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Abstract

Logical  Form  is  an  exceptionally  important  linguistic 
representation  for  highly  demanding  semantically  related  tasks 
like Question Answering. In this work I present different types of 
Logical Form and in particular I investigate those resources that 
provide a Logical Form of the WordNet Glosses. I take a closer 
look  to  one  of  them,  eXtended  WordNet,  and  I  analyse  its 
weaknesses  and  strengths.  After  classifying  the  most  common 
errors of this resource, I semi automatically correct them and the 
result is a new resource: United eXtended WordNet.  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Chapter 1

Introduction

Think of a very easy question.

Let’s say: how many fingers on one hand?
Don’t matter the subject, the question is easy because you know 
the answer. Even for easy questions we need world knowledge to 
answer.
Humans, during their lifetime, acquire an incalculable amount of 
diverse knowledge which they store and use in different ways. 
The abilities of human brain are amazing but the extraordinary 
results achieved in Artificial Intelligence are making computers 
closer to us.
Everyone knows that computers are unbeatable for what concerns 
complex mathematical calculations but can they answer to an easy 
question like the one above? They don’t have hands, nor fingers, 
and they don’t know what they are unless we don’t give them this 
knowledge. But how can we teach them the things of this word? 
They  don’t  speak  (yet)  our  language  and  therefore  we  can’t 
communicate with them in natural language. We need to represent 
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the meaning of sentences in a machine readable way and there is 
no a unique way to do this. Many efforts have been done so far to 
solve the problem, and different ideas have been advanced in the 
last decades.
The aim of this work is to investigate one kind of representation 
named Logical Form and in particular I envisage investigating a  
resource  of  world  knowledge  where  information  have  been 
automatically translated into Logical Form - eXtended WordNet. 
How was  the  resource  created?  Is  it  well  formed or  are  there 
errors? Can we effectively use Logical Form for NLP tasks? Are 
there  other  resources  of  this  kind?  These  are  some  of  the 
questions I will tray to answer.
Before going through the main topics, I will introduce the reader 
to  the  well  known machine  readable  dictionary  WordNet  from 
which the Logical Form resource has been generated. I will also 
discuss  some  of  the  WordNet  improvements  which  have  been 
suggested  during  the  years.  In  fact,  despite  its  popularity, 
WordNet  has  some  well  known limitations  that  can  affect  the 
automatic systems that use it.
EXtended  WordNet  was  developed  with  the  purpose  to  solve 
some of the WordNet shortcomings and I envisage this work to be 
a further step forward in the field of knowledge base and meaning 
representation. 

The work is organised as follow:
In  chapter  2  I  will  briefly  illustrate  WordNet  and  some  of  its 
improvements,  with  the  intention  of  introducing  eXtended 
WordNet, the resource which is at the base of this work.  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Chapter  3 is  devoted to an in-depth description of  Moldovan’s 
eXtended WordNet, in particular to how WordNet glosses have 
been transformed into  Logical  Forms.  Here,  I  will  show some 
other  examples of  semantic representations and I  will  compare 
eXtended  WordNet  to  the  other  two  resources  that  provide 
Logical  Form  transformation  of  WordNet  glosses  (ILF  and 
WN30-lfs).
Chapter 4 deals with an accurate analysis of the problems that 
affect  the  Logical  Forms  of  eXtended  WordNet.  This  resource 
was automatically produced by the University of Texas at Dallas 
and my intention is firstly, to determine its most common errors 
and then, try to automatically correct them.
In Chapter 5 I will describe the automatic and manual procedures 
I  carried  out  for  the  Logical  Forms  correction  and  some 
interesting considerations that came out during the work.
I  will  show how the efforts  made for the correction led to the 
creation  of  a  new  resource  that  I  named  United  eXtended 
WordNet.
The final chapter regards further improvements and related topics 
I  didn’t  have  the  time  to  study  in  depth  and  which  will  be 
interesting to investigate as future work.

The most important challenge I had to face with during this work 
regards  the  correction  of  the  Logical  Forms  of  eXtended 
WordNet.  The resource is large and there was several kinds of 
errors to correct. I had do handle a big amount of data, produce 
different scripts and do manual corrections. This task was really 
demanding and time consuming and left me little time to examine 
interested related topics.   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Chapter 2

WordNet Extensions

2.1 Introduction

This chapter is devoted to introducing the reader to WordNet 
(WN) and to illustrating some improvements of this famous and 
widely used resource. I will start with a brief introduction to WN 
and after that I will organise WN improvements into two main 
categories:  terminology  extension  and  relations  enhancement. 
Terminology  extension,  and  in  particular  section  2.2.2,  will 
include my participation  with H. Tanev to the task 14 of Semeval 
2016. It is not the purpose of this thesis to investigate the field of 
word vectors and I won’t go into details about that. This section 
aims to be just  an example of how to cope with the Semantic 
Taxonomy Enrichment Task. In the relations enhancement section 
I will introduce different types of relations that can be added to 
WN and in particular  I  will  show how the eXtended WordNet  
(XWN) project succeeded in adding word sense disambiguation 
to WN glosses. In the last part of this chapter I will present the 
application of  the  disambiguated glosses  of  XWN for  building 
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lexical chains and the Senseval Task for which they have been 
taken as standard.
 

2.2 A Brief Introduction to WordNet

WN (Miller 1995, Fellbaum1998) is one of the most popular 
machine  readable  dictionaries;  its  popularity  comes  from  the 
richness of semantic relations which encodes and it is also due to 
its free public availability and its broad coverage - it includes over 
200K senses of 155K word forms.
It  was  originally  conceived  as  a  full-scale  model  of  human 
semantic  organisation  but  its  growth  and  later  design  were 
subsequently  guided   by  its  success  in  the  Natural  Language 
Processing (NLP) community.
Unlike  traditional  dictionaries,  which  ignore  a  synchronic 
organisation  of  the  lexicon,  the  structure  of  WN  is  based  on 
psycholinguistic principles.   
WN is divided into four parts, one for each of the main syntactical 
categories: noun, verb, adjective, and adverb. 
Words like right  or back,  which can be interpreted in different 
syntactical ways according to the context, are entered separately. 
Thus, searching the database for a word, one finds the different 
senses of the word in every syntactical category and the different 
words with which each sense can be expressed.
Lexical items in WN are not listed alphabetically, they are rather 
encoded in sets of synonyms called Synsets. Each Synset has a 
unique  number,  named synsetID,  that  identifies  it.  Synsets  are 
connected  to  other  Synsets  by  pointers  representing  semantic 
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relations.  
The  main  relation  among  words  is  synonymy  but  for  each 
syntactical  category  different  semantic  relations  (antonymy, 
hyponymy, meronymy, troponymy, entailment) play a major role 
see Table 2.1.

Each word sense identifies a single Synset.  For instance, given 
car  (with  the  sense  of  a  motor  vehicle  with  four  wheels)  the 
corresponding Synset {car, auto, automobile, machine, motorcar} 
is univocally determined. For each Synset WN provides a gloss, 
i.e. a definition plus optional comments and examples. E.g. the 
gloss  of  car  is:  a  motor  vehicle  with  four  wheels;  usually 
propelled by an internal combustion engine; “he needs a car to 
get to work”.

�6

Tab 2.1 Semantic Relations in WordNet



Searching WN  for the previous example of the term back, one 1

finds that, as predicted, it belongs to several synsets in all the four 
syntactic categories. See a fragment of the output here below:

N {back, dorsum}: the posterior part of a human (or animal) body from the neck to the end of 
the spine, "his back was nicely tanned”
N {back, backrest}: a support that you can lean against while sitting, ”the back of the dental 
chair was adjustable”
V {back} travel backward, "back into the driveway"; "The car backed up and hit the tree"
ADJ {back, hind, hinder}: located at or near the back of an animal, ”back (or hind) legs"; "the 
hinder part of a carcass”
ADV {back} travel backward, "back into the driveway"; "The car backed up and hit the tree”

In Figure 2.1 (next page) an excerpt of the WN semantic network 
containing the car Synset, taken from Navigli 2009, which shows 
the  richness  and  complexity  of  semantic  relations  between 
Synsets.

I won’t go into more detail about WN structure and I refer the 
reader  to  WN  website  and  to  Fellbaum  1998  for  further 2

information.  

What is important for this thesis is how widely WN has been and 
is  currently  used  with  considerable  success  for  different  NLP 
tasks. 
Its  semantic  relations  can  be  exploited  for  Word  Sense 
Disambiguation  (WSD)  (see  for  e.g.  Agirre  and  Soroa  2009, 
Banerjee and Pedersen 2002, Resnik 1995), which has a crucial 
role in the development of information retrieval (see for e.g. Chai 

 You can search WN at http://wordnetweb.princeton.edu/perl/webwn1

 https://wordnet.princeton.edu2
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and  Biermann  1997,  Mandala  et  al.  1998,  Rosso  et  al.  2004, 
Varelas  et  al.  2005),  machine  translation,  summarisation,  and 
language  generation  systems  in  addition  to  query  expansion 
(Dipasree  et  al.  2014,  Fang  2008)  and  cross-language 
applications.  
Kilgariff notes that, for some NLP tasks, « not using WN requires 
explanation and justification » (Kilgariff 2000).  
Another  proof  of  its  popularity  is  the  existence  of  an  active 
Global WordNet Association  which organises every two years a 3

Global WordNet Conference.  
Furthermore, almost 80 versions of WN have been developed for 
more than 50 languages (from Latin to Sanskrit) and the original 

 http://globalwordnet.org3
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English WN has been mapped to several resources among which  
the  Ontologies  SUMO,  OpenCyc,  Dolce  etc.  and  aligned  to 
Wikipedia  and  Wikitionary  (see  for  e.g.  Miller  and  Gurevych  
2014, Navigli and Ponzetto 2012, Niemann and Gurevych 2011, 
Pilehvar  and  Navigli  2014,  Ruiz-Casado  et  al.  2005)  .  The 
different national versions have been linked to the original WN 
providing  in  this  way  a  useful  interlingua  alignment  (see  the 
EuroWordNet ).4

Besides its applications, WN has been investigated also in terms 
of  its  limitations  and  how  to  solve  them  (see  for  example 
Gangemi  2001).  Beyond  its  coverage,  also  the  quality  of  this 
resource is  very important  and,  as  shown by Neel  and Garzon 
2010, it affects the performance of the applications which employ 
it.
 
The  efforts  to  improve  WN  may  be  divided  into:  semantic 
relations enhancement and terminology extension.

2.3 WordNet Improvements - Terminology Extension

Semantic  knowledge  bases  of  WN  kind  are  expensive  to 
produce  and  maintain.   To  be  considered  functional  for  NLP 
applications, they must include  a large amount of words senses in 
a  well  structured  hierarchy.  Nevertheless,  existing  resources, 
despite  their  large  coverage,  have  often  limited  scope  and 
domains  and  they  frequently  omit  lemmas  and  senses  from 
specific fields, slang usages, and terminology emerged after their 

 http://projects.illc.uva.nl/EuroWordNet/4
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construction.  
The manual updating of WN is an expensive effort which requires 
a lot of time and as a result the resource is not updated frequently.
There are plenty of scientific papers, which address the automatic 
taxonomy/ontology  enrichment  task  and  in  particular  the 
automatic enrichment of WN. See among the others Haridy et al. 
2010, Navigli et al. 2004 and Nimb et al. 2013.  
Existing works fall into one of the following categories:  
 

1. Adding new senses for existing terms, e.g. Nimb et al. 
2013; 
2. Adding new terms, e.g. Jurgens and Pilehvar 2015.  

 
The new terms which are added may belong to already existing 
terminology  (Vujicic  et  al  2014),  to  a  particular  domain  (e.g. 
biomedical:  Poprat  et  al.  2008,  medical:  Smith  and  Fellbaum 
2004, or architectural: Bentivogli et al. 2004), or they can belong 
to one well defined class like in Toral et al. 2008 who adds proper 
nouns to WN.  
The new terms may be taken from dictionaries or extracted from a 
corpus. In several cases the exploited resource is Wikipedia, like 
Ponzetto  and  Navigli  2009  and  Ruiz-Casado  et  al.  2005.  The 
majority of the works based on Wikipedia are limited mainly to 
noun concepts because of its structure which mostly is organised 
as:  noun+description.  To  overcome  this  limitation  Jurgens  and 
Pilehvar 2015 propose to extend WN with novel  lemmas from 
Wiktionary managing to double the existing number of Synsets 
and attaching new ones to their appropriate hypernyms. With the 
excellent  results  achieved,  they  built  the  publicly  available 
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resource CROWN . 5

For  the  WN  enrichment  task  different  resources  have  been 
exploited  and  different  approaches  have  been  experimented: 
distributional similarity techniques Snow et al.  2006, structured 
based  approaches  Ruiz-Casado  et  al.  2005,  creation  of  a  new 
ontology  and  its  merging  with  the  existing  ones  by  alignment 
based  methods  (Pilehvar  and  Navigli  2014)  or  considering  the 
attributes distribution (Reisinger and Pasca 2009).  
The taxonomy enrichment task can be considered as a specific 
case of the ontology learning and population task, as in Buitelaar 
and Cimiano 2008, whose purpose is the automatic learning of 
semantic classes and relations. 
As an example of how to expand the WN taxonomy, I will show 
in the next section a procedure used in a task of Semeval 2016.

2.3.1 SemEval 2016 - Task 14 - Semantic Taxonomy 
Enrichment

The enrichment of WN taxonomy is part of SemEval  2016 6

and in particular the task 14  - Semantic Taxonomy Enrichment - 7

«  provides  an  evaluation  framework  for  automatic  taxonomy 
enrichment  techniques  by  measuring  the  placement  of  a  new 
concept  into  an  existing  taxonomy:  given  a  new word  and  its 
definition, systems were asked to attach or merge the concept into 
an existing WN concept » (Jurgens and Pilehvar 2016).  

 https://github.com/davidjurgens/crown5

 SemEval is an ongoing series of evaluations of computational semantic analysis systems, it 6

occurs annually with different tasks. SemEval 2016 website http://alt.qcri.org/semeval2016/

 http://alt.qcri.org/semeval2016/task14/7
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Already several works exist which try to automatically improve 
WN with  new concepts,  but  there  is  no  a  standard  evaluation 
framework to measure the quality of extension algorithms. The 
performance of existing systems can be easily measured (for e.g. 
removing terms from WN and verifying their reinsertion) whereas 
accuracy is  more difficult  to estimate (new terms may be very 
different from the ones already in WN).  
Task 14 aims to evaluate systems for WN enrichment.  
Words (not already stored in WN ) from Wiktionary together with 8

their definitions and pos are provided to the participating systems 
which have to identify the Synsets to which the new terms should 
be  merged  as  synonyms  or  attached  as  hyponyms.  See  e.g. 
mudslide and changing_room in Table 2.2:

New terms to be added for the task are 1000, divided into training 
and test  datasets.  They belong to  specific  domains,  slangs  and 
neologisms  and  they  have  been  manually  annotated  by  the 
organizers (as gold-standard, to check the systems results).
Systems are evaluated according two criteria: 

 Wordnet version 3.08
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Tab 2.2 SemEval 2016 Task 14 - Examples

Lemma pos Definition Target Synset Operation

mudslide noun A mixed drink consisting of 
vodka, Kailua and Bailey’s

cocktail - a short 
mixed drink ATTACH

changing_room verb
A room, especially in a 

gym, designed for people to 
change their clothes

dressing_room - 
a room in which 
you can change 

clothes

MERGE



- the percentage of new terms added to WN
- the accuracy of the placement

Accuracy is judged with Wu&Palmer’s similarity measure , recall 9

is   measured  on  the  percentage  of  terms  placed.  Systems  can 
decline to place difficult words for e.g. a gloss with many out of 
vocabulary  words;  words  declined  are  not  considered  in  the 
percentage.

2.3.1.2 Deftor at SemEval 2016 Task 14

Together with H. Tanev from the Joint Research Centre , I 10

attempted  the  task  with  an  algorithm  which  transforms  each 
candidate  definition  into  a  term vector,  where  each  dimension 
represents a term and whose value is calculated by Tf-idf .  11

We opted for a relatively simple method for searching relevant 
Synsets, which does not exploit any external dictionary or another 
semantic  resource.  We  called  our  system  Deftor  (DEFinition 
vecTOR).  Deftor  is  a  system  which  represents  the  definitions 
(glosses) as lexical vectors and finds the most similar one for each 
new lemma. 

