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Abstract

L’uso di energia può agevolare l’adattamento ai cambiamenti climatici in molti modi,

rendendo possibile il mantenimento di standard di vita dignitosi. Tuttavia, la nostra

comprensione del fabbisogno energetico come elemento di interazione tra l’adattamento al

cambiamento climatico, i sistemi energetici e lo sviluppo sostenibile è limitata, in parti-

colare rispetto all’uso di tecnologie ad alta intensità energetica come il condizionamento

dell’aria. La tesi sviluppa e applica un insieme di approcci modellistici ed empirici, per

identificare: i) la dimensione del fabbisogno energetico per l’adattamento quando si tiene

conto degli aggiustamenti di lungo periodo nei consumi e nei mercati, ii) le implicazioni

che l’energia per l’adattamento può avere sugli investimenti e sui costi dal lato dell’offerta

di energia, iii) a quali condizioni e in che misura possono sorgere compromessi tra l’energia

per l’adattamento, l’efficacia delle politiche di mitigazione e l’ambiente. In primo luogo,

sulla base di una nuova revisione sistematica della letteratura, la tesi mostra quali sono

le opportunità per migliorare i modelli utilizzati nell’analisi degli scenari di mitigazione.

L’armonizzazione del feedback sull’adattamento energetico in un modello di valutazione

integrato mostra che le azioni di adattamento energivore possono compromettere il rag-

giungimento degli obiettivi di contenimento delle emissioni di carbonio, portando a mag-

giori emissioni di gas serra e di inquinanti atmosferici locali, e a maggiori costi del sistema

energetico. Una serie di analisi empiriche chiarisce gli effetti dei cambiamenti climatici sul

picco giornaliero della domanda di elettricità in Europa e in India, tenendo conto della

crescita endogena delle apparecchiature per la climatizzazione residenziale (AC). Le anal-

isi empiriche sono svolte al fine di migliorare la comprensione e la quantificazione degli

impatti, con metodologie che permettono di mantenere un elevato dettaglio temporale

e spaziale. Infine, le analisi sviluppate si soffermano su un tema trasversale alla letter-

atura relativa alla stime degli impatti del cambiamento climatico: la determinazione di

stime empiriche capaci di misurare l’effetto di lungo periodo dell’adattamento attraverso

la scomposizione tra effetti metereologici transitori e cambiamenti di lungo periodo nel

clima.

2



Abstract

Energy can power adaptation to climate change in many ways, making it possible to main-

tain decent living standards and comfortable spaces. Yet, our understanding of the energy

requirements as a channel of interaction between the impacts of adaptation and sustainable

development is limited. In particular, little or no quantification can be found on the trade-offs

between adapting through the use of energy-intensive technologies such as air-conditioning,

sustainable development and mitigation to climate change. This thesis develops and applies a

portfolio of model-based and empirical approaches to identify: i) the size of the energy require-

ments for adaptation when long-run adjustments in consumption and markets are accounted

for, ii) the implications that energy for adaptation can have on supply-side investments and

costs, iii) under what conditions and to what extent tradeoffs between energy for adaptation,

mitigation policy effectiveness, and the environment can arise. First, informed by a novel sys-

tematic review of the literature, the thesis identifies the opportunities to enhance models used

in the analysis of mitigation scenarios, such as the ones reviewed by the IPCC, by using new

and differentiated empirical evidence. The harmonization of the energy-adaptation feedback

in an integrated assessment model shows that energy-intensive adaptation actions may jeopar-

dize achieving low-carbon targets, as under the current mitigation policies electricity used to

cool buildings and industrial processes would require substantial additional capacity for power

generation, leading to higher greenhouse gas emissions, local air pollutants, and energy system

costs. Ignoring this feedback underestimates the benefits of early mitigation, as the costs to

decarbonize the power system in ambitious mitigation scenarios would be lower than previous

estimates. In order to enhance the geographical and temporal scope of the impacts with re-

spect to the global integrated assessment, a set of empirical analysis elucidate the effects of

mid-century climate change on daily peak electricity demand in Europe and India, accounting

for the endogenous growth of residential air-conditioning (AC). The adjustments in AC preva-

lence over time synergistically amplify electricity consumption, yielding the benefit of reduced

exposure to extreme heat at the cost of increased carbon dioxide (CO2) emissions and associ-

ated mitigation challenges in power systems that are not decarbonized. Finally, the empirical

analyses focus on a cross-cutting theme in the literature on climate change impacts: the deter-

mination of empirical estimates capable of measuring the long-term effect of adaptation through

the decomposition between transient meteorological and slowly evolving climate effects.
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1 Introduction

1.1 Background and motivation

Energy demand, for centuries met from the combustion of fossil fuels, has been and still is a

primary source of greenhouse gas emissions. Global energy-related CO2 emissions totaled 33 Gt

in 2021, which contributed to CO2 reaching its highest ever average annual concentration in the

atmosphere of 421 parts per million in May 2022 – around 50% higher than when the industrial

revolution began [1]. Yet, the connection between energy and the climate system is bilateral.

Energy is today a key input to resilience, as many of the adaptation actions that individuals and

industries have implemented so far are energy-intensive [2]. Among the Nationally Determined

Contributions (NDCs) submitted in the context of the Paris Agreement 20 types of adaptation

measures involve energy consumption, 6 of them with the potential to be energy savings, while

the other 14 options are more likely to increase energy use [3]. Several energy services make

it possible to maintain conditions of thermal comfort across all sectors of the economy under

varying weather conditions. Other examples include water pumping, desalinization and water

purification [4, 5]. Growing evidence shows that higher temperatures and more frequent and

prolonged extremes lead to more electricity for space cooling [6, 7, 8], for refrigeration [9], and

for entertainment appliances if people spend more time indoors [10]. While space heating is

expected to require less energy [11, 12, 13, 14, 15, 16, 17], the extent and occurrence of cold

waves can actually go in the opposite direction [18]. Extreme temperatures also directly af-

fect labour and capital productivity [19], leading industrial and commercial activities to adjust

their energy usage as well. The impacts of heat on labor productivity are well-documented [20]

and the benefits of air-conditioning on preventing production losses in the manufacturing and

service sectors have recently been identified [21]. The performance of equipment, such as data

centers, and the mechanical functioning of machines are also sensitive to the surrounding tem-

perature conditions, and high operating temperatures can cause electronic components to lose

functionality [22]. These are examples of adaptation actions that would have direct impacts on

the energy system, with an ultimate feedback on the climate and the environment.

Among the many adaptation actions available across sectors and regions for cooling indoor

environments, air-conditioning (AC) is a technology that has experienced an extensive growth

in adoption in recent years. The consumption of electricity for household AC has been growing

very rapidly in the last two decades: by more than 12%/year over 2000-2018 in China, India,
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Indonesia and Turkey, and between 6 to 10%/year in Australia, Brazil, Canada, the European

Union [23]. AC now accounts for 10% to 15% of the annual maximum electricity demand in

emerging economies with warm climates, such as India, Indonesia and Mexico, while it reaches

30% in richer countries with a higher prevalence, such as the US [24]. Cooling needs are there-

fore expected to be an increasingly important driver of future energy demand [25].

In its latest assessment, the Intergovernmental Panel on Climate Change (IPCC) reports with

high confidence that adaptation actions focusing on sectorial and short-term benefits can lead

to maladaptive responses and build up risk over time [26]. There are multiple channels though

which adapting by means of energy-intensive technologies may result in forms of maladaptation

[27]. Firstly, since low-energy-demand development pathways increase the flexibility needed to

achieve low temperature mitigation scenarios and reduce the need for negative emissions [28],

energy-intensive adaptation actions may jeopardize achieving low-carbon targets. Secondly,

the contemporaneous use of energy-intensive appliances during extreme weather events such

as heatwaves may amplify peak power consumption up to levels that exceed system capacity,

adversely affecting the grids’ reliability and causing power outages at times of high need [29]

and eventually resulting in an exacerbation of heat-related heath impacts [30]. This issue is

particularly pressing in already vulnerable developing countries, where long-standing infras-

tructural and new climate change-induced risks may compound.

As the climate warms, the likelihood of such impacts increases with more intensive adoption of

AC, which itself responds positively to higher temperatures and increases in per-capita income

[31, 32, 33, 34]. Adaptation to climate change though the use of energy-intensive durable stock

such as cooling and heating appliances will evolving in the future based on multiple drivers [35]:

socio-economic (population expansion, economic growth, shifts in the sectoral composition of

economies); behavioural (the actions of individuals and organizations); and technological (pace

of technological adoption and development). The lack of comprehensive empirical and model

evidence on the combined influence of these drivers gives rise to substantial uncertainties around

the mechanisms though which future cooling and heating needs will affect our society and the

environment.

1.2 Objectives and research questions

Estimating the potential size of future energy needs for adaptation has important implications

for the transition towards sustainability and decarbonized economies. The thesis investigates
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the mechanisms and impacts of the rising energy requirements for adaptation though a suite

of methodologies, approaches and novel datasets, and aims to shed light on several blind spots

concerning energy for adaptation. Broadly, the following research questions motivate the work:

• What is the size of the energy for adaptation when long-run adjustments in consumption

and markets are accounted for?

• What implications can energy for adaptation have on the energy supply-side, particularly

on investments and costs?

• To what extent future AC adoption will be driven by compounding socio-economic and

climate effects?

• Under what conditions and to what extent a negative feedback between energy for adap-

tation, mitigation policy effectiveness and the environment can arise?

From one side, answering these question requires the development of Integrated Assessment

Models (IAMs) that harmonize climate impacts and policies in a consistent manner, bringing

together two research communities that have traditionally worked in parallel. Despite the grow-

ing evidence indicating that adaptation-driven energy use will play an increasingly important

role in future energy scenarios, the integrated assessment modeling literature and literature on

energy scenarios still fail to account for adaptation-driven energy demand in their scenarios.

Most of the IAMs still need to integrate the climate-energy feedback into their assessments.

The Illustrative Mitigation Pathways (IMPs) developed by Working Group III do not account

for adaptation costs, and we still lack a comprehensive characterization of mitigation pathways

in the presence of adaptation actions. As a consequence, we lack a thorough understanding of

how an increase in the energy needs for adapting to climate change might affect the economy,

energy systems, and the environment in the process of transitioning towards cleaner energy

systems, industries and commercial activities. The interplay between energy needs for adap-

tation and increasingly ambitious mitigation targets remains an understudied topic. There is

very limited model-based evidence on the extent to which adaptation to climate change might

further feed into the energy and socio-economic system by requiring more energy, and therefore

initiate a negative feedback loop. How such an interaction actually plays out varies across re-

gions, and depends on the configuration of the energy system, socioeconomic development, and

local climate. The modeling work conducted in this thesis seek to shed light on how adaptation
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responses to climate change affect energy systems, and therefore the achievement of mitigation

goals, as well as their economic costs.

From the other side, the existing empirical assessments of the determinants of the energy

used for adaptation across economic sectors and regions provide limited insights. Available

studies mostly estimated short-term elasticities based on contemporaneous weather realizations

[36, 37, 38]. There are several reasons why coefficients estimating short-term adjustment effects

are ill-suited for providing an indication of the impacts of climate change over the medium

or long term [39]: adaptation (adjusting among a set of technological opportunities but also

through technological change), general equilibrium effects (adjustment of prices and factor

reallocations) and intensification of climate effects.

Measuring adaptive behaviours when assessing the relationship between energy demand and

thermal comfort is of key importance: adaptation shapes agents’ use of energy-intensive durable

stock in responses to transitory temperature shocks (henceforth "intensive margin") and agents’

new adoption of energy-intensive durable stock in response to the permanent shifts in climate

(henceforth "extensive margin") [40]. Adaptation though the extensive margin takes time to

influence energy demand because, given the fixity of capital goods in the short-term, actors

are constrained in their response to unanticipated weather shocks. Although a narrow group

of studies has recently proposed methods for the indirect identification of the long-run effects

[41, 42], most of the available empirical studies estimated the sensitivity of energy demand to

weather based on the intensive margin [43, 44, 14, 37, 36, 45, 38, 16]. One of the key aspects

requiring innovation is therefore the identification of the energy demand adjustments along the

extensive margin. In this thesis I assemble novel datasets comprising high-frequency electricity

demand statistics and regional-level data on AC prevalence and socio-economic development

to conduct new empirical assessments that measure extensive margin adjustments directly over

time in a specific location, allowing to control for several unit- and time-specific confounding

factors. The empirical works conducted in the thesis seek to understand how different drivers

have affected energy demand in the past, in order to provide an indication on the mechanisms

at play and to quantify future trajectories of change, taking into account the compound effects

that can result from rising exposure to climate change and socio-economic growth.
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1.3 Outline

In Chapter 2, I conduct a systematic review that aims to disentangle through which modeling

approaches and to what degree, climate change affects future energy demand in the existing

projections from leading global Integrated Assessment Models. The key hypothesis I evaluate

is whether IAM-based projections under-estimate the building sector’s energy demand when

energy use is driven solely by income and population and not by changes in climatic conditions

and the associated adaptation needs. Furthermore, I evaluate if different modeling approaches

affect the results, once climate and socioeconomic heterogeneity of the scenarios have been

taken into account. The Chapter evaluates whether and to what extent the following modeling

differences affect the energy demand projections: i) the relationship between the energy system

and the economy, and their interactions; ii) the detail of the energy sector; iii) the modeling

of the relation between climate and space cooling. In order to identify the role of the latter

modeling aspect on energy demand projections, I develop a novel classification of the method-

ological choices concerning the intensive margin (short-run) and extensive margin (long-run)

demand responses to weather. The results underscore that models lacking extensive margin

adjustments, and models that focus on residential demand, highly underestimate the additional

cooling needs of the building sector.

Chapter 3, by integrating the "adaptation-energy feedback loop" into the World Induced

Technical Change Hybrid model - WITCH, proposes one of the first modeling frameworks

that fully integrates the energy needs for adaptation endogenously into mitigation pathways,

so that climate policy design is directly influenced by adaptation energy needs. Such inte-

grated framework goes well beyond the existing literature and makes it possible to analyze how

decarbonization and policy design changes when adaptation needs are taken into account.

The model development consists of three novel elements. First, I empirically estimate a

reduced-form relationship (statistical emulator) between country-level annual average temper-

ature and the annual occurrence of extreme cold and hot days using historical data. Second, I

model the direct relationship between changes in the occurrence of extreme temperature days

and the demand for electricity, gas and oil in the residential, commercial, and industrial sectors

using empirical estimates from the recent empirical literature. Third, I quantify the impacts of

climate-induced changes in final energy use on the energy investments and costs, on the costs

of mitigation policies, and on the mitigation co-benefits on air pollution. Findings underscore

that climate adaptation considerably affects the shape and the costs of mitigation pathways,
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and indicate how the design of cost-effective mitigation policies would change.

Chapter 4 builds upon the work conducted in the previous two and proposes a framework

that identifies what are the future opportunities and requirements for including the energy-

adaptation feedback into IAMs, finding bridges across different research communities. The

focal point of the discussion is to what extent IAMs can to be updated though novel empirical

results, which are the most pressing blind spots in the empirical literature and the novel insights

that could derive from such integration.

Chapter 5 addresses some of the gaps in the empirical literature identified in Chapter 4.

Chapter 5 is dividing into three main chapters, each presenting distinct but interrelated empir-

ical analyses.

In the first empirical analysis, I combine historical observations for a rich Europe and a

hot India to understand the future expansion in air-conditioning ownership and utilization,

driven by increases in future daily maximum temperature, per capita income and urbanization.

I empirically analyze the high-frequency intensive margin component of electricity demand,

captured by the day-to-day co-variation between peak and total load and maximum daily tem-

perature at different levels of regional AC prevalence. By coupling the reduced form adaptation

responses with mid-century projections of changes in daily maximum temperatures alsimulated

by 25 Global Climate Models (GCMs) I project the future contribution of the extensive- and

intensive-margin, as well as their joint amplifying effect on peak and total electricity consump-

tion.

Furthermore, in Chapter 5 I propose a set of alternative methodologies that aim to evaluate

if the extensive margin can be identified without direct information on AC prevalence. Such

frameworks would provide an important contribution as they can shed light on climate impacts

in world regions with poor or lacking accounts of AC ownership data. The first alternative

methodology replicates the analysis of high-frequency electricity demand in Europe and India

by exploiting low-filter variations of income and climate. By doing so, I provide a comparison

of the projected impacts of climate change based on alternative empirical specifications. The

second alternative methodology applied to a complementary dataset. Monthly and sector-

specific electricity demand statistics in Brazil are used to derive a set of reduced-form responses

of demand to thermal discomfort though an econometric specification (the Error Correction

Model), providing the long-term effects of climatic and socio-economic drivers on electricity

consumption. Finally, the last section of Chapter 5 extends the analysis based on low-filter
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variations of income and climate to a global dataset of annual country-level energy demand

and macroeconomic statistics. The empirical analysis developed focuses on two distinct but

interrelated cases: i) the relation between energy consumption and temperature across sectors

and energy carriers; ii) the relation between income growth and temperature.

Chapter 6 draws the conclusion of the thesis, focusing on the policy implications of the

results, on the caveats of the methods and scope of the work presented and on the scope for

further research.
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2 Review of IAMs methods and contributions

2.1 Preface

Energy scenarios are predominantly generated by Integrated Assessment Models (IAMs), which

describe the relation- ship between human (economy, technology, energy) and natural (climate,

environment) systems. Most of these models still need to integrate climate-energy feedback into

their assessments. The few studies that have taken into account the climate-energy interactions

have typically taken the form of single-model exercises focusing on buildings’ energy demand,

and have provided projections that are hardly comparable quantitatively to other studies, since

each model is based on specific methodological approaches, calibration sources and scenario

assumptions.

This Chapter systematically reviews and compares IAMs’ quantitative projections of en-

ergy demand that include the additional energy use or savings induced by thermal adaptation

to heating and cooling needs at a global level. The studies selected are grouped in a novel

classification according to different aspects: the details of the energy system, the relationship

between energy and the economy, and the technical representation of the specific demand for

heating and cooling. Such a first-of-its kind classification makes it possible to systematically

understand why the energy projections of different models vary depending on how adaptation

needs are modeled.

The proceedings of this Chapter have been published as a Topical Review in Environment

Research Letters (ERL), and are co-authored by Enrica De Cian. I conducted the data gathering

and analysis and wrote the draft of the manuscript, while Enrica De Cian provided scientific

input and contributed to revising the final version of the manuscript 1.

2.2 Introduction

There is broad consensus in the literature about the overall impact that climate change may

have on the demand for cooling and heating services, and the energy necessary to deliver them:

cooling needs will be an increasingly important driver of future energy demand, while heating

requirements are expected to diminish [1, 2]. Several articles have reviewed the literature around

the topic: [3, 4] present a summary of the approaches and results of the studies estimating the

1The Chapter is derived from: Colelli, Francesco Pietro, and Enrica De Cian. "Cooling demand in integrated
assessment models: a methodological review." Environmental Research Letters 15.11 (2020): 113005.
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impacts of climate change on energy demand, but do not include a detailed analysis of the es-

timates and methodologies of the studies adopting engineering and/or energy models in IAMs;

[5] presents the different modeling approaches for estimating cooling and heating demand in

IAMs, and the macro-economic results across the literature, but do not include a quantitative

comparison of heating and cooling projections or an evaluation of the possible factors driving

the heterogeneous results of models. [6] report total energy projections of over 200 integrated

assessment model scenarios, without identifying the additional contribution of climate change

across climate scenarios, and do not provide detailed insight on the reasons behind the hetero-

geneous results of different models’. [7] conduct an analysis of the literature’s projections by

presenting a qualitative assessment of the projected sign of the variation in energy demand,

while do not quantify the magnitude of the variations obtained by different IAM models at

global and regional levels. Finally, [2] conduct a systematic analysis of results from 220 papers

on potential impacts of climate change on the energy system. Regarding heating and cooling

needs, they come to a general conclusion regarding the expected sign of future change, but they

do not analyze the mechanisms and the heterogeneities across models, since the Chapter aims

at a more general assessment of the vulnerability of the overall energy sector.

Despite such evidence, there is a lack of systematic, detailed analysis of IAMs’ results in quan-

tifying and comparing the magnitude of future cooling and heating demand projections. The

following analysis includes only the IAMs that have explicitly addressed heating and cooling

needs with the objective of (i) reviewing the methodological approaches used, (ii) highlighting

their importance for the economy and the environment, (iii) identifying the main sources of

variation and heterogeneity that should be addressed by future studies. Results show that

projections underestimate the building sector’s energy demand when energy use is driven solely

by income and population drivers and not by changing climatic conditions and subsequently

by rising adaptation needs. Models lacking extensive margin adjustments highly underestimate

the additional cooling needs of the building sector. The review also highlights the much larger

uncertainty that characterizes the commercial sector, which often, due to the lack of specific

data or evidence, is modeled similarly to the residential sector.

The remainder of the Chapter is organized as follows. Section 2.3 describes the methodology

used for identifying, selecting, and classifying the literature. Section 2.4 presents in detail

the major methodological approaches used to model heating and cooling demand. Section 2.5

presents the results and a critique of the implications and the sources of variations. Section 2.6
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concludes and offers suggestions for future research.

2.3 Methods

In order to identify the IAM-based studies that have evaluated the long-term potential impacts

of thermal adaptation on the energy sector and that simultaneously take into account climate

and socioeconomic changes, a three-stage literature review procedure is adopted (Figure 1).

Previous reviews are analyzed in order to investigate the major gaps in the literature, and

to develop the review’s topics accordingly (Phase 1 in Figure 1). At this stage, the studies

that model cooling and heating demand without considering climate change impacts (such as

[8, 9] or that are based on regional assessments: [10, 11, 12] for the US, [13] for Europe, [14]

for China and [15] for developing countries) are excluded. These initial screening criteria are

adopted in order to restrict the analysis to a comparable set of IAM-based projections, so as

to facilitate the investigation of the main drivers affecting the models’ results. Two review

topics are identified: a projection of the energy demand of future buildings due to changes in

heating and cooling thermal-comfort adaptation at the global level, projections of the ex-post

macroeconomic impacts at the global level of changes in the energy demand of buildings in

heating and cooling. The collection of publication data was obtained by adopting different

methods (Phase 2 in Figure 1). First, a set of keywords is combined and used for searching on

the Elsevier Scopus database (see Supplementary Material).

Second the search is extended to Google Scholar to identify peer-review articles from journals

that were not indexed in the Elsevier Scopus database. Third, citation tracing is adopted to

supplement the database search. Both forward tracing and backward tracing of seminal papers

(such as [16] and key literature review papers on the them [3, 17, 7] is adopted. This approach

makes it possible to identify the main group of IAM-based studies to be reviewed, in order and

to identify the empirical studies adopted by such works in calibrating their models. Finally,

in order to include also the contributions from the grey literature, the studies available from

Institutional Websites of the key organizations such as the International Energy Agency (IEA)

and the Energy Information Administration (EIA) are included. The resulting publications are

filtered through an analysis of the titles and abstracts based on subjective selection criteria.

Only studies with a global focus are retained. In order to accept data as evidence, include it

in the analysis, and add each study’s projections to the dataset, a further filtering procedure is

adopted (Phase 3 in figure 1): only those articles presenting a clear definition of the methodology
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Figure 1. Overview of the literature review procedure..

adopted and a detailed enough description of the results obtained are included in the final set

of studies. Additional inputs from the authors were requested when needed. As a result of such

combined search and filtering procedure, 14 publications which constitute the main group of

IAM-based articles analyzed are identified. Projections of energy demand and macroeconomic

impacts retrieved from the selected studies are classified on the basis of the socio-economic

and climate assumptions adopted. Such data analysis could make it possible to assemble a

database of global energy demand projections including 88 model runs (69 of which on energy

demand and 19 of which on the macroeconomic impacts of variations in energy demand). Each

model run is characterized by different socioeconomic and climate assumptions and providing

information for a combination of sectors (residential, commercial), end-uses (cooling, heating)

and years (2050, 2100), for a total of more than 350 combinations 2.

2.4 Classification

Available classifications of IAMs’ methodological framework [18] provide a useful guide for dis-

tinguishing the overall aim and key underlying mechanisms of different models, but they are too

general to shed light on how the modeling of the feedback between energy demand and climate

change can affect energy projections. In order to investigate how different modeling approaches

can affect energy demand projections, the methodologies adopted by the studies identified are

2available as Supplementary Data in 2020 Colelli and De Cian, Environ. Res. Lett. 15 113005
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classified into a novel set of categories, based on three modeling aspects: the representation of

the economy; the representation of the energy sector; the climate transmission to the energy

sector.

2.4.1 Economy

The relationship between the energy system and the economy can be modeled: (i) in a partial

equilibrium (PE) fashion, with models representing only the energy or building sector; (ii)

considering the general equilibrium (GE) interactions and representing the interaction between

the energy sector and all other sectors.

2.4.2 Energy sector

The energy sector can be modeled through: (i) process-based, bottom-up simulations, in which

engineering bottom-up models are applied to simulate the energy performance of building

archetypes, and to forecast specific end uses or top-down simulations; (ii) top–down models

which do not articulate end-use services, but rely on aggregate national statistics and macroe-

conomic drivers to obtain empirically reduced-form responses of energy demand. GE approaches

generally use projections from top-down simulation as inputs or shocks to exogenously pertur-

bate the final energy demand in the CGE model. Bottom-up simulations can be further divided

in relation to the type of model used to study heating and cooling energy demand: energy sys-

tem models and energy demand models. Energy system models cover both demand and supply

and are a comprehensive representation of the energy sector. The energy system models enable

a technology-rich, bottom-up analysis of the global energy system. Energy demand models

rely on aggregate end-use energy functions describing the relationships between energy demand

and underlying socio-economic factors, with different geographical scopes, end-uses and carri-

ers. Most studies rely on multi-model frameworks that couple a GE model or an integrated

assessment framework with a more detailed energy or building sector bottom-up model.

2.4.3 Transmission of climate shocks to final energy demand

The literature identifies two separate mechanisms through which climate shocks are transmitted

to energy demand [17, 19]: short-term demand responses to weather (henceforth ‘intensive mar-

gin’) and long-term demand responses driven by an increase in the prevalence of air conditioner
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appliances (henceforth ‘extensive margin’). The short-term intensive margin transmission of

weather conditions to energy demand characterizes both cooling and heating services in a sim-

ilar way. Yet, long-term adjustments due to appliance prevalence have usually been considered

explicitly only for cooling services, on the assumption that saturation of heating appliances

has already occurred across the world. While extensive margin adjustments amplify demand

for cooling services due to the utilization of newly acquired appliances, capital stock replace-

ment of heating appliances, under the hypothesis that more efficient appliances will replace less

efficient ones, would reduce the energy demand per unit of calorific output. The approaches

used to model the ‘intensive margin’ can be schematized in two different categories: (i) scaling

factor; (ii) exogenous shift parameter. The ‘scaling factor’ approach involves including, in the

energy demand function for the thermal adaptation (EDCCt,r,s), a multiplicative term based

on the variation in the future climate variable (CLIM fut
t,r,s) with respect to the historical climate

(CLIMhist
r,s ), equation 59). In some cases, the scaling factor includes an empirically estimated

parameter �r,s that modulates the proportional variation in the climate indicator, either in a

linear (equation 58) or an exponential fashion (equation 59):

EDCCt,r,s = �r,s
CLIM fut

t,r,s

CLIMhist
r,s

EDt,r,s (1)

EDCCt,r,s = (
CLIM fut

t,r,s

CLIMhist
r,s

)βr,sEDt,r,s (2)

where:

s service; t time step; r region

Equations (1a)–(1b) are the most commonly used approach that is found both in the engi-

neering and end-use demand models—they add the scaling factor to the building energy con-

sumption model [20, 1, 21], and by energy system bottom-up analyses—they add the scaling

factor to their stylized income– demand relationship [16],[22, 23, 24] Equation (3a) is adopted

by [25], while equation (3b) is adopted by [26].

The climate variables most commonly used to capture thermal stress are cooling degree

days (CDDs) and heating degree days (HDDs). The CDDs (HDDs) are defined as the number

of degrees above (below) the thermal comfort threshold, measured in terms of day count [27].

When scaling factor method relies on the computation of CDDs and HDDs from the historical

and future mean air temperature, the increase in energy demand across different warming
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scenarios therefore will depend on two transmission mechanisms: (1) how mean temperature

increases affect CDDs and HDDs; (2) how variations in the CDDs and HDDs affect the cooling

and heating demand via the scaling factors (Equations 1 and 3). Therefore, if the relationship

between mean temperature and degree days is non-linear (Mourshed 2012), the relationship

between temperature and energy demand is also non-linear, even when models include a simple

proportional factor between energy and degree days.

The ‘exogenous shift parameters’ approach varies key model parameters of the energy de-

mand function, on the basis of coefficients estimated empirically with historical data. This

approach entails a different representation of the responses to climate shocks with respect to

the ‘scaling factor’. First, elasticities are differentiated by fuel type (typically oil, gas and

electricity) rather than by end-user service. A fuel-specific coefficient provides a measure of

the shock that compounds the contribution of different thermal adaptation services. Second,

climate indicators used by empirical studies are more commonly mean temperature levels [28]

or temperature bins [29], rather than CDDs and HDDs. A V-shaped or a linearspline response

function of energy demand to climate (figure 3) makes it possible to associate the coefficients

of low temperature levels or bins to heating requirements, while cooling needs are associated

with the coefficients related to high temperature levels or bins. Within this approach, a climate

change impact shock Ψ is obtained by combining the estimated coefficients � with exposure un-

der historical ( ^CLIMHist
c,t ) and future ( ^CLIMFut

c,t ) climate (equation(4a)). The resulting shock

is applied to energy demand without climate change (ED) to obtain demand with climate

change (EDCC):

Ψf,t,r = {[(
exp( ˆ�CLIM

f,r · ^CLIMFut
r,t )

exp( ˆ�CLIM
f,r · ^CLIMHist

r,t )
)]� 1} · 100 (3)

where:

f fuel; t time step; r region

Computable GE (CGE) models [30, 31, 32] have used climate-induced shocks on energy

demand, such as those estimated by [28, 29], or by [33] to calibrate the exogenous shifts in their

models. It is important to distinguish between the empirical studies estimating those shocks,

which are top-down PE studies that do not take price adjustments into account, and the CGE

modeling studies, which are top-down assessments that explicitly account for GE adjustments.

The parameter of the response of thermal adaptation to temperature (�) can be estimated by
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using dynamic models (such as error correction models) that make it possible to identify long-

term elasticities, combining the contributions of the intensive and extensive margins in a single

parameter. In this manner, modeling studies using exogenous shifts calibrated on long-term

elasticities implicitly account for the prevalence of AC.

The extensive margin has been modeled through a market penetration model that explicitly

estimates the market penetration of air-cooling appliances. Most studies ([16, 22, 23, 24, 34,

21]) rely on the two-stage penetration model by [35] and [36], in which Penetration (P) of air-

cooling appliances is a function of two components: the Climate Maximum, CM (Figure 2, panel

a), which identifies the maximum share of AC adoption modulated by the climate conditions

(measured by the CDDs) if no income constraint existed; and Availability, AV (Figure 2, panel

a), which identifies the share of the Climate Maximum which is actually achievable given the

income level of the population (I). Penetration is defined as the product of these two components

(Figure 2, panel b). A few studies rely on other approaches. [1] uses a ‘stock model’ approach.

The modeling of penetration is based on the stock of cooling equipment that is necessary

to meet the required energy service demand. Assumptions on average equipment lifetime are

applied by using a Weibull distribution to determine the rate at which each equipment category

diminishes over time. Annual sales volumes and corresponding energy performance assumptions

are calculated with respect to remaining stock and energy service demand in a given year. [26]

model the extensive margin as a unitless calibration coefficient, modulating the per capita

energy service demand per unit of HDD/CDD and floorspace (a ‘saturation parameter’). A

narrow number of studies do not account for extensive margin developments [25, 20].

Whether the way the transmission of climate shocks to thermal adaptation services across

different sectors — residential and commercial — is represented in models varies across IAMs.

As for the intensive margin, models that rely on the scaling factor assume that a given climate

shock identically affects the response of the two sectors. In its most general formulation, the

scaling factor approach makes it possible to disentangle the difference between residential and

commercial short-term shocks, since a sector-specific modulation parameter can be included

in the function. Nevertheless, in all cases analyzed this modulation parameter is either set to

unity [20, 23, 24] or assumed to be constant across sectors [26]. As for the extensive margin, the

device penetration ratio obtained in the residential sector is generally used for the commercial

sector [23, 24]. On the other hand, studies that model transmission via the ‘exogenous shift

parameters’ adopt sector-specific parameters, such as the panel econometric models used for
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Figure 2. Available air-cooling penetration functions.
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calibration estimate of the equations separately for each sector [29].

2.4.4 Combined classification

Table 1 summarizes the resulting classification of the studies reviewed, based on the different

modeling characteristics pertaining to the relationship between the economy and the energy

system, its level of detail, breaking down the climate feedback of final use of energy into five

overall model types. Type 1 models (bottom-up, PE models with a market penetration module

for AC) have been adopted most frequently, followed by Type 3 (CGE coupled with a process-

based representation of the energy sector and a market penetration module for AC) and Type

5 (top-down CGE simulation approaches deploying exogenous shifts) models. Type 2 models

(top-down PE simulation approaches deploying exogenous shifts) have been adopted only by

two studies, while Type 4 (CGE coupled with a processbased representation of the energy

sector characterizing only the intensive margin) shows the contribution made by a single study.

The comparison of consistent scenarios between Types 3 and 4 makes it possible to discern

the effect of including the extensive margin in CGE. The comparison of consistent scenarios

between Type 2 and Type 5 sheds light on the role of adaptive behaviors induced by changes

in prices and interactions across markets.

Table 1: IAMs Classification

−

28



2.5 Analysis of IAM projections

2.5.1 Energy demand for cooling and heating

Model results underscore that at the global level the increases in energy demand driven by higher

cooling needs more than compensate for the decreases in energy demand due to lower heating

needs. Figure ?? shows the distribution of the results obtained across different climate change

scenarios (RCPs3) for cooling services, heating services and combinations for all buildings and

the residential sector only.

The projections point to an important increase in energy for thermal adaptation as the

combination of cooling demand increases and heating demand decreases. The evidence of the

increase (decrease) in cooling (heating) demand is consistent across warming scenarios and over

time. Depending on the combination of service, sectors, and RCP scenarios, there are important

differences in the magnitude of the projections. Uncertainty increases over time, especially in

relation to cooling demand when commercial activities are also included. The boxplots show

that the range of projection results is much wider for cooling demand than for heating demand

and for total building demand than for residential demand.

In the scenario assuming no variations in the climatic conditions, the median total demand

for thermal adaptation increases up to 77 (85) EJ and by a factor of 1.30 (1.43) with respect to

2016 (59 EJ), in 2050 (2100). In the low warming scenarios, RCP 1.9 and RCP 2.6, the median

total demand increases up to 92–96 (120–130) EJ and by a factor of 1.5–1.6 (2–2.2) in 2050

(2100). In the moderate warming scenario RCP 4.5 the median total demand increases up to

75 (115) EJ and by a factor of 1.26 (1.93) in 2050 (2100). In the high warming scenarios RCP

6 and RCP 8.5 the median total demand increases up to 73–97 (130– 147) EJ and by a factor

of 1.23–1.63 (2.2–2.47) in 2050 (2100).

The heterogeneity across SSPs and IAM models is presented in Panel b. Median values

of thermal energy demand exhibit moderate variability across SSPs especially for the residen-

tial sector and in the first half of the century. Differences across socioeconomic scenarios are

instead more evident in the building sector in 2100, for both cooling and heating demand.

Overall, heterogeneity across scenarios is more marked when focusing on climate shocks of

different magnitude (Panel a), than on socioeconomic scenarios (Panel b). This result points

3Different temperature change scenarios have been converted to RCP scenarios by using the median of each
RCP range for 2080–2100 in IPCC (2014): 0.3�C to 1.7�C under RCP 2.6, 1.1�C to 2.6�C under RCP 4.5, 1.4�C
to 3.1�C under RCP 6.0 and 2.6�C to 4.8�C under RCP 8.5.
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 Panel b – Total demand over time by SSPs  
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 Panel c – Additional demand over time by RCPs  
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Figure 3. Energy demand of cooling and heating across IAMs by RCP (panel a) and SSPs
(Panel b) and additional demand due to climate change (panel c). Data from: [20, 1, 21, 26,
34, 22, 16, 24]. The star markers refer to the results from [33]. The ‘No Change’ scenario
represents the cases in which current climate conditions (CDDs/HDDs) are assumed throughout
the time period. Historical values for 2016 are computed by using data from [1, 24].
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to the need for further investigation of the way in which different mechanisms of propagation

between climate and energy demand can affect model projections. The additional contribution

of climate-induced shock on energy demand for thermal adaptation is obtained by computing

the difference between the projected demand in a given RCP scenario and its counterpart in

the ‘no climate change’ scenario, sharing the same socio-economic assumptions (SSPs). This

approach makes it possible to single out the climate transmission effect from the impact of

socioeconomic trends (Panel c).

As for cooling, the climate change-induced median variations in energy demand for the

building sector range from 4 EJ to 17 EJ (from 20 EJ to 84 EJ) in 2050 (2100), depending

on the climate scenario. When also heating is considered, thermal adaptation in buildings is

projected to require additional energy ranging from a median value of 0.01 EJ (16 EJ) under

the RCP 1.9 and to 8.5 EJ (61 EJ) under the RCP 8.5 in 2050 (2100). Current energy usages

amount to 52 EJ for heating and 7 EJ for cooling, for a total of 59 EJ, in buildings, and to

39 EJ for heating and 3 EJ cooling, for a total of 42 EJ, in the residential sector. Even in the

low warming scenarios, RCP 1.9 and RCP 2.6, net final demand goes up by a median value

of 16–22 EJ in 2100, though a net reduction cannot be excluded. The realization of a very

low warming scenario, RCP 1.9, with respect to the RCP 2.6, would reduce the median net

final demand by 3.7 EJ (6 EJ) in 2050 (2100), that is by 6% (10%) of net final demand in

2016. The commercial sector accounts for the largest share in the incremental contribution of

climate change to energy demand, as specific projections of residential sectors show that the

additional demand required ranges from 2 EJ to 0.5 EJ (from 1.4 EJ to 14 EJ) in 2050 (2100).

The relative importance of the variations in the energy demand for residential buildings, with

respect to the no-climate change scenario, are amplified at the regional level.

2.5.2 Impacts on the economy

With respect to the economic implications, most CGE-based studies underscore that, since

energy is only a small part of the overall macroeconomic inputs, climate-induced impacts on

energy demand have little economic repercussion; such repercussions are mainly driven by

impacts on the agricultural sector, sea level rise, health and tourism impacts (more details

are presented in the Supplementary Materials). While early studies [31, 32, 37, 20] generally

found a very limited macroeconomic impact in terms of welfare change at the global level,

more recent analysis have identified a higher role of the energy demand with respect to the
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macroeconomic impacts of climate change [23, 24] reaching up to 0.94% under the RCP 8.5

in 2100. The few studies reporting the impact of thermal adaptation on global emissions with

respect to the emissions in the no climate change scenario tend to find only marginal impacts.

