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ABSTRACT
In Information Retrieval (IR), the Learning-to-Rank (LTR) task re-

quires building a ranking model that optimises a specific IR metric.

One of the most effective approaches to do so is the well-known

LambdaRank algorithm. LambdaRank uses gradient descent op-

timisation, and at its core, it defines approximate gradients, the

so-called lambdas, for a non-differentiable IR metric. Intuitively,

each lambda describes how much a document’s score should be

“pushed” up/down to reduce the ranking error.

In this work, we show that lambdas may be incoherent w.r.t.

the metric being optimised: e.g., a document with high relevance

in the ground truth may receive a smaller gradient push than a

document with lower relevance. This behaviour goes far beyond

the expected degree of approximation. We analyse such behaviour

of LambdaRank gradients and we introduce some strategies to

reduce their incoherencies. We demonstrate through extensive ex-

periments, conducted using publicly available datasets, that the

proposed approach reduces the frequency of the incoherencies in

LambdaRank and derivatives, and leads to models that achieve sta-

tistically significant improvements in the NDCG metric, without

compromising the training efficiency.
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1 INTRODUCTION
Information Retrieval (IR) is a research field that focuses on finding

relevant items (usually text documents) within large collections of

an unstructured and disordered nature that satisfies an information

need. Learning to Rank (LTR), namely machine learning applied to

the task of document ranking, is nowadays one of the most popular

techniques adopted in modern IR. LTR includes supervised learning
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algorithms to construct rankers that aim to sort by user relevance

a huge set of items, which mostly contain non-relevant items and

only a small fraction of relevant ones [20, 26] A significant difficulty

in learning a ranker is that typically IR metrics depend on the sorted

list of documents. Therefore, an objective function that makes use

of IR metrics cannot be directly optimised by gradient descent-

based methods since metrics are either non-differentiable or flat

everywhere with respect to the model parameters [1, 3, 12].

Despite the non-differentiability of IR metrics, many LTR al-

gorithms are gradient-based, and either optimise an approximate

version of the ranking metric or build gradients based on heuristic

approximations such as LambdaRank [3]. LambdaRank avoids the

definition of an approximate loss function; rather, it heuristically

defines gradients that specify whether a document score should

be increased or decreased to improve the ranking quality. Lamb-

daRank is an algorithm originally designed for artificial neural

networks that has been considered state-of-the-art in LTR until it

was supplanted by LambdaMART [2], its analogous version based

on gradient-boosted decision trees. Since both LambdaRank and

LambdaMART are based on heuristics, their gradients are not an

exact computation of the derivative of an IR metric.

In this work, we show that LambdaRank heuristics (LambdaLoss

Framework [26], LambdaMART, etc.) have an inherent flaw and

they can generate incoherent gradients. Later in Fig. 1 we show a

few examples where the most relevant document in the result list

does not get the largest gradient and therefore it is impossible for

the learned model to rank it in the top position. We call gradient
incoherency such phenomena where a relevant document receives

a smaller gradient than a less relevant one. We are aware that

gradients are approximate and therefore trade-offs need to be made

in order to optimise non-differentiable functions. However, such

incoherency may undermine the learning process. Moreover, this

phenomenon is more apparent with the use of truncated metrics

optimisation where we would like the model to focus on the top

positions, but the gradients are unable to push upwards the most

relevant documents.

The contributions of this work are as follows. i)We bring to light

the issue of gradient incoherencies affecting LambdaRank, which

has not been previously shown in the literature. ii)We show how

truncated metric optimisation exacerbates the phenomenon of gra-

dient incoherencies and undermines the aim of truncation, which

is to ensure that the user encounters the most relevant documents

among the first positions. iii)We propose an improvement over the

LambdaRank gradient computation to optimise truncated ranking

metrics. Specifically, we propose Lambda-eX, which extends the set
of document pairs considered by LambdaRank when computing

gradients.

We validate experimentally our results on five publicly avail-

able datasets. We show how Lambda-eX can reduce the number of
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queries affected by gradient incoherencies introduced by truncated

metric optimisation. This reduction is significantly large during

the early stage of the training, which allows Lambda-eX to achieve

high-quality performance after a few trees. Finally, we show that

optimising truncated metrics can accelerate training time due to

a lower number of partial derivatives to be computed and that

Lambda-eX can achieve statistically significant improvements while

maintaining the same train efficiency as truncated LambdaRank.

2 BACKGROUND
One of the most common IR applications of LTR is to make use of

machine learning to implement the re-ranking stage of the query

processing pipeline (i.e., first-stage retrieval and then re-ranking).

The purpose of LTR is to train a ranker 𝑓 that, given a query 𝑞 and

a set of candidate documents 𝐷 = {𝑑1, . . . , 𝑑𝑛}, returns a ranking 𝜋
over the set of documents, according to which documents are sorted

and presented to the user. To generate the ranking 𝜋 , the ranker

predicts a score 𝑠𝑖 = 𝑓 (𝑑𝑖 ), for each 𝑑𝑖 ∈ 𝐷 , and then sorts the

documents in descending score order. As a result, 𝜋 [𝑖] denotes the
position of document 𝑑𝑖 in the ranking; therefore, we have 𝜋 [𝑖] = 1

when 𝑑𝑖 appears at the top-1 position in the ranked list.

During the training of a LTR model, the ranker takes as input a

set of triples (𝑞, 𝐷,𝑌 ) called training set, where 𝑞 ∈ 𝑄 is a query, 𝐷

is a set of candidate documents for 𝑞 among the available document

collection D, and 𝑌 includes the true relevance labels 𝑦𝑖 for each

𝑑𝑖 ∈ 𝐷 . Typically, relevance labels are integers in Y = {0, 1, 2, 3, 4},
where 0 stands for non-relevant judgement and 4 is the maximum

relevance to query 𝑞.

A learning algorithm aims at finding the ranker that optimises

some given ranking metric. One of the most well-known and widely

used IR metrics for measuring the quality of a ranked list is Nor-
malized Discounted Cumulative Gain (NDCG) [15]. NDCG is the

normalised version of Discounted Cumulative Gain, which accu-

mulates a gain for each ranking position. DCG is composed of two

components: the gain G𝑖 = 2
𝑦𝑖 −1 that document 𝑑𝑖 , with relevance

𝑦𝑖 , brings to the final ranking, and the discounting D𝑖 = log
2
(1 + 𝑖)

that discounts the document’s gain according to its position 𝑖 in the

list. In fact, a very relevant document in the last position contributes

much less to NDCG than in the first position.

Below is the definition of NDCG:

NDCG =
DCG

IDCG

=
1

IDCG

𝑛∑︁
𝑖=1

G𝑖

D𝑖
=

1

IDCG

𝑛∑︁
𝑖=1

2
𝑦𝑖 − 1

log
2
(1 + 𝜋 [𝑖]) ,

where IDCG is the ideal DCG of the ground truth ranking. Normali-

sation prevents the model from favouring long queries since queries

with a lot of candidate documents are likely to have a higher DCG.