 The Wu&P measure calculates similarity by considering the depths of the two concepts in the 9

WN hierarchy and the depth of the LCS (least common subsumer)

 https://ec.europa.eu/jrc/en - Text and Data Mining Unit10

  tf-idf (term frequency–inverse document frequency) is a statistical measure which increases 11

proportionally to the number of times a word appears in the document, but is offset by the 
frequency of the word in the corpus, which helps to adjust for the fact that some words appear 
more frequently in general.
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Automatic  enrichment  of  taxonomies  and  knowledge  bases  is 
very  important  especially  for  rapidly  changing  domain.  The 
taxonomy enrichment task is quite challenging, mostly because of 
the many possibilities when attaching a new term to an existing 
taxonomy: first,  a  new word can be attached as a hyponym to 
different  concepts,  which  describe  it  at  different  levels  of 
abstraction.  For  example,  in  WN  hurricane  is  a  hyponym  of 
cyclone,  which  is  a  hyponym  of  windstorm,  which  itself  is  a 
hyponym  of  storm  and  storm  is  a  hyponym  of  atmospheric 
phenomenon.  It  is  not always easy to decide where to attach a 
concept: in the above mentioned case the definition of storm and 
windstorm are not very different. In this case, it is also difficult to 
decide if a new concept should be merged with a similar concept 
from WN or it should be attached as a hyponym.  
Another problem are the multiple aspects from which a concept 
can be perceived. For example, one can consider hurricane to be a 
natural disaster. It is also a weather condition or cause of death. 

All  these  considerations  unfortunately  make  taxonomy 
enrichment task quite ambiguous and difficult to tackle. In some 
cases, the right attachment of a new concept will be difficult also 
for a human expert (see the annotation process of gold standard 
data for the task in Jurgens and Pilehvar 2016).  
Our approach to the taxonomy enrichment task represents each 
Synset from WN and the candidate new terms as word vectors 
from  their  definitions  and  then  attaches  each  new  term  as  a 
hyponym  to  the  Synset  for  which  the  cosine  similarity  of  its 
definition vector and the definition vector of the new term is the 
highest.  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The  algorithm  which  we  propose  transforms  each  candidate 
definition  into  a  definition  vector,  a  term  vector,  where  each 
dimension represents a term and its weight is calculated by Tf-idf. 
In  this  way  we  represent  each  WN  definition,  as  well  as  the 
definitions of the new terms for inclusion in WN. Moreover, we 
expanded each definition vector with the definitions of the words 
from this vector.  
We then calculated the cosine similarity between each WN Synset 
definition and the definition of the candidate term whose place in 
the  WN  hierarchy  is  to  be  identified.  Then,  we  attach  the 
candidate term as a hyponym to the Synset with the most similar 
definition.  
In order to create a definition vector for a word sense, we perform 
part-of-speech tagging of its gloss and we represent each gloss as 
a list of lemmata of its non-stop words. Words are downcased. 
After  that,  as  a  second  step,  each  definition  vector  is  being 
expanded  with  the  lemmata  from  the  glosses  of  its  words, 
obtained on the first step. For example, if the WN definition for 
computer is a machine for performing calculations automatically, 
then our algorithm creates a first version of the definition vector 
with the non- stop lemmata machine, perform, calculation and the 
Tf-idf  values  of  these  words.  Then,  the  algorithm  takes  the 
glosses of all the WN senses of the words in the first version of 
the vector.  
In  this  particular  case,  we  will  add  to  the  definition  vector  of 
computer the words from the glosses of all the senses of machine, 
perform, and calculation. Moreover, pos tags of these words are 
known, since we perform part of speech tagging of the glosses.  
As an additional step of pre-processing we extract the genus from 
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the gloss - usually the first word which defines the more generic 
concept under which is the defined term (a machine for …).  
We have processed all the WordNet synsets, where each Synset is 
represented as  a  definition vector.  Then an inverted  index was 
created for each definition vector, in which a word points to the 
definition vectors in which it appears.  
For each new term t, we do the following:

1. Find the definition vector d of t. 

2. For each word w from d we find via the inverted index all 
the synsets whose definition vectors contain w and whose 
part-of-speech is the same as the one of t. Let’s denote the 
set of definition vectors of these synsets as D.

3. We find the similarity of d  and each vector di  ∈  D. The 
similarity is being calculated as d.di.cos(d, di), this formula 

was empirically derived from the training data. 

4. If  the part  of  speech of  t  is  verb,  we add to the above-
calculated similarity score the similarity of the glosses of 
the  genus  of  t  and  the  genus  of  the  Synset  under 
consideration. 

5. The Synset  with highest  similarity  is  taken and then the 
new term is attached as its hyponym. If the similarity of the 
best Synset is found to be under a certain threshold, then 
we do not attach the new term and we skip it. 

The results of our method can be improved but are much above 
the baseline Random synset, which shows the feasibility of our 
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approach.  
The main advantages of our strategy are: simplicity, independence 
from external resources, potentially multilingual applications.  
For  more  details  see  Jurgens  and  Pilehvar  2016,  Tanev  and 
Rotondi 2016.  
 
 
2.4 WordNet Improvements - Relations Enhancement

Despite the richness of its semantic relations, the network of 
WN is considered relatively sparse by several researchers (see for 
e.g.  Moldovan  and Novischi  2004,  Verdezoto  and Vieu 2011, 
Graber et al. 2006). Graber et al. 2006 subdivides this shortage 
into three fundamental limitations:  

No cross pos links: as mentioned above, searching the WN 
database for a word it returns the different senses of the word in 
every  syntactic  category.  This  works  for  words  which  are 
semantically  and  morphologically  related  such  as  operate, 
operator, operation. Instead, semantically related words which do 
not  share  the  same  stem  are  not  connected  for  e.g.  [traffic, 
congested, stop].

No weighted relations: WN does not consider the difference 
of  semantic  distance  between  the  members  of  hierarchically 
related pairs. For e.g. if run is a subordinate of move and jog a 
subordinate of run, it is intuitive that run and jog are semantically 
much closer than run and move.
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Few  relations:  connections  between  Synsets  may  be 
increased and refined in different ways, improving exponentially 
the potential of this resource.

There  are  many  projects  in  literature  which  aim  to  add  new 
semantic relations or to reorganise the WN network.  
Mel’cuk and Zholkovsky 1998 propose to add several different 
semantic and lexical relations such as instrument for knife-cut or 
actor  for  book-writer,  but  this  kind  of  relation  is  not  easy  to 
formulate. Magnini and Cavaglia 2000 present a lexical resource 
where WN Synsets are linked considering topical domains, this 
strategy is able to connects words across pos but cannot account 
for the association of pairs like Holland  and tulip.  The goal of 
Graber et al. 2006 is to add quantified oriented arcs between pairs 
of Synset using the value of “evocation”, i.e. how much a concept 
brings to mind another. This starting from the support of human 
annotators combined with existing similarity measures.  
Other authors propose a manual (Gangemini et al. 2003, Guarino 
1998)  or  semi-automatic  (Verdezoto  and  Vieu  2011) 
reorganisation  of  the  WN  taxonomy  and  even  the  mapping 
between WN and other resources is often done manually, being in 
such way very costly.
As already said, the structure of WN is based on psycholinguistic 
principles  and  it  was  designed more  as  a  dictionary  than  as  a 
knowledge base (Miller  1995).  The small  numbers of semantic 
relations encoded was a authors choice with the purpose to make 
it generally applicable.  
But in my opinion, enriching the semantic relations network is 
profitable and among the possible enhancements of the resource, 
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one  is  more  valuable  and  needed  than  others:  the  semantic 
disambiguation  of  WN  glosses  (word  sense  disambiguation  - 
WSD). We have seen that WN is widely exploited for word sense 
disambiguation,  it  is  therefore  essential  that  also  words  in  the 
glosses be semantically disambiguated.  
 
 
2.4.1 Word Sense Disambiguation in eXtended WordNet

The  disambiguation  of  WN  glosses  has  been  studied  in 
literature. Several projects aim to reach this goal (see for e.g. the 
WordNet  Gloss  Disambiguation  Project )  and  it  is  one  of  the 12

achievements  of  the  eXtended  WordNet  project  (henceforth 
XWN).  XWN is a project of the University of Texas at Dallas 
that,  under  the  supervision  of  Prof  D.  Moldavan,  intends  to  « 
provides several important enhancements intended to remedy the 
present  limitations  of  WordNet  » .  In  XWN,  WN glosses  are 13

syntactically  parsed,  transformed  into  Logical  Forms  and  each 
content word is semantically disambiguated with high precision.  
In different papers (Moldovan and Novischi 2004, Harabagiu and 
Moldovan  1998)  Moldovan  highlights  the  lack  of  connections 
between topically related words in WN. For e.g. there is no link 
between the verb hungry and the noun refrigerator: 
 

hungry#1 - feeling a need or desire to eat food  
refrigerator#1 -  home appliance in which food can be 

 http://wordnet.princeton.edu/glosstag.shtml12

 eXtended WordNet website: http://www.hlt.utdallas.edu/~xwn/about.html13

�19

http://wordnet.princeton.edu/glosstag.shtml
http://www.hlt.utdallas.edu/~xwn/about.html


stored at low temperature  
 
even if the word food is common to both glosses.  
In order  to solve this  limitation,  Moldovan and Novischi  2004 
built  the  XWN-WSD program,  which  has  been  used,  together 
with a in-house system, to link each content word in a gloss to its 
corresponding WN concept, with a precision of almost 90%.  
Due  to  the  nature  of  glosses,  XWN-WSD  tool  differs  from 
ordinary  systems  of  semantic  disambiguation  of  open  text. 
Glosses have a different structure compared to standard sentences, 
they are often grammatically incomplete and they may lack some 
words. Furthermore, several words appear rarely in WN glosses 
and consequently there is  no sufficient  and consistent  training 
data to apply statistical and learning methods.  
XWN-WSD tool employs a suite of methods based on heuristics. 
These methods are various and include: comparison of bigrams 
between glosses and SemCor corpus ,  common domain of the 14

word  to  disambiguate  and  the  Synset  of  the  gloss,  similarity 
between the words in the gloss of a word w and the words in the 
glosses  of  the  possible  senses  of  w  etc.  See  Moldovan  and 
Novischi 2004, pages 306-309.  
Monosemous  words  don’t  need  this  procedure  and  they  were 
directly linked to the appropriate sense. An example is the gloss 
of  the word abbey:  a monastery ruled by an abbot.  The word 
abbot has only one sense in WN, it is not ambiguous and it has 
been tagged with the sense #1.  
The results of the different procedures come to various level of 

 Texts from the Brown Corpus semantically annotated with WordNet. Different versions are 14

freely downloadable at: http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
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precision  and  recall.  Considering  accuracy  and  coverage  set, 
methods have been combined to reach the best performance.
 
Using  these  methods  (system1)  together  with  another  in-house 
system  (system2) of WSD of open text, Moldovan et Novischi 
succeeded,  with  an  accuracy  of  86%,  in  semantically 
disambiguating the words in WN glosses.  
Furthermore,  they provided the disambiguation of each content 
word  in  the  glosses  with  a  quality  attribute.  If  system1  and 
system2 agreed on the disambiguation of a word, a silver tag was 
given  to  that  word;  if  they  disagreed  the  word  was  tagged  as 
normal.   A gold  label  was  given  to  those  words  for  which  a 
manual intervention of a human annotator occurred (three kinds 
of manual annotation were applied; see detailed information about 
this  in  Litkowski  2004).  With  XWN-WSD, words  senses  have 
been assigned to more than 630K open class words. Only a 2.5% 
of these words has been tagged manually but there may be more 
than one gold disambiguation in a gloss (see Example 2). All the 
word forms corresponding to the verbs to have and  to be were 
not disambiguated automatically.
The output of the XWN-WSD has been released in XML format. 
Here below the WSD for the gloss of Sundanese (I underlined the 
quality of the disambiguation and the disambiguation itself) :
 
Example 1 - XWN-WSD for Sundanese gloss:
 

<gloss pos="NOUN" synsetID="06515461">
  <synonymSet>Sundanese</synonymSet>
 <text>
   the Indonesian language spoken in the Lesser Sunda Islands  
 </text>
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  <wsd>
      <wf pos="DT" >the</wf>
      <wf pos="JJ" lemma="indonesian" quality="normal" wnsn="1" 

 >indonesian</wf>
      <wf pos="NN" lemma="language" quality="silver" wnsn="1" 

 >language</wf>
      <wf pos="VBN" lemma="speak" quality="gold" wnsn="1"  

 >spoken</wf>
      <wf pos="IN" >in</wf>
      <wf pos="DT" >the</wf>
      <wf pos="NNPS" lemma="lesser_sunda_islands" 

 quality="normal" wnsn="1" >lesser_sunda_islands</wf>
  </wsd>
</gloss>

Example 2 - XWN-WSD gold disambiguations:
 

<gloss pos="ADJ" synsetID="00128476">
  <synonymSet>subsequent</synonymSet>
 <text>
   following in time or order; "subsequent developments"  
 </text>
  <wsd>
      <wf pos="VBG" lemma="follow" quality="gold" wnsn="2" 

 >following</wf>
      <wf pos="IN" >in</wf>
      <wf pos="NN" lemma="time" quality="gold" wnsn="7" >time    

  </wf>
      <wf pos="CC" >or</wf>
      <wf pos="NN" lemma="order" quality="gold" wnsn="4" 

 >order</wf>  
   </wsd> </gloss>

As we can see in example 1 and 2, the XML format makes the 
output  easy  to  read.  The  element  <wsd>  includes  the  WSD 
output. For each term of the definition gloss, a sub element <wf> 
(word form) is generated (<punc> for punctuation marks). If the 
word is open class, the sub element <wf> contains the following 
attributes:

- pos for the part of speech 
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- lemma representing the stem of the word
- quality of the WSD
- wnsn representing the disambiguated sense (or senses) 

otherwise, the system attributes a single feature to the <wf> tag, 
the pos.
As recognised by Rus in Rus 2002/1, XWN-WSD increases the 
connectivity among synsets by at least one order of magnitude. 
As said before, each term has been linked to the Synsets of the 
words in its gloss. See for instance the example of the word Limb 
in Figure 2.2 where new connections are marked with red arches.
The new kind of relation which occurs between a Synset and any 
of the concepts in its gloss is called GLOSS(x,y); where x is the 
Synset and y a concept in its gloss. In the Limb example above we 
can  denote  this  relation  for  e.g.  as:  GLOSS(limb,  animal)  or 
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GLOSS(limb, grasp) etc. These connections were not part of the 
semantic relations network of limb in WN.

For the WSD task, as for the others that we will see later (Logic 
Form transformation, pos tagging and parsing), examples in the 
glosses are removed. Therefore, the total number of open class 
words disambiguated (637,252) regards only glosses definitions 
and no examples and comments.  
Table 2.3 shows the number of disambiguated open class words 
for each category, divided by pos (data refer to XWN2.0-1.1) .15

Results  show  a  higher  percentage  (27%  against  the  average 
percentage of 17% for the other three pos classes) of monosemous 
words regarding noun glosses. In fact, as we will see later, noun 
definitions in WN are longer and with a richer and more specific 
vocabulary than those of the other pos.

 http://www.hlt.utdallas.edu/~xwn/wsd.html15
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Tab 2.3 Disambiguated Open Class Words in XWN

Set of 
Glosses

Number of 
Glosses

Open 
Class 
Words

Monosem
ous Words

Gold 
Words

Silver 
Words

Normal 
Words

Noun 
Glosses 79689 505946 138274 10142 45015 296045

Verb 
Glosses 13508 48200 6903 2212 5193 30813

Adjective 
Glosses 18563 74108 14142 263 6599 50359

Adverb 
Glosses 3664 8998 1605 1829 385 4920

TOTAL 115424 637252 160924 14446 57192 382137

http://www.hlt.utdallas.edu/~xwn/wsd.html


The XWN projects achieve the disambiguation of a huge number 
of content words in the WN glosses and even though the manual 
correction  of  gold  disambiguations  is  very  costly  and  time 
consuming, more than 14K content words disambiguations have 
been manually checked.
 
The success of XWN WSD is proved in the next sections with its 
application in building lexical chains and its use as standard for a 
Senseval task.
 

2.4.2 XWN-WSD and Lexical Chains 

Let’s come back to the first example of the previous section, the 
glosses  of  hungry  (feeling  a  need  or  desire  to  eat  food)  and 
refrigerator (home appliance in which food can be stored at low 
temperature). WSD of the glosses can now be exploited to build 
lexical chains and explain cohesion and intention of a simple text 
like:

S1) Jim was hungry
S2) He opened the refrigerator

Lexical chains (Hrist  1995) are semantically related words that 
link  two  concepts.  They  are  built  on  resources  that  contain 
concepts and their relations.  
In this case the word food  is the key concept; thanks to XWN  
WSD a  lexical  chain  between  hungry  and  refrigerator  can  be 
constructed, explaining the connection between the two sentences.  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A better  lexical  chain  framework  can  be  developed  from  the 
disambiguated  glosses  rather  than  relying  only  on  the  WN 
relations among synsets.  
This idea has been investigated and implemented in the work of 
Prof  Moldovan,  in  particular  in  Moldovan  and  Novischi  2002 
lexical chains are tested in a Q/A task.

