∆C be a pair-narrowing on C. The binary operator ∆D defined
by ∀d1, d2 ∈ D, d1∆Dd2 = αCD(γDC(d1)∆CγDC(d2)) is a pair-narrowing operator on D.

Proof.

- Bounding. Let us show that ∀d1, d2 ∈ D : (d1 ≤ d2) ⇒ (d1 ≤ d2∆Dd1 ≤ d2).

γDC(d1) ≤ γDC(d2)∆CγDC(d1) ≤ γDC(d2)
by Definition 3.9

αCD(γDC(d1)) ≤ αCD(γDC(d2)∆CγDC(d1)) ≤ αCD(γDC(d2))
by monotonicity of αCD

αCD(γDC(d1)) ≤ d2∆Dd1 ≤ αCD(γDC(d2))
by definition of∆ D

d1 ≤ d2∆Dd1 ≤ d2

as GCD is a Galois insertion.

- Termination. Consider the decreasing chain {di}i≥0 in D. Consider the cor-
responding decreasing chain γDC(d0) ≥ γDC(d1) ≥ . . . in C. And consider the
sequence y0 = γDC(d0), yi+1 = yi∆CγDC(di+1). As∆ C is a pair-narrowing oper-
ator, this descending sequence stabilizes after a finite number of terms. We
have to show that also the sequence ŷ0 = d0, ŷi+1 = ŷi∆Ddi+1 stabilizes after
a finite number of terms. By induction, we prove that for each i, ŷi = αCD(yi).

The basis is trivial, as ŷ0 = d0 = αCD(γDC(d0)) = αCD(y0).

Looking at the inductive step,

ŷi+1 = ŷi∆Ddi+1 by definition of the sequence {ŷj}j≥0.
= αCD(yi)∆Ddi+1 by inductive hypotesis
= αCD(yi)∆DαCD(γDC(di+1)) as GCD is a Galois insertion
= αCD(yi∆CγDC(di+1)) by definition of∆ D

= αCD(yi+1) by definition of the sequence {yj}j≥0.

Theorem (3.26). Let C and D be two complete lattices, s.t. C −−−−→−→←−−−−−
αCD

γDC
D is a Galois

insertion. Let ∆∗C be a set-narrowing on C. The operator ∆∗D defined by ∀S ∈ D,
∆∗D(S) = αCD(∆∗C(γDC(S)) is a set-narrowing operator on D.

Proof. The proof is similar to the proof of Theorem 3.25.

Corollary (3.2). Let A and D be complete lattices, and let ∆ be a pair-narrowing
operator over the cartesian product A × D. Let π1 be the projection on the first
argument. The binary operator ∆A : A× A → A defined by

a∆Aa
� = π1(�a,��∆�a

�,��)

is a pair-narrowing operator.

100 B. Widening and Narrowing - Formal Proofs

Proof. It is sufficient to observe that the monotone functions α : A × D → A and
γ : A → A× D defined by

∀(a, d) ∈ A× D : α(�a, d�) = a

∀a ∈ A : γ(a) = �a,��

form a Galois insertion between A × D and D. Therefore, by applying Theorem
3.25, the binary operator∆ � = α(γ(a)∆γ(a�)) is a pair narrowing operator on A. To
conclude, it is sufficient to observe that∆ A = ∆�.

Lemma (3.3). Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC
A

be Galois insertions. For â ∈ A, d̂ ∈ D, �a, d� ∈ A � D, if a ≤ â and d ≤ d̂, then
�a, d� ≤ reduce(�â, d̂�).

Proof. By � properties and monotonicity of γ functions, γAC(a) � γDC(d) ≤ γAC(â) �
γDC(d̂). Therefore, reduce(�â, d̂�) is such that

γ(�a, d�) ≤ γ(reduce(�â, d̂�))

where γ is the upper adjoint of the Galois insertion (γ, C,A�D,α) as in Definition
3.14.
By applying α to both expressions, by monotonicity of α we get

α(γ(�a, d�)) ≤ α(γ(reduce(�â, d̂�)))

and by Galois insertion properties, as α ◦ γ is the identity function, we get

�a, d� ≤ reduce(�â, d̂�)

Lemma (3.4). Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC
A

be Galois insertions.
Let ∇A and ∇D be pair-widening operators defined on the lattice A and D, respec-
tively.
The binary operator • : (A�D)×(A�D) → (A�D) defined by ∀�a, d�, �a�, d�� ∈ A�D :
�a, d� • �a�, d�� = reduce(�a∇Aa

�, d∇Dd
��) is an extrapolator operator.

Proof. Let �a, d�, �a�, d�� ∈ A � D. We have to prove that �a, d� ≤ �a, d� • �a�, d��.

�a, d� ≤ �a∇Aa
�, d∇Dd

�� by covering of ∇A ,∇D

⇒ �a, d� ≤ reduce(�a∇Aa
�, d∇Dd

��) by Lemma 3.3
⇒ �a, d� ≤ �a, d� • �a�, d�� by definition of • .

In the same way, we can also prove that �a�, d�� ≤ �a, d� • �a�, d��.

101

Theorem (3.27). Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∇A and ∇D be pair-widening operators defined on the lattice A and D, respec-
tively, such that ∀�a, d� ∈ A � D, ∀a� ∈ A, ∀d� ∈ D : �a∇Aa

�, d∇Dd
�� ∈ A � D.

