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A B S T R A C T

Introduction: A causal link between air pollution exposure and cardiovascular events has been suggested. How
ever fewer studies have investigated the shape of the associations at low levels of air pollution and identified the 
most important temporal window of exposure. Here we assessed long-term associations between particulate 
matter < 2.5 µm (PM2.5) at low concentrations and multiple cardiovascular endpoints using the UK Biobank 
cohort.
Methods: Using data on adults (aged > 40) from the UK Biobank cohort, we investigated the associations between 
1-year, 3-year and 5-year time-varying averages of PM2.5 and incidence of major adverse cardiovascular events 
(MACE), myocardial infarction (MI), heart failure, atrial fibrillation and flutter and cardiac arrest. We also 
investigated outcome subtypes for MI and stroke. Events were defined as hospital inpatient admissions. We fitted 
Cox proportional hazard regression models applying extensive control for confounding at both individual and 
area level. Finally, we assessed the shape of the exposure–response functions to assess effects at low levels of 
exposure.
Results: We analysed data from 377,736 study participants after exclusion of prevalent subjects. The average 
follow-up (2006–2021) was 12.9 years. We detected 19,353 cases of MACE, 6,562 of acute MI, 6,278 of heart 
failure, 1,258 for atrial fibrillation and flutter, and 16,327 for cardiac arrest. Using a 5-year exposure window, we 
detected positive associations (for 5 μg/m3 increase in PM2.5) for 5-point MACE of [1.12 (95 %CI: 1.00–1.26)], 
heart failure [1.22 (1.00–1.50)] and cardiac arrest [1.16 (1.03–1.31)]. We did not find any association with acute 
MI, while non-ST-elevation MI was associated with the 1-year exposure window [1.52 (1.12–2.07)]. The 
assessment of the shape of the exposure–response relationships suggested that risk is approximately linear for 
most of the outcomes.
Conclusions: We found positive associations between long-term exposure to PM2.5 and multiple cardiovascular 
outcomes for different exposure windows. The cardiovascular risk tends to rise even at exposure concentrations 
below 12–15 μg/m3, indicating high risk below UK national and international thresholds.
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1. Introduction

Historically, cardiovascular events have been among the most 
prominent contributors to the global burden of disease, causing 4.75 
million deaths annually (Vaduganathan et al., 2022). Thanks to signif
icant scientific progress in medical therapies, preventive measures, and 
increased public awareness over the years, high-income countries have 
experienced a decline in adverse clinical endpoints related to cardio
vascular issues. However, globally, cardiovascular diseases continue to 
pose a substantial burden and remain a primary concern for national 
healthcare systems (Cheema et al., 2022).

Air pollution is a well-recognized risk factor for cardiovascular dis
eases and, among other air pollutants, PM2.5 (particulate matter with an 
aerodynamic diameter less than 2.5 μm) is known to be the most 
detrimental.

PM2.5 has been suggested to be causally related to cardiovascular 
disease and modulates its effects through a multitude of mechanisms, 
including progression of atherosclerosis and promotion of vulnerable 
plaque (Sanjay et al., 2018). Both acute plaque instability and chronic 
progression of plaque may ultimately result in the presentation of acute 
myocardial infarction and stroke. Therefore, considerable attention has 
been devoted to understanding the timelines of exposure to air pollution 
and resultant cardiovascular events (Al-Kindi et al., 2020; Crouse et al., 
2020). There is also an emerging body of evidence linking antecedent 
exposure to air pollution with heart failure hospitalization and ar
rhythmias, including both atrial fibrillation and ventricular arrhythmias 
(de Bont et al., 2022). However, there is a paucity of studies on the 
relevant temporal windows of exposure (Crouse et al., 2020).

Further, studies that have evaluated a variety of composite outcomes 
are rare (Osborne et al., 2023), and the presence of non-linear effects, 
especially at lower levels of exposure, has been investigated in detail 
only in a few investigations with only one in Europe (Wolf et al., 2021; 
Danesh Yazdi et al., 2019; Bai et al., 2019).

In this study, we made use of the wealth of individual-level data 
present in UK Biobank (UKB) cohort, paired it with temporally resolved 
ambient PM2.5 exposure data, to assess risks of hospitalizations for 
several cardiovascular outcomes. We aimed to explore long-term asso
ciations at low levels of PM2.5 using time-varying averages at multiple 
temporal windows of exposure. We also assessed non-linear effects by 
varying the shape of the exposure–response function and by restricting 
the analysis to subjects with exposures below predefined thresholds.

2. Methods

2.1. Population (UK Biobank cohort)

The British prospective cohort study, UK Biobank (UKB), enrolled 
approximately half a million individuals aged 40 to 69 years between 
2006 and 2010. As a first cohort assessment, the participants underwent 
an in-person visit in one of the 22 assessment centres located across 
Great Britain (England, Scotland, and Wales). The visit included multi
ple questionnaires regarding lifestyles and personal characteristics. 
Anthropometric measures and biological samples were also collected. 
Participants were followed up through periodical linkage with admin
istrative health databases, including mortality and cancer national reg
istries as well as primary and secondary care visits. The cohort profile 
has been described in detail in previous publications (Sudlow et al., 
2015; Fry et al., 2017). Specific details regarding the UKB database can 
be found on the showcase website (https://biobank.ndph.ox.ac.uk/sh 
owcase/).

2.2. Study design

This study followed a time-to-event design. In this analysis, we 
excluded subjects with cardiovascular hospital admission prior to 
enrolment. Subsequently, we excluded subjects who, at enrolment time, 

self-reported prior cardiovascular diseases and/or hypertension medi
cation. Participants were censored at the date of event occurrence, date 
of death, loss to follow-up, or the administrative end of follow-up (set 
here to 31/12/2021), whichever came first.

2.3. Exposure assessment and linkage

We assigned exposure at individual level combining PM2.5 pre
dictions and residential history data. The original PM2.5 data were 
represented by daily levels predicted on a 1-km grid across the UK in the 
period 2003–2021 using a hybrid spatio-temporal machine learning 
(ML) model. The model used an ensemble of ML algorithms trained 
using ground monitor series and a series of spatial and spatio-temporal 
predictors, including outputs from emission-dispersion models, remote 
sensing satellite data, as well as land-use and traffic variables, among 
others (de la Cruz et al., 2024). The model performance, assessed using 
cross-validation, provided an overall coefficient of determination (R2) of 
0.80 at daily scale. The residential data were available in the UKB 
database, including periods and geocoded locations with 100 m 
rounding. The data were validated internally, and the mobility history 
continuously updated through general practitioner registration or direct 
reporting by the participants.