Another  work for  which a  mention is  needed but  that  I  won’t  
treat here, is the further effort to improve semantic connectivity of  
XWN  concepts  made  by  Erekhinskaya  and  Modovan  2013. 
Starting  from  the  fact  that  GLOSS  relation  doesn’t  provide 
weighted  connections ,  they  transformed  the  glosses  into 16

semantic graph using the semantic parser Polaris (Moldovan and 
Blanco 2012), and replacing in this way the GLOSS relation with 
lexical chains.
 
 
2.4.3 Senseval-3: WSD of WN Glosses Task

XWN-WSD is not the only project which aims to disambiguate 
the WN glosses but it is, indeed, one of the most significant. 
As seen earlier, in XWN WN glosses have been disambiguated 
combining human annotation and automated methods. The result 
is an excellent source of data which has been used as standard for 

 For e.g. the gloss of the concept notation is “a technical system of symbols used to represent 16

special  things”.  It  is  obvious  that  GLOSS(notation,system)  is  stronger  than 
GLOSS(notation,special).
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one of the tasks of Senseval-3 , : Word Sense Disambiguation of 17 18

WN Glosses.
This task is analogous to other WSD tasks of texts of previous 
Senseval editions. What makes it different are the peculiarities of 
WN glosses: they often do not constitute standard sentences and 
might be incomplete (see page 29).  
Participants have to face these characteristics to complete the task 
and to do so they are allowed to exploit other data provided by 
XWN: pos tags for each word in the glosses, parses and logical 
forms.
All the glosses from XWN in which at least one disambiguation 
was tagged as gold (more than 9k) constitute the test set provided 
to participants (no training data available) which have to replicate 
the  hand-tagged  results.  The  glosses  were  provided  in  XML 
format,  exactly  as  they  appear  in  XML  file,  structured  as: 
synsetID + POS + gloss:

<gloss pos="ADJ" synsetID="00128476">
  <synonymSet>subsequent</synonymSet>
 <text>
   following in time or order; "subsequent developments"  
 </text>
</gloss>

Seven teams participated to the task. They could investigate the 
disambiguations already available in XWN and then they had to 
develop their own systems.
After  the  tokenisation  of  the  glosses,  systems  were  asked  to 
replicate the hand-tagged results.  The expected output for each 

 Senseval is the precursor of SemEval, it can be defined as a set of evaluation exercises for the 17

semantic analysis of text. See Senseval website: http://www.senseval.org

 Senseval Task 3: WSD of WN glosses webpage: http://www.clres.com/SensWNDisamb.html18
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gloss was: pos of the gloss + its Synset number + a WN sense 
number to identify each content word in the gloss.  
Due to the absence of significant context, participants employed 
WN semantic relations for the disambiguation of the glosses.
Results were evaluated using precision and recall and are reported 
in  Litkowski  2004.  They  reveal  good  performances  of  the 
participating  systems  but  lower  than  the  XWN  WSD  gold 
standards.
The task was designed to encourage  « development of technology 
to make use of standard lexical resources » (like WN and XWN) 
and to motivate « the lexical resource community to take up the 
challenge of disambiguating dictionary definitions  » (Litkowski 
2004).
Motivations and results of the task lead to the conclusions that 
WSD of WN glosses is an important improvement as well as a 
challenging task and that XWN is one of the projects with better 
results so far.  

That said, I have to mention the fact that during the evaluation of 
the task’s  results it came out that gold disambiguation quality of 
XWN  is  not  always  synonym  of  correctness.  It  seems  that 
sometimes  human  annotators  did  not  consider  WN  semantic 
relations while disambiguating a word but they rather (probably) 
relied only on their personal judgment. 
For  instance,  WN  definitions  have  often  the  structure: 
genus+differentiae. Since most of WN Sysnsets have a hypernym, 
it should be easy to disambiguate the genus of this definitions by 
looking  at  the  hypernym of  a  Synset’s  definition.  This  doesn't 
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alway happen and some gold disambiguations are incorrect. For 
e.g. the word failure has different senses in WN , see Fig 2.3:19

While annotating the sense of failure in the definition of naught : 
complete  failure,  a  human  annotator  (as  well  as  an  automatic 
system) might use the WN hypernym relation that connects the 
Synset of naught to the failure one:
therefore, failure in the definition of naught should be tagged with 

its first sense in WN (an act that fails) while it is tagged in XWN 
with the second WN sense (an event that does not accomplish its 
intended purpose) revealing in this way no consideration of WN 
semantic relations by the human annotator.

 The output is taken from : http://wordnetweb.princeton.edu/perl/webwn19
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This fact reveals the importance of an accurate human annotation 
which  is  often  needed   in  the  creation  and  maintenance  of 
resources  for  NLP.  Manually  annotating  does  still  often  mean 
better accuracy but this is true only if the annotation is meticulous 
and well organised.
I  will  show  later  that  in  other  parts  of  the  XWN  resource, 
specifically  in  the  Logical  Forms,  manually  transformed 
definitions are not free of mistakes. 

2.5 Conclusions

WN is an important resource for the NLP community. Despite its 
success, it has been proved that it can be improved in different 
ways, from the expansion of its terminology to the enrichment of 
its semantic relations.
Several projects aim to create an enhanced version of WN, and 
one in particular succeeded in this intention: XWN.
We have seen in this chapter how in XWN the content words of 
WN glosses have been disambiguated. From the analysis of the 
disambiguation results, some first differences came out between 
the  definitions  and  dimensions  of  each  pos  file:  in  WN,  and 
therefore  in  XWN,  definitions  of  nouns  are  longer  and  more 
complex and they constitute more than half of the whole resource. 
Furthermore, WN definitions can’t be considered and treated as 
normal text, their structure is different and might be sometimes 
incomplete. Manually checked results are usually accurate but the 
human annotation is not free of errors.
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XWN WSD is an important achievement but is just a part of the 
whole project. 
In  the  next  chapter  I  will  take  a  closer  look  to  XWN  ad  in 
particular  to  another  enhancement  made  with  this  project:  the 
Logic Form transformation of WN glosses.
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Chapter 3

eXtended WordNet and Logical Forms

3.1 Introduction

In this chapter I will describe the XWN resource, its structure 
and in  particular  how WN glosses  have been transformed into 
Logical Forms (henceforth LF). I will then take a closer look to 
the LF as semantic representation and to several works about it. I 
will  start  by  reviewing  some  examples  from  STEP  2008, 
providing in this way a brief overview on how to include more 
semantics in this kind of representation. I will then describe and 
comment  on  two  resources  that,  like  XWN,  provide  LF 
transformation for WN glosses: WN30-lfs and ILF.  In the interest 
of proving LF, and in particular XWN LF, as an interesting topic 
of research and a valid support for NLP tasks, I will report the 
Senseval3  task  on  LF  transformation  and  an  example  of  its 
application in a Q/A system. Finally, conclusions will introduce 
the work of correction of  XWN LFs.
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3.2 eXtended WordNet

In  the  previous  chapter  I  roughly  introduced  the  eXtended 
WordNet (XWN) project and in particular I reported the efforts of 
UTD people in disambiguating the glosses of WN (XWN-WSD).
This is just a little part of the whole project which we see in detail 
here below.
The XWN resource is  apparently less  famous than WN but  as 
highlighted  in  different  papers  it  is  also  very  useful  and 
appreciated in the NLP community. Litkowski 2004 affirms that « 
The  eXtended  WordNet  is  used  as  Core  Knowledge  Base  for 
applications such as Question Answering, Information Retrieval, 
Information  Extraction,  Summarization,  Natural  Language 
Generation,  Inferences  and  other  knowledge  intensive 
applications » 

With the XWN project,  the purpose of Prof Moldovan and his 
group  of  researchers  is  to  semantically  and  morphologically 
enhance WN. 
They envision an improvement of the rich information contained 
in  WN  glosses  with  the  intent  to  «increase  the  connectivity 
between  synsets  and  provide  computer  access  to  a  broader 
context for each concept» .20

WN was not designed to serve as lexical resource and, despite its 
success, it exhibits some well-known limitations when used for 
knowledge processing applications.

 http://www.hlt.utdallas.edu/~xwn/about.html20
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To reach their goal of enhancement, the UTD researchers built a 
tool which takes as input WN  and automatically generates an 21

improved  version  named  eXtending  WordNet.  The  tool 
framework is organised as follow:

- preprocessing  and  pos  tagging  of  the  glosses  (it  includes 
tokenisation and compound words detection)

- parsing
- WSD of content words in the glosses 
- logic form transformation of WN glosses

Let’s take a closer look to the different steps.  
For the WSD part we refer the reader to the previous section 2.3.1

3.2.1 Preprocessing and Pos Tagging

The  first  stage  of  the  process  is  the  preprocessing  and  pos 
tagging of the glosses. It includes tokenisation, identification of 
compound  words  and  exclusion  of  examples.  The  accuracy 
achieved  in  this  step  is  crucial  since  it  affects  the  rest  of  the 
process.

 The tool is designed to take as input current and future versions of WN21
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In  the  preprocessing  stage,  the  glosses  are  parsed  in  order  to 
exclude contents between parentheses and examples. For e.g. one 
of  the  senses  of  the  word  blind  has  the  gloss:  a hiding  place 
sometimes used by hunters (especially duck hunters); “he waited 
impatiently  in  the  blind”.  Only  the  definition  (a  hiding  place 
sometimes used by hunters) is processed in the next steps. 

Definitions  are  then  tokenized  with  an  in-house  system which 
complies  with  the  Treebank  tokenisation  requirements.  The 
tokenizer  includes  specific  glosses-extensions  and  identifies  a 
definite set of collocations (up and down, to and from, in order to 
etc.).  
 
In order to obtain an accuracy of almost 100%, pos tagging has 
been  carried  out  combining  the  Brill  tagger  and  the  Mxpost 22

tagger ; when the two taggers disagree, the agreement for word 23

to  tag  is  sought  in  WN.  Eventually,  a  human  check  occurs  if 
needed.  For  e.g.  the  outputs  of  the  taggers  for  the  gloss  of 
abbey#3 is:

Brill’s: a/DT monastery/NN ruled/VBN by/IN an/DT abbot/NN
MXOST: a_DT monastery_NN ruled_VBN by_IN an_DT abbot_JJ

 Before applying the rules, Brill’s tagger gives to each word the most likely tag, estimated by 22

examining  a  large  tagged  corpus.  If  a  word  is  unknown  (not  in  the  tagged  corpus)  it  is 
considered proper noun if capitalised, otherwise it is tagged according to the most common tag 
for words ending in the same three letters. See 67

 Mxpost  tagger  uses  a  rich  feature  representation  and  for  each  word  it  generates  a  tag 23

probability distribution reaching an accuracy of 96%. See 69, 66
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In  this  case,  the  taggers  disagree  on  the  last  word  abbot.  The 
system checks the pos of abbot in WN and assigns the right tag 
NN to the word.
The  choice  of  the  taggers  was  done  after  evaluating  the 
combination  of  different  taggers,  with  refer  to  the  work  of 
Mihalcea  and  Bunescu  2000.  At  the  start  of  the  project,  three 
taggers were chosen considering public availability, accuracy and 
the set  of tags used: the Mxpost tagger (a tagger based on the 
minimum entropy principle)[69], the Brill tagger (a rule based pos 
tagger, see Brill 1992), and the Qtag tagger (a probabilistic tagger, 
see Mason 1997).  After  evaluating the accuracy resulting from 
different combinations, the decision of using Brill + Mxpost was 
made also considering the agreement sets.
Results reported in Rus 2002/1 show an achieved pos accuracy of 
98,93% resulting from an accuracy of 98,50% for 91,57% of the 
words,  100%  accuracy  for  0,94%  of  the  words  and  a  human 
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annotation of 7,52% of the words.  
Compound words were also identified semi automatically with the 
intervention of a human when needed. Manual revision may be 
very time consuming but, as reported in Mihalcea and Moldovan  
2001, in this first stage took only few hours.  
The  functions  of  the  preprocessing  and  parsing  stage  are 
combined in the xwnPreprocess tool  and summarised in Figure 
3.2 from Mihalcea and Moldovan  2001 (see previous page).

 
3.2.2 Parsing

To improve the parsing accuracy, an extension was first applied 
to the glosses. Depending on the pos of the Synset, glosses were 
extended in different ways, see the following examples:

- Nouns: noun + is + gloss + period
eggshake is a milkshake with egg in it.

- Verbs: to + verb + is to + gloss + period
to cut is to make an incision or separation.

- Adjectives: adjective + is something + gloss + period
marine is something native to or inhabiting the sea.

- Adverbs: adverb + is + gloss + period
syntactically is with respect to syntax.

Two parsers were used to complete the task: the Charniak’s parser 
and an in-house parser. The last one is a bottom-up chart parser 
for which the main source of errors comes from its tendency to 
structure  inputs  as  sentences.  This  mainly  happens  for  glosses 
containing  relative  clauses.  The  extensions  of  the  glosses 
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compensate this tendency improving the accuracy from 62,67% to  
85,25% (the parser was tested on 400 manually tagged glosses).
The  combination  with  the  in-house  parser  and  the  Charniak’s 
parser, plus a human intervention, led to an accuracy of 98,93% 
(see Rus 2002/1). Here below the output of the parse tree for the 
gloss of eggshake:

<gloss pos="NOUN" synsetID="07446232">
  <synonymSet>eggshake</synonymSet>
 <text>
   a milkshake with egg in it  
 </text>
  <wsd>
       </wsd>
<parse quality="SILVER">
(TOP (S (NP (NN eggshake) ) 
        (VP (VBZ is) 
            (NP (NP (DT a) (NN milkshake) ) 

                (PP (IN with) 
                    (NP (NP (NN egg) ) 
                        (PP (IN in) 
                            (NP (PRP it) ) ) ) ) ) ) 
</parse> <\gloss>

Also in this case, results have been classified into three quality 
categories:  Gold  for  the  manually  checked  parsered  glosses; 
Silver for those parsered glosses for which the two parsers agreed 
but no human verification occurred; Normal was attributed to the 
rest of the glosses for which there was no agreement of the two 
parsers  and  no  human  verification.  Table  3.1  illustrates  the 24

results  arranged by pos and quality.  Despite  the high accuracy 
achieved by automatic  parsers,  the human annotation improves 
the  final  results.  Data  which  have  been  manually  checked  are 
found to be more precise. Therefore, the complete absence of gold 

 http://www.hlt.utdallas.edu/~xwn/parsing.html24
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glosses  in  the  noun file  reveals  a  lesser  precision for  the  final 
parsered glosses of this particular section.

The high number of normal glosses  highlighted in Table 3.1 is 
another important sign of this feature.  

As one can see, the noun category results are quite different from 
those of other categories; they are the only ones with zero gold  - 
manually  checked  -  glosses  and  with  a  consistent  number  of 
normal  glosses  (i.e.  the  less  accurate).  I  think  that  this  is  due 
mainly to the fact that the noun glosses are more complex than 
other pos categories. Definitions of nouns in WN are longer and 
more  complex  than  those  of  other  pos  categories.  Results  of 
automatic systems reflect these characteristics.
I will come back on these differences in the next chapters.

3.2.3 Some Considerations

More than once I mentioned the fact that WN definitions have 
different lengths according to the pos file they belong to, but how 
different are they?
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Tab 3.1 XWN Parsing Results

POS Total Glosses Gold Glosses Silver Glosses Normal Glosses

Noun 87,777 0 38,087 49,690

Verb 13,560 13,560 0 0

Adjective 20,229 14,334 5,895 0

Adverb 3,922 1,058 2,864 0



These  considerations  might  be  useful  both  for  those  who  is 
interested in working on WN and for those who deal with XWN.
In order to calculate the average length of definitions for each pos 
file  I  built  systemA  in  appendix1.  For  each  XWN  pos  file 
SystemA  gathers all the definitions and saves them in a txt file, 
one per line, taking care of deleting examples, content between 
parenthesis and recording separately multiple definitions. For e.g. 
the definition of tease: the act of harassing someone playfully or 
maliciously  (especially  by  ridicule);  provoking  someone  with 
persistent annoyances; "he ignored their teases"; "his ribbing was 
gentle but persistent” is recorder as two separated definitions:

the act of harassing someone playfully or maliciously
provoking someone with persistent annoyances

When all the definitions have been cleaned and properly recorded, 
SystemA calculates  their  average  length.  Results  are  shown in 
Table 3.2: 

 As mentioned, definitions of nouns are much longer than those of 
other pos, while definitions of adverbs are the shortest. 

