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Searching for a source of difference in graphical models

Vera Djordjilovića,∗, Monica Chiognab

aDepartment of Economics, Ca’ Foscari University of Venice, Italy
bDepartment of Statistical Sciences “Paolo Fortunati”, University of Bologna, Italy

Abstract

We look at a two-sample problem within the framework of decomposable graphical models. When the global hypoth-
esis of equality of two distributions is rejected, the interest is usually in localizing the source of difference. Motivated
by the idea that diseases can be seen as system perturbations, and by the need to distinguish between the origin of
perturbation and components affected by the perturbation, we introduce the concept of a minimal seed set, and its
graphical counterpart a graphical seed set. They intuitively consist of variables driving the difference between the two
conditions. We propose a simple testing procedure, linear in the number of nodes, to estimate the graphical seed set
from data. We illustrate our approach in the context of gene set analysis, where we show that is possible to zoom in
on the origin of perturbation in a gene network.

Keywords: Decomposable graphical models, Decomposition, Gaussian graphical models, Graphical log-linear
models, Strong meta Markov models, Two sample problem.
2020 MSC: Primary 62H22, Secondary 62F03

1. Introduction

1.1. Motivation
The present work is motivated by the problem of identifying the origin of perturbation in gene regulatory networks.

In biological networks, diseases can be modelled as perturbations that affect certain targets, which, once perturbed,
propagate the perturbation through network connections [6]. In practice, we often collect and compare observations
from healthy individuals and observations from patients after the disease related perturbation has already taken place.
On the basis of this comparison, it is of interest to identify the site of original perturbation, i.e., the source of difference,
and distinguish it from the elements of the network that were affected through the process of network propagation.

1.2. Statement of the problem and some notation
Let F = {Pθ; θ ∈ Θ}, Θ ⊂ Rd, be a family, parametrized by θ, of probability distributions for the random vector

XV , indexed by a set V, |V | = p, with support XV . In what follows, to unburden the notation and when no ambiguity
can arise, we adopt the notation of [5] and, allowing for a slight abuse of notation, we write θ instead of Pθ to
denote individual distributions belonging to F . For A, B ⊆ V, we will further write θA to denote (the parameters
of) the marginal distribution of variables in A and, similarly, θA|B to denote a collection of conditional distributions{
θA|XB=y, y ∈ XB

}
indexed by y, where XB, B ⊆ V, is a subvector of XV and XB is the associated support. Different

experimental conditions will be distinguished by use of superscripts.
Consider a random vector XV ∼ Pθ. Within the context of two sample problems, the interest is often in testing the

null hypothesis of equality of distributions H0 : θ(1) = θ(2). If that hypothesis is rejected, one usually aims at localizing
the source of difference.

A common approach to tackle the question in genomics applications is to focus on the p univariate marginal
distributions, see for instance [16] for a particularly popular method choice. Marginally speaking, a variable Xv,
v ∈ V , can be considered relevant to the aim at hand if its marginal distribution is different in Pθ(1) and Pθ(2) .
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The (index) set of the relevant variables is then taken to be

R =
{
v ∈ V : θ(1)

v , θ
(2)
v

}
.

Whether a variable belongs to R depends solely on its marginal distribution.
Although simple and computationally feasible, the marginal approach might fail to point to the true source of

difference whenever an interplay between variables plays a role in differentiating the two distributions [10]. In that
case, we propose to privilege a conditional perspective and exploit an approach which takes into account the entire
p-dimensional joint distribution and flags a variable relevant only if the difference in its marginal distribution cannot
be explained by the remaining variables. We define the set of conditionally relevant variables D as follows.

Definition 1 (Seed set). Consider θ(1), θ(2) ∈ F . We call the set D ⊆ V the seed set, if the collections of conditional
laws θ(1)

V\D|D and θ(2)
V\D|D coincide. Furthermore, we say that D is a minimal seed set, if no proper subset of it is itself a

seed set.

To facilitate the understanding of the above definition, it is helpful to consider that, by employing the factor-
ization p(x; θ) = p(xD; θD)p(xD̄ | xD; θD̄|D), where D̄ = V \ D, the likelihood ratio p(x; θ(1))/p(x; θ(2)) simplifies to
p(xD; θ(1)

D )/p(xD; θ(2)
D ). The likelihood ratio thus depends only on variables in D. When comparing the two distribu-

tions, the variables outside of D are either irrelevant or redundant and D can be seen as the minimal subset of variables
explaining the difference between the two distributions. It should be stressed that there is no relation between R and
D; in general neither R ⊆ D nor D ⊆ R.

In practice, to identify the seed set, D needs to be estimated from data. One could perform a number of tests
of equality of conditional distributions, but when p is large, this testing problem becomes extremely challenging,
and represents an open area of research, see for instance [25] and references therein. In this paper, we assume that
the dependence structure among the p variables in the joint distribution can be well represented by an undirected
graph. We then address the problem of identifying D within the framework of graphical models, where we exploit
the structural modularity of decomposable graphical models [5, 8]. To this aim, we assume that F is a strong meta
Markov model with respect to a given undirected decomposable graph G = (V, E), where E ⊆ V × V is a set of edges.
Let us denote by M(G) a family of distributions satisfying the global Markov property relative to G. According to
the definition introduced by [5], F ⊆ M(G) is a strong meta Markov model if for any decomposition (A, B) of G,
parameters θA and θB|A are variation independent in F [2, p.26]. In other words, all possible values of θA are logically
compatible with all possible values of θB|A.