The linkage process was performed in two steps. First, we con
structed daily exposure series for each residential location by interpo
lating gridded exposure values using bilinear method. This approach 
consist of a linear interpolation over a two-dimensional grid and allowed 
preserving the exposure information while masking the original resi
dential data, thus preventing back-tracing of the individual locations. 
Second, we composed the subject-specific exposure series by matching 
the daily series for corresponding residential periods. The process has 
been described in detail in a previous publication (Vanoli et al., 2024).

2.4. Hospital admissions outcomes

At the time of enrolment, people consented for access to a variety of 
personal information, including linked electronic health records and 
residential address locations. The UKB provides access to summary 
datasets including first inpatient hospital visits and operation codes. For 
each outcome, ICD-10 code and date of first primary or secondary 
diagnosis are made available. In this analysis, we used codes for the 
following outcome diagnoses: heart failure (I50.x, where “.x” defines all 
code subtypes), atrial fibrillation and flutter (I46, I46.0, I46.1, I46.9), 
cardiac arrest (I48, I48.0, I48.1, I48.2, I48.3,I 48.4), acute myocardial 
infarction (I21.x, I23.x), ST-elevation myocardial infarction (STEMI, 
I21.0–3), non-ST-elevation myocardial infarction (NSTEMI, I21.4), 
intracerebral stroke (I61.x), ischaemic stroke (I63.x, I64.x), and sub
arachnoid stroke (I60.x). In addition, we created a composite major 
adverse cardiovascular event (5-point MACE) outcome, defined as the 
occurrence of either acute MI (I21.x, I23.x), stroke (I60.x,I61.x,I63.x, 
I.64.x), unstable angina (I20.0) and heart failure (I50.x) and death due 
to cardiovascular disease (I00-I99). Details on the outcome diagnoses’ 
definitions can be found on the UKB website (https://biobank.ndph.ox. 
ac.uk/ukb/label.cgi?id = 2002).

2.5. Statistical analysis

We constructed separate cohorts to analyze each outcome based on 
an extended Cox proportional hazard model for time-varying exposures 
where the follow-up of each subject was split by calendar year. There
fore, we performed the analysis based on an extended Cox proportional 
hazard model with time-varying exposure (Andersen and Gill, 1982). 
We defined the model using calendar years as timescale and we stratified 
by assessment centre, sex, and year of birth, thus ensuring control for 
differential risks by age. The extended survival data was linked with 
annual exposure averages assigned over a lag window of five years, from 
lag 0 (the year of the event) until lag 4 (i.e. fourth year before the year of 

J. Vanoli et al.                                                                                                                                                                                                                                   Environment International 192 (2024) 109011 

2 

https://biobank.ndph.ox.ac.uk/showcase/
https://biobank.ndph.ox.ac.uk/showcase/
https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id
https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id


the event), consistently with previous studies (Crouse et al., 2015). 
Subjects with incomplete exposure history were excluded from the 
analysis.

In the main analysis, the exposure term was defined as the time- 
dependent average across the lag periods (in years) and we assumed a 
linear exposure–response relationship. Specifically, we investigated the 
associations for lag 0 (1-year average), lag 0–2 (3-year average) and lag 
0–4 (5-year average) in separate models, due to their potentially high 
correlation. Additionally, we evaluated the shape of the association 
between time-varying PM2.5 for lag 0–4 and each outcome by estimating 
a non-linear response function using penalized splines, with the optimal 
degrees of freedom selected using the Akaike Information Criterion 
(AIC).

We a priori specified two confounder models: Model 1 included the 
matching variables used for stratification (assessment centre, sex, and 
year of birth) and individual covariates determined at recruitment: 
ethnic background education level, household income, employment 
status, smoking status, packs of cigarettes per year, average alcohol 
intake per week, waist-to-hip ratio, physical activity (measured using 
the International Physical Activity Questionnaire (IPAQ) scale) and 
living alone (a proxy for marital status). In Model 2, we added control for 
area-level covariates, including the Townsend Deprivation Index 
measured in 2010, urban–rural classification (urban, town or fringe and 
village), and greenness percentage around the baseline residential 
address (at 1000 m buffer based on the UKB internal definition 
(Generalised Land Use Database Statistics for England, 2005; Morton 
et al., 2011)).

Estimates of the associations were reported as hazard ratios (HRs) for 
each hospitalization outcome per 5 μg/m3 increments in PM2.5, with 95 
% confidence intervals (CI). Missing values in the baseline covariates 
were imputed using multiple imputation by chained equation (MICE), 
producing five imputed datasets, with estimates combined using Rubin’s 
rule (Barnard and Rubin, 1999).

2.6. Additional analyses

We performed a sensitivity analysis including only person-years 
assigned to exposure levels below 10 (WHO 2005 limits) or 12 µg/m3, 
as done previously (Wolf et al., 2021). We did not investigate associa
tions at exposure levels below the WHO 2021 annual limits (5 µg/m3) 
because of the paucity of data in that exposure range. To evaluate 
sensitivity in the associations due to different MACE definitions, we 
conducted sensitivity analyses using 4- and 3-point MACE. Those were 
defined as the 5-point MACE outcome sequentially excluding diagnosis 
for heart failure (4-point MACE) and unstable angina (3-point MACE), 
respectively. To assess potential changes in the association attributable 
to the COVID-19 period we conducted an analysis with follow-up up to 
31/12/2019. We conducted an additional analysis subsetting the cases 
only to the participants who had the diagnosis in the primary position. 
We also reported results by IQR increase (3.7 µg/m3) to make our results 
more in line with the exposure distribution. Finally, we performed an 
analysis including a washout period in order to account for potential 
healthy-volunteer and other selection biases, as recommended in a 
recent publication (Chen et al., 2024).

Data cleaning and statistical analyses were conducted using in R 
Statistical Software (version 4.2.1) and the following packages were 
used: data.table, survival, mice, parallel, ggplot2 and gridExtra.

3. Results

3.1. Descriptives

The original dataset included 502,381 individuals. We excluded 
subjects with cardiovascular inpatient hospital admission prior to 
enrolment (n = 83,249), with self-reported history cardiovascular dis
ease (n = 8,491) and hypertension medication (n = 32,664).Finally, 241 

participants were excluded due to (partially) missing exposure histories, 
providing a final cohort of 377,736 individuals (Fig. 1). The participants 
were followed-up for an average of 12.9 years, with a total of 4,877,026 
person-years. During the follow-up, among all the participants, 6,278 
had inpatient hospital visit due to heart failure, 1,258 of atrial fibrilla
tion and flutter, 16,327 of cardiac arrest, 6,562 of acute myocardial 
infarction, 2,710 of MI STEMI 2,426 of MI NSTEMI, 928 of intracerebral 
stroke, 4,526 of ischaemic stroke, 664 of subarachnoid stroke. For the 
composite outcomes, 5-point MACE status was reported for 19,353 
participants.