Pos File Definitions Average Length

Noun 53

Verb 30

Adjective 37

Adverb 23
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A second  consideration  regards  the  procedures  and  results  of 
XWN described so far.  The purpose of the first  section of this 
chapter  was  to  investigate  the  accuracy  sought  by  the  XWN 
researchers  in  order  to  better  understand  the  results  of  the  LF 
transformation of the glosses and its errors. 
I will show that the research and achievement of a good level of 
correctness  in  the  first  phases  of  XWN  (pre-processing,  pos 
tagging  and  parsing)  are  not  enough  to  guarantee  the 
impeccability of the LF transformation of the WN definitions.

3.2.4 Logical Form Transformation

Starting from the output of the syntactic parser, transformations 
and heuristics were applied to create LF of the glosses. LF is an 
intermediate  semantic  representation  which  stands  between  the 
syntactic parser and the deep semantic form.
To  generate  LFs,  grammar  rules  were  extracted  automatically 
from  the  parse  tree  and  for  each  of  them  one  or  more 
transformation rules were manually developed. Since the number 
of grammar rules was large (more than 5K for nouns WN glosses, 
more than 10K for all the pos), a set of most common grammar 
rules were derived from a representative corpus of glosses. The 
performance was then adjusted by selecting other valuable rules 
and by considering some syntactic and lexical information. The 
most common grammar rules were enough to cover most of the 
occurrences;  this  was  possible  especially  for  the  nature  of  the 
definitions which are (most of the times) of the form: genus + 
differentia. 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Before applying the transformation rules, the output of the parser 
was simplified in order to facilitate the LF transformation process: 
determiners, modals and auxiliaries were eliminated, plurals and 
negations ignored (NNS -› NN), proper nouns treated as common 
nouns (NNP -› NN), verb tenses ignored (but passive information 
kept) (VBG, VBP, VBZ, VBN -› VB) etc. 
Furthermore,  some  of  the  most  complex  structures  were 
simplified (see for instance Figure 3.3).  

Transformation rules were of two types:

- intra-phrase:  produce  predicates  for  every  noun,  verb, 
adjective or adverb and assign them the first variables. E.g.:  
 

- inter-phrase: assign arguments to verb predicates, proposition 
predicates and conjunctions. E.g.:

Phrase Grammar Rule Transformation Rule

(NP(a/DT short/JJ sleep/
NN)) NP -> DT JJ NN adj/JJ noun/NN -> 

noun(x1) & adj(x1)
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The strategy was bottom-up: rules were applied starting from the 
leaves of the tree and then climbing to the top. 
In the first stage of the process nouns and verbs were identified 
and  an  unique  argument  was  assigned  to  each  of  them.  The 
argument was of the type x for nouns and e for verbs. 
During  this  phase,  complex  nominals  were  identified  and 
recognised as single nominal. This was done with the nn predicate 
(first introduced in the TACITUS project, see Hobbs 1986) which 
can  have  a  variable  number  of  arguments,  with  the  first  one 
representing  the  result  of  the  aggregation  of  the  nouns 
corresponding to the rest of the arguments. Examples of LF with 
nn predicates:

NN(x1, x2, x3) animal:NN(x2) life:NN(x3) in:IN(x1, x4) 
particular:JJ(x4) region:NN(x4)

local:JJ(x1) NN(x1, x2, x3) church:NN(x2) community:NN(x3)

club:NN(x1) for:IN(x1, x2) player:NN(x2) of:IN(x2, x3) NN(x3, 
x4, x5) racket:NN(x4) sport:NN(x5)

Modifiers, adjectives and adverbs take the argument of the head 
of the phrase in which they are included. For nn predicates the 
argument is the first one:

Phrase Grammar Rule Transformation Rule

(PP (by/IN (NP an 
abbot)) PP -> IN NP prep/IN noun/NP(x) -> 

prep(-, x) & noun(x)
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Predicates were then propagated to upper levels of the tree, trying 
to connect arguments from one predicate to another. Arguments 
which still remain unassigned need the intervention of heuristics. 
For example, the subject of a verb is identified as the phrase head 
argument preceding the verb or the prepositional object argument 
of the following by preposition (if the verb is in passive voice); 
the prepositional argument  is identified in the following phrase 
head argument etc.  (see all  the heuristics  in Rus 2002/1).  It  is 
important  to  remember  for  this  work  that  when  the  heuristics 
failed, and an argument slot remained empty, a new argument was 
generated.  
In Figure 3.5 (next page) a representation of the process.  
A predicate is generate for every noun, verb, adjective or adverb 
in  the  gloss.  Following  the  Davidsonian  treatment  of  action 
predicates (Davidson 1967), events are reified and each verb is 
transformed in a three arguments predicates (e1,x1,x2) where: e1 
represents  the  action,  state  or  event  stated by the  verb,  x1  the 
syntactic subject and x2 the syntactic direct object. E.g.:

writer:NN(x1) compose:VB(e1, x1, x2) rhyme:NN(x2)

monastery:NN(x1) rule:VB(e1, x2, x1) abbot:NN(x2)
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In case of ditransitive verbs a fourth argument is added. E.g.:

professor:NN(x1) give:VB(e1, x1, x2, x3) grade:NN(x2) 
student:NN(x3)

The  arguments  are  in  the  fixed  order:  subject,  direct  object, 
indirect object. While the first arguments are always present in the 
verb predicate, the fourth argument is added only when necessary.
If one of the syntactic roles is missing in the gloss, the argument 
can be dummy, i.e. it is assigned to the verb predicate but it is not 
associated  to  anything  else  in  the  gloss.  This  is  the  case  of 
intransitive verbs, e.g.:

someone:NN(x1) arrive:VB(e1, x1, x2) late:RB(e1)

As  shown  by  late:RB(e1)  in  the  previous  example,  predicates 
generated  from  modifiers  share  the  same  arguments  with  the 
predicates corresponding to the phrase heads. Adjectives share the 
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arguments  with  the  nouns  they  modify  and  Adverbs  share  the 
arguments with the verb/adjective they refer to. See for e.g. the 
gloss of the word ballroom:

large:JJ(x1) room:NN(x1) use:VB(e1, x3, x1) mainly:RB(e1) 
for:IN(x1, x2) dancing:NN(x2)

Conjunctions  and  Prepositions  are  also  transformed  into 
predicates.  While  conjunctions  have  a  variable  number  of 
arguments,  of  which  the  first  one  represents  the  result  of  the 
aggregation,  prepositions  have  two  fixed  arguments;  the  first 
argument corresponds to the predicate of the head of the phrase to 
which  prepositional  phrase  is  attached,  whereas  the  second 
argument corresponds to the prepositional object. E.g.:

apprehend:VB(e2, x1, x2) and:CC(e1, e2, e3) reproduce:VB(e3, x1, 
x2) accurately:RB(e1)

bed:NN(x1) on:IN(x1, x4) ship:NN(x2) or:CC(x4, x2, x3) 
train:NN(x3)

expose:VB(e2, x1, x2) to:IN(e2, x7) ray:NN(x7) of:IN(x7, x3) 
sun:NN(x3) or:CC(e1, e2, e3) affect:VB(e3, x1, x2) by:IN(e3, x4) 

exposure:NN(x4) to:IN(x4, x3)

As already said, XWN is divided in four files, one for each pos. 
LFs  are  structured  in  different  manners,  one  for  each of  these 
files.

- Noun:  the  argument  x1  is  assigned  to  the  first  word 
representing the Synset and in the gloss it refers to the same 
entity. E.g.: 
 
frappe:NN(x1)  ->  thick:JJ(x1)  milkshake:NN(x1) 

contain:VB(e1,x1, x2) ice_cream:NN(x2)  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- Verb: the argument e1 is assigned to the first word representing 
the Synset,  its  subject  is  the argument  x1  and its  object  the 
argument x2.  E.g.:25

prologize:VB(e1, x1, x2) -> write:VB(e2, x1, x3) or:CC(e1, e2, 
e3) speak:VB(e3, x1, x3) prologue:NN(x3)

- Adjective: as for nouns, the argument x1 is assigned to the first 
word representing the Synset and in the gloss it refers to the 
same entity. E.g.:

ascetic:JJ(x1) -> practice:VB(e1, x1, x2) great:JJ(x2) self-
denial:NN(x2)

- Adverbs:  the  argument  e1  is  assigned  to  the  first  word 
representing the Synset and in the gloss it refers to the same 
action or modification of the same action. E.g.:

syntactically:RB(e1) -> with:IN(e1, x1) respect:NN(x1) to:IN(x1, 
x2) syntax:NN(x2)

A quality attribute was assigned also to the LF. They were tagged 
as gold  when a human checked the output; when there was no 
human supervision, they were tagged as silver if the parse trees 
obtained from the two different parsers agreed, normal if they did 
not.  Thus,  as  the  labels  themselves  suggest,  in  terms  of 
correctness the LFs can be arranged as:

 l’unico VB in LHS con 4 arguments è  give:VB(e1, x1, x2, x3) -> allow:VB(e1, x1, x3) 25

to:IN(e1, e4) have:VB(e2, x3, x2) or:CC(e4, e2, e3) take:VB(e3, x3, x2)
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gold > silver > normal

Tab 3.3 gives an overview of the quality of LFs for each pos:

Comparing the quality of the LFs  with that of the syntactic parser  
(see page 39), we can see that a high number of normal parsing 
results with a similar high number of normal LFs in the noun file 
(graph 1), which is more than 50% of the whole file (just like the 
normal  parsered glosses).  The gold qualities  are  not  connected 
since they derive from a manual annotation more than from an 
automatic process (graph 2). Despite the high number of gold LFs 
in the noun file the average quality of this file is lower than the 
other ones, so it is likely that it is more subject to errors. Verb and 
adverb LFs have all been checked manually.
The graphs and tab 3.3 give also an overview of the size of the 
whole resource in terms of LFs: the noun file is the largest and at 
the same time the less accurate. More than 133K definitions have 
been translated into LF in  XWN. It’s a huge amount of data I will 
investigate in the following chapters.

POS Total LF Gold LF Silver LF Normal LF

Noun 94868 32844 7228 54796

Verb 14441 14441 0 0

Adjective 20380 16059 4321 0

Adverb 3994 3994 0 0

TOTAL 133683 67338 11549 54796
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Results have been evaluated by XWN people by comparing the 
automatic derived LFs with a set of 1Kmanually transformed LFs. 
The  measure  used  for  the  evaluation  was  exactLFaccurancy: 
number  of  correct  LF  over  number  of  attempted  LF 
transformations.  The  accuracy  achieved  was  almost  90%.  See 
Rus 2002/1 and 2.

3.2.5 XWN Format

In order to provide a flexible and scalable resource, the final 
output of XWN was released in XML format. This choice allows 

�49

0

10000

20000

30000

40000

Nomi Verbi Aggettivi Avverbi

LF-Gold Parser-Gold

0

10000

20000

30000

40000

Nomi Verbi Aggettivi Avverbi

LF-Silver Parser-Silver

0

15000

30000

45000

60000

Nomi Verbi Aggettivi Avverbi

LF-Normal Parser-Normal

Graph 2 Graph 3

Graph 1



for  future  incorporation of  new information without  modifying 
the existing structure. 
Here below the final XWN output for the verb breathe. 
The  first  two  attributes  of  the  root  element  xwn  identify  the 
version of XWN (ver) and the version of WN from which come 
the glosses (wnver); xmlns provides the link to the XWN project 
website.  
For each Synset in WN, the element gloss was generated. It has 
two attributes:  pos  for the pos of the Synset (a verb here) and 
synsetID  for  the  WN  ID  of  the  synset.  Gloss  has  five  child 
elements:  synonymSet,  text,  wsd,  parse,  and  lft.  They  contain 
respectively: the words of the Synset (they can be one or n) , the  26

text of the gloss (examples will be removed later in the process), 
wsd of the content words in the gloss, the syntactic parse tree and 
the LF.

<xwn ver="2.0-1" wnver="2.0" xmlns=“http://
xwn.hlt.utdallas.edu">

<gloss pos="VERB" synsetID=“00001740">
<synonymSet>breathe, take_a_breath, respire, suspire 
</synonymSet>
<text>

   draw air into, and expel out of, the lungs; "I can breathe 
better when the air is clean"; "The patient is respiring"  

</text>
<wsd>
<wf pos="VB" lemma="draw" quality="gold" wnsn="11" >draw
</wf>
<wf pos="NN" lemma="air" quality="gold" wnsn="1" >air</wf>
<wf pos="IN" >into</wf>
<punc>,</punc>

 I calculated the max number of words in the synsets for each XWN pos file. See Appendix 2 26

for the code and results. The longest Synset is in the noun file consists of 28 words: {buttocks, 
nates,  arse,  butt,  backside,  bum,  buns,  can,  fundament,  hindquarters,  hind_end,  keister, 
posterior,  prat,  rear,  rear_end, rump, stern, seat,  tail,  tail_end, tooshie,  tush, bottom, behind, 
derriere, fanny, ass}
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<wf pos="CC" >and</wf>
<wf pos="VB" lemma="expel" quality="gold" wnsn="5" >expel
</wf>
<wf pos="IN" >out</wf>
<wf pos="IN" >of</wf>
<punc>,</punc>
<wf pos="DT" >the</wf>
<wf pos="NNS" lemma="lung" quality="gold" wnsn="1" >lungs
</wf>

</wsd>
 <parse quality="GOLD">
 (TOP (S (S (VP (TO to) 
               (VP (VB breathe) ) ) ) 
        (VP (VBZ is) 
            (S (VP (TO to) 
                   (VP (VP (VB draw) 
                           (NP (NN air) ) 
                           (PP (IN into) ) ) 
                       (, ,) (CC and) 
                       (VP (VB expel) 
                           (PP (IN out) 
                               (PP (IN of) (, ,) 
                                   (NP (DT the) (NNS  lungs) ) )  

) ) ) ) ) ) 
        (. .) ) ) 

</parse>
<lft quality="GOLD">
breathe:VB(e1, x1, x2) -> draw:VB(e2, x1, x3) air:NN(x3)               
into:IN(e2, x4) and:CC(e1, e2, e3) expel:VB(e3, x1, x3) 

out_of:IN(e3, x4) lung:NN(x4)
</lft>

</gloss>
. . . 
</xwn>

3.3 Logical Forms

The  logical  forms  of  XWN  are  a  kind  of  semantic 
representation which stands between the syntactic parse and the 
deep semantic form.
Following  Hobbs'  guidelines  and  his  successful  representation 
used in TACITUS (Hobbs 1986 and  1985) , XWN LF are thought 
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to be as close as possible to natural language and syntactically 
simple. Hobbs affirms that «for many linguistic application it is 
acceptable  to  relax  ontological  scruples,  intricate  syntactic 
explanations, and the desire for efficient deductions in favour of a 
simpler notation closer to English» (in Moldovan and Rus 2001).
XWN LFs share with Hobbs' representation also the Davidsonian 
treatment of action sentences (Davidson 1967) in which events 
are treated as individuals. 
Hobbs et al. 1993 postulated that LFs are a first step towards the 
interpretation of a sentence.
XWN  LFs  fall  in  the  category  of  natural  language  based 
knowledge representation, a class of representations which aims 
to be computer-friendly and human-friendly at the same time.
Indeed, they are undoubtedly easy to understand even for a non-
trained reader but still easy to compute.
Advantages of using LFs in NLP are manifold. As highlighted by 
Anthony and Patrick 2004 «advantages specifically related to the 
utilisation  of  logical  forms  in  language  processing  include  a 
simplified interface between syntax and semantics, a natural and 
easily exploitable representation of syntactic arguments, and the 
potential for formation of conceptual predicates»
They  are  defined  by  Altaf  et  al.  2004  as  «simple  yet  highly 
effective» and  their  utility  in  Q/A systems has  been  proved  in 
several works (See  Moldovan and Rus 2001/1 e 2, Rus 2002/2). 
 
In  the  following  sections  I  review  several  works  on  LF:  the 
STEP2008 workshop, the Senseval3 Task, two different projects 
that map WN glosses into LF (ILF and ) and applications of LF to 
Q/A.
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3.3.1 LF and STEP2008

XWN is  not  the  only  project  that  aims  to  produce  LFs  for 
English sentences and, as pointed out in Delmonte and Rotondi 
2015, there are different ways of computing and building them. 
For instance, LF can include more semantics than XWN LF do; 
some  valuable  attempts  of  this  kind  are  illustrated  in  the 
Proceedings of the ACL Sigsem workshop on Semantic in Text 
Processing (STEP 2008)  (Bos and Delmonte 2008). 27

For example Bos proposed Boxer, a software for computing and 
reasoning  with  semantic  representations.  This  tool  produces  a 
semantic  representation  named  Discourse  Representation 
Structure  (DRS)  and  translates  it  to  LF  in  order  to  perform 
inference. As we can see in figure 3.6 from Bos 2008, variables in 
the Boxer LF representation are all of the same kind and there is 
no distinction for events. Semantic/thematic roles are reified, and 
head the variables of both argument and events.