Under this assumption, there is a close relationship between the parametric model structure and the underlying
graph, and we show that the problem of identifying D can be formulated as the problem of testing equality of lower
dimensional conditional distributions induced by the structure of G. We further show that the associated test statistics
are functions of the quantities pertaining to the lower dimensional marginal distributions. The key advantage is
that inference on marginal distributions is significantly less challenging than inference on conditional distributions.
Beside the computational gain, we argue that the proposed approach addresses the issue of exploiting information on
the structure of dependence in an efficient and elegant way.

2. Decomposition of the global hypothesis of equality of two Markov distributions

A major appeal of decomposable graphs in graphical modelling is that they allow for a clique-grained decompo-
sition of the statistical model. Let C1, . . . ,Ck be a sequence of cliques of G satisfying a running intersection property
(see Section 1 of Supplementary material), and let S 2, . . . , S k be an associated sequence of (possibly non-unique)
separators. Then, if the distribution of XV is Markov relative to G, its joint distribution decomposes as:

p(xV ) = p(xC1 )
k∏

j=2

p(xR j | xS j ),

where R j = C j \ S j, j ∈ {2, . . . , k}. Therefore, each distribution θ ∈ F can be uniquely decomposed into k lower
dimensional components: θC1 , θR2 |S 2 , . . . , θRk |S k ; uniqueness ensures that θ can be reconstructed back from its compo-
nents. As a consequence, the global hypothesis of equality H : θ(1) = θ(2) also decomposes along the perfect ordering
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as H = ∩k
j=1H j, where H1 : θ(1)

C1
= θ(2)

C1
and H j : θ(1)

R j |S j
= θ(2)

R j |S j
, j ∈ {2, . . . , k}. Since F is a strong meta Markov

model, the components of θ are variation independent and there are no logical relations among the H j. The following
result states that the log-likelihood ratio for H decomposes analogously and that all component test statistics can be
computed in clique-induced marginal models.

Theorem 1. Let X(1)
V,1, . . . , X

(1)
V,n1

and X(2)
V,1, . . . , X

(2)
V,n2

be two independent random samples from, respectively, θ(1) and
θ(2), θ(l) ∈ F , l ∈ {1, 2}, where F is strong meta Markov model relative to G. H : θ(1) = θ(2) and its decomposition
H = ∩k

j=1H j, where H1 : θ(1)
C1

= θ(2)
C1

and H j : θ(1)
R j |S j

= θ(2)
R j |S j

, j ∈ {2, . . . , k}. Let λ(V) denote the log likelihood ratio
criterion for testing H against a general alternative and let λ(A) denote the log likelihood ratio criterion for testing
equality of distributions induced by A ⊆ V. The following equality holds

λ(V) = λ(C1) +

k∑
j=2

{
λ(C j) − λ(S j)

}
, (1)

where
{
λ(C j) − λ(S j)

}
represents the log likelihood ratio for testing H j. Moreover, the k terms on the right hand side

of (1) are asymptotically independent under the null hypothesis.

Proof of Theorem 1: The joint density of any random sample of size n from θ ∈ F factorizes as

p(x(n); θ) = p
(
xC1,(n); θC1

) k∏
j=2

p(xR j,(n) | xS j,(n); θR j |S j ), (2)

where x(n) stands for x1, . . . , xn. Each component can be maximized separately to obtain maximum likelihood esti-
mates θ̂C1 and θ̂R j |S j . Note that maximum likelihood estimate of θC1 is the same whether based on x(n) or xC1,(n).

The likelihood ratio for testing H is

L(x(n1+n2)) =
p
(
x(n1+n2); θ̂

)
p
(
x(1)

(n1); θ̂
(1)

)
p
(
x(2)

(n2); θ̂
(2)

) ,
where x(n1+n2) denotes a pooled sample, θ̂ is the maximum likelihood estimate of θ(1) = θ(2) under the null hypothesis,
and θ̂(l), l ∈ {1, 2} , is the maximum likelihood estimate of θ(l) under the alternative. Factorizing each density as in
(2), L is decomposed into k components corresponding to the local hypotheses H j, j ∈ {1, . . . , k}. Using the equality
θR j |S j (xR j | xS j ) = θC j (xC j )/θS j (xS j ), we obtain the expression λ(V) = λ(C1) +

∑k
j=2

{
λ(C j) − λ(S j)

}
. Finally, given the

modular structure of the joint distribution, the number of degrees of freedom associated to λ(V) is exactly the sum
of the degrees of freedom of the summands on the right hand-side, which is a sufficient condition for the asymptotic
independence of Chi-square random variables [19].

In what follows, we give explicit expressions for the decomposition for two important parametric families of
distributions.

2.1. Gaussian graphical models
Consider a subfamily of M(G) composed of Gaussian graphical models. In this case, θ = (µ,Σ), with µ ∈ Rp

and Σ a symmetric positive definite matrix such that Σ−1 ∈ S +(G), where S +(G) denotes the set of all symmetric
p × p positive definite matrices with zeros corresponding to the missing edges of G. For A, B ⊂ V , let ΣAB denote the
corresponding submatrix of Σ and let ΣA stand for ΣAA.