[20] quantify the total emissions from the increase in energy demand for buildings in 2100 to be

1.2 (2.5) Gt CO2/year under RCP 6 (RCP 8.5), while [16] find an increase related to residential

energy demand of 1.17 Gt CO2/year under RCP 8.5. The feedback between the energy and

climate systems due to changes in heating and cooling services at the global level should not

be considered negligible even if the overall magnitude of the increase is low. Moreover, it is

important to keep in mind that these two studies might underestimate the needs of energy for

adaptation because the extensive margin is not modeled [20] or because the commercial sector

is not included [16].

2.6 Sources of variation

Notwithstanding the robust general trends with respect to heating and cooling demand, model

results show significant heterogeneity. Figure 4 presents a disaggregation of the incremental

energy demand projected by different IAM categories (Types 1–5), for residential (left quad-

rant) and buildings (right quadrant). Only part of the groups identified provide projections in

each combination of year (2050 and 2100), energy service (cooling, heating and combined) and

sector (residential, buildings). Therefore, only the projections which make it possible to simul-

taneously compare the highest number of groups are included, namely the projections reporting

the value of the incremental energy demand in 2050. The results suggest that models lacking

extensive margin adjustments (Type 4) highly underestimate the additional cooling needs of

the building sector, finding an overall reduction in energy demand. Instead, the requirements

for heating are in line with other modeling approaches. This result points to the importance of

including the extensive margin in the structure of IAMs energy demand. Other major modeling

differences are ruled out, as Type 4 models differ from Type 3 models only as regards their

representation of the extensive margin. There is no univocal relationship between the results of

projections and the modeling of the interactions between the economy and the energy system.

Among the processed-based, bottom-up models, PE IAMs (Type 1) tend to project a median

energy increment in line with the level projected by those GE IAMs adopting the same type

of modeling of climate shock (Type 3). Scenarios from Type 1 models show a much smaller

dispersion compared to Type 3. Type 1 models—bottom up models—might be more optimistic
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Figure 4. Additional demand of cooling and heating by model types. Additional contribution due
to climate change in 2050 by model types. Left quadrant: building (commercial and residential)
sector. Right quadrant: residential sector. Type 1 models: TIMER-IMAGE; POLES. Type 2
models: projections from van Ruijven et al (2019). Type 3 models: AIM/CGE, GCAM. Type
4 models: TIAM WORLD GEM-E3. Type 5 models: ICES.

regarding the role of technological change and efficiency improvements compared to Type 3

models. Among the top-down simulation models relying on exogenous shifts, PE IAMs (Type

5) tend to project a higher median increment than GE IAMs (Type 2) and a higher median

reduction. Type 2 models do not include the important effect of prices, which are also related

to the net trading position on the international market (terms of trade effect). Higher prices

would induce a partial reduction in demand.

Lower prices could induce a rebound effect, pushing further demand. GE effects also imply

changes in the income available to households and in the cost structure of producers, which

are further elements that can lead to differences between PE and GE effects. The intensity of

future global warming exacerbates the differences across model type results. For instance, in the

projections of the total incremental demand of buildings (Panel a), under RCP 4.5 (RCP 8.5),

the median total demand of Type 2 models is two times (five times) higher than the median

demand of Type 3 models. This pattern is consistent across end uses and sectors, and suggests

that the specific choice over the climate variable and the functional form of climate shock

may affect the projections more sharply than other modeling aspects. The differences across

the projections of model types vary according to the specific sector and end use service. The

gap between the projections is higher than for the cooling demand of the commercial sector

(panel a) and for the heating demand of the residential sector (panel b). Top-down models
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based on sectoral-specific exogenous shift parameters project substantially higher increases in

incremental commercial cooling demand. Energy demand for the residential sector projected

by Type 2 top-down models [33] and by Type 3 models (GCAM by [26] and AIM/CGE by,

[24]) under the SSP 2 and RCP 8.5 is comparable (8 EJ in the former study and 9–10 EJ in

the two latter studies), while it differs remarkably when the commercial sector is considered

(114 EJ in the former study and 4–22 EJ in the two latter studies). Therefore, the adoption of

transmission mechanisms of climate on energy demand allowing for the sectoral characterization

of the shocks can be identified as a key driver of heterogeneous results.

2.7 Discussion

This Chapter systematically reviews and compares quantitative projections of buildings energy

demand that include the future energy use for heating and cooling needs at global and regional

levels. Despite the huge number of scenarios generated by the IAM community, only 14 studies

(leading to 69 energy scenarios and 19 macroeconomic scenarios, for a total of 88) that project

energy demand under different socio-economic and climate scenarios and that account for the

feedback from the climate into energy demand could be identified. The resulting studies are

analyzed based on a classification that considers in detail the energy system, the relationship

between the energy and the economy, and the technical representation of the specific demand

for heating and cooling. Results show that projections underestimate the energy demand of

the building sector when energy use is driven solely by income and population drivers and not

by changing climatic conditions and subsequently by rising adaptation needs.

The analysis provides substantial evidence of an increase (decrease) in cooling (heating)

demand across warming scenarios and over time. However, there are, depending on the com-

bination of service, sectors, and RCP scenarios, important differences in the magnitude of the

projections. Uncertainty increases over time, especially in relation to cooling demand and when

commercial activities are included. Thermal adaptation in buildings due to climate change is

projected to require additional energy, ranging from a median value of 0.01 EJ (16 EJ) under

the RCP 1.9 to 8.5 EJ (61 EJ) under the RCP 8.5 in 2050 (2100), corresponding to a 2% (11%)

increase under the RCP 1.9 and a 13% (70%) increase under the RCP 8.5, with respect to fu-

ture demand under no climate change in 2050 (2100). The projected additional median demand

in buildings required in 2100 under RCP 8.5 corresponds to a doubling with respect to total

building demand in 2016. Models lacking extensive margin adjustments highly underestimate
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the additional cooling needs of the building sector. Two main archetypes of extensive margin

modeling are identified, and they are either based on a weak empirical basis (the market pen-

etration approach) or they only implicitly account for the future evolution of air-conditioning

ownership (the exogenous shift approach). Recent country-specific studies have highlighted

the amplification effect deriving from the growth in appliance ownership in Mexico [38] and in

California [39], while [40, 41] show that the dynamics of air-conditioning are country-specific

and relate to demographic and infrastructural characteristics, including education and housing

conditions. IAMs have also typically paid scarce attention to the non-linear responses of energy

demand and to impacts of extreme events, such as heat waves (Table 2).

Table 2: Feedback between energy demand and climate: frequency of different characteristics.

�

One limitation of the approach presented in this Chapter is that some key aspects affecting

cooling and heating demand, namely building characteristics (floor space, insulation proper-

ties), appliance characteristics (HVAC system type) and behavioral aspects (thermal comfort

thresholds, energy saving behaviors), could not be investigated in detail. The IAMs incorporat-

ing bottom-up technology rich modules (building or energy system models) or flexible end-use

functions (energy demand models) account for such drivers by including building characteris-

tics (generally floor space) and HVAC system efficiencies (generally the energy efficiency ratio,

or EER). Usually, the positive correlation between floor space and GDP is used to model the

evolution of this variable over time. Some studies simulate different behaviors of people towards

the use of AC by varying the temperature thresholds used to compute CDDs and HDDs across

SSPs [23, 21, 24]. Even when building and behavioral characteristics are taken into account,
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the marginal contribution of such drivers is often hidden in model results and projections are

presented in an aggregate way that does not permit a direct comparison between those different

assumptions. Based on the results gathered, it was possible to elaborate only on the role of

HVAC system efficiency by by relying on [16, 1], which investigate the extent to which the

energy efficiency of heating and cooling appliances influence space cooling energy needs: higher

appliance efficiency brings cooling energy demand down by 30% in 2050 [1] and by 45% in 2100

[16].

2.8 Closing remarks

Future research aimed at deepening the integration of climate impact feedback into the mitiga-

tion and energy scenario needs to address two challenges. First, how to use the new emerging

evidence across multiple countries, regions, and sectors, often by means of different methods, to

better represent the climate-energy feedback loop in IAMs in a consistent way and preventing

double counting. Developing IAMs capable of characterizing the subnational and sectoral diver-

sity of heating and cooling needs is certainly warranted. Second, to what extent the empirical

basis concerning the adoption and use of energy-using durables providing thermal comfort, such

as air-conditioning, will extend to countries where those dynamics have not been investigated.

The work developed in the succeeding Chapters aims to respond to some of the challenges

identified. In particular, a novel methodological approach for the integration of adaptation-

energy feedbacks in a IAM is proposed and adopted in Chapter 3. The approach allows to:

i) integrate non-linear dynamics of the typical IAM climate-energy system by modeling the

occurrence of extreme temperature days; ii) expand the projected impacts across different fuels

(electricity, gas and oil) and sectors (residential, commercial and industrial); iii) quantify the

implications on energy investments and costs, on the stringency of mitigation policies and on

the co-benefits of mitigation on air pollution.
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3 An integrated assessment of the energy needs for adap-

tation

3.1 Preface

Despite the growing evidence indicating that adaptation-driven energy use will play an increas-

ingly important role in future energy scenarios, as assessed in Chapter 2, the literature provid-

ing long-term projections of energy scenarios still fails to account for adaptation-driven energy

demand. Yet, estimating the potential size of future energy needs for adaptation may have im-

portant implications for the transition towards sustainability and decarbonized economies. In

the context of a rapid transformation and simultaneous occurrence of climate change impacts,

it is important to examine how responses to climate change affect energy systems, and therefore

the achievement of mitigation goals, as well as their economic costs.

The proceedings of this Chapter have been published as an Article in Nature Communica-

tions4. Motivated by the results of Chapter 2, Enrica De Cian and I posed the initial research

questions. All authors developed the energy-adaptation feedback loop. In particular, I devel-

oped the statistical emulator and wrote the code introducing the new components in the model,

in collaboration with Johannes Emmerling, Malcolm Mistry and Giacono Marangoni. I led the

analyses of results and wrote the first draft of the manuscript, with all authors contributing to

revising the final version.

3.2 Introduction

The sensitivity of energy demand to weather fluctuations has long been documented in eco-

nomic and engineering studies [1, 2, 3, 4]. Yet, most energy scenarios and mitigation pathways

do not include the adaptation-energy feedback [5], and only very few studies have used IAMs

to conduct macroeconomic assessments at the global scale[6]. Global-scale contributions have

relied on econometric simulations ([7, 8, 9]) to provide partial equilibrium projections of the

potential, ex-ante changes in energy demand, without accounting for price-induced substitution

and income effects that only macroeconomic approaches can describe. Although Computable

General Equilibrium (CGE) models suggest that the global market economy can easily absorb

4The Chapter is derived from: Colelli, F.P., Emmerling, J., Marangoni, G. et al. Increased en-
ergy use for adaptation significantly impacts mitigation pathways. Nat Commun 13, 4964 (2022).
https://doi.org/10.1038/s41467-022-32471-1
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the costs associated with changes in energy use for adaptation [10, 11, 12, 13], we lack an overall

understanding of the implications for the energy system in the context of ambitious mitigation

policies.

This work provides evidence on the macroeconomic implications of climate change impacts and

analyze how price-induced substitution and income effects, as well as technical change adjust-

ments, affect global and regional mitigation pathways. The novel methodologies integrates an

adaptation-energy feedback loop for all world regions, main fuels, and economic sectors into

the IAM "World Induced Technical Change Hybrid model" (WITCH) [14]. The results indi-

cate that adapting to climate change by means of the energy habits as we did in the past will

increase the global demand for electricity by 7% (18%) and for fuels by 1% (2.5%) by 2050

(2100) under the current socioeconomic trends and mitigation policies. The increase in energy

needs leads to more physical capital being locked into fossil fuels, for an additional 960 Gi-

gawatt (GW) of new gas-fired capacity, 360 GW of new oil-fired capacity and 300 GW of new

coal-fired capacity, cumulatively from 2020 to 2050 (corresponding to a yearly average increase

in new fossil fuel-based capacity of 55 GW). Adaptation would also require more resources for

grid investments, power generation, and, in some regions and sectors, for fuel consumption.

The carbon price required to reach a certain carbon budget would need to increase, and the

cost-effective allocation of emissions would also look different compared to a situation that does

not account for the energy use for adaptation. Results show that when the energy requirements

of adaptation are modeled, the gains from lower adaptation needs reduce the additional energy

system costs associated with more ambitious mitigation goals. The study endogenously inte-

grates the energy needs for adaptation into mitigation pathways, highlighting the implications

for decarbonization and policy design.

3.3 Methods

IAMs couple human and climate system and quantitatively describe the inter-dependencies

among socioeconomic, behavioral, technological, and physical drivers affecting future global and

regional pathways. The WITCH model [14] is a process-detailed IAM that fully integrates into

the optimization process a top-down representation of the economy, a bottom-up description

of the energy system, and simplified dynamics of the climate system, and air pollution module

(See Methods).

The adaptation-energy feedback loop is modeled in three steps summarized in Figure 5.
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First, a reduced-form relationship between country-level annual average temperature and two

extreme temperature indicators (ETIs), the annual occurrence of extreme cold (<12.5�C) and

hot (>27.5�C) days is estimated based on an empirical model (Supplementary Methods). A

cluster analysis is used to capture the heterogeneity in the reduced-form equation across coun-

tries with markedly different climates (four clusters shown in the top-left panel of Figure 5).

The resulting statistical emulator makes it possible to directly project the future occurrence

of days with extreme temperatures based on the regional annual temperature levels. Regional

temperatures are also statistically related to the global change in annual mean temperature, the

variable commonly included in the climate modules of IAMs (see the Supplementary Methods).

Second, the relationship between changes in the occurrence of extreme temperature days

(ETIs) and the demand for electricity, gas, oil in the residential, commercial, and industrial

sectors are included in the model, following the empirical estimates provided in [7] (see Methods

and Supplementary Methods). This approach differs from analyses based on indicators of

Cooling and Heating Degree Days (CDDs and HDDs) or average annual temperatures ([15, 16,

13, 17]) that tend to shrink the tails of the distribution of meteorological drivers, leading to an

aggregation bias that can underestimation of the impacts on energy demand. A comparison

between the two approaches is provided by [18], who show how modeling energy consumption

with HDDs and CDDs does not make it possible to capture the non-linear increase in energy

consumption at extremely high temperatures.

Third, changes in energy demand affect the economy, described by the model’s production

tree, through the productivity of energy inputs, which is now endogenous. The supply-side

of the energy sector endogenously adjusts to meet the climate-induced changes in demand,

leading to changes in the costs of power generation, grid infrastructure, fuel extractions and

expenditures, including domestic extraction and imports.

I examine the implications of the adaptation energy feedback on mitigation policies (carbon

pricing and cost-effective emission allocation) and their co-benefits in terms of air pollution in

a cost-effective setting. The carbon budget is consistent with a predetermined climate target

and implemented via a uniform global carbon price. I focus on climate policies that achieve

the goal of keeping global average temperature increases either around 2.5�C or well-below 2�C

compared to the pre-industrial level. Climate targets are therefore achieved in a cost-optimal

way, with no international compensations nor carbon emission trading. In the current policy

scenario, countries maintain the implemented climate policies until 2020 and a similar level
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Figure 5. Integrated approach to the adaptation-energy feedback loop. The circle represents the
integrated framework of the World Induced Technical Change Hybrid (WITCH) model, linking
the economy, the energy system, and the climate system. Red lines indicate the components
modified with new equations to model the adaptation-energy feedback loop. Top-left panel: eight
clusters characterize the heterogeneity in the relationship between the Extreme Temperature
Indicators (ETIs) and annual average temperature across world regions. Top-central panel:
semi-elasticities as estimated in [7] representing the percentage change in energy demand for one
additional day with average daily temperature (T) in the upper (T>27.5�C)/lower (T<12.5�C)
bin, see [7]. A detailed description of each step and of the methodological advancements is
presented in the Methods and Supplementary Methods. The WITCH model version used for the
analysis (WITCH 5.0) is described in detail in [14].

of climate ambition is assumed afterwards. Socioeconomic trends of population and output

growth follow the middle-of-the-road Shared Socioeconomic Pathway SSP2 [19], while results

for other SSPs are presented as sensitivity analysis.

3.4 Results

3.4.1 Regional exposure to extreme temperatures

Under the current policy scenario, the annual count of warm days (>27.5�C) at around 2100 goes

up substantially at the global level. The increase in the annual number of warm days, compared
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to the historical level, exceeds the decrease in the annual number of cold days (<12.5�C). Maps

of future projections point at a large variation in regional exposure (Figure 6). The populations

in Indonesia, South-East Asia and Sub-Saharan Africa are projected to experience, by the end

of the century, more than 100 additional days with average temperatures above 27.5�C, with

respect to the simulated exposure in the year 2005. The implications for temperate economies

are also non-negligible: at around 2100, in the current policy scenario, the United States and

China are projected to experience an annual number of warm days that matches the historical

level experienced in Mexico. Europe, the Middle East and the United States experience the

largest decrease in the number of cold days. Stringent mitigation policies drastically reduce

the exposure to extreme warm days and, in the well below 2�C scenario, the projected median

number of additional days above 27.5�C at around 2100 is about three times smaller compared

to the current policy scenario.

3.4.2 Final energy demand for adaptation

Energy needs for adaptation increase over time and with the degree of global warming (Fig-

ure 7, Panel a). Adaptation-energy demand in buildings and industry rise considerably in the

current policy scenario. Global electricity will increase by 18% (an additional 75 EJ) in 2100,

compared to the projected demand in the same year but without adaptation. Final demand

for liquids and gases increases by 2.5% (an additional 10 EJ in 2100). Table 3 presents the

total and relative increase in the combined final energy demand for electricity and fuels due

to adaptation, across policy scenarios and SSPs. The overall amount of energy required for

adaptation in 2100 under the SSP2, current policy scenario is equal to 20% of the global final

energy demand in 2019 [20]. Different assumptions on the baseline energy demand as implied

by different socioeconomic pathways affect the quantification of the additional energy use for

adaptation, that reaches over 100 EJ / year in 2100 in the SSP5 (see Table 3 and Supplemen-

tary Material).

Ambitious mitigation policies cut the energy use for adaptation by half in the moderate emis-

sions scenario (2.5�C) and by more than 70% in the low emissions scenario (Well below 2�C).

The demand for liquids and gases for adaptation would essentially reduce to zero. I find that

the majority of the additional energy needs are met by using electricity in both residential and

commercial buildings and industrial activities. The industrial sector accounts for 40% of the

additional electricity requirements. Heating, ventilation, and air-conditioning (HVAC) systems
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Figure 6. Future changes in the frequency of warm and cold days. a Difference (∆) between
future (2090-2100) and historical (2005) annual number of days with average daily temperature
(T) >27.5�C and T < 12.5�C. b Regional count of total days with T >27.5�C and T< 12.5�C in
2005 and in 2100 by policy scenario. Temperature indicators are constructed with population-
weighted daily temperatures. Scenarios: Current policies (C.Pol) and Well below 2�C (W.b.
2�C).
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Figure 7. Projected electricity and fuel demand for adaptation under SSP 2 assumptions. a

Annual global average demand from 2020 to 2100 across the different scenarios excluding (dot-
ted) and including (solid) the adaptation-energy feedback under the SSP2. b Regional final
energy demand in 2100. Light bars show the value excluding the adaptation-energy feedback,
while dark stacked bars show the positive or negative variation in energy demand induced by the
adaptation-energy feedback. Labels in panel b show the regional percentage increase. Scenarios:
Current policies (C.Pol), 2.5�C and Well below 2�C (W.b. 2�C).

used by industries include comfort related energy use and continuous or process-related HVAC,

the latter ensuring that the operation of manufacturing systems and production processes (e.g.

food processing and storage industry) is not undermined by temperature variations [21].

The small increase in the final demand for liquids and gases masks heterogeneous responses

across sectors. The reduction in fuel demand from lower heating requirements in residential and

commercial buildings is compensated by the increase in industrial fuel demand as a response

to more hot days. While space cooling in residential buildings is mostly delivered through

electricity, industrial and commercial facilities can use fossil-fueled based cooling techniques,

such as cooling absorption [22]. Variations in the consumption of fuels for cooling and heating

purposes can also result from fuel-switching practices. For instance, the use of distributed

petroleum-fired generators to satisfy final electricity demand may be particularly relevant in

developing tropical economies characterized by unreliable electricity distribution systems.

Africa and the Middle East (MAF) will face the largest relative increase in final energy

demand for adaptation (Figure 7, Panel b). These two regions account for roughly one fourth

of the global additional increase in electricity demand, rising by almost 50% in the current

policy scenario in 2100 relative to the no-adaptation case.
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Table 3: Global final energy demand (EJ/year) in 2100 by scenario with (w Ada) and without adaptation (w/o
Ada)

Current policy 2.5�C Well below 2�C

w/o Ada w Ada w/o Ada w Ada w/o Ada w Ada
SSP2 641 727 (+13%) 579 624 (+8%) 486 510 (+5%)
SSP3 545 608 (+12%) 503 542 (+8%) 411 436 (+6%)
SSP5 771 889 (+15%) 688 748 (+9%) 610 647 (+6%)

3.4.3 New power capacity requirements

Additional new generation capacity is required to accommodate the increase in electricity use

for adaptation. The mix of the additional generation capacity will be shaped by the ambi-

tiousness and timing of mitigation policies (Figure 8, Panel a). In the next three decades

(2020-2050), capacity additions in the current policy scenario will be still carbon-intensive, as

mitigation policies start to re-direct power investments progressively over time. After 2050,

new capacity mostly consists of renewable energy and storage.

Climate policy is key to avoid the negative feedback of the energy use for adaptation on mit-

igation objectives. If climate policy is not ambitious enough, adaptation needs can lead to

additional lock-in into fossil-based generation (Figure 8, Panel b and Supplementary Material:

in the current policy scenario, an additional 300 GW of new coal-fired capacity, 390 GW of new

oil-fired capacity and 960 GW of new gas-fired capacity are installed cumulatively by 2050, as a

result of the adaptation feedback, an average yearly addition of 55 GW for the three technologies

combined. The additional oil-fired and coal-fired capacity required by the adaptation-energy

feedback by 2050 falls by 50% to 90% from the current policy scenario, depending on the strin-

gency of the climate policy. Additional gas-fired generation falls more progressively, and still

300 to 580 GW new capacity is installed to meet adaptation needs cumulatively by 2050, in the

ambitious policy scenarios. Reduction in the additional investments in fossil fuel capacity in

the climate policy scenarios results from the combination of lower electricity demand increases

due to milder climate change as well as from the variation in the cost-optimal generation mix.

The share of fossil-based generation in the total power mix does not change considerably when

energy for adaptation is accounted for (see Table 4). Despite the non-negligible changes in

the total carbon intensity of power generation in the current policy scenario, the overall total

carbon intensity of the energy system does not change considerably in any scenario (see Table

4). The energy use for adaptation poses new challenges to the mitigation goals mostly through
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Figure 8. Additional power generation capacity. Technology mix of the additional average
annual capacity to fulfill the additional energy for adaptation. b Additional fossil-based new
capacity installed cumulatively with (solid lines) and without (dotted lines) the adaptation-energy
feedback. The additional new capacity installed cumulatively including also renewable sources is
presented in the Supplementary Material. The technologies unaffected by the adaptation-energy
feedback are not included. Scenarios: Current policies (C.Pol), 2.5�C and Well below 2�C (W.b.
2�C).

the shift in demand, which increases in the energy intensity of the economy.

Table 4: Impact of energy use for adaptation on the power generation mix with (w Ada) and without adaptation
(w/o Ada)

Current policy 2.5�C Well below 2�C

w/o Ada w Ada w/o Ada w Ada w/o Ada w Ada
Share of fossil fuels in the power generation mix

2030 47% 49% 45% 47% 37% 38%
2050 23% 25% 17% 18% 12% 12%
2100 6% 7% 4% 4% 2% 2%

Carbon intensity of power generation (gCO2/kWh)
2030 460 471 434 441 185 199
2050 306 325 171 169 ⇡0 ⇡0
2100 118 144 44 30 -121 -113
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3.4.4 Variation in the energy system costs

The supply-side adjustments needed to meet additional energy for adaptation have non-negligible

economic implications. The energy-adaptation feedback increases supply-side energy system

costs (ESC), combining power and fuels costs, in all policy scenarios (Figure 9 Panel a). The

increase is mostly driven by power system costs, including new investments in generation ca-

pacity, grid investments, and operating expenses from fuel consumption of traditional power

plants. In the current policy scenario, global costs for electricity supply rise by 21% (Net

Present Value incurred from 2020 to 2100), while total ESC increase by 4.5% (Table 5), due

to both higher final energy demand and higher energy prices. The additional supply-side costs

are passed on to consumers through increases in the price of electricity, growing by 2%-6% due

to the adaptation-energy feedback, depending on the year, scenario and region.

Ambitious mitigation scenarios can cut the increase in the ESC induced by adaptation by more

than half, depending on the stringency of the climate target. Most importantly, when the

adaptation feedback is included, the gains from lower adaptation needs reduce considerably the

additional power system costs required to reach ambitious mitigation targets (Figure 9 Panels

b and c, and Table 5). Even ambitious mitigation ("Well below 2�C" scenario) can entail net

gains in terms of power system costs, compared to the current policy scenario. The results un-

derscore that ignoring the energy system costs attributable to rising energy use for adaptation

results in an overestimation of the additional costs of mitigation policies (for the results across

SSPs see the Supplementary Material).

The cost implications of the additional energy use for adaptation on households and economic

activities are unequal between world regions. Annual per capita ESC will increase by 105

$/person on average across years and regions in the current policy scenario. The regions that

will experience an increase in the per capita ESC above (below) the world average include the

USA, MENA, South East Asia and Indonesia (Canada, China, India and Europe). A similar

absolute increase in the per capita ESC has different implications between middle- and high-

income countries. While in the US an increase of over 310 $/person accounts for a share of

0.4% of the regional per capita GDP, in the MENA region an increase of 250 $/person accounts

for more than 0.7% of the regional per capita GDP.
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Figure 9. Annual electricity system costs by scenario. a Total electricity system costs in trillion
$, 2005 Purchasing Power Parity (PPP). b Additional electricity system costs in the mitigation
scenarios with respect to the current policy, in trillion $(2005, PPP). c Variation in the cumu-
lative electricity system costs associated to the more ambitious mitigation policy scenarios with
respect to the current policy, in trillion $(2005, PPP). All projections are presented alternatively
for the case with (solid lines) or without (dotted lines) adaptation. Operative fuel expenses for
fossil-based power generation are included in the electricity system costs. Scenarios: Current
policies (C.Pol), 2.5�C and Well below 2�C (W.b. 2�C). Results presented in panel a and b for
the scenario 2�C are not shown to avoid clutter and can be fund in the Supplementary Material.

Table 5: Energy System Costs (ESC) in Net Present Value ($ NPV, 3% discount rate) by policy scenario with
(w/ Ada) and without adaptation (w/o Ada)

Current policy 2.5�C Well below 2�C

w/o Ada w/ Ada w/o Ada w/ Ada w/o Ada w/ Ada
Electricity 66 80 65 74 71 77

Change (%) - - -1 (-2%) -5 (-6%) 5 (7%) -3 (-4%)
Liquids and gases 297 299 291 290 271 271

Change (%) - - -6 (-2%) -9 (-3%) -26 (-9%) -28 (-9%)
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3.4.5 Implications on emissions and global carbon prices

Energy needs for adaptation induce variations in the energy markets that ultimately result in

a shift in global and regional greenhouse gas (GHG) emissions. In the current policy scenario,

cumulative GHG adaptation-emissions reach 350 GtCO2eq by the end of the century, accounting

for about 7% of the total cumulative GHG emissions from 2020 to 2100.

The regional distribution of emission in the current policy scenario reflects the the energy

mix and the direct shocks on energy demand. In developing and tropical regions, the higher

energy needs for adaptation are coupled with a slower energy transition and therefore additional

cumulative emissions are larger than in developed temperate regions. Sub-Saharan Africa

("SSA") accounts for the highest additional cumulative emission increase due to energy for

adaptation, but for a comparatively low level of additional cumulative emissions per capita. On

the other hand, in regions such as South-East Asia ("SE-Asia") and Indonesia, the additional

cumulative emissions are associated primarily with high emissions per capita. The US is the

only OECD region where adaptation considerably increases global cumulative GHG emissions

(Figure 10, Panel a) in the current policy scenario. Emissions are reduced in countries where

the net reduction in energy demand prevails (Europe and Canada).

In the stringent mitigation scenarios, changes in regional emissions compensate each other by

virtue of the constraint on the global carbon budget. When a global carbon tax is introduced,

emissions are reduced the most in countries with relatively lower marginal abatement costs -

e.g. China, Eastern Europe and Russia ("TE"), USA, Brazil, India. The magnitude of the

reduction depends on the energy mix and on the extent of the abatement.

The lock-in of additional energy requirements into fossil-based generation, especially in the

short-term, has direct consequences not only on GHG emissions, but also on air quality (see

Figure 10, Panel b). A significant increase mainly in nitrogen oxides (NOx), carbon monoxide

(CO) and sulphur dioxide (SO2), three of the key air pollutants related to the combustion of

coal and oil [23, 24], is projected. Average annual emissions of air pollutants have their peak

rise in Sub-Saharan Africa, South-East Asia and MENA, increasing by about 200 kton/year,

157 kton/year and 145 kton/year respectively. Although the high level of the spatial-temporal

aggregation poses challenges to the identification of health impacts, the results suggest that

people’s exposure to high levels of pollution increases due to the adaptation-energy feedback,

especially in low- to middle-income countries [25, 26]. The quantification of health costs related

to the additional emissions of air pollutants and the analysis of how outcomes can be influenced

50



L
a

ti
tu

d
e

kton/year

China

TE

Europe

Canada

Kor

Brazil

Oceania

South Africa

Mexico

LACA

India

USA

MENA

SSA

Gt CO2 eq

China

TE

Europe

Canada

Kor

Brazil

Oceania

South Africa

Mexico

LACA

India

USA

MENA

SSA

t CO2 eq percap

Policy

C. pol

2.5°C

W. b. 2°C

Longitude

a

b

Figure 10. Regional variation in greenhouse gas (GHG) emissions and air-pollutants. a Vari-
ation in air pollutants by region. Average total annual increase between 2020 and 2100 in the
following air-pollutants: black carbon (BC), nitrogen oxides (NOx), carbon monoxide (CO),
sulphur dioxide (SO2), organic compounds (OC), volatile organic compounds (VOC). b Addi-
tional cumulative GHG emissions for adaptation in 2100, total (left) and per capita (right).
Scenarios: Current policies (C.Pol), 2.5�C and Well below 2�C (W.b. 2�C).

by alternative narratives on technological change, efficiency improvements and policies directed

at pollution control, is left for further research.

As a consequence of the variation in GHG emissions, the adaptation-energy feedback affects

the level of the global carbon price needed to achieve the desired carbon budget (Table 6).

The carbon price increase is highest in the least ambitious scenarios, as it grows by up to 30%,

corresponding to a 5 to 8 (13 to 21) $/tCO2eq increase in 2050 (2100), while it increases by 5%

in the most ambitious mitigation scenarios ("Well below 2�C" scenario).

Table 6: Carbon tax ($/ton CO2 eq.)

Year 2.5�C W.B. 2�C

w/o Ada w/ Ada w/o Ada w/ Ada
2030 8 10 (+31%) 74 78 (+5%)
2050 16 21 (+31%) 151 158 (+5%)
2100 44 57 (+30%) 422 443 (+5%)
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3.5 Discussion

The simulated net increase in the global energy demand of residential and commercial buildings

for adaptation confirms the literature’s finding that energy demand of buildings is underesti-

mated when IAMs rely solely on income and population drivers and disregard changing climatic

conditions [5]. This Chapter shows that broadening the sectorial scope can provide relevant

insights with respect to the assessments that focused on the buildings sector[5]. When the

industrial sector is accounted for, the net additional energy needs for adaptation in 2100 under

the current policy scenario are more than three times larger than when only buildings are con-

sidered (85 EJ/year and 25 EJ/year, respectively).

The supply-side impacts found in this study can be compared to a narrow set of model-based

assessments conducted for the United States: a +5% increase in power generation, fuel, and

grid costs is projected in the United States under the current policy scenario by 2050, in line

with the estimates by [27], and a 20% increase in total installed capacity in 2050 under the

current policy scenario, in line with the 16% increase found by [28] under the RCP 8.5. This

work expands from the literature by quantifying the global additional investments required

to transform the energy system to accommodate the energy use for adaptation. I find that

the additional energy use for adaptation is largest in South-East Asia and Africa, highlighting

the risk that existing vulnerabilities may be further exacerbated if power systems are poorly

prepared to face the additional power demand for key services such as air-cooling.

If households and industries use more energy to cope with the ongoing and expected changes

in climate conditions, the mitigation challenge can look inherently different. In a scenario where

the ambition of mitigation policy does not rise rapidly, climate adaptation contributes to further

exacerbate the risk of lock-in into polluting fossil-fuel-based generation in the next few decades.

The additional final energy demand and the resulting energy costs are cut by 50% when aiming

at the 2.5�C target and by up to 75% when reaching the target of Well Below 2�C. Nevertheless,

even in the Well-Below 2�C target, an additional 10 EJ (20 EJ) of energy demand would be

required annually by 2050 (2100). If power is not fully decarbonized, by 2050 adaptation could

need an average annual addition of new fossil fuel capacity of about 55 GW, which corresponds

to around 1% of the currently installed global fossil-based capacity and is comparable to the new

coal capacity added yearly between 2017 and 2021 and to the global new investment decisions

for gas-fired generation in 2019 [29, 20]). As a consequence, energy system costs and carbon
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prices increase because of adaptation.

While this Chapter has the ambition to shed light on one type of interaction between mit-

igation and adaptation at the global scale, several caveats remain. On the one hand, the way

the responses of energy demand to meteorological conditions is characterized could actually

lead to an overestimation of climate change impacts. This work implicitly assumes that en-

ergy demand does not significantly respond to daily temperatures between 12.5�C and 27.5�C.

Accounting for the non-linear response of energy demand across the full distribution of daily

temperatures would make it possible to factor in the attenuating impact of fewer moderate

temperature days, reducing the energy demand shocks. In the same direction, behavioural

changes related to the utilization of heating and cooling appliances [15] and new business prac-

tices, including greater consumer autonomy, digitalization, and new consumer-driven business

models [30], could contribute to lowering the energy requirements of adaptation.

Conversely, adopting regional-specific thresholds in the computation of extreme climate in-

dices, or accounting for the exacerbation in thermal-discomfort humidity, are aspects that could

result in amplifying of the additional energy demand projected, especially in tropical regions

[31]. Moreover, power system costs projected in this study can underestimate future impacts

if peak electricity demand is more sensitive to extreme temperatures than total electricity de-

mand [32]. New empirical evidence on the role that temperature extremes pose to the peak

load, rather than on total electricity demand, would contribute to improving the estimation

of the potential power system costs induced by climate change adaptation. Future work could

explore the costs of an increase in the peak load due to more cooling needs at fine temporal

scales by soft-linking a global Integrated Assessment Models to bottom-up power capacity ex-

pansion and optimal dispatch models. Power generation and transmissions are also vulnerable

to climate change (see [33, 34] for a review), and therefore fully characterizing the interaction

between mitigation and adaptation requires integrating demand-side and supply-side impacts.

3.6 Closing remarks

Integrating climate change impacts and adaptation in energy scenarios contributes to a more

accurate understanding of mitigation scenarios and the energy transition [35]. This Chap-

ter provided an account of how energy use for adaptation can endogenously affect mitigation

goals and the design of cost-effective mitigation policies. Since the adaptation-energy feedback

increases the energy system costs, this integrated framework captures mitigation’s benefits in
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terms of reduced adaptation needs, reinforcing previous findings from aggregate, macroeconomic

assessments [36]. Looking at the issue of energy demand for adaptation with novel lenses has

provided a key indication: ignoring the energy system costs and the environmental implications

attributable to rising adaptation needs in energy scenarios results in an underestimation of the

benefits of mitigation policies.

Importantly, the feedback-loop included in the WITCH model is calibrated on the existing

empirical evidence, but it relies on a modular and flexible structure that can be adapted and

updated with the availability of new empirical evidence on how climate change affects energy

use and energy supply. Chapter 4 will provide a range of new empirical results focusing on

the electricity at a temporal frequency that is typically too desegregated for being represented

in IAMs. Further novel modeling approaches that would advance the analysis conducted in

this Chapter and develop scenarios in conjunction with the empirical evidence of Chapter 4 are

presented in the discussion of Chapter 5.
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4 Adaptation-energy feedback: bridging models to new

empirical evidence

4.1 Introduction

This Chapter, building upon the review conducted in Chapter 2 and the analysis of Chapter 3,

provides an overview of how different modeling frameworks, including Integrated Assessment

Models (IAMs), partial-equilibrium global energy models and Computable General Equilibirum

Models (CGEs), can accommodate new empirical evidence improving the characterization of the

energy-adaptation feedback. The overarching objective is to provide the modeling community

of a general framework upon which to update models for the implementation of the energy-

adaptation feedback. Specifically, I map out the inputs needed by models and assess the

availability of existing empirical data and results serving such purpose.

As discusses in Chapter 2, there is large scope for improving the integration of the climate-

induced shock in the aggregated energy demand function of IAMs, GCEs and global energy

models. Most of the available models rely on a simple representation of the energy demand

sensitivity to climate shifts (the "scaling factor"), which typically disregards both the long-

term adjustments effects stemming from a change in energy-using appliance ownership and the

non-linearities in the response to climate, for instance though a shift in the tails of temperature

distribution rather than in the annual mean levels (see Chapter 2). Table 7 presents an overview

of the features and components that enable to model the energy-adaptation feedback in 17

leading global models 5: i) long-run energy demand shocks represented through aggregated

energy demand elasticities ii) cooling demand shocks modeled though an explicit representation

of appliances (e.g. AC) adoption; iii) climate-dependent high-frequency electricity demand

shocks; iv) adaptation options on the energy supply side and on market operations; v) inclusion

of sub-yearly climate shocks and weather extremes indicators. Most models have extensive

potential for being updated in more than one of such aspects, provided a consistent availability

of the empirical basis for calibration. First, all models can update their aggregated energy

demand elasticities with the new empirical evidence capturing long-term adjustment effects

to climate. More than haft of the IAMs reviewed and two out of three global energy models

already include a detailed representation of the AC adoption functions, while the remaining

5Each feature can be either implemented with no modifications of the current model framework ("yes") or
through a model integration with new modules/components of though linking with other models ("integration")
or finally cannot be included due to the characteristics of the model ("no").
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IAMs can implement end-use specific cooling shocks though new integrations (discussed in

detail in section 4.3). The possibility to include adaptation impacts on high-frequency demand

shocks in IAMs is less common, due to the limited availability of sub-annual and country-level

representation of power dynamics in these models (see section ??). On the other hand, supply-

side shocks related to adaptation and climate impacts could be implemented with smaller efforts

in most cases, due to the detailed representation of the energy supply side in most IAMs, CGEs

and global energy models. CGEs, especially if used in combination with energy models, can

similarly provide new relevant contributions. Almost all models lack a detailed representation

of sub-annual climate extremes unless new model integrations are performed. The next sections

will turn to the detailed description of the existing empirical studies available to update models

in each of the aspects identified, and on the scope for new research.