 See  the  website  of  STEP2008  workshop:  http://project.cgm.unive.it/events/STEP2008/27

index.htm and Sigsem website: http://www.sigsem.org/w/index.php?title=SIGSEM:About
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Fig 3.6 Example of Boxer Output for the Text: Cervical cancer is caused by a virus. That has 
been known for some time and it has led to a vaccine that seems to prevent it. Researchers 

have been looking for other cancers that may be caused by viruses.
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Another approach was suggested by Clark with the BLUE system. 
BLUE  comprises  a  parser,  a  LF  generator,  an  initial  logic 
generator and subsequent processing modules. During the parsing 
the system generates also a simplified LF which includes, among 
others, plurals, tense and polarity. An example of this LF from 
Clark et al. 2008 is shown below.

This  mixed structure  is  then  used to  «generate  ground logical 
assertions  of  the  form  r(x,y),  containing  Skolem  instances 
(denoting existentially quantified variables) by applying a set of 
simple, syntactic rewrite rules recursively to it. Verbs are reified 
as individuals, Davidsonian-style» (Clark and Harrison 2008):

As commented in Delmonte and Rotondi 2015 «predicates used 
in  this  representation  are  just  syntactic  relations  of  the  type 
SUBJect_of,  OBJect_of,  and MODifier_of  and all  prepositions, 
which typically take two variables related to the individuals they 
are  bound  to.  In  particular,  in  this  representation  Skolem 
instances  are  associated  with  its  corresponding  input  word. 
Syntactic relations represent deep relations: the surface subject of 
the passive sentence Sent.3 is turned into an OBJect».
The STEP2008 proceedings  include also  another  reach way of 
representing  meaning  in  LF,  a  component  of  the  GETARUNS 
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system for text understanding (Delmonte 2008). Here below an 
example  of  this   representation  where  two  semantic  elements 
appear:  DEFINITENESS  and  TENSE  (associated  to  the 
Reference Time location variable T2):

3.3.2 LF Resources - ILF and WN30-lfs

As seen in the previous section,  XWN LFs are not  the only 
existing LFs.  In additions to the representations of STEP 2008 
there are other attempts in producing LFs, like for instance, the 
LFToolkit  by N. Rathod and J. Hobbs, the experiment reported 28

by Alshawi et al. 2011 and the work of Aoife et al. 2007. See also 
Wilks 1993 for more work on the topic.
What is more interesting for this work are the other two available 
resources of LF derived from WN glosses: ILF and WN30-lfs.

 See LFToolkit webpage: http://www.isi.edu/~hobbs/LFToolkit/28
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In the next two sections I will describe and comment these two 
resources highlighting their qualities and especially their defects, 
some of which affect XWN as well (more on this in Chapter 4).

3.3.2.1 WN30-lfs

In  order  to  exploit  the  considerable  amounts  of  world 
knowledge contained in WN words sense definitions, USC/ISI  29

people translated WN glosses into LF. Their results are available 
and freely downloadable online . As clearly stated in the project 30

’s  webpage,  LF  provides  further  semantic  information  to 
supplement the WN 3.0 release.
The resulting LFs are divided into two files, one for most of the 
WN glosses and a second one regarding the Core WordNet . As 31

authors comment, LFs for the Core WN are generally of higher 
quality then the other ones. 
The WN30-lfs transformation pipeline works as follow:  

-  each gloss is converted into a sentence of the form “word is 
gloss”

- the processed definitions are parsered using the Charniak parser

 Information Science Institute of the University of California29

 https://wordnet.princeton.edu/wordnet/download/standoff30

 WN contains thousands of Synset referring to highly specific concepts that are less relevant 31

for NLP.  Core WN has been semi-automatically compiled/populated? with 5 thousands synsets 
that express frequent and salient concepts.
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- the parse tree is converted into a logical syntax (shallow logical 
form, see Hobbs 1985) by the LFToolkit that translates lexical 
items into logical fragments involving variables

- after  the identification of syntactic relations,  variables of  the 
constituents are matched

- predicates are assigned word sense using the WN semantically 
annotated corpus  (partially achieved)32

Thus,  each  lexical  semantic  head  is  transformed  into  logical 
fragments involving variables; for e.g. John works  is translated 
into  John(x1)&work(e,x2)&present(e).  At  the  beginning  object 
variables are differentiated,  and then John  is  recognised as the 
subject of works and the two variables x1 and x2 are set equal to 
each other. When the system fails, the constituents are translated 
into logic anyway; only the equalities between variables are lost 
lacking in this way the connections between constituents.

WN30-lfs has been released in XML format for the whole WN 
glosses (104K entries, half marked as partial  half as complete) 
and in plain text for the CoreWN glosses (3K entries).
In the following example the LF transformation for the gloss of 
butter from the whole WN file and for the CoreWN respectively:

<entry word="butter#n#1" status="partial">
<gloss>an edible emulsion of fat globules made by churning 

milk or cream; for cooking and table use</gloss>
<lf>butter#n#1'(e0,x0) -> edible'(e9,x1) + 

emulsion#n#1'(e1,x1) + of'(e6,x1,x12) + fat#n#1’(e15,x17) + 
nn'(e14,x17,x12) + globule#n#1'(e10,x12) + 
dset(s5,x12,e10+e14) + make#v#15’(e2,x4,x3,x2) + 

 http://wordnet.princeton.edu/glosstag.shtml32
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by'(e3,x5,e7) + churn#v#1'(e7,x10,x14) + milk/
cream#n#2'(e11,x14) + for'(e4,x6,x11) + cooking'(e12,x16) + 
table'(e13,x15)</lf>

<sublf>milk'(e11,x14) -> milk/cream#n#2'(e,x14)</sublf>
<sublf>cream#n#2'(e11,x14) -> milk/cream#n#2'(e,x14)</
sublf>
</entry>

butter'(e4,x1) -> an'(e8,x1,e5) & edible'(e9,x1) & of'(e6,x1,x6) 
& emulsion'(e5,x1) & fat'(e15,x6) & globule'(e10,x6) & 
typelt'(e18,x6,s2) & make'(e11,x10,x6) & by'(e14,e11,e17) & 
Progressive'(e21,e17) & churn'(e17,x13,x15) & 
orn'(e22,x15,x17,x18) & milk'(e24,x17) & cream'(e23,x18)

It is evident that the two LFs are different. While the XML format 
allows for pos tags of (most of) the content words the LF in plain 
text lack them. The last don’t include the text after semicolon in 
the gloss (which usually is not part of the sentence-definiton) as 
well as contents between brackets:

<entry word="getaway#n#2" status="complete">
<gloss>a rapid escape (as by criminals)</gloss>
<lf>getaway#n#2'(e0,x0) -> rapid#a#1’(e2,x0) + 

escape#n#1'(e0,x0) + as'(e3,e1) + by'(e1,x0,x1) + 
criminal#n#1'(e4,x1) + dset(s2,x1,e4)</lf>

</entry>

There are several other differences between the LFs in the two 
formats  (for  e.g.  inclusion/exclusion  of  determiners, 
representation of conjunctions, arguments and features of verbs 
etc.) that I do not refer here. Comparing WN30-lfs to XWN is 
more interesting, and to do so I will  evaluate WN30-lfs of the 
whole WN glosses file.
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Contrary to XWN, WN30-lfs is not divided into different pos files 
and a unique file contains all the LFs. The syntactic category of 
the word whose gloss is translated into LF appears only in the 
LHS of the LF:

<lf>apple_juice#n#1'(e0,x0) -> juice'(e0,x0) + of'(e1,x0,x1) + 
apple#n#1'(e2,x1) + dset(s2,x1,e2)</lf>
<lf>cheer#v#4'(e0,x0) -> become'(e1,x1,e2) + 
cheerful#a#1’(e3,x2)</lf>
<lf>agile#a#1'(e0,x0) -> moving#a#1'(e1,x1) + 
quickly#r#1'(e3,e2) + lightly'(e5,e4)</lf>
<lf>artistically#r#1'(e0,x0) -> in'(e0,x0,x1) + 
artistic#a#2'(e2,x1) + manner’(e1,x1)</lf>

Every word in the LHS of the LF is provided with its WSD tag 
but  not  with  the  SynsetID  which  I  think  to  be  the  best 
straightforward  link  to  a  WN  sense.  Furthermore,  no  manual 
checking occurred for none of the LFs.
As  highlighted  in  Table  3.4  the  size  of  the  two  resources  is 
different and XWN includes 20K LFs more than WN30-lfs. The 
difference is more evident for nouns and adjectives. 

POS WN30-lfs XWN

noun 71391 94868

verb 13156 14441

adjective 15743 20380

adverb 3502 3994

total 103792 133683
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Both resources include WSD; WN30-lfs directly in the LF, XWN 
in the dedicated element of the XML tree. While WSD in WN30-
lfs may be missing, in XWN is systematic.
The simple syntax of XWN LF is easier to follow compared to the  
eventuality  notation chosen for  WN30-lfs,  where  all  predicates 
have  an  event  variable  e  associated  to  them  .  Delmonte  and 
Rotondi 2015 find this «representation in eventuality notation too 
cluttered  with  additional  event  variables,  which  makes  the  LF 
entry too heavy to read». They also points out that LF of  WN30-
lfs,  especially  the  partial  ones,  «contains  a  lot  of  unbound  or 
ungrounded variables» see for instance make(e2,x4,x3,x2) in the 
LF of butter above «where none of the object variables have an 
individual  ground  object  linked  to  them».  The  problem  of 
unbound variables is pointed out also by Agerri and Peñas 2010: 
«…it is difficult to understand the fact that the logical forms of 
WN30-lfs often contain free variables and/or predicates without 
any relation with any other predicates  in  the definition».  They 
agree with Delmonte and Rotondi 2015 also about the complexity 
of  WN30-lfs  representation:  «Another  issue  is  the  apparent 
complexity of the logical forms themselves, containing predicates 
of an unclear number of arguments, or making decisions (such as 
collapsing  the  coordinating  disjunction  ‘or’  into  the  two 
predicates that it links) with no explained benefits».

3.3.2.2 Intermediate Logic Forms - ILF

Inspired  by  XWN  and  WN30-lfs  Agerri  and  Peñas  2010 
«believe that there is still some need for providing lexical and/or 
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knowledge resources suitable for computational semantics tasks 
that required formalized knowledge». They propose a LF of WN 
glosses  named  Intermediate  Logic  Form  (ILF)  which  includes 
«neo-Davidsonian reification in a simple and flat syntax close to 
natural language».
Agirre and Peñas don’t use first-order-logic operators and aim to 
provide  a  formal  representation  close  to  NL and  suitable  for 
semantic inference tasks. The pipeline of their system performs 
the following operations:  

- Pre-processing of the gloss inspired by XWN (some contents 
are deleted and definitions are extended depending on POS)

- tokenization using the C&C tokenizer tokkie (Clark and Curran 
2007)

- POS tagging using the CRFTtagger )33

- Syntactic analysis using the Stanford Dependency Parser34

- ILF generation directly from the dependency structure using an 
in-house system

The final output is a well structured XML tree whose elements are 
briefly described here below.
Considering  Example  3.7,  which  illustrates  the  output  for  the 
gloss  of the adjective Bigheaded, we can se that the ILF output is 
structured in Synsets.  Every sense  element has three attributes: 
offset (a unique numeric identifier whose first number identifies 
the pos), its pos category and the Synset name (word+pos+sense 
number).  Every  sense  element  has  some  sub-elements,  two  of 

 http://sourceforge.net/projects/crftagger/33

 https://nlp.stanford.edu/software/lex-parser.shtml34
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them are required: gloss and  one or more lemma, which contain 
the different words by which a sense is expressed, while example 
is optional. The nested elements of gloss contain the definition of 
the  word,  the  pos  tagging,  the  dependency  structure  and  the 
logical form.
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The pretty-ilf element provides a better readability version of the 
LF.
The  authors  «performed  extreme  neo-davidsonian  reification 
aiming to  reduce  the  number  of  free-variables  in  the  resultant 
logical form» and «every relation between discourse referents is 
expressed  by  a  predicate»  without  using  logic  boolean 
connectives.  The  resulting  flat  and  simple  syntax  is  similar  to 
XML LF.
Inspired  by  WN30-lfs  and  XWN,  ILF  aims  to  provide  lexical 
knowledge improving the weakness of the previous resources.
To  do  so  they  start  by  strengthening  the  preprocessing  phase. 
They modify the definitions by extending them depending on the 
pos  and  by  removing  «any  redundant  and  superfluous 35

information».
The gloss of the previous example, bigheaded:

used colloquially of one who is overly conceited or arrogant; "a 
snotty little scion of a degenerate family"-Laurent Le Sage; 
"they're snobs--stuck-up and uppity and persnickety”

results in the ILF LF :

something(x1) amod(x1,x3) amod(x1,x5) overly(x2) conceited(x3) 
advmod(x3,x2) conj_or(x3,x5) arrogant(x5)

as authors comments, the most relevant concepts of the definition 
result to be in a prominent position and not buried among other 

 NOUN and ADV glosses were extended with a period at the end of it, VERB glosses were 35

extended with "to" in front of the gloss and a period at the end of it, ADJ glosses were extended 
with "Something" in front of the gloss and a period at the end of it.
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not so relevant information. I think that by removing part of the 
definition the risk of loosing information is high.
Furthermore, during the pre-processing phase, if a semicolon is 
present in the gloss, they delete everything after it.  This works 
well when a gloss contains one definition + 1 or more examples, 
but sometimes after a semicolon there is still some knowledge it 
is  worth  considering.  See  the  following  examples 
(pos+word+gloss), one for each pos category:

N position = the act of positing; an assumption taken as a 
postulate or axiom

V  beam  =  smile  radiantly;  express  joy  through  one's  facial 
expression

A clean = free from clumsiness; precisely or deftly executed; 
"he  landed  a  clean  left  on  his  opponent's  cheek";  "a  clean 
throw"; "the neat exactness of the surgeon's knife"

R  well  =  without  unusual  distress  or  resentment;  with  good 
humor; "took the joke well"; "took the tragic news well"

In XWN examples are excluded from LF but the content  after 
semicolon is represented as additional LF. Thus, for instance, the 
previous gloss of beam is represented in XWN with a double LF:

<lft quality="GOLD">
beam:VB(e1,x1,x2) -> smile:VB(e1,x1,x3) radiantly:RB(e1)
</lft>
<lft quality="GOLD">
beam:VB(e1,x1,x2) -> express:VB(e1,x1,x3) joy:NN(x3) 
through:IN(e1,x4) facial:JJ(x4) expression:NN(x4)
</lft>
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The result of this choice is that even though both XWN and ILF 
translate all the glosses of WN into LF, only XWN contains all 
their world knowledge. 
Moreover,  in  the  pre-processing  phase,  text  between  brackets 
should be removed but this sometimes doesn’t happen in ILF:

<sense offset="114709791" pos="n" 
synset_name="absolute_alcohol.n.01">
    <gloss>
      <text>Pure ethyl alcohol (containing no more than 1% 
water).</text>
      <parse>...</parse>
      <ilf>..</ilf>
      <pretty-ilf>pure(x1) ethyl(x2) alcohol(x3) amod(x3,x1) 

nn(x3,x2) ((x4) nsubj(x4,x3) dep(x4,x5) contain(x5) 
advmod(x5,x6) dobj(x5,x12) no(x6) dep(x6,x10) more(x7) 

than(x8) advmod(x8,x7) 1(x9) quantmod(x9,x8) %(x10) 
num(x10,x9) water(x11) )(x12) nn(x12,x11)</pretty-ilf>
    </gloss>
    <lemma id="0">absolute_alcohol</lemma>
</sense>

The  use  of  the  predicate  nn  for  compound  nouns  has  been 
improved in comparison with XWN, this in particular if we check 
for the particular case of world_war_II (more on this in the next 
chapter); but taking a closer look we found many unneeded uses 
of the predicate nn as for instance in coarse tobacco:  

<sense offset="114715356" pos="n" synset_name="shag.n.01">
    <gloss>
      <text>A strong coarse tobacco that has been shredded.