Several other ranking metrics can be similarly formulated with

different gains G𝑖 and discounts D𝑖 and with proper normalisation.

2.1 Gradient-descent based learning and
LambdaRank

Gradient-based learning algorithms, such as artificial neural net-

works or gradient-boosted decision trees, run iterative updates to

build a ranker that minimises a given cost function 𝐶 . For instance,

artificial neural networks compute the gradient direction 𝜕𝐶/𝜕𝑤 𝑗 to

update each network weight𝑤 𝑗 at each batch processed. Similarly,

gradient-boosted decision trees iteratively learn a new tree that

approximates 𝜕𝐶/𝜕𝑠𝑖 for each document 𝑑𝑖 in the training set. In

both cases, directly or indirectly, a key step is the computation of

𝜕𝐶/𝜕𝑠𝑖 . Unfortunately, most IR metrics are rank-based: they depend

on 𝜋 rather than on 𝑠𝑖 . This makes the cost function either flat, i.e.,

modifications of 𝑠𝑖 do not change 𝜋 and therefore do not change

the cost 𝐶 , or non-differentiable, i.e., modifications of 𝑠𝑖 change 𝜋

causing a non-smooth change of the cost 𝐶 .

Most approaches drive the learning process by means of a proxy

cost function that is differentiable. One of the most relevant ap-

proaches is LambdaRank [3]. LambdaRank’s cost function stems

from the RankNet cost [4] which is further enhanced by consid-

ering the impact on the IR metric at hand. The gradient 𝜕𝐶/𝜕𝑠𝑖 is
computed on the basis of pair-wise lambdas 𝜆𝑖 𝑗 . Given a document

pair 𝑑𝑖 and 𝑑 𝑗 such that 𝑑𝑖 is more relevant than 𝑑 𝑗 , i.e., 𝑦𝑖 > 𝑦 𝑗 , we

have that:

𝜆𝑖 𝑗 =
𝜕𝐶 (𝑠𝑖 − 𝑠 𝑗 )

𝜕𝑠𝑖
=

−𝜎
1 + 𝑒𝜎 (𝑠𝑖−𝑠 𝑗 )

��ΔZ𝑖 𝑗 �� , (1)

where 𝜎 = 1, and |ΔZ𝑖 𝑗 | is the amount of change in the IR metric

Z generated by swapping the rank positions of 𝑑𝑖 and 𝑑 𝑗 while

leaving the rank positions of all other documents unchanged. The

value of 𝜆𝑖 𝑗 estimates the change on the cost function 𝐶 when the

distance between the two scores 𝑠𝑖 and 𝑠 𝑗 is modified. Note that if

two documents have the same relevance label, then 𝜆𝑖 𝑗 = 0 due to

the fact that ΔZ𝑖 𝑗 = 0. We recall that 𝜆𝑖 𝑗 implements the derivative

of the RankNet cost function multiplied by |ΔZ𝑖 𝑗 |. The RankNet
cost increases if the two documents are not in the correct order, and

converges asymptotically to 0 if documents are in the correct order

with a large gap in their scores. The |ΔZ𝑖 𝑗 | component boosts the

error when this has a significant impact on the specific IR metric.

The gradient of the single document is finally computed as:

𝜆𝑖 =
∑︁

𝑗 :(𝑖, 𝑗 ) ∈𝐼
𝜆𝑖 𝑗 −

∑︁
𝑘 :(𝑘,𝑖 ) ∈𝐼

𝜆𝑘𝑖 , (2)

where 𝐼 is the set of ordered pairs (𝑖, 𝑗) such that 𝑦𝑖 > 𝑦 𝑗 , i.e.,

𝐼 = {(𝑖, 𝑗) | 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 ∧ 𝑦𝑖 > 𝑦 𝑗 }. In regard to the asymptotic

complexity of computing 𝜆𝑖 𝑗 , Eq. 2 requires to evaluate 𝑂 (𝑛2) doc-
ument pairs with 𝑛 being the number of candidate documents in 𝐷

for the given query.

According to [3], when maximising an IR metric such as NDCG,

the lambdas are formulated as 𝜕𝑈 /𝜕𝑠𝑖 where 𝑈 is the utility func-

tion (metric) being maximised, rather than a cost to be minimised.

Moreover, the sign of the various 𝜆𝑖 𝑗 is set so that the most relevant

document 𝑑𝑖 receives a positive gradient update, while 𝑑 𝑗 receives

a negative update and is pushed down through the ranks 𝜋 .

Before going through the next section, let’s focus on the |ΔZ𝑖 𝑗 | in
Eq. 1. Indeed, Z could be any ranking metric such as NDCG, ERR [7],

etc. In this work, we focus on NDCG, and therefore |ΔNDCG𝑖 𝑗 |
is defined as the difference between the NDCG computed on the

current ranking 𝜋 , and the NDCG computed on the ranking that

results from swapping the two documents at ranks 𝜋 [𝑖] and 𝜋 [ 𝑗].
This can be computed efficiently so that we can define 𝜆𝑖 𝑗 as:

𝜆𝑖 𝑗 =
1

1 + 𝑒 (𝑠𝑖−𝑠 𝑗 )
1

IDCG

��
G𝑖 − G𝑗

�� ���� 1
D𝑖

− 1

D𝑗

���� . (3)

The gradient 𝜆𝑖 𝑗 has, therefore, three components: the RankNet

cost, the gain difference and the difference of the inverse discount.
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2.2 Optimisation of truncated metrics
Real-world applications of information retrieval systems mostly try

to optimise the effectiveness for the first 𝑘 results only. This manner

is strictly related to user behaviour [12]. When users scan a list of

results, they focus more on the first 𝑘 (i.e., 5/10) results and do not

look at all the thousands of results in the list. IR metrics naturally

provide a truncated version with a cutoff threshold 𝑘 . For instance,
NDCG@𝑘 is computed by considering only the contribution of the

top-𝑘 ranked documents. Truncated metrics are the IR metrics of

interest to evaluate the goodness of a ranker in most application

scenarios. Therefore, according to the empirical risk minimisation

principle, the optimisation of a truncated metric is expected to be

more effective than its un-truncated variant.

The introduction of a truncated metric at training time also

brings a straightforward efficiency improvement. In Eq. 2, the com-

putation of all 𝜆𝑖 requires computing the pair-wise gradients 𝜆𝑖 𝑗
for every pair of documents 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 . Under a truncated metric,

documents ranked beyond 𝑘 are not considered, and therefore a

pair of such documents has a value of |ΔZ𝑖 𝑗@𝑘 | equal to 0. We can

thus limit the pairs to be considered to those that contain at least

one document in the top-𝑘 . To do so, the gradients 𝜆𝑖 in Eq. 2 are

computed by replacing the set 𝐼 with a 𝐼𝜏 defined as follows:

𝐼𝜏 = {(𝑖, 𝑗) | 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 ∧ 𝑦𝑖 > 𝑦 𝑗 ∧min(𝜋 [𝑖], 𝜋 [ 𝑗]) ≤ 𝜏}. (4)

Hereinafter we denote by 𝑘 the cutoff threshold used by the

evaluationmetric and by 𝜏 the truncation level [12] optimised during

the training. Note that 𝑘 and 𝜏 do not need to be the same. When

𝜏 = 𝑘 we are maximising the truncated metric with cutoff 𝑘 , while

when 𝜏 = +∞ we are maximising the un-truncated metric.