For a given perfect clique ordering, the global hypothesis of equality H : θ(1) = θ(2) decomposes as H = ∩k
j=1H j,

with H1 : µ(1)
C1

= µ(2)
C1
,Σ(1)

C1
= Σ

(2)
C1

and H j : θ(1)
R j |S j

= θ(2)
R j |S j

, j ∈ {2, . . . , k}, where

θA|B = (µA − ΣABΣ−1
B µB,ΣABΣ−1

B ,ΣA − ΣABΣ−1
B ΣBA),

for A, B ⊂ V, denotes parameters of the conditional law.
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Given two independent random samples of sizes n1 and n2 from θ(1) and θ(2), respectively, the log likelihood ratio
λ(A), A ⊆ V , for testing the associated null hypothesis of equality is

λ(A) =

2∑
l=1

nl log
|Σ̂A|

|Σ̂
(l)
A |
,

where |Σ̂| is determinant of the maximum likelihood estimate of Σ under H, and Σ̂(l), l ∈ {1, 2} , are maximum likelihood
estimates of Σ(l) under the general alternative [1, p.416]. Since (Σ̂)−1, (Σ̂(l))−1 ∈ S +(G), l ∈ {1, 2}, and the determinant
of every Ω for which Ω−1 ∈ S +(G) can be decomposed with respect to the graph as |Ω| =

∏k
i=1 |ΩCi |/

∏k
i=2 |ΩS i | [13,

p.145], the log likelihood ratio λ(V) can be equivalently written as λ(V) =
∑k

i=1 λ(Ci)−
∑k

i=2 λ(S i), from which equality
of Theorem 1 follows. It is important to stress that when subgraph induced by A is complete, which is the case with
cliques Ci and separators S i, then maximum likelihood estimate of ΣA is unconstrained. In particular, if for ease of
notation we temporarily drop the index A in x(l)

A , l ∈ {1, 2}, and write x(l) instead, we have

Σ̂A =
1

n1 + n2

 n1∑
i=1

(x(1)
i − x̄)(x(1)

i − x̄)T +

n2∑
j=1

(x(2)
j − x̄)(x(2)

j − x̄)T

 ,
where x̄ = (n1 x̄1 + n2 x̄2)/(n1 + n2), whereas Σ̂

(1)
A and Σ̂

(2)
A are unconstrained estimates of ΣA computed in the two

samples, i.e.

Σ̂
(l)
A =

1
nl

nl∑
i=1

(x(l)
i − x̄l)(x(l)

i − x̄l)>, x̄l =
1
nl

nl∑
i=1

x(l)
i , l ∈ {1, 2} .

In other words, it is possible to compute λ(V) from test statistics computed in clique-induced marginal models in
which maximum likelihood estimation is unconstrained.

2.2. Graphical log-linear models

Consider a subfamily P ⊂ M(G) of graphical log-linear models. Each Xv is now a categorical random variable
with a finite set of possible values or levels Iv. Here, XV = ×v∈VIv. We refer to the elements of XV as table cells [13,
Chapter 4]). Let XV,1, . . . , XV,n be n ∈ N independent realizations of XV . Cell counts are defined as

n(h) =

n∑
i=1

I
{
XV,i = h

}
, h ∈ XV ,

where I {·} denotes the indicator function.
For A ⊂ V , table cells hA ∈ IA = ×v∈AIv are obtained by classifying observations only with respect to the variables

in A. Marginal cell counts are n(hA) =
∑n

i=1 I
{
XA,i = hA

}
, where XA,i is a subvector of XV,i induced by A.

Under a multinomial sampling scheme, the probability of the observed cell counts is

Pr(N(h) = n(h), h ∈ XV ) =
n!∏

h∈XV
n(h)!

∏
h∈XV

p(h)n(h),

where p(h) is the probability for cell h ∈ XV . In this case, θ = {p(h)}h∈XV
satisfies the constraint

∑
h∈XV

p(h) = 1 and
decomposes as θC1 =

{
p(hC1 )

}
hC1∈XC1

, which refers to the marginal table induced by C1, and θR j |S j for j ∈ {2, . . . , k},
where θA|B = {p(hA | hB)}hA∪B∈XA∪B

refers to the parameters of the hB-slice of the table, i.e., a table in which objects are
classified with respect to the variables in A for a given fixed level of the variables in B.

Consider now θ(1), θ(2) ∈ P and the null hypothesis of equality of probabilities in the marginal table induced by
A ⊆ V . Given two independent random samples with observed cell counts n(1) and n(2) from θ(1) and θ(2), respectively,
the log likelihood ratio λ(A) is

λ(A) = 2

 ∑
hA∈XA

2∑
l=1

n(l)(hA) log
(

p̂(l)(hA)
p̂(hA)

) ,
4



where p̂A is the maximum likelihood estimate of pA under the null hypothesis; and p̂(1)
A and p̂(2)

A are maximum like-
lihood estimates of p(1)

A and p(2)
A under a general alternative. Using the structural decomposition reflected in the

maximum likelihood estimator p̂:

p̂(h) =

∏k
j=1 p̂(hC j )∏k
j=2 p̂(hS j )

, h ∈ XV , (3)

we obtain the decompisiton of λ(V) featured in Theorem 1. Degrees of freedom associated to λ(V) can be computed
from the formula f (V) = f (C1)+

∑k
j=2

{
f (C j) − f (S j)

}
, where f (A) denotes degrees of freedom in a model induced by

A ⊆ V . Since marginal models induced by cliques and separators are saturated, their degrees of freedom are obtained
as f (C j) =

∏
v∈C j
|Iv| − 1, and analogously for separators.