  </text>
      <parse>
        <s id="1">
          <words pos="true">
            <word ind="1" pos="DT">a</word>
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            <word ind="2" pos="JJ">strong</word>
            <word ind="3" pos="NN">coarse</word>
            <word ind="4" pos="NN">tobacco</word>
            ...
      </parse>
      <ilf>...</ilf>
      <pretty-ilf>a(x1) strong(x2) coarse(x3) tobacco(x4) 

det(x4,x1) amod(x4,x2) nn(x4,x3) rcmod(x4,x8) that(x5) 
have(x6) be(x7) shred(x8) nsubjpass(x8,x4) rel(x8,x5) 
aux(x8,x6) auxpass(x8,x7)</pretty-ilf>
    </gloss>
    <lemma id="0">shag</lemma>
</sense>

where it  might  have been a tagging error.  More tagging errors 
occur with colour, nouns and past participles.
Other mistakes concern wrong cases of pp attachment as in the 
following example:

  <sense offset="107312829" pos="n" synset_name="migration.n.
03">
    <gloss>
      <text>The nonrandom movement of an atom or radical from 

one place to another within a molecule.</text>
      <parse>
        <s id="1">
          <words pos="true">
            <word ind="1" pos="DT">the</word>
            <word ind="2" pos="JJ">nonrandom</word>
            <word ind="3" pos="NN">movement</word>
            <word ind="4" pos="IN">of</word>
            <word ind="5" pos="DT">a</word>
            <word ind="6" pos="NN">atom</word>
            <word ind="7" pos="CC">or</word>
            <word ind="8" pos="JJ">radical</word>
            ...
      </parse>
      <ilf>...</ilf>
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      <pretty-ilf>the(x1) nonrandom(x2) movement(x3) det(x3,x1) 
amod(x3,x2) prep_of(x3,x6) prep_of(x3,x11) prep_to(x3,x13) 
a(x5) atom(x6) det(x6,x5) conj_or(x6,x11) radical(x8) 
prep_from(x8,x10) one(x10) place(x11) amod(x11,x8) 
another(x13) prep_within(x13,x16) a(x15) molecule(x16) 

det(x16,x15)</pretty-ilf>
    </gloss>
    <lemma id="0">migration</lemma>
  </sense>

Here again the errors might be caused by the wrong tag associated 
to radical. It would be interesting to know the error rate due to the 
LF-transformation algorithm compared to tagging errors, but for 
our purposes it is enough to know that some kind of errors affect 
both ILF and XWN.
Last but not least, contrary to XWN and WN30-lfs, ILF doesn't 
perform WSD. WSD is an important feature and its lack in ILF is 
seen as a required improvement by the authors themselves.
Considering positive features of ILF, it is important to point out 
that,  contrary  to  XWN  and  WN30-lfs,  in  ILF  there  are  no 
unbound variables. This is a remarkable improvement and we will 
face  the  problem  of  unbound  variables  in  XWN  in  the  next 
chapter.

3.3.3 XWN LF and Senseval3

The work of Moldovan and Rus, i.e. XWN LF, inspired one of 
the tasks of the Third International Workshop on the Evaluation of 
Systems for the Semantic Analysis (Senseval-3): Identification of 
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Logic Forms in English . The goal of the task is the evaluation of 36

systems  that  transform  English  sentences  into  LF.  The 
motivations that stand behind this further research on LF are their 
advantages over similar representations (Montague-style recursive 
semantics  and  Description  Grammars).  According  to  the 
coordinator of the task (see Rus 2004) LFs:

- have a simple syntax/semantics interface
- are user-friendly even for no trained users
- have positional syntactic arguments that ease other NLP tasks 

such as textual interpretation
- are easy customisable
- predicates  might  be  disambiguated  and  turned  into  concept 

predicates (see Rus 2009) 

For the Senseval task a gold standard of 300 LF was provided. 
The  gold  LF  were  automatically  produced  by  applying  an 
extended version of the LF derivation engine developed by Rus 
for XWN to English sentences. The output of Rus’ engine was 
checked manually (by different annotators) before the release.
The outputs  of  participant  systems were  compared to  the  gold 
standard LF, evaluating precision and recall.
The target LF of the task are very similar to XWN LF. They share 
most of the features: they are both flat, scope-free first order logic 
representations  formed  by  the  conjunction  of  individual 
predicates related via shared arguments.

 See the task web page: http://www.cs.memphis.edu/~vrus/logic/indexLF.html and Senseval-3 36

web site: http://web.eecs.umich.edu/~mihalcea/senseval/senseval3/
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Predicates  are  generated  for  content  words,  prepositions  and 
conjunctions.  The  name  of  the  predicate  is  formed  by  the 
lemmatised word and the pos category. The types of argument are 
two:  e  for  events,  x  for  entities  and  their  order  is  fixed. 
Simplifications  similar  to  XWN  LF  are  adopted:  determiners, 
punctuation,  plurals,  auxiliaries  and  verb  tenses  are  ignored. 
There is no quantification or negation. Few features differentiate 
the LF of Senseval task from XWN LF. The most important one is 
the distinction between complements and adjuncts which is not 
considered at all in WXN LF . See the LF for the sentence: The 37

earth provides the food humans eat every day.

Senseval LF: earth:n_(x1) provide:v_(e1, x1, x2) 
food:n_(x2) human:n_(x3) eat:v_(e2, x3, x2; x4) day:n_(x4)

In  the  example  above,  we  can  see  that  the  verb  eat  has  two 
arguments separated by comma, whereas the semicolon separates 
the adjuncts (in this case x4). More examples in appendix 3 and 4 
(trial data).
Only 4 out of 27 participating teams completed the assignment 
and produced a valid output:

- The University of Amsterdam (Ahn et al. 2004, AMS): the core 
of  the  dutch system is  a  syntactic  analysis  module  with  the 
following framework: pos tagging, syntactic parsing (Collins), 
conversion of  the parser  output  into a dependency structure, 
improvement  of  the  dependency  structure  with  non  local 

 From [83] it seems that the distinction between complements and adjuncts was not required in 37

the task.
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dependencies and functional tags obtained from the Wall Street 
Journal corpus. LF are derived directly from the dependency 
structure. The main sources of errors identified for the dutch 
LF are: errors in the dependency parser, not identified multi-
word compounds and inconsistencies in the provided LFs.

- The University of Sidney (Anthony and Patrick 2004, SYD): 
Anthony  and  Patrick  used  a  functional  dependency  parser 
which includes properties associated to each token (e.g. main 
element,  syntactic  object  position  etc.).  Examples  of 
dependency  functions  employed  are:  agent,  object 
complement,  subject  etc.  The  output  of  the  parser  is 
transformed into a linear data structure sorted by word position 
and  passed  to  the  filter  module  that  removes  elements  like 
determiners  and  auxiliaries.  The  logical  form processor,  fed 
with  the  remaining  tokens,  builds  an  inverted  index  with 
grammatical  dependencies  and  constructs  the  LF 
representation. Most of the errors in the final LF comes from a 
poor handling of nominal group complexes and coordinating 
conjunctions (and, or etc.)

- The  MITRE  (Bayer  et  al.  2004,  MITRE):  the  MITRE’s 
contribution  is  a  system  whose  first  component  is  a  link 
grammar  parser  which  produces  labeled  undirected  links 
among pairs of words. A link interpretation language made of 
rules  is  used  to  convert  the  link  parser  output  into  a 
dependency  graph.  LFs  are  not  derived  directly  from  the 
dependency structure and before the LF transformation step, 
extra  information  is  added  from  external  resources  and 
argument networks are constructed for each dependency object.
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- The Language Computer Corporation (Altaf et al. 2004, LCC): 
LCC’s approach is similar to the one used for the generation of 
XWN LFs. LCC LFs are derived directly from the output of 
the syntactic parser with a bottom-up procedure that generates 
independent arguments first, and then propagates up the parse 
tree  marking  heads  of  phrases  and  identifying  dependent 
arguments.

The  four  participating  teams agree  about  the  lack  of  complete 
specification for different special cases in the target LF (e.g. little 
guidance about collocation as pointed out by Bayer et al. 2004); 
the details of the task seem to be vague in different cases and this 
might have affected the results. Beside that, the Dutch team found 
inconsistencies  in  the  provided  target  LF  (trial  corpus);  in 
particular they found discrepancies in the LF representations of 
verbs  with  particles  (sometimes  represented  as  combinations, 
sometimes not), missing arguments and verbs not reduced to base 
form.
Results  of  the  task  were  evaluated  considering  precision  and 
recall  at  argument  and predicate  level;  they estimated also  the 
number of sentences correctly transformed over the total number 
of sentences attempted. 
The measures of the task evaluation are described in Rus 2004: « 
precision  at  argument  level:  number  of  correct  identified 
arguments  divided  by  the  number  of  all  identified  arguments; 
recall at argument level: number of correctly identified arguments 
divided by the  number of  arguments  that  were supposed to  be 
identified. Precision at predicate level: number of correctly and 
fully identified predicates (with all arguments correctly identified) 
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divided  by  the  number  of  all  attempted  predicates;  recall  at 
predicate level: number of correctly and fully identified predicates 
(with all arguments correctly identified) divided by the number of 
all predicates that were supposed to be identified»;
and in Anthony and Patrick 2004: «Sentence-argument is defined 
as  the  number  of  sentences  that  have  all  arguments  correctly 
identified divided by the number of sentences attempted. Sentence-
predicate is similar except conditioned on predicates. Sentence-
argument-predicate is defined to be the number of sentences that 
have all arguments correctly identified divided by the number of 
sentences which have all predicates correctly identified. Sentence-
argument-predicate-sentences refers to the number of sentences 
that  have  all  arguments  and  all  predicates  correctly  identified 
divided by the number of sentences attempted».
In Table 3.5 (next page) a comparative view of the results form 
Rus  2004,  the  section  regarding  Sentence-argument-predicate-
sentences (Sent-APSent) results, i.e. LF entirely correctly derived, 
is highlighted.  Tab8 is organised in alphabetic order considering 
the names of the teams (and not considering the results).
At a glance it is clear that results are not satisfactory, especially if 
we envisage using this LFs for a NLP application whose success 
relies on the accuracy achieved by its components.
This is even more clear if we consider Sent-AP Sent value.
Discrepancies in the trial corpus and the results of the task are a 
clear  sign  of  how  inconsistencies  affect  LF  transformation 
(especially when fully automatic). In addition to this, the fact that 
only  4  teams  over  the  24  registered  produced  a  valid  output   
proves  the  difficulty  of  the  task  and  of  the  LF  automatic 
transformation in general. 
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3.3.4 LF and Question Answering

LF  have  been  applied  in  several  challenging  tasks  such  as 
question answering and learning by reading (see for e.g Barker et 
al. 2007).
In particular,  the  XWN logic representation was developed in 
order  to  «enable  reasoning  mechanisms  for  many  practical 
applications» (Moldovan and Rus 2001/2). 
I will briefly show here below an example of how to use LFs in 
Q/A.

TEAM
Argument Level Predicate Level

Precision Recall Precision Recall

AMS 0,729 0,691 0,819 0,783

LCC 0,776 0,777 0,876 0,908

MITRE 0,734 0,659 0,839 0,781

SYD 0,763 0,655 0,839 0,849

Sent-A Sent-P Sent-AP Sent-AP Sent

AMS 0,256 0,320 0,510 0,163

LCC 0,236 0,516 0,419 0,216

MITRE 0,266 0,213 0,406 0,086

SYD 0,160 0,353 0,386 0,136
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Q/A is  a  very  challenging  and  widely  studied  task  for  which 
several approaches have been proposed. The employment of LFs 
has been proved to be a valid support for its accomplishment in 
numerous  papers  (see  Harabagiu  et  al.  2000,  Moldovan  et  al. 
2002, Moldovan et al. 2003, Moldovan and Rus 2001/ 1 and 2, 
Rus 2002/2) 
It is well known that, in order to solve common sense reasoning 
problems,  it  is  necessary  to  have  world  knowledge.  A human 
being  can  add  to  a  sentence  many  information  that  are  not 
explicitly stated and that come from his knowledge of the world. 
This part  of information is extremely important and affects the 
results of automatic inference systems. Grasser 1981 affirms that 
the ratio  of  explicit  to  implicit  facts  is  1  to  8.  Let’s  see some 
examples. 
Given the sentence:

A soldier was killed in gun battle

a reader may infer that:

There was a war; The soldier was shot; The soldier died

These additional information might seem obvious, but, in order to 
get them, an automatic system needs a large resource to consult. 
WN Glosses encode a lot of knowledge that can be exploited for 
this  purpose.  Considering  the  above  example,  the  gloss  of 
battle:N#1  (first  sense  of  noun  battle)  is  a  hostile  meeting  of 
opposing  military  forces  in  the  course  of  a  war,  the  gloss  of 
kill:V#1 (first sense of the verb kill) is cause to die, and the gloss 
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of gun:V#1 (first sense of the verb gun) is shoot with a gun. Given 
these extra information is now possible for an automatic system to 
infer that a battle can be part of a war where soldiers are shot with 
guns and die.
Another example is from TREC 2000 . Given the question:38

How did Socrates die?

The answer appears in the text “… Socrates’s death came when he 
chose  to  drink  poisoned  wine…”.  To  prove  that  this  sentence 
contains the answer to the previous question, a system needs to 
know that poison can be used to kill. This knowledge is found in 
WN glosses and in particular in the gloss of poison:V#2 (second 
sense of the verb poison) kill with poison plus the already seen 
gloss of kill:V#1 (first sense of the verb kill) cause to die. 
All  this precious extra knowledge needs to be represented in a 
suitable way in order to be understood by a system. LF has been 
proved to be fit for the purpose thanks to its unambiguous and 
simple syntax.
The  automatic  Q/A  systems  proposed  in  the  aforementioned 
papers (in particular: Moldovan et al. 2002, Moldovan and Rus 
2001/1 and 2, Rus 2002/2) follow a similar pipeline:

- first of all, for each question, a set of candidates paragraph that 
may contain the answer is retrieved

 TREC is the Text REtrieval Conference whose purpose is «to support research within the 38

information  retrieval  community  by  providing  the  infrastructure  necessary  for  large-scale 
evaluation of text retrieval methodologies». Workshops and exercises are provided every year; 
resulting data and evaluation software «are available to the retrieval research community at 
large,  so  organizations  can  evaluate  their  own  retrieval  systems  at  any  time».  See  TREC 
Website: http://trec.nist.gov
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- evaluating pairs of question(Q)-candidate answer(A) in LF, if 
all the keywords of Q are found in A the system checks the  
preservation of syntactic relations considering their LFs

- if  some  keywords  are  missing  the  system  tries  to  establish 
lexical  chains  (LC)  between  pairs  of  concepts  in  Q  and  A 
favouring  short  path  and  hypernym  relations.  A  chain  is 
established when two words have a WN concept in common. 

- Once LC are established, the resulting LFs are used to perform 
agreement unification. In a successful unification the arguments 
of  a  question  predicate  are  bound  to  the  arguments  of  an 
answer predicate. 

During  the  LC phase  LFs  are  expanded  with  axioms obtained 
from WN and then predicates and arguments from Q are matched 
with predicates and arguments from A in a recursive way. A Q is 
successfully  proven  when  all  its  predicates  and  arguments  are 
matched with the ones of A.
I  use  another  example  from  TREC  to  show  how  the  system 
works. Considering the question:

Who shot Billy the Kid?

The system retrieves two paragraphs that contain all the keywords 
from Q and A:

P1- The scene called for Philips’ character to be saved from a 
lynching when Billy the Kid (Emilio Estevez) shot the rope in half 
just as he was about to be hanged.
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P2- In 1881, outlaw William H. Bonney Jr., alias Billy the Kid, 
was shot and killed by Sheriff Pat Garrett in Fort Sumner, N.M.

Question and candidate answers are translated into LF as follow 
(only the relevant parts are shown):

Q- PERSON(x1) & shoot(e1,x1,x2) & Billy_the_Kid(x2)
P1- Billy_the_Kid(x1) & shoot(e1,x1,x2) & rope(x2)
P2- Billy_the_Kid(x2) & shoot(e1,x1,x2) & 
Sheriff_Pat_Garrett(x1)

The  system  tries  to  prove  the  question  starting  from  the 
paragraphs: it fails for P1 because Billy_the_Kid is the agent and 
not the object as requested in the question and then it succeeds 
with  P2   by  unifying  Sheriff_Pat_Garrett  with  PERSON.  As 
pointed out by Moldovan et al. 2002 the LF fixed slot allocation 
of verb predicate plays here a crucial role.

If not all the keywords are found in Q and A, the system uses LC. 
Considering the following question:

Q- When did Lucelly Garcia, former ambassador of Columbia to 
Honduras, die?

whose answer is found in the paragraph:

P- Several gunmen on a highway leading to the Colombian city of 
Ibague  murdered  Colombian  Ambassador  to  Honduras  Lucelly 
Garcia today
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here  only  some  of  the  Q-keywords  are  found  in  P 
(Lucelly_Garcia, ambassador, TIME-STAMP), and lexical chains 
are built from Colombian  to Columbia  and from murder  to die 
before the system succeeds in identifying the answer (more details 
in Moldovan and Rus 2001/2).