Last but not least, the introduction of 𝜏 reduces the asymptotic

complexity of the objective function from 𝑂 (𝑛2) to 𝑂 (𝜏𝑛). A sig-

nificant reduction of the training time is achieved when 𝜏 ≪ 𝑛.

Despite being a tiny detail, we remark that we assume the use of

Eq. 1 (and Eq. 3) without modification even in the presence of a trun-

cation level, i.e., ΔZ is used rather than ΔZ@𝑘 , as this is common

practice in the most popular implementations, e.g., LightGBM [17].

3 GRADIENT COHERENCY AND
LAMBDARANK

LambdaRank and its variants provide a smooth approximation of

commonly used IR metrics. Yet, we would like this approximation

to provide some basic guarantees. We thus introduce a coherency
property defined as follows.

Definition 3.1 (Gradient Coherency). Given two documents𝑑𝑖 and

𝑑 𝑗 such that 𝑦𝑖 > 𝑦 𝑗 and 𝜋 [𝑖] > 𝜋 [ 𝑗], i.e., 𝑑𝑖 is more relevant than

𝑑 𝑗 but it is ranked at a worse position, we say that the gradients of

the utility function 𝑈 are coherent at 𝑑𝑖 , 𝑑 𝑗 if it holds that:

𝜕𝑈

𝜕𝑠𝑖
≥ 𝜕𝑈

𝜕𝑠 𝑗
.

The above definition states that if two documents 𝑑𝑖 and 𝑑 𝑗
are misranked, we would like the computed gradient to be larger

at the most relevant document 𝑑𝑖 . This is because pushing up 𝑑𝑖
more than 𝑑 𝑗 may restore the ideal ordering. Conversely, when

the gradient coherency does not hold, pushing up 𝑑 𝑗 more than 𝑑𝑖
may only worsen the current ranking. Despite its simplicity, the

gradient coherency property is not easy to satisfy, and, indeed, it is

not enjoyed by LambdaRank gradients.

3.1 Incoherencies in LambdaRank gradients
In Fig. 1(a) we show an example of LambdaRank gradients computa-

tion when maximising NDCG@1 with a truncation level 𝜏 = 1. Sup-

pose this is the ranking after a given number of iterations, epochs,

or boosting rounds, of a gradient-based optimisation algorithm.

We have that the most relevant document 𝑑△ is currently ranked

second, while a less relevant document 𝑑★ is ranked first. Then

we have three other non-relevant documents. The arrows depict

the computed gradients and, as expected, relevant documents get

an upward push, while non-relevant documents get a downward

push. However, we have that document 𝑑△ gets a smaller gradient

than 𝑑★, i.e., 𝜆△ < 𝜆★, meaning that the most relevant document

𝑑△ will not be able to reach the top position in the next iteration.

On the contrary, the gap between 𝑑★ and 𝑑△ is meant to increase in

favour of the least relevant 𝑑★. In fact, this is a gradient incoherency

according to Def. 3.1.

To clarify this behaviour, in Tab 1 we report the computation of

the document gradients 𝜆𝑖 as a function of the pair-wise 𝜆𝑖 𝑗 accord-

ing to Eq. 3. Recall, that 𝜆𝑖 𝑗 is considered if and only if (𝑖, 𝑗) ∈ 𝐼𝜏 ,

i.e., at least one of the two documents is ranked above the trunca-

tion level 𝜏 . Let’s focus on the relevant documents. Document 𝑑★
receives a negative contribution −𝜆△★ from the most relevant doc-

ument 𝑑△ , and three positive contributions from the non-relevant

documents. Document 𝑑△ is below the truncation level, and there-

fore its gradient is simply 𝜆△ = +𝜆△★. Therefore, the reason for the

gradient incoherency is due to the contribution of the non-relevant

documents that significantly contribute to 𝑑★ but not to 𝑑△ . The
reader may immediately recognise that setting a truncation level

𝜏 = +∞ would solve this issue at the cost of a higher computational

cost. The contribution of this work pursues the following direc-

tion: to widen the set of the 𝜆𝑖 𝑗 considered still providing a limited

computational cost comparable to that of a small truncation level.

Before moving forwards, let’s investigate a few similar exam-

ples to further understand the behaviour of LambdaRank. Fig. 1(b)

shows a similar scenario to that of Fig. 1(a), with the most rele-

vant document 𝑑△ in the last position. As 𝑑△ moves downwards,

both the RankNet cost and the discounting component of ΔNDCG
(|1/D△ − 1/D★ |) increase generating a large upward gradient up-

date for 𝑑△ and a symmetrical downward update for 𝑑★. In the

setting depicted in Fig. 1(b), the gradient 𝜆△ is larger than 𝜆★ thus

complying with the Gradient Coherency property.

Table 1: Detailed computation of LambdaRank gradients for
the example illustrated in Fig. 1(a).

𝑑𝑖 𝑦𝑖 𝑠𝑖 𝜆𝑖

𝑑★ 1 0.04 𝜆★ = −𝜆△★ + 𝜆★3 + 𝜆★4 + 𝜆★5
≈ −0.124 + 0.083 + 0.093 + 0.100 ≈ 0.152

𝑑△ 2 0.03 𝜆△ = +𝜆△★ ≈ 0.124

𝑑3 0 0.02 𝜆3 = −𝜆★3 ≈ −0.083
𝑑4 0 0.01 𝜆4 = −𝜆★4 ≈ −0.093
𝑑5 0 0.00 𝜆5 = −𝜆★5 ≈ −0.100
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Figure 1: Examples of gradient incoherency.

However, as the rank distance between 𝑑★ and 𝑑△ increases, the

value of |1/D△ − 1/D★ | increases only marginally. If more non-

relevant documents are placed in between 𝑑★ and 𝑑△ as in Fig. 1(c),

the gradients generated by such non-relevant documents provide

additional increments to 𝜆★ but do not affect 𝜆△ . Eventually, 𝑑★
gets a larger gradient update than 𝑑△ breaking again the Gradient
Coherency property. This happens because the discounting factor

difference between 𝑑★ and 𝑑△ , which should push 𝑑△ upwards

stronger than 𝑑★, is too small to overcome the lack of gradient

contribution of the pairs removed by the truncation level.

These three examplesmake us draw two interesting observations.

First, the more the dataset contains non-relevant documents (of 0

relevance), the more the problem is likely to occur. We empirically

prove this in section 5.3, especially with Istella-X dataset. Second,

the occurrence of gradient incoherencies is related to the model’s

error in a non-linear way. If the model ranks very poorly document

𝑑△ , it is impossible for 𝑑△ to improve its ranking (Fig. 1(c)), if the

model error is not large, the model will correctly push 𝑑△ upwards

(Fig. 1(b)), but, if document 𝑑△ gets just below the truncation level,

it is pushed downwards again (Fig. 1(a)). The only way document

𝑑△ can escape this problem is by a fortuitous update (e.g., neural

network weight update (LambdaRank) or tree’s leaf value (Lamb-

daMART)), that may generate a completely different gradient since

it is affected by other documents also from other queries, or by

other implicit algorithm-dependent approximations.