Then the binary operator ∇ : (A�D)×(A�D) → (A�D) defined by ∀�a, d�, �a�, d�� ∈
A � D : �a, d�∇�a�, d�� = reduce(�a∇Aa

�, d∇Dd
��) is a pair-widening operator.

Proof. By Lemma 3.4, we need to focus only on the termination property.
Consider the increasing sequence �a0, d0� ≤ �a1, d1� . . . in A � D. As the ordering
≤ in A � D is the same as in the cartesian product A × D, we may consider the
increasing sequence a0 ≤ a1 ≤ . . . in A, and the increasing sequence d0 ≤ d1 ≤ . . .
in D. By the termination property of ∇A and ∇D , we know that the corresponding
sequences â0 = a0, âi+1 = âi∇Aai+1, and d̂0 = d0, d̂i+1 = d̂i∇Ddi+1 stabilize after a
finite number of terms.

We show by induction that the increasing sequence �a�0, d
�
0� = �a0, d0�, �a�i+1, d

�
i+1� =

�a�i, d
�
i�∇�ai+1, di+1� is such that ∀i : �a�i, d

�
i� = �âi, d̂i�.

The basis is trivial, as �a�0, d
�
0� = �a0, d0� = �â0, d̂0�.

Induction step:

�a�i+1, d
�
i+1� = �a�i, d

�
i�∇�ai+1, di+1� by definition of {�a�j, d

�
j�}j≥0

= reduce(a�i∇Aai+1, d�i∇Ddi+1) by definition of ∇
= �a�i∇Aai+1, d�i∇Ddi+1� by the hypothesis
= �âi+1, d̂i+1� by definition of {âj}j≥0 and {d̂j}j≥0

It follows that {�a�j, d
�
j�}j≥0 converges in a finite number of steps, namely the maxi-

mum between the termination indexes of {âj}j≥0 and {d̂j}j≥0.

Lemma (3.5). Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC
A

be Galois insertions. For a ∈ A, d ∈ D, reduce(�a, d�) ≤ �a, d�.

Proof. By Definition 3.14: reduce(�a, d�) = �S, where S = {�a�, d�� | γAC(a)�γDC(d) =
γAC(a

�)�γDC(d
�)}. We know that �a, d� ∈ S and that all elements of S are comparable,

than reduce(�a, d�) ≤ �a, d�.

Lemma (3.6). Let C, A, D be complete lattices, and let GCD = (γDC , C, D, αCD) and

C −−−−→−→←−−−−−
αCA

γAC
A be Galois insertions. For â ∈ A, d̂ ∈ D, �a, d� ∈ A � D, if â ≤ a and

d̂ ≤ d, then reduce(�â, d̂�) ≤ �a, d�.

Proof. By � properties and monotonicity of γ functions, γAC(a) � γDC(d) ≥ γAC(â) �
γDC(d̂). Therefore, reduce(�â, d̂�) is such that

γ(�a, d�) ≥ γ(reduce(�â, d̂�)

102 B. Widening and Narrowing - Formal Proofs

where γ is the upper adjoint of the Galois insertion (γ, C, A �D, α) as in Definition
3.14.
By applying α to both expressions, by monotonicity of α we get

α(γ(�a, d�)) ≥ α(γ(reduce(�â, d̂�)))

and by Galois insertion properties, as α ◦ γ is the identity function, we get

�a, d� ≥ reduce(�â, d̂�)

Theorem (3.28). Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∆A and ∆D be pair-narrowing operators defined on the lattice A and D, respec-
tively, such that ∀�a, d� ∈ A � D, ∀a� ∈ A, ∀d� ∈ D : �a∆Aa

�, d∆Dd
�� ∈ A � D.

Then the binary operator ∆ : (A�D)×(A�D) → (A�D) defined by ∀�a, d�, �a�, d�� ∈
A � D : �a, d�∆�a�, d�� = reduce(�a∆Aa

�, d∆Dd
��) is a pair-narrowing operator.

Proof.

- Bounding We have to show that ∀�a, d�, �a�, d�� ∈ A � D, (�a, d� ≤ �a�, d��) ⇒
(�a, d� ≤ �a, d�∆�a�, d�� ≤ �a�, d��)

�a, d� ≤ �a∆Aa
�, d∆Dd

�� ≤ �a�, d�� by bounding of∆ A and∆ D

�a, d� ≤ reduce(�a∆Aa
�, d∆Dd

��) ≤ �a�, d�� by Lemma 3.3 and
Lemma 3.5 or Lemma 3.6

�a, d� ≤ �a, d�∆�a�, d�� ≤ �a�, d�� by definition of∆

- Termination Consider the increasing sequence �a0, d0� ≤ �a1, d1� . . . in A � D.
As the ordering ≤ in A �D is the same as in the cartesian product A×D, we
may consider the increasing sequence a0 ≤ a1 ≤ . . . in A, and the increasing
sequence d0 ≤ d1 ≤ . . . in D. By the termination property of∆ A and∆ D ,
we know that the corresponding sequences â0 = a0, âi+1 = âi∆Aai+1, and
d̂0 = d0, d̂i+1 = d̂i∆Ddi+1 stabilize after a finite number of terms.