Table 7: Implementation of the adaptation-energy feedback

 

Model 
Model 

type 

Energy 

demand 

elasticities 

Explicit 

AC 

adoption 

Hourly 

load 

elasticities 

Energy 

supply-side 

shocks 

Sub-annual 

climate 

extremes 

WITCH IAM Yes Integration Integration Yes Yes 

REMIND IAM Yes Yes Yes Yes Integration 

TIMER-IMAGE IAM Yes Yes Integration Yes Integration 

COFFE-TEA IAM Yes Integration Integration Yes Integration 

MESSAGEix IAM Yes Yes Yes Yes Integration 

FUND IAM Yes Integration No Integration Integration 

GCAM IAM Yes Yes Yes Yes Integration 

AIM-Hub IAM Yes Yes Integration Integration Integration 

DNE21+ IAM Yes Yes Integration Yes Integration 

E3ME-FTT IAM Yes Integration Integration Yes Integration 

EPPA IAM Yes Integration Integration Yes Integration 

ENVISAGE CGE Yes No No No Integration 

GEM-E3 CGE Yes Integration Integration Yes Integration 

ICES CGE Yes No No Yes Integration 

TIMES PE-Energy Yes Integration Yes Yes Integration 

POLES PE-Energy Yes Yes Yes Yes Integration 

PROMETHEUS PE-Energy Yes Yes Integration Yes Integration 

4.2 Long-run energy demand elasticities

Empirical works studying aggregated energy statistics typically capture the elasticities of energy

demand employing static models that constrain short-term elasticities to weather to be stable

over time [1, 2, 3, 4, 5, 6, 7]. Yet, weather-dependent energy use in the short-term is expected to

differ from the long-term response to a changing climate, because of the agent’s ability to adjust
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energy-using durable stock over time. IAMs, global energy models and CGEs adopting energy

demand elasticities derived from static econometric model may end up underestimating future

energy requirements by failing to account for the rapid increase in energy-intensive durable

goods (see Chapter 2).

Because data on the prevalence of AC appliances is often not available with the necessary

spatio-temporal coverage of energy demand statistics, a set of empirical studies have adopted

statistical workarounds to capture implicitly the effects of unobserved extensive margin ad-

justments. Exploiting billing-level information, [8] proposes a two-step approach based on the

estimation of: i) the intensive margin temperature response functions using daily variation in

weather and, ii) the variation in the slopes of the dose response functions across space as a

function of climate. The requirement of billing data at the daily level constrains the applica-

bility of such method at the global or multi regional scale, and as a consequence the inclusion

of the estimated elasticities into global models. A growing group of studies is adopting dy-

namic econometric specifications, in particulat the Error Correction Model (ECM), to capture

the effects of long-term adjustment between the dependent variable and its regressors. [9, 10]

estimate an ECM panel with yearly observations and global coverage for demand of three dif-

ferent fuels, finding that the effects of temperature are greater over the long-term than in the

short-term. The adjustments captured though the dynamic ECM equation can be considered

as a proxy for the extensive margin because, over the long-term, agents have time to adopt the

set of appliances that maximize their utility. Furthermore, as new appliances and cooling tech-

nologies become available, energy efficiency can also be improved, so that the overall impact

on energy demand can be mitigated by the improved efficiency. These approach evaluates the

hypothesis that the overall impact of the extensive margin drivers is reflected by the dynamic

response of electricity demand to weather shock over the years, without the need to observe

appliance prevalence rates and their energy efficiency. The ECM coefficient estimated by [11]

have been adopted as model input in the analysis of Chapter 3, enabling to identify energy

demand shocks implicitly including long-term adjustments. One shortcoming of the available

empirical analysis such as [11] is that the long-run adjustment effects are estimated by treating

economic growth as a control, rather than a modulating factor. The effect of socio-economic

development, considered as a non-temperature confounder, is in fact typically removed through

controls by most empirical studies estimating both short- and long-run elasticities [8, 11, 5, 12].

In doing so, past studies have disregarded the identification of a very relevant aspect on the
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response of energy demand to weather. Per capita income is, together with climate, the key

driver affecting the diffusion of space conditioning durable capital stocks acquisition and usage

[13]. Given that IAMs tipically identify energy demand trends over long time horizions ( 30

years), new empirical studies should provide a set of long-run elasticities identifying both the

economic and the climatic effects on the extensive margin (see Chapter 5).

4.3 Explicit AC adoption

The models that include a detailed representation of end-use services and technologies can

project the long-run extensive margin adjustments of energy demand directly, based on the

explicit estimation of future appliances’ ownership. The analysis conducted in Chapter 2 shows

that the extensive margin of AC ownership has been modeled almost exclusively by relying

on the empirical evidence derived from [14, 15]. As [15] use air-conditioning market satura-

tion data for 39 US cities, studies that identify future AC adoption rates based on the study’s

estimates rely on the strong assumption that a functional relationship characterizing rich, in-

dustrialized and highly urbanized areas can be extended to very different socio-economic and

climatic regions, such as emerging markets and tropical regions. Furthermore, the estimates of

[14], used in combination with [15] to project the impact of socio-economic on AC ownership,

are based on a cross-sectional model that suffers from limited controls for country- and time-

specific confounding effects.

In the last two decade AC has been growing rapidly in both developed and developing

regions [16], making of paramount importance to conduct novel and broader set of empirical

analysis that shed light on the determinants of AC adoption across climatic, socio-economic

and demographic conditions. Recent empirical studies have begun to expand the available evi-

dence by exploiting survey-level micordata, improving with respect to the past literature both

in terms of the set of determinants and controls considered and as for the geographic cover-

age. [13] provide a quantification of how income and climate drive air-conditioning adoption

in Brazil, India, Indonesia, and Mexico, controlling for a comprehensive set of country-specific

household characteristics. The authors show that in emerging economies the decision to pur-

chase air-conditioning in response to warmer climatic conditions is country-specific and strongly

dependent on household’s socio-economic conditions and demographic characteristics, and that

disregarding other characteristics of households, including education and housing conditions,
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can significantly bias the estimates of the marginal contribution of income and climate, which

would appear larger. In Chapter 5 I contribute to this growing field by proposing a novel

methodology that exploits country and sub-country panel data in two very different world re-

gions, India and Europe, to provide a generalized functional relationship between AC market

saturation, cooling degree days, per capita income and urbanization.

The AC adoption functions have so far been used in IAMs only for the direct estimation of

cooling services’ demand though bottom-up building demand modeling frameworks; top-down

models that lack the representation of different end-use services have typically disregarded the

inclusion of cooling demand shocks in their frameworks, or, alternatively, have adopted the

indirect estimations deriving from the long-run energy demand elasticities described in section

4.2. The inability of including a direct estimation of the cooling energy in top-down models is

constrained by the lack of empirical evidence providing in a unified framework a set of aggre-

gated energy demand elasticities and the modulation effect on such elasticities from AC capital

accumulation. [17]] is to the best of my knowledge the only study that has moved towards the

estimation of an aggregated energy demand function dependent on AC ownership. Focusing on

Mexican provinces, the study provides a cross-section comparison of energy demand responses

exploiting the current heterogeneity in AC saturation levels. The responses in places currently

having high AC saturation rates are used as proxies for the responses of places with current

low AC saturation and that are expected to increase their prevalence of AC in a hotter future.

The framework proposed by [17] sheds light on the mechanisms at play but cannot be directly

adopted in global energy models, since it lacks a generalized equation describing the modulation

effect of AC ownership on aggregated electricity demand (see Chapter 5).

4.4 Power system impacts

IAMs are the ideal tool to describe the pathways towards the energy transition and to inform

international and regional climate policies because of their global, multi-decadal and multi-

sectoral scope. Yet, IAM-based scenarios typically lack the spatial and temporal precision

to inform power system planning [18]. [19] shows for instance that assuming unconstrained

electricity flows inside large regional areas without internal network constraints causes an over-

estimation of the potential of variable renewables within IAMs. Considerable new model im-

provements have been implemented in recent years regarding power system in IAMs, typically

with the aim of improving the representation of variable renewable energy technologies [20,
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21, 22, 23, 24]. Power system models, differently from IAMs, can incorporate high spatio-

temporal resolutions by design, but tend to have narrower sectoral and geographic scopes and

shorter time horizons. Nevertheless, state of the art frameworks can simulate continental-

or global-scale power system dynamics at high frequencies [25, 26]. Rather than relying on

computationally-expensive internal IAM model improvements, the modeling community has

suggested to enhance the temporal and spatial scope of IAMs though inter-model linkages with

global-scale power system models, which can take the form of either soft- or hard- linking [27,

19]. Soft-linking is essentially based on the facilitation of data flows between models, allowing

models to make separate and endogenous investment decisions while leading to a joint solution

[28]. Though soft-linking scenario results from IAMs can be fed into independent model to

assess given scenarios with enhanced modelling resolution. Results from these simulations can

then be redirected to the IAM through iterative bi-directional soft-linking. Hard-linking on the

other hand is based on an algorithm that communicates dynamically between both models and

leads to a singular set of results [29]. While both methods require substantial data manipu-

lations, the feasibility of hard-linking relies on several additional conditions: first, modelling

tools computationally able to function in this setting, secondly, significant time and resources

are needed to ensure that both models can reach a joint optimization [29]. For these reasons,

soft-linking approaches have been more commonly adopted in recent years: proof of concept

applications of a soft-linking between a detailed power system model and a IAM have achieved

almost-full convergence both in terms of decision variables and (shadow) prices [30, 19].

The trade-off between scope and detail in most modeling frameworks has so far constrained

the investigation on the interplay between climate change adaptation and key power system

components (high-frequency demand, generation, transmission and distribution). Overcoming

these limitations entails realizing three main objectives: i) enhance the empirical understanding

of how power systems are affected by climate change, both due to demand-side adaptation

responses and to physical impacts to key infrastructure (power grid, power generation plants); ii)

accurately model the power sector transformation over long time horizons in terms of investment

and dispatch; iii) expand the representation of sub-annual variation in the climate, allowing

for the propagation of the empirical shocks (point i) into the detailed power system framework

(point ii).
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4.4.1 Hourly load elasticities

Long-term peak-load forecasts are critical for planning generation, transmission and distribu-

tion capacity additions and retirements several years in the future. Even with the incomplete

representation of impacts though the yearly shocks developed in Chapter 3, the influence on

power systems of demand-side shocks as populations adapt to climate change has appeared to

be far from negligible.

The evidence stemming from Chapter 3 shows that the energy required to adapt to higher

temperatures can result in significant additional generation capacity and higher emissions of

greenhouse gases and local air pollutants, in turn affecting the ambition of mitigation policies.

Regional versions of leading IAMs have been coupled with regional power-system models

with the aim of assessing climate change impacts on peak load and generation (GCAM-US).

The example of CC shows that even if a fully endogenous global framework similar to the one

presented in Chapter 3 cannot be represented, novel IAM-based works can provide insightful

results though simpler implementations, i.e. assessing the impact of climate change on the

hourly electrical load for a set of representative seasonal time-slices using alternative demand

levels as exogenous inputs.

The complexities in coupling different energy models’ are not the only factor preventing an

accurate description of the impacts adaptation on the high-frequency fluctuations of the load.

To date, the empirical works focusing on the estimation of the energy-temperature response

function using high-frequency (hourly or daily) load and weather data have focused only on

the short-term intensive margin adjustments [5, 8, 31, 12], disregarding instead the long-run

extensive margin adjustments. How increases in the frequency and intensity of temperature

extremes will amplify electricity demand to levels that exceeds current power systems capacity,

when endogenous adoption of residential air-conditioning (AC) is accounted for, is a key blind

spot on the quantification of impacts of climate change.

4.4.2 Impacts on energy supply and market operations

Weather-driven electricity demand peaks must be accommodated by exceptional ramp-up re-

quirements of power generating units. In highly decarbonized power systems, such requirements

can be accommodated by the synchronous variation in renewable technologies’ generation, in

particular solar PV. If such power requirements cannot be met through variable renewables

sources, power systems must ramp-up flexible generation technologies, typically gas and coal
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fired generation, with important implications on emissions of GHG and local air pollutants.

Dispatch models simulate the operations of regional power grids, in particular the ability to

meet the net load (total loan minus renewable generation) by thermal generation units subject

to operational constraints.

Climate change can impact power systems not only by pushing power demand to record highs,

in turn requiring exceptional ramp-ups of power generators, buy also by [32]: ii) affecting the

efficiency of thermal electricity generation (more risk-sensitive to heatwaves) and renewable

technologies (more risk-sensitive to cold waves and other extreme events), iii) reducing trans-

mission and distribution capacity, further challenging the operation of electricity grids. Section

4.4.1 discusses the opportunities and limits of including i) into IAMs. At present, the effects

of climate change on i) and ii) are poorly understood, leaving the actors liable to ensure the

system stability with limited evidence based on historical climate conditions.

Most of the literature has so far focused on how reduced water availability due to climate

change can impair electricity generation of hydroelectric dams [33, 34, 35]. Yet, also coal and

nuclear power plants, operating through steam-turbine processes, can be severely affected dur-

ing droughts due to variations in streamflow levels and temperatures, affecting the availability of

the cooling water needed to generate at full capacity [36]. Gas-fired power plants, that operate

though combustion-turbine processes that require little or no water for cooling, can be affected

by a reduction in the efficiency of turbines due to extreme temperatures, ultimately leading

to capacity reductions [37]. Extreme weather events can also affect renewable generation, as

photovoltaic solar cells can lose efficiency at high air temperatures [38]. Only a limited body

of empirical studies estimated how climate change will affect thermoelectric power plants [39,

40]. New empirical studies should expand the understanding of power supply impairments due

to extreme weather. Coupling such novel evidence to power dispatch and capacity expansion

models can provide simulations of how power systems can respond to generation power outages

or reduction in efficiency induced by extreme events through changes in the generation schedule

of power plants, inter-regional market flows and investments in slack capacity (see also Chapter

6).

4.5 Non-linear climate shocks and weather extremes

Another important and long-debated limitation of IAMs is the complexity to include abrupt,

irreversible, or catastrophic climate changes impacts in their frameworks ([41, 42]). In the
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context of the energy - adaptation feedback, IAMs have provided no indication so far on the

responses of energy demand to extreme events such as heat waves (see Chapter 2). Also in

this case, the major challenge derives from the different time scale between the variables that

identify the occurrence of extreme weather events and models, which typically run with yearly

time-steps [43].

The analysis conducted in Chapter 2 shows that the empirical and modeling literature has

generally adopted two different climate variables: (i) temperature levels, or (ii) Thermal De-

gree Days. Heating Degree Days (HDDs) measure the number of daily units (usually in�C)

that are registered below the thermal comfort threshold, referred to as base temperature, while

Cooling Degree Days (CDDs) measure the number of daily units that surpass the thermal com-

fort threshold. Changes in HDDs and CDDs have often been adopted in the studies dealing

with residential demand of space heating and cooling [6]. Notwithstanding their wide adoption

in literature, Thermal Degree Days have the drawback of depending on the threshold values

chosen for computing thermal discomfort. On the other hand, direct temperature variations

can be represented in the empirical framework, either as the mean temperature [44, 45], or as

the exposure to different intervals (“bins”) of temperature [3, 4, 10]. In the former, potential

non-linear responses of energy consumption can be captured by including higher-order terms,

typically the quadratic temperature term. In the latter, a more complex variable is constructed

by creating a series of temperature bins covering the full range of possible temperatures and,

subsequently, by counting the number of days within each bin in a given period (often years).

[3], that provide the only known comprehensive comparison between the two approaches, find

evidence supporting the hypothesis that the standard approach of modeling energy consumption

with HDDs and CDDs does not make it possible to capture the non-linear increase in energy

consumption at extremely high temperatures. Similar conclusions stem from the comparison

between alternative weather variables adopted for the estimation of the monthly electricity

demand ECM developed in Chapter 5.

The availability to update IAMs with new global-level non-linear energy demand response

functions is constrained, as the only recent example providing non-linear response estimates

the short-run intensive margin component (see section 4.2), while available estimates account-

ing for the long-run adjustment effects are provided only for aggregated hot (> 27.5�C) and

cold (< 12.5�C) temperatures. Novel empirical studies should therefore both focus on long-run

extensive margin elasticities while accounting for the non-linear response of energy demand
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across the full distribution of temperatures.

In order to effectively capture the impacts of future extremes, new empirical studies would

need to adopt datasets that are rich in terms of spatial and temporal resolution, with weather

observations and energy data processed and aggregated in a way that preserves information

regarding the tails of the weather distribution and its geographical specificity. Unless the

short-term elasticities of demand are calculated at the same temporal and spatial scale as the

IAM simulations into which they will be incorporated, the aggregation of short-term elasticities

for the adoption in IAM is an important methodological limitation [46]. Stochastic modeling

techniques and model-integration would need to be used in order to capture extreme events, an

approach adopted so far mostly at the regional level [47, 48]. One of the possible solutions is

the development of statistical emulators that allow the computation of annual weather extreme

indices in the IAM, based on the endogenous average annual temperature projections, as pro-

posed in Chapter 3. Another way to surmount the structural limitations of models is to perform

quantitatively parts of the scenarios outside the confines of the model itself, as proposed by

[49] and implemented by [50].

4.6 Closing remarks

This Chapter has drawn several lines connecting model capabilities and requirements for the

representation of the energy-adaptation feedback, identifying diverse and often overlapping new

research opportunities.

On the one hand, there are several opportunities for updating the energy demand functions

of existing models with limited additional effort, both in terms of the aggregated energy de-

mand elasticites and as for the AC adoption functions. The most pressing bottleneck in this

regard appears to be the availability of novel empirical studies that capture extensive margin

adjustments, either by identifying long-run energy demand shocks when no explicit information

on appliances’ adoption exists or by providing a generalized framework estimating the response

of energy demand conditional on future AC prevalence rates. On the other hand, an integrated

assessment of key aspects such as climate change impacts on hourly and peak load profiles,

power generation and the power grid require in most cases a combination of both modeling ad-

vancements and novel empirical evidence. Substantial potential lies in soft-linking results from

IAMs into more detailed global power system models, to assess given scenarios with enhanced

modelling resolution, and allowing to evaluate such solutions in the IAM through iterative bi-
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directional soft-linking. Finally, improving the representation of extreme events in all model

types is a precondition to a detailed evaluation of the adaptation-energy feedbacks.

In Chapter 5 I develop a suite of alternative empirical methods that aim to address some

of the aspects identified. First, given the importance of identifying long-run energy demand

shocks when no explicit information on appliances’ adoption exists (as discussed in section 4.2),

I propose a methodological approach that exploits variations in climate in a panel framework,

providing a set of extensive margin elasticities of electricity demand that are modulated by

the level of per capita income. Furthermore, in section 5.3, I present the results of a novel

method based on an ECM framework exploiting monthly energy statistics and weather-income

interaction component. Second, I address the lack of updated empirical estimations on the

drivers of AC ownership and of a generalized empirical framework that estimates the effect

of AC prevalence on electricity demand (as discussed in section 4.3). I show that future co-

variation between load and temperature is greatly underestimated unless the impacts of extreme

heat exposures is made conditional on electricity consumers’ adjusting the stock of energy-using

durable goods in the long-run. Finally, Chapter 5 expands the empirical literature on power

systems impacts (section 4.4.1), as I focus on the analysis of electricity demand at fine temporal

scale, exploiting a novel data-set of daily and hourly peak load demand across over 50 states

in Europe and India.
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5 Empirical investigations of the adaptation-mitigation trade-

offs

5.1 Preface

Empirical projections of electricity demand increases as populations adapt to climate change

generally lack the spatial and temporal precision to inform power system planning [1, 2, 3]. As

a result, operational forecasts tend to reflect the assumption that historically-observed weather

patterns will persist over the panning horizon [4, 5]. The burgeoning availability of high-

frequency (hourly or daily) load and weather data can potentially address this disconnect, but

thus far climate change impacts have primarily been inferred from regional-scale geographic

level variation over comparatively short (. 10y) time scales [6, 7, 8, 9].

In the first part of this chapter (sections 5.2) I propose two alternative methodologies that

improve operational forecasts with features from empirical projections, in order to better ad-

dress long-term forecast for investments planning. I show that fine temporal scale co-variation

between load and temperature can empirically identify the impacts of transient extreme heat

exposures, conditional on electricity consumers’ adjusting their utilization of stocks of energy-

using durable goods that are fixed in the short run (adaptation on the intensive margin [10]).

The challenge addressed is the identification of simultaneous extensive margin adaptation: con-

sumers’ responses to average weather conditions experienced over many years, consisting of new

technology adoption or adjustment of stocks of appliances with varying energy efficiencies, which

are only rarely directly observed [compare 11, 12].

The proceedings of section 5.2 are being prepared for two distinct submissions, one to

Nature Scientific Reports and one to the Journal of Environmental Economics and Management

(JEEM). The manuscripts are co-authored by Enrica De Cian and Ian Sue Wing. Baring few

minor changes to the figures and text, adapted in order to perform a comparison between the

methodologies adopted in the two papers, this chapter is mostly unchanged from the versions

under preparation. I designed and performed the research, analyzed the data and wrote the

paper. Enrica De Cian and Ian Sue Wing provided scientific input. All co-authors are involved

in the revision of the final text.

In section 5.3 I propose an alternative methodology for the estimation of long-term adap-

tation adjustments of electricity demand when no information on the diffusion of cooling and

heating appliances is available. The analysis is complementary to the high-frequency empirical
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frameworks developed in the previous sections in many regards, as in this case the analysis:

i) is based on a dynamic econometric model that captures the relationship between weather

variations and electricity consumption towards equilibrium, when agents have time to adjust;

ii) focuses on a rapidly growing tropical economy, Brazil; iii) exploits monthly level energy and

climate statistics. Importantly, I test the hypothesis that per capita income modulates the

long-term relationship between electricity demand and weather, an effect which is reinforces

the results obtained in section 5.2. I find that evolving socio-economic dynamics considerably

increase the projected impact of climate change in the tropical and developing region, a com-

mon finding throughout Chapter 5. The proceedings of this section have been published as

an analysis in Energy and Climate Change 6. The work is co-authored by Malcolm Mistry. I

developed the econometric analysis and wrote the first draft. Malcolm Mistry processed the

climate data and revised the final version of the manuscript.

Finally, in section 5.4 I expand the methodology developed in 5.2 and test if the decomposi-

tion of weather observations into climatic moving averages and weather anomalies can identify

statistically different effects than estimations based on contemporaneous weather, when using

aggregated data at the year-country level and fixed effect panel models. Past works have relied

on the covariation between economic outcomes and weather to estimate long-run climate im-

pacts because of the presumption that we cannot observe meaningful climatic variation within

units in the econometric framework. In this section I argue that exploiting over 60 years of

records in meteorological and climatic variations within and between countries, this assump-

tion can be relaxed. I compare empirical estimates alternatively based on weather and climatic

exposure, finding statistically significant and non-negligibly higher impacts in the latter case.

Furthermore, I find evidence that: i) per capita capital stock modulates the response of en-

ergy demand to climatic exposure; ii) per capita energy demand modulates the response of

income growth to climatic exposure. In the second part of the analysis I use the estimated

damage functions to identify the resulting long-run responses of energy demand and income

to temperature changes around mid-century. The analysis elucidates the potential: i) energy

demand requirements for climate change adaptation; ii) economic losses due to climate change;

iii) (partial) attenuation of economic losses from adaptation through higher energy consump-

tion induced by adaptation. The proceedings of section 5.4 are being prepared for submission

6Francesco Pietro Colelli, Malcolm N. Mistry, Income-dependent expansion of electricity demand for cli-
mate change adaptation in Brazil, Energy and Climate Change, Volume 3, 2022, 100071, ISSN 2666-2787,
https://doi.org/10.1016/j.egycc.2022.100071.
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to Nature Energy. The manuscript is co-authored by Ian Sue Wing. I designed and performed

the research, analyzed the data and wrote the paper. Ian Sue Wing provided scientific input

and was involved in the revision of the final text.

5.2 Estimation of extensive margin adjustments using high-frequency

data

5.2.1 Introduction

Electric power systems’ generation capacity, transmission and storage are designed to meet

peak load, the maximum quantity of electricity instantaneously demanded by grid-connected

residential, commercial and industrial customers. Electricity demand is highly weather sensitive

[13]. air-conditioning (AC) to provide cooling during hot weather accounts for 30% of peak

demand in temperate and industrialized countries such as the US and 10%-15% in growing

and tropical regions such as India, Indonesia and Mexico [14]. A major concern that climate

change-driven increases in the frequency and intensity of extreme temperatures, both heatwaves

and cold spells, will adversely affect electricity grids’ ability to reliably deliver power by pushing

demand to levels that exceed system capacity. It is likely that the potential for such impacts

to arise will grow with the prevalence of air-conditioning, which itself responds positively to

higher temperatures and increases in per-capita income [15, 16, 17, 18]. Key uncertainties are

the extent to which system capacity and utilization will increase in an attempt to adapt to

these transitory shocks, and what the implications might be for electricity demand and power

sector emissions, particularly in emerging economies [19].

Prior approaches that rely on contemporaneous weather realizations [7, 6, 9] or use dynamic

proxies for the effects of energy-using capital goods accumulation [3, 12] are ill-suited for provid-

ing an indication of the long-term implications on high-frequency power demand due to climate

change. There are several reasons why coefficients estimated exploiting weather variations may

not be directly applicable to estimating the impacts of climate change over the medium or long

term [20]: adaptation (adjusting among a set of technological opportunities but also through

technological change), general equilibrium effects (adjustment of prices and factor reallocations)

and intensification of climate effects. Measuring adaptive behaviours when assessing the rela-

tionship between energy demand and thermal comfort is of key importance: adaptation shapes

agents’ use of energy-intensive durable stock in responses to transitory temperature shocks
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("intensive margin") and agents’ new adoption of energy-intensive durable stock in response

to the permanent shifts in climate ("extensive margin") [10]. Adaptation though the extensive

margin takes time to influence energy demand because, given the fixity of capital goods in the

short-term, actors are constrained in their response to unanticipated weather shocks.

The empirical frameworks that have been adopted in order to estimate how actors adapt to

climate change can be divided broadly into three groups (for a review see [20, 21]): i) cross-

section studies ii) panel models linear in weather; iii) hybrid approaches. On the one hand,

the cross-section approach measures long-term adaptation by estimating the response function

across geographic areas characterized by different climate conditions, assuming that in order to

maximize their welfare agents will have fully adjusted technology deployment, capital invest-

ments and practices under the climate they face [22, 23]. The drawback of this approach is the

inability to control for time-invariant factors that are correlated with both the climate and the

outcome variable, resulting in potential omitted variables’ biases. To the best of my knowledge,

no study has so far adopted a purely cross-section approach in order to identify the response of

energy demand to climate. On the other hand, panel models rely on the deviations of weather

realizations from the location-specific average of weather over time, while the differences in cli-

mate, constant over time, are captured by the location fixed-effect [1, 24]. The main advantage

of this approach is the ability to control for time-invariant variation across space though the

inclusion of fixed-effects. A large number of studies have investigated how residential energy

demand responds to temperature by using the panel fixed-effect framework [1, 2, 7, 6]. A

relevant drawback of this approach is that the unit-specific climate effects, constant over time,

cannot be identified because they are perfectly collinear with the unit fixed effect. Since the

estimation relies only on unexpected weather shocks, the identification of adaptive behaviour

becomes challenging [21]. In the context of energy demand, the estimation of elasticities based

on this framework provides an adequate measure of short-term movements of energy demand,

i.e. of the changes along the intensive margin, but fail to account for the responsiveness of

energy demand to slowly moving adjustments along the extensive margin.

A growing number of alternative hybrid approaches aiming to identify the impact of climate

impacts, rather than weather, are emerging in the literature. The main advantage of these ap-

proaches is to estimate climate change effects while still controlling for unobservable confounding

variables. Different methods have been adopted to this aim [21]: i) non-linear specifications in

weather allow for varying marginal effects of warming, but imply that the estimated effects are
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a mix of long- and short-term responses [24]; ii) two-stage approaches estimate in a first step the

response to weather linearly and across time for any given location, and in a second step relate

the value of the estimated weather coefficients to climate, based on cross-sectional regressions

[25, 26]; iii) long-differences’ panel regression, based on multiple periods of medium-term change

in the same unit; iv) dynamic models estimating an error correction component that captures

the long-term adjustments of energy demand [3]; v) panel studies partitioning the variation in

both weather and climate, using the two to jointly estimate the effects of short- and long-term

variation respectively [27, 28]. To the best of my knowledge, these innovative approaches have

rarely been adopted for the estimation of the energy demand’s long-term relation with climate,

with the exception of error correction models based on macro-data panels [3] and two-stage

models based on billing micro-data [12].

Fine temporal scale co-variation between load and temperature can empirically identify the

impacts of transient extreme heat exposures, conditional on electricity consumers’ adjusting

their utilization of stocks of energy-using durable goods that are fixed in the short run. This is

adaptation on the so-called “intensive margin” [10]. The challenge is to identify simultaneous

“extensive margin” adaptation: consumers’ responses to average weather conditions experienced

over many years, consisting of new technology adoption or adjustment of stocks of appliances

with varying energy efficiencies—which are only rarely directly observed [compare 11, 12] (see

Figure 11). The analyses developed in this Chapter innovates with respect to the available

literature by providing a direct quantification of how climate and income affect consumers’

responses to weather shocks, by determining their low-frequency adjustment of energy-using

capital goods like appliances and air conditioners, and the high-frequency intensity of utilization

of those durables.

I disentangle the effects of extensive-margin adaptation and intensive-margin responses of

electricity demand to temperature in two very different regions, Europe and India, covering

roughly one fourth of global population and 20% of global electricity consumption. Two al-

ternative methodologies are developed in order to identify the interplay between intensive and

extensive margins using high-frequency power market data. The first methodology exploits

regional-level data on AC prevalence, derived from micro-level survey data, and is therefore

based on a direct observation of capital stock variations over time. The second methodology

evaluates if intensive and extensive margins can be identified even with no direct information on

AC prevalence, though the low-filter variations of income and climate. The latter methodology
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Figure 11. Conceptual framework of the intensive and extensive margin. Own elaboration.

is evaluateed because it can be applied to a larger number of world regions than the former,

due to lack of AC ownership data at the required scale (regional and multi-annual) is rarely

available in countries other than Europe and India (with the exception of the United States).

The first methodology ("Weather and AC ownership") proceeds in three stages [11, 15,

18]. First, I empirically analyze the high-frequency intensive margin component of electricity

demand, captured by the day-by-day co-variation between peak and total load and maximum

daily temperature at different levels of regional AC prevalence. The second step is to empir-

ically characterize adjustment on the extensive margin, modeling the adoption of AC across

regions and years in response to spatial and temporal differences in integrated heat exposure

and income. I exploit the low-frequency year-on-year adjustments of AC ownership in a dataset

of 17 European countries and 30 Indian states that differ markedly in their climate character-

istics and income levels.

The second methodology ("Climate and income model") is inspired by the work of [12], and

it distinguishes between the responses of peak load to high-frequency transitory departures of

daily maximum temperatures from their climatic normal values that reflect changes in appliance

utilization, and low-frequency year-to-year evolution of decadal average daily maximum tem-

peratures and per-capita income that reflect the growth, and/or improvements in the efficiency

of, appliance stocks.

In both cases, the final step consists in coupling the reduced form adaptation responses with

projections of mid-century changes in daily maximum temperatures simulated by 29 global

climate models (GCMs), in order to elucidate the separate extensive- and intensive-margin
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contributions to, and joint amplifying effect on, peak and total electricity consumption.

5.2.2 Methods

Data: For the empirical analyses I assemble two longitudinal datasets: a dataset of annual

rates of AC ownership covering 17 European countries over the period 1990-2019 [29] and

30 Indian states over the period 2013-2019 [30], as well as a dataset of daily peak and total

electric load covering 16 European countries over the period 2015-2019 [31] and 28 Indian states

over the period 2013-2019 [32]. Each dataset is matched to population-weighted temperature

exposures, computed from ERA5 0.25� hourly 2m temperature series [33], as well as annual

real per capita GDP in 2015 US dollars [34, 35]. The first low-frequency dataset is used to

empirically model the drivers of AC adoption across an inter-regional gradient of income and

climatically-determined heat exposure. To match the time-step of the outcome variable, diurnal

average temperatures are computed and aggregated over the course of each year to construct

population-weighted CDD24s as a measure of integrated heat exposure. I use the second set of

high-frequency data to analyze the contemporaneous effect of heat on the per-capita demand for

electricity, conditional on the prevalence of AC. To that end, daily peak and average electric load

are matched to diurnal maximum temperatures and annually-varying GDP and AC prevalence

(Supplementary Methods and Supplementary Tab. 1).

For the projection component of the analysis, I use future estimates of global population

and GDP downscaled to X-Y� grids from [36] and [37], respectively, developed in accordance

with the shared socioeconomic pathway (SSP) scenarios. Shift in CDDs and daily maximum

temperatures from current to mid-century climates are estimated using the outputs of 29 global

climate models (GCMs) participating in the Coupled Model Intercomparison Project, Phase

VI (CMIP6) [38]. Specifically, I use GCM-simulated daily temperature fields for moderate

(SSP245) and vigorous (SSP585) warming scenarios that are bias corrected and downscaled to

a 0.25� grid, from the from the NASA NEX-GDDP-CMIP6 dataset [39, 40, 41] (Further details

are provided in the Supplementary Material.)

For the estimation of future CO2 emissions from electricity generation I use technology-

specific power generation data recorded on a daily time-step for European countries [31] and on

a monthly time-step for India’s five electricity dispatch regions [35], over the period 2017-2020.

I couple power generation statistics with carbon intensity associated to the operation of power

plants available at the country level for Europe [42] and at the national level for India [43].
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Weather and AC ownership

In the framework exploiting weather and AC ownership information, the extensive margin

is modeled as follows: in each location (i) and year (t), the probability of AC ownership is

approximated by the share of households with AC (s), which I model as a function of the

10-year moving average CDD24s (C), the logarithm of the 10-year moving average annual per

capita income (y) and the logarithm of the 10-year moving average annual urbanization rate

(u). The dependent variable is continuous on [0,1]. The empirical specification is a cross

section-time series OLS regression with a logit link function [44]:

logit(si,t) = log

✓
si,t

1� si,t

◆
= Zα

= ↵0
i + ↵Y yi,t + ↵CCi,t + ↵Y C(yi,t · Ci,t) + ↵Uui,t (4)

with location fixed effects ↵0, and estimated parameters ↵Y and ↵C that capture the direct

effects of income and heat exposure, and ↵Y C that captures their interaction. The functional

form yields nonlinear effects of the linear predictors, governed by the logistic transformation:

bs = logit�1 (Z bα) =
exp (Z bα)

1 + exp (Z bα)
(5)

The intensive margin is instead captured by the responses of European and Indian peak and

total electricity demand to high temperature exposure on a daily time step. I bin population-

weighted diurnal maximum temperatures into k intervals of 3�C width, Bk = [T k, T k), and

construct a k-vector of indicators that track whether each day’s maximum temperature falls

within a given interval:

Tk = 1 · {T 2 Bk}+ 0 · {Otherwise}

Bins are differentiated by macro-region to account for the latter’s large climatic differences—

Europe: {< 0, 0� 3, ..., 30� 33, > 33}, India: {< 12, 12� 15, ..., 33� 36, > 36}. The resulting

indicator variables are employed as high-frequency covariates in regionally-stratified linear fixed

effects models of per capita daily electric load, qv, where the subscript v = {Peak, Total} indexes

peak or total demand [1, 7, 3, 6]. Suppressing location and time subscripts, the empirical
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specifications are:

E[ln qv] =
X

k

�T
k,vTk + �Y

v y + controls (6)

E[ln qv] =
X

k

�T
k,vTk +

X

k

�TAC
k,v (Tk · s) + �Y

v y + controls (7)

where controls include state or country fixed effects that absorb variation associated with

unobserved temporally-invariant confounders, and day-of-week, season and year fixed effects

that control for idiosyncratic time-varying influences that are unrelated to temperature. Both

models are estimated by OLS, with standard errors robust to heteroscedasticity and serial

correlation and clustered at the state level. (See the Summpelentary Material for additional

details.)

Specification (6) follows the empirical approach in prior literature, in which the parameters

are identified based on contemporaneous co-variation between electricity demand and realiza-

tions of weather [6, 7]. In particular, βT is identified off the deviations of observed daily load and

binned temperature exposures from their local average values—shocks which are informative

of the average short-run response across locations. The elements of βT trace out the intensive

margin response of energy demand to temperature, not accounting for consumers’ adjustments

of stocks of energy-using durables. The potential amplification of demand due to latter [15,

18] is explicitly captured in the preferred specification, (7), by the vector of interaction coef-

ficients, βTAC . The fitted coefficient vectors bβT
and bβTAC

provide flexible piece-wise linear

spline representations of macro-regions’ distinct nonlinear temperature response functions.

Finally, climate change impact projections are computed by combining the estimated pa-

rameters bα and bβ with climate change projections to estimate the impacts of mid-century

temperature increases on peak and total electricity demands, conditional on the future level

of AC ownership. I use representative 5-year periods from the current (2010-2014) and mid-

century (2055-2059) epochs. Within each epoch I compute at the grid cell level, for each year,

the 10-year moving average CDDs, C
Cur

and C
Fut

, and, for each day, the contemporaneous

maximum temperature interval, T
Cur

k and T
Fut

k . Following [45], climate change-driven temper-

ature shifts were estimated by calculating the differences between simulated 10y average annual

CDDs and daily maximum temperatures over the historical and future epochs, and adding these

“deltas” to the corresponding series of historical observations recorded by ERA5. The resulting

synthetic series for the current and future epochs, eCCur, eT Cur
k and eCFut, eT Fut

k , are then used to
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project future AC prevalence in conjunction with eq. (5):

esFut =
logit�1

h
b↵0 + b↵Y eyFut + b↵C eCFut + b↵Y C(eyFut · eCFut) + b↵Uu

i

logit�1
h
b↵0 + b↵Y eyCur + b↵C eCCur + b↵Y C(eyCur · eCCur) + b↵Uu

isCur (8)

and the concomitant impact on daily peak and total per capita load in conjunction with eq.