3. Estimation

3.1. The graphical seed set

Before we show how the result of the previous section can be used to make inference about the seed set, we need
to introduce the concept of the graphical seed set. Namely, by employing a clique-grained decomposition, we are not
always able to identify the minimal seed set; in those cases we can identify its superset that we denote by DG. Relation
between the two sets, that depends on both D and G, is the subject of this section.

Definition 2 (Graphical seed set). Let D be a minimal seed set for θ(1) and θ(2), two graphical distributions Markov
with respect to G. Let S =

{
S : S is a separator in G

}
be the collection of separators in G. Then we call the set

DG =
{
v ∈ V | ∀S ∈ S, either v ∈ S or S does not separate v from D in G

}
(4)

a graphical seed set.

In the above definition, we allow for non-empty intersection between S and D, as well as S = D. When v ∈ D,
the condition (4) is trivially satisfied (v cannot be separated from D by any set), and therefore DG ⊇ D. The graphical
seed set DG is thus the smallest set containing the seed set D that can be identified by means of set operations on
cliques and separators of G.

When the minimal seed set is a separator, we can set S = D in (4), to obtain D = DG. In general, D and DG will
coincide whenever D can be expressed as an intersection of two or more cliques. In other instances, DG will be a seed
set, but not a minimal one. For an illustrative example, see Section 2 of the Supplementary material.

3.2. The graphical seed set estimator

We have seen above that the global hypothesis of equality can be decomposed according to a specified perfect
ordering into a set of local hypotheses. However, the perfect ordering is not unique. In fact, there are multiple
decompositions of the global hypothesis, each corresponding to a different factorization of the same distribution. It is
this multiplicity that we exploit when estimating the graphical seed set.

For a given graph, the enumeration of all decompositions might resemble the problem of enumerating its junction
trees [20], but a closer look reveals that it is a far simpler task. Given the uniqueness of the sequence of separators, it
is not difficult to show that there is exactly one decomposition for each choice of the root clique – the clique labeled
C1 – leading to a total of k decompositions.

Before we show how these different decompositions relate to the graphical seed set in Proposition 1, we introduce
some notation and restate the global testing problem in decision theory terms. Let Θ×Θ be the unrestricted parameter
space of (θ(1), θ(2)); let Θ0 = {(θ, θ); θ ∈ Θ} denote the space restricted by H : θ(1) = θ(2) , and let Θ1 = (Θ × Θ) \ Θ0.
We want to test H : (θ(1), θ(2)) ∈ Θ0 against a general alternative (θ(1), θ(2)) ∈ Θ1. Let the decision taken on H be
denoted by d, where d = 0 means that the null hypothesis is not rejected and d = 1 means that the null hypothesis is
rejected. A test φ is a mapping from the sample space to the set {0, 1} (we rule out the trivial case that the test makes
no decisions). Let d∗ denote the correct decision (the truth) for H. As seen in the previous Section, the null hypothesis
can be decomposed into a set of independent local hypotheses, i.e., H =

⋂k
j=1 H j, and we denote by d∗j the correct

decision for H j, j ∈ {1, . . . k}, so that d∗ = (d∗1, . . . , d
∗
k). To identify the i−th decomposition, obtained when Ci is set
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as the root clique, we let Ci,1, . . . ,Ci,k denote a sequence of cliques satisfying the running intersection property. Let
S i,2, . . . , S i,k be an associated sequence of separators, and set S i,1 = ∅, i ∈ {1, . . . , k}. In this notation, Hi, j will denote
the j−th null hypothesis in decomposition i, φi, j the corresponding test, and d∗i, j the associated correct decision.

We now show the connection between the graphical seed set and the decompositions obtained from the graph G.

Proposition 1. Let d∗i =
(
d∗i,1, . . . , d

∗
i,k

)
be the vector of correct decisions for the hypotheses Hi, j of equality of collec-

tions of conditional distributions of XRi, j | XS i, j in the i−th decomposition. Then

DG =

k⋂
i=1

⋃
{
j: d∗i, j=1

} Ci, j.

Proof: See Appendix.

The above proposition gives an oracle procedure for recovering the graphical seed set from the knowledge of the
two joint distributions. In practice, we need to rely on statistical tests. Let φi =

(
φi,1, . . . , φi,k

)
∈ {0, 1}k be a vector

indicating the results of the statistical tests performed in the i-th decomposition, i ∈ {1, . . . k} , with φi, j = 1 when the
hypothesis Hi, j is rejected, and φi, j = 0 otherwise. The following definition naturally follows.

Definition 3 (Graphical seed set estimator). The random set D̂G, defined as

D̂G =

k⋂
i=1

⋃
{ j: φi, j=1}

Ci, j (5)

is an estimator of DG.