The cohort had slightly more females than males (See Table 1), with 
an average age of 55 at baseline, and most of the cohort was of white 
ethnicity. More than 70 % of the subjects had at least received a diploma 
and 60 % were employed at the time of recruitment. About 11 % of 
participants were smokers, approximately half of the rate in the general 
UK population in 2011(General Lifestyle Survey:, 2011). Most subjects 
(84 %) lived in urban settings. In the proximity of the residential 
address, the average greenspace percentage and the average Townsend 
deprivation index were 45 and − 1.39, respectively (See Table 1). These 
values reflect relatively wealthy residential surroundings.

Figure S1 showed the box-and-whiskers plot of the distribution of 
annual averages of PM2.5 across the years from 2007 until 2021. The plot 
indicated that all UKB participants are permanently exposed to exposure 
values below the UK Air Quality Objectives (AQO) and EU Air Quality 
Directives (AQD) for 2015 and 2020 of 25 µg/m3. After a slight increase 
in 2011, the distribution of PM2.5 had generally declined over time. 
Since 2015, the majority of the cohort has been exposed to levels below 
the the 2005 WHO Air Quality Guidelines (AQG) limit of 10 µg/m3. 
Seldom annual exposure levels were below the new WHO AQG 2020 
limits of 5 µg/m3. The correlation matrix (Table S7) between the 
exposure windows showed high to very high correlation among the 
exposure windows.

3.2. Associations between CVD and PM2.5 exposure

In Table 2, we showed the linear associations, reported as hazard 
ratios (HRs) for a 5 µg/m3 increase, between PM2.5 exposure with 
different lag windows and each cardiovascular outcome. In the fully- 
adjusted model (Model 2), the exposure was significantly associated 
with elevated risk for diagnosis of heart failure, intracerebral stroke, 
cardiac arrest and MI NSTEMI. For example, using an exposure window 
with lag 0–4, heart failure displayed an HR of 1.22 (95 %CI: 1.00–1.50) 
and intracerebral stroke of 1.94 (1.15–3.29). Associations were also 
positive for 5-point MACE (1.12 (1.00–1.26) at lag 0–4) but we found 
the strongest effects for shorter exposure windows (lag 0–2, 1.15 
(1.03–1.28)). We did not find any evidence of linear associations with 
ischaemic stroke, subarachnoid stroke, acute MI, and atrial fibrillation 
and flutter. In general, associations for several outcomes were positive 
but did not reach statistical significance at the 5 % level, probably due to 
limited statistical power.

The comparison between Model 1 and 2 indicates that the inclusio
n of area-level confounders led to an attenuation of the estimates, except 
for MI NSTEMI, for which the associations increased.

Overall, we did not find important differences in the associations 
across different exposure windows, with some exceptions. For instance, 
the increased risk for MI NSTEMI was significant only when we 
considered the exposure of the last year (lag0). In contrast, for cardiac 
arrest, the lag0 window showed a weak relationship, while the other 
windows had stronger associations.

Linear associations in Table 3 and S3 compared the main associations 
with those estimated for subsets of person-years exposure to low con
centrations (<=10 and <=12). The results mostly showed the strongest 
effects below a concentration of 10 µg/m3, but the associations below 12 
are more difficult to interpret and show unclear patterns across the 
outcomes. This is likely due to the uneven distribution of PM2.5 (figure 
S1) across calendar years, which showed concentrations higher than 12 
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in the first years of exposure (up to 2015) when likely few events had 
occurred and therefore the corresponding estimates are more uncertain.

Model allowing non-linear associations (Fig. 2) showed limited evi
dence for deviations from linear exposure–response function associa
tions. For several outcomes, including 5-point MACE, MI STEMI, 
intracerebral stroke, heart failure, atrial fibrillation and flutter, and 
cardiac arrest, the penalized spline indicated linear associations, 
confirmed by the non-significant Wald test for non-linearity. In contrast, 
acute MI showed a non-linear effect, with the curve increasing up to 
12–13 µg/m3 before declining. There was no evidence for a threshold in 
the association. No significant effects were observed for ischemic and 
subarachnoid stroke.

3.3. Additional analyses

Analysis of codes in only primary position (Table S1) showed similar 
associations with both primary and secondary code analysis (Table 2). 
Associations estimated with follow-up up to 31/12/2019 (Table S2) are 
mostly consistent with the main results (Table 2). In general, strong 
differences in the HR and confidence intervals between main and 
sensitivity analyses can be attributed to reduced sample sizes, consid
ering that some outcomes only have a few hundred events in total and 
subsetting can lead to instabilities in the associations. Among MACE 
outcomes, 5-point MACE exhibited the highest and more precise asso
ciations compared to 3- and 4-point MACE (Table S4), likely due to 
increased statistical power.

For most of the outcomes, the exclusion of the wash-out period 
(Table S6) lead to stronger positive associations compared to the main 
linear analysis. Contrarily, subarachnoid and ischaemic stroke still dis
played null effects.

4. Discussion

In this 15-year UK-based study, we used state-of-the-art epidemio
logical methods to assess the association between chronic exposure to 
time-varying PM2.5 at different yearly time windows and risk of hospi
talizations for MACE and other severe clinical cardiovascular endpoints. 
We observed positive linear associations between PM2.5 across multiple 
exposure windows and several outcomes, including 5-point MACE, heart 
failure, intracerebral stroke and cardiac arrest. On the other hand, we 
found significant non-linear associations with overall acute MI and MI 
NSTEMI.

This study aimed at addressing research recommendations issued by 
the COMEAP 2019 report on air pollution and cardiovascular diseases 
(Kelly, 2019). First, the report highlighted the need for the use of more 
refined exposure estimates: in this analysis we applied highly resolved 
predictions from a state-of-the-art exposure model for the first time in 
the UK. Second, we investigated both major and subtypes of outcomes, 
non-linear effects and different exposure windows, with the purpose to 
shed more light on the mechanistic effects of long-term exposure on 
cardiovascular diseases, a question that was also part of the research 
recommendations.