3.4 Conclusions

Considering the proved usefulness of LF and in particular the 
need of LF resources for computational semantics tasks, I decided 
to give my contribution by creating an accurate LF resource. 
Delmonte and Rotondi 2012 points out the need of a precise LF 
representation and affirms that «Logical Forms are useful as long 
as  they  are  consistent,  otherwise  they  would  be  useless  if  not 
harmful».
As highlighted by the different works on LF, it  seems that this 
kind of representation cannot be produced fully automatically and 
need a lot of additional work. The automatic production of LF is 
still error prone and the already existing resources of LF suffer 
from lack of an accurate manual checking phase; WN30-lfs and 
ILF don’t  make use  of  manual  checking and only the  34% of 
XWN LF has been manually checked. 
Thus, I thought it is worthwhile to  correct existing LF resources 
rather than producing a new one from scratch.
I  considered  in  particular  those  resources  that  translate  WN 
glosses into LF because of the importance of WN for the NLP 
community  and  the  huge  amount  of  world  knowledge  and 
semantic relations that it encodes.
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After  comparing the three existing resources of  LF,  I  chose to 
improve XWN. The reasons of my choice are manifold.
As seen above, XWN is the most extended freely downloadable 
resource  of  LFs.  Its  bigger  size,  compared  to  the  other  two 
resources, is due to the transformation of all the glosses of WN 
without loosing part of them.
XWN is divided into 4 files, one for each pos, and this makes its 
application easier; furthermore the XML format allows a simple 
access to the data encoded. 
XWN provides WSD and its LF has a simple syntax close to NL.
As pointed out in different papers, XWN is not devoid of errors. 
In the next chapter I will examine XWN showing which kinds of 
errors affect the resource (in particular the LFs).
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Chapter 4

Errors Detection

4.1 Introduction

LF is  an exceptionally important  linguistic  representation for 
highly demanding semantically related tasks like QA. We have 
seen  in  the  previous  chapter  how  its  automatic  production  at 
runtime is error-prone and therefore I decided to improve one of 
the existing resources by correcting its errors.
I chose to work on XWN for the above mentioned reasons and I 
will start the work by classifying the mistakes I found in XWN 
LFs in order to facilitate the revision of the resource.
This chapter concerns the errors I found in XWN LFs; the most 
interesting common mistakes will be shown, grouped into classes, 
from section 4.2.1  to section 4.2.7.
As  I  will  illustrate,  errors  affect  all  the  qualities  of  LFs,  even 
those that have been manually checked. Moreover, we will  see 
that a good syntactic parsing is necessary but doesn't guarantee 
the correctness of the LF.  
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4.2 Errors Classification

Any resource that aims at providing a meaning representation 
for NLP tasks must be as more accurate as possible as its errors 
would damage possible applications.
LF transformation still requires a big effort in manual checking 
which is often missing in exiting LF resources. The number of 
errors  in  XWN, ILF and  WN30-lfs  is  too  high  to  make  these 
resources usable as they are.
Some papers mention different problems that  affect  the LFs of 
these resources and therefore I  will  start  my analysis  from the 
already-known  mistakes  of  XWN  before  pursuing  with  the 
detection  of  new  cases.  The  investigation  will  be  done  by 
manually  checking  the  resource  with  the  help  of  regular 
expressions and some in-house Python systems.
I will group the most interesting common mistakes into classes 
and I will present them in the next sections. 

I won’t accurately investigate the reasons why these errors affect 
LFs or what went wrong during the LF transformation because 
the purpose here is to correct LFs and not to improve the accuracy 
of  the  WXN  LF  transformation  system.  Therefore,  I  won’t 
systematically  compare  LFs  errors  with  the  parse  trees  from 
which  they  have  been  derived.  I  will  rather  show  the  most 
common errors I found in the LFs in order to correct them. 
The purpose of the work is twofold: 

- providing the NLP community with a consistent and usable LF 
resource
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- classifying  the  most  important  mistakes  of  LFs  with  the 
intention of helping future implementations and new works

4.2.1 Free Variables

Indexed variables are fundamental elements of the LF and are 
used  to  indicate  relations  intervening  between  event  and 
arguments or modifiers. As we have seen in section 3.2.3, number 
and order of arguments of an event are fixed  (en, xn/subject, xn/39

direct  object)  and  are  generated  for  every  verb  even  when  it 
doesn’t  have these syntactic roles (e.g.  one place-predicate).  In 
these cases arguments are dummy and  their variables free:

laugh:NN(x1) -> sound:NN(x1) of:IN(x1, e1) laugh:VB(e1, x1, x26)

hibernate:VB(e1, x1, x2) -> sleep:VB(e1, x1, x9) during:IN(e1, 
x3) winter:NN(x3)

basket:NN(x1)  ->  score:NN(x1)  in:IN(x1,  x2)  basketball:NN(x2) 
make:VB(e1,  x5,  x1)  by:IN(e1,  e2)  throw:VB(e2,  x5,  x3) 
ball:NN(x3) through:IN(e2, x4) hoop:NN(x4)  
 

However, when the arguments are actually present they should be 
coindexed with the event, with particular attention to intransitive 
or passivised structures. Very often this does not happen, as in the 
following case:  
 
able:JJ(x1) -> have:VB(e1, x1, x8) necessary:JJ(x8) means:NN(x2) 
skill:NN(x3)  know-how:NN(x4)  or:CC(x8,  x2,  x3,  x4,  x5) 
authority:NN(x5)  to:IN(x8,  e2)  do:VB(e2,  x8,  x6) 
something:NN(x6)  

 Actually, for ditransitive verbs the number of arguments should change (one more argument 39

for indirect object).
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In the latter example, the subject of do should be x1 (and not x8) 
that is the person that is able, subject of predication of have and 
also head of the adjective modifier.  
The problem of free variables was previously identified by Agerri 
and  Peñas  2010  who  point  out  that  in  XWN  LF  «there  are 
variables that do not belong to anything, and others that are left 
free (not related in any way with the rest of the formula)». 
Unbound variables don’t allow relations indicated by predicate-
arguments  associations,  which  are  thus  disconnected.  Variables 
associated  to  predicates  need  to  be  equated  with  those  of  the 
arguments  of  the  predicate  in  order  to  acquire  semantic 
consistency. 
This is the main source of errors of XWN and from my analysis 
more than half of all LFs suffer from that problem.
The results of the analysis are shown, divided by pos, in Table 
4.1:

POS FIle
LFs with 

Disconnected 
Variables

Total Number of 
examined LFs %

Noun 49178 87819 56.00

Verb 9021 13373 67.46

Adjective 8895 20337 43.74

Adverb 479 3922 12.23

TOTAL 67573 125451 54.05
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The higher percentage of disconnected variables in the verb file is 
mainly due to the nature of its definitions which very often consist  
of verbs without arguments:

scour:VB(e1, x1, x2) -> examine:VB(e1, x1, x3) minutely:RB(e1)

darken:VB(e1, x1, x2) -> tarnish:VB(e2, x1, x3) or:CC(e1, e2, 

e3) stain:VB(e3, x1, x4)  

while adverb definitions have very few verbs and this explains the 
low percentage of disconnected variables in the adverb file; here 
below an example of on an entry from the adverb file:  
 
convivially:RB(e1) -> in:IN(e1,x1) convivial:JJ(x1)manner:NN(x1) 

4.2.2 Compound Nouns 

As  previously  described,  the  detection  of  compound  words 
during the LF transformation is a tricky task  which might require 
human intervention and whose achievement is often error-prone. 
This is proved in particular by difficulties observed in ILF and in 
Senseval task in the previous chapter.
In XWN, as well as in ILF, special attention has been given to the 
detection  of  compound  words  and  in  particular  of  Compound 
Nouns (CN)  which are mapped into LF by means of the nn-40

predicate. E.g (from XWN):

 I will use Nominal Compounds to refer to those nouns that are the result of the union of words 40

from different syntactic categories and Compound Nouns for those nouns that arise from the 
union of one or more nouns.
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jab:NN(x1) -> sharp:JJ(x1) nn(x1,x2,x3) hand:NN(x2) gesture:NN(x3)

The  nn-predicate  transformation  doesn’t  occur  methodically  in 
XWN and  even  when  a  CN has  already  been  detected  in  the 
resource, it can appear in LF also as disconnected words:

ball:NN(x1) -> pitch:NN(x1) be:VB(e1, x1, x5) not:RB(e1) 
in:IN(e1, x4) nn(x4, x2, x3) strike:NN(x2) zone:NN(x3)

strike:NN(x1) -> pitch:NN(x1) that:IN(e4, e1) be:VB(e1, x1, x26) 
in:IN(e1, x2) strike:NN(x2) zone:NN(x3) and:CC(e4, e1) 
that:IN(e4, x4) batter:NN(x4) do:VB(e2, x4, e3) not:RB(e2) 
hit:VB(e3, x5, x4)

Other CNs are transformed in LF without the nn-predicate but as 
a single words, see for e.g.:

baseball_league:NN(x1) -> league:NN(x1) of:IN(x1, x2) 
baseball_team:NN(x2)

But these options don’t seem to be subject to any particular rule, 
and some CNs are detected but then transformed differently in 
different contexts. This is the case of world war which appears 
159 times in the noun file and mapped in several ways:

snafu:NN(x1) -> acronym:NN(x1) often:RB(e0) use:VB(e1,x2,x1) by:IN(e1, 

x2) soldier:NN(x2) in:IN(e1,x3) world:NN(x3) war:NN(x4) ii:JJ(x3) 
situation:NN(x5) normal:JJ(x6) all:JJ(x6) fucked:NN(x6) up:IN(e1,x6)

battle_of_the_ardennes_bulge:NN(x1) -> battle:NN(x1) during:IN(x1, x2) 
world:NN(x2) war:JJ(x2) ii:NN(x3)

coral_sea:NN(x1) -> japanese:JJ(x1) defeat:NN(x1) in:IN(x1,x2) 

world_war_ii:NN(x2)
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wac:NN(x1) -> member:NN(x1) of:IN(x1,x2) women's:NN(x2) army:NN(x3) 
corp:NN(x4) be:VB(e1,x2,e2) organize:VB(e2,x9,x2) during:IN(e2,x5) 

world:NN(x5) war:NN(x6) ii:NN(x7) but:CC(e4,e0,e3) be:VB(e3,x1,x8) 
no:RB(e3) longer:RB(e3) separate:JJ(x8) branch:NN(x8)

Other words are sometimes considered as compounds:

hampton_roads:NN(x1) -> naval_battle:NN(x1) of:IN(x1,x2) 
american_civil_war:NN(x2)

while in other cases they are not:

philippine_sea:NN(x1) -> naval:JJ(x1) battle:NN(x1) in:IN(e0, x2) 

world:NN(x2) war:JJ(x2) ii:NN(x3)

One could affirm that  both the above transformations of  naval 
battle can be considered correct, which is true, but a consistent 
resource should provide a unique way to transform those words 
which are considered to be compounds. 
Moreover, there are cases of CNs that have never been detected in 
the whole resource, see for e.g.  waste-product:

reclamation:NN(x1) -> recovery:NN(x1) of:IN(x1, x2) useful:JJ(x2) 

substance:NN(x2) from:IN(x2, x3) waste:NN(x3) product:NN(x4)

Sometimes, CNs are not identified even if they previously appear 
as subject of a definition:

healthcare:NN(x1) -> preservation:NN(x1) of:IN(x1, x2) mental:JJ(x2) 

physical:JJ(x2) health:NN(x2) by:IN(x2, e4) preventing:VB(e1, x2, x26) 
or:CC(e4, e1, e2) treating:VB(e2, x2, x26) illness:NN(x3) 

through:IN(x3, x4) services:NN(x4) offer:VB(e3, x5, x4) by:IN(e3, x5) 
health:NN(x5) profession:NN(x6)
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healthcare_delivery:NN(x1) -> provision:NN(x1) of:IN(x1,x2) 
health:NN(x2) care:NN(x3)

Not-identified  CNs  are  wrongly  transformed  into  two  or  more 
different predicates damaging in this way the consistency of LFs. 
In fact, in case a CN is not detected, two or more predicates are 
generated in the LF and their variables result improperly mapped, 
losing in this way the whole sense of the sentence.

4.2.3 Conjunctions and Prepositions

As described at page 53, also conjunctions and prepositions are 
transformed  into  predicates.  Conjunctions  are  turned  into 
predicates with a variable number of arguments, of which the first 
one represents the result  of  the aggregation,  while prepositions 
have  two  fixed  arguments.  From my analysis  it  turns  out  that 
several conjunctions and prepositions are missing in the LFs. The 
problem doesn’t seem to depend on the quality of the LF as it 
occurs even in gold - manually checked - LFs.
See for e.g. the LF of seedcake:

<gloss pos="NOUN" synsetID="07164600">
  <synonymSet>seedcake, seed_cake</synonymSet>
 <text>a sweet cake flavored with sesame or caraway seeds and lemon  
 </text>
 …
 <lft quality="GOLD">
  seedcake:NN(x1) -> sweet:JJ(x1) cake:NN(x1) flavor:VB(e1, x7, x1) 
with:IN(e1, x6) sesame:NN(x2) caraway:JJ(x5) seed:NN(x3) and:CC(x30, 
x31, x32) lemon:NN(x4)
 </lft>
</gloss>

�87



Without  dwelling  on  other  errors  of  the  previous  LF  (free 
variables and CNs),  we can see that  the first  conjunction or  is 
missing  and  the  coordinating  conjunction  and  is  assigned 
variables  which  do  not  have  any  correspondence  in  the 
representation.  
In order to estimate the amount of missing conjunctions, for each 
entry in XWN I automatically compared  each definition with its 41

LF, if the definition includes a conjunction that is missing in the 
LF I counted this case as a missing-conjunction-error. Results are 
shown in Table 4.2 (next page) divided by and/or missing cases; 
in  the  last  column  of  Table  4.2  the  number  of  LFs  with 
conjunctions errors (I counted them by considering the synsetID 
of the missing cases, avoiding in this way double counts for those 
LFs that have both a missing or and a missing and).
Here  again,  results  depend  on  the  nature  of  the  glosses. 
Definitions of adjectives and adverbs include more conjunctions 
than those of other pos category. At the same time they are usually 
less complex than for e.g. noun glosses (shorter, less subordinate 
clauses  etc.).  This  means  that  the  LF transformation failed  for 
conjunctions independently from the complexity of the structure 
they occur in.

Most frequent prepositions appearing in the database are: on, in, 
to,  by,  for,  with,  at,  of,  from,  as,  out.  Some  of  them  are  not 
transformed into LF especially if they appear at the end of the 

 In Appendix5 the system I built for the comparison (and some examples). The system takes as 41

input each pos XWN files (one by one) and, climbing the XML tree, for each entry it gathers the 
definition and the corresponding LF. If there is more than one definition in the gloss, the system 
consider only the first  one. Errors have been counted for missing AND and missing OR as 
separate cases, as well as as number of LFs. 
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gloss.  The  problem  is  the  incoherence  that  affects  LF 
transformation  of  prepositions  in  XWN:  sometimes  they  are 
transformed,  sometimes  they  are  not,  showing  in  this  way  no 
logic. This happens also for gold LFs; see the following examples 
where to is first preserved in the LF of powder and then erased 
from the LF of talc:

<gloss pos="VERB" synsetID="00040699">
  <synonymSet>powder</synonymSet>
. . .
 <text> apply powder to; "She powdered her nose"; "The King  
wears a powdered wig"</text> 
<lft quality=“GOLD"> powder:VB(e1, x1, x2) -> apply:VB(e1, x1, 
x3) powder:NN(x3) to:IN(e1, x2) </lft>
</gloss>

<gloss pos="VERB" synsetID="00040890">
  <synonymSet>talc</synonymSet>
. . .
 <text> apply talcum powder to (one's body) </text>
<lft quality=“GOLD"> talc:VB(e1, x1, x2) -> apply:VB(e1, x1, x3) 
talcum_powder:NN(x3) </lft>
</gloss>
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POS file LF examined missing AND missing OR
LFs with 

conjunctions 
errors (num and 

%):

noun 79.689 3.156 2.981 5.964 - 7,5%

verb 13.507 320 1.017 1.322 - 9,8%

adjective 18.561 752 2.950 3.658 - 15,9%

adverb 3.664 148 331 476 - 13%

TOTAL 115.421 4376 7279 11.420 - 9,9%

Tab 4.2 Missing Conjunctions



When prepositions are part of phrasal verbs the treatment is again 
not homogeneous and sometimes the verb particle may be simply 
erased. In the following examples it appears attached to the verb 
in work_out, as a separate entry in set up and erased in line (up):

<gloss pos="VERB" synsetID="00243111">
  <synonymSet>elaborate, work_out</synonymSet>
 <text> work out in detail; "elaborate a plan" </text>
  . . .
 <lft quality="GOLD">
 elaborate:VB(e1, x1, x2) -> work_out:VB(e1, x1, x4) in:IN(e1, 
x3) detail:NN(x3) </lft>
</gloss>

<gloss pos="NOUN" synsetID="03977417">
  <synonymSet>sampling_station, sampler</synonymSet>
 <text> an observation station that is set up to make sample 
observations of something  </text>
. . .
 <lft quality="GOLD">
  sampling_station:NN(x1) -> observation_station:NN(x1) 
be:VB(e1, x1, e2) set:VB(e2, x6, x1) up:IN(e2, x5) to:IN(e2, e3) 
make:VB(e3, x1, x2) sample:NN(x2) observation:NN(x3) of:IN(x2, 
x4) something:NN(x4) </lft>
</gloss>

<gloss pos="NOUN" synsetID="07918617">
  <synonymSet>secondary</synonymSet>
 <text>
   the defensive football players who line up behind the linemen  
 </text>
. . .
 <lft quality="NORMAL">
  secondary:JJ(x4) -> defensive:JJ(x1) football:NN(x1) 
player:NN(x1) line:VB(e1, x1, x26) behind:IN(e1, x2) 
linemen:NN(x2) </lft>
</gloss>
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4.2.4 Relative Adverbs

As  described  in  Rus  2002/1  when  relative  adverbs  such  as 
where, when, how, why introduce a relative clause they should be 
represented in LF as «predicates with two arguments referring to 
the  argument  of  the  relative  clause  or  phrase,  respectively 
argument of the main clause or phrase»; see the following LF:

arena:NN(x1) -> playing_field:NN(x1) where:IN(x1, e1) nn(x4, x2, 
x3) sport:NN(x2) event:NN(x3) take_place:VB(e1, x4, x5)

In this LF we can see also two cases of compound words, one 
treated  as  single  word  (playing_field)  and  another  one 
transformed  with  a  nn  predicate  (sport  event);  X5  is  a  free 
variable. 
Relative adverbs are not always correctly transformed into LF and 
sometimes they are erased.
In  order  to  automatically  check  for  this  type  of  mistake,  I 
modified the previous system  and I searched for missing relative 42

adverbs in the LFs. The results of the analysis are shown in Table 
4.3 (next page).
As we already know, definitions of nouns are longer and much 
more  complex  than  those  of  other  POS.  Relative  clauses  and 
relative adverbs are more frequent in the noun file and the most 
part of errors has been detected here.