3.3. Asymptotic behavior
Estimator D̂G is different from classical estimators in that its values depend on data through the results of sequences

of tests. Properties of the estimator will ultimately depend on the properties of the tests which are used. A treatment
of these properties in the limit of infinite data benefits from the introduction of a more general notion of consistency
of tests, that we give in general terms as follows (see Definition 1 in [17] for a similar treatment).

Definition 4. A sequence of tests φ(n) for the hypothesis H : (θ(1), θ(2)) ∈ Θ0 vs H1 : (θ(1), θ(2)) ∈ Θ1 is consistent if
for each (θ(1), θ(2)) ∈ Θ × Θ there exists a sequence of significance levels αn s.t.

(1) for each (θ(1), θ(2)) ∈ Θ0, limn→∞ P(θ(1),θ(2))(φ(n) = 1) = 0;

(2) for each (θ(1), θ(2)) ∈ Θ1, limn→∞ P(θ(1),θ(2))(φ(n) = 0) = 0.

In other words, a sequence of tests is consistent if, at least asymptotically, it reports a correct decision. Let us now
consider testing Hi, j in the above given framework. Let n = n1 + n2 and assume that as n → ∞, nl/n → γl such that
0 < γl < 1, l ∈ {1, 2} and γ1 + γ2 = 1. Moreover, let the test statistic φi, j(n) be defined as

φi, j(n) =

0 λi, j;n < qn

1 λi, j;n > qn

where λi, j;n is the log likelihood ratio for Hi, j and qn a suitable sequence of quantiles. Standard results assure that,
under the null hypothesis, the sequence λi, j;n converges to a chi-square distribution with f degrees of freedom, where
f is the difference between the dimensions of the unrestricted parameter space and the restricted parameter space
implied by the hypothesis of equality of the distributions of XRi, j | XS i, j in the two groups. Then, the test that rejects
the null hypothesis if λi, j;n exceeds the upper α-quantile of the chi-square distribution is asymptotically of level α. We
can state the following proposition.

Proposition 2. In the framework stated above, for each Hi, j, there exists a sequence of significance levels αn, s.t. the
sequence of tests φi, j(n) is consistent.

Proof: See Appendix.

Theorem 2. The estimator D̂G is a pointwise consistent estimator of DG, i.e., P(θ(1),θ(2))(D̂G = DG)→ 1.

Proof: See Appendix.
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3.4. Finite sample type I error control

With finite samples, it is customary to assign a bound to the probability of incorrectly rejecting the null hypothesis
by imposing conditions such as P(θ(1),θ(2))∈Θ0 (φi, j(n) = 1) ≤ α. Estimation of DG requires performing a collection of
k +

∑k
i=1 ν(Ci) tests, where ν(Ci) denotes the number of separators contained within the clique Ci. Finite sample

behavior of D̂G thus hinges on the proper control of the multiplicity issue.
We focus on the requirement that the probability that D̂G contains a false positive should be bounded by a given

α ∈ (0, 1), i.e. Pr(∃v ∈ V : v ∈ D̂G ∧ v < DG) ≤ α. But, if there is such a node v, then given Definition 3 of D̂G,
necessarily one of the true null hypotheses in the collection of hypothesesH =

{
Hi j, i, j ∈ {1, . . . , k}

}
was erroneously

rejected. This implies that the control of familywise error rate forH , i.e. the probability of rejecting at least one true
null hypothesis, results in the control of probability of including a false positive in D̂G.

The simplest approach to control the familywise error rate is to apply the Bonferroni correction with a factor of
k +

∑k
i=1 ν(Ci). However, the Bonferroni correction can be overly conservative when there is high dependence among

p-values. This is the case here, since although local test statistics are independent within a single decomposition (see
Theorem 1), considering alternative decompositions leads to logical relations among hypotheses and typically results
in a high positive dependence between the associated p-values. To address this issue, we employ the maxT method
of [22], which uses permutations to obtain the joint distribution of the p-values and, by accounting for the dependence
among p-values, attenuates the conservativeness of the Bonferroni procedure. In our setting, the condition of subset
pivotality is satisfied, and the Westfall and Young procedure controls the familywise error rate in the strong sense.

In many applications, familywise error rate control is considered too stringent and false discovery rate is consid-
ered instead. Unfortunately, no such simple relation exists between controlling false discovery rate for H and the
inclusion of false positives in D̂G. In other words, it is unclear how controlling false discovery rate forH translates to
the type I error guarantees for D̂G. For this reason, we restricted our attention to the familywise error rate.

4. Simulation studies

4.1. Simulation study 1

To study the finite sample behavior of D̂G, we considered a randomly generated graph G consisting of 100 nodes
grouped in 37 cliques (the largest clique containing 15 nodes). The code to reproduce all numerical experiments, as
well as real data analysis featured in Section 5, is available at https://github.com/veradjordjilovic/Seed-set.
A plot of the graph is shown in Fig. 5 in Supplementary Material. The minimal seed set was set to D = {2, 5} . In the
chosen graph, the graphical seed set does not coincide with the minimal seed set since there is no separator in G that
separates a node number 17 from D. We thus have DG = {2, 5, 17}.