Fig. 1. Flow diagram representing the selection of the sample of the UK Biobank.
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Table 1 
Descriptive statistics for continuous (mean with 5th-95th percentile range and 
missing) and categorical (counts/percentage) baseline characteristics and 
number of outcomes’ events in the UKB cohort.

sex Female 211,843 (56.1 %)
Male 165,893 (43.9 %)
Missing (%) 0 (0.0 %)

ethnicity White 356,597 (94.4 %)
Other 19,767 (5.2 %)
Missing (%) 1,372 (0.4 %)

employment status Employed 235,367 (62.3 %)
Retired 108,985 (28.9 %)
Other 29,730 (7.9 %)
Missing (%) 3,654 (1.0 %)

educational level Low 54,078 (14.3 %)
Professional 
Qualification

41,721 (11.0 %)

Highschool diploma 144,801 (38.3 %)
College/University 
degree

130,347 (34.5 %)

Missing (%) 6,789 (1.8 %)
household income Less than 18,000 64,043 (17.0 %)

18,000 to 30,999 79,325 (21.0 %)
31,000 to 51,999 88,037 (23.3 %)
Greater than 100,000 19,863 (5.3 %)
Missing (%) 54,165 (14.3 %)

physical activity (IPAQ score) low 55,596 (14.7 %)
moderate 125,054 (33.1 %)
high 125,601 (33.3 %)
Missing (%) 71,485 (18.9 %)

alcohol intake Never 27,563 (7.3 %)
Special occasions only 41,122 (10.9 %)
One to three times a 
month

42,435 (11.2 %)

Once or twice a week 98,996 (26.2 %)
Three or four times a 
week

89,992 (23.8 %)

Daily or almost daily 77,229 (20.4 %)
Missing (%) 399 (0.1 %)

smoking status Never 212,625 (56.3 %)
Previous 123,450 (32.7 %)
Current 40,332 (10.7 %)
Missing (%) 1,329 (0.4 %)

living alone No 308,249 (81.6 %)
Yes 67,837 (18.0 %)
Missing (%) 1,650 (0.4 %)

urban/rural classification Urban 317,266 (84.0 %)
Town/fringe 28,263 (7.5 %)
Village/Rural 28,204 (7.5 %)
Missing (%) 4,003 (1.1 %)

age at baseline Years 55.46 (42.00 to 
68.00)

​ Missing (%) 0 (0.0 %)
waist-to-hip ratio ​ 0.86 (0.72 to 1.01)
​ Missing (%) 1,210 (0.3 %)
Smoking intensity packs-year 7.27 (0.00 to 37.50)
​ Missing (%) 57,592 (15.2 %)
Townsend deprivation index 

(2010
​ − 1.39 (− 5.06 to 

4.77)
​ Missing (%) 467 (0.1 %)
Greenspace percentage 45.09 (15.40 to 

87.38)
​ Missing (%) 45,206 (12.0 %)

Number of events ​ ​
3-point MACE ​ 14,087
4-point MACE ​ 15,186
5-point MACE ​ 19,353
acute MI ​ 6,562
MI STEMI ​ 2,710
MI NSTEMI ​ 2,426
intracerebral stroke ​ 928
ischaemic stroke ​ 4,526
subarachnoid stroke ​ 664
heart failure ​ 6,278
atrial fibrillation and flutter ​ 1,258
cardiac arrest ​ 16,327

Table 2 
Hazard ratios (HRs, with 95 % confidence intervals) of cardiovascular outcomes 
associated with an increase of 5 μg/m3 in PM2.5 in the UKB cohort, for combi
nations of length of exposure windows (lag0, lag02, lag04) and confounding 
control.

Outcome exposure 
window

Model 1 Model 2

5-point MACE lag0 1.17 
(1.08–1.28)

1.13 
(1.02–1.24)

lag02 1.20 
(1.09–1.32)

1.15 
(1.03–1.28)

lag04 1.18 
(1.07–1.31)

1.12 
(1.00–1.26)

Myocardial Infarction (MI)
Acute lag0 0.98 

(0.84–1.14)
1.07 
(0.90–1.27)

lag02 0.95 
(0.81–1.12)

1.06 
(0.87–1.28)

lag04 0.95 
(0.81–1.13)

1.06 
(0.87–1.29)

STEMI lag0 0.89 
(0.71–1.12)

0.98 
(0.75–1.28)

lag02 0.91 
(0.71–1.17)

1.03 
(0.77–1.38)

lag04 0.94 
(0.73–1.22)

1.09 
(0.80–1.49)

NSTEMI lag0 1.17 
(0.90–1.51)

1.52 
(1.12–2.07)

lag02 1.04 
(0.80–1.36)

1.35 
(0.97–1.88)

lag04 1.03 
(0.78–1.35)

1.32 
(0.95–1.84)

Cerebrovascular disease and stroke
Intracerebral stroke lag0 1.81 

(1.20–2.72)
1.74 
(1.09–2.78)

lag02 1.93 
(1.26–2.97)

1.91 
(1.15–3.17)

lag04 1.96 
(1.26–3.05)

1.94 
(1.15–3.29)

Ischaemic stroke lag0 1.14 
(0.95–1.37)

1.07 
(0.87–1.32)

lag02 1.16 
(0.96–1.41)

1.08 
(0.86–1.36)

lag04 1.12 
(0.91–1.36)

1.01 
(0.80–1.28)

Subarachnoid stroke lag0 1.02 
(0.64–1.61)

0.94 
(0.56–1.56)

lag02 1.08 
(0.66–1.76)

0.98 
(0.56–1.74)

lag04 1.12 
(0.67–1.88)

1.03 
(0.56–1.89)

Other outcomes
Heart failure lag0 1.35 

(1.15–1.58)
1.19 
(1.00–1.42)

lag02 1.40 
(1.18–1.65)

1.21 
(1.00–1.48)

lag04 1.41 
(1.19–1.68)

1.22 
(1.00–1.50)

Atrial fibrillation and 
flutter

lag0 1.43 
(1.01–2.01)

1.39 
(0.94–2.05)

lag02 1.43 
(0.99–2.07)

1.38 
(0.90–2.12)

lag04 1.34 
(0.92–1.96)

1.26 
(0.81–1.95)

Cardiac arrest lag0 1.13 
(1.03–1.24)

1.09 
(0.98–1.22)

lag02 1.17 
(1.06–1.30)

1.15 
(1.02–1.29)

lag04 1.19 
(1.07–1.31)

1.16 
(1.03–1.31)
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4.1. MACE

This is one of the first studies to investigate the effect of long-term air 
pollution on MACE, and we found positive associations. Across all the 
time windows, UK resident adults living in areas with a 5 µg/m3 higher 
exposure experienced a 12 % to 15 % elevated risk of MACE-related 
hospitalizations compared to those in less exposed areas. The direction 
of the effect is in line with two studies on US veterans where a 9 % (by a 
5 µg/m3 increase in PM2.5) increased risk was observed in individuals 
with prior coronary artery bypass grafting (Deo et al., 2024), and a 52 % 
increased risk in those with prior percutaneous coronary interventions 
(Motairek et al., 2023). In contrast, a Swedish (Carlsen et al., 2022) 
study showed no significant associations. It is important to consider that 
our studies differ in MACE composition, as our analysis included various 
clinical events, while, for example, the Swedish study focused on 
myocardial infarction and coronary interventions, making direct com
parisons challenging. In our study, we attempted to include a simple and 
unambiguous MACE definition, therefore we decided to use the outcome 
as described in a recent literature review (Bosco et al., 2021). We hope 
that our choice may be of help to define outcomes in other medium-sized 
cohort studies that require composite definitions to conduct well- 
powered analyses.(Bosco et al., 2021).