(7):

 v =
exp

hP
k
b�T
k,v
eT Fut
k +

P
k
b�TAC
k,v

⇣
eT Fut
k · esFut

⌘
+ b�Y

v eyFut
i

exp
hP

k
b�T
k,v
eT Cur
k +

P
k
b�TAC
k,v

⇣
eT Cur
k · esCur

⌘
+ b�Y

v eyCur

i (9)

Eqs. (8) and (9) are computed using each GCM’s simulated output at the grid cell level

(g) for the 5y epoch and constitutent days (d), respectively. I leverage The observations of

historical average per capita demand for i European countries and Indian states to aggregate

the shocks using future (SSP2 and SSP5) gridded population, enFut, as follows:

Ψv,i =

P
g(i)

P
d  v,dqv,i,denFut

gP
g(i)

P
d qv,i,denFut

g

(10)

I decompose the impact metric into the fractional effect of each driver: i) the variation

in people’s propensity to use their current endowment of appliances under a changed climate

(eT Fut
k ); ii) the variation in people’s endowment of AC appliances due to the shift from current

to future per capita income (eyFut), under the historical climate; iii) the variation in people’s

endowment of AC appliances due to climate change (eCFut), under the historical per capita

income; iv) the interaction effects due to the non-linearity of the co-occurring climate and

income effects measured in stages i - iii; v) the scaling effect of future per capita income (i.e.

vertical shifts of the nadir due to economic growth).

Climate and income model

The following section describes the empirical framework of the "Climate and income model",

while more detail on the theoretical framework and on the identification strategy can be found

in the Supplementary Material. This empirical approach relies on two key elements. The first

is the decomposition of the meteorological variable, daily maximum temperatures T , into two

components: long-run climate normals and weather anomalies, the latter defined as deviations

from those norms. I measure the climate normals (C i,d) as the 30-year moving average of the

daily maximum temperature. For every day in the sample C i,d combines the information of the

80



weather realizations of the previous 30 years in that same calendar day 7. The adoption of a

moving average derives from the assumption that individuals and firms respond to information

on climatic variation they have observed and processed over the years 8. The weather anomaly

(!d) is computed as the deviation of daily maximum temperature from the 30-year average of

maximum temperature. Weather shocks are computed as the difference between the observed

weather exposure and the exposure expected by economic agents in each specific calendar day

in the year. While the meteorological anomalies recall most of the literature relying solely on

the exposure to weather with a fixed-effect, time-demeaning, specification, the variation over

time of the long-term climate norm is new in the setting of the analysis of electricity demand.

E(Ti,d|Ci) = C i,d =

Pj�1
n=j�31 Ti,d

30
(11)

!i,d = Ti,d � C i,d (12)

where: i indexes the State, d indexes the day, j indexes the year.

The second key element of the empirical approach is the estimation of the intensive and exten-

sive margin components in the same equation. The appealing features of the estimation strategy

I propose are twofold: i) exploit variation that evolves slowly over time in each location to iden-

tify the average impact of long-term climatic changes, while controlling for time-invariant and

time-specific observable variables though the fixed-effects; ii) retain the high frequency nature

of the load-weather co-variation, enabling to capture not only shocks evolving slowly over time

but also fast responses of peak load to unexpected weather anomalies.

I characterize the response of per capita daily peak load to climate and weather anomalies

by estimating a fixed-effect panel model in each of the two macro-regions, Europe and India.

Variables are observed in State i and day d. For the clarity of notation, equations below omit

regional and the time indices.

I evaluate a first "naive" model specification including as main interest variable the observed

7In an alternative specification I construct a monthly average of the 30-year moving average of daily maximum
temperatures, in order to evaluate if the inter-annual variation of The climate variable at different frequencies
(daily or, alternatively, monthly) could affect the results. I find similar results for both specifications (see
Supplementary Table 4 and 7), and therefore rely on the more general specification using a day-specific climate
variable.

8I evaluate alternative measure relying, respectively, on 10 and 20 years moving averages, finding negligible
differences in the econometric model.
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daily maximum temperature exposure, binned into jth intervals (Tj). Temperature bins are

a semi-parametric function that is widely adopted in order to capture non-linearities in the

response through the inclusion of linear parameters (as in [1, 7, 3, 6]). Regressions employing

bins flexibly trace out piece-wise linear splines. The aggregated response is, however, non-

linear, broadly representing a parsimonious regression specification with a quadratic term (see

[46] for further details). This specification frames the identification strategy in the same way

than previous high-frequency panel studies, that is relying entirely on contemporaneous weather

realizations [6, 7]. The effect on electricity demand in measured exclusively by the deviation

of observed temperature from its local average value, and therefore �j identifies shocks which

are informative of the average short-run response across locations. Controls include per capita

GDP and a matrix N including time and unit fixed-effects and a set of calendar dummies, see

equation 13a.

In the preferred specification the two sets of covariates of interest are: i) the 30-year moving

average of daily maximum temperature exposure binned into kth 3�C intervals, denoted by the

dummy indicators Dk,i,d; ii) the daily departure from these long-term averages, captured by

the positive and negative temperature anomalies, !+
i,d and !�

i,d, respectively9. I sort each daily

observation into bins with a specific equidistant cut off of 3�C 10

The effect of the weather anomalies from the climate is conditional on the temperature level:

a given anomaly (e.g. +/- 1�C) in a day with a hot climate norm (e.g. 28�C) affects the response

of the load demand differently than the same anomaly in a day with a cold climate norm (e.g.

12�C). Therefore, weather anomalies are included in the equation through an interaction term

with the climate variable, providing a flexible and asymmetric modulation of the linear piece-

wise response of the load. In order to reduce the number of variables included in the model,

I evaluate two alternative specifications: one in which weather anomalies are interacted with

all climate bins k and one in which weather anomalies are interacted with two aggregated bins

p capturing only the exposure to climatic norms below 15�C and above 24�C for Europe and

9An alternative specification uses month- (Dk,i,d) rather than calendar day-specific (Dk,i,m) variations in
average climate. As I find no substantial differences between the two specifications, results are presented for
the higher-frequency daily variable

10I conduct a set of robustness tests by adopting different cutoffs, ranging from 1.5�C to 5�C. I also test the
reference temperature bin representing thermal comfort, by excluding from the regression equation alternatively
the bins of the interval 15�C-18�C, 18�C-21�C and 21�C-24�C. I evaluate the performance of the different
alternatives based on standard performance metrics (AIC, BIC) and find that the specification based on 3�C
is the one obtaining the best scores. The selected thermal comfort interval for Europe is 18�C-21�C while for
India is 21�C-24�C.
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below 15�C and above 27�C for India11. The results of all specifications are provided in the

Supplementary Material (see the Supplementary Tables 1 - 7). The preferred model does not

include un-interacted terms for !+
i,d and !�

i,d, because they provide no additional information

with respect to the interacted terms.

In a set of alternative specifications I evaluate three ways in which per capita income,

measured by the logarithm of per capita GDP in the previous year, y, affects the response of

electricity demand to the climate and weather anomalies. In the equation 13b, income has

no effect on the shape of the temperature response: it is simply a non-linear control that

captures the adjustment of consumers’ low-frequency conditional mean level of demand. In the

equation 13c per capita income is assumed to interact only with the response of demand to

climatically determined diurnal temperature maxima. This captures the situation in which the

normal temperature regime induces agents to invest in stocks of energy-using space conditioning

durable, but the extent to which agents respond through actual stock adjustments and average

utilization levels is constrained by their income (as in the equation 59). The final specification

includes a further interaction term between income and weather (equation 13d), allowing to

evaluate the hypotheses that agents’ ability to afford a more intensive use of existing energy-

using stocks under a positive or negative temperature anomaly depends on their income (as in

the equation 61).

q =
X

k

�Tk D
T
k + �Y y +N�N + "1 (13a)

q =
X

k

�
�Ck
�
DC

k +
X

p(k)

DC
p(k)

⇥
(�wp(k))w

⇤
+ �Y y + �Y Y y2 +N�N + "2 (13b)

q =
X

k

�
�Ck + �C

k y
�
DC

k +
X

p(k)

DC
p(k)

⇥
(�wp(k))w

⇤
+ �Y y + �Y Y y2 +N�N + "3 (13c)

q =
X

k

(�Ck + �C
k y)D

C
k +

X

p(k)

DC
p(k)

⇥
(�wp(k) + �w

p(k)y)w
⇤
+ �Y y + �Y Y y2 +N�N + "4 (13d)

where

DC
k = 1[Tk 2 (TkTk)]

11As both specifications lead to very similar results (see the Supplementary Table 3 - 6), I rely on the latter
specification, providing a more aggregated but sufficiently flexible response function to weather anomalies.

83



kEurope 2 {< 0, 0� 3, ..., 27� 30, > 30}, kIndia 2 {< 12, 12� 15, ..., 30� 33, > 33}

DC
p(k) = 1[Tp(k) 2 (Tp(k),Tp(k))], p(k) 2 {< 12, > 24}

! 2 {w�

i,d, w
+
i,d}

w+
i,d =

8
><
>:
Ti,d � Ci,d, T > Ci,d

0 otherwise

w�

i,d =

8
><
>:
Ci,d � Ti,d, T < Ci,d

0 otherwise

The coefficients �Ck capture the potentially nonlinear peak load response to climatically de-

termined daily maximum temperature, while the coefficients �+p and ��p capture the potentially

asymmetric response of peak load to differences between each day’s maximum temperature

and the long-term normal maximum. The modulation of per capita income on the effects of

climate and weather anomalies is estimated though the interaction coefficients �C
k , �+

p and ��

p .

The matrix N includes time and unit fixed effect, controlling, respectively, for unobserved unit-

invariant and time-invariant confounders, as well as day-of-the-year, weekly, monthly and yearly

fixed effects, to control for calendar and seasonal effects unrelated to temperature variations.

Equations are estimated by OLS using White standard error robust to heteroscedasticity and,

alternatively, Newey–West standard errors accounting for serial correlation.

5.2.3 Results

Weather and AC ownership

Peak load temperature response conditional on AC : The responses of per capita daily peak

load to maximum daily temperature (Figure 12) exhibit the non-linear U-shape previously

found for mid-latitude locations [2, 7, 6, 9]. The minimum of the curve corresponds to the

non-weather sensitive per capita peak load of 0.65 kWh in Europe and 0.12 kWh in India.

The response to maximum temperatures, obtained without accounting for the AC prevalence

modulation (green line in Figure 12), rises from a +10% increase at 24�C-27�C to a +25%

increase when temperature is above 33�C in both marco-regions. The benchmark response

falls within the range of AC-dependent responses identified though the interaction effect. AC
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prevalence non-linearly amplifies the response of the peak load to temperatures above 24�C

(Figure 12 panel a and Methods). The amplification for a >33�C day in a State with a 70% AC

prevalence rate (i.e. above 95th percentile of the two regions’ distributions) is more than two

times as large as the response under the mean AC prevalence in Europe (20%) and India (13%)

(from +14% to +36% in Europe and from +21% to +49% in India). The amplification effect of

AC is much larger in the >33�C range than around 24�C-27�C, suggesting that the intensity of

utilization of cooling equipment increases disproportionately with extreme high temperatures.

Given the two- to three-fold increase in the mean AC prevalence level projected in the two

macro-regions circa 2050, I identify AC growth as a potential driver of large amplifications in

the hourly peak electricity consumption. Weather-driven peak load fluctuations that today

characterize mostly the regions with high AC prevalence will be experienced throughout larger

portions of Europe and India.

Interestingly, at low rates of AC prevalence (1%), a > 30�C day is associated with an av-

erage increase above the minimum of 6% in Europe, but 20% in India. This result suggests

that India’s population, lacking access to AC, may rely heavily other electricity-using appli-

ances (e.g., fans) as a substitute cooling technology to adapt to that country’s intense heat

exposure, varying in the region from 230-1370 annual CDD24 (5% - 95% quantiles) [18]. When

the residual effect of energy-intensive durable goods other than AC is filtered out, peak load

shocks for a given exposure to hot temperatures and AC ownership rate are very similar across

the two marco-regions (vertical segments in Figure 12). The responsiveness of the peak load

to maximum temperatures begins to saturate only above 36�C (separate observations of the

33�C-36�C and >36�C bins could be identified only for in India).

Air-conditioning prevalence and its drivers : I empirically model the cross-regional, time-

varying dynamics of air-conditioning prevalence in India and Europe. I measure the probability

of an average household living in any of the 47 sub-national regions across India and Europe to

own air-conditioning with the fraction of regional population having access to central or room

AC. AC adoption responds non-linearly to per capita income and the historical exposure to

cooling degree days, the annual sum of daily average temperature exceedances above a 24�C

threshold - CDD24, see Methods. AC prevalence increases rapidly in locations with warm

climates (CDD24 >250) and annual per capita income of above $20k, reaching rates as high

as 50%-70%, but in areas with cool climates (CDD24 <15) saturates at 15%-25%, irrespective
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Figure 12. Intensive and extensive margin response functions. a: Response of per capita
daily peak load to maximum daily temperatures (and 95% C.I.) based on Equation 7. Vertical
bars show the difference between the estimated response when AC >0% and when AC ⇡0%
for a >33�C (>36�C) day in Europe (India). b: AC ownership adoption function. Color
ranges represent the income-AC curves at different levels of exposure to CDDs under the median
urbanization level. Scatters represent the observed macro-regional AC ownership rates, as well
as the prediction at mid-century under RCP 8.5 and SSP 5. Segments present the 10th-90th
quantile of per capita income (horizontal) and AC prevalence (vertical) across the States in the
two macro regions in 2015 and circa 2050.
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of per capita income. Urbanization further amplifies prevalence, independently of income and

temperature (See Methods and Supplementary Material). The empirical AC adoption model

suggests that Europe’s current per capita income is already high enough to support widespread

adoption of AC, but the historically low exposure to extreme heat has contributed to keep

prevalence low.

Conversely, India’s low per capita income constrains households’ ability to acquire air con-

ditioners, despite the high historical exposure to thermal discomfort. Thus, AC growth will

respond relatively strongly to temperature in Europe’s richer temperate member states, and

to income in India’s poorer hotter states. By coupling the adoption model with projections of

CDD24s, income and population circa 2050, impacts of future temperature increases in Europe

are inferred from a synthetic richer current India—causing AC prevalence to more than double

from 19% to 41%, and effects of future economic development in India are inferred from a

synthetic hotter current Europe—causing AC prevalence to increase four-fold from 10% to 40%

(see Figure 12 panel b and Supplementary Material).

The current gap between developed and developing countries in the vulnerability to cli-

mate change is not eliminated in the future despite the convergence in the endowment of

air-conditioning: the 900 million Indian households that lack AC circa 2050 will be exposed to

substantially higher temperatures than their European counterparts (see section ??).

Climate and income model

I find evidence of a statistically significant, U-shaped, relationship between peak electricity

demand and the slowly varying climate exposure to maximum temperatures (see Supplementary

Tables 1-7 in the Supplementary Material). The spline function resulting from the combination

of the coefficients of the climate intervals (�k) increases more sharply in the temperature range

for cooling services (around 24�C and above) than for heating services (around 12�C and below)

both in Europe and India. The long-run response of the peak load to a shift in the climate from

the reference interval to maximum temperatures above 30�C is considerably higher in Europe (a

30% increase) than in India (an 11%-18% increase respectively in the intervals 30�C - 33�C and

above 33�C), when per capita income is fixed at the median level. In both Europe and India the

long-run exposure to cold temperatures increases the peak by around 8% - 10%. In India the

left-arm of the response derives from the exposure to mild temperatures around 10�C - 15�C,

suggesting that the underlying end-uses driving the shock are unrelated to residential heating

services and may derive from seasonal shifts in the power consumption of the agricultural and
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industrial activities that could not be captured though the fixed effects (such as the usage of

ground water irrigation through electric pumps [47]).

In the preferred specification the long-term spline function is modulated by the short-run ad-

justment effect triggered by weather anomalies through the coefficients �+p and ��p . The peak

load response associated to any given maximum temperature realization T is not unique, but

it depends on the underlying combination of the expected climate c and weather anomalies w.

Keeping the maximum temperature realization constant, I find that the magnitude of the peak

load shock when no weather anomaly occurs, i.e. when the expected exposure c equals the

observed exposure T (long-run response), differs from the peak load shock when a temperature

anomaly occurs, i.e. when the maximum temperature realization T equals c + w (short-run

response), see Equation 57. In particular, for any given T > 24�C the long-run response lies

above the set of short-run responses (coloured scatters in Figure 13): in other words, when

the peak load is allowed to adjust in the long-run though the extensive margin, its sensitiv-

ity to hot temperatures increases. This result suggests that increasing air-cooling appliances’

adoption is the driving underlying adaptation strategy to cope with an hotter climate. On the

other hand, for any given T < 15�C the long-run response lies within the set of short-run

responses, suggesting that the sensitivity of peak electricity demand to heating needs may be

reduced over time. Variations over time in the energy efficiency of appliances and better home

insulation may be factors that contribute to such effect 12. Furthermore, I find that per capita

income modulates both the long-run response of the peak load across the full set of bins k,

and the short-run response to positive weather anomalies occurring above 24�C for Europe and

27�C for India. Hence, the modulation effect of per capita income alters significantly both the

short-run and long-run responses (Figure 13): the shocks associated with maximum tempera-

tures above 30�C in Europe and above 33�C in India more than double when per capita income

shifts from the 25th quantile (12.000 USD/year for Europe and 1.100 USD/year for India) to

the 75th quantile (37.000 USD/year for Europe and 2.700 USD/year for India). I find that the

high-income response of India approaches the low-income response of Europe, despite the large

differences in nominal income per capita between the two regions.

Response function comparison across alternative methods

12The set of short-run responses is computed for each maximum temperature bins Tq (with a 1�C interval
width) by taking into account any combinations of C and ω observed in the sample that would result in a value
within Tq. In other words, the distribution of the observed C and ω in the sample is used to construct the
distribution of possible short-run responses for any given Tq.
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Figure 13. Long- and short-run adaptation responses to maximum temperature exposure by per
capita income quantiles. The long-run adaptation response (black line) is presented next to the
short-run response for each 1°C bin of maximum temperature exposure (coloured scatters). The
range of short-run responses is computed, for each 1°C bin of maximum temperature exposure,
from the distribution of the weather anomalies and climate norms in the two regions’ samples.
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The set of coefficients provided by the response functions of the two alternative methods

can be compared in order to investigate how the different methodologies perform with respect

to one another. Figure 14 shows the value of the peak load shock, i.e. the estimated coefficient

representing the percentage increase in the peak load with respect to the mean level at the

reference thermal comfort interval, based on the "Weather and AC ownership" (panel a) and

the "Climate and income model" (panel b). In the first case (panel a), the peak load shock is

defined for any given weather exposure interval, across the range of AC prevalence observed

in India (1-70%) and in Europe (1-85%). In the second case (panel b), the peak load shock

is defined for any given climate exposure interval (ranging from 24-27�C to >33�C) across the

range of per capita income in India (1-8k USD/year) and Europe (14-44k USD/year). While

the former set of shocks is linear across AC prevalence rates, the latter set of shocks is non-

linear in income, with a saturation effect more evident in Europe than in India. The difference

in the response function is driven by the underlying non-linear relation between per income per

capita and AC prevalence across climate exposure levels. The value of the "Climate and income

model" shocks in India is comparable to the value in Europe, despite the large differences in the

regions’ per capita income, because in India the exposure to a hotter climate results in similar

high levels of capital stock accumulation as in Europe, and effect that is captured directly with

the former model and indirectly with the latter. Furthermore, the value of the shock in each

region is comparable between the two models: the shock associated the highest AC prevalence

and maximum temperature bin based on weather observations (36-36�C for Europe and >36�C

for India) is comparable to the shock associated the highest per capita income and maximum

temperature bin based on climate (30-33�C for Europe and >33�C for India).

Climate change impacts on the peak load circa 2050

Both methodologies point to a substantial amplification of peak load circa 2050 in response

to climate change. At mid-century, the amplitude of daily peak load variations over the course

of the year can be greatly increased by hotter daily maximum temperatures in conjunction with

expansion in the prevalence of AC (see Figure 15, left panel) or of per-capita income (see Figure

15, right panel). European impacts on the peak load exhibit a strong North-South gradient

previously found by [6]. In northern regions with mild summers, AC prevalence remains low,

with higher warm season temperatures contributing to slight (5%) increases in summer peak

demand that do not offset winter peak declines that accompany decreased heating require-

ments. Conversely, in Southern regions daily summer peak demands increase by 20% - 30%.
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Figure 14. Response function comparison across alternative methods.

Substantial additional peak generation capacity is required circa 2050 in order to accommodate

the additional cooling demand in Southern European states, Italy (+13 GW) and Spain (+10

GW), and in the Indian states of Punjab, Uttar Pradesh and Maharashtra (+ 4 GW). A weaker

latitudinal gradient arises in India, where seasonal impact patterns are broadly similar across

the majority of states. Except for the December-March dry season, fraction increases in peak

demand are higher than in Europe, with uniform relative increases above 35% in North-Western

India, where the amplifications of maximum daily temperatures is coupled with high future AC

prevalence induced by income growth (approaching 100% in Punjab, Haryana and Chandigarh,

see Supplementary Material). This divergence arises from the interaction of the different cli-

mates and temperature-load responses in the two macro-regions. Low-latitude Indian states

are characterized by a near-monotonic demand response, where the diurnal maximum temper-

ature range (24-40�C) corresponds to the portion of Figure 12 to the right of the nadir, while

temperate Indian states and European countries exhibit the typical U-shaped response over a

diurnal maximum temperature distribution with a lower support (0-33�C). This result provides

further evidence against a latitudinal gradient of climate change impacts on energy demand

that extends all the way to the equator [9].

Total annual electricity demand in Europe increases by roughly 33 TWh, or 2% from today’s

consumption, since the additional annual consumption of 40 TWh in Southern states is balanced
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Figure 15. Comparison of climate change impacts on the peak load circa 2050. Relative increase
in the daily peak load, median of 29 GCMs circa 2050 under RCP 8.5 and SSP 5, obtained from
two alternative methods.

by mild decreases in consumption in Northern states. On the other hand, annual electricity

demand in India grows by as much as 188 TWh, or 17% from today’s consumption. The uncer-

tainty around mid-century climate change projections, as inspected from the distribution of the

impacts across 29 GCMs, does not affect considerably the projections (see the Supplementary

Material).

Adaptation-mitigation tradeoffs

I evaluate the additional carbon emissions resulting from the growth in electricity demand

for cooling simultaneously to the benefits of growing AC prevalence, namely the reduction in

the number of people exposed to heat stress. I measure the trade-off between mitigation and
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Figure 16. Maps of population exposure by AC growth scenario. Number of person-degree days
(billion) in India and Europe by scenario, with or without the growth in AC from the historical
level. Values in the color-palette are rescaled to 10�1 for easing visual inspection of the most
exposed areas.

adaptation by computing the state-level variations induced by climate change circa 2050 in: i)

the annual CO2 emissions from the additional electricity generation associated with AC use,

assuming the current power generation mix (see Methods); ii) the daily average number of

people that circa 2050 will be exposed to maximum temperatures above 24�C and have no AC

in their homes, measured by the count of person-degree days (DDs). I compare two cases: one

where population exposed to a hotter climate does not increase the AC prevalence with respect

to today ("no AC growth"), but responds to a hotter climate by increasing the utilization of the

current stock (i.e. though intensive margin only), and one where extensive margin adjustments

allow to increase AC prevalence up to the level estimated based on Eq. 8 under SSP 5-8.5 (i.e.

"AC growth", see also Figure 2, panel a).

I find that if AC prevalence increases in response to socio-economic and climate drivers,

all states experience a reduction in the number of exposed people (downward shift) and, at

the same time, an increase in the annual CO2 emissions (rightward shift), with respect to the

case in which AC prevalence is fixed at the historical level. Therefore, the benefit from the

reduced exposure of population comes with a costs in terms of the increased challenge to reduce
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emissions.

The increase in carbon emissions from a unitary reduction in person-degree day exposure

represents the extent of the tradeoff between adaptation and mitigation (Figure ??, panel b).

I compare the magnitude of the tradeoff in each 0.25x0.25 grid-cell in order to investigate pat-

ters of variations across regions and areas with different levels of development, proxied by the

average per capita income in the grid-cell. On average, a decrease in heat exposures by one

person-degree day results in 4 times lower electricity demand and 56% lower carbon emissions

in India than in Europe, as a result of the higher carbon-intensity of power generation in In-

dia. Differences in the tradeoff are reflected also within each region across per capita income

levels: I find that the median electricity consumption and carbon emissions per person-degree

day increases when moving from poorer areas (per capita income below 25th quartile) to richer

areas (per capita income above 75th quartile) both in India and Europe. Only in the richest

European areas I identify an inversion in the tend, as the emissions per person-degree day with

respect to the previous income per capita quartile decline due to a reduction in the carbon

intensity of the power mix in those areas.

At the macro-regional level, the growth in AC prevalence circa 2050 results in an increase

of the annual additional CO2 emissions from 38 Mton CO2 to 160 Mton CO2 in India and

from 7 Mton CO2 to 17 Mton CO2 in Europe and, at the same time, it reduces the number

of average daily heat exposures to maximum temperatures above 24�C from 11.1 billion to 7.3

billion person-degree days in India and from 430 million to 265 million person-degree days in

Europe. Even after accounting for AC growth, I project that each day circa 2050 on average in

India roughly ten times more people than in Europe will be exposed to maximum temperatures

above 24�C and have no ACs in their homes. Additional emissions associated with the growth

in AC prevalence are non negligible: in India and Europe they correspond to 15% and 2% of

the estimated historical emissions from power generation.

5.2.4 Discussion

While there is no comparable study providing evidence of the impact of extensive margin

adjustments to climate change on peak electricity demand, a small number of studies indicate

how the peak load of developed countries responds to intensive margin adjustments [7, 6]. The

range of shocks provided for the European countries in [6] are in line with the projections
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Figure 17. Annual exposed population and carbon emissions under alternative AC prevalence
scenarios circa 2050. State-level variations induced by climate change circa 2050 in the annual
CO2 emissions from power generation and annual count of person-degree days exposed to daily
maximum temperatures above 24�C, respectively with (blue) and without (red) the projected
growth in AC prevalence. States are grouped into different panels depending on the size of the
population exposed. The states with the smallest population counts have been removed to avoid
clutter, the figure showing all states is shown in the Supplementary Material.
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based solely on the amplification effect of temperatures circa 2050 and current AC prevalence.

The preferred model specification provides substantially higher relative changes in peak demand

already around 2050, due to the long-run adjustments of AC ownership on top of the short-term

adjustments of AC use.

Furthermore, the projections are inclusive of the amplification effect of per capita income

and climate change on the extensive margin, an effect that has so far been identified only by

studies exploiting annual-level cross-sectional variation between households [12, 11]). Finally,

the non-linear structure of the response function based on temperature bins calls into questions

findings of studies which rely only on response functions limited to extreme temperatures (such

as [48]). Overall, this paper reinforces the argument that changes in electricity demand due to

climate change adaptation are going to be driven by movements along both the extensive and

intensive margin, with large differences between developed and developing regions [10].

Although I project a two- to four-fold increase in the macro-regional AC ownership rate

of households in Europe and India respectively, I find that as the climate warms, almost 640

million people across India and 60 million across Europe remain exposed to heat stress with no

AC in their homes on an average day of the year. Despite being lower than the average exposure

under historical climate and AC prevalence (990 million people in India), the projected number

of exposed people in the future identifies how adaptation through the use of energy-intensive

appliances, remaining not affordable for many under the socio-economic assumptions of SSP5

and SSP2 (see Supplementary Material), may require alternative adaptation options or policy

intervention to account for the needs of the most exposed and poorest parts of society. The

regional variation in the incidence of the two components, intensive and extensive margin,

within EU and Indian regions, suggests that differentiated policy interventions might be more

effective.

Here I draw the conclusions on the mitigation-adaptation tradeoff with a measurement of

population exposures assuming that only the presence of AC in the household shields people

from heat stress. The number of exposed people tends to be overestimated when lacking to

account for forms of adaptation alternative to AC, such as fans or efficient building insulation,

that can reduce thermal stress. On the other hand, the method presented tends to underes-

timate exposures as I do not account for the exposure of population owing an AC occurring

during the time spent outdoors for commuting, work or leisure activities.

While the main impact metrics are constructed taking the median across 29 GCMs, I also
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report the individual models’ impacts and analyse how the uncertainty around climate warming

affects the results (see Supplementary Material). Recent evidence focusing on the outputs of

the Coupled Model Intercomparison Project, phase 6 (CMIP6) has shown that relying on

multi-model ensemble medians may lead to higher projections of warming than the IPCC’s

assessed-warming averages [49]. In the sensitivity analysis I rely on the recent classification

of GCMs proposed by [49], that based on the metrics of equilibrium climate sensitivity and

transient climate response identifies the GCMs providing reasonable projections of warming

consistent with the IPCC AR6, and those characterized by high-sensitivity resulting in "too

hot" projections. While we find only one clear outlier on the high end, we also identify a

10%-18% difference between the impacts relying on the ensemble median of the "consistent"

vs "hot" models groups, depending on the region (see Supplementary Material). The results

provide new evidence on the significance of model selection in impact assessments.

I leave for future work the adoption of a weather variable accounting for humidity (i.e.

daily maximum wet-bulb temperature), which may be a more accurate explanatory variable

when aiming to identify the energy used by appliances to provide thermal comfort in tropical

regions [18]. A further improvement would be accounting for differences in the temperature-load

response function across sectors, as the available evidence based on more aggregated energy

demand statistics shows considerable heterogeneity between the residential, commercial and

industrial users [3, 50].

5.3 Income-dependent climate shocks in an dynamic error correction

model

5.3.1 Introduction

In this section I investigate how climate change will shape the mid-century electricity demand

of a large tropical country, Brazil, by adopting a dynamic econometric model based on sub-

national data. I aim to identify the long-term relationship between electricity demand and

weather conditions in Brazil, a rapidly growing tropical economy. Iassemble a panel dataset of

monthly electricity demand of 27 Brazilian Federal States across four different sectors: residen-

tial, commercial, industrial, and rural. Icouple energy statistics with high resolution weather

data, thus enabling us to retain detailed information from the weather distribution and its

geographical specificity. Itest the adequacy of alternative econometric specifications and ther-

97



mal discomfort measures as robustness checks. Finally, by building on the estimated response

function, Iquantify the mid-21st century (2041-2060) amplification of electricity demand due

to moderate (RCP2 4.5) and severe (RCP 8.5) warming scenarios [51].

Though previous studies have investigated the impacts of climate change on Brazilian power

demand [52], the estimation of such impacts at finer spatiotemporal scales, while also accounting

for the adjustments of appliance penetration over time, is lacking. Furthermore, the empirical

works evaluating the sensitivity of energy demand to weather conditions have in general not

expanded the analysis beyond the residential and commercial sector [53, 54]. While aggregate

industrial energy demand is typically considered non-sensitive to weather variations because of

the strong composition effects [53], recent empirical investigations show that the energy demand

of the industrial as well as the agricultural and transport sectors, could be remarkably affected

by climate adaptation [3]. The sectoral disaggregation of electricity demand adopted in this

study is therefore an important methodological contribution to the literature. Furthermore,

similarly to [1], I test the adequacy of alternative weather variables to capture the variation of

monthly electricity demand.

5.3.2 Methods

Data: I assemble a panel dataset of monthly observations for the 2004-2017 period, for all 27

Brazilian Federal States, comprising of: (i) per capita electricity consumption disaggregated

by sector (residential, commercial, industrial, public and rural); (ii) socio-economic drivers

(GDP per capita, sectoral electricity prices) and, (iii) weather variables measuring thermal

discomfort (I adopt alternatively monthly temperature bins in the main specification and Degree

Days as a robustness check). Electricity consumption is obtained from the Resenha Mensal do

Mercado de Energia Elétrica [55], while average monthly electricity prices by the Agência

Nacional de Energia Elétrica, ANEEL [56]. State-level monthly GDP and population are

calculated by a linear interpolation of the yearly regional GDP available from the Instituto

Brasileiro de Geografia e Estatistica, IBGE [57]. Hourly near-surface air temperature and

relative humidity data (aggregated to daily averages) used for computing the thermal discomfort

indices are derived from the ERA5-Land reanalysis data made available by the European Center

for Medium Range Weather Forecasting, ECMWF [39], at 0.1� gridded resolution (see SI). Using

the input meteorological variables, I assemble two thermal measurements of CDDs: dry-bulb

(CDDsdry) and wet-bulb temperatures (CDDswet). CDDswet make it possible to account for
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relative humidity, in addition to temperature [18, 58]. Monthly CDDsdry are computed by using

a threshold of 24�C, which is the value typically associated with the thermal comfort of tropical

countries [18]. by definition are lower in magnitude compared to , and equal when rh=100%,

i.e., when both dry- and wet-bulb temperature are equal (see [59] for further details). For this

reason, I adopt two alternative thresholds, 18�C and 24�C, for computing monthly CDDswet.

HDDs are computed by utilizing the commonly adopted threshold of 18�C, and an alternative

threshold of 15�C is used as a robustness check. As an alternative thermal discomfort measure,

I adopt the monthly count of days in which the daily mean temperature falls in a set of intervals

(henceforth “temperature bins”). Also in this case, I test the adequacy of both dry-bulb and

wet-bulb temperature, leading to two alternative measurements of the temperature bins. I

adopt the temperature bins to capture the potential non-linear effect of days with extreme

temperatures in Brazil, a country where many areas exhibit relatively low variability of daily

temperatures [58]. I sort each daily observation into bins with a specific equidistant cut off of

3�C3. Regressions employing bins flexibly trace out piecewise linear splines. The aggregated

response is, however, non-linear, broadly representing a parsimonious regression specification

with a quadratic term (see [59] for further details). All meteorological variables are computed

at the grid cell level and are subsequently aggregated to the state-level using gridded population

data from the Center for International Earth Science Information Network.

Concerning projections for future climate change scenarios, changes in weather exposures are

assembled utilizing the NASA Earth Exchange Global Daily Downscaled climate Projections

(NEX-GDDP) dataset [39]. The hindcast period, representing the current climate, ranges from

1986-20055, while mid-21st century future climates are drawn from the models’ output for

2041-2060, under both RCP 4.5 and 8.5 scenarios.

Econometric model

I estimate a dynamic ECM, building on the work by [3, 60]. The statistical tests validating

the adequacy of the ECM to the panel data, based on [61, 62], are presented in the the Sup-

plementary Material. The fixed effect specification described below, makes it possible to check

for both the presence of unit-specific unobserved factors which do not change over time, and

the time-specific unobserved factors that affect all units equally in each time period. The unit

fixed effect in the ECM captures the influence of unobserved time-invariant country-specific

factors on the average growth rate of electricity demand, while the time fixed effect captures

the influence of unobserved unit-invariant time-specific factors on the average growth rate of
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electricity demand [62]. The equation partitions the influence of the covariates into short-term

and long-term effects, captured by the terms in square and curly braces, respectively (Eq. 14).

If the ECM approach is appropriate, then -1 < � < 0, while � and ⌘ estimate the long-term

effect, that of a unit increase in thermal discomfort (h), GDP per capita (gdp) and prices (p)

have on y. These long-term effects will be distributed over future time periods according to

the rate of error correction � (Eq. 15). The specification assumes homogeneous short- and

long-term coefficients, as well as the speed of adjustment within the group of 27 Federal States.

∆yi,t = +↵Vi + ✓Zt + [�∆gdpi,t + ◆∆hi,t + ✓∆pi,t] + �yi,t�1

�(⌘gdpi,t�1 + �hi,t�1 + ⇣pi,t�1) + "i,t

(14)

�long�run = �(�/�)

⌘long�run = �(⌘/�)
(15)

�hi,t�1 =
T=biniX

T=binj

�Ti,t�1 _ �CDDdry
i,t�1 _ CDDwet

i,t�1 (16)

With: i: Federal State t: month (Jan 2004 to Dec 2017) y: natural logarithm of per capita

monthly electricity consumption h: thermal discomfort indicator selected in the model, alterna-

tively set to temperature bins (Ti,t), drybulb CDDs (CDDsdryi,t ) or wetbulb CDDs (CDDswet
i,t )

gdpi: natural logarithm of gdp per capita p: natural logarithm of electricity prices V: vector of

state-specific dummies Z: vector of time-specific dummies " : randomerrors.

In a second model specification (Eq. 17), I investigate whether the level of income, cap-

tured by the monthly GDP per capita, modulates the response of electricity consumption to

thermal discomfort in equilibrium. The hypothesis tested here is whether higher levels of per

capita GDP amplify the optimal response of electricity consumption to thermal discomfort.

This amplification would result from an increase in the optimal level of stock penetration of

durables in households characterized by higher average income [45]. Other factors that could

affect the aggregate impact of per capita income on the weather response function, include a

variation in the propensity to use ACs, and a variation in the tolerance for heat of households.
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The interaction effect captures the aggregated impact of all possible drivers contributing to

identifying the income modulation effect. I test this hypothesis by having the level of GDP per

capita interact with the lagged thermal discomfort variables included in the dynamic ECM.

The resulting specification is the following:

∆yi,t = +↵Vi + ✓Zt + [�∆gdpi,t + ◆∆hi,t + ✓∆pi,t] + �yi,t�1

�(⌘gdpi,t�1 + �hi,t�1 + �hi,t�1 · gdpi,t�1 + ⇣pi,t�1) + "i,t

(17)

I estimate Eq. 14 and 17 for each sector and alternative thermal discomfort variables, using

ordinary least squares (OLS) fitting criterion. The results of the tests on the presence of

cross-sectional heterogeneity, serial correlation and multicollinearity among the variables are

presented in the Supplementary Material. Finally, in order to identify which model specification

better represents the evolution of electricity over time, I compute multiple performance metrics

as described in the Supplementary Material.

In the second stage of the analysis, I combine econometrically estimated long-term elastici-

ties with socioeconomic and climate change scenarios in order to project the future magnitude

of sectoral electricity demands around mid-21st century. First, GDP and population projections

around the year 2050 drive projections of baseline electricity demand. I use the downscaled

shared socioeconomic pathways (SSPs) projections of population and GDP, available for the

SSPs 1-3 [63]. Next, climate change impacts on electricity demand are developed by forcing

the fitted empirical response functions with the distributions of the derived thermal discomfort

indicators under future climate warming. The plausible future (2041-2060) spread of ther-

mal discomfort during the baseline historical period (1986-2005) is estimated by utilizing the

NEX-GDDP multi-model minimum, maximum and median measurements of the monthly ther-

mal discomfort variables. I use, alternatively, the RCPs 4.5 and 8.5 scenarios, which yield a

global average temperature increase, respectively, of 1.5�C and 2�C at around the year 2050.