A last scenario is illustrated in Fig. 1(d), where an additional

relevant document is added by replacing document 𝑑5 with a doc-

ument with label 𝑦5 = 1. Being the label the same as 𝑑★’s, the

Table 2: Example of computation of LambdaRank gradients
with 𝜏 = +∞.

𝑑𝑖 𝑦𝑖 𝑠𝑖 𝜆𝑖

𝑑1 4 0.02 𝜆1 = 𝜆12 + 𝜆13 ≈ 0.176 + 0.221 ≈ 0.397

𝑑2 0 0.01 𝜆2 = −𝜆12 − 𝜆32 ≈ −0.176 − 0.004 ≈ −0.180
𝑑3 1 0.00 𝜆3 = −𝜆13 + 𝜆32 ≈ −0.221 + 0.004 ≈ −0.217

value of ΔNDCG is 0 for 𝜆★5, so 𝑑5 reduces the number of gradient

contributions to 𝑑★. However, note that the gradient of 𝑑△ is not

affected by 𝑑5 because they are both beyond the truncation level.

The new document makes the gradient of document 𝑑★ smaller

than the gradient of document 𝑑△ reversing once more the gradient

computation outcome.

These examples show how difficult is to model analytically the

Gradient Coherence. We provided a few examples showing the im-

pact of the label and the rank difference which are computed by ΔZ.
Clearly, also the score difference is relevant and captured by the

RankNet component of the gradient in Eq. 1. So far we focused on

NDCG only. In fact, it is easy to show that the coherence property

does not hold for other discount-based metrics such as Expected

Reciprocal Rank [7], Rank-Biased Precision [22], etc.

3.2 Incoherencies in LambdaRank without a
truncation level

The above discussion suggests that the truncation level 𝜏 is the

cause of the incoherencies in the gradient computation. Indeed, this

is not true.

Let’s set 𝜏 = +∞, meaning that no truncation is used, and con-

sider the example in Tab. 2. We have three documents with scores

respectively 0.02, 0.01, and 0.00, and with relevance labels respec-

tively 4, 0, 1. Since there is no truncation level, all the pairwise

gradients 𝜆𝑖 𝑗 are relevant. Document 𝑑1 has a positive gradient 𝜆1
as it is ranked higher than documents with smaller relevance labels.

This positive push allows gaining a desirablemargin from the other

documents. Document 𝑑2 is non-relevant and receives a negative

gradient contribution from both the other documents. Unexpect-

edly, document 𝑑3, despite having an higher label than 𝑑2, receives

the strongest downward push, i.e., 𝜆3 < 𝜆2 with 𝑦3 > 𝑦2. This is

a gradient incoherence. The reason is that swapping document 𝑑1
with 𝑑3 has a larger impact on the NDCG than swapping 𝑑1 with

𝑑2, resulting in 𝜆13 > 𝜆12. LambdaRank prefers avoiding the risk

of moving 𝑑1 to the third position rather than pushing 𝑑3 up to

the second place. Indeed, this comes from the discount factor of

the NDCG metric that demotes documents’ contributions in the

lower ranks. These gradients clearly push the ranking away from

the ideal configuration.

This shows that LambdaRank gradients are incoherent indepen-

dently of the truncation level. In this case, the major player is the

discounting factor. Given the larger importance of truncated met-

rics, we leave the analysis of un-truncated metrics and gradients to

future work. In this paper, we focus on the cases that break the Gra-
dient Coherence in the presence of a truncation level, with the aim

of not compromising the computational efficiency this provides.
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Figure 2: Lambda-eX missed top-𝑘 selection strategies.

4 LAMBDA-EX
We put ourselves in the scenario of truncated IR metrics optimisa-

tion. From the above, we can say that the natural choice of using a

truncation level at training time to maximise a truncated metric is

very beneficial in terms of computational cost, but it suffers from

incoherencies in the calculation of gradients. The main contribution

of this work is Lambda-eX, a new approach to optimise truncated

ranking metrics that limits incoherencies while preserving training
time efficiency. Specifically, we propose some heuristic methods to

extend the set of document pairs considered by LambdaRank when

computing gradients.

4.1 The Full-Gradient Document Set
We claim that the exacerbation of the incoherencies is due to miss-

ing computations of the 𝜆𝑖 𝑗 gradients. More specifically, relevant

documents that are not ranked above the truncation level are not

evaluated against all the other documents in 𝐷 but only against the

top-𝑘 , and this discards some of the 𝜆𝑖 𝑗 and causes under-estimation

of their gradient. One possible approach is to use 𝐼𝜏=+∞. However,

this does not allow limiting the number of pairwise gradients com-

puted to minimise the computational cost of the training process.

We thus define a Full-Gradient Document Set 𝑋 ⊆ 𝐷 for which

we compute a complete gradient estimation as in the un-truncated

case 𝜏 = +∞. We compute 𝜆𝑖 𝑗 gradients as in Eq. 2 but on the basis

of the set 𝐼𝑋 :

𝐼𝑋 =
{
(𝑖, 𝑗) | 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 ∧ 𝑦𝑖 > 𝑦 𝑗 ∧

(
𝑑𝑖 ∈ 𝑋 ∨ 𝑑 𝑗 ∈ 𝑋

)}
. (5)

The above means that the gradient 𝜆𝑖 of a document 𝑑𝑖 ∈ 𝑋 is

computed by considering the 𝜆𝑖 𝑗 (or 𝜆 𝑗𝑖 ) for every other document

𝑑 𝑗 ∈ 𝐷 . This provides a more accurate gradient estimation. We thus

remark that Lambda-eX does not exploit a fixed truncation level,

but it rather selects dynamically the set 𝑋 for each different query.

Indeed, the set 𝑋 may not match any set 𝐼𝜏 for any value of 𝜏 . Also,

by limiting 𝑋 such that |𝑋 | ≪ |𝐷 |, we have |𝐼𝑋 | ≪ |𝐼𝜏=+∞ | and
achieve a more efficient computation than in the un-truncated case.

To understand how the set 𝑋 is built, let’s first investigate an

example from Fig. 2. The leftmost example in Fig. 2 shows a set

of documents ranked according to their relevance labels. If we

desire to maximise NDCG@2, the model must rank the document

of relevance 3 in the first position and a document of relevance

2 in the second position. This is the ideal ranking. Suppose that

a model provides the rightmost rank depicted in the same Figure.

We distinguish among three kinds of documents. We call true top-𝑘
a relevant document that is ranked among the top-𝑘 and whose

label occurs in the top-𝑘 of the ideal ranking. This is the case of

the document in the second position of the ranking. We call false
top-𝑘 a document that is ranked among the top-𝑘 but whose label

is not among the top-𝑘 of the ideal ranking. This is the case of the

top-ranked document with relevance 1. Finally, we callmissed top-𝑘
a relevant document that is not ranked in the top-𝑘 but whose label

is present among the top-𝑘 of the ideal ranking. This is the case of

documents with label 2. Note that the above definition is not based

on the document identities but rather on their relevance labels.