We will work in the Gaussian setting. We set the parameters of the first, i.e. control, condition in the following
way. The means of 100 variables were drawn randomly from a normal distribution centered at 0.5 (standard deviation
1). The covariance matrix was obtained by starting from a matrix with all off-diagonal elements equal to 0.4 and
all diagonal elements equal to 1 and modifying it so that its inverse has zeros corresponding to the missing edges of
G. For the second or the perturbed condition, we considered perturbations that alter the means of the two seed set
variables linearly. In particular, the means were multiplied by λ that varied in the range {1.2, 1.25, . . . , 1.6, 1.65} . The
variance of seed set variables was also manipulated and decreased by 50%. We held the sample size fixed and equal
for the two conditions: n1 = n2 = 50. For each λ, we generated 1000 pairs of samples.

Note that this perturbation affecting X2 and X5, indirectly affected all the marginal distributions of (X1, . . . , X100)>.
For an illustration of this effect, see Fig. 6, Supplementary Material, that compares the parameters associated to the
first ten variables, i.e., X1, . . . , X10, in the first and in the second condition for λ = 1.7.

We computed D̂G with the SourceSet R package, which implements the proposed approach (available from
CRAN). The familywise error rate was controlled at 5% by the step-down maxT method [22]. To evaluate the
performance of our procedure, we computed the empirical power, defined as the frequency with which the estimated
graphical seed set D̂G coincided with the true graphical seed set DG, and the empirical familywise error rate, defined
as the frequency with which D̂G contained a false positive. The results are shown in Fig. 1.

Results show that the familywise error rate is controlled at the nominal level for all values λ, which is in line with
finite sample theoretical type I error guarantees described in Section 3.4. With regards to power, for the lowest level
of perturbation λ = 1.2, corresponding to an increase of 20% in variables X2 and X5, we see that the power to identify
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Fig. 1: Simulation study 1: Empirical power and familywise error rate of the graphical seed set estimating procedure as a function of perturbation
strength λ. Dashed horizontal line y = 0.05, representing the nominal familywise error rate, was added for reference.

DG is very low. With increasing λ, the power is fast increasing and reaches 80% already for λ = 1.5. Note that given
our definition of power, the maximum attainable power is bounded by the complement of the familywise error rate,
i.e. 1 − P(∃v ∈ V : v ∈ D̂G ∧ v < DG) ≈ 1 − α, rather than 1.
Unbalanced sample sizes. We further studied the impact an unbalanced sample size can have on the performance
of the seed set estimating procedure. To this end, we fixed parameters of the perturbed condition by setting λ = 1.3
and then varied the sample size of the pooled sample n = n1 + n2 in the set {75, 100, 125, 150, 200, 250, 300, 350}. We
computed the empirical power and familywise error rate in two scenarios featuring:

• balanced samples: n1 = n2 when n is even, or n1 = bn/2c and n2 = n1 + 1, when n is odd;

• unbalanced samples: n1 = 50 and n2 = n − n1.

Results, shown in Fig. 2, indicate that the familywise error rate is controlled well in both scenarios. With regards
to power, when the total sample size is small, the two scenarios are comparable. With increasing sample size, the
difference between n1 and n2 is also increasing, and the power in the scenario with balanced samples is higher, but the
advantage does not seem to be very large.
Robustness to non-normality. An important issue arising in practical applications is the sensitivity of the procedure
to the presence of departures from normality. To investigate this issue, we have considered data generated from skew-
normal graphical models [3] and studied the power and familywise error rate as a function of skewness. The results
of this simulation study, described in Section 3.1, Supplementary material, suggest that when compared to a setting
with normal data, the power does not seem to be much affected, while the familywise error rate increases and possibly
surpasses the pre-specified level α. Nevertheless, the increase seems to be small enough as to allow us to conclude
that the procedure is quite robust to this particular violation of normality.
Competing methods. To the best of our knowledge, no alternative methods aiming to estimate DG, i.e. the origin
of the perturbation affecting both the means and the (co)variances are currently available. However, some recent
approaches focus on detecting more specific forms of perturbations: either those affecting exclusively the graphical
structure or the vector of means. In the following section, we report the comparison with a method addressing the
former, while in Section 3.2, Supplementary material, we provide a comparison with a method addressing the latter.
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Fig. 2: Simulation study 1: Empirical power and familywise error rate of the graphical seed set estimating procedure as a function of the pooled
sample size n = n1 + n2. In an unbalanced sampling scheme n1 = 50 was fixed, while in a balanced sampling scheme n1 = n2 if n1 + n2 was even,
and |n1 − n2 | = 1 otherwise. Dashed horizontal line y = 0.05, representing the nominal familywise error rate, was added for reference.

4.2. Simulation study 2

To study the behavior of our procedure when the difference between two conditions is driven only by the graphical
structure, we considered a small graph consisting of 10 nodes, shown in Fig. 3. The edge between nodes 4 and 6
is present in Condition 1, but absent in Condition 2, i.e., in Condition 2, variables associated to nodes 4 and 6 are
conditionally independent given the rest. It is worth noting that, in Condition 2, the graph is not decomposable and
that the graphical structure to be used in estimating D is that of condition 1, as it represents the decomposable model
common to the two conditions. The minimal seed set is now D = {4, 6}, and it coincides with the graphical seed set.