The climate change impact metric is derived from the computation of the differences in ex-

posure between each GCM’s simulated current and future climates, rather than on the direct

comparison of simulated future exposures against their observed counterparts, since climate

model simulations generally do not reproduce observed high frequency weather extremes and

may therefore exhibit biases relative to current climate [64, 65]. This approach is achieved by

adopting the the ‘delta’ change method [66]:
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Ψi,h,s,2050 = [
exp(b�h

s · 1/n ·
Pn

t=1
ehFut
i,t )

exp(b�h
s · 1/m ·

Pm

t=1
ehHist
i,t )

� 1] ⇤ 100 (18)

Ψi,h,s,2050 represents the change in electricity demand determined by future climate, relative

to what is historically computed for each thermal discomfort variable (h) in each Federal State

(i), at any given month (t), and for any given sector (s). More details on the delta change method

are presented in the Supplementary Material. The composite effect of socio-demographic and

climatic components yields the projected electricity demand. Note that this approach takes

into account urbanization dynamics in two ways: implicitly, as future state-level temperature

shocks are derived from population-weighted gridded fields, and directly, as I derive total state-

level demand by multiplying the projected per capita electricity consumption by the population

count, which varies between and within regions across SSPs.

5.3.3 Results

Income per capita modulates the long-term adjustments to weather shocks: Across

all specifications, the ECM coefficients , � and ⌘ (see Eq. 14) are statistically significant (p <

0.05) and have the expected sign (see the Supplementary Tables S7-S9 in the Supplementary

Material). In accordance with part of the literature [7], I find no evidence of a significant

relationship between electricity and weather exclusively for the industrial sector. The model

based on the temperature bins performs better than the models based on the Degree Days across

all sectors (see the the Supplementary Material). This result underscores the importance of

allowing for the non-linear impact of temperatures on electricity demand, a characteristic well

captured by the specification employing temperature bins. Furthermore, the specification that

includes the interaction between per capita GDP and the long-term effect of weather (Eq.

14) performs better than the specification with no interactions (Eq. 17). Finally, I find that

the model based on dry-bulb temperature bins performs better than the model based on wet-

bulb temperature bins (see Supplementary Tables S9-S10 in the Supplementary Material). I

therefore base the projections of future shocks of electricity demand on the non-linear dry-

bulb temperature response function, which allows for the modulating effect of per capita GDP.

Figure 18 shows the long-term coefficients (� long-term) estimated from Eq. 15. Each �long�term

element captures the marginal effect of an additional day of exposure within the corresponding
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interval (e.g., the average effect of one more day in the 24�C-27�C bin, versus the reference

comfort level, the bin 18�C-21�C dropped in the regression11). Only intervals >24�C are

characterized by a significant interaction coefficient with income (see the Supplementary Tables

S7 - S9 in the Supplementary Material). The magnitude of the long-term semi-elasticities

indicates that electricity consumption tends to increase with higher thermal discomfort. I find a

strong non-linear behavior, as the coefficient associated with an increase in the frequency of days

with average temperature >30�C is roughly two times larger than the same coefficient of the

27�C-30�C interval, and four times larger than the 24�C-27�C interval. Furthermore, sectoral

differences are non-negligible: residential demand exhibits the highest response, followed by the

commercial sector and lastly by the public and rural sector. The level of regional per capita

GDP greatly affects the magnitude of the long-term adjustment: the coefficient associated to

temperatures >30�C in the highest income decile is almost four times higher than the one

in the lowest income decile in the residential sector (a 4% increase in demand versus a 1%

increase), and almost three times higher in the commercial sector (a 2.5% increase versus

a 0.8% increase), while for the public and rural sectors the difference is negligible. I find no

evidence of a statistically significant response of power demand to low temperatures, suggesting

that heating requirements may be primarily met through other fuels’ consumption.

The long-term response is greater than the short-term one by roughly 20%-30%, depending

on the specification (see the Supplementary Tables S7-S9 in the Supplementary Material).

This result validates the distinction between the intensive- and extensive-margin adjustments

in this empirical setting, as it confirms that both income and contemporaneous weather shocks

exert persistent effects on electricity demand. The error-correction coefficients are uniformly

significant, ranging between -0.35 and -0.45 depending on the sector, implying that at each time

period, a share of 35%-45% of the remaining gap is corrected. Electricity demand re-equilibrates

after a shock so that a full equilibrium is reached within one year across the three sectors. The

service sector is characterized by the most rapid response for closing the disequilibrium gap

(eight months), suggesting that the propensity of replacement and penetration of energy-using

appliances by commercial and public agents under disequilibrium conditions is slightly higher

than the propensity of households (12 months).

Turning to the effects of socio-economic growth on the levels of electricity demand captured

by the long-term coefficients of per capita GDP, I find that the residential sector’s long-term

adjustments are 40% higher than those of the commercial, public and rural sectors. The results
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evidence of a statistically significant response of power demand to low 
temperatures, suggesting that heating requirements may be primarily 
met through other fuels consumption. 

The long-term response is greater than the short-term one by roughly 
20%-30%, depending on the specification (see the Supplementary 
Tables S7-S9). This result validates the distinction between the inten-
sive- and extensive-margin adjustments in our empirical setting, as it 
confirms that both income and contemporaneous weather shocks exert 
persistent effects on electricity demand. The error-correction co-
efficients are uniformly significant, ranging between -0.35 and -0.45 
depending on the sector, implying that at each time period, a share of 
35%-45% of the remaining gap is corrected. Electricity demand re- 
equilibrates after a shock so that a full equilibrium is reached within 
one year across the three sectors. The service sector is characterized by 
the most rapid response for closing the disequilibrium gap (eight 
months), suggesting that the propensity of replacement and penetration 
of energy-using appliances by commercial and public agents under 
disequilibrium conditions is slightly higher than the propensity of 
households (12 months). 

Turning to the effects of socio-economic growth on the levels of 
electricity demand captured by the long-term coefficients of per capita 
GDP, we find that the residential sector s long-term adjustments are 40% 
higher than those of the commercial, public and rural sectors. Our re-
sults are within the range estimated by previous studies [19, 59, 63] (see 
the Supplementary Table S12). The coefficients associated to the price of 
electricity are significant but with a counterintuitive, positive sign. An 
inspection of the time series of prices and GDP per capita suggests that 

the two are highly correlated, since the former has been evolving in the 
wake of increased per capita GDP over the years (see the Supplementary 
Figure S5). The relationship may further be biased by the imperfection 
of the market due to the subsidies applied to low-income households 
[61,62]. We drop electricity prices in our final specification in order to 
provide unbiased estimates of the GDP per capita coefficient. 

.&,& Economic #ro+t  am�li0es t e relati�e im�act o� ada�tation 

The long-term elasticities identified through the ECM model are 
applied to project the sectoral future electricity demand around mid 
21st-century under different socioeconomic and climatic conditions. 
Baseline future sectoral electricity demand, i.e., demand without 
climate change, varies greatly depending on the SSP (see Supplementary 
Table S11): total demand in 2050 is projected to increase from 20% 
under the SSP 3 to 85% under the SSP 1, with respect to the 2017 level. 
Per capita electricity consumption grows at a faster pace, respectively 
between 35% and 110%, depending on the SSP. The residential sector 
fuels most of the increase, since the demand of households in SSP 1 are 
more than two times larger than demand in 2017 (from 134 TWh to 164- 
298 TWh, depending on the SSP). 

Climate change exerts an additional influence on electricity demand, 
deriving from the increase in thermal stress. This shock is driven by a 
significant shift in the number of days from the mid-temperature bins 
(24 C-27 C) to the high-temperature bins (27 C-30 C and 30 C), 
affecting in particular the North, East and Centre-West of Brazil (See 
supplementary Figure S1). Higher thermal stress triggers a response of 

Fi�ure 1. Response of electricity demand to thermal stress. The long-term coefficients of the temperature bins based on the ECM Eq. 1a (Panel a) and Eq. 2a (Panel b) 
are reported. The 95% confidence intervals (shaded regions) are based on standard errors robust to heteroskedasticity, cross-sectional and auto-correlation. Panel b 
presents the heterogeneous coefficients based on the interaction with income per capita in different deciles (lower, middle and upper deciles). 
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Figure 18. Sector-specific long-run response of the electricity demand to temperature in Brazil.
The long-term coefficients of the temperature bins based on the 14 and 17 are reported. The 95%
confidence intervals (shaded regions) are based on standard errors robust to heteroskedasticity,
cross-sectional and auto-correlation. Panel b presents the heterogeneous coefficients based on
the interaction with income per capita in different deciles (lower, middle and upper deciles).

are within the range estimated by previous studies [19, 59, 63] (see the Supplementary Table

S12 in the Supplementary Material). The coefficients associated to the price of electricity

are significant but with a counterintuitive, positive sign. An inspection of the time series of

prices and GDP per capita suggests that the two are highly correlated, since the former has

been evolving in the wake of increased per capita GDP over the years (see the Supplementary

Material). The relationship may further be biased by the imperfection of the market due to

the subsidies applied to low-income households [61,62]. I drop electricity prices in the final

specification in order to provide unbiased estimates of the GDP per capita coefficient.

Economic growth amplifies the relative impact of adaptation.

The long-term elasticities identified through the ECM model are applied to project the

sectoral future electricity demand around mid 21st-century under different socioeconomic and

climatic conditions. Baseline future sectoral electricity demand, i.e., demand without climate

change, varies greatly depending on the SSP (see Supplementary Table S11): total demand in

2050 is projected to increase from 20% under the SSP 3 to 85% under the SSP 1, with respect to

the 2017 level. Per capita electricity consumption grows at a faster pace, respectively between
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35% and 110%, depending on the SSP. The residential sector fuels most of the increase, since

the demand of households in SSP 1 are more than two times larger than demand in 2017 (from

134 TWh to 164-298 TWh, depending on the SSP).

Climate change exerts an additional influence on electricity demand, deriving from the in-

crease in thermal stress. This shock is driven by a significant shift in the number of days from

the mid-temperature bins (24�C-27�C) to the high-temperature bins (27�C-30�C and >30�C),

affecting in particular the North, East and Centre-West of Brazil (see the Supplementary Mate-

rial). Higher thermal stress triggers a response of the electricity demand, computed as the ratio

of sectoral electricity demand in a future climate relative to the electricity demand under the

historical climate (Ψ, see Eq. 18). Figure 19 shows the value of the shock by Federal State and

month under the RCP 4.5 (the total shock for the RCP 8.5 is presented in the Supplementary

Material). The shocks of all sectors affected (residential, commercial, public and rural, and

excluding industrial) are combined into a unique building demand shock. The projections ex-

cluding an interaction effect between weather and per capita income point to an increase in the

monthly per capita electricity demand of buildings ranging between 10% and 20%, depending

on the state and the period of the year (“No income effect" panel). Regional differences in

thermal stress exacerbation result in heterogeneous effects across Federal States and seasons,

as the percentage increases in total electricity demand are lowest in the South and highest in

the North and Centre-West13.

Markedly higher adaptation requirements originate when the amplification effect caused by

economic growth is taken into account, as per capita monthly electricity demand is projected to

increase by up to 30% - 45% in SSP1, 25% - 40% in SSP2 and 20% - 30% in SSP3, depending

on the state. In other words, I find that when the rise in thermal stress is combined with

the higher sensitivity to weather shocks of a richer economy, the relative increase in electricity

demand from adaptation more than doubles in magnitude, with large differences across states

and SSPs. The residential and commercial sectors are affected the most, while the combined

public and rural sector is characterized by lower shocks due to the lack of a modulating effect

of per capita income.

Climate change and population growth fuel large additional electricity require-

13North: Acre, Amapa, Amazonas, Para, Rondonia, Roraima, and Tocantins; North East: Alagoas, Bahia,
Ceara, Maranhao, Paraiba, Pernambuco, Piaui, Rio Grande Norte, Sergipe; Centre-West: Distrito Federal,
Goias, Mato Grosso, Mato Grosso do Sul; South: Parana, Rio Grande do Sul, Santa Catarina; South-West:
Espirito Santo, Minas Gerais, Rio de Janeiro, Sao Paulo
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the electricity demand, computed as the ratio of sectoral electricity 
demand in a future climate relative to the electricity demand under the 
historical climate ( , see Eq. 3). Figure 2 shows the value of the shock by 
Federal State and month under the RCP 4.5 (Supplementary Figure S2 
presents the total shock for the RCP 8.5). The shocks of all sectors 
affected (residential, commercial, public and rural, and excluding in-
dustrial) are combined into a unique building demand shock. The pro-
jections excluding an interaction effect between weather and per capita 
income point to an increase in the monthly per capita electricity demand 
of buildings ranging between 10% and 20%, depending on the state and 
the period of the year (Figure 2, No income effect panel ). Regional 
differences in thermal stress exacerbation result in heterogeneous effects 
across Federal States and seasons, as the percentage increases in total 
electricity demand are lowest in the South and highest in the North and 
Centre-West. 

Markedly higher adaptation requirements originate when the 
amplification effect caused by economic growth is taken into account, as 
per capita monthly electricity demand is projected to increase by up to 
30% - 45% in SSP1, 25% - 40% in SSP2 and 20% - 30% in SSP3, 
depending on the state. In other words, we find that when the rise in 
thermal stress is combined with the higher sensitivity to weather shocks 
of a richer economy, the relative increase in electricity demand from 
adaptation more than doubles in magnitude, with large differences 
across states and SSPs. The residential and commercial sectors are 
affected the most, while the combined public and rural sector is char-
acterized by lower shocks due to the lack of a modulating effect of per 
capita income (Supplementary Figure S3). 

.&(& Climate c an#e and �o�ulation #ro+t  �uel lar#e additional 
electricit� re1uirements 

We combine baseline per capita electricity demand with the climate- 
driven shock and population projections by SSPs to quantify the total 

additional electricity required to adapt under the alternative socioeco-
nomic and climate projections (Figure 3). Under the RCP 4.5 (RCP 8.5), 
adaptation increases the electricity demand of Brazilian buildings circa 
2050 by up to 20-25% (25%-30%) during summer months, and up to 
9%-14% (12%-18%) yearly, depending on the SSPs. This increase cor-
responds to additional requirements of up to 40-94 TWh (51-117 TWh) 
per year under the RCP 4.5 (RCP 8.5), up to one third of the total de-
mand of buildings in 2017, equal to 300 TWh (Supplementary 
Table S13). This result suggests that income has a comparatively more 
important role than climatic exacerbation in expanding weather- 
dependent energy requirements. The residential and commercial sec-
tors drive more than 80% of the total increase (Figure 3, panel b). The 
differences across the possible socio-economic pathways are greater 
than the differences across RCPs and GCMs projections. Importantly, 
the projections allowing for the modulation effect of income per capita 
results in almost three-times greater energy requirements than the 
projections excluding this effect (see Supplementary Table S13). 

We find a remarkable heterogeneity in the increase of power demand 
across Federal States (Figure 4). States in the North (Acre, Amapa, 
Amazonas, Para, Rondonia, Roraima, and Tocantins), and Centre-West 
(Distrito Federal, Goias, Mato Grosso, Mato Grosso do Sul) experience 
the highest increases in the per capita yearly demand, with a median 
value across states ranging from 600 kWh/person to 1200 kWh/person, 
depending on the SSP and RCP. The highly populous states in the South- 
West (Espirito Santo, Minas Gerais, Rio de Janeiro, Sao Paulo) account 
for the largest share of the additional yearly demand, despite the rela-
tively low additional per capita demand. The states of Rio de Janeiro and 
Sao Paulo in particular experience a remarkable increase in the total 
electricity requirements due to rising thermal discomfort and population 
growth, ranging from roughly 9 to 21 TWh in the former, and from 11 to 
25 TWh in the latter, depending on the scenario. The amplification of 
demand is equal to roughly 30%-70% and 13%-30% of the power de-
mand of buildings in 2017 in the two states, respectively. 

Fi�ure 2. Delta change shock across months and Federal States under the RCP 4.5. Federal States are ordered by regional areas: North: Acre, Amapa, Amazonas, 
Para, Rondonia, Roraima, and Tocantins; North East: Alagoas, Bahia, Ceara, Maranhao, Paraiba, Pernambuco, Piaui, Rio Grande Norte, Sergipe; Centre-West: Distrito 
Federal, Goias, Mato Grosso, Mato Grosso do Sul; South: Parana, Rio Grande do Sul, Santa Catarina; South-West: Espirito Santo, Minas Gerais, Rio de Janeiro, 
Sao Paulo. 
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Figure 19. Delta change shock across months and Federal States under the RCP 4.5.

ments

I combine baseline per capita electricity demand with the climate-driven shock and popula-

tion projections by SSPs to quantify the total additional electricity required to adapt under the

alternative socioeconomic and climate projections (Figure 20). Under the RCP 4.5 (RCP 8.5),

adaptation increases the electricity demand of Brazilian buildings circa 2050 by up to 20-25%

(25%-30%) during summer months, and up to 9%-14% (12%-18%) yearly, depending on the

SSPs. This increase corresponds to additional requirements of up to 40-94 TWh (51-117 TWh)

per year under the RCP 4.5 (RCP 8.5), up to one third of the total demand of buildings in

2017, equal to 300 TWh (Supplementary Table S13). This result suggests that income has a

comparatively more important role than climatic exacerbation in expanding weather-dependent

energy requirements. The residential and commercial sectors drive more than 80% of the total

increase (Figure 20, panel b). The differences across the possible socio-economic pathways are

greater than the differences across RCPs’ and GCMs’ projections. Importantly, the projections

allowing for the modulation effect of income per capita results in almost three-times greater

energy requirements than the projections excluding this effect (see Supplementary Table S13).

I find a remarkable heterogeneity in the increase of power demand across Federal States

(Figure 21). States in the North (Acre, Amapa, Amazonas, Para, Rondonia, Roraima, and

Tocantins), and Centre-West (Distrito Federal, Goias, Mato Grosso, Mato Grosso do Sul)
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.he possibility of comparing our results "ith the literature is limited 
to the small number of studies that directly in'estigate future po"er 
needs in a changing climate, and either focus on Brazil at a country le'el 
#$-,*/,*6%, or report regionally disaggregated global pro1ections #6,6,, 
6-%. .he pro1ected additional demand re+uired for climate change 
adaptation is larger than pre'ious country-le'el assessments based on 
static econometric models #$-,*/,*6%, "hile is in line "ith the results of 
Integrated 7ssessment Models #6,6,,6-%, "herein cooling needs are 
estimated based on bottom-up energy demand models "hich allo" for 
an increase in the penetration of cooling appliances 3see ?upplementary 
Figure ?94. 

�. �i�cu��ion 

0ur approach pro'ides a no'el, empirically grounded method to 
+uantify ho" socioeconomic de'elopments modulate the response of a 
population s po"er demand for climate change adaptation, on top of the 
extent to "hich they scale up climate-independent demand. .he dy-
namic econometric speci<cation ma8es it possible to in'estigate the 
extent to "hich po"er demand may e'ol'e in the future depending on 
the ability of agents to ad1ust their energy-using durable stoc8 according 
to different le'els of per capita income. .he income ampli<cation effect 
results in thermal adaptation re+uirements three times larger than in the 
case "here no interaction is included. 7s a result, "e <nd that income 
gro"th has a comparati'ely more important role than climatic exacer-
bations in the expansion of electricity demand for cooling. 7s the 
ampli<cation of the shoc8 due to per capita income gro"th can plausibly 
characterize other "orld areas, expanding this analysis to other rapidly 
gro"ing tropical economies "ould be of great importance. .his aspect is 
underscored by recent micro-le'el e'idence on the determinants of 
future air-conditioning adoption in tropical economies #$6%. Pa'anello 
et al., #$6%, focusing on Brazil, India, Indonesia, and Mexico, <nd that 
these countries ha'e a 'ast unmet demand for air-conditioning, and that 
appliance o"nership is highly une'en across income deciles. .heir re-
sults in line "ith our study, indicate that a household s ability to adapt to 
climate change through the use of energy is lin8ed to its socio-economic 
condition. 

Bene<ts of early mitigation, expressed by the reduction in the 
additional electricity re+uired to adapt under the &CP -./ "ith respect to 
the &CP :./, are non-negligible. In the path"ay characterized by the 
largest FBP per capita and population gro"th among the three ??Ps 
e'aluated 3??P $4, the a'oided increase in electricity demand associated 
"ith early mitigation totals *- .>h per year, e+ual to one-fourth of the 
electricity demand of Brazil s buildings in *($9. .he bene<ts of early 
mitigation are lo"er under the ??P * 3middle-of-the road4 and ??P , 
3regional ri'alry4 path"ays, respecti'ely $9 .>h and $* .>h per year. 
.he difference deri'es from the smaller FBP and population gro"th 
pro1ected under these path"ays. 0ur pro1ections therefore pro'ide 
+uanti<cation of a trade-off bet"een economic gro"th and sectoral 
adaptation costs. It is important to underscore that the long-term 
ad1ustment effects captured empirically though the error correction 
model are based on the business-as-usual practices o'er the last decades. 
.herefore, our pro1ections depend on the assumption that the historical 
e'olution of the extensi'e margin, including appliances diffusion and 
energy ef<ciency, can be an appropriate measure of the e'olution of the 
extensi'e margin in the future. .he adoption of energy ef<cient appli-
ances at a rate higher than the historical one, let alone brea8through 
technological changes, can reduce the large adaptation needs pro1ected 
under the sustainability storyline of ??P $. .he future adoption of 
energy ef<cient appliances "ill be a 8ey modulating factor because 
currently the a'erage ef<ciency of 7Cs sold in Brazil is "ell belo" the 
ef<ciency of the best-performing models on the mar8et #$%. In addition 
to appliance ef<ciency, consumer energy-sa'ing beha'ior "ill affect the 
intensity of appliance use, contributing to modulate the energy con-
sumption necessary for adapting to climate change. .he purchase of a 
more ef<cient appliance may for instance increase the propensity of 
households to use it 3i.e., "ould increase the intensi'e short-term margin 
shoc84, resulting in a rebound effect. 

.he adoption of more stringent energy policies can contribute to 
reducing the increase in energy needs for adaptation2 energy standards 
can foster the adoption of ef<cient appliances, "hile the reduction of 
energy consumption subsidies "ould contribute to passing on to 
households correct mar8et signals and reducing unnecessary electricity 
use. Furthermore, currently untapped alternati'e adaptation measures 

�i�ur� �. National electricity demand circa *(/(. Panel a2 Monthly electricity demand 3residential, commercial public and rural sectors4 in *($9 3dotted line4, and in 
*(/( baseline 3blac8 line4 and including the climate change ampli<cation 3shaded regions4, under the ??P *. Panel b2 7dditional yearly electricity demand circa *(/( 
by sector, &CP and ??P. ?haded regions in Panel a depict the FCMs pro1ection range 3minimum, median and maximum4. 7ll pro1ections are based on C+. -a and 
exclude the po"er demand in the industrial sector. 
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Figure 20. National electricity demand circa 2050. Monthly electricity demand (residential,
commercial public and rural sectors) in 2017 (dotted line), and in 2050 baseline (black line)
and including the climate change amplification (shaded regions), under the SSP 2. Panel b:
Additional yearly electricity demand circa 2050 by sector, RCP and SSP. Shaded regions in
Panel a depict the GCMs’ projection range (minimum, median and maximum). All projections
are based on Eq. 4a and exclude the power demand in the industrial sector.

experience the highest increases in the per capita yearly demand, with a median value across

states ranging from 600 kWh/person to 1200 kWh/person, depending on the SSP and RCP.

The highly populous states in the South-West (Espirito Santo, Minas Gerais, Rio de Janeiro,

Sao Paulo) account for the largest share of the additional yearly demand, despite the relatively

low additional per capita demand. The states of Rio de Janeiro and Sao Paulo in particular

experience a remarkable increase in the total electricity requirements due to rising thermal

discomfort and population growth, ranging from roughly 9 to 21 TWh in the former, and from

11 to 25 TWh in the latter, depending on the scenario. The amplification of demand is equal

to roughly 30%-70% and 13%-30% of the power demand of buildings in 2017 in the two states,

respectively.

The possibility of comparing the results with the literature is limited to the small number

of studies that directly investigate future power needs in a changing climate, and either focus

on Brazil at a country level [14,25,26], or report regionally disaggregated global projections

[6,63,64]. The projected additional demand required for climate change adaptation is larger

than previous country-level assessments based on static econometric models [14,25,26], while

is in line with the results of Integrated Assessment Models [6,63,64], wherein cooling needs

are estimated based on bottom-up energy demand models which allow for an increase in the

penetration of cooling appliances.
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may be deployed in buildings through the mid *$st-century. In'idiata 
and Fhisi #*9% for instance, <nd that applying a combination of passi'e 
design strategies can neutralize the increases in the thermal discomfort 
hours and the cooling energy usage of Brazil s residential buildings due 
to the effects of climate change. 7 decarbonized energy mix will limit 
F=F emissions associated with the additional electricity demand 
re+uired for adaptation, ma8ing it possible to a'oid a ris8y, 'icious, and 
positi'e feedbac8 between the economy and the climate #66%. 7lthough 
Brazil s power generation mix has a relati'ely low carbon intensity due 
to its high share of hydropower, model-based pro1ections of the decar-
bonization efforts of Brazil s energy system by mid-century suggest that 
in the scenarios unconstrained by climate policies carbon intensity may 
substantially rise as a result of a growing penetration of gas- and 
coal-<red generation #69,6:%. .he interaction between adaptation and 
mitigation policies is therefore an important area for future research 
#6;%. 

6. Conclusions 

In this study we in'estigate how climate change will shape the mid- 
century electricity demand of a large tropical country, Brazil, by 
adopting a dynamic econometric model based on sub-national data. In 
doing so we are contributing to the empirical literature, as pre'ious 
studies ha'e failed to unambiguously identify the role of climate change 

on Brazil s power demand by using spatio-temporally aggregated data 
#$9% or static empirical speci<cations #$-,*/,*6%. .he estimation of 
reduced-form responses of electricity demand to thermal discomfort 
ma8es it possible to identify long-term effects of climatic and 
socio-economic dri'ers on electricity consumption in the residential, 
commercial, public and rural sectors, while we <nd that industrial 
consumption is insensiti'e to the occurrence of extreme temperatures. 
By testing the ade+uacy of alternati'e model speci<cations and of 
alternati'e weather 'ariables, we <nd that thermal stress affects Brazil s 
electricity demand2 i4 non linearly, and ii4 by an extent dependent on the 
per capita income le'el of its states. .he ampli<cation effect on thermal 
discomfort from socio-economic dynamics considerably increases the 
pro1ected impact of climate change 3by as much as three times that of the 
model excluding the modulation effect of per capita income4. 

0ur results call for a new set of integrated e'aluations of demand 
shoc8s and supply side-'ulnerabilities due to climate change, an 
approach rarely adopted #:%. ?e'eral new lines of research can broaden 
the identi<cation of adaptation impacts on the energy sector. First, our 
+uanti<cation of the additional electricity demand is a sector shoc8 that 
precedes any mar8et ad1ustment. Mechanisms internal to the power 
mar8et such as price signals and rebound effects could result in different 
mar8et-based ex-post demand shoc8s. ?econd, implications of climate 
change adaptation should consider the corresponding supply-side effects 
of an increase in the fre+uency of extreme temperatures2 energy system 

Figure 4. 7dditional yearly electricity demand circa *(/( by Federal ?tate and region in &CP -./2 increase of electricity demand per capita 38>hAperson4 and total 
3.>h4. .he shape of the points represents the different ??Ps, the size represents the population in each state and the colour the regional classi<cation. Boxplots 
represent the 'ariables 'ariability within each regional group, by ??P. Kalues are computed based on the FCMs ensemble median. 
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Figure 21. Additional yearly electricity demand by Federal State. Increase of electricity demand
per capita (kWh/person) and total (TWh) circa 2050 in RCP 4.5. The shape of the points
represents the different SSPs, the size represents the population in each state and the colour the
regional classification. Boxplots represent the variables’ variability within each regional group,
by SSP. Values are computed based on the GCMs’ ensemble median.
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5.3.4 Discussion

The approach presented in this Chapter provides a novel, empirically grounded method to quan-

tify how socioeconomic developments modulate the response of a population’s power demand

for climate change adaptation, on top of the extent to which they scale up climate-independent

demand. The dynamic econometric specification makes it possible to investigate the extent to

which power demand may evolve in the future depending on the ability of agents to adjust their

energy-using durable stock according to different levels of per capita income. The income am-

plification effect results in thermal adaptation requirements three times larger than in the case

where no interaction is included. As a result, I find that income growth has a comparatively

more important role than climatic exacerbations in the expansion of electricity demand for

cooling. As the amplification of the shock due to per capita income growth can plausibly char-

acterize other world areas, expanding this analysis to other rapidly growing tropical economies

would be of great importance. This aspect is underscored by recent micro-level evidence on

the determinants of future air-conditioning adoption in tropical economies [16]. Pavanello et

al., [16], focusing on Brazil, India, Indonesia, and Mexico, find that these countries have a

vast unmet demand for air-conditioning, and that appliance ownership is highly uneven across

income deciles. Their results in line with the evidence presented in this Chapter, as indicate

that a household’s ability to adapt to climate change through the use of energy is linked to its

socio-economic condition.

Benefits of early mitigation, expressed by the reduction in the additional electricity required

to adapt under the RCP 4.5 with respect to the RCP 8.5, are non-negligible. In the pathway

characterized by the largest GDP per capita and population growth among the three SSPs

evaluated (SSP 1), the avoided increase in electricity demand associated with early mitigation

totals 24 TWh per year, equal to one-fourth of the electricity demand of Brazil’s buildings

in 2017. The benefits of early mitigation are lower under the SSP 2 (middle-of-the road)

and SSP 3 (regional rivalry) pathways, respectively 17 TWh and 12 TWh per year. The

difference derives from the smaller GDP and population growth projected under these pathways.

The projections therefore provide quantification of a trade-off between economic growth and

sectoral adaptation costs. It is important to underscore that the long-term adjustment effects

captured empirically though the error correction model are based on the business-as-usual

practices over the last decades. Therefore, the projections depend on the assumption that

the historical evolution of the extensive margin, including appliances’ diffusion and energy
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efficiency, can be an appropriate measure of the evolution of the extensive margin in the future.

The adoption of energy efficient appliances at a rate higher than the historical one, let alone

breakthrough technological changes, can reduce the large adaptation needs projected under

the “sustainability” storyline of SSP 1. The future adoption of energy efficient appliances will

be a key modulating factor because currently the average efficiency of ACs sold in Brazil is

well below the efficiency of the best-performing models on the market [14]. In addition to

appliance efficiency, consumer energy-saving behavior will affect the intensity of appliance use,

contributing to modulate the energy consumption necessary for adapting to climate change. The

purchase of a more efficient appliance may for instance increase the propensity of households

to use it (i.e., would increase the intensive short-term margin shock), resulting in a rebound

effect.

The adoption of more stringent energy policies can contribute to reducing the increase in

energy needs for adaptation: energy standards can foster the adoption of efficient appliances,

while the reduction of energy consumption subsidies would contribute to passing on to house-

holds correct market signals and reducing unnecessary electricity use. Furthermore, currently

untapped alternative adaptation measures may be deployed in buildings through the mid 21st-

century. Applying a combination of passive design strategies can neutralize the increases in the

thermal discomfort hours and the cooling energy usage of Brazil’s residential buildings due to

the effects of climate change [67]. A decarbonized energy mix will limit GHG emissions associ-

ated with the additional electricity demand required for adaptation, making it possible to avoid

a risky, vicious, and positive feedback between the economy and the climate [66]. Although

Brazil’s power generation mix has a relatively low carbon intensity due to its high share of

hydropower, model-based projections of the decarbonization efforts of Brazil’s energy system

by mid-century suggest that in the scenarios unconstrained by climate policies carbon intensity

may substantially rise as a result of a growing penetration of gas- and coal-fired generation

[67,68]. The interaction between adaptation and mitigation policies at the regional and global

level is investigated in more detail in Chapter 3.

The results call for a new set of integrated evaluations of demand shocks and supply side-

vulnerabilities due to climate change, an approach rarely adopted [13]. Several new lines of

research can broaden the identification of adaptation impacts on the energy sector. First, the

quantification of the additional electricity demand is a sector shock that precedes any market

adjustment. Mechanisms internal to the power market such as price signals and rebound
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effects could result in different market-based ex-post demand shocks. Second, implications of

climate change adaptation should consider the corresponding supply-side effects of an increase

in the frequency of extreme temperatures: energy system models have projected a reduction

of up to 50-70 TWh per year of hydropower (around 10% of future total hydropower capacity)

due to climate change adaptation by 2050 [68]. Furthermore, the surge in the use of air-

conditioners can increase not only overall power needs but also the peak demand, affecting in

turn the requirements for generation capacity and distribution systems, thus placing further

stress on the power system. The lack of a high-frequency power market in Brazil has constrained

the analysis to an evaluation of monthly-level total demand fluctuations. As I focus only on

electricity demand, the work disregards the future variation in the energy demand of fuels such

as gas and oil, that can be used by households to heat their homes in the winter. Nevertheless,

the available evidence suggests that consumption of fuel for heating purposes constitutes only

a small part of budlings’ energy demand in Brazil [67]. Finally, the trivial effect of weather

shocks on industrial electricity demand, which may derive from the confounding aggregation of

heterogeneous industrial processes, points to a need to conduct further assessments with higher

sectoral detail.

5.4 Climate change impacts on energy demand and economic growth:

short- vs long-term effects in a global macro panel

5.4.1 Introduction

Several works have relied on the intensive margin to estimate long-run climate impacts because

of the presumption that one cannot observe meaningful climatic variation within units in the

econometric framework: a few example being [69, 70] as for economic growth and [71, 6, 7] as

for energy demand. In this work I separate the effect of weather shocks and climatic variations

over time in each location, identifying in the same equation, respectively, the causal impact

of short- and long-term adaptation. I partially follow the model developed by [28] to study

economic agents’ adaptation to Ozone-concentration levels, and argue that exploiting over 60

years of records in meteorological and climatic variations within and between countries, the as-

sumption that one cannot observe meaningful climatic variation within units in the econometric

framework can be relaxed.
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5.4.2 Methodological framework

Weather

The simplest panel fixed-effects (FE) approach to empirically model the impacts of climate

change estimates the following equation:

yi,t = �1Ti,t + �2xi,t +$i + "i,t (19)

Here i and t index cross-sectional units and time periods of observation, the variables y, T

and x denote the outcome of interest, the driving meteorological variable of interest—often

temperature, and other spatially and temporally varying predictive factors, and $ indicates

fixed effects that account for idiosyncratic time-invariant influences on the outcome at each

cross-sectional units.

The impact response parameter, �1 is identified by the partial covariation between the

time-demeaned values of the outcome and weather variables:

yi,t � yi = �1(Ti,t � T i) + �2(xi,t � xi) = �1A(Ti,t) + �2A(xi,t) (20)

where, for any cross-sectionally and temporally varying variable v, the anomaly operator

A(vi,t) = vi,t � vi records an observation’s deviation from its local long-run mean. Eq. 59

makes clear that �1 thus captures the meteorological, rather than climatological, impact re-

sponse.

Attempts move beyond Eq. 19 allow outcome–temperature responses to vary conditional

on modulating factors that may be time-invariant, z, time-varying, x as before, or both:

yi,t =

Ti,t(�1 + �2zi) + µi + "i,t (21)

Ti,t(�1 + �2xi,t) + �3xi,t + µi + "i,t (22)

Ti,t(�1 + �2zi + �3xi,t) + �4xi,t + µi + "i,t (23)

Time-demeaning these expressions yields, with some rearrangement (see Supplementary
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Methods):

yi,t � yi =

A(Ti,t) · (�1 + �2zi) (24)

A(Ti,t) · (�1 + �2xi + �2A(xi,t))� �2A(Ti,t)A(xi,t) + T i · (�2A(xi,t)) (25)

A(Ti,t) · (�1 + �2zi + �3xi + �3A(xi,t))� �3A(Ti,t)A(xi,t) + T i · (�3A(xi,t)) (26)

In Eq. 24 the weather response exhibits an affine relationship with the level of the cross-

sectionally varying factor. In particular, suppose that for this purpose one utilizes time-invariant

climate exposures, C i. It is important to understand that in such settings, �1 + �2C i does not

capture the impact of climate. Rather, this term captures the variation in the impacts of

transitory weather shocks with climatic differences. By contrast, eqs. 25 and 26 do capture

the impacts of climate through the coefficient on mean weather, �3A(xi,t), while embodying

more complicated expressions for the impacts of weather anomalies. Both effects vary over

cross-sectional units and time periods, and depend on the deviation of the time-varying factor

from its local mean.

Applications of 26 have been adopted by [69] when the variable of interest y is per capita

and by [71] when y is energy demand. Importantly, in both cases the the effect of weather

is being modulated by both cross-sectionally varying factors: [69] stratifies the temperature-

income relation by income per-capita classes, while [71] by cross-sectional climate exposures

and spatially and temporally varying per capita income, mi,t.

The justification for this approach is that the variation in long-run climate over the historical

period of their sample is not sufficiently large to allow within unit variation to be exploited for

the purposes of identification.

This exercise yields deeper insights into the partial effect of temperature traced out as a

response in Rode et al Fig. 1. For countries grouped by climate (�) and income (µ), they

plot, for the combination �h�, µi, the product of temperature and the fitted coefficient of (23),

evaluated at the group mean

Impact(T, �) = T (b�1 + b�2C(�) + b�3m(�))

But, by (26), the limitation of this calculation is that it merely gives a group-wise strati-

fication of the effect of weather, but indeed only a component of the true effect. In the next
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section I propose a method that extracts the correct response to the anomaly and climate.

Climate and weather anomalies

The empirical approach relies on the decomposition of the meteorological variable, daily

maximum temperatures T , into two components: long-run climate normals and weather anoma-

lies, the latter defined as deviations from those norms. I measure the climate normals (Ci,t) as

the 10-year moving average of the yearly CDDs. For every i,t in the sample Ci,t combines the

information of the weather realizations of the previous 10 years. The weather anomaly (Ai,t) is

computed as the deviation of observed yearly CDDs from Ci,t. While the meteorological anoma-

lies recall most of the literature relying solely on the exposure to weather with a fixed-effect,

time-demeaning, specification, the variation over time of the long-term climate norm is new in

the setting of the analysis of energy demand.

Ti,t = Ci,t +Wi,t (27)

Where:

E(Ti,t|Ci) = Ci,t =

Pj�1
n=j�11 Ti,t

10
(28)

Substituting equation 27 into equation 22 leads to the following empirical specification:

yi,t = ↵ + �1Wi,t + �2Ci,t + �3xi,t + �4Wi,txi,t + �5Ci,txi,t + µi + "i,t (29)

Where �1 captures the effect on y of contemporaneous shocks from the expected climate. �2

captures the effect of slowly-changing climatic exposure, and �4 and �5 capture the modulation

of a time-varying variable xi,t on the time-varying climate exposure and anomalies, respectively.

Applying time-demeaning to equation 29 and rearranging terms, I find that the FE estima-

tion is based on:

yi,t � qi =Wi · �4A(xi,t)+

A(Wi,t) · (�1 + �4xi + �4A(xi,t))� �4A(Wi,t)A(xi,t)+

Ci · �5A(xi,t)+

A(Ci,t) ·
�
�2 + �5xi + �5A(xi,t))� �4A(Ci,t)A(xi,t

�
(30)
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In this specification, the terms i) and ii) capture transitory fluctuations in y due to weather

anomalies from the expected climate, conditional on the modulating factor xi,t level and anoma-

lies; in term iii) the effect of cross-sectional fixed climate on y is modulated by within-unit

anomalies in x; in term iv) the effect of variations in climate - i.e. unit-specific exposure to

climate change - on y is isolated though the coefficient �3 and modulated by both xi,t level and

anomalies.