The previous analysis leads us to state that missed top-𝑘 docu-

ments receive an under-estimated gradient which may make them

impossible to climb up to the top ranks. The proposed Lambda-eX
aims at improving the learning process by providing a full and

more accurate gradient estimation for the missed top-𝑘 documents.

To do so, Lambda-eX may include in 𝑋 the documents ranked in

the top-𝑘 positions by the current model and all the missed top-𝑘
documents. Since the number of missed top-𝑘 documents can be

large and we want to limit the size of 𝑋 to about 𝑘 , Lambda-eX
uses some heuristic criteria to select a subset of the missed top-𝑘
documents to be included in 𝑋 . Lambda-eX selection strategies are

discussed in the next section.

Note that also Lambda-eX adopts the value ΔZ𝑖 𝑗 with respect

to the un-truncated metric. This means that even for a pair of

documents 𝑑𝑖 and 𝑑 𝑗 below the cutoff, the value of ΔZ𝑖 𝑗 is not 0.
Consequently, if (𝑖, 𝑗) ∈ 𝐼𝑋 the partial derivative 𝜆𝑖 𝑗 will contribute

to the gradients 𝜆𝑖 and 𝜆 𝑗 .

4.2 Selection Strategies
The way Lambda-eX builds the set 𝑋 is the core of the algorithm.

We let 𝑘 be the cutoff of the IR metric being optimised. First, we

include in𝑋 all the top-𝑘 documents currently ranked by the model.

Then, we propose three different ways to select the missed top-𝑘
documents ranked below the metric cutoff to be used to extend 𝑋 .
For the sake of efficiency, the first two strategies generate a set 𝑋

of size |𝑋 | ≤ 2𝑘 , while the size of 𝑋 for the third strategy depends

on the number of relevant documents in the query. Note that |𝑋 |
is query-dependent. The three selection strategies are defined as

follows.

• static. Let ℎ be the number of false top-𝑘 documents, the

static strategy includes in 𝑋 a total of ℎ missed top-𝑘 docu-

ments having the largest scores. In Fig. 2 the example static
shows how, among the possible missed top-𝑘 documents (in
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orange), it selects the best (ℎ = 1) ranked documents below

the cutoff among the missed top-𝑘 documents which have

label 2. This strategy focuses on documents that are closest

to the cutoff and thus most likely to fall into the problem

explained in section 3.1.

• random. Analogous to static, but documents are selected

randomly instead of rank-based. In example random, it ran-
domly selects the second missed top-𝑘 of relevance 2. A ran-

dom selection allows the model to see all missed top-𝑘 docu-

ments during training and improves model generalisation.

• all. Analogous to static, but all the missed top-𝑘 docu-

ments are included in𝑋 even if their number is larger than ℎ.

In example all, every document of relevance 2 is placed in𝑋 .

In this case, all missed top-𝑘 documents are compared simul-

taneously in favour of greater generalisation of the model at

the expense of the efficiency of the gradient computation.

Finally, we also propose two hybrid variants: all-static and
all-random. With efficiency in mind, the goal is to limit the size

of 𝑋 . Depending on the query, the all may potentially include all

the relevant documents, i.e., with a label greater than 0. To avoid

such blow-up of 𝑋 , the hybrid strategies roll back to either static
or random in this degenerate case, otherwise, they implement the

all strategy.

In terms of computational complexity of the gradient computa-

tion, the size of 𝑋 is 𝑘 + ℎ for the static and random strategies,

and since ℎ ≤ 𝑘 , it holds that |𝑋 | ≤ 2𝑘 . Therefore, the asymptotic

complexity of Lambda-eX with static or random in computing all

the 𝜆𝑖 is 𝑂 (𝑘𝑛), with 𝑛 the number of documents in the query. For

all, all-static, and all-random, the missed top-𝑘 documents

may correspond to the whole subset of relevant documents. Let 𝑛+

be the number of such documents, the computational complexity

is 𝑂 ((𝑘 + 𝑛+)𝑛). Note that in general it is expected that 𝑛+ ≪ 𝑛,

meaning a smaller cost than with 𝐼𝜏=+∞.

5 EXPERIMENTAL EVALUATION
5.1 Datasets
We performed extensive evaluation analysis on five publicly avail-

able datasets reported in Tab. 3. Istella-X has the highest number of

documents per query and non-relevant documents. MSLR Web30K

Fold 1 is the most balanced since half of the documents are relevant.

Instead, Yahoo! Learning to Rank Challenge Set 1 is the small-

est one with about 700,000 documents and only an average of 23.73

per query. All datasets have graded relevance labels ranging from

0 to 4, where 0 stands for non-relevant and 4 for highly relevant.

5.2 Methods evaluated
It was shown empirically that embedding LambdaRank gradients

within gradient-boosting decision trees, a.k.a., LambdaMART, is

more effective and efficient than using LambdaRank gradients in

a feed-forward artificial neural network [2]. This makes Lamb-

daMART the state of the art in LTR. Therefore, without loss of

generality, we perform all experiments and analyses by means of

the more effective and efficient LambdaMART.

We refer with LambdaMART-eX to the strategies proposed in

the previous section when applied to LambdaMART. We compare

Table 3: Datasets properties.

Dataset #feat. #queries #doc. query len. %non-rel.

Istella-X [20] 220 10,000 26,791,447 2,679.14 99.83

Istella-S [19] 220 33,018 3,408,630 103.24 88.61

Istella-F [10] 220 33,018 10,454,629 316.63 96.29

Yahoo! Set 1 [6] 519 29,921 709,877 23.73 26.09

MSLR-30K [23] 136 31,531 3,771,125 119.60 51.47

Table 4: Hyperparameters per dataset.

Dataset learning_rate num_leaves min_data min_hessian

Istella-X/S/F 0.05 64 20 0.001

Yahoo! Set 1 0.02 400 50 0

MSLR-30K 0.02 200 100 0

the performance of the proposed method against three baseline

approaches:

• LambdaMART𝜏=𝑘 for which the truncation level 𝜏 is set

equal to the metric cutoff 𝑘 . This exactly optimises the trun-

cated metric used for the evaluation.

• LambdaMART𝜏=𝑘+3 with 𝜏 = 𝑘 + 3 as suggested in [9]. A 𝜏

slightly larger than 𝑘 provides a better gradient estimation

for documents close to the metric cutoff at a very limited

cost, without deviating too much from the evaluation metric.

• LambdaMART𝜏=+∞ with 𝜏 = +∞ optimises the un-truncated

metric, i.e., the IR metric for the whole ranking.