Means of the 10 variables were randomly drawn from a normal distribution centered at 0.5 (standard deviation 1)
and were the same for Conditions 1 and 2. In each condition, the covariance matrix was obtained from a matrix with all
diagonal elements equal to 1 and all off-diagonal elements equal to 0.6, that was modified so that the zero pattern of its
inverse corresponds to the missing edges of G. Three different sample sizes were considered, i.e., n = 200, 300, 500.

Results, averaged over 500 Monte Carlo runs, are shown in Table 1, where rows labeled ‘Seed set’ report the
percentage of times each node was found to belong to D. Results show that, in this setting, the power, although limited
at the smallest sample size, is increasing with increasing sample sizes. This is understandable, since, differently from
simulation 1, the difference between the two conditions is relatively sparse, and the smaller this difference, the harder
it is to distinguish between the null and the alternative hypothesis.

It is interesting noting that methods for differential networks, such as those in [24] and [23], could also have been
used in this setting. For an appreciation of the different results produced by different approaches, we considered the
method of [24], for which an implementation is available. The method focuses only on the structure of the covariance;
it uses no external information on such structure and it has been developed around estimation consistency. It follows
that this method is not directly comparable with our method, and its relative performance is to be interpreted with
caution.

The implementation of the differential network method was obtained from the github account of the corresponding
author of [24]. Cross validation and L∞ were chosen as tuning criteria. The output of this method is an estimate of the
difference between two precision matrices. To facilitate comparison with our method, we focused on the differential
network given by a subset of non zero elements of the estimated difference. A variable was deemed important if the
associated node belonged to the estimated differential network, i.e. if at least one edge of the differential network
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featured the node in question. In this case, the true differential network consists of a single edge joining nodes 4 and
6. Variables deemed important by this method should thus coincide with the minimal seed set.

Rows labeled ‘Differential network’ in Table 1, report the percentage of times a variable belonged to the set of
important variables according to the differential network method. The method flags nodes 4 and 6 to be relevant also
for the smallest sample size (around 85% of times for n = 200). However, the rate of a false discovery is much higher,
around 40% across the remaining nodes, and does not seem to be decreasing with increasing sample size. Note that
this is not in conflict with the consistency of the estimator of [24], since the estimated non-zero elements are getting
smaller in absolute value (results not reported here) and converge to zero with increasing sample size.
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Fig. 3: An undirected graph used in Simulation study 2. Edge (4,6) is present in condition 1, and absent in condition 2.

Table 1: Simulation study 2: percentage of times (%) a node is found to belong to D or a differential network. Monte Carlo standard error of
estimates is bounded by 2.2%.

Node

1 2 3 4 5 6 7 8 9 10

n = 200
Seed set 1 1 1 22 1 25 3 1 1 1
Differential network 34 39 40 86 44 85 51 35 40 37

n = 300
Seed set 1 1 1 46 1 47 0 0 1 1
Differential network 39 37 37 93 51 94 50 36 44 42

n = 500
Seed set 2 2 2 86 2 86 2 1 0 0
Differential network 42 42 40 99 50 99 56 36 46 46

5. Biological validation

Genes and gene products cluster into functionally connected pathways, i.e. networks of biological interactions
that describe their basic dynamics [12]. A large literature has developed around the problem of detecting statisti-
cally significant dysregulations of pathways in different experimental conditions [9, 11, 21], but translating detected
dysregulations into claims about their origin is a challenging task. Chromosomal rearrangements offer a possible
explanation. Chromosome rearrangements initiate various alterations of the regulation of gene expression through a
variety of different mechanisms. For this reason, when comparing populations with and without a given gene rear-
rangement, sound inferential tools usually flag most pathways including genes with the rearrangement as statistically
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different. What we should expect from tools calibrated to detect the source of dysregulation is that they go as close
as possible to the rearranged genes. This is the reason why we consider known chromosomal rearrangements as ideal
case studies to explore the power of our procedure on real, complex and noisy data.

As an example, consider the BCR/ABL fusion gene, formed by rearrangement of the breakpoint cluster region
(BCR) on chromosome 22 with the c-ABL proto-oncogene on chromosome 9. This rearrangement has been postulated
to be responsible for the development of leukemia and is present in all chronic myelogenous leukemia patients. It is
also identified in some cases of acute lymphocytic leukemia (ALL), in which it is associated with poor prognosis.

We consider a well-known dataset [4] available from an R package ALL[14]. Data refer to gene expression signa-
tures of two groups of ALL patients: a first group of 37 subjects with BCR/ABL gene rearrangement, and a second
group of 41 subjects without the BCR/ABL gene rearrangement. In what follows, we will consider the Chronic
myeloid leukemia pathway, shown in Fig. 7 in Supplementary material, a pathway whose functioning is highly im-
pacted by BCR and ABL genes.

To derive the underlying undirected graph, we used the R package graphite [18], which transforms KEGG
pathways into graph objects. We moralized and triangulated this graph to obtain a decomposable graph. For graph
operations, we relied on the package gRbase [7]. The obtained graph consists of three connected components, and
for illustration purposes, we restricted our attention to the largest connected component, consisting of 27 nodes and
16 cliques, shown in Fig. 4 (colors can be ignored for now). The number associated to each node is a unique gene
identifier from the Entrez Gene database at the National Center for Biotechnology Information [15]. Note that nodes
25 and 613 represent, ABL and BCR genes, respectively.