We show by induction that the increasing sequence

�a
�
0, d

�
0� = �a0, d0�, �a

�
i+1, d

�
i+1� = �a

�
i, d

�
i�∆�ai+1, di+1�

is such that ∀i : �a�i, d
�
i� = �âi, d̂i�.

The basis is trivial, as �a�0, d
�
0� = �a0, d0� = �â0, d̂0�.

Induction step:

�a�i+1, d
�
i+1� = �a�i, d

�
i�∆�ai+1, di+1� by definition of {�a�j, d

�
j�}j≥0

= reduce(a�i∆Aai+1, d�i∆Ddi+1) by definition of∆
= �âi∆Aai+1, d̂i∆Ddi+1� by the hypothesis
= �âi+1, d̂i+1� by definition of

{âj}j≥0 and {d̂j}j≥0

103

It follows that {�a�j, d
�
j�}j≥0 converges in a finite number of steps, namely the

maximum between the termination indexes of {âj}j≥0 and {d̂j}j≥0

Theorem (3.29). Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∇∗A and ∇∗D be set-widening operators defined on the lattice A and D, respec-
tively, such that ∀S ⊆ A � D, �∇∗A({ai | �ai, di� ∈ S}),∇D({di | �ai, di� ∈ S})� ∈
A � D.
Then the operator ∇∗ : ℘(A � D) � (A � D) defined by ∀S ⊆ A � D : ∇∗({S}) =
reduce(�∇∗A({ai | �ai, di� ∈ S}),∇∗D({di | �ai, di� ∈ S})�) is a set-widening operator.

Proof. The proofs of this Theorems is similar to Theorem 3.27.

Theorem (3.30). Let C, A, D be complete lattices, and let C −−−−→−→←−−−−−
αCD

γDC
D and C −−−−→−→←−−−−−

αCA

γAC

A be Galois insertions.
Let ∆∗A and ∆∗D be set-narrowing operators defined on the lattice A and D, respec-
tively, such that ∀S ⊆ A � D, �∆∗A({ai | �ai, di� ∈ S}), ∆∗D({di | �ai, di� ∈ S})� ∈
A � D.
Then the operator ∆∗ : ℘(A � D) � (A � D) defined by ∀S ⊆ A � D : ∆∗({S})
= reduce(�∆∗A({ai | �ai, di� ∈ S}), ∆∗D({di | �ai, di� ∈ S})�) is a set-narrowing
operator.

Proof. The proofs of this Theorems is similar to Theorem 3.28.

104 B. Widening and Narrowing - Formal Proofs

Bibliography

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Johan Agat. Transforming out timing leaks. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’00, pages 40–53, New York, NY, USA, 2000. ACM.

[3] Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27:509–
516, June 1978.

[4] Henrik Reif Andersen. An introduction to binary decision diagrams. Technical
report, Course Notes on the WWW, 1997.

[5] Gregory R. Andrews and Richard P. Reitman. An axiomatic approach to
information flow in programs. ACM Trans. Program. Lang. Syst., 2:56–76,
January 1980.

[6] Tania Armstrong, Kim Marriott, Peter Schachte, and Harald Søndergaard.
Two classes of boolean functions for dependency analysis. Sci. Comput. Pro-
gram., 31:3–45, May 1998.

[7] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-
masked flows. Theor. Comput. Sci., 402:82–101, July 2008.

[8] Aslan Askarov and Andrew Myers. A semantic framework for declassification
and endorsement. In Andrew D. Gordon, editor, Programming Languages and
Systems, 19th European Symposium on Programming, ESOP 2010, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6012
of Lecture Notes in Computer Science, pages 64–84. Springer, 2010.

[9] Aslan Askarov and Andrei Sabelfeld. Security-typed languages for implemen-
tation of cryptographic protocols: A case study. In ESORICS, Lecture Notes
in Computer Science, pages 197–221, 2005.

[10] Roberto Bagnara, Sara Bonini, Patricia M. Hill, Andrea Pescetti, Elisa Ricci,
Angela Stazzone, Enea Zaffanella, and Tatiana Zolo. The parma polyhedra
library user’s manual, 2002.

[11] Roberto Bagnara, Patricia M. Hill, Elena Mazzi, and Enea Zaffanella. Widen-
ing operators for weakly-relational numeric abstractions. In C. Hankin and

106 Bibliography

I. Siveroni, editors, Static Analysis: Proceedings of the 12th International Sym-
posium, volume 3672 of Lecture Notes in Computer Science, pages 3–18, Lon-
don, UK, 2005. Springer-Verlag, Berlin.

[12] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. Precise
widening operators for convex polyhedra. Sci. Comput. Program., 58:28–56,
October 2005.

[13] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Widening operators
for powerset domains. Software Tools for Technology Transfer, 8(4/5):449–466,
2006.

[14] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The parma polyhedra
library: Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Sci. Comput. Program., 72:3–
21, June 2008.

[15] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Applications of poly-
hedral computations to the analysis and verification of hardware and software
systems. Theor. Comput. Sci., 410:4672–4691, November 2009.

[16] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill. Possibly
not closed convex polyhedra and the parma polyhedra library. In Proceedings
of the 9th International Symposium on Static Analysis, SAS ’02, pages 213–
229, London, UK, 2002. Springer-Verlag.