Moreover, as mentioned above, gradient incoherencies also affect

other loss functions derived from LambdaLoss Framework (such

as NDCG-Loss1, NDCG-Loss2, and NDCG-Loss2++ [26]). To this

end, we also investigate whether extending the set of document

pairs is beneficial for these loss functions. For space constraints,

we focus the analysis only on NDCG-Loss2++, which is the loss

function shown to achieve higher performance among the others

in [26]. For the sake of clarity, hereinafter we refer to the learn-

ing algorithm that makes use of NDCG-Loss2++ loss function as

LambdaLoss. We carry out all the experiments designed for Lamb-

daMART also for LambdaLoss, so we compare LambdaLoss-eXwith

the following three baselines: LambdaLoss𝜏=𝑘 , LambdaLoss𝜏=𝑘+3,
and LambdaLoss𝜏=+∞

We trained models through the LambdaMART implementation

of the LightGBM [17] library. LambdaMART-eX and LambdaLoss

variants were as well implemented on top of LightGBM.
1
All mod-

els were trained with the best hyperparameters found in previous

works [1, 20], except for the hyperparameters of LambdaLoss which

are tuned on the validation set. Tab. 4 summarises the hyperparam-

eters used. The value of max_bin is set to 255 for all datasets and

the weight coefficient 𝜇 of NDCG-Loss2++ is set to 5. For models

trained with Lambda-eX on MSLR-30K and Yahoo! Set 1 the best

value is 0.5. The hyperparameter 𝜇 manages the trade-off between

the discount of NDCG-Loss2 and LambdaRank.

Models were trained to optimise NDCG for different cutoff values

𝑘 : 5, 10, and 15. For each model, we stop the training process after

1
github.com/FedericoMarcuzzi/LambdaRank-Gradients-are-Incoherent
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Figure 3: Percentage of queries (𝑦-axis) affected by at least
one gradient incoherence during each tree learning (𝑥-axis).
The scale in the 𝑥-axis is logarithmic.

1,000 trees and select the best iteration based on the performance

achieved on the validation set.

5.3 Experimental analysis
Does Lambda-eX reduce gradient incoherencies? To answer this

question we perform an analysis on the number of queries affected

by gradient incoherencies during the training process. Due to space

constraints, we only report the analysis based on LambdaMART

(LM). Similar results are achieved with LambdaLoss. In Fig. 3 we

report, for each tree of the trained forest, the number of queries

encompassing at least one violation of Def.3.1 when optimising

NDCG@𝑘 with 𝑘 = 5. In fact, we restrict our attention to the

most harmful violations where a false top-𝑘 document 𝑑𝑖 gets a

larger gradient than missed top-𝑘 document 𝑑 𝑗 ranked below 𝑘 . We

report the results of this analysis for both Istella-X and MSLR-

30K. Results show that using a truncation level 𝜏 = 𝑘 generates

the largest amount of incoherencies, involving after 10 trees about

10% of the queries of Istella-X, 4% after 100 trees, but then falling

down significantly towards the end of the forest. The initial trees

of the forest are strongly affected by gradient incoherencies, which

are mostly solved afterwards. Similar behaviour is exhibited by

LambdaMART𝜏=𝑘+3, with fewer incoherencies overall. This was

expected since 99.83% of the documents in Istella-X are documents

of relevance 0, and this increases the chance of incoherencies. The

best behaviour is given by LambdaMART𝜏=+∞ with a number of

queries that quickly falls to about 2% after 10 trees. A similar trend

is for MSLR-30K dataset. This confirms that discarding some of

the 𝜆𝑖 𝑗 values generates a large number of incoherencies, both in

LambdaMART𝜏=𝑘 and LambdaMART𝜏=𝑘+3.
All variants of LambdaMART-eX have the same behaviour of

LambdaMART𝜏=+∞. We can conclude that the proposed Lambda-eX
succeeds in limiting the number of incoherencies, as with Lamb-

daMART𝜏=+∞, where all the pairwise 𝜆𝑖 𝑗 are considered.

A final interesting consideration can be made by observing Fig. 4

where the effect of having fewer incoherencies at the beginning of

the training phase translates into more effective models already in

the first trees of the ensemble. The first 300 trees of LambdaMART-

eXrandom perform as well as 1,000 trees of LambdaMART𝜏=𝑘+3.
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Figure 4: Models performance on Istella-X validation set.

Is Lambda-eX more effective than truncated LambdaRank? We

evaluate the models’ effectiveness in terms of NDCG@𝑘 for dif-

ferent cutoff values (5, 10, and 15) and we measure statistically

significant improvements with respect to LambdaMART𝜏=𝑘+3 and
LambdaLoss𝜏=𝑘+3. We choose these as reference baselines since

both perform mostly better than models trained with 𝜏 = 𝑘 and

slightly worse than 𝜏 = +∞, but with a much lower training cost of

the latter. Results are summarised in Tab. 5. In the next sub-section,

we evaluate the computational cost of the discussed methods.

First of all, we highlight that the observations drawn from the re-

sults are mostly the same for both LambdaMART and LambdaLoss.

Interestingly, models trained with 𝜏 = +∞ achieve the best

NDCG@𝑘 values across datasets, especially datasets from the Is-

tella family. The only performance drops occur on MSLR-30K

and Yahoo! Set 1 when LambdaLoss is used as a learning algo-

rithm, and in these cases the performance of LambdaLoss is clearly

worse than that of LambdaMART. The NDCG scores obtained with

𝜏 = +∞might seem surprising as the target metric is not optimised,

however, this highlights the effect of the gradient incoherencies

intruded by 𝜏 = 𝑘 and 𝜏 = 𝑘 + 3. Thus, considering all the docu-

ment pairs provides a better gradient estimate, but this comes at a

non-trivial computational cost.

Models trained with Lambda-eX provide very interesting results.

The scored NDCG@𝑘 values are most of the times statistically

significantly better than those of the baselines with 𝜏 = 𝑘 and

𝜏 = 𝑘 + 3, and never statistically worse. Furthermore, very often

they achieve the same performance as 𝜏 = +∞. Overall, Lambda-eX
variants achieve similar performance. The random variant seems to

achieve statistical improvements in most of the experiments, while

all and all-static in a few specific cases. However, due to its

lower computational complexity, the random strategy is preferable.

From the results in Tab. 5, two interesting considerations can be

drawn about our strategy. Lambda-eX is most effective in datasets

like the Istellas which contain many non-relevant documents. As

mentioned above, the presence of many non-relevant documents

increases the chance of incoherencies, which are successfully man-

aged by Lambda-eX. We can conclude that Lambda-eX finds its best

application in datasets that have many non-relevant documents.

This is particularly appealing in realistic scenarios where there are

far fewer documents relevant to a query than non-relevant ones.
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Table 5: Methods performance in terms of NDCG (percentage). Statistically significant improvements w.r.t. 𝜏 = 𝑘 + 3 according
to Fisher’s randomisation test [13] (with a two-sided 𝑝-value) are marked with 𝑖𝑡𝑎𝑙𝑖𝑐 ∗ (𝑝 = 0.05) and bold ∗∗ (𝑝 = 0.01).