4.1.1. Myocardial infarction
Our findings on acute myocardial infarction (MI) show positive but 

not statistically significant associations [lag04: 1.07 (0.90–1.27)], 
aligning with two large meta-analyses (Alexeeff et al., 2021; Zhu et al., 
2021) and a Canadian study (Bai et al., 2019). At low pollution levels, 
recent studies also reported positive effects (Wolf et al., 2021). However, 
while a Europe-based cohort reported similar associations with our 
study [1.02 (0.95–1.10)] (Wolf et al., 2021), US studies found stronger 
associations in the HR range of 1.13–1.188(Danesh Yazdi et al., 2019; 
Alexeeff et al., 2023).

This is one of the first long-term studies to examine associations with 
two types of myocardial infarction: STEMI and NSTEMI. Both outcomes 
were associated with the exposure, but we found no statistical signifi
cance with STEMI while there was a positive significant association with 
NSTEMI. The strong effects observed for the latter suggest that this 
subtype of MI may play a significant role in the overall association with 
acute MI in this cohort. A reason for this could be that NSTEMI is defined 
as partial blockages in a coronary artery, leading to less severe but more 
widespread myocardial ischemia. This condition makes it more 
vulnerable to factors that can worsen systemic inflammation and 
endothelial dysfunction, such as chronic exposure to air pollution. On 
the other hand, STEMI usually results from a complete and abrupt 
blockage of a coronary artery, causing a more acute event, which may be 
more associated with short-term air pollution (Newby et al., 2015; 
Kuźma et al., 2024). Even though the literature is not completely 
consistent in their distinction (STEMI and NSTEMI, 2024), our post-hoc 
hypothesis has been previously supported by the data as STEMI, but not 
NSTEMI, has been associated with short-term exposure (Gardner et al., 
2014; Pope et al., 2015). There are currently no long-term studies 
considering their distinction. On the other hand, the use of a relatively 
young cohort (under 65–70 years) might also partially explain the 
increased risk of NSTEMI due to air pollution. While STEMI has tradi
tionally been associated with younger individuals compared to NSTEMI, 
there has been a recent trend reversal in the UK, where since 2016, 
younger people (under 65) are more frequently admitted with NSTEMI 
than older individuals (MINAP and NAPCI, 2023). Additionally, NSTEMI 
cases are often underrepresented in hospitals due to their lower severity 
(How the NHS Cares for Patients with Heart Attack, 2015), suggesting 
that the actual numbers may be higher than reported for mid-aged 
adults. In this context, air pollution exposure may disproportionately 
increase the risk for younger individuals as they likely spend more time 
outdoor but have less severe outcomes. Therefore, while older adults are 
more vulnerable to air pollution effects, mid-age adults may be more at 
risk of slowly developing atherosclerotic plaques that lead to worse 
outcomes later in life, such as a case of STEMI. Supporting this, a recent 
large Polish study investigating mid-term (30 days) effects also found an 
increased risk of NSTEMI in younger individuals (under 65)(Kuźma 
et al., 2024).

Finally, a similarity between our investigation and the Polish study is 
that both analyses identified significant effects of mid-term air pollution 
exposure (ranging from one month to one year) on NSTEMI, indicating a 
potential impact of air pollution over this duration. However, they do 
not reveal differences substantial enough to support any significant post- 
hoc pathophysiological hypotheses. Nonetheless, these findings suggest 
that it may be valuable to incorporate sensitivity analyses with varying 
exposure windows in long-term studies, similar to those used in short- 
term research.

4.1.2. Stroke
A large body of literature has covered the air pollution-stroke events 

relationship. In comparison to two meta-analyses that focused on general 
cerebrovascular disease (Alexeeff et al., 2021; Niu et al., 2021), our ef
fects were higher for intracerebral stroke. Our analysis also indicates 
increased associations when compared with recent UK-(Cai et al., 2018); 
(Atkinson et al., 2013) and European-based (Wolf et al., 2021) studies. 
For example, Cai and colleagues (Cai et al., 2018), using the UKB cohort 
found null associations both for overall cerebrovascular diseases and 
stroke types (ischaemic and haemorrhagic). In this study we found 
heterogeneity of risk among stroke types. While several studies have 
assessed short-term associations, to our knowledge our study is among 
the first to investigate long-term effects on intracerebral stroke as a 
separate outcome (Verhoeven et al., 2021). This is relevant, as in the 
literature cerebrovascular events are often considered as a whole, 
although different stroke types are clinically considered as different 
diseases with separate etiologies (Verhoeven et al., 2021). There are 
physiological channels that connect exposure to air pollution might 

Table 3 
Hazard ratios (HRs, with 95 % confidence intervals) of cardiovascular outcomes 
in exposure subset analysis in the UKB cohort. Exposure is defined as lag04 (5- 
years time-dependent average). Results are for an increase of 5 μg/m3 in PM2.5 
using fully adjusted models (Model 2).

Outcome Exposure subset

<¼ 10 <¼ 12 Full analysis

5-point MACE 1.05 
(0.84–1.32)

1.16 
(1.01–1.34)

1.12 
(1.00–1.26)

Myocardial Infarction (MI)
Acute 1.27 

(0.90–1.81)
0.78 
(0.53–1.17)

1.06 
(0.87–1.29)

STEMI 1.20 
(0.94–1.53)

1.07 
(0.81–1.43)

1.09 
(0.80–1.49)

NSTEMI 1.19 
(0.68–2.07)

0.75 
(0.25–2.22)

1.32 
(0.95–1.84)

Cerebrovascular disease 
and stroke

​ ​ ​

Intracerebral stroke 1.70 
(1.01–2.86)

1.10 
(0.89–1.36)

1.94 
(1.15–3.29)

Ischaemic stroke 1.45 
(1.00–2.10)

0.98 
(0.85–1.14)

1.01 
(0.80–1.28)

Subarachnoid stroke 0.98 
(0.74–1.29)

1.33 
(0.95–1.87)

1.03 
(0.56–1.89)

Other outcomes
Heart failure 1.51 

(0.58–3.93)
1.13 
(0.95–1.35)

1.22 
(1.00–1.50)

Atrial fibrillation and flutter 0.58 
(0.27–1.22)

1.22 
(0.98–1.52)

1.26 
(0.81–1.95)

Cardiac arrest 0.95 
(0.55–1.64)

1.08 
(0.93–1.25)

1.16 
(1.03–1.31)
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affect the occurrence of intracerebral stroke but no other types of hae
morrhagic stroke: first, through known mechanisms, that is inflamma
tion, oxidative stress, and endothelial dysfunction, fine particles effects 
may be more pronounced on the small vessels within the brain 
compared to other larger arteries. However, a previous MRI study did 
not find effects of PM on markers of small vessels disease (Power et al., 