[17] Anindya Banerjee, Roberto Giacobazzi, and Isabella Mastroeni. What you
lose is what you leak: Information leakage in declassification policies. Electron.
Notes Theor. Comput. Sci., 173:47–66, April 2007.

[18] Anindya Banerjee and David A. Naumann. Secure information flow and
pointer confinement in a java-like language. In Proceedings of the 15th IEEE
workshop on Computer Security Foundations, CSFW ’02, pages 253–, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[19] Gilles Barthe and Tamara Rezk. Non-interference for a jvm-like language. In
Proceedings of the 2005 ACM SIGPLAN international workshop on Types in
languages design and implementation, TLDI ’05, pages 103–112, New York,
NY, USA, 2005. ACM.

[20] Elliot David Bell and Leonard J. La Padula. Secure computer system: Unified
exposition and multics interpretation, 1976.

[21] John L. Bell and Moshe Machover. A Course on Mathematical Logic (Univer-
sitext). Springer-Verlag TELOS, Santa Clara, CA, USA, 1 edition, 2008.

Bibliography 107

[22] Kenneth J. Biba. Integrity considerations for secure computer systems. Tech-
nical report, MITRE Corp., 04 1977.

[23] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Unifying facets of
information integrity. In Proceedings of the 6th international conference on
Information systems security, ICISS’10, pages 48–65, Berlin, Heidelberg, 2010.
Springer-Verlag.

[24] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static ana-
lyzer for large safety-critical software. SIGPLAN Not., 38:196–207, May 2003.

[25] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson.
Static analysis for secrecy and non-interference in networks of processes. In
Proceedings of the 6th International Conference on Parallel Computing Tech-
nologies, PaCT ’01, pages 27–41, London, UK, 2001. Springer-Verlag.

[26] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs
and thread systems. Theor. Comput. Sci., 281:109–130, June 2002.

[27] Chiara Braghin and Agostino Cortesi. Flow-sensitive leakage analysis in mobile
ambients. Electron. Notes Theor. Comput. Sci., 128:17–25, May 2005.

[28] Chiara Braghin, Agostino Cortesi, and Riccardo Focardi. Information flow
security in boundary ambients. Inf. Comput., 206:460–489, February 2008.

[29] Luca Cardelli. A semantics of multiple inheritance. In Proc. of the interna-
tional symposium on Semantics of data types, pages 51–67, New York, NY,
USA, 1984. Springer-Verlag New York, Inc.

[30] Matteo Centenaro, Riccardo Focardi, Flaminia L. Luccio, and Graham Steel.
Type-based analysis of pin processing apis. In Proceedings of the 14th Euro-
pean conference on Research in computer security, ESORICS’09, pages 53–68,
Berlin, Heidelberg, 2009. Springer-Verlag.

[31] Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. An abstract domain
to discover interval linear equalities. In G. Barthe and M. Hermenegildo,
editors, 11th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI 2010), volume 5944 of LNCS, pages 112–128,
Madrid,Spain, January 2010. Springer.

[32] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In
Proceedings of the 11th ACM conference on Computer and communications
security, CCS ’04, pages 198–209, New York, NY, USA, 2004. ACM.

108 Bibliography

[33] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium
on Software testing and analysis, ISSTA ’07, pages 196–206, New York, NY,
USA, 2007. ACM.

[34] Michael Codish, Harald Søndergaard, and Peter J. Stuckey. Sharing and
groundness dependencies in logic programs. ACM Trans. Program. Lang.
Syst., 21:948–976, September 1999.

[35] Agostino Cortesi. Widening operators for abstract interpretation. In Proceed-
ings of the 2008 Sixth IEEE International Conference on Software Engineering
and Formal Methods, pages 31–40, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[36] Agostino Cortesi, Gilberto Filé, Francesco Ranzato, Roberto Giacobazzi, and
Catuscia Palamidessi. Complementation in abstract interpretation. ACM
Trans. Program. Lang. Syst., 19:7–47, January 1997.

[37] Agostino Cortesi, Gilberto Filé, and William Winsborough. The quotient of
an abstract interpretation. Theor. Comput. Sci., 202:163–192, July 1998.

[38] Agostino Cortesi, Gilberto Filé, and William H. Winsborough. Prop revisited:
Propositional formula as abstract domain for groundness analysis. In LICS,
pages 322–327, 1991.

[39] Agostino Cortesi, Gilberto Filé, and William H. Winsborough. Optimal
groundness analysis using propositional logic. J. Log. Program., 27(2):137–
167, 1996.

[40] Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck. Combi-
nations of abstract domains for logic programming: open product and generic
pattern construction. Sci. Comput. Program., 38:27–71, August 2000.

[41] Agostino Cortesi and Matteo Zanioli. Widening and narrowing operators for
abstract interpretation. Comput. Lang. Syst. Struct., 37:24–42, April 2011.

[42] Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static analysis of
string values. In ICFEM, Lecture Notes in Computer Science. Springer, 2011.

[43] Patrick Cousot. Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique de pro-
grammes (in French). Thèse d’État ès sciences mathématiques, Université
Joseph Fourier, Grenoble, France, 21 March 1978.