5.4.3 Empirical framework

Data I assemble a panel dataset covering 134 countries and 60 years (1960-2019), comprising: i)

population-weighted annual average temperatures, annual Cooling Degree Days (CDDs, with

thresholds alternatively 18°C and 24°C) and Heating Degree Days (HDDs, with thresholds

alternatively 15°C and 18°C) from gridded ERA5 data; ii) per capita energy consumption

(qm,j) in five sectors (m: resiential, commercial, industrial, agriculture, transport) and for two

energy carriers (j: electricity and fossil fuels); iii) economy-wide and sector-specific per capita

GDP (xi,t,m) and total capital stock per capita (ki,t) from the OECD and the IMF datasets.

For the projections I use future estimates of gridded global population and GDP from

[36] and [37], respectively, developed in accordance with the shared socioeconomic pathway

(SSP) scenarios. Shifts in DDs and annual mean temperatures from current to mid-century

climates are estimated using the outputs of 8 global climate models (GCMs) participating in

the Coupled Model Intercomparison Project, Phase VI (CMIP6) [38]. Specifically, I use GCM-

simulated daily temperature fields for moderate (SSP245) and vigorous (SSP585) warming

scenarios that are bias corrected and downscaled to a 0.25� grid, from the from the NASA

NEX-GDDP-CMIP6 dataset [39, 40, 41].

Climate and anomalies decomposition

The empirical approach relies on one key element: the decomposition of the meteorological

variable into two components: long-run climate normals and weather anomalies, the latter

defined as deviations from those norms. I measure the climate normals (C i,t) as the 10-year

moving average of the variable of interest, with the later being alternatively: i) annual mean

temperatures; ii) Cooling Degree Days (computed alternatively with a cutoff of 18°C and 24°C);

Heating Degree Days (computed alternatively with a cutoff of 15°C and 18°C). For every year

in the sample C i,t combines the information of the weather realizations of the previous 10 years
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in that same location14. The adoption of a moving average derives from the assumption that

individuals and firms respond to information on climatic variation they have observed and

processed over the years. The weather anomaly (!d) is computed as the difference between

the observed weather exposure and the exposure expected by economic agents C i,t. While

the meteorological anomalies recall most of the literature relying solely on the exposure to

weather with a fixed-effect, time-demeaning, specification, the variation over time of the long-

term climate norm is new in the setting of the analysis of both energy demand and income

growth. I use Eq. 27 - 28 to estimate climate and anomalies. More in detail, I compute the

vector of weather anomalies AT 2 {aT�

i,t, aT
+
i,t} in the case of annual mean temperatures and

ADD 2 {aCDD�

i,t, aCDD+
i,t, aHDD�

i,t, aHDD+
i,t} in the case of Degree Days:

aT+
i,t =

8
><
>:
Ti,t � T i,t, T > T

0 otherwise

aT�

i,t =

8
><
>:
T i,t � Ti,t, T < T

0 otherwise

aCDD+
i,t =

8
><
>:
CDDi,t � CDDi,t, CDD > CDD

0 otherwise

aCDD�

i,t =

8
><
>:
CDDi,t � CDDi,t, CDD < CDD

0 otherwise

aHDD+
i,t =

8
><
>:
HDDi,t �HDDi,t, HDD > HDD

0 otherwise

aHDD�

i,t =

8
><
>:
HDDi,t �HDDi,t, HDD < HDD

0 otherwise

Figure 22 shows the degree of unit-specific variation in the climate variables, focusing on

CDDs (24°C) and HDDs (15°C). I identify substantial variation in the variables, justifying the

adoption of climatic DDs and annual temperatures for the empirical estimations.

14I test alternative measure relying, respectively, on 20 and 30 years moving averages, finding negligible
differences in the econometric model.
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Figure 22. Annual level change in the 10-year moving average of CDDs (24°C) and HDDs
(15°C) with respect to the moving average level in 1970. Colours of the lines is based on the
climatic CDDs-HDDs level in 1970..

Energy demand

I estimate a set of fixed-effects (FE) models where the dependent variable is the sector-

specific natural logarithm of per capita final energy demand. I first test a set of equations

based on the standard weather-based specifications:

qm,j
i,t = �

m,j
1 CDDi,t + �

m,j
2 HDDi,t + �

m,j
3 xi,t,m + µm,j

i + �
m,j
t + "

m,j
i,t (32)

Location (µi) and time (�t) fixed effects flexibly control for unit-specific time-invariant and

year-specific global unobservable effects.

Secondly, I test a set of models where the weather exposure (CDD and HDD) is replaced by

the climate exposure (CCDD and CHDD) and the vector of hot and cold anomalies (ADDl),

based on the proposed specification of Eq. 29:

qm,j
i,t = �

m,j
1 CCDDi,t + �

m,j
2 CHDDi,t + �

m,j
3 xi,t,m + �m,j,lADDl

i,t + µm,j
i + �

m,j
t + "

m,j
i,t (33)

Finally, I expand Eq. 32 and Eq. 33 by testing if the level of capital accumulation, mea-

sured as the lagged natural logarithm of per capita capital stock ki,t�1, affects the influence
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of weather or climatic exposure on energy demand. I resort to the logged value of k, rather

than the contemporaneous level, in order to reduce the risk that endogeneity between capital

accumulation and energy demand biases the results, leading to the final specifications:

qm,j
i,t =

CDDi,t · (�
m,j
1 + �

m,j
1 ki,t) +HDDi,t · (�

m,j
2 + �

m,j
2 ki,t)+

�
m,j
3 xi,t,m + µm,j

i + �
m,j
t + "

m,j
i,t (34)

qm,j
i,t =

ACDDi,t · (�
m,j
1 + �

m,j
1 ki,t) +AHDDi,t · (�

m,j
2 ++�m,j

2 ki,t)+

�
m,j
3 xi,t,m + �m,j,lADDl

i,t + µm,j
i + �

m,j
t + "

m,j
i,t (35)

Comparing Eq. 32 - 34 to Eq. 33 - 35 allows to test the hypothesis that unit-specific time-

varying climatic changes around the mean climatic exposure have a different effects on energy

demand than weather changes around the mean weather exposure.

Economic growth

In the second part of the empirical analysis I test if economic growth is affected by average

annual temperatures, and if te adoption of a weather versus a climatic indicator results in

different impacts on y. I estimate a set of FE models where the dependent variable is the first

difference in the natural logarithm of annual real (inflation-adjusted) gross domestic product

per capita, that can be interpreted as the per-period growth rates in income.

I first test the specification based on weather exposures, replicating the analysis of [69],

where income growth is associated to linear and quadratic terms of mean annual temperature

and precipitation. I sequentially add a set of controls including: the lagged growth rate of

y, country fixed effects and country specific linear or quadratic time trends. Controls allow

to flexibly account for time invariant country-specific factors affecting growth rates, as well as

on the country-specific path of economic development. The specification including all control

variables is:
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∆yi,t = �1Ti,t + �2T
2
i,t + ⇣1Pi,t + ⇣2P

2
i,t + ⌘1∆yi,t�1 + µi + ⇢iti,t + "i,t (36)

In order to test the hypothesis laid in Section 2, I test a model that is based on the decom-

position of weather exposure between climatic moving averages of annual mean temperatures

(CTi,t) and the vectors of positive and negative weather anomalies from that averages (ATi,t),

resuting in the following specification:

∆yi,t = �1CT i,t + �2CT
2
i,t + �pAT

p
i,t + ⇣1Pi,t + ⇣2P

2
i,t + ⌘1∆yi,t�1 + µi + ⇢iti,t + "i,t (37)

Finally, I test if the level of per capita energy demand can influence the relationship be-

tween temperatures and income growth, by including an interaction term between the linear

and quadratic temperature terms and the lagged natural logaritm of per capita final energy

demand qi,t�1. I resort to the logged value of q in order to reduce the risk that endogeneity

between energy demand and income biases the results. The final specifications, depending on

the temperature model adopted, is:

∆yi,t =

Ti,t · (�1 + !1qi,t�1) + T 2
i,t · (�2 + !2qi,t�1)+

⇣1Pi,t + ⇣2P
2
i,t + ⌘1∆yi,t�1 + µi + ⇢iti,t + "i,t (38)

∆yi,t =

CT i,t · (�1 + !1qi,t�1) + CT 2
i,t · (�2 + !2qi,t�1) + �pAT

p
i,t+

⇣1Pi,t + ⇣2P
2
i,t + ⌘1∆yi,t�1 + µi + ⇢iti,t + "i,t (39)
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5.4.4 Results

Energy demand response functions

I estimate the energy demand response to CDDs and HDDs for the combination of 10 cases

(5 sector by 2 fuels) and 4 specifications (with weather-based or climate-based Degree Days and

with/without an interaction effect of capital stock). Only the coefficients related to the thermal

exposure of the main variables (weather and climatic DDs) are shown in Table 1, while full

results can be found in the Supplementary Material. The impact on per capita final energy de-

mand of thermal exposure of CDDs and HDDs is significant in all sectors and fuels, excluding a

few exceptions as for the residential sector sensitivity of electricity demand to cold temperatures

and of fossil fuel demand to hot temperatures. Importantly, in all cases the interaction term

between CDDs and long-run per capita capital stock is positive, pointing to the exacerbation

of the sensitivity of both electric and fossil fuels consumption under hot temperatures with an

increasing capital accumulation. The results as for the interaction between fossil demand and

long-run per capita capital stock are mostly positive, in except from industrial and agriculture

electricity demand and industrial fossil fuel demand. This result may be driven by increasing

efficiency of equipment and by inter-sectoral differences in the mix of industrial and agricultural

activities in more developed countries with higher capital stock.

Table 1: energy demand regression results by model

Electricity

Weather model Climate model

β1 β2 δ1 δ2 β1 β2 δ1 δ2

Sector: (CDD) (HDD) (CDD*k) (HDD*k) (CCDD) (CHDD) (CCDD*K) (CHDD*k)

Resid. -0.0019⇤⇤⇤ - 0.0003⇤⇤⇤ - -0.0010⇤⇤ -0.0003⇤ 0.0003⇤⇤⇤ 4.2 · 10�5⇤⇤⇤

Comm. -0.0029⇤⇤⇤ -0.0006⇤⇤⇤ 0.0004⇤⇤⇤ 7.0 · 10�5⇤⇤⇤ (-0.0015⇤⇤ -0.0009⇤⇤⇤ 0.0004⇤⇤⇤ 0.0001⇤⇤⇤

Indus. -0.0027⇤⇤⇤ 0.0002⇤ 0.0004⇤⇤⇤ �2.1 · 10�5⇤ -0.0025⇤⇤⇤ - 0.0004⇤⇤⇤ -

Agric. -0.0039⇤⇤⇤ 0.0006⇤⇤⇤ 0.0006⇤⇤⇤ �7.3 · 10�5⇤⇤⇤ -0.0034⇤⇤⇤ 0.0004⇤ 0.0006⇤⇤⇤ �6.8 · 10�5⇤⇤⇤

Transp. -0.0083⇤⇤⇤ -0.0005⇤⇤ 0.0009⇤⇤⇤ 5.8 · 10�5⇤⇤⇤ -0.0059⇤⇤⇤ -0.0009⇤⇤⇤ 0.0010⇤⇤⇤ 8.8 · 10�5⇤⇤⇤

Fossil fuels

Resid. - -0.0013⇤⇤⇤ - 0.0002⇤⇤⇤ - -0.0014⇤⇤⇤ - 0.0002⇤⇤⇤

Comm. -0.0055⇤⇤⇤ -0.0017⇤⇤⇤ 0.0006⇤⇤⇤ 0.0002⇤⇤⇤ -0.0068⇤⇤⇤ -0.0018⇤⇤⇤ 0.0007⇤⇤⇤ 0.0002⇤⇤⇤

Indus. -0.0003 0.0013⇤⇤⇤ 0.0001⇤⇤⇤ -0.0001⇤⇤⇤ 0.0005 0.0013⇤⇤⇤ 0.0001⇤⇤ �9.4 · 10�5⇤⇤⇤

Agric. -0.0088⇤⇤⇤ -0.0011⇤⇤⇤ 0.0010⇤⇤⇤ 9.7 · 10�5⇤⇤⇤ -0.0133⇤⇤⇤ -0.0009⇤⇤⇤ 0.0012⇤⇤⇤ 6.0 · 10�5⇤⇤⇤

Transp. -0.0003⇤⇤⇤ -0.0009⇤⇤⇤ 0.0001⇤⇤⇤ 3.6 · 10�5⇤⇤⇤ -0.0013⇤⇤⇤ -0.0003⇤⇤ 0.0002⇤⇤⇤ 3.6 · 10�5⇤⇤⇤
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Figure 23 shows the estimated impact on per capita energy demand across sectors deter-

mined by an increase in climatic HDDs and CDDs from the mean value, ranging from 0 to

1000 degree days.

I also test the effect of different weather and climate variables in the econometric specifi-

cations based on the stacked sectoral observations, so that the estimated coefficients average

out inter-sectoral differences. Also in this case, the results show a statistically significant dif-

ference between the coefficients estimated based on weather and climate exposure, both when

the modulation effect of capital accumulation is excluded or included (see the Supplementary

Materials).

Economic growth

I find that economic growth is affected by annual temperature levels even after accounting

for the auto-regressive process of economic growth and by controlling for unobservable effects

though flexible fixed-effects and time trends. The impact of annual temperature estimated

based on contemporaneous weather variations with no interaction effects is comparable to the

results in [69]. Differently from [69], I do not rely on a arbitrary classification of "poor" and

"rich" countries for modulating the impact of temperatures on growth, but rather I identify

the a statistically significant modulating effect of per capita energy demand levels. This ev-

idence suggests that the energy-intensive adaptation actions that have been identified in the

previous section have a role in reducing the vulnerability of economic output from exposure to

both hot and cold temperatures. Furthermore, I find that the models based on weather expo-

sure (columns 1-3 in Table 2) differ substantially from the models based on climatic exposure

(columns 4-6 in Table 2). The difference between weather and climatic exposure is maintained

in the specifications including the modulating effect of per capita energy demand levels (see

Figure 24): for instance, a 1°C degree increase in average annual temperatures when starting

annual temperatures are around 25°C results in a reduction in economic growth ranging from

1% to 2% based to the weather model and from 2% to 4% according to the climate-based model,

depending on the per capita energy demand level.

Projections

Energy demand is significantly amplified around mid-century due to energy-intensive adap-

tation actions. With constant country-level GDP and capital stock, the climate- (weather-)

based response function yields a median increase across 8 GCMs of: 21% (11%) in global en-

ergy demand, 50% (20%) in electricity demand and 8% (6%) in fossil fuels demand under SSP

121



Figure 23. Energy demand responses to climatic variations in CDDs and HDDs by per capita
capital stock levels (around 8.000, 22.000 and 60.000 USD/pc, corresponding roughly to the
25%, 50% and 75% quantiles of the sample). Coefficients are estimated though Eq. 35. The
upper panel shows the level changes, while the bottom panel the relative changes, with respect
to the mean CDD-HDD level..
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Figure 24. Economic growth responses to weather and climatic variations. Upper panel: com-
parison between the shocks estimated by [69] and our estimations. Lower panel: modulation
of the shock by per capita energy demand levels (25%, 50% and 75% quantiles of the sample).
Coefficients are estimated though Eq. 39..
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Table 2

Dependent Variable: fd_ln_gdp_pc
Model: (Eq. 14) (Eq. 16) (Eq. 15) (Eq. 17)

Variables

lag.fd_ln_gdp_pc 0.2048⇤⇤⇤ 0.1865⇤⇤ 0.1970⇤⇤⇤ 0.1833⇤⇤

(0.0536) (0.0742) (0.0586) (0.0745)
mean_temp 0.0117⇤⇤⇤ 0.0601⇤⇤⇤

(0.0039) (0.0080)
mean_temp_sq -0.0004⇤⇤⇤ -0.0020⇤⇤⇤

(0.0001) (0.0003)
precip 2.95⇥ 10

�5⇤⇤⇤
2.5⇥ 10

�5⇤
3.65⇥ 10

�5⇤⇤⇤
3.36⇥ 10

�5⇤⇤

(1.02⇥ 10
�5) (1.49⇥ 10

�5) (1.11⇥ 10
�5) (1.47⇥ 10

�5)
precip_sq �3.39⇥ 10

�9 �2.53⇥ 10
�9 �5.89⇥ 10

�9⇤⇤ �4.22⇥ 10
�9

(2.24⇥ 10
�9) (3.44⇥ 10

�9) (2.32⇥ 10
�9) (3.43⇥ 10

�9)
mean_temp ⇥ lag.ln_en_pc -0.0126⇤⇤⇤

(0.0019)
mean_temp_sq ⇥ lag.ln_en_pc 0.0004⇤⇤⇤

(8.28⇥ 10
�5)

mean_temp_10ma 0.0120 0.0835⇤⇤⇤

(0.0125) (0.0152)
mean_temp_10ma_sq -0.0003 -0.0030⇤⇤⇤

(0.0004) (0.0006)
mean_temp_an_pos -0.0179⇤⇤⇤ -0.0233⇤⇤⇤

(0.0066) (0.0079)
mean_temp_an_neg -0.0130⇤⇤ -0.0103⇤

(0.0061) (0.0057)
mean_temp_10ma ⇥ lag.ln_en_pc -0.0149⇤⇤⇤

(0.0022)
mean_temp_10ma_sq ⇥ lag.ln_en_pc 0.0005⇤⇤⇤

(9.29⇥ 10
�5)

country-time trend Quadratic Quadratic Quadratic Quadratic

Fixed-effects

iso3 Yes Yes Yes Yes

Fit statistics

Observations 7,701 5,246 6,733 5,246
R2 0.14022 0.19610 0.14458 0.19759
Within R2 0.09981 0.15636 0.10264 0.15792

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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5-8.5 and of 12% (7%) in global energy demand, 31% (13%) in electricity demand and 4%

(3%) in fossil fuels demand under SSP 2-4.5. The climate model leads to two-times greater im-

pacts than the weather model, as the former captures long-term extensive margin adjustments,

while the latter only short-term intensive margin adjustments. Large regional differences can

be found both in the amplification of electricity and fossil fuel final energy demand (Figure

25 and Figure 26): the country with the largest absolute increase in electricity and fossil de-

mand is the United States (over 10 EJ/year of all energy carriers combined in SSP 5-8.5 in

the preferred, climate-based, specification), while the county with the largest relative increase

in final energy demand is Saudi Arabia (+400%), followed by Brazil (+140%) and Indonesia

(+100%). The residential and commercial sector are the largest contributors to the increase in

electricity demand, a direct consequence of the higher sensitivity of annual energy demand in

these sectors due to buildings’ cooling needs. The industrial sector is the largest contributor to

the fossil fuel demand amplification. This evidence points to the importance in future energy

demand scenarios of heating, ventilation, and air-conditioning (HVAC) systems used by indus-

tries, that include both comfort-related energy use and continuous or process-related HVAC,

the latter ensuring that the operation of manufacturing systems and production processes (e.g.,

food processing and storage industry).

It is important to underscore that projections do not account for the future expansion in

economic variables, most importantly of variations in the level of capital stock around 2050

across SSPs. Allowing future adjustments in the capital stock both due to economic growth

and climate change would influence the projections of energy demand for adaptation, due to the

modulating impact of capital accumulation on the energy demand function. The identification

of the impact of future capital stock levels is left for future research.

In order to identify mid-century impacts of climate change on aggregated economic output,

I use the concave damage function that associates per capita income growth to climatic annual

temperatures and energy demand levels. The amplification of annual average temperatures

around 2050 results in a non-negligible reduction in global income already by 2050, ranging

from 3% to 4% in SSP 2-4.5 and 5-8.5, respectively. Differences across countries are large, both

due to the different degrees in annual temperature changes and due to the country-specific

modulation effect of per capita energy demand levels. I project the energy-dependent impacts

of climate change on per capita income in two cases: i) per capita energy demand levels fixed

at the 2015-2019 country-level mean; ii) per capita energy demand levels amplified by the
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Figure 25. Map of energy demand amplification in SSP 5-85.

Figure 26. Sectoral energy demand amplification in SSP 5-85 by country and sector.
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climate change adaptation effect estimated in the previous section. Note that in both cases

projections do not account for the future expansion in energy demand from factors unrelated to

climate change adaptation, most importantly from economic growth around 2050 across SSPs,

a quantification that is left for future research.

Globally, the role of energy demand to reduce the impacts of climate change on economic

growth is non-negligible, although it only marginally attenuates the negative global economic

impacts of climate change: under SSP 5-8.5 (2-4.5) the estimated reduction in annual global

income goes from -3.6% to -3.2% (from -2.6% to -2.4%) when the modulation of the estimated

additional energy demand required for adaptation is accounted for. I conduct a simple back-of-

the-envelope quantification of the costs of the additional energy for adaptation by computing

the additional expenses for energy demand (assuming hysterical prices in 2019)15 and of the

benefits of energy for adaptation in terms of reduce income losses (assuming historical GDP

levels in 2019). This quantification shows that an increase in expenses for energy demand in

the order of 2 trillion USD (1 trillion) under SSP 5-8.5 (SSP 2-4.5) would lead to a reduction

in the income losses of 0.35 trillion (0.17 trillion) USD (Table 8).

Regional differences in the trade off between the (partial) adaptation costs and benefits I

estimate are relevant: in "hot" countries with historical average temperatures above 25°C the

reduction in economic loss from higher energy consumption is larger than in countries with

temperate or cold climates (left panel of Figure 27). Furthermore, across "hot" countries,

higher impacts on per capita income arise when the level of per capita energy demand is lower

then average: despite being exposed to similar temperatures, Gulf countries (such as Saudi

Arabia, Kuwait, Oman, UAE) and, in Asia, Singapore, achieve much lower economic impacts

than African and Asian countries (such as Niger, Togo, Senegal and Bangladesh), thanks to the

higher current energy per capita consumption levels and the proportionally higher additional

energy increase for adaptation (right panel of Figure 27).

5.4.5 Discussion

The appealing features of the method proposed is that trough the variation that evolves slowly

over time in each location one can identify the average impact of long-term climatic changes,

the analogue for the extensive margin adjustments, without an explicit measurement of adap-

tation actions and controlling for time-invariant and time-specific unobservables. I leave for

15Assumed global average energy costs: 143 USD/MWh of electricity, 10 USD/MBTU of natural gas and 64
USD/barrel of oil.
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Figure 27. Country-level reduction in per capita growth around 2050 (SSP 5-8.5). Coloured
scatters represent the impact without (red) and with (blue) the modulation of additional energy
consumption for adaptation.

SSP 2-4.5 SSP 5-8.5
% GDP loss w/o energy-adaptation -2.7% -3.7%
% GDP loss w energy-adaptation -2.4% -3.2%

Benefit of energy-adaptation from reduced GDP losses 175 bn USD 2019 347 bn USD 2019
Energy costs for adaptation (electricity) 947 bn USD 2019 1533 bn USD 2019
Energy costs for adaptation (fossil fuels) 64 bn USD 2019 521 bn USD 2019

Table 8: Climate impacts on growth and costs-benefits of adaptation with energy
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future work the adoption of weather variables accounting for humidity (i.e. wet-bulb temper-

atures), and the inclusion of a wider set of controls for seasonal economic activities. A further

improvement would be accounting for differences in the long-run response function of income

growth across sectors.

The simulated net increase in the global energy demand of residential and commercial

buildings for adaptation confirms the literature’s finding that energy demand of buildings is

underestimated when estimations are beased only on the intensive margin [3]. Here, I show

that estimating sector-specific demand functions can provide relevant insights with respect to

the assessments that focused on aggregated electrcity and fossil fuel demand [71]. When the

cooling needs of the industrial sector is accounted for, the net additional fossil fuel demand for

climate chnage adaptation in 2050 turns positive, rather than negative, more than compensat-

ing the reduction in demand from lower heating needs in the residential sector.

This analysis is not without caveats. It is important to remark that I only quantify the costs

and benefits of the subset of adaptation actions that require energy and that can be inferred

from the aggregated macroeconomic energy-climate relationship in the past five decades. Fur-

thermore, I only quantify the benefits in terms of reduced economic losses of such subset of

adaptation actions, while I disregard all benefits related to thermal comfort that do not affect

economic growth. While I address the risks of endogeneity posed by including the lagged (by

one, or alternatively, two years) of the variables that modulate climate impacts in the estimated

damage functions, namely capital stock as for energy demand and energy demand as for income

growth, I leave to future work the adoption of econometric specifications that explicitly assume

that endogeneity and cointegration between the two macro-economic variables of interest (en-

ergy and income), such as Error Correction Models [72].

This work’s key impact metrics quantify the relative effects of future climatic shifts on en-

ergy demand and income growth by assuming that today’s structure of the energy markets is

maintained in 2050 and that climate-independent energy demand and per capita capital stock

are fixed to the current levels. Future projections furthermore depend on the assumption that

the historical evolution of energy demand and income growth can be an appropriate measure of

the evolution of the extensive margin in the future. The adoption of more efficient adaptation

measures (e.g. energy efficient cooling appliances, zero energy buildings, green-based solutions)
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at a rate higher than the historical one, as well as breakthrough technological changes, can

lower the energy demand required to satisfy heating and cooling needs as well as economic

impacts of climate change. I also do not account for the implications on the energy supply-side,

most importantly on the power generation options that could meet the projected increase in

the electric demand. The dynamic implications of adaptation costs and benefits on the energy

sector and other economic activities, as well as on carbon emissions, can be evaluated only by

coupling the shocks estimated in this work with integrated assessment models.

5.5 Closing remarks

This Chapter has characterized the magnitude of the mitigation challenge arising from climate

change adaptation via adoption of AC. It highlights the potential trade-off between mitigation

and adaptation, showing that its extent varies significantly across regions with different power

systems and across levels of development.

First, the implications of the methodological advancements proposed in this Chapter are

broad because energy and income growth are archetypes of a broader class of economic impacts

of climate change, all of which have similar structure and might suffer from misattribution if one

adopts the assumption that we cannot extract an extensive margin signal from the historical

record.

The impacts on developing tropical economies - India and Brazil - are considerably higher

than in Europe, both in terms of the magnitude of the additional electricity demand required

to provide thermal comfort (188 TWh/year in India, 117 TWh in Brazil and 33TWh/year

in Europe, circa 2050 under the RCP 8.5 and high growth SSPs 1-5) and as for the number

of population affected by extreme heat. In fact, results show that the current gap between

developed and developing countries in the vulnerability to climate change is not eliminated in

the future: despite the rapid increase in ownership spurred by economic growth in India 900

million persons will lack AC circa 2050 and will be exposed to substantially higher temperatures

than their European counterparts. The global macro-level analysis provides further evidence

of regional differences in the trade off between the (partial) adaptation costs and benefits:

across "hot" countries, higher impacts on per capita income arise when the level of per capita

energy demand is lower then average, and only Gulf countries (such as Saudi Arabia, Kuwait,

Oman, UAE) and, in Asia, Singapore, seem endowed with sufficient energy using capital for

adaptation.
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Fortunately, there are several options for avoiding such a mitigation-adaptation tradeoffs:

increasing electricity supply while reducing the emission intensity of generation or reducing

the electricity intensity of economic activity more broadly, increasing the energy efficiency of

cooling appliances generally and AC specifically, inducing behavioral changes in cooling or

adopt zero-energy adaptation measures, such as building insulation or green infrastructures.

Looking ahead, the fundamental need to adapt to more frequent and intense heat while re-

ducing emissions might provide the right mix of incentives for new technologies and behaviours

to become widespread. Policies promoting the sales of energy efficient appliances should be

prioritized in those areas where the extensive margin adjustments are the main driver on the

amplification of demand, while policies promoting behavioural-based efficiencies would con-

tribute to reduce the pressures on the power systems in the areas where intensive margin

adjustments are more relevant. A more detailed analysis of the policies implications is pre-

sented in the following, concluding Chapter.
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6 Conclusions

Being a key enabling element of development, energy can facilitate adaptation to climate change

by ensuring the provision of minimum standards for decent living, including the provision of

adequate water supply or safe and comfortable space [1]. air-conditioning diffusion reduces

heat-related fatalities [2], and novel empirical findings have related indoor cooling and labor

productivity in commercial and industrial sectors [3]. Yet, as recently pointed out by the

IPCC, the literature considering energy requirements as a channel of interaction between the

impacts of adaptation and sustainable development is scarce [4]. In particular, little or no

indication can be found around the extent by which a tradeoffs exists between adapting though

the use air-conditioning, sustainable development and mitigation to climate change [5]. There

are multiple channels though which adapting by means of energy-intensive technologies such

as air-conditioning may result in forms of maladaptation [6]. First, since low-energy-demand

development pathways increase the flexibility needed to achieve low temperature mitigation

scenarios and reduce the need for negative emissions [7], energy-intensive adaptation actions

may jeopardize achieving low-carbon targets. Second, the contemporaneous use of energy-

intensive appliances during extreme weather events such as heatwaves may amplify peak power

consumption up to levels that exceed system capacity, adversely affecting the grids’ reliability

and causing power outages at times of high need [8] and eventually resulting in an exacerbation

of heat-related heath impacts [9]. This issue is particularly pressing in already vulnerable de-

veloping countries, where long-standing infrastructural and new climate change-induced risks

may compound.

The objective of this thesis has been to enhance the understanding of the mechanisms

though which energy demand for adaptation will evolve in the future, and to propose a suite of

methods that elucidate and quantify the tradeoffs between adaptation and mitigation to climate

change, with the overarching goal of adding a set of value-added tools for policy and decision

making. The remainder of the chapter summarizes the key results of the analyses conducted in

the thesis and how they address the overall objectives articulated in Chapter 1, with a focus on

the policy implications of results. Then, I examine some caveats associated with the scope of

the analyses and methods adopted, underscoring the reasons why results should be interpreted

with caution. Finally, I lay down suggestions for future research.
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6.1 Key results and policy implications

6.1.1 State of the art and future perspectives for IAMs

Chapter 2 presents a systematic review that compares IAMs’ quantitative projections of energy

demand for heating and cooling needs at a global level, grouping modeling approaches into a

novel classification based on the implementation of the adaptation-energy interplay. Results

provide a clear indication to the modeling community, as I find that currently only a few

IAMs characterize the energy needed for adaptation, and almost no model characterizes the

interaction between mitigation and adaptation though energy endogenously. As a result, the

interplay between changes in energy needs for adaptation to climate change and increasingly

ambitious mitigation targets remains an understudied topic. These findings clarify one aspect

that has been recently stressed by the WGIII of the IPCC, reporting that while several global

IAM models have advance considerably in the characterization of buildings, the extremely

limited availability of key sectoral variables such as floor space and energy use for individual

services in the AR6 scenarios database has prohibited to conduct a detailed analysis of sectoral

dynamics [4].

The review has also highlighted that models differ in their representation of the intensive

and the extensive margin, the heterogeneity assumed across sectors and regions, the choice of

the climate variables driving energy demand. Given such diversity, one key recommendation

to the modeling community would be to perform multi-model comparison exercises, focusing

on climate impacts on cooling and heating demand, in order to better characterize the range

of uncertainty adaptation needs could pose to the decarbonization challenge. Notwithstanding

the diversity of implementation strategies across models, the development of a model compar-

ison protocol enabling to harmonize climate and socio-economic could enable to perform such

comparison exercises, while leaving full flexibility regarding the actual implementation.

Updating the representation of the energy-adaptation feedback into IAMs constitutes an

important step forward in the quantification of sector-specific partial estimates of the Social

Cost of Carbon (SCC). The SCC measures the monetized value of all future net damages

associated with a 1 metric ton increase in CO2 emissions. Energy sector-specific quantifications

of the partial SCC have typically made a relatively small contribution to the overall SCC due to

the offset of cooling energy demand by the decrease in heating demand and future technological

progress. Recent estimates range from positive values around 10 USD per tonnes of CO2 from

IAM-based projections ([10]) to negligible negative values in empirically founded estimations
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(i.e. pointing to small net gains at the global level despite large regional differences) [11]. The

literature review conducted in chapter 2 and the IAM-based analysis conducted in Chapter

3 suggest that the quantification of the partial SCC may be underestimated by both IAM

and empirical frameworks that: i) focus exclusively on the building sector; ii) calibrate shocks

based on on short-term energy demand elasticities rather than on long-term extensive margin

adjustments; iii) evaluate impacts based on annual mean temperature of CDD-HDD variations

rather than from the sub-annual occurrence of extreme temperature events.

Stemming from the evidence gathered though the systematic review, Chapter 4 presents a

framework that identifies the most relevant opportunities to update the modeling of the energy-

related adaptation-mitigation feedback in IAMs. I show that there is large scope for updating

the energy demand elasticities and AC adoption functions as a way to make the energy needed

for adaptation endogenous, and to include climate extremes and supply-side impacts as well as

demand-side impacts.

6.1.2 Energy for adaptation impacts mitigation pathways

The analysis conducted with the WITCH model, presented in Chapter 3, shows that not in-

cluding adaptation in mitigation scenarios significantly bias the understanding of the energy

transition. Through several model advancements, including notably the adoption of sectoral

energy demand elasticities accounting for long-run adjustments, and the identification of im-

pacts due to the occurrence of extreme hot and cold temperatures, the new model simulations

provided in Chapter 3 indicate that adapting to climate change will require more energy than

previously estimated, leading to higher energy investments and costs. Adapting to climate

change by means of adjustments in energy habits, as we did in the past, increases the global

demand for electricity by 7% by 2050 and by 18% in 2100. As a result, overall electricity gen-

eration costs, including investments in capacity, grids, fuel, operation maintenance costs, will

rise by 21% throughout the century. The additional supply-side costs will be passed on to con-

sumers through increases in the price of electricity around 2%-6% due to the adaptation-energy

feedback in different regions.

The implications for developed and developing regions in the global north or south change

considerably, pointing to a further channel though which climate change may exacerbate current

inequalities: Central Africa, the Middle East and South-East Asia will face the largest relative

increase in final energy demand for adaptation. The model’s results indicate that the largest

137



relative increase in electricity demand occurs in places with power systems poorly prepared

to face peaks in power demand for cooling [12]. If these energy requirements cannot be met,

extreme temperatures can create health emergencies in developing countries, and this could

be one additional channel through which ineffective adaptation may further reinforce global

inequalities.

Under the current mitigation policies, production of electricity from coal, gas, and oil is

not curbed fast enough to prevent additional investments in polluting generation capacity:

the increase in electricity demand for cooling will lead to more physical capital being locked

into fossil fuels, corresponding to around 30-35 new large gas-fired plants and 10-15 new large

coal- and oil-fired plants each year between now and 2050. This thesis therefore reinforces the

urgency to decarbonize the sources used to provide decent living conditions [13, 14].

By making energy shock endogenous, model simulations show that mitigation pathways

accounting for the adaptation-energy feedback would require a higher global carbon price,

between 5% and 30% higher. This result is relevant to a broad audience ranging from policy

makers to the modeling community because it sheds light on a blind spot of the energy transition

and of the implementation of climate policies, namely how adaptation needs might reduce the

effectiveness of climate policy, making it necessary to revise those policies.

Ambitious mitigation policies can cut by more than half the increase in the costs of the en-

ergy system induced by adaptation, depending on the stringency of the climate target. Because

of the benefits in terms of reduced adaptation needs, the costs to decarbonize the power sys-

tem in ambitious mitigation scenarios would be lower than previous estimates, and they would

turn negative in well-below-2-degree scenarios, pointing at net gains in terms of power system

costs. Overall, two key conclusions can be drawn from this evidence: i) the vicious cycle of

global warming, climate extremes and higher energy demand, leading to further emissions and

warming, makes early-on mitigation even more important; ii) ignoring the energy system costs

required to adaptation from climate change results in an overestimation of the additional costs

of mitigation policies, providing a clear indication to modeling community on the relevance of

including such feedback and to policy makers on the economic consequences of weak mitigation

policies.
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6.1.3 AC adoption highlights power system risks

The empirical analyses conducted in Chapter 5 provide a regional assessment of the implications

from future AC adoption on the power system, giving at the same time relevant indications

on the role of AC to reduce population exposure to heat. At present, the effects of climate

change on the electric power systems are poorly understood, leaving the actors liable to ensure

the system stability with limited evidence based on historical climate conditions (Yalew et al.,

2020). This thesis contributes to shed light on one important component of power system

planning, namely the long-term forecast of peak demand. While air-conditioning’s benefits

in terms of reduced exposure are clear, electricity peak and total demand increase more than

previously thought [15, 16], posing a non-negligible additional pressure on power systems. The

empirical projections based on the growth of AC ownership and the AC-dependent weather

sensitivity of aggregated state-level peak load allow to identify that substantial additional peak

generation capacity will be required circa 2050 in order to accommodate the additional cooling

demand in Southern European states, Italy (+13 GW) and Spain (+10 GW), and in the Indian

states of Punjab, Uttar Pradesh and Maharashtra (+ 4 GW). Fundamental uncertainties are

whether future investments in power system capacity and utilization can keep pace with elec-

tricity consumers’ attempts to adapt to more frequent and severe weather shocks, and to what

extent the emissions of greenhouse gases associated with generating that electricity - particu-

larly in developing economies - increase. Furthermore, India is characterized by power system

supply-side vulnerabilities that can further amplify the projected demand-side vulnerabilities

to climate change. Despite the Indian Government claimed the achievement of its ambitious

electrification goal in 2019, the region is still characterized by large differences in the quality of

power supply across different communities [17]. The consequences associated with the lack of

understanding of power system risks ultimately fall on consumers, who may face more frequent

power interruptions and load shedding at times of high need. While households may get accus-

tomed to the recurring lack of power supply, they may place a particularly high value on the

provision of electricity when they are facing extreme weather conditions (Casey et al., 2020).

The benefits of having a reliable supply of electricity during a heat-wave lasting several hours

or days can be very large, since electricity allows to power not only fans and air-conditioning,

but also water pumps, reducing the effort to collect clean water, and refrigeration, allowing for

the preservation of food and medicines.

While chapter 3 provides a global assessment of the implications on the energy supply-side and
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emissions when annual changes in energy demand are modeled, the model-based assessments of

such impacts with the adoption of sub-annual shocks, in particular of daily and hourly demand

though power system models, is outlined as a key area of future research (see section 4.4).

6.1.4 Policies that can limit the adaptation-mitigation tradeoffs

Several policy measures can address the adaptation-mitigation tradeoffs identified though the

integrated assessment (Chapter 3) and empirically (Chapter 5). Taking as a reference the

additional electricity demand and emissions for cooling estimated in the high-frequency analysis

of impacts in India and Europe (see section 5.2), here I conduct a set of back-of-the-envelope

calculations on the potential reduction of impacts from different policy measures (for a detail

on the method see the Supplementary Material).