 In Appendix 6 the system employed for searching missing relative adverbs.42
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4.2.5 Pos Tagging Errors

Another  frequent  type  of  error  resulting  from  the  analysis 
concerns  the  wrong  pos  label  assigned  to predicates  of  LFs. 
Sometimes tagging errors are just the result of a wrong syntactic 
parsing, see the following example of Hebrew:

<gloss pos="NOUN" synsetID="10304135">
  <synonymSet>Habakkuk</synonymSet>
 <text> a Hebrew minor prophet</text>
  <wsd>
      <wf pos="DT" >a</wf>
      <wf pos="NNP" lemma="hebrew" >hebrew</wf>
      <wf pos="JJ" lemma="minor" quality="normal" wnsn="1" 
>minor</wf>
     <wf pos="NN" lemma="prophet" quality="normal" wnsn="2" 
>prophet</wf>
  </wsd>
<parse quality="SILVER">
(TOP (S (NP (NN Habakkuk) ) 
        (VP (VBZ is) 
            (NP (DT a) (NNP Hebrew) (JJ minor) (NN prophet) ) ) 
        (. .) ) ) 
</parse>
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Tab 4.3 Cases of Missing Relative Adverbs

POS file LFs examined LFs with missing rel advs

noun 79.689 1.252

verb 13.507 12

adjective 18.561 25

adverb 3.664 0

TOTAL 115.421 1.289



 <lft quality="SILVER">
  habakkuk:NN(x1) -> hebrew:NN(x1) minor:JJ(x1) prophet:NN(x2)
 </lft>
</gloss>

 
but errors of this type doesn’t always result from mistakes in the 
syntactic parsing;  as we can see in the following example,  the 
adjective English  has  been correctly  tagged in  the  parse  but  it 
results with a wrong pos in the LF:

<gloss pos="NOUN" synsetID="02319609">
  <synonymSet>Durham, shorthorn</synonymSet>
 <text> English breed of short-horned cattle </text>
  <wsd>
     <wf pos="JJ" lemma="english" quality="normal" wnsn="1" >english</
wf>
      <wf pos="NN" lemma="breed" quality="silver" wnsn="2" >breed</wf>
      <wf pos="IN" >of</wf>
      <wf pos="JJ" lemma="short" quality="normal" wnsn="6" >short</wf>
      <punc>-</punc>
      <wf pos="JJ" lemma="horned" quality="silver" wnsn="1" >horned</
wf>
      <wf pos="NNS" lemma="cattle" quality="silver" wnsn="1" >cattle</
wf>
  </wsd>
<parse quality="NORMAL">
(TOP (S (NP (NNP Durham) ) 
        (VP (VBZ is) 
            (NP (NP (JJ English) (NN breed) ) 
                (PP (IN of) 
                    (NP (JJ short-horned) (NNS cattle) ) ) ) ) 
        (. .) ) ) 
</parse>
 <lft quality="NORMAL">
  durham:NN(x1) -> english:NN(x1) breed:NN(x2) of:IN(x1, x3) short-
horned:JJ(x3) cattle:NN(x3)
 </lft>
</gloss>

Moreover,  tagging errors can occur also in gold LFs, as in the 
following example of English tagged as NN:

<lft quality="GOLD">

�93



wilkes:NN(x1)  ->  english:NN(x1)  reformer:JJ(x1)  publish:VB(e1, 
x1, x2) attack:NN(x2) on:IN(x2, x3) george_iii:NN(x3) and:CC(e3, 
e1,  e2)  support:VB(e2,  x1,  x4)  right:NN(x4)  of:IN(x4,  x5) 
american:JJ(x5) colonist:NN(x5)
<\lft>

Most of the tagging errors occur for those words that can belong 
to  different  syntactic  categories  according  to  the  context.  This 
happens in XWN in particular for colours, numbers,  nationality 
adjectives  (especially  when  compounds),  participles  and 
gerundives.
Let’s see some examples:

colour - black and grey:

jackdaw:NN(x1) -> common:JJ(x1) black-and-gray:NN(x1) 
eurasian:JJ(x1) bird:NN(x1) note:VB(e1, x3, x1) for:IN(e1, x2) 
thievery:NN(x2)

number - ten:

large_integer:NN(x1) -> integer:NN(x1) equal:JJ(x1) to:IN(x1, x3) 

greater:JJ(x2) than:IN(x1, x2) ten:JJ(x2)

nationality adjective - North American:

solitaire:NN(x1) -> dull:JJ(x5) gray:JJ(x1) north:NN(x1) 
american:NN(x2) thrush:NN(x3) note:VB(e1, x6, x1) for:IN(e1, x4) 
beautiful:JJ(x4) song:NN(x4)

Some participles, present and past, can be used as adjectives and 
should  be  recognised  and  correctly  transformed  into  LF.  This 
often  does  not  happen  as  in  the  definition  of  chance-medley 
(unpremeditated killing of a human being in self defense):
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chance-medley:NN(x1) -> unpremeditated:VB(e1, x5, x1) 
killing:NN(x1) of:IN(x1, x2) human:NN(x2) in:IN(x2, x3) 
self:NN(x3) defense:NN(x4)

Furthermore,  I  found  the  wrong  interpretation  even  for  some 
words that end with -ed, like regular past participles, but that can’t 
be participles, whatever the context is:

esthetician:NN(x1) -> worker:NN(x1) skilled:VB(e1, x4, x1) 
in:IN(e1, e2) give:VB(e2, x1, x2) beauty:NN(x2) treatment:NN(x3)

Gerundives  and  present  participles,  when  appearing  at  the 
beginning of  a  definition,  are  mapped into  the  verb base  form 
preceded  by  act  of,  as  in  the  definition  of  going  (advancing 
toward a goal):

going:NN(x1) -> act:NN(x1) of:IN(x1, e1) advance:VB(e1, x2, x26) 
toward:IN(e1, x2) goal:NN(x2)

this should be avoided when the -ing form is used as nominalised 
verb as in the definition of notepaper (writing paper intended for 
writing short notes or letters):

notepaper:NN(x1) -> act:NN(x1) of:IN(x1, e1) write:VB(e1, x2, 
x2) paper:NN(x2) intend:VB(e2, x6, x2) for:IN(e2, e3) 
write:VB(e3, x2, x5) short:JJ(x5) note:NN(x3) or:CC(x5, x3, x4) 
letters:NN(x4)

The total number of tagging errors is hard to measure.
Comparing pos labels of LF predicates with those of the parse 
trees  is  not  an option as  we have seen that  they may be both 
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wrong. Furthermore, there seems to be no coherence in how the 
tagging  errors  have  been  generated,  some words  may  be  both 
correctly and wrongly labeled.
In  order  to  estimate  the  number  of  errors,  I  manually  judged 
samples of LFs. For each Pos file I took 150 LFs: 50 normal, 50 
silver,  50 gold for the noun file,  75 gold and 75 silver for the 
adjective file (no normal LFs in this file), and 150 gold for the 
adverb and the verb file (no normal or silver LFs in this files). I 
did not choose the first LFs of the files for the evaluation but I 
randomly selected them. This was done in order to avoid groups 
of  particularly  well  or  bad formed LFs.  In  fact,  the  entities  in 
XWN files are not alphabetically ordered, and one can find groups 
of  simple  and  short  definitions  (for  e.g.  definitions  of  cities) 
whose LF transformations are simpler and less error-prone than 
other  of  more  complex  definitions.  Moreover,  some  groups  of 
gold LFs can be more accurate than others due to a more careful 
human  annotator  (more  than  one  worked  on  the  project).  The 
system I  built  for  the  random selection  is  in  Appendix  7  and 
results of the manual evaluation are shown in Table 4.4. For the 
evaluation I marked as wrong those LFs with at least one wrong 
pos label.

POS File
normal LF silver LF gold LF

correct wrong correct wrong correct wrong

noun 31 / 50 19 / 50 45 / 50 5 / 50 47 / 50 3 / 50

verb X X 148 / 150 2 / 150

adjective X 62 / 75 13 / 75 71 / 75 4 / 75

adverb X X 147 / 150 3 / 150
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Even though I previously showed that wrong pos labels occur also 
in manually-checked LFs, results show that the number of errors 
is directly connected with the quality of LFs. Even thought the 
evaluated  data  are  limited,  they  are  enough  to  show  us  the 
inaccuracy  of  not-manually  checked  LFs  and  in  particular  of 
normal LFs for which I estimate a tagging error rate of almost 
40%.

4.2.5.1 Tagging Errors in LHS

Pos tagging errors may occur even in the LHS of the LF which 
is quite curious if we consider that XWN is divided into pos files 
with rigorous LHS structures.
As we have seen in the previous chapter, LFs have specific LHS 
structures  according  to  the  pos  category  of  the  lemma  (and 
therefore according to the pos file they belong to):

noun file = noun :NN(x1) -> definition in LF

chocolate_cake:NN(x1) -> cake:NN(x1) contain:VB(e1, x1, x2) 
chocolate:NN(x2)

verb file = verb :VB(e1,x1,x2) -> definition in LF

bake:VB(e1, x1, x2) -> prepare:VB(e1, x1, x2) with:IN(e1, x3) 
dry:JJ(x3) heat:NN(x3) in:IN(e1, x4) oven:NN(x4)

adj file = adjective :JJ(x1) -> definition in LF

home-baked:JJ(x1) -> baked:JJ(x1) at:IN(x1, x2) home:NN(x2)
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adv file = adverb  :RB(e1) -> definiton in LF

dolce:RB(e1) -> gently:RB(e1) sweetly:RB(e1)

Therefore, for the XWN LF transformation system it should be 
enough  to  consider  the  pos  of  the  file  that  it  is  processing  to 
correctly generate the LHS of the LFs.
These parameters seem to be not enough and wrong pos labels 
have been detected in several LHS. See the following examples:

burn - noun as verb

<gloss pos="NOUN" synsetID="00386296">
  <synonymSet>burn</synonymSet>
 <text> damage inflicted by burning </text>
  <wsd>
      <wf pos="NN" lemma="damage" quality="normal" wnsn="3" >damage</
wf>
   <wf pos="VBN" lemma="inflict" quality="silver" wnsn="1" 
. . .
  </wsd>
<parse quality="NORMAL">
(TOP (S (NP (NN burn) ) 
        (VP (VBZ is) 
            (NP (NP (NN damage) ) 
              . . .
</parse>
 <lft quality="NORMAL">
  burn:VB(e1, x3) -> damage:NN(x1) inflict:VB(e3, x2, x1) by:IN(e3, 
x2) burning:NN(x2)
 </lft>
</gloss>

flip - noun as adjective

<gloss pos="NOUN" synsetID="01176224">
  <synonymSet>flip, toss</synonymSet>
 <text> the act of flipping a coin </text>
  <wsd>
      <wf pos="DT" >the</wf>
      <wf pos="NN" lemma="act" quality="gold" wnsn="2" >act</wf>
      <wf pos="IN" >of</wf>
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      <wf pos="VBG" lemma="flip" quality="normal" wnsn="4" >flipping</
wf>
      <wf pos="DT" >a</wf>
      <wf pos="NN" lemma="coin" quality="silver" wnsn="1" >coin</wf>
  </wsd>
<parse quality="NORMAL">
(TOP (S (NP (NN flip) ) 
        (VP (VBZ is) 
            (NP (NP (DT the) (NN act) ) 
                (PP (IN of) 
                    (S (VP (VBG flipping) 
                           (NP (DT a) (NN coin) ) ) ) ) ) ) 
        (. .) ) ) 
</parse>
 <lft quality="NORMAL">
  flip:JJ(x3) -> act:NN(x1) of:IN(x1, e2) flip:VB(e2, x1, x2) 
coin:NN(x2)
 </lft>
</gloss>

I found the LHS tagging error only in the noun file and I counted 
the  mistakes  for  each  wrong  pos  assigned  with  SystemF  in 
Appendix8. Results are shown in Table 4.5 (for e.g. the case of 
flip here above is counted as JJ in LHS, burn as VB in LHS). 

4.2.6 Possessives

As Moldovan and Novischi 2004 explain, possessives pronouns 
are transformed into LF with the predicate POS. This predicate 
reifies  the relation of  ownership between two entities.  Number 
and order of arguments are fixed. See e.g. below:

LFs checked VB in LHS JJ in LHS RB in LHS Total mistakes 
in LHS

94.868 572 512 227 1311
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<gloss pos="NOUN" synsetID="06193120">
  <synonymSet>topic_sentence</synonymSet>

 <text> a sentence that states the topic of its paragraph </text>
. . .

 <lft quality=“GOLD"> topic_sentence:NN(x1) -> sentence:NN(x1) 
state:VB(e1, x1, x2) topic:NN(x2) of:IN(x2, x3) its:POS(x3, x1) 
paragraph:NN(x3) </lft>

</gloss>

This structure seems to be more a suggestion of the author than a 
real implementation because the number of possessive pronouns 
transformed with the POS predicate is really small in the resource 
and they appear only in gold LFs (added manually by a human 
annotator?). In the whole XWN I found 1249 POS predicates over 
133K LFs; in fact many possessive pronouns are erased from the 
LF as in the following example:

<gloss pos="NOUN" synsetID="04287654">

  <synonymSet>tower</synonymSet>
 <text> a structure taller than its diameter; . . . </text>

. . .
 <lft quality=“GOLD"> tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) 
than:IN(x1, x2) diameter:NN(x2) </lft>

. . .
</gloss>

Like possessive pronouns,  also the genitive marking should be 
represented  in  LF  with  the  POS  predicate;  see  the  following 
example:

<gloss pos="VERB" synsetID="00038132">
  <synonymSet>marcel</synonymSet>
 <text> make a marcel in a woman's hair </text>

. . .
 <lft quality=“GOLD"> marcel:VB(e1, x1, x2) -> make:VB(e1, x1, x3) 

marcel:NN(x3) in:IN(e1, x5) woman:NN(x4) 's:POS(x5, x4) hair:NN(x5)
 </lft>
</gloss>
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However,  in  the  noun  file  several  genitive  markings  are  not 
identified and they are interpreted in different ways both as part of 
the word they standby and as a single element. See the following 
examples:

<gloss pos="NOUN" synsetID="08026917">
  <synonymSet>culmination</synonymSet>
 <text> (astronomy) a heavenly body's highest celestial point 
above an observer's horizon </text>
. . .
 <lft  quality=“NORMAL">  culmination:NN(x1)  ->  heavenly:JJ(x1) 
body's:NN(x1)  highest:JJ(x2)  celestial:JJ(x2)  point:NN(x2) 
above:IN(e0, x2) observer's:NN(x3) horizon:NN(x4)
 </lft>
</gloss>

<gloss pos="NOUN" synsetID="00157666">
  <synonymSet>capture</synonymSet>
 <text> the removal of an opponent's piece from the chess board  
 </text>
. . .
 <lft  quality=“NORMAL">