[44] Patrick Cousot. The Calculational Design of a Generic Abstract Interpreter.
In M. Broy and R. Steinbrüggen, editors, Calculational System Design. NATO
ASI Series F. IOS Press, Amsterdam, 1999.

Bibliography 109

[45] Patrick Cousot. Proving the absence of run-time errors in safety-critical avion-
ics code. In Proceedings of the 7th ACM & IEEE international conference on
Embedded software, EMSOFT ’07, pages 7–9, New York, NY, USA, 2007.
ACM.

[46] Patrick Cousot. Lecture notes of course: “interpétation abstraite: application
à la vérification et à l’analyse statique”, 2009.

[47] Patrick Cousot and Radhia Cousot. Static determination of dynamic proper-
ties of programs. In Proceedings of the Second International Symposium on
Programming, pages 106–130. Dunod, Poaris, France, 1976.

[48] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’77, pages 238–252, New York,
NY, USA, 1977. ACM.

[49] Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed
point theorems. Pacific Journal of Mathematics, 81(1):43–57, 1979.

[50] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’79, pages 269–282, New York,
NY, USA, 1979. ACM.

[51] Patrick Cousot and Radhia Cousot. Comparing the galois connection and
widening/narrowing approaches to abstract interpretation. In Proceedings of
the 4th International Symposium on Programming Language Implementation
and Logic Programming, pages 269–295, London, UK, 1992. Springer-Verlag.

[52] Patrick Cousot and Rahida Cousot. Abstract interpretation and application
to logic programs. J. Log. Program., 13:103–179, July 1992.

[53] Patrick Cousot and Rardhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, August 1992.

[54] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’78, pages 84–96, New York, NY, USA, 1978. ACM.

[55] Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of in-
formation flow security with mutable state. J. Funct. Program., 15:249–291,
March 2005.

110 Bibliography

[56] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19:236–243, May 1976.

[57] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20:504–513, July 1977.

[58] Vijay D’Silva. Widening for automata. In PhD thesis, Institut fur Informatik,
Universitaat Zurich, 2006.

[59] Vijay D’Silva, Mitra Purandare, and Daniel Kroening. Approximation re-
finement for interpolation-based model checking. In Proceedings of the 9th
international conference on Verification, model checking, and abstract inter-
pretation, VMCAI’08, pages 68–82, Berlin, Heidelberg, 2008. Springer-Verlag.

[60] Logozzo F. Modular static analysis of object-oriented languages. PhD thesis,
École Polytechnique, Paris, France, 15 June 2004.

[61] Jérôme Feret. Static analysis of digital filters. In David A. Schmidt, edi-
tor, ESOP, volume 2986 of Lecture Notes in Computer Science, pages 33–48.
Springer, 2004.

[62] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-
Based Access Control. Artech House, Inc., Norwood, MA, USA, 2003.

[63] Pietro Ferrara. A fast and precise alias analysis for data race detection. In Pro-
ceedings of the Third Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (Bytecode’08), Electronic Notes in Theoretical Computer
Science. Elsevier, April 2008.

[64] Pietro Ferrara. Static analysis via abstract interpretation of multithreaded
programs. PhD thesis, Ecole Polytechnique of Paris (France) and University
”Ca’ Foscari” of Venice (Italy), May 2009.

[65] Pietro Ferrara. Static type analysis of pattern matching by abstract interpre-
tation. In Formal Techniques for Distributed Systems (FMOODS/FORTE),
volume 6117 of Lecture Notes in Computer Science, pages 186–200. Springer-
Verlag, 2010.

[66] Riccardo Focardi and Matteo Centenaro. Information flow security of multi-
threaded distributed programs. In Proceedings of the third ACM SIGPLAN
workshop on Programming languages and analysis for security, PLAS ’08,
pages 113–124, New York, NY, USA, 2008. ACM.

[67] Raphael Fuchs. Interfacing tvla and sample. Bachelor thesis, August 2011.

Bibliography 111

[68] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: pa-
rameterizing non-interference by abstract interpretation. In Proceedings of
the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’04, pages 186–197, New York, NY, USA, 2004. ACM.

[69] Roberto Giacobazzi and Isabella Mastroeni. Adjoining declassification and at-
tack models by abstract interpretation. In Shmuel Sagiv, editor, Programming
Languages and Systems, 14th European Symposium on Programming,ESOP
2005, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings,
volume 3444 of Lecture Notes in Computer Science, pages 295–310. Springer,
2005.

[70] Roberto Giacobazzi and Francesco Ranzato. The reduced relative power op-
eration on abstract domains. Theor. Comput. Sci., 216:159–211, March 1999.

[71] Joseph A. Goguen and José Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[72] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley
Professional, 2005.

[73] Philippe Granger. Static analysis of linear congruence equalities among vari-
ables of a program. In Proceedings of the international joint conference on
theory and practice of software development on Colloquium on trees in algebra
and programming (CAAP ’91): vol 1, pages 169–192, New York, NY, USA,
1991. Springer-Verlag New York, Inc.

[74] Philippe Granger. Improving the results of static analyses programs by local
decreasing iteration. In Proceedings of the 12th Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 68–79, London,
UK, 1992. Springer-Verlag.

[75] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. SIG-
PLAN Not., 41:376–386, June 2006.

[76] Nevin Heintze and Jon G. Riecke. The slam calculus: programming with
secrecy and integrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’98, pages 365–
377, New York, NY, USA, 1998. ACM.