Additional renewable or low-carbon dispatchable generation allows the electricity demand

increases from expanded cooling to be accommodated without increasing emissions. To com-

pensate for the projected increase in emissions, the CO2 intensity of electricity would need to

decline from 270 gCO2e/kWh to 265 gCO2e/kWh in Europe and from 775 gCO2e/kWh to 700

gCO2e/kWh in India by 2050. In the latter case this would entail displacement of 147 TWh of

coal generation annually, corresponding to around 17 GW of capacity—around 7% of India’s

current coal fleet [18]. Where CO2 emissions are regulated, reductions in the carbon intensity of

generation can be achieved though more stringent abatement targets or higher carbon prices.

Using the relationship between carbon prices and regional power generation CO2 intensities

developed in Chapter 3, the latter effect may be on the order of 5-30%.

Electricity consumption offsets could also be achieved on the demand side, through re-

ductions in overall electricity intensity that might shift some of the burden of abatement to

other sectors of the economy. Extrapolating historical electricity-GDP trends, by 2050 India’s

electricity intensity is comparable to that of Europe today, while Europe’s electricity intensity

declines by 30%—within the range simulated in Chapter 3. Additional declines necessitated

by cooling are small in Europe (from 102 GWh/Bn $ to 100 GWh/Bn $) but substantial in

India (149 GWh/Bn $ to 135 GWh/Bn $). Focusing on AC specifically, end-use efficiency

improvements could facilitate reductions in heat exposure with smaller increases in electricity

consumption. Improving AC units’ seasonal energy efficiency ratios (SEERs) from their current

region-specific average levels to their best available levels [19] could moderate annual electricity

consumption increases by 50% (17 TWh) in Europe and 40% (109 TWh) in India (See the
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Supplementary Material).

Changes in households’ cooling behavior can also moderate electricity consumption in-

creases. One such response is cooling technology substitution. Compared to AC, ventilation is

a less efficacious but much lower-energy alternative for reducing thermal discomfort. A recent

simulation study showed that coupling AC with fans allows comfortable indoor temperatures

to be maintained with up to 76% less additional electricity [20]. We identify the relationship

between air speed and air temperature offsets from the ASHRAE Thermal Environmental Con-

ditions for Human Occupancy [21] for household occupants undertaking primarily sedentary

activity, selecting a 3.0�C offset achieved with air-speed at 0.8 m/s. Despite the additional

electricity consumption from the use of fans, running an AC unit at a higher temperature

threshold would save annual electricity consumption by 40%-60% in Europe and 50%-60% in

India, depending on the temporal pattern of fans’ operation (See the Supplementary Material).

Although we project a two- to four-fold increase in the macro-regional AC prevalence rates

in households in Europe and India respectively, AC remains not affordable for many under the

socio-economic assumptions of SSP5 and SSP2. Adaptation options alternative to AC should

account for the needs of the most exposed and poorest parts of society, as we find that circa

2050 almost 640 million people across India and 60 million across Europe remain exposed to

extreme temperatures while having no AC in their homes.

Additional responses, whose attractiveness and efficacy are difficult to quantify, involve

household members shifting activities in time and space to avoid heat exposure [22]. Outdoor

activities may be shifted to cooler hours of the day, while hot hours may be spent in public or

private air conditioned environments outside the home (e.g., in malls, offices, or even vehicles).

Theresidential AC-based electricity demand amplification estimates do not specifically account

for adjustments in commercial cooling capacity, utilization or energy consumption. If the

latter are subject to economies of scale, their use as substitutes for residential AC could make

mitigation-adaptation tradeoffs less severe.

The decomposition between intensive and extensive margin adjustments and of their un-

derlying drivers (see section 5.2) indicates how and why that mix might differ regionally. The

analysis of macro-level implication of long-run climate 5.4 provides further evidence that ex-

tensive margin adjustments can be captured though climatic indicators constructed as local

moving averages in panel data. The analysis of high-frequency energy demand shows that

in northern Europe, where increased heat exposures and overall electricity demand amplifi-
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cation are both small, adaptation could prioritize shifting activities, or ventilation. Southern

Europe’s larger overall amplification effects, with similarly sized temperature-driven intensive

margin and income-driven extensive-margin components, suggest behavior-based policies incen-

tivizing ventilation during the shoulder seasons, augmented by appliance efficiency standards

and subsidization of energy efficient AC. In India, where the income-driven extensive-margin

adjustments are the main driver behind the amplification of electricity demand and current

market average SEER is particularly low, Minimum Energy Performance Standards (MEPS)

and subsidization of energy efficient AC should be prioritized over behavior-based policies.

The macro level analysis shows that energy demand adjustments to climate change will

depend on the available capital stock per capita, and that in turn energy demand per capita

grants a non-negligible reduction in the economic impacts of climate change in hotter areas

of the world. While here I provide an indication on different approaches though which policy-

making can address the adaptation-mitigation tradeoffs, I leave for future work the identification

of a cost-optimal mix of policies, as well as the assessment of several other measures that can

contribute to reduce the impacts of energy for adaptation on electricity consumption and emis-

sions. In the long-term, one can expect planned adaptation strategies, including, for example,

passive cooling, reflective roofs and urban greening to become more common [23, 24]. More

energy efficient buildings in the global North, and better performing new residential buildings

in the global South, could significantly reduce the energy requirements needed to adapt to ex-

treme temperatures [25, 26]. Smart grids and Demand Side Management strategies can achieve

peak shifting and shaving at times of cooling-induced peak demand [27].

6.2 Caveats

The model-based and empirical analyses conducted in this thesis are not without caveats. A

first set of caveats relates to methodological aspects. As for the analysis of global impacts

conducted with the WITCH model, the main methodological limits are associated: i) to the

inability to model sectoral-specific and end-use specific endogenous energy demand shocks, due

to aggregated nature of the energy demand functions represented in the model; ii) to the limited

representation of the impacts of climate change on the annual peak electricity demand, affecting

investments in new power capacity. As for i), although in the current implementation of the

energy-adaptation feedback one cannot explicitly associate the estimated changes in energy

consumption to specific end-use services, it is reasonable to assume that, for example, the
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increase in electricity demand in response to greater exposure to heat can be associated with

higher demand for cooling [28]. As for ii), due to the lack of global-level empirical evidence of

peak demand sensitivity to weather shocks, the analysis assumes that peak demand grows at

the same rate of the annual demand increase. Therefore, the projected power system investment

needs and costs can be an underestimation of future impacts if peak electricity demand is more

sensitive to extreme temperatures than total electricity demand [15]. Future work could explore

the costs of an increase in the peak load due to more cooling needs at fine temporal scales by

soft-linking global Integrated Assessment Models to bottom-up power capacity expansion and

optimal dispatch models (see the discussion in Chapter 4 and in the next section).

As for the empirical analyses conducted in Chapter 5, the choice of focusing on the high-

frequency component of electricity demand comes at the cost of giving up the possibility to

identify sector-specific impacts, since hourly and daily load data is stored by Transmission Sys-

tem Operators almost exclusively aggregated by sector. Similarly, lack of data on commercial-

sector air-conditioning availability prevented to conduct a separate analysis of the extensive

margin potentials in this sector. By assuming that total load shocks are modulated uniquely

by the residential sector prevalence rates, I assume implicitly that commercial sector extensive

margin follows the same growth rates of the residential sector. This may result in an underesti-

mation of the load shocks if, as found by [28], electricity consumption in commercial buildings

is more sensitive to extreme temperatures than in residential buildings [28]. Another caveat

of the methodological approach of chapter 5 is the measurement of population exposures to

heat based exclusively on the presence of AC. Lacking to account for the technological options

alternative to AC, such as fans or efficient building insulation, results in an overestimation of

exposed population. Yet, on the other hand, this method tends to underestimate exposures as

I do not account for the exposure of population owing an AC occurring during the time spent

outdoors for commuting, work or leisure activities.

Furthermore, the empirical analysis conducted in this thesis do not account for the possible

role of energy prices in shaping the response of energy demand for adaptation. Price elasticises

of energy vary considerably depending on the scope of the study as well as on the estimation

technique, but meta-analyses tend to confirm that the price elasticity of electricity consumption

is limited with respect to other fuels, and that it is higher in the long run than in the short run

[29]. For this reason, the impact of electricity prices on the temperature-load response function
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estimated based on the daily co-variation between variables do not pose a limit to the estimation

strategy. In the Error-Correction Model adopted to study monthly electricity consumption on

the other hand I explicitly consider electricity prices as a confounder, controlling for variations

in their level though in econometric specification. On top of direct impacts on aggregate

consumption behaviours, energy prices may affect the energy-adaptation feedback by affecting

technological adoption in multiple ways and in opposite directions: by reinforcing the benefits

of purchasing energy efficient appliances versus inefficient ones, by promoting fuel substitution

(e.g. from gas boilers to heat pumps), by reducing the purchasing power of families, in turn

affecting the basket of consumer goods. An important open question concerns investigating how

energy price shocks – such as the ones that are being experienced in Europe in the aftermath of

the global pandemic and of the war between Russia and Ukraine [30] – may exacerbate energy

poverty, hence reducing the ability of households to respond to thermal discomfort though the

adoption and operation of heating and cooling appliances.

A second set of caveats relates to the scope of the analysis conducted. While I show that

ignoring the energy system costs and the environmental implications of rising adaptation needs

in IAMs results in an overestimation of the relative costs of ambitious mitigation policies, the

potential tension between mitigation and adaptation would be much more significant if the

integrated approach proposed were expanded to include other mechanisms through which re-

sponses to climate change affect energy demand [31], such as water supply and treatment,

transportation, and cooling chains, and if the welfare and well-being implications of both adap-

tation and residual damages were considered. Mitigation can reduce the health costs associated

with carbon-intensive adaptation, since additional fossil-fuel-fired generation contributes to air

pollution. Although empirical estimates on adaptation benefits are growing [32, 33], they re-

main difficult to be included in IAMs. Developing scenarios that gather more evidence on the

positive side-effects of mitigation policies can help accelerate the tightening of the emission

reduction targets within the framework of the Paris Agreement.

The next section expands the discussion on these aspects, and underscores how they con-

stitute key areas for future work.
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6.3 Future work

6.3.1 Broader assessment of energy impacts

The impacts on power market operations of the compound influence of cooling-induced peaks

in the electricity demand and supply-side vulnerabilities to extreme weather events are mostly

disregarded by the literature, despite the growing empirical evidence on the vulnerability of

both power system grid and generation infrastructure [34, 35, 36, 37]. For instance, if load ex-

ceeds the forecasted peaks and if power generation or transmission are partially impaired, power

system operators can incur additional costs in the form of balancing services, load shedding,

or, at worst, unplanned outages. Coupling high-frequency supply and demand forecasts under

extreme weather conditions withing a common modeling framework can allow to evaluate the

most suitable operational responses. Detailed power dispatch models could investigate options

to strengthen the resilience of power systems though changes in the dispatch mix, balancing

services and cross-border trade. Furthermore, given that conventional generation technologies

play a dominant role in setting wholesale prices as they meet the net-load, i.e. residual demand

not satisfied by renewable sources, extreme weather events may result in wholesale price fluctu-

ations. Understanding the characteristics of power markets’ operations during extreme weather

may bring to the surface possible limitations of the current power systems, leading not only

to volatility in power prices but possibly also to higher costs for managing the grid. Capacity

expansion models quantify the investments in generation and transmission capacity required

to meet the future power load, typically under alternative decarbonization policy scenarios.

The additional slack generation capacity required due to climate change can be quantified by

feeding into a capacity expansion model the simulations of the hourly and peak load response to

future extreme weather events. Furthermore, the ability of different power system mixes (e.g.

with varying shares of renewables and storage) to provide a reliable flow of peak power gener-

ation during extreme events can be investigated by coupling a capacity expansion model to a

dispatch model. This framework would allow to understand if highly decarbonized power mix

could be more resilient to climate change by being more synchronized (if peak load due to air-

cooling is met by photovoltaic generation) or more challenging to manage (if the continuation

of the peak load during the evenings, coupled with falling photovoltaic generation, amplifies the

thermal generation ramp up requirements). These analyses would therefore provide a holistic

view of how electricity supply in the future can remain reliable during extreme weather events.

Models with a detailed representation of the use of electric appliances and of the behavioral
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aspects of consumption can be adopted to investigate the demand-side potentials for reducing

the peak-load during extreme events.

6.3.2 Adaptation and the Energy-Water-Land nexus

This thesis focuses on the direct energy requirements occurring to maintain thermal comfort

in buildings and ensuring the stability in industrial operations under extremely high or low

temperatures. An important channel thorough which adaptation can result in higher energy

demand requirements is though the decrease in water availability, resulting in energy-intensive

adaptation actions such as desalination and wastewater-treatment as well as in higher irriga-

tion needs. The expansion of irrigation under a changing climate is expected to have significant

impacts on energy consumption, since pumping of groundwater is 25% more energy-intensive

than surface-water irrigation [38]. Furthermore, water availability impacts energy generation

technologies, most importantly hydro-power and nuclear power plants. Yet, water and elec-

tricity system climate vulnerabilities and adaptations are often studied in isolation, without

considering how multiple interactive risks may compound. At the same time, the growing lit-

erature addressing the inter-linkages of the Energy-Water-Land (EWL) provides examples of

holistic assessments of climate change adaptation.

Understanding of how adaptation strategies relate to the EWL nexus is important because it

facilitates the evaluation of the net impact of individual adaptation measures and it enables to

consider the compound effects of concurrent implementation of different adaptation measures,

as an outcome of either coordinated or uncoordinated parties’ actions [39]. In order to perform

such type of evaluations, insights from the physical and social sciences should be coupled

together and put in relation with local characteristics. At the same time, the compound effects

of global-level deployment of different type of adaptation measures should be studied in order to

assess, over a range of likely future climate and socio-economic scenarios, what options minimize

the potential negative impacts of climate change. Works assessing the role of adaptation with

respect to the energy-water side of the nexus is growing [40, 41, 42]. As all major IAMs account

for the interactions among energy, land-use, economic and climate systems and generate long-

term scenarios at the global and regional level, they are considered particularly relevant tools

for the assessment of adaptation options and their long-term impacts on the EWL nexus both

at regional case-study level [43] as well as at the global level (for instance building on the

work by [44] on multi-sectoral global climate risks). Key research areas are assessing the
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inter-linkages of water required for irrigation-based adaptation with water supply technologies

and accounting for short-term water availability in combination with high-frequency energy

demand fluctuations, as adaptation to co-occurring extreme weather events such as heat waves

and droughts may pose multiple pressure on different sides of the nexus.

6.3.3 Welfare and well-being implications

Although air-conditioning is a key option for protecting people to thermal stress, direct empir-

ical evidence on the contribution of such technology to reduce heat-related mortality, reduced

morbidity and increased productivity - as well as of the associated welfare gains is still limited.

The seminal work by [2] finds that the growth in residential AC ownership in the United

States in the 1960–2004 period played a critical role in reducing the incidence of heat-related

fatalities (reducing premature fatalities by about 18,000 annually). Other empirical analysis

focusing on the US find mixed results on the benefits of AC on health, depending on the type

of the AC units (central AC appear to be more robustly associated to reduced deaths from heat

stress than room AC [45, 46]). More recent assessments exploiting daily co-variation between

mortality and hot temperatures in different world locations show that increased air-conditioning

prevalence reduces the relative risks and fractions of heat-attributable excess deaths, although

other attenuating factors may play an equal or more important role in increasing the resilience

of populations [47].

Impacts on morbidity and increased productivity have been rarely captured empirically so

far. Recent model-based simulations show that air-conditioning can prevent production losses in

the manufacturing and service sectors [3]. New adoptions of AC could avoid macroeconomic cost

of up to 3-4% of global total GDP (in 2100 under RCP8.5) that would otherwise be associated

to interruptions of indoor working activities to ensure heat-related illness prevention.

Direct estimates of the welfare gains from AC from both reduced mortality and morbid-

ity and increased productivity are constrained by lack of data and problems of endogeneity

in the household choice of owning an AC and energy consumption. Only [2] provide an indi-

rect quantification of the full consumer surplus, based on the construction of AC-dependent

long-run electricity supply curves, finding that owning ACs is associated with substantial gains

(from 5 to 10 billion 2012 dollars annually, or 112–225 2012 dollars per household at the 1980

AC penetration rate, depending on the methodological assumptions). Expanding the empiri-

cal evidence on the benefits of air-conditioning on mortality, morbidity, increase productivity
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and on the associated welfare gains of AC, especially in the regions that will face the largest

adaptation-mitigation tradeoffs (such as India and Brazil, as shown in Chapter 5), constitutes

a key area of future research.

6.3.4 Innovation in energy intensive adaptation technologies

Technological adaptation options are still the most common adaptive responses to climate

change, although there is growing experience of the value for ecosystem-based, institutional,

and social measures [48]. At the same time, adaptation strategies will vary over time depending

on climate forcing plus other factors such as technology availability and maturity [49]. Techno-

logical change will hence play a critical role for coping with a changing climate. Technological

innovation and diffusion can enhance adaptive capacity, but the resulting impact on the energy

system is unclear, as it depends on the degree of energy efficiency of future adaptation technolo-

gies as well as on the diffusion and adoption of the most efficient technologies when multiple

options are available on the market [50]. Despite the great importance of understanding the

development and transfer of technology options for climate change adaptation, the literature

focusing on inventive activity and diffusion of clean technologies has so far been mostly limited

to the analysis of mitigation technologies [51, 52]. One of the few studies assessing both mit-

igation and adaptation technologies finds that inventive activity has been growing rapidly in

both areas in the last decades [53]. New research could investigate: i) the emerging dynamics

of the innovation activity of adaptation technologies; the demand and supply determinants of

adaptation technology innovation, diffusion and adoption. Recent evidence focusing on the

United States shows that climate change may contribute to push new innovation in adaptation

technologies, as extreme heat exposure results in an increase of 7.5% greater innovation in the

form of patent filings by up to 2 years after a county has experienced extreme heat [54].
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7 Supplementary Material

7.1 Supplementary Material of Chapter 2

The search terms used for the meta-analysis included ‘energy demand’ OR ‘energy use’ OR

‘energy consumption’ AND ‘climate change’ AND ‘conditioning’ OR ‘cooling’ AND ‘heating’.

Other terms were progressively added to refine the search, such as AND (‘GDP’ OR ‘wealth’

OR ‘economic loss’ OR ‘economic gain’); AND (‘scenario’ OR ‘projection’ OR ‘impacts’); AND

(‘integrated assessment model’ OR ‘energy model)’.

All macro regions are characterized by a net increase of a building’s energy demand for

thermal adaptation, ranging from 0.5 to 7 EJ in 2050 and from 6 EJ to 23 EJ in 2100, depending

on the region and the degree of warming. Sharp increases in median additional energy due to

cooling requirements from 2050 to 2100 are projected for all regions, with a median addition in

Asia, the Middle East and Africa (MAF) and OECD countries between 23 EJ and 28 EJ under

the highest warming scenarios. As for the residential sector, the median additional energy due

to cooling requirements in 2100 ranges from 1.9 EJ to 8.7 EJ in Asia, from 1.4 EJ to 9.1 EJ in

MAF, from 0.3 EJ to 2.4 EJ in OECD countries, from 0.3 EJ to 1.7 EJ in Latin America (LAM)

and from 0.02 to 0.3 in Russia (REF), depending on the RCP. In temperate regions, OECD

and REF, sharp decreases in heating energy needs result in a median value of total additional

energy requirements in 2100 which ranges from 1.1 to 3.6 in the former and 0.3 and 0.9 in the

latter region, depending on the RCP. On the other hand, in Asia and MAF the total energy

requirements range in 2100 from 0.5 to 4 EJ (an almost tenfold increase from RCP 1.9 to RCP

8.5) in the former region and from 1 EJ to 6 EJ in the latter. In LAM total additional demand

goes from almost zero to 1 EJ. The additional energy demand projected in higher warming

scenarios, with respect to the low warming scenarios, is greatly amplified from the second half

of the century in both the residential and the commercial sector.

The figure presents the results of the climate-related impact on GDP due to variations in

energy demand for cooling and heating as a response to global warming. Substantial impacts are

identified under the RCP 8.5 scenarios, with a median relative variation in GDP equal to 0.29%,

with the lowest value reaching 1.9%. The projections based on the SSP 1 are characterized

by a positive median GDP percentage change of relatively small magnitude,9 while a negative

median GDP percentage change is found in the projections based on SSP 2 and SSP 3.
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Supplementary Figure Ch.2-1

Supplementary Figure Ch.2-2
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7.2 Supplementary Material of Chapter 3

The IAM approach

WITCH is a dynamic global model that fully integrates a simplified representation of the

economy, the energy system, and the climate system. The economy is modeled through an

inter-temporal optimal growth model. A representative agent chooses consumption to maxi-

mize regional welfare, and consumption decisions are related to investment choices. The energy

sector is hard-linked with the rest of the economy. Energy investments and resources are chosen

optimally together with the other macroeconomic variables. Energy demand and, in particular,

fuel and technology choices are optimized intertemporally, under a set of constraints, including

carbon and other energy prices. A climate model (MAGICC) computes the future changes

in global average temperature on the basis of the GHG emissions generated by economic ac-

tivities and the energy system. A fully-integrated module translates regional GHG emissions

into global temperature through atmospheric concentrations. Another module links the global

average temperature increase to changes in regional average temperature based on linear statis-

tical downscaling model of country-level mean temperature estimated by using future warming

scenarios (Representative Concentration Pathways, RCPs, see Section 1 in the Supplemen-

tary Methods). WITCH integrates an air pollution module, FASST(R). It is a source-receptor

model based on the TM5-FASST model developed by JRC-Ispra, that computes the annual

concentrations of several pollutants, namely Sulfur Dioxide (SO2), Nitrogen Oxides (NOx),

fine Particulate Matter (PM2.5) and ground-level Ozone (O3). The fine PM 2.5 concentrations

include Particulate Organic Matter (POM), secondary inorganic PM, dust and sea-salt. The

FASST(R) model produces concentrations on a world spatial grid of resolution of one degree by

one degree, and has previously been used to assess premature death from air pollution exposure

[1, 2].

Modeling advancements

Regarding the adaptation - energy feedback loop, a set of equations links the occurrence of

extreme temperatures to energy demand. The energy demand shocks in WITCH are matched

to the available empirical evidence from [3] and therefore use Extreme Temperature Indicators

(ETIs) defined as the yearly count of days in which average temperatures fall above the threshold

of 27.5�C and below the threshold of 12.5�C, respectively. The moderate temperature intervals
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are excluded, and adjacent extreme bins are aggregated in order to focus on the two temperature

intervals of exposure to extreme heat and cold (T < 12.5�C and T > 27.5�C).

The heterogeneous relationship between the vector of ETIs (ηi,t) and temperature across

climate conditions is captured by grouping countries in clusters (Supplementary Methods). I

use a polynomial function (f) of yearly mean temperatures (Ti,t). I estimate a panel, fixed-effect

model with ordinary least square (OLS) on yearly, country-level observations for 180 countries

from 1970 to 2010 (Supplementary Methods). The regional future realizations of the ETIs are

then determined endogenously within the model and defined for climatic clusters as follows, c,

as:

ηi,t = f(Tc2i,t, T
2
c2i,t) (40)

where

i regions (17 regions)

c clusters (4 clusters)

t 5-year time step in the model from 2005 to 2100

Sector-specific, semi-elasticities are used to link energy demand and ηi,t. They are cali-

brated after the estimates published by [3], which model the long-term relationship between

energy demand, weather, income, and prices as a dynamic adjustment process. Semi-elasticities

indicate the percentage by which demand shifts relative to its conditional mean level, in con-

sequence to an additional day occurring in a given interval (j) with respect to the reference

temperature interval. The semi-elasticities are specific to two macro-regional groups: tem-

perate and tropical countries. In both macro-groups the number of days falling within the

extreme temperature intervals lies in the tails of the daily temperature distribution. The semi-

elasticities provided by [3] capture how energy responds to long-term weather shocks, allowing

us to project future energy demand shocks that account for extensive margin adjustments (e.g.,

purchase of air conditioners, improvements in energy efficiency). Other appealing features of

the analysis developed in [3] are that it captures the potential non-linearity in the demand

responses to weather and climate, provides asymmetric responses in temperate and tropical

countries, and separates the influence of humidity and temperature on demand. The lack of

empirical evidence providing alternative demand response functions for multiple fuels, sectors

of the economy and climate areas limits the scope for assessing the robustness of the results
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based on [3]. The transmission of the climate shock in the commercial and industrial sectors in

tropical economies reflects the extensive use of distributed petroleum-fired generators to satisfy

final electricity demand.

Sectorial semi-elasticities (�i,f,s,j) are aggregated with the share of the final energy demand

of each sector over total final energy demand as weights (�i,f,s,t), for each fuel and for each time

step of the model. The share is computed from the baseline model projections in each 5-year

time step. The aggregation yields a set of semi-elasticities �i,f,t,j specific to each region (i),

energy vector (f) and year (t).

�i,f,t,j =
X

s

�i,f,s,t�i,f,s,j (41)

where

i regions (17 regions)

t time step in the model, 2005-2100

f energy vector (electricity EL, non-electric energy GAS and OIL)

s sectors (residential, commercial, industrial)

j average daily temperature interval

Climate-induced shocks on energy demand, (Φf,i,t), combine historical and future realiza-

tions of the ETIs with average sectorial semi-elasticities aggregated over the two temperature

intervals (j):

Φi,f,t =
exp(

P
j �i,f,t,jηi,t)

exp(
P

j �i,f,jηi,t)
� 1 (42)

where

i regions (17 regions)

t time step in the model, 2005-2100

f energy vector (electricity EL, non-electric energy GAS and OIL)

j average daily temperature interval

The climate-induced energy demand shocks affect the productivity of the energy inputs

entering into the aggregate production function, as proposed by [4]. If climate-induced shocks

increase energy demand, it is as if the economic systems needed more energy to produce output.
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Climate-related positive shocks (i.e. increase in energy demand) are therefore modeled as

technological retrogression, requiring more inputs to generate a given output. In the WITCH

model, energy (EN) is a combination of electricity (EL) and non-electric energy (NEL), which

includes coal, gas and oil. Electricity and non-electric energy can be substituted with an

elasticity of substitution, ⇢EN :

ENi,t = [↵̃EL,iEL
ρEN

i,t + ↵̃NEL,iNELi, t
ρEN ]

1

ρEN (43)

In this formulation, the productivities of electricity and non-electricity are endogenous func-

tions of climate shocks:

↵̃EL,i,t = ↵EL,i

ΦEL,i,tQEL,i,tP
f Qf,i,t

(44)

↵̃NEL,i,t = ↵NEL,i

"
ΦGAS,i,tQGAS,i,tP

f Qf,i,t

+
ΦOIL,i,tQOIL,i,tP

f Qf,i,t

#
(45)

Quantification of additional new capacity

In the WITCH model, investments in new power generation plants to fulfill electricity demand

depends on: i) the cost of electricity generation of the different technologies, which combines

capital costs, Operation and Maintenance (O&M) expenditure, and the costs for fuels in an

endogenous way; ii) the lifetime power plants; iii) a constraint on the flexibility of the power

generation fleet to accommodate the integration of renewables; iv) an installed capacity con-

straint on the power generation fleet to guarantee that sufficient capacity is built to meet the

instantaneous peak electricity demand (for further details see [5]).

The cumulative additional new capacity added in response to the variation in electricity

demand required for adaptation that we report (Γh,i,t) for each technology h in region i at time

t is computed as follows:

Γh,i,t =
tX

t=2005

(KAda
h,i,t �KNoAda

h,i,t ) (46)

Kh,i,t+1 = Kh,i,t((1� �h,i,t+1))
∆t +∆t

Ih,i,t
SCh,i,t

(47)

154



Where �h,i,t+1 is a depreciation rate based on a finite lifetime of the power plant, Ih,i,t are

the annual investments and SCh,i,t the investment cost.

Quantification of energy costs

Power generation costs (C_GEN), include the investments in generation capacity (I), R&D

investments in power generation technologies (I_RD), O&M costs (OM) and fuel expenditures

for power generation (E_FUEL):

CGENi,t =
X

h

(Ih,i,t + I_RDh,i,t +OMh,i,t + E_FUELh,i,t) (48)

where

i regions (17 regions)

t time step in the model, 2005-2100

j power generation technology

Fuel costs (C_FUEL) include the investments and O&M costs in fossil fuel extraction

(OM_ex) and the expenses associated with liquids and gas consumption (EXP_ff), excluding

the expenses related to fuel consumption in the power sector:

C_FUELi,t =
X

f

(OM_exi,t,f + EXP_ffi,t,f) (49)

where

i regions (17 regions)

t time step in the model, 2005-2100

f fuel

Investments in the electrical grid (I_GRID) are computed based on grid capital. The grid

capital stock is adjusted by taking into account a linear relationship between grid capacity and

the capacity of traditional power generation technologies and the investments for integrating

the generation of variable renewables. A detailed description is available in [5].

Scenarios
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In the current policy scenario, GHG emission targets extrapolate beyond 2020 the implied

ambition levels of current climate policies until 2020. Overall, the current policy scenario with

no energy-adaptation feedback leads to cumulative carbon emissions of about 5,000 GtCO2eq,

from 2018 until 2100 9. More stringent mitigation scenarios keep the increase in global mean

temperature in 2100 at 2.5�C and well-below 2�C, resulting in cumulative GHG emissions from

2018 until 2100 of 3,600, and 1,500 GtCO2eq, respectively. Non-CO2 greenhouse gases in these

scenarios are priced equivalently to the implied CO2 prices, by using 100-year global warming

potentials for conversion. We use explicit GHG pricing, and climate stabilization targets are

achieved in a global cost-optimal way, with no international compensation scheme or carbon

emission trading.

Table 9: Climate scenarios assessed in this study

Scenario Fixed carbon budget Carbon emissions Global mean temperature
(2018-2100) increase (2100)

Current policy No 5,000 GtCO2eq 3.23�C
2.5�C Yes 3600 GtCO2eq 2.56�C

Well below 2�C Yes 1500 GtCO2eq 1.65�C

Population [6] and country-level GDP projections implemented by using Purchasing Power

Parities (PPP) [7] are based on the basic and extended SSPs [8]. The main results use the

Shared Socio-Economic Pathway Middle-of-the Road (SSP2), which is a continuation of the

historical trends, while the Summpelentary Materialpresents some results across SSPs. For

more information on the implementation of key aspects such as energy productivity, land-use

and power technologies and fossil fuel resources, see [5].

Supplementary Figures

New power capacity requirements

The additional pressure posed on power generation by the increase in electricity demand

results in a scale-up of both fossil-based and renewables capacity, as well as of storage capac-

ity. The additional new generation capacity required in the next few decades for adaptation

comprises both fossil-based and renewable generation. Renewables and storage constitute most

of the additional new capacity in the second half of the century across all scenarios (Supple-

mentary Figure Ch.3-1). The share of the additional coal, oil and gas capacity on the total

additional capacity required to fulfill adaptation needs ranges from 85% (current policies) to

80%-65% (ambitious mitigation scenarios) in 2030, from 40% to 20%-10% in 2050 and up to
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10% in 2100 in the current policies. Supplementary Figure Ch.3-1 shows the cumulative gen-

eration capacity required to meet the electricity demand with (w Ada) and without (w/o Ada)

the adaptation feedback, including fossil fuels, renewable energy and storage.

Supplementary Figure Ch.3-1

Variation in the energy system costs

Supplementary Figure Ch.3-2 shows the decomposition of the additional energy supply

costs by a unit of total final energy demand. The additional electricity supply costs over total

electricity consumption increase sharply from 2-5 USD/MWh in 2030 to up to 10-15 USD/MWh

in 2050-2100 under the current policies scenario, while remain stably below 5 USD/MWh over

the whole period in the well below 2�C scenario. The unitary additional energy supply costs

for fuels remain below 3-4 USD/MWh even in the current policies scenario.

Supplementary Figure Ch.3-2

Results by SSPs

Supplementary Figure Ch.3-3 presents the incremental energy demand and costs (panel a)

and the increase in the carbon tax (panel b) due to climate change in 2100 across SSPs and

climate policy outcomes. The impacts on the energy system across socio-economic pathways are
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scaled uniformly from the lower end of the range in SSP 3 to the higher end in SSP 5. The level

of the additional demand and costs in the SSP 5 are roughly two times the levels in the SSP 3,

while the moddle-of-the-road SSP 2 lies in between (being closer to the SSP 3 as for the energy

costs and the absolute carbon tax increase). The increase in the global average temperature

in 2100 of an additional +0.5°C, from +2°C to +2.5°C, strongly affects mitigation policies.

While the energy demand, the supply-side costs and the level of the carbon tax increase only

marginally, the relative change in the carbon tax goes from a 5%-10% variation to a 20%-30%

variation.
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Supplementary Figure Ch.3-3

Supplementary Figure Ch.3-4 shows the variation in the cumulative ESC for power system

costs associated to the more ambitious mitigation policy scenarios with respect to the current

policies scenario, across SSPs and in the case without and with the adaptation-energy feedback.

The Net Present Value (NPV) is computed based on a i.r. of 3%.
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Supplementary Figure Ch.3-4

Supplementary Figure Ch.3-5 compares our results with the few IAM-based projections

providing the variation in global buildings’ final energy demand induced by climate change

adaptation in 2050 and 2100 [9, 10]. Our projections, ranging from 3 to 5 EJ (12 to 26 EJ)

in 2050 (2100) depending on the extent of global warming, are in line with the literature’s

projected increase under the same socio-economic scenario (SSP2).
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Supplementary Figure Ch.3-5

Supplementary Figure Ch.3-6 compares the future energy system costs presented in this

study with six leading IAMs’ projections reported in [11]. Differently from Figure 4, fuel

consumption costs are excluded from the selected energy system costs reported in ??, because

[11] only focuses on energy systems’ investments. Only comparable energy system costs have

been considered, namely: investments in extraction and conversion of fossil fuels, investments

in electricity generation and investments in the electricity’s transport, distribution and storage.

The multi-model median NPV of energy system costs in 2050 (2100), excluding the energy-

adaptation feedback, in the current policies scenario is 47 (81) Trillion USD, while we project

an NPV of 50 (85) Trillion USD without adaptation and of 54 (95) Trillion USD with adaptation.
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Supplementary Figure Ch.3-6

7.3 Supplementary Material of Chapter 5

Conceptual framework

The final electricity use that matches the total load transmitted through grid results from

the demand of consumption and production processes, including usages unrelated to outdoor

meteorological conditions and activities that directly respond to meteorological conditions, such

as the utilization of electrical heating, ventilation and cooling assets (henceforth "utilization"

for thermal regulating services component, or q) 16. We assume that, at each point in time,

peak electricity demand responding to meteorological conditions (q) can be decomposed into a

“long-run” extensive margin component (qE) and “short-run” intensive margin component (qI):

q = f(qE, qI) (50)

Changes in expected climate conditions, C, modify the decisions of final users regarding the

adoption of cooling and heating appliances or assets, a, and therefore, at the extensive margin,

in the latent actual electricity use. Over the long-run, we can identify a latent average utilization

value, qE(a, C). Income conditions, Y , modulate discretionary expenditure on durable assets,

affecting both assets and the latent average utilization, a(C, Y ).

The level of per capita income and the climate together jointly determine the size of the

16Although there are other activities that respond to meteorological conditions, with impacts on total and
peak load (change in time allocation, consumption of other appliances, water heating), we assume that the
electricity associated with those activities is of secondary importance.
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durable stock and the average level of its utilization, and therefore the average level of q. We

aim to identify their combined effect of the low-frequency extensive margin component (qE):

qE = h(a, qE) = h(C, Y ) (51)

When actors are faced with a weather realization (T ) that corresponds to the expected

climate (E(T |C = C), no adjustment occurs at the intensive margin, and therefore:

q = f(qE) = h(C, Y ) (52)

If an unanticipated daily weather anomaly (!) arises, shifting the exposed temperature

from the expected climate C to T = C + !, the optimal response to the expected C, h(C, Y ),

will be modified by an additional intensive margin component (I), capturing the extent to

which actors adjust their utilization following a deviation from the expected climate. At the

intensive margin (I), temperature anomalies leading to higher or lower exposure to high and

low temperature levels can be accommodated by making electricity consumption more or less

sensitive to weather. Higher income levels facilitate adaptation through increased discretionary

expenditure on more intensive utilization of the existing durable stock, with correspondingly

larger demand demand responses to positive and negative anomalies. Importantly, the short-

run response is constrained by the durable stocks and their average use patterns, as described

in Equation (2):

qI = g(C + !, Y |h(C, Y )) (53)

Assuming the two components add up linearly, total final demand reads as follow:

q = f(qE, qI) = h(C, Y ) + g(C + !, Y |h(C, Y )) (54)

Climate and per capita income are the low-frequency variables that should capture extensive

margin adjustments, while daily weather anomalies are the high-frequency variables that can

interact with per capita income as well and capture intensive margin adjustments (i.e., adjusting

utilization over the short run, conditional on durable stocks and their average use patterns).

Identification strategy

The identification strategy relies on the assumption that for a given observed maximum
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temperature, T = Ck + !p(k), the estimated response to long-term, temperature exposure DC
k

is:

U = h(C, Y ) + g(C + !, Y, h(C, Y )) = �Ck + �C
k y + !(�ωp(k) + �ω

p(k)y) (55)

On the other hand, given T = Ck0 and !p(k0) = 0, the estimated response to long-term,

temperature exposure DC
k is:

U = h(C, Y ) = �Ck0 + �C
k0y (56)

Therefore, the empirical approach allows to test if:

�Ck0 + �C
k0y 6= �Ck + �C

k y + w(�wp(k) + �w
p(k)y) (57)

In particular, if under the same observed maximum temperature T , U(Ck, Y ) > U(Ck +

!p(k), Y ), then the peak load response under a hotter climate Ck is higher than its response

under the combination of the colder climate Ck0 and the positive anomaly !k0 , meaning that

adapting to the hotter climate increases the sensitivity of energy demand to temperature (for

instance due to a variation in the stock of cooling appliances). If, on the other hand, U(Ck, Y )

< U(Ck0 + !p(k), Y ), then the peak load response under the hotter climate Ck is lower than

the its response under the colder climate Ck0 and the positive anomaly !p(k), meaning that

adapting to the hotter climate decreases the sensitivity of energy demand to the same observed

maximum temperature T (for instance due to acclimatization or energy efficiency effects). A

graphical representation of this comparison is provided in figure ??, where I show the case

in which T = 30�C, Ck0 = 27�C, !p(k0) +3�C and Ck = 30�C and y is fixed. Since the term

U(Ck, y) is only affected by the extensive margin adjustments, I consider it as the analog for a

long-run response to T . On the other hand, since the term U(Ck0 + !p(k0), y) is affected by the

extensive margin adjustment to Ck0 and the intensive margin adjustment to !p(k0), I consider it

as the analog for a short-run response to T . Note that a short-run response includes both an

extensive margin component and an intensive margin component.