The global hypothesis of equality of distributions in the two groups is rejected by the likelihood ratio test (p -value
= 2.06 × 10−11). To estimate D̂G, we decomposed the graph into a succession of cliques. There are 16 cliques, and
thus 16 decompositions of the global null hypothesis, and 41 unique local hypotheses. We controlled the familywise
error rate at 5% level by the minP method with B = 1640 permutations (the minimal number recommended by the
SourceSet package). We have thus relied on permutation, rather than asymptotic p-values. Obtained p-values are
shown in Table 2, Supplementary material. The threshold found by minP method was 2.4 × 10−3. The resulting
estimate is represented in Fig. 4. Highlighted nodes (either gray or red) belong to cliques that result significantly
different in two conditions, while the red nodes form the estimated graphical seed set D̂G = {25, 613, 6776}. These
three genes, thus, explain the marked difference between the two groups, but their effect does not seem to propagate
towards other genes in the network (the majority of white nodes in Fig. 4).

6. Discussion

Two sample testing problem we consider is closely related to the problem of variable selection in a logistic regres-
sion. When a predictor is a p-dimensional random vector X and the output is a class label (1 or 2), the minimal seed
set coincides with the Markov blanket of the response.

Modularity of graphical modes is usually considered with regards to density factorization or parameter estimation.
Theorem 1 mirrors this property in the hypothesis testing setting within the framework of strong meta Markov models,
and although conceptually simple, we were unable to find this result in the literature. The strong meta Markov
assumption is a strong assumption, however, the two families most often encountered in practical applications, that of
Gaussian graphical models and graphical log-linear models, fall within this framework.

The presented approach estimates the graphical seed set which might be larger than the minimal seed set. An open
question regards a potential two-step procedure, in which clique grained decomposition is followed by additional tests
aiming at identifying D̂ ⊆ D̂G. Statistical properties of such a procedure are far from trivial, and we leave this question
for future research.

Our approach is based on the assumption that the graphical structure is known, either derived from relevant subject
matter considerations or estimated from previous studies. When this is not the case, finding ways to combine learning
of the graphical structure with the presented approach in an efficient way, while controlling the desired error rate,
represents a methodological challenge that awaits further research.
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Fig. 4: An undirected graph representing the Chronic myeloid leukemia pathway. Genes belonging to cliques for which the hypothesis of equality
of distributions is rejected are highlighted. Genes belonging to the estimated graphical seed set are colored red.
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Appendix: Proofs

Proof of Proposition 1: Let P =
⋂k

i=1

⋃{
j: d∗i, j=1

} Ci, j. Then if v ∈ P, for each decomposition i, there is at least one
clique Ci, j containing v such that d∗i j = 1. If Ci,l denotes the first clique in the i-th decomposition containing v, we know
that v belongs to Ri,l, otherwise Ci,l would not be the first clique containing v. Consider a tree of cliques constructed
from the perfect ordering Ci,1, . . . ,Ci,k in the following fashion. The perfect ordering property guarantees that for each
clique Ci, j, the intersection with the union of predecessor cliques is contained within a single clique, that is

Ci, j ∩

j−1⋃
m=1

Ci,m ⊂ Ci,n, for some n ∈ {1, . . . , j − 1} . (6)

Then the set Ci,n is set as a parent of Ci, j in the clique tree. Parent clique might not be unique, but without loss of
generality, we take the first clique satisfying the assumption (6). Then all cliques containing v other than Ci,l must be
descendants of Ci,l. We further notice that if d∗i,l = 0, then d∗i,m = 0 for all its descendants. This implies that necessarily
d∗i,l = 1 and S i,l does not separate v from D. Since this is true for all decompositions, there can be no separator that
separates v from D, implying that v belongs to DG.

We have proven v ∈ P ⇒ v ∈ DG, but all considered implications remain valid if reversed, so that v ∈ P ⇔ v ∈
DG.
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Proof of Proposition 2: Choose αn = (1 − FU(nd)), with 0 < d < 1/2, U ∼ χ2
f , and let qn = F−1

U (αn). Under the null

hypothesis, λi, j;n
d
→ λ, with λ ∼ χ2

f . Thanks to the Slutsky theorem, we can write

P(θ(1),θ(2))∈Θ0 (φi, j(n) = 1) = P(θ(1),θ(2))∈Θ0

(
λi, j;n

nd > 1
)
−→ 0.

Furthermore, for each (θ(1), θ(2)) ∈ Θ1, it is known that the log likelihood ratio test is degenerate with the order
O(
√

n). With the choice of αn above,

P(θ(1),θ(2))∈Θ1 (φi, j(n) = 0) = P(θ(1),θ(2))∈Θ1

(
λi, j;n

nd < 1
)
−→ 0.

Proof of Theorem 2: For a fixed i, we have that φi(n) = (φi,1(n), . . . , φi,k(n))→ d∗i = (d∗i,1, . . . , d
∗
i,k), since the inequal-

ity

P(θ(1),θ(2))(φi(n) = d∗i ) ≥ 1 −
k∑

j=1

P(θ(1),θ(2))(φi, j(n) , d∗i, j)

in conjunction with Proposition 2 implies P(θ(1),θ(2))(φi(n) = d∗i ) −→ 1. Convergence of D̂G to DG follows straightfor-
wardly.
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