2018) and therefore the hypothesis is weak. Second, chronic particulate 
exposure may indirectly affect the brain through the autonomic respi
ratory reflex arcs as well as uptake of particles which can induce marked 
neuro-inflammation (Verhoeven et al., 2021). Finally, some authors 
hypothesized that overproduction of amyloid protein related to cerebral 
amyloid angiopathy may be the cause of intracerebral stroke (Wilker 

Fig. 2. Concentration-response functions of the associations between lag04 (5-year time-dependent) of PM2.5 with cardiovascular events in the UK Biobank cohort. 
Models were fully adjusted (Model 2). The associations representing hazard ratios (HRs, with 95% confidence intervals) were estimated using penalized splines with 
degrees of freedom selected using the Akaike information criterion (AIC, solid line) with 95% confidence intervals (surrounding dashed lines).
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et al., 2018).
To conclude, the literature on the effects of air pollution on outcome 

subtypes is scattered and heterogeneous owing to the use of diverse 
study designs, exposure and outcome definitions and spatial differences 
in the particulate composition. More studies using state-of-the-art 
methodologies and harmonized datasets should be used to draw firmer 
hypotheses.

4.1.3. Heart failure, atrial fibrillation and cardiac arrest
We detected significant between long-term air pollution and ar

rhythmias related-outcomes [for lag04: 1.13 (1.02–1.24)]. This is in line 
with recent investigations on atrial fibrillation on Medicare data 
(Mahdieh Danesh et al., 2021) and a Canadian cohort (Shin et al., 2019). 
The latter also assessed the shape of the exposure–response relationship, 
showing no evidence of an effect of PM2.5 below 6 µg/m3, in contrast 
with our findings. A meta-analytical estimate on four older studies 
showed a null association [0.96 (0.82–1.13) for 5 µg/m3 increase] 
(Pranata et al., 2020). Last, our associations for heart failure were pos
itive, but on the boundaries of statistical significance[for lag04: 1.22 
(1.00–1.50)], while a meta-analysis investigating the same outcome did 
not find effects. We found only one study (Shin et al., 2019) that 
examined hospital admissions related to atrial fibrillation and stroke, 
employing exposure windows similar to ours. No significant differences 
were observed for atrial fibrillation, whereas slight increases were noted 
for stroke for the 5-year window. However, our study suggests that the 
association may differ by exposure window.

4.1.4. Windows of exposure
The minor difference in estimates suggests different windows influ

ence only moderately the health risks. For instance, exposure closer to 
the event (lag0) has a stronger impact on the risk for MACE and MI 
NSTEMI. On the other hand, longer exposure windows (lag 0–2 and lag 
0–4) can be more important for stroke and cardiac arrest. Our com
parison of varying window widths was similar only to two previous 
studies (Crouse et al., 2020; Lefler et al., 2019) that mainly focused on 
the risk of premature mortality with mixed evidence. In Lefler and col
leagues (Lefler et al., 2019), results did not highlight any relevant 
window of exposure for cardiopulmonary deaths, while in the study by 
Crouse and colleagues (Crouse et al., 2020), longer exposure windows 
were consistently associated with increased risk of mortality both for 
ischaemic heart and cerebrovascular disease.

4.1.5. Shape of concentration–response function
The analysis of the concentration–response function suggest steep 

risks at concentrations even below 12–15 µg/m3, with no evidence of a 
threshold at the lowest values. This result highlights that despite the 
recent decreases in the air pollution levels, air pollution carries adverse 
effects even at very low levels and therefore new mitigation strategies 
are needed to account for the public health burden that cannot be 
avoided by further lowering concentrations. This finding contributes to 
a growing body of literature emphasizing the significance of addressing 
air pollution concerns not only at elevated levels but also at lower 
exposure levels (Wolf et al., 2021; Chen et al., 2023; Di et al., 2017). 
Furthermore, for MI our non-linear estimates detected increased risks 
below 12 µg/m3, agreeing with a previous study (Wolf et al., 2021). 
Contrarily, our results for stroke (intracerebral) suggest a linear rela
tionship above 12 µg/m3, while previous investigations found stronger 
associations, especially at low levels (Wolf et al., 2021; Shin et al., 
2019). This may be due to the choice of outcomes’ subtypes. Notably, 
the large majority of the previous literature focuses on US cohorts 
(Alexeeff et al., 2023; Di et al., 2017) while a few studies have investi
gated European cohorts (Wolf et al., 2021; Stafoggia et al., 2022).

4.2. Strengths and limitations

Our study carries several strengths. First, differently from the 

previous UK Biobank analyses of air pollution, this has been carried out 
using state-of-the-art exposure model with time-varying assignment, 
detailed confounders’ information and statistical methodologies analo
gously to the most relevant air pollution studies in the literature to date. 
One of our study’s main strengths lays in the utilization of time- 
dependent exposure summaries that enabled us to better define health 
risks compared to simpler exposure measures (Putter and van Houwe
lingen, 2017). This importantly distinguishes our approach from the 
majority of the UKB-based studies that solely incorporated fixed-time 
point exposures (Cai et al., 2018; Zhang et al., 2024; Luo et al., 2022; 
Parra et al., 2022) based on annual 2010 predictions of PM2.5. Another 
key strength is the use of the sizable UKB cohort with a rich history of 
individual data. This allowed us to include important individual-level 
confounders in the models that are usually unaccounted for in air 
pollution studies, such as smoking and waist-to-hip ratio.

Furthermore, in this study, we incorporated a composite outcome in 
addition to specific endpoints. One of the benefits of using a composite 
endpoint instead of individual ones is the increased statistical power, 
resulting from the inclusion of a larger number of cases. This is evident 
in some of the results for specific cardiovascular disease (CVD) end
points, where hazard ratios (HRs) are elevated but did not achieve sta
tistical significance. Additionally, using a broader CVD definition rather 
than specific endpoints may reduce outcome measurement errors.

We used specific outcome types (e.g., ischaemic stroke) instead of 
general definitions (e.g., cerebrovascular disease). The diversity of 
health effects revealed in this study, particularly when examining sub
types of outcomes, underscores the importance of defining more 
detailed outcomes, instead of using a wide range of ICD codes. Speci
ficity may be crucial in assisting clinicians both to pinpoint events 
strongly linked to exposure to air pollution and investigate the patho
physiological mechanisms of the diseases.

Finally, the long observation period in contrast to the majority of 
studies on cardiovascular outcomes could also be the reason for the 
differences in estimates between our research and existing literature.