Supplementary Figure Ch.5-1 shows the stylized short-term and long-term responses. Panel

a shows a stylized distribution of daily maximum temperatures in a given calendar day, char-

acterized by a mean value equal to c1 and a weather shock equal to w1, leading to an observed

daily maximum temperature equal to t2. Panel b shows how a shift in the stylized distribution
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of daily maximum temperatures translates into a variation in the local climate from c1 to c2.

Panel c shows the value U(c1,w1, y), computed as the sum of the extensive margin response to

c1 and of the intensive margin response to w1. Panel d shows the value U(c2, y), equal to the

extensive margin response to c2 and alternatively higher (solid line) or lower (dashed line) than

U(c1,w1, y).

Supplementary Figure Ch.5-1

Data

Daily peak and total electric load are defined as the sum of power generated by plants on

transmission networks, from which the balance (export–import) of exchanges on interconnec-

tions between neighboring bidding zones and the power absorbed by energy storage resources is

deduced. The total load represents the power demand on the transmission and distribution net-

works, while any power demand served by distributed networks is not included in the statistics.
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Table 10: Data sources

Variable Region Source

AC ownership Europe ENERDATA-ODYSSEE MURE [12]
AC ownership India CMIE [13]

Electricity demand Europe ENTSO-E[14]
Electricity demand India CEA [15]

GDP and Population Europe Eurostat [16]
GDP and Population India Reserve Bank of India [17]

Downscaled population by SSP - Olen et al., 2022 [18]
Downscaled GDP by SSP - Murakami et al., 2021 [19]

Historical daily temperatures - ERA-5 Land [20]
Projected daily temperatures - NASA NEX-GDDP-CMIP [21, 22, 23]

This aspect influences our measure of the total load, reducing it at times of high generation of

renewables in distributed networks. Despite such difference, throughout the paper we refer to

load and electricity demand interchangeably.

Supplementary Figures

Supplementary Figure Ch.5-2 shows the AC ownership adoption function by urbanization

level. Coloured lines represent the income-AC curves at different levels of exposure to CDDs

under the 10th, median and 90th quantile of urbanization level. Coloured shades present the

5th-95th confidence interval of the estimated adoption function.

Supplementary Figure Ch.5-2

Supplementary Figure Ch.5-3 shows the AC prevalence projection by state and climate

scenario. The grey bars present the historical (2015) observed level of AC prevalence, while
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Supplementary Figure Ch.5-3

the coloured bars present the projected increment in AC prevalence due to both income and

climate drivers as estimated from 8.
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Supplementary Figure Ch.5-4 shows the Electricity demand increase due to climate change

circa 2050 from intensive and extensive margins combined by SSP-RCP. Panel a shows the

relative increase in the annual total load across 29 GCMs. Panel b shows the absolute median

increase in the annual total load.
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Income-dependent climate shocks in a dynamic error correction model

In order to adopt the ECM, I first investigate the presence of non-stationarity in the sectoral

per capita electricity demand, per capita GDP, and thermal discomfort (measured by the

alternative set of weather variables), finding that all variables contain unit roots; secondly,

we investigate the presence of cointegration in the regressions of the log of per capita electricity

demand, per capita GDP, and thermal discomfort with the statistic proposed by [7], which

always rejects the null of no cointegration against the alternative hypothesis of some or all panels

being cointegrated; finally, we test the direction of the causality in the cointegration relation by

adopting a Granger-causality test for panel data [8], finding evidence of a bi-directional causality

in the case of per capita electricity and per capita GDP, of unidirectional Granger causality

between electricity demand and thermal discomfort and of no Granger causality between GDP

per capita and thermal discomfort.

I test for the presence of cross-sectional heterogeneity, serial correlation and multicollinear-

ity among the variables (see Tables S4-S5). The results of the tests point to the presence of

cross-sectional dependence and serial correlation, while do not confirm the presence of multi-

collinearity. The use of time fixed effects can be seen as a first way to deal with cross sectional

dependencies, and it is justified as in our case the cross-sectional dependency in the data may

derive from sources that commonly impact all members of the panel, being the units regions

of a large country [9]. We account for the cross-sectional dependence and serial correlation by

employing a covariance matrix estimation robust to heteroskedasticity and both cross-sectional

and serial correlation in the panels [10,11].

I compare different specifications based on the Adjusted R-squared, the Residual Mean

Square Error (RMSE), the Akaike’s information criterion (AIC) and the Bayesian information

criterion (BIC), [12]. Smaller values of the RMSE, AIC and BIC information criteria are

associated with the best model performance. Bold numbers are associated with the best score

across all model specifications (equation and thermal discomfort variable), while underlined

numbers are associated with the best score between the Eq. 14 and 17 for each thermal

discomfort variable. The models based on the wet-bulb temperature bins are associated with the

lowest RMSE, AIC and BIC in almost all combinations of sectors and equations specifications

(Table S6). Furthermore, the econometric specification based on Eq. 17 generally results in a

lower RMSE, AIC and BIC compared to 14, underscoring the relevance of taking into account

the evolution of income in the estimation of the long-run effects of thermal discomfort on
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Table S1: Unit root tests for panel data 

Test Levin-Lin-Chu Maddala-Wu Hadri Im-Pesaran-Shin 

H0 Non stationarity Non stationarity 
No series has a 

unit root 
Non stationarity 

Exogenous variables Individual intercepts and trends 

Results (p-value) 

Residential electricity 

consumption per capita 

Accept H0 

(1) 

Accept H0 

(0.881- 0.945) 

H0 rejected 

(< 2.2e-16) 

 

Accept H0 

(0.930 - 0.974) 

Commercial electricity 

consumption per capita 

Accept H0 

(1) 

Accept H0 

(1) 

H0 rejected 

(< 2.2e-16) 

 

Accept H0 

(1) 

Industrial electricity 

consumption per capita 

Accept H0 

(0.999) 

H0 rejected 

(3.941e-06-

1.925e-06) 

 

H0 rejected 

(< 2.2e-16) 

 

H0 rejected 

(5.279e-05-

0.0126) 

Public and Rural electricity 

consumption per capita 

Accept H0 

(1) 

H0 rejected 

(< 2.2e-16) 

 

H0 rejected 

(< 2.2e-16) 

 

H0 rejected 

(< 2.2e-16) 

 

GDP per capita 
Accept H0 

(1) 

Accept H0 

(1) 

H0 rejected 

(< 2.2e-16) 

 

Accept H0 

(1) 

CDDswet 
Accept H0 

(1) 

H0 rejected 

(< 2.2e-16) 

 

Accept H0 

0.924) 

 

H0 rejected 

(< 2.2e-16) 

CDDsdry 
Accept H0 

(1) 

H0 rejected 

(< 2.2e-16) 

 

Accept H0 

(0.924) 

 

H0 rejected 

(< 2.2e-16) 

Monthly Temperature 
Accept H0 

(1) 

Accept H0 

(1) 

Accept H0 

0.9998) 

 

H0 rejected 

(< 2.2e-16) 

Note: p-values range based on lags selection method 
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Table S2: cointegation tests for panel data  

H0 No cointegration 

Specifications tested: 1; 'none', 2: 'intercept', 3:'intercept and time trend' 

 
GDP per capita CDDswet CDDsdry 

Monthly 

Temperature 

Residential electricity 

consumption per capita 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

Commercial electricity 

consumption per capita 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

Industrial electricity 

consumption per capita 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

Public and Rural electricity 

consumption per capita 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

H0 rejected 

(1,2,3) 

 

 

 

Table S3: Granger causality panel test (Residential sector) 

H0: No granger causality in all individuals  

 
Electricity 

consumption 

per capita 

GDP per 

capita 
CDDswet CDDsdry 

Monthly 

Temperature 

Electricity 

consumption per 

capita 

- 
H0 rejected 

(< 2.2e-16) 

H0 rejected 

(< 2.2e-16) 

H0 rejected 

(< 2.2e-16) 

H0 rejected 

(< 2.2e-16) 

GDP per capita 
H0 rejected 

(< 2.2e-16) 
- 

H0 not 

rejected 

(0.38) 

H0 not 

rejected 

(0.19) 

H0 not 

rejected 

(0.87) 

 

y 

x 

x 

y 
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Table S4: Test for cross-sectional dependence in panels 

H0= No cross-sectional dependence 

 Eq.3a (temperature bins) Eq.4a (temperature bins) 

Residential H0 rejected (< 2.2e-16) H0 rejected (< 2.2e-16) 

Commercial H0 rejected (4.334e-15) H0 rejected (1.875e-15) 

Public & Rural H0 rejected (3.933e-16) H0 rejected (3.769e-16) 

Industrial H0 not rejected 0.2547 H0 not rejected 0.2834 

 

 

Table S5: Durbin-Watson test for serial correlation in panel models 

H0= No serial correlation in idiosyncratic errors 

 Eq.3a (temperature bins) Eq.4a (temperature bins) 

Residential H0 rejected (< 2.2e-16) H0 rejected (< 2.2e-16) 

Commercial H0 rejected (< 2.2e-16) H0 rejected (< 2.2e-16) 

Public & Rural H0 rejected (< 2.2e-16) H0 rejected (< 2.2e-16) 

Industrial H0 rejected (< 2.2e-16) H0 rejected (< 2.2e-16) 

 

electricity demand. The higher performance of the models based on the wet-bulb temperature

bins variable motivates us to adopt such specification for the projection of future electricity

demand shocks.

Table S8 reports the projected national electricity demand in 2050 across SSPs and RCPs.

The additional demand required from adaptation is computed based on both the model exclud-

ing the interaction between weather and income Eq. 14 and including the interaction Eq. 17.

Total demand includes the baseline demand and the additional demand.
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Table S6: ECM Models’ comparison 

 Binsdry Binswet CDDsdry 24°C CDDswet 18°C CDDswet 24°C 

 Eq. 14 Eq. 17 Eq. 14 Eq. 17 Eq. 14 Eq. 17 Eq. 14 Eq. 17 Eq. 14 Eq. 17 

Residential 

Adj. R^2 0.408 0.460 0.327 0.369 0.386 0.434 0.324 0.366 0.287 0.294 

RMSE 0.047 0.045 0.050 0.049 0.048 0.047 0.052 0.052 0.050 0.049 

AIC -14234 -14550 -13653 -13935 -14074 -14324 -13646 -13885 -13401 -13411 

BIC -12868 -13180 -12313 -12530 -12772 -13016 -12344 -12577 -12099 -12103 

Commercial 

Adj. R^2 0.445 0.462 0.361 0.382 0.377 0.397 0.333 0.362 0.326 0.331 

RMSE 0.0449 0.044 0.048 0.047 0.046 0.046 0.048 0.049 0.049 0.049 

AIC -14762 -14890 -14127 -14267 -14431 -14550 -13891 -13889 -14091 -13990 

BIC -13396 -13479 -12786 -12863 -13129 -13242 -12789 -12695 -12589 -12581 

Public and Rural 

Adj. R^2 0.270 0.276 0.211 0.211 0.235 0.236 0.182 0.192 0.179 0.181 

RMSE 0.0644 0.0642 0.067 0.066 0.065 0.065 0.067 0.067 0.067 0.067 

AIC -11499 -11522 -11154 -11237 -11443 -11446 -11123 -11122 -11162 -11120 

BIC -10133 -10111 -9814 -9833 -10141 -10138 -9860 -9825 -9821 -9813 

Supplementary Tables of Chapter 5.4

Supplementary methods on the time-demeaning of interactions terms

The standard way of specifying interaction terms in an FE regression is to treat the product

term as any other variable and, accordingly, to demean it. For any measurement i,t, the

demeaned interaction term zi,txi,t � (zx)i can be written as:

zi,txi,t �

PT

t=1 zi,txi,t

Ti

(58)

where every zi,t and xi,t consisting of a unit-specific component zi, xi and a measurement-

specific idiosyncratic anomaly A(zi,t) and A(xi,t).

We follow Giesselmann et al, 2022 and consider two different cases of among the factors

z and x: (1) only one factor shows intra-unit variation, or (2) both factors show intra-unit

variation.

In the case (1) Let z be constant within units and, therefore, zi,t = zi for all i,t. In this case,

equation 61 can be written as:
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Table S7: Error Correction Model results - Equation 14 

  Residential Commercial Public&Rural Industrial 

 
Δlog elercons 

percap 
Δlog elercons percap Δlog elercons percap 

Δlog elercons 

percap 

Δlog price 0.126** (0.059) 0.077* (0.044) 0.035 (0.062) -0.184 (0.213) 

Δlog gdp percap usd 0.561*** (0.133) 0.421*** (0.112) 0.405*** (0.116) 0.430 (0.380) 

Δbin_low_12 0.001* (0.001) -0.003*** (0.001) -0.004** (0.002) -0.001 (0.001) 

Δbin_12_15 -0.001 (0.001) -0.003*** (0.001) -0.005*** (0.001) 0.002 (0.001) 

Δbin_15_18 -0.003*** (0.001) -0.005*** (0.001) -0.003* (0.002) -0.001 (0.001) 

Δbin_18_21 -0.0003 (0.001) -0.001 (0.001) -0.001 (0.001) 0.001 (0.001) 

Δbin_24_27 0.002***(0.0004) 0.003*** (0.0005) 0.003*** (0.001) 0.002** (0.001) 

Δbin_27_30 0.006***(0.0005) 0.005*** (0.0005) 0.006*** (0.001) 0.003*** (0.001) 

Δbin_gt_30 0.011*** (0.001) 0.008*** (0.001) 0.008*** (0.001) 0.001 (0.003) 

lag log res elercons percap -0.357*** (0.021) -0.465*** (0.030) -0.441*** (0.033) -0.501*** (0.091) 

lag log gdp percap usd 0.706*** (0.213) 0.525*** (0.130) 0.486*** (0.131) 0.063 (0.487) 

lag log price 0.343** (0.149) 0.168* (0.096) 0.039 (0.133) -0.124 (0.379) 

lag bin_low_12 0.001 (0.002) -0.004*** (0.001) -0.014*** (0.005) 0.001 (0.002) 

lag bin_12_15 -0.004 (0.003) -0.007*** (0.002) -0.011*** (0.004) 0.006 (0.004) 

lag bin_15_18 -0.001 (0.002) -0.006*** (0.002) -0.008 (0.006) -0.004 (0.002) 

lag bin_18_21 -0.002 (0.002) -0.002** (0.001) -0.006** (0.003) 0.003* (0.002) 

lag bin_24_27 0.003*** (0.001) 0.003*** (0.0005) 0.001 (0.002) 0.001 (0.001) 

lag bin_27_30 0.008*** (0.001) 0.007*** (0.001) 0.006*** (0.002) 0.002** (0.001) 

lag bin_gt_30 0.015*** (0.001) 0.011*** (0.001) 0.009*** (0.003) 0.004 (0.003) 

Time fixed effects Yes Yes Yes Yes 

Unit fixed effects Yes Yes Yes Yes 

Month dummies Yes Yes Yes Yes 

Economic crisis dummies Yes Yes Yes Yes 

Observations 4,482 4,482 4,482 4,482 

R2 0.437 0.472 0.305 0.324 

Adjusted R2 0.409 0.446 0.271 0.286 

F Statistic 
122.268***  

(df = 19; 4271) 

131.096***  

(df = 19; 4271) 

96.253***  

(df = 19; 4271) 

45.200*** 

(df = 19; 4271) 

Note: *p**p***p<0.01  *p**p***p<0.01  

Standard errors are robust to cross-sectional dependence and serial correlation and are based on the delta method function 
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Table S8 

  Additional demand (GWh) Total Demand (GWh) 

SSP RCP 
No income 

effect 

Income 

effect 
No income effect Income effect 

SSP1 RCP 4.5 27.537 93.905 666.905 733.273 

SSP1 RCP 8.5 38.569 117.156 677.937 756.524 

SSP2 RCP 4.5 22.236 62.843 537.049 577.657 

SSP2 RCP 8.5 31.097 79.329 545.911 594.143 

SSP3 RCP 4.5 18.060 39.834 429.687 451.462 

SSP3 RCP 8.5 25.204 51.342 436.831 462.969 

zixi,t �

PT

t=1 zixi,t

Ti

(59)

factoring out, equation 59 can be written as:

= zi · A(xi,t) (60)

If both variables are time-dependent, equation 58 can be written as:

ziA(xi,t) + xiA(zi,t) +A(zi,t)A(xi,t)�

PT

t=1 A(zi,t)A(xi,t)

Ti

(61)

The final transformation in equation 61 reveals that, for each measurement i,t, the size of

a demeaned interaction term with two variables z and x showing intra-unit variation depends

on the unit-specific levels of both z and x.

Step-by-step time demeaning in FE models

Initial equation:

qi,t = ↵ + Ti,t(�1 + �2Ci + �3xi,t) + �4xi,t + µi + "i,t (62)

Applying time-demeaning to equation 62 and rearranging terms (see supplementary meth-

ods), it can be shown that the time-demeaned FE estimation leads to:
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(qi,t � qi,t) =

�1A(Ti,t) + �2A(Ti,t) · Ci+

�3

 
TiA(xi,t) + xiA(Ti,t) +A(xi,t)A(Ti,t)�

PT

t=1 A(xi,t)A(Ti,t)

Ti

!
(63)

Re-arranging terms by each weather component A(Ti,t) and Ti:

(qi,t � qi,t) =

A(Ti,t) ·

 
�1 + �2Ci + �3xi +A(xi,t)�

PT

t=1 A(xi,t)

Ti

!
+

Ti · (�3A(xi,t))

(64)

The part of the equation dependent upon A(Ti,t) identifies the intensive margin, as it zero

when A(Ti,t) = 0. The extensive margin is captured not from CDDs (Ci) but only by the term

�3TiA(xi,t) and is obtained from the interaction with income anomalies, rather than on income

levels."
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Pooled sectors energy demand shocks

Here we simulate the impact of a stylized change in climate and income, comparing the

estimators of the three alternative models presented. In model 1 we rely on co-variation between

annual electricity demand and annual temperature bins, as in Eq. 59. In model 2 temperature

bins are interacted with CDDs (2a) and with time-varying per capita capital stock (2b), as

in Eq. 23. Our preferred specification decomposes annual temperature bins into the 10-year

moving average temperature bins and its anomalies in isolation (3a) or modulated by per capita

capital stock (3b-3c), as in Eq. 29.

Table 11: Estimated variation in energy demand by specification

Fuel Shock pc K level Model
(1) (2) (3a) (3b) (3c)

median 1% 1.2% 1.9 % 2% 2.2%
Elec. +10 CDDs 25th - 0.8% - 1.6% 1.8%

75th - 1.6% - 2.4% 2.6%

(1) (2) (3a) (3b) (3c)
median 2% 1.1% 2% 2.5% 2.1%

Fossils +10 HDDs 25th - 0.5% - 1.8% 1.5%
75th - 1.8% - 3.1% 2.7%

median 1% 1.4%- 2.4% 2.6% -
Elec. +1 day >30C 25th - 1.3% - 2.5% -

75th - 1.6% - 2.7% -
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Dependent Variable: ln_electricity_pc

Model: (1) (2) (3a) (3b) (3c)

Variables

hdd15 0.0001∗∗∗ 0.0002∗∗

(2.95 ⇥ 10
−5) (0.0001)

cdd24 0.0010∗∗∗ -0.0026∗∗∗

(9.32 ⇥ 10
−5) (0.0003)

ln_gdp_pc_10ma 0.4005∗∗∗ 0.3898∗∗∗ 0.3958∗∗∗ 0.3870∗∗∗ 0.3864∗∗∗

(0.0163) (0.0167) (0.0163) (0.0168) (0.0168)

ln_gdp_pc_10ma_sq 0.0163∗∗∗ 0.0086∗∗∗ 0.0170∗∗∗ 0.0092∗∗∗ 0.0091∗∗∗

(0.0017) (0.0020) (0.0017) (0.0021) (0.0021)

hdd15 ⇥ ln_ks_pc_10ma �1.58 ⇥ 10
−5

(1.11 ⇥ 10
−5)

cdd24 ⇥ ln_ks_pc_10ma 0.0004∗∗∗

(3.07 ⇥ 10
−5)

hdd15_clim 0.0002∗∗∗ 0.0001 0.0001

(4.37 ⇥ 10
−5) (0.0001) (0.0001)

cdd24_clim 0.0019∗∗∗ -0.0020∗∗∗ -0.0018∗∗∗

(0.0001) (0.0004) (0.0004)

cdd24_neg_anom -0.0007∗∗ -0.0007∗ -0.0076∗∗∗

(0.0003) (0.0004) (0.0025)

cdd24_pos_anom 0.0001 1.22 ⇥ 10
−5 -0.0037∗∗∗

(0.0002) (0.0002) (0.0012)

hdd15_neg_anom 7.73 ⇥ 10
−6

2.23 ⇥ 10
−5 0.0011

(6.96 ⇥ 10
−5) (7.01 ⇥ 10

−5) (0.0008)

hdd15_pos_anom 2.25 ⇥ 10
−5

4.03 ⇥ 10
−5 0.0007

(9.16 ⇥ 10
−5) (9.22 ⇥ 10

−5) (0.0011)

hdd15_clim ⇥ ln_ks_pc_10ma �3.44 ⇥ 10
−6

�1.96 ⇥ 10
−6

(1.16 ⇥ 10
−5) (1.21 ⇥ 10

−5)

cdd24_clim ⇥ ln_ks_pc_10ma 0.0004∗∗∗ 0.0004∗∗∗

(3.43 ⇥ 10
−5) (3.5 ⇥ 10

−5)

cdd24_neg_anom ⇥ ln_ks_pc_10ma 0.0008∗∗∗

(0.0003)

cdd24_pos_anom ⇥ ln_ks_pc_10ma 0.0004∗∗∗

(0.0001)

hdd15_neg_anom ⇥ ln_ks_pc_10ma -0.0001

(7.85 ⇥ 10
−5)

hdd15_pos_anom ⇥ ln_ks_pc_10ma �6.34 ⇥ 10
−5

(9.86 ⇥ 10
−5)

Fixed-effects

sector_region Yes Yes Yes Yes Yes

iso3 Yes Yes Yes Yes Yes

year Yes Yes Yes Yes Yes

Fit statistics

Observations 22,137 21,248 22,137 21,248 21,248

R2 0.87310 0.87619 0.87362 0.87653 0.87663

Within R2 0.09165 0.10321 0.09535 0.10567 0.10645

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Dependent Variable: ln_fossil_fuel_pc

Model: (1) (2) (3a) (3b) (3c)

Variables

hdd15 0.0002∗∗∗ -0.0005∗∗∗

(3.91 ⇥ 10
−5) (0.0001)

cdd24 0.0003∗∗∗ -0.0016∗∗∗

(0.0001) (0.0004)

ln_gdp_pc_10ma 0.3007∗∗∗ 0.3282∗∗∗ 0.3001∗∗∗ 0.3266∗∗∗ 0.3264∗∗∗

(0.0154) (0.0154) (0.0154) (0.0154) (0.0154)

ln_gdp_pc_10ma_sq 0.0159∗∗∗ 0.0096∗∗∗ 0.0160∗∗∗ 0.0091∗∗∗ 0.0090∗∗∗

(0.0017) (0.0020) (0.0017) (0.0021) (0.0021)

hdd15 ⇥ ln_ks_pc_10ma 6.11 ⇥ 10
−5∗∗∗

(1.07 ⇥ 10
−5)

cdd24 ⇥ ln_ks_pc_10ma 0.0002∗∗∗

(3.37 ⇥ 10
−5)

hdd15_clim 0.0002∗∗∗ -0.0004∗∗∗ -0.0004∗∗∗

(6.38 ⇥ 10
−5) (0.0001) (0.0001)

cdd24_clim 0.0003∗ -0.0019∗∗∗ -0.0017∗∗∗

(0.0002) (0.0005) (0.0005)

cdd24_neg_anom �8.54 ⇥ 10
−5 -0.0001 -0.0071∗∗

(0.0004) (0.0004) (0.0029)

cdd24_pos_anom 0.0003 0.0002 -0.0014

(0.0002) (0.0002) (0.0015)

hdd15_neg_anom �5.96 ⇥ 10
−5

�7.77 ⇥ 10
−5 -0.0003

(8.97 ⇥ 10
−5) (8.94 ⇥ 10

−5) (0.0009)

hdd15_pos_anom 0.0002∗ 0.0002 -0.0009

(0.0001) (0.0001) (0.0011)

hdd15_clim ⇥ ln_ks_pc_10ma 6.54 ⇥ 10
−5∗∗∗

6.12 ⇥ 10
−5∗∗∗

(1.07 ⇥ 10
−5) (1.12 ⇥ 10

−5)

cdd24_clim ⇥ ln_ks_pc_10ma 0.0002∗∗∗ 0.0002∗∗∗

(3.87 ⇥ 10
−5) (3.89 ⇥ 10

−5)

cdd24_neg_anom ⇥ ln_ks_pc_10ma 0.0008∗∗

(0.0003)

cdd24_pos_anom ⇥ ln_ks_pc_10ma 0.0002

(0.0002)

hdd15_neg_anom ⇥ ln_ks_pc_10ma 1.87 ⇥ 10
−5

(8.44 ⇥ 10
−5)

hdd15_pos_anom ⇥ ln_ks_pc_10ma 9.73 ⇥ 10
−5

(0.0001)

Fixed-effects

sector_region Yes Yes Yes Yes Yes

iso3 Yes Yes Yes Yes Yes

year Yes Yes Yes Yes Yes

Fit statistics

Observations 23,965 23,001 23,965 23,001 23,001

R2 0.81207 0.81760 0.81210 0.81773 0.81782

Within R2 0.04304 0.05345 0.04315 0.05414 0.05460

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Dependent Variable: ln_electricity_pc

Model: (1) (2a) (2b) (3a) (3b) (3c)

Selected variables (full in SI)

temp_g30 0.0097∗∗∗ 0.0064∗∗ -0.0146∗∗

(0.0015) (0.0032) (0.0054)

temp_g30 ⇥ mean_cdd24 6.26 ⇥ 10
−6∗∗

1.12e � 5
∗∗∗

(2.76 ⇥ 10
−6) (3.03 ⇥ 10

−6)

temp_g30 ⇥ ln_ks_pc_10ma 0.0017∗∗∗

(0.0005)

temp_g30_10ma 0.0242∗∗∗ 0.0136∗∗ 0.0140∗∗

(0.0025) (0.0066) (0.0066)

temp_g30_an 0.0037∗∗ 0.0024 -0.0098

(0.0018) (0.0018) (0.0100)

temp_g30_10ma ⇥ ln_ks_pc_10ma 0.0013∗∗ 0.0012∗∗

(0.0006) (0.0006)

ln_ks_pc_10ma ⇥ temp_g30_an 0.0014

(0.0012)

Fixed-effects

iso3 Yes Yes Yes Yes Yes Yes

sector_region Yes Yes Yes Yes Yes Yes

year Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 21,463 21,463 20,556 21,463 20,556 20,556

R2 0.86734 0.86825 0.87375 0.86856 0.87360 0.87365

Within R2 0.10192 0.10805 0.13030 0.11020 0.12932 0.12960

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Electricity demand regressions

Dependent Variable: ln_electricity_pc

Sector: (Res) (Com) (Ind) (Agr) (Tra)

Variables

hdd15_clim -0.0003∗ -0.0009∗∗∗ 8.69 ⇥ 10
−5 0.0004∗ -0.0009∗∗∗

(0.0001) (0.0002) (0.0001) (0.0002) (0.0002)

cdd24_clim -0.0010∗∗ -0.0015∗∗ -0.0025∗∗∗ -0.0034∗∗∗ -0.0059∗∗∗

(0.0005) (0.0006) (0.0004) (0.0005) (0.0015)

ln_gdp_pc_10ma 0.5273∗∗∗ 0.4666∗∗∗ 0.5100∗∗∗ 0.1882∗∗∗ 0.3509∗∗∗

(0.0348) (0.0449) (0.0317) (0.0493) (0.0641)

gdp_pc_anomaly 0.0012∗∗ -0.0009 0.0009∗ -0.0001 -0.0003

(0.0005) (0.0007) (0.0005) (0.0006) (0.0008)

cdd24_neg_anom -0.0005 -0.0005 -0.0003 -0.0013∗ 0.0017∗

(0.0003) (0.0006) (0.0004) (0.0006) (0.0010)

cdd24_pos_anom 0.0002 �5.49 ⇥ 10
−5 0.0003 0.0002 0.0001

(0.0002) (0.0003) (0.0002) (0.0004) (0.0006)

hdd15_neg_anom 2.69 ⇥ 10
−5

7.84 ⇥ 10
−5

�2.06 ⇥ 10
−5

9.69 ⇥ 10
−6 -0.0002

(5.75 ⇥ 10
−5) (8.53 ⇥ 10

−5) (6.69 ⇥ 10
−5) (0.0001) (0.0001)

hdd15_pos_anom 5.43 ⇥ 10
−5

9.65 ⇥ 10
−5

�3.02 ⇥ 10
−5 -0.0001 0.0002

(8.21 ⇥ 10
−5) (0.0001) (8.31 ⇥ 10

−5) (0.0002) (0.0001)

hdd15_clim ⇥ ln_ks_pc_10ma 4.25 ⇥ 10
−5∗∗∗ 0.0001∗∗∗ �1.07 ⇥ 10

−5
�6.85 ⇥ 10

−5∗∗∗
8.84 ⇥ 10

−5∗∗∗

(1.32 ⇥ 10
−5) (1.71 ⇥ 10

−5) (1.17 ⇥ 10
−5) (2.28 ⇥ 10

−5) (2.22 ⇥ 10
−5)

cdd24_clim ⇥ ln_ks_pc_10ma 0.0003∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗ 0.0006∗∗∗ 0.0010∗∗∗

(4.17 ⇥ 10
−5) (5.05 ⇥ 10

−5) (4.24 ⇥ 10
−5) (4.36 ⇥ 10

−5) (0.0001)

Fixed-effects

sector_region Yes Yes Yes Yes Yes

iso3 Yes Yes Yes Yes Yes

year Yes Yes Yes Yes Yes

Fit statistics

Observations 5,158 4,770 5,185 3,514 2,621

R2 0.96798 0.94165 0.95299 0.88904 0.95036

Within R2 0.28222 0.15930 0.27188 0.08965 0.15591

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Fossil fuel demand regressions

Dependent Variable: ln_fossil_fuel_pc

Sector: (Res) (Com) (Ind) (Agr) (Tra)

Variables

hdd15_clim -0.0014∗∗∗ -0.0018∗∗∗ 0.0013∗∗∗ -0.0009∗∗∗ -0.0003∗∗

(0.0003) (0.0003) (0.0001) (0.0002) (0.0001)

cdd24_clim 0.0005 -0.0068∗∗∗ 0.0005 -0.0133∗∗∗ -0.0013∗∗∗

(0.0005) (0.0017) (0.0005) (0.0012) (0.0003)

ln_gdp_pc_10ma 0.4297∗∗∗ 0.3474∗∗∗ 0.7098∗∗∗ 0.0895 0.3804∗∗∗

(0.0411) (0.0654) (0.0317) (0.0678) (0.0208)

gdp_pc_anomaly 0.0009 0.0018∗∗ 0.0019∗∗∗ 0.0010 0.0015∗∗∗

(0.0006) (0.0007) (0.0005) (0.0009) (0.0003)

cdd24_neg_anom -0.0011∗∗∗ 0.0012 -0.0004 -0.0002 -0.0003

(0.0004) (0.0010) (0.0005) (0.0011) (0.0003)

cdd24_pos_anom -0.0006∗∗ 0.0004 0.0001 0.0006 0.0002

(0.0003) (0.0005) (0.0003) (0.0006) (0.0002)

hdd15_neg_anom 5.78 ⇥ 10
−5 -0.0004∗∗ 1.59 ⇥ 10

−6 -0.0002 1.83 ⇥ 10
−5

(0.0001) (0.0002) (7.87 ⇥ 10
−5) (0.0002) (6.32 ⇥ 10

−5)

hdd15_pos_anom 0.0006∗∗∗ 7.02 ⇥ 10
−5

1.33 ⇥ 10
−5 0.0002 �3.81 ⇥ 10

−6

(0.0002) (0.0002) (9.65 ⇥ 10
−5) (0.0002) (7.16 ⇥ 10

−5)

hdd15_clim ⇥ ln_ks_pc_10ma 0.0002∗∗∗ 0.0002∗∗∗ �9.44 ⇥ 10
−5∗∗∗

6.02 ⇥ 10
−5∗∗∗

3.67 ⇥ 10
−5∗∗∗

(2.37 ⇥ 10
−5) (2.33 ⇥ 10

−5) (1.34 ⇥ 10
−5) (2.04 ⇥ 10

−5) (1.21 ⇥ 10
−5)

cdd24_clim ⇥ ln_ks_pc_10ma 4.38 ⇥ 10
−5 0.0007∗∗∗ 0.0001∗∗ 0.0012∗∗∗ 0.0002∗∗∗

(4.53 ⇥ 10
−5) (0.0001) (4.14 ⇥ 10

−5) (8.85 ⇥ 10
−5) (2.91 ⇥ 10

−5)

Fixed-effects

sector_region Yes Yes Yes Yes Yes

iso3 Yes Yes Yes Yes Yes

year Yes Yes Yes Yes Yes

Fit statistics

Observations 5,205 3,652 5,150 3,680 5,314

R2 0.91396 0.87065 0.93635 0.83233 0.95321

Within R2 0.09227 0.06553 0.25679 0.07799 0.17864

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Income regressions

Dependent Variable: fd_ln_gdp_pc

Model: (1) (2) (3) (4) (5)

Variables

mean_temp_10ma 0.0318∗∗∗ 0.0192∗∗∗ 0.0835∗∗∗ 0.0664∗∗∗ 0.0300

(0.0074) (0.0070) (0.0152) (0.0176) (0.0209)

mean_temp_10ma_sq -0.0001 6.3 ⇥ 10
−5 -0.0030∗∗∗ -0.0019∗∗ -0.0012

(0.0003) (0.0003) (0.0006) (0.0007) (0.0008)

mean_temp_an_pos_above24 -0.0155∗ -0.0161∗∗ -0.0233∗∗∗ -0.0176∗∗ -0.0229∗∗∗

(0.0083) (0.0076) (0.0079) (0.0083) (0.0088)

mean_temp_an_neg_below15 -0.0215∗∗∗ -0.0147∗∗ -0.0103∗ -0.0078 -0.0088∗

(0.0075) (0.0071) (0.0057) (0.0049) (0.0049)

precip 3.82 ⇥ 10
−5∗∗

2.98 ⇥ 10
−5∗∗

3.36 ⇥ 10
−5∗∗

2.09 ⇥ 10
−5

1.61 ⇥ 10
−5

(1.51 ⇥ 10
−5) (1.49 ⇥ 10

−5) (1.47 ⇥ 10
−5) (1.52 ⇥ 10

−5) (1.5 ⇥ 10
−5)

precip_sq �5.7 ⇥ 10
−9

�4.11 ⇥ 10
−9

�4.22 ⇥ 10
−9

�1.62 ⇥ 10
−9

�3.1 ⇥ 10
−9

(3.52 ⇥ 10
−9) (3.45 ⇥ 10

−9) (3.43 ⇥ 10
−9) (3.54 ⇥ 10

−9) (3.48 ⇥ 10
−9)

mean_temp_10ma ⇥ lag.ln_en_pc -0.0055∗∗∗ -0.0043∗∗∗ -0.0149∗∗∗ -0.0192∗∗∗ -0.0189∗∗∗

(0.0009) (0.0008) (0.0022) (0.0025) (0.0024)

mean_temp_10ma_sq ⇥ lag.ln_en_pc 0.0002∗∗∗ 0.0001∗∗∗ 0.0005∗∗∗ 0.0007∗∗∗ 0.0007∗∗∗

(3.66 ⇥ 10
−5) (3.6 ⇥ 10

−5) (9.29 ⇥ 10
−5) (0.0001) (0.0001)

lag.fd_ln_gdp_pc 0.2421∗∗∗ 0.1833∗∗ 0.1102 0.0763

(0.0726) (0.0745) (0.0771) (0.0800)

country-time trend No No Linear Quadratic Quadratic

Fixed-effects

iso3 Yes Yes Yes Yes Yes

year Yes

Fit statistics

Observations 5,269 5,246 5,246 5,246 5,246

R2 0.08596 0.13760 0.19759 0.26085 0.30756

Within R2 0.04112 0.09497 0.15792 0.22431 0.20809

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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7.4 Supplementary Material of Chapter 6

Energy efficiency and behavioral policies

I compute end-use efficiency improvements based on the regin-specific seasonal energy effi-

ciency ratios (SEERs) available from [24], comparing the current market average SEER to the

best available SEER: the latter is 50% and 40% lower than the former in Europe and India,

respectively. I assume that a proportional reduction in the additional electricity demand asso-

ciated to air-conditioning could be achieved though a shift from current market average to the

best available SEER in the two regions.

Table 12: Demand reductions from energy efficiency of appliances

Average SEER Best available Fractional AC Residual
SEER demand reduction demand

Europe 5.5 11 50% 17 TWh
India 3.5 6 41% 109 TWh

I compute the decrease in energy consumption from coupling AC with fans in three steps.

First, I identify the potential reduction in air temperature from the operation of fans at differ-

ent speeds based on the ASHRAE Thermal Environmental Conditions for Human Occupancy

(ASHRAE, 2004). I focus on the case of household occupants undertaking primarily sedentary

activity, and select the suggested maximum offset of 3.0�C achieved with air-speed at 0.8 m/s.

We compute the new demand amplification circa 2050 ( ⇤

v) by assuming a uniform 3.0�C reduc-

tion in air temperatures yielding the exposure to bins T ⇤F
k , when maximum daily temperatures

surpass 24�C.

 ⇤

v =
exp

hP
k
b�T
k,v
fT ⇤

F

k +
P

k
b�TAC
k,v

⇣
eT F
k · esF

⌘
+ b�Y

v eyF
i

exp
hP

k
b�T
k,v
eT C
k +

P
k
b�TAC
k,v

⇣
eT C
k · esC

⌘
+ b�Y

v eyC
i (65)

Comparing  ⇤

v to  v obtained from Eq.

Second, I quantify the additional electricity consumption from the use of fans (⌧i,d⇤) in each

state (i) in the days when maximum temperatures surpass 24�C (d⇤). Following [25], I assume

that each household (h) owning an AC circa 2050 operates a typical 48 inch ceiling fan using

75W of power for a time ranging from 3 to 9 hours/day (r), and that average consumption per

hour of operation is 0.075 kWh.
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⌧i =
X

k,d

(0.075 · r · d⇤i · hi) (66)

Third, I derive the residual demand amplification by taking the sum between  ⇤

v and the

additional demand for fans operation (⌧i,d⇤).

Table 13: Demand reductions from coupling AC and fans

Fractional AC Additional demand from Residual demand
demand reduction fans (3-9 hours/day)

Europe 39% - 63% 2 TWh - 7 TWh 16 TWh - 21 TWh
India 50% - 57% 6 TWh - 19 TWh 81 TWh - 94 TWh
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