LambdaMART LambdaMART-eX LambdaLoss LambdaLoss-eX
dataset 𝜏 =𝑘 𝜏 =𝑘+3 𝜏 =+∞ static random all all-stt all-rnd 𝜏 =𝑘 𝜏 =𝑘+3 𝜏 =+∞ static random all all-stt all-rnd

NDCG@5
Ist-X 73.32 74.11 75.35 ∗∗ 75.19 ∗∗ 75.17 ∗∗ 75.15 ∗∗ 75.19 ∗∗ 75.17 ∗∗

74.08 74.22 75.40 ∗∗ 75.33 ∗∗ 75.19 ∗∗ 75.14 ∗∗ 75.33 ∗∗ 75.19 ∗∗

Ist-S 70.19 70.42 70.64 ∗ 70.67 ∗∗ 70.71 ∗∗
70.55 70.65 ∗ 70.64 ∗

69.97 70.50 71.11 ∗∗ 70.92 ∗∗ 70.92 ∗∗ 70.97 ∗∗ 70.95 ∗∗ 71.02 ∗∗

Ist-F 67.02 67.24 67.62 ∗∗ 67.55 ∗∗ 67.67 ∗∗ 67.50 ∗∗ 67.68 ∗∗ 67.71 ∗∗
66.97 67.56 68.18 ∗∗ 68.08 ∗∗ 68.26 ∗∗ 68.24 ∗∗ 68.07 ∗∗ 68.18 ∗∗

Yah 1 75.35 75.59 75.85 ∗∗
75.67 75.59 75.63 75.73 75.67 75.44 75.69 74.96 75.74 75.81 75.84 75.74 75.86

MS 30 50.66 51.15 51.22 50.95 50.96 51.24 51.42 ∗
51.38 50.77 51.04 49.19 50.99 50.92 51.05 51.10 51.08

NDCG@10
Ist-X 77.53 78.55 78.61 78.61 78.61 78.61 78.61 78.61 77.91 78.35 78.74 78.94 ∗∗ 78.77 ∗ 78.94 ∗∗ 78.94 ∗∗ 78.77 ∗

Ist-S 76.35 76.48 76.71 ∗∗ 76.66 ∗∗ 76.70 ∗∗ 76.69 ∗∗ 76.72 ∗∗ 76.70 ∗∗
76.63 76.89 77.37 ∗∗ 77.26 ∗∗ 77.43 ∗∗ 77.23 ∗∗ 77.44 ∗∗ 77.28 ∗∗

Ist-F 71.85 72.07 72.39 ∗∗ 72.42 ∗∗ 72.46 ∗∗ 72.42 ∗∗ 72.35 ∗∗ 72.46 ∗∗
72.18 72.53 73.17 ∗∗ 73.21 ∗∗ 73.20 ∗∗ 73.16 ∗∗ 73.12 ∗∗ 73.15 ∗∗

Yah 1 79.62 79.78 79.84 79.66 79.75 79.78 79.81 79.80 79.63 79.68 79.19 79.94 ∗∗ 79.94 ∗∗ 79.98 ∗∗ 79.93 ∗∗ 79.89 ∗

MS 30 52.66 53.02 52.98 52.96 53.08 53.23 ∗
53.19 53.14 52.89 53.08 51.36 52.99 52.98 52.95 53.02 52.99

NDCG@15
Ist-X 79.00 79.29 79.45 79.44 79.48 79.44 79.44 79.48 78.81 79.06 79.73 ∗∗ 79.60 ∗ 79.78 ∗∗ 79.60 ∗ 79.60 ∗ 79.78 ∗∗

Ist-S 80.63 80.59 80.73 ∗
80.69 80.71 ∗ 80.75 ∗∗ 80.80 ∗∗ 80.73 ∗

80.96 81.15 81.29 81.31 ∗ 81.40 ∗∗ 81.38 ∗∗ 81.38 ∗∗ 81.38 ∗∗

Ist-F 75.46 75.56 75.87 ∗∗ 75.94 ∗∗ 75.90 ∗∗ 75.92 ∗∗ 76.00 ∗∗ 76.00 ∗∗
75.97 76.24 76.74 ∗∗ 76.85 ∗∗ 76.85 ∗∗ 76.83 ∗∗ 76.82 ∗∗ 76.85 ∗∗

Yah 1 82.01 81.96 82.03 81.94 82.07 82.04 82.07 82.04 81.88 81.95 81.50 82.15 ∗ 82.16 ∗∗
82.09 82.09 82.09

MS 30 54.60 54.72 54.67 54.82 54.93 ∗∗
54.84 54.75 54.83 54.68 54.60 53.23 54.63 54.65 54.64 54.69 54.62

Table 6: Training time expressed in milliseconds.

LambdaMART LambdaMART-eX
k dataset 𝜏 =𝑘 𝜏 =𝑘+3 𝜏 =+∞ stt rnd all a-stt a-rnd

training time per objective function

5

Ist-X 89 100 2574 115 132 118 113 130

Ist-S 12 16 31 17 20 18 18 22

Ist-F 30 38 119 43 49 46 45 52

Yah 1 3 4 12 4 6 6 6 7

MS 30 4 5 34 5 7 9 8 10

training time per tree

5

Ist-X 672 751 3253 792 815 795 796 813

Ist-S 156 122 143 129 129 130 130 133

Ist-F 263 288 380 306 308 301 299 307

Yah 1 207 205 215 208 294 287 209 212

MS 30 291 298 388 324 317 326 314 334

The second interesting consideration we can draw is that as the

metric cutoff increases, the performance gap between Lambda-eX
and the baselines decreases. The reason behind it is straightforward.

Recall that in the experiments we fixed 𝜏 equal to the cutoff 𝑘 and to

𝑘+3. Thus, with a small cutoff the probability of a relevant document

being ranked below the truncation level is large, consequently many

𝜆𝑖 𝑗 are discarded. As the cutoff increases, it is more likely that

relevant documents are ranked above a larger truncation level and

therefore their gradient is fully computed.

Is Lambda-eXmore efficient than LambdaRank? The last analysis

we perform concerns efficiency in terms of training time. In partic-

ular, we measure the average training time spent by the LightGBM

library in training a tree and in executing the objective function

(computing the gradient for each document of each query) during

the training of a single tree. We run this analysis when optimising

NDCG@5. Results are reported in Tab. 6.

The average execution time of an iteration of LambdaMART-

eX’s objective function aligns with the one of LambdaMART𝜏=𝑘

and LambdaMART𝜏=𝑘+3. The reason behind this relies on a similar

asymptotic complexity. As expected, LambdaMART𝜏=+∞ is the one

that spends more time executing the objective function since it

has to process 𝑂 (𝑛2) document pairs. Note that the cost of Lamb-

daMART𝜏=+∞ can be up to 30 times larger.

The difference in execution time of the objective functions af-

fects the training of a tree only with long results lists. This can be

seen with Istella-X which tree learning time increases from 792

milliseconds with LambdaMART-eXstatic to 3,253 milliseconds

with LambdaMART𝜏=+∞. This is a 4× slowdown that happens for

each of the 1,000 trees of the model trained.