Some limitations in our study should be highlighted. The primary 
limitation of the UKB cohort is the potential lack of representativeness of 
the UK population, possibly including to healthy-volunteer bias (Fry 
et al., 2017). To mitigate this issue, in a sensitivity analysis we defined a 
wash-out period (Chen et al., 2024), excluding person-years up to 2013. 
The results showed higher health effects compared to the main analysis 
for certain outcomes, suggesting that the original estimates might be 
conservative. Second, the use of administrative ICD codes to assess 
outcomes can be misleading, leading to diagnosis misclassification due 
to lack of clinical details regarding the event (Verhoeven et al., 2021). 
However, previous research has validated codes for stroke and MI in the 
UK Biobank, showing 80–90 % positive predictive value (Woodfield 
et al., 2015). Third, the use of codes both in primary and secondary 
position could lead to associations biased upwards. This might occur if 
the hospital visit has a non-CV ICD code in primary position and a CV 
code of interest as secondary. If the code in primary position is positively 
associated with air pollution, consequently the resulting association 
with the CV code will also be inflated. However, our sensitivity analysis 
using only codes occurring in primary position showed only partial 
changes in the association for the majority of the outcomes. We did not 
use primary codes in the main analysis only due to a low number of 
cases. Moreover, for the same reason, particularly for outcomes sub- 
types such as stroke and MI, the corresponding main associations dis
played large uncertainty, leading to several non-statistically significant 
results. Finally, we only investigated one pollutant without accounting 
for other important pollutants, such as NO2 and O3, known to be asso
ciated with health outcomes.

5. Conclusions

Our study suggests that long-term exposure to PM2.5 is associated 
with multiple cardiovascular outcomes. The strength of the associations 
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did not significantly vary using different exposure windows. Consis
tently with the current literature, we found increased associations at low 
levels of exposure for the majority of the outcomes highlighting the 
importance of estimating exposure–response functions in long-term air 
pollution analyses. Finally, we found that selecting specific diagnoses 
instead of broad outcomes definitions may be beneficial to identify more 
relevant health outcomes.

Funding

This work was supported by the Medical Research Council-UK (Grant 
ID: MR/Y003330/1), the European Union’s Horizon 2020 Project 
Exhaustion (Grant ID: 820655), Nagasaki University “Doctoral Program 
for World-leading Innovative and Smart Education” for Global Health 
(WISE), KENKYU SHIDO KEIHI (“the Research Grant”) and KYOIKU 
KENKYU SHIEN KEIHI (“the Stipend”).

Declaration of Generative AI and AI-assisted technologies in the 
writing process

During the preparation of this work the author(s) used ChatGPT 3.5 
to improve the language in some sentences in the Introduction and 
Discussion section. After using this tool/service, the author(s) reviewed 
and edited the content as needed and take(s) full responsibility for the 
content of the publication.

CRediT authorship contribution statement

Jacopo Vanoli: Writing – original draft, Visualization, Software, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Jennifer K. Quint: Writing – review & editing, Supervision, 
Methodology, Conceptualization. Sanjay Rajagopalan: Writing – re
view & editing, Methodology, Conceptualization. Massimo Stafoggia: 
Writing – review & editing, Methodology, Conceptualization. Sadeer 
Al-Kindi: Writing – review & editing, Methodology, Conceptualization. 
Malcolm N. Mistry: Writing – review & editing. Pierre Masselot: 
Writing – review & editing. Arturo de la Cruz Libardi: Writing – review 
& editing. Chris Fook Sheng Ng: Writing – review & editing. Lina 
Madaniyazi: Writing – review & editing, Supervision, Conceptualiza
tion. Antonio Gasparrini: Writing – review & editing, Supervision, 
Resources, Project administration, Methodology, Funding acquisition, 
Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgements

This research has been conducted using the UK Biobank Resource 
under application number 56431.

This work was part of a PhD project supported by the Nagasaki 
University “Doctoral Program for World-leading Innovative and Smart 
Education” for Global Health, KENKYU SHIDO KEIHI (the research 
grant) and KYOIKU KENKYU SHIEN KEIHI (the stipend).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2024.109011.

References

Alexeeff, S.E., Deosaransingh, K., Van Den Eeden, S., Schwartz, J., Liao, N.S., Sidney, S., 
2023. Association of Long-term Exposure to Particulate Air Pollution With 
Cardiovascular Events in California. JAMA Netw. Open 6 (2), e230561. https://doi. 
org/10.1001/jamanetworkopen.2023.0561.

Alexeeff, S.E., Liao, N.S., Liu, X., VanDenEeden, S.K., Sidney, S., 2021. Long-Term PM2.5 
Exposure and Risks of Ischemic Heart Disease and Stroke Events: Review and Meta- 
Analysis. Journal of the American Heart Association. 10 (1), e016890. https://doi. 
org/10.1161/JAHA.120.016890.

Al-Kindi, S.G., Brook, R.D., Biswal, S., Rajagopalan, S., 2020. Environmental 
determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev 
Cardiol. 17 (10), 656–672. https://doi.org/10.1038/s41569-020-0371-2.

Andersen, P.K., Gill, R.D., 1982. Cox’s Regression Model for Counting Processes: A Large 
Sample Study. The Annals of Statistics. 10 (4), 1100–1120.

Atkinson, R.W., Carey, I.M., Kent, A.J., van Staa, T.P., Anderson, H.R., Cook, D.G., 2013. 
Long-Term Exposure to Outdoor Air Pollution and Incidence of Cardiovascular 
Diseases. Epidemiology 24 (1), 44–53. https://doi.org/10.1097/ 
EDE.0b013e318276ccb8.

Bai, L., Shin, S., Burnett, R.T., et al., 2019. Exposure to ambient air pollution and the 
incidence of congestive heart failure and acute myocardial infarction: A population- 
based study of 5.1 million Canadian adults living in Ontario. Environment 
International. 132, 105004. https://doi.org/10.1016/j.envint.2019.105004.

Barnard, J., Rubin, D.B., 1999. Small-Sample Degrees of Freedom with Multiple 
Imputation. Biometrika 86 (4), 948–955.

Bosco, E., Hsueh, L., McConeghy, K.W., Gravenstein, S., Saade, E., 2021. Major adverse 
cardiovascular event definitions used in observational analysis of administrative 
databases: a systematic review. BMC Med. Res. Method. 21 (1), 241. https://doi.org/ 
10.1186/s12874-021-01440-5.

Cai, Y., Hodgson, S., Blangiardo, M., et al., 2018. Road traffic noise, air pollution and 
incident cardiovascular disease: A joint analysis of the HUNT, EPIC-Oxford and UK 
Biobank cohorts. Environ. Int. 114, 191–201. https://doi.org/10.1016/j. 
envint.2018.02.048.

Carlsen, H.K., Andersson, E.M., Molnár, P., et al., 2022. Incident cardiovascular disease 
and long-term exposure to source-specific air pollutants in a Swedish cohort. 
Environ. Res. 209, 112698. https://doi.org/10.1016/j.envres.2022.112698.

Cheema, K.M., Dicks, E., Pearson, J., Samani, N.J., 2022. Long-term trends in the 
epidemiology of cardiovascular diseases in the UK: insights from the British Heart 
Foundation statistical compendium. Cardiovasc. Res. 118 (10), 2267–2280. https:// 
doi.org/10.1093/cvr/cvac053.