[77] Pascal Van Hentenryck, Agostino Cortesi, and Baudouin Le Charlier. Evalu-
ation of the domain prop. J. Log. Program., 23(3):237–278, 1995.

112 Bibliography

[78] Tae hyoung Choi, Oukseh Lee, Hyunha Kim, and Kyung goo Doh. A practical
string analyzer by the widening approach. In Asian Symposium on Program-
ming Languages and Systems, pages 374–388, 2006.

[79] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java:
a minimal core calculus for java and gj. ACM Trans. Program. Lang. Syst.,
23:396–450, May 2001.

[80] IBM Inc. CCA Basic Services Reference and Guide for the IBM 4758 PCI
and IBM 4764 PCI-X Cryptographic Coprocessors. Technical report, 2006.
Relases 2.53–3.27.

[81] Bertrand Jeannet. Convex polyhedra library, March 2002. Documenta-
tion of the “New Polka” library available at http://www.irisa.fr/prive/
Bertrand.Jeannet/newpolka.html.

[82] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In Proc. of the 21th Int. Conf. on Computer Aided
Verification (CAV 2009), volume 5643 of Lecture Notes in Computer Science,
pages 661–667. Springer, June 2009.

[83] Rajeev Joshi, K. Leino, and M. Rustan. A semantic approach to secure infor-
mation flow. Sci. Comput. Program., 37:113–138, May 2000.

[84] Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-oriented
languages, pages 463–495. MIT Press, Cambridge, MA, USA, 1994.

[85] Michael Karr. Affine relationships among variables of a program. Acta Inf.,
6:133–151, 1976.

[86] Herald Søndergaard Kim Marriott. Notes for a tutorial on abstract interpre-
tation of logic programs. In Foundations of Logic Programming, Berlin, 1989.
Springer-Verlag.

[87] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16:613–615, October 1973.

[88] Peeter Laud. Semantics and program analysis of computationally secure infor-
mation flow. In Proceedings of the 10th European Symposium on Programming
Languages and Systems, ESOP ’01, pages 77–91, London, UK, 2001. Springer-
Verlag.

[89] Peng Li and Steve Zdancewic. Unifying Confidentiality and Integrity in Down-
grading Policies. In Proc. of Foundations of Computer Security Workshop
(FCS), 2005.

http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html

Bibliography 113

[90] Peng Li and Steve Zdancewic. Arrows for secure information flow. Theor.
Comput. Sci., 411:1974–1994, April 2010.

[91] Yin Liu and Ana Milanova. Static information flow analysis with handling
of implicit flows and a study on effects of implicit flows vs explicit flows. In
Proceedings of the 2010 14th European Conference on Software Maintenance
and Reengineering, CSMR ’10, pages 146–155, Washington, DC, USA, 2010.
IEEE Computer Society.

[92] Vincent Loechner, Bd. S. Brant, and F-Illkirch. Polylib: A library for manip-
ulating parameterized polyhedra, 1999.

[93] Francesco Logozzo and Manuel Fahndrich. A weakly relational domain for
the efficient validation of array accesses. In 23th ACM Symposium on Applied
Computing (SAC 2008), Fortaleza, Brazil, 2008.

[94] Gavin Lowe. Quantifying information flow. In 15th IEEE Computer Secu-
rity Foundations Workshop (CSFW-15 2002), 24-26 June 2002, Cape Breton,
Nova Scotia, Canada, pages 18–31. IEEE Computer Society, 2002.

[95] Alexander Lux and Heiko Mantel. Formal aspects in security and trust. In
Pierpaolo Degano, Joshua Guttman, and Fabio Martinelli, editors, Formal
Aspects in Security and Trust, chapter Who Can Declassify?, pages 35–49.
Springer-Verlag, Berlin, Heidelberg, 2009.

[96] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An operational semantics for
JavaScript. In Proc. of APLAS’08, volume 5356 of Lecture Notes in Computer
Science, pages 307–325, 2008. See also: Dep. of Computing, Imperial College
London, Technical Report DTR08-13, 2008.

[97] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating javascript with
filters, rewriting, and wrappers. In Proc of ESORICS’09. Lecture Notes in
Computer Science, 2009.

[98] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object capabilities and iso-
lation of untrusted web applications. In Proc of IEEE Security and Privacy’10.
IEEE, 2010.

[99] Sergio Maffeis and Ankur Taly. Language-based isolation of untrusted
Javascript. In Proc. of CSF’09, IEEE, 2009. See also: Dep. of Computing,
Imperial College London, Technical Report DTR09-3, 2009.

[100] H. Mantel and David Sands. Controlled declassification based on intransi-
tive noninterference. In Proc. Asian Symp. on Programming Languages and
Systems, volume 3302 of Lecture Notes in Computer Science, pages 129–145.
Springer-Verlag, November 2004.

114 Bibliography

[101] Kim Marriott and Harald Søndergaard. Precise and efficient groundness anal-
ysis for logic programs. ACM Lett. Program. Lang. Syst., 2:181–196, March
1993.

[102] Isabella Mastroeni and Roberto Giacobazzi. An abstract interpretation-based
model for safety semantics. Int. J. Comput. Math., 88(4):665–694, 2011.

[103] Ana Almeida Matos and Gerard Boudol. On declassification and the non-
disclosure policy. In Proceedings of the 18th IEEE workshop on Computer Se-
curity Foundations, pages 226–240, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[104] Jose S. Metos and John V. Oldfield. Binary decision diagrams: From abstract
representations to physical implementations. In Proceedings of the 20th Design
Automation Conference, DAC ’83, pages 567–570, Piscataway, NJ, USA, 1983.
IEEE Press.

[105] Antoine Miné. A new numerical abstract domain based on difference-bound
matrices. In Proceedings of the Second Symposium on Programs as Data Ob-
jects, PADO ’01, pages 155–172, London, UK, 2001. Springer-Verlag.

[106] Antoine Miné. The octagon abstract domain. In Proc. of the Work-
shop on Analysis, Slicing, and Transformation (AST’01), IEEE, pages 310–
319. IEEE CS Press, October 2001. http://www.di.ens.fr/~mine/publi/
article-mine-ast01.pdf.

[107] Antoine Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,
École Polytechnique, Palaiseau, France, December 2004. http://www.di.
ens.fr/~mine/these/these-color.pdf.

[108] Antoine Miné. The octagon abstract domain. Higher Order Symbol. Comput.,
19:31–100, March 2006.

[109] Masaaki Mizuno and David A. Schmidt. A security flow control algorithm and
its denotational semantics correctness proof. Formal Asp. Comput., 4:727–754,
1992.

[110] Andrew C. Myers. Jflow: practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’99, pages 228–241, New York, NY, USA,
1999. ACM.

[111] Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. SIGOPS Oper. Syst. Rev., 31:129–142, October 1997.

http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://www.di.ens.fr/~mine/these/these-color.pdf
http://www.di.ens.fr/~mine/these/these-color.pdf

Bibliography 115

[112] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust
declassification and qualified robustness. J. Comput. Secur., 14:157–196, April
2006.

[113] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nate
Nystrom. Jif: Java information flow. software release., July 2001-2004.

[114] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic De-
tection, Analysis, and Signature Generation of Exploits on Commodity Soft-
ware. In Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS 2005), 2005.

[115] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[116] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[117] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A
Formal Introduction. Wiley Professional Computing, 1992.

[118] Peter Ørbæk. Can you trust your data? In Proceedings of the 6th International
Joint Conference CAAP/FASE on Theory and Practice of Software Develop-
ment, TAPSOFT ’95, pages 575–589, London, UK, 1995. Springer-Verlag.

[119] Jens Palsberg and Peter Ørbæk. Trust in the lambda-calculus. In Proceedings
of the Second International Symposium on Static Analysis, SAS ’95, pages
314–329, London, UK, 1995. Springer-Verlag.

[120] François Pottier and Vincent Simonet. Information flow inference for ml. ACM
Trans. Program. Lang. Syst., 25:117–158, January 2003.

[121] Viswanath Ramachandran, Pascal Van Hentenryck, and Agostino Cortesi. Ab-
stract domains for reordering clp(rlin) programs. J. Log. Program., 42(3):217–
256, 2000.

[122] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29, August 2007.

[123] Dorothy Elizabeth Robling Denning. Cryptography and data security.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1982.

[124] Alejandro Russo and Andrei Sabelfeld. Securing timeout instructions in web
applications. In Proceedings of the 22nd IEEE Computer Security Foundations
Symposium (CSF), pages 92–106, 2009.

116 Bibliography

[125] Leino Rustan and Logozzo Francesco. Using widenings to infer loop invariants
inside an smt solver, or: A theorem prover as abstract domain. 2007.

[126] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. Selected Areas in Communications, IEEE Journal on, 21(1):5–19,
2003.

[127] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information
release. In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki, editors,
Software Security - Theories and Systems, volume 3233 of Lecture Notes in
Computer Science, pages 174–191. Springer Berlin / Heidelberg, 2004.

[128] Andrei Sabelfeld and David Sands. Dimensions and principles of declassi-
fication. In Proceedings of the 18th IEEE workshop on Computer Security
Foundations, pages 255–269, Washington, DC, USA, 2005. IEEE Computer
Society.

[129] Andrei Sabelfeld and David Sands. Declassification: Dimensions and princi-
ples. J. Comput. Secur., 17:517–548, October 2009.

[130] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Trans. Program. Lang. Syst., 24:217–298, May 2002.

[131] Roman Scheidegger. Translating java bytecode to simple. Bachelor thesis,
June 2010.

[132] David A. Schmidt. Natural-semantics-based abstract interpretation (prelimi-
nary version). In Static Analysis Symposium (SAS), Lecture Notes in Com-
puter Science, pages 1–18, 1995.

[133] David A. Schmidt. Abstract interpretation of small-step semantics. In Anal-
ysis and Verification of Multiple-Agent Languages, 5th LOMAPS Workshop,
volume 1192 of Lecture Notes in Computer Science, pages 76–99, 1996.

[134] David A. Schmidt. Programming language semantics. In The Computer Sci-
ence and Engineering Handbook, pages 2237–2254. CRC Press, 1997.

[135] David A. Schmidt. Trace-based abstract interpretation of operational seman-
tics. Lisp Symb. Comput., 10:237–271, May 1998.

[136] David A. Schmidt. Abstract interpretation from a denotational-semantics
perspective. Electronic Notes of Theoretical Computer Science, 249:19–37,
August 2009.

[137] Vincent Simonet. The Flow Caml System: documentation and user’s manual.
Technical Report 0282, Institut National de Recherche en Informatique et en
Automatique (INRIA), July 2003. ©INRIA.

Bibliography 117

[138] Christian Skalka and Scott Smith. Static enforcement of security with types.
SIGPLAN Not., 35:34–45, September 2000.

[139] Geoffrey Smith. Principles of Secure Information Flow Analysis. In Malware
Detection, pages 297–307, 2007.

[140] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’98,
pages 355–364, New York, NY, USA, 1998. ACM.

[141] Robert F. Stark, E. Borger, and Joachim Schmid. Java and the Java Virtual
Machine: Definition, Verification, Validation with Cdrom. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2001.

[142] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pa-
cific Journal of Mathematics, pages 285–309, 1955.

[143] Terkel K. Tolstrup, Flemming Nielson, and H. Riis Nielson. Information flow
analysis for VHDL. In Parallel Computing Technoligies, Lecture Notes in
Computer Science. Springer, 2005.

[144] Stanford University. Stanford SecuriBench Micro. http://suif.stanford.edu/
˜livshits/work/securibench-micro/.

[145] Pascal Van Hentenryck, Agostino Cortesi, and Baudouin Le Charlier. Type
analysis of prolog using type graphs. SIGPLAN Not., 29:337–348, June 1994.

[146] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics. Elsevier and MIT Press, 1990.

[147] Arnaud Venet. Abstract cofibered domains: Application to the alias analysis
of untyped programs. In Proceedings of the Third International Symposium
on Static Analysis, pages 366–382, London, UK, 1996. Springer-Verlag.

[148] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system
for secure flow analysis. J. Comput. Secur., 4:167–187, January 1996.

[149] Dennis Volpano and Geoffrey Smith. Verifying secrets and relative secrecy. In
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’00, pages 268–276, New York, NY, USA,
2000. ACM.

[150] Mark Weiser. Program slicing. In Proceedings of the 5th international confer-
ence on Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA,
1981. IEEE Press.

118 Bibliography

[151] Matteo Zanioli and Agostino Cortesi. Information leakage analysis by abstract
interpretation. In Proceedings of the 37th international conference on Current
trends in theory and practice of computer science (SOFSEM), volume 6543 of
Lecture Notes in Computer Science, pages 545–557. Springer-Verlag, 2011.

[152] Matteo Zanioli, Pietro Ferrara, and Agostino Cortesi. Sails: Static analysis of
information leakage with sample. In Proceedings of the 2012 ACM symposium
on Applied Computing, SAC ’12, New York, NY, USA, 2012. ACM. To appear.

[153] Mirko Zanotti. Security typings by abstract interpretation. In Proceedings of
the 9th International Symposium on Static Analysis, SAS ’02, pages 360–375,
London, UK, 2002. Springer-Verlag.

[154] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers.
Secure program partitioning. ACM Trans. Comput. Syst., 20:283–328, August
2002.

	FrontespizioTesiDottorato
	thesis_A
	Introduction
	Key Concepts
	Contribution
	Dependency analysis
	Efficiency and Accuracy
	Domains' combination
	Implementation

	Overview of the Thesis

	Computer Security and Information Flow
	Introduction
	Noninterference
	Information Flow
	Type Systems
	Control Flow
	Abstract Interpretation

	Implementation
	Declassification
	Conclusions

	Abstract Interpretation Theory
	Introduction
	General Definitions
	Set and Lattice Theory
	Functions, Fixpoints and Traces
	Abstract Interpretation

	Combination of Domains
	Widening and Narrowing Operators
	Introduction
	Widening Operator
	Narrowing Operator
	Combination of Widening and Narrowing Operators

	Conclusions

	Information Flow Analysis by Abstract Interpretation
	Introduction
	The Concrete Domain
	The Language
	Concrete Domain

	Abstract Domain of Propositional Formulae
	Propositional Formulae
	Propositional Formulae Domain
	Abstract Domain for Pos
	An Instrumented Concrete Domain

	Properties
	Confidentiality
	Integrity

	Complexity of the Analysis
	Conclusions

	Enhancing the Information Flow Analysis by Combining Domains
	Introduction
	Numerical Domains
	Intervals
	Karr Analysis
	Polyhedra
	Octagons

	The Reduced Product of Pos and Numerical Domains
	Efficiency and Accuracy: Complexity of the Analysis

	Further Refinements
	Subformulae Elimination

	Conclusions

	Experimental Results: SAILS
	Introduction
	Presentation of Sample
	Scope of the Analyzer
	Architecture

	Integrating the Information Flow Analysis
	Analysis extension for Object Oriented Languages
	Implementation Choices
	Example
	Analysis Results

	Current Limits of the Analyzer
	Comparison with other Tools
	JIF - Java Information Flow
	Julia - Software Verification for Java and Android

	Conclusions

	Future Works
	Information Flow Analysis of JavaScript Code
	Declassification
	Multithreading
	Conclusions

	Conclusions
	Dependency Analysis - Formal Proofs
	Widening and Narrowing - Formal Proofs
	Bibliography