Another interesting observation in favour of LambdaMART-eX’s
efficiency is that it manages to achieve the same performance as

LambdaMART𝜏=𝑘 and LambdaMART𝜏=𝑘+3 with far fewer trees. In

Fig. 4, the model trained with LambdaMART-eXrandom achieves

the same performance as LambdaMART𝜏=𝑘 with about 250 trees

in Istella-X, and the same performance as LambdaMART𝜏=𝑘+3
with 300 trees. The difference in model size significantly reduces

training time, even though the average time taken to train a sin-

gle tree is similar. The same behaviour was observed for all the

Lambda-eX variants. Note that since the computational complexity

of LambdaMART is exactly the same as LambdaLoss, the above

results and considerations generalise for LambdaLoss as well.

In conclusion, LambdaMART-eX can reduce the training time

compared to LambdaMART𝜏=𝑘 and LambdaMART𝜏=𝑘+3 by training
equally effective models with far fewer trees, and compared to

LambdaMART𝜏=+∞ especially when training datasets with a high

average number of documents per query.

6 RELATEDWORK
One of the biggest challenges in Learning to Rank is metrics op-

timisation. Ranking metrics are non-differentiable since they are

inherently tied to the order of the documents. Therefore, unlike

most machine learning techniques, an objective function that makes
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use of IR metrics cannot be directly optimised by gradient descent

methods. However, effective ranking models are essential in a huge

variety of applications in IR systems. This began an arms race to ad-

dress the problem from multiple directions. Among those attempts

are ranking metrics approximation or loss function that indirectly

aligns with the desired metric. However, most LTR approaches

optimise a loss function that is loosely related to a ranking metric

or is its upper bound.

A well-known class of solutions that aims to minimise the num-

ber of errors committed in ranking pairs of documents is that of

pairwise approaches. These include RankNet [4], a pairwise ap-

proach that optimises a probabilistic loss function by mapping the

model output to a learned probability. Another well-known ap-

proach is AdaRank [28], which learns weak rankers that minimise

the pairwise misranking error, and then linearly combines them

together for prediction. Pairwise approaches typically optimise a

convex upper-bounds of the pair misranking error. However, this

sort of optimisation does not directly imply an improvement in

the ranking metric thus leading to a mismatch between model

optimisation and effectiveness on the desired metric.

To fill the gap, listwise approaches embed the information on

the status of the entire ranking list into the optimisation process.

Listwise approaches fall mainly into two macro-categories, those

that approximate the ranking metric through a smooth surrogate

such as SoftRank [25] and ApproxNDCG [24], and those that use

heuristics to construct a smooth surrogate loss function such as

ListNET [5], XENDCG [1], and LambdaRank [2]. ListNET minimises

the cross-entropy between ground truth and model score distri-

bution. XENDCG is a cross-entropy loss function that guarantees

strong theoretical properties like optimising a convex bound on

mean NDCG.

Finally, LambdaRank is an approach initially designed for artifi-

cial neural networks, which does not try to optimise a loss function

but heuristically defines the loss gradient. LambdaRank is one of the

most effective approaches among the listed above and its variant

called LambdaMART [2, 27] which makes use of gradient boosting

trees is considered the state of the art in LTR. About a decade later in

[26] authors proposed a probabilistic framework for ranking metric

optimisation called LambdaLoss [26] and showed how LambdaRank

is a special configuration with a well-defined loss. In the article, they

defined different metric-driven loss functions, based on NDCG and

ARP [16]. Among them, NDCG-Loss2 and NDCG-Loss2++ obtained

the most statistically significant results. In particular, NDCG-Loss2

is a metric-driven loss function that shares many similarities with

LambdaRank. The difference lies in the definition of the discount

used in ΔNDCG. Specifically, the discount 𝜌𝑖 𝑗 = |1/D𝑖 − 1/D𝑗 | in
Eq. 3 becomes 𝛿𝑖 𝑗 = |1/D |𝑖− 𝑗 | − 1/D |𝑖− 𝑗 |+1 |. Finally, the loss func-
tion NDCG-Loss2++ is a linear combination of the two discounting

𝜌𝑖 𝑗 + 𝜇𝛿𝑖 𝑗 , with 𝜇 a weight coefficient managing the trade-off be-

tween the two.

Another interesting observation derives from [12], where the

authors investigated whether training a model on the same trun-

cated metric used for the evaluation (e.g., NDCG@𝑘) is better than

training it on the un-truncated metric (e.g., NDCG). What emerged

is in line with our results, training on un-truncated metrics returns

better-performing models. However, the reason given by [12] only

tells half the story. They claim that optimising the truncated metric

reduces the number of contributions 𝜆𝑖 𝑗 each gradient 𝜆𝑖 receives.

They also showed that with an equal number of document pairs (of

𝜆s) during training same performance as the un-truncated metric

can be obtained. However, in this work, we show how with the

same order of magnitude in the number of pairs as in the truncated

metric we can obtain the same performance as the un-truncated

metric. This confirms that the reason behind the drop in perfor-

mance lies in the exacerbation of the gradient incoherencies and

that by selecting the right pairs of documents it is possible to obtain

the same performance as the un-truncated metric.

Document sampling strategies like SelGB [20], SOUR [21], and

SGB [14] are also worth mentioning. These try to improve the effec-

tiveness/efficiency of the model by sampling/removing good/bad

relevant/non-relevant examples from the training set. It is impor-

tant to highlight why our solution is not a document sampling

strategy. These sampling approaches discard some documents from

(some iterations of) the training. The proposed Lambda-eX does

not remove any document, but rather it selects a few documents

for which a complete gradient computation is needed. Document

sampling approach selects documents randomly, or with a prefer-

ence for hard negatives, but they do not encompass any notion of

gradient coherency.

Finally, deep learning approaches, such as those based on BERT

[11], RoBERTa [18], and ELECTRA [8], are not within the scope

of this work. On the one hand, they rely on the availability of full

text, on the other hand, they are usually limited to point-wise or

list-wise losses. In general, the approach proposed in this work

generalises to any machine learning model exploiting LambdaRank

gradients.

7 CONCLUSION
We have shown that LambdaRank and derivatives (such as Lamb-

daLoss) are affected by gradient incoherencies, exacerbated when

optimising truncated metrics. We designed a new approach called

Lambda-eX to counter this phenomenon while keeping the train-

ing focused on the metric to be optimised, without affecting the

efficiency of the algorithm. Through extensive experiments, we

have shown that LambdaMART-eX can achieve statistically signifi-

cant improvement in terms of NDCG@k w.r.t. models trained to

directly optimise the target metric (such as LambdaMART𝜏=𝑘 and

LambdaMART𝜏=𝑘+3) while maintaining its efficiency in terms of

training time. Furthermore, we demonstrated that the same im-

provement can also be achieved by LambdaMART’s derivatives,

such as LambdaLoss. Finally, when Lambda-eX is used to train mod-

els on datasets with a high average number of documents per query,

it is able to achieve the same performance as the original definition

of LambdaMART (and LambdaLoss) while significantly reducing

the training time, e.g., about 40 minutes difference in Istella-X.
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