Chen, J., Braun, D., Christidis, T., et al., 2023. Long-Term Exposure to Low-Level PM2.5 
and Mortality: Investigation of Heterogeneity by Harmonizing Analyses in Large 
Cohort Studies in Canada, United States, and Europe. Environ. Health Perspect. 131 
(12), 127003. https://doi.org/10.1289/EHP12141.

Chen, C., Chen, H., Kaufman, J.S., Benmarhnia, T., 2024. Differential Participation, a 
Potential Cause of Spurious Associations in Observational Cohorts in Environmental 
Epidemiology. Epidemiology 35 (2), 174. https://doi.org/10.1097/ 
EDE.0000000000001711.

Crouse, D.L., Peters, P.A., Hystad, P., et al., 2015. Ambient PM2.5, O3, and NO2 
Exposures and Associations with Mortality over 16 Years of Follow-Up in the 
Canadian Census Health and Environment Cohort (CanCHEC). Environmental 
Health Perspectives. 123 (11), 1180–1186. https://doi.org/10.1289/ehp.1409276.

Crouse, D.L., Erickson, A.C., Christidis, T., et al., 2020. Evaluating the Sensitivity of 
PM2.5-Mortality Associations to the Spatial and Temporal Scale of Exposure 
Assessment. Epidemiology. 31 (2), 168–176. https://doi.org/10.1097/ 
ede.0000000000001136.

Danesh Yazdi, M., Wang, Y., Di, Q., Zanobetti, A., Schwartz, J., 2019. Long-term 
exposure to PM2.5 and ozone and hospital admissions of Medicare participants in 
the Southeast USA. Environment International 130, 10487. https://doi.org/ 
10.1016/j.envint.2019.05.073.

de Bont, J., Jaganathan, S., Dahlquist, M., Persson, Å., Stafoggia, M., Ljungman, P., 2022. 
Ambient air pollution and cardiovascular diseases: An umbrella review of systematic 
reviews and meta-analyses. J. Intern. Med. 291 (6), 779–800. https://doi.org/ 
10.1111/joim.13467.

de la Cruz, L.A., Masselot, P., Schneider, R., et al., 2024. High resolution mapping of 
nitrogen dioxide and particulate matter in Great Britain (2003–2021) with multi- 
stage data reconstruction and ensemble machine learning methods. Atmos. Pollut. 
Res. 15 (11), 102284. https://doi.org/10.1016/j.apr.2024.102284.

Deo, S.V., Elgudin, Y., Motairek, I., et al., 2024. Air Pollution and Adverse Cardiovascular 
Events After Coronary Artery Bypass Grafting: A 10-Year Nationwide Study. JACC: 
Advances 3 (2), 100781. https://doi.org/10.1016/j.jacadv.2023.100781.

Di, Q., Wang, Y., Zanobetti, A., et al., 2017. Air Pollution and Mortality in the Medicare 
Population. N. Engl. J. Med. 376 (26), 2513–2522. https://doi.org/10.1056/ 
NEJMoa1702747.

Fry, A., Littlejohns, T.J., Sudlow, C., et al., 2017. Comparison of Sociodemographic and 
Health-Related Characteristics of UK Biobank Participants With Those of the General 
Population. Am. J. Epidemiol. 186 (9), 1026–1034. https://doi.org/10.1093/aje/ 
kwx246.

Gardner, B., Ling, F., Hopke, P.K., et al., 2014. Ambient fine particulate air pollution 
triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial 
infarction: a case-crossover study. Part. Fibre Toxicol. 11 (1), 1. https://doi.org/ 
10.1186/1743-8977-11-1.

General Lifestyle Survey: 2011. Office for national statistics; 2013.
Generalised Land Use Database Statistics for England 2005 (Enhanced Basemap). https 

://data.gov.uk/dataset/land_use_statistics_generalised_land_use_database.

J. Vanoli et al.                                                                                                                                                                                                                                   Environment International 192 (2024) 109011 

9 

https://doi.org/10.1016/j.envint.2024.109011
https://doi.org/10.1016/j.envint.2024.109011
https://doi.org/10.1001/jamanetworkopen.2023.0561
https://doi.org/10.1001/jamanetworkopen.2023.0561
https://doi.org/10.1161/JAHA.120.016890
https://doi.org/10.1161/JAHA.120.016890
https://doi.org/10.1038/s41569-020-0371-2
http://refhub.elsevier.com/S0160-4120(24)00597-X/h9010
http://refhub.elsevier.com/S0160-4120(24)00597-X/h9010
https://doi.org/10.1097/EDE.0b013e318276ccb8
https://doi.org/10.1097/EDE.0b013e318276ccb8
https://doi.org/10.1016/j.envint.2019.105004
http://refhub.elsevier.com/S0160-4120(24)00597-X/h0035
http://refhub.elsevier.com/S0160-4120(24)00597-X/h0035
https://doi.org/10.1186/s12874-021-01440-5
https://doi.org/10.1186/s12874-021-01440-5
https://doi.org/10.1016/j.envint.2018.02.048
https://doi.org/10.1016/j.envint.2018.02.048
https://doi.org/10.1016/j.envres.2022.112698
https://doi.org/10.1093/cvr/cvac053
https://doi.org/10.1093/cvr/cvac053
https://doi.org/10.1289/EHP12141
https://doi.org/10.1097/EDE.0000000000001711
https://doi.org/10.1097/EDE.0000000000001711
https://doi.org/10.1289/ehp.1409276
https://doi.org/10.1097/ede.0000000000001136
https://doi.org/10.1097/ede.0000000000001136
https://doi.org/10.1016/j.envint.2019.05.073
https://doi.org/10.1016/j.envint.2019.05.073
https://doi.org/10.1111/joim.13467
https://doi.org/10.1111/joim.13467
https://doi.org/10.1016/j.apr.2024.102284
https://doi.org/10.1016/j.jacadv.2023.100781
https://doi.org/10.1056/NEJMoa1702747
https://doi.org/10.1056/NEJMoa1702747
https://doi.org/10.1093/aje/kwx246
https://doi.org/10.1093/aje/kwx246
https://doi.org/10.1186/1743-8977-11-1
https://doi.org/10.1186/1743-8977-11-1
https://data.gov.uk/dataset/land_use_statistics_generalised_land_use_database
https://data.gov.uk/dataset/land_use_statistics_generalised_land_use_database


How the NHS Cares for Patients with Heart Attack. Annual Public Report April 2014–March 
2015. London: NICOR, 2017. NICOR.

Kelly FJ. The Effects of Long-Term Exposure to Ambient Air Pollution on Cardiovascular 
Morbidity: Mechanistic Evidence. COMEAP; 2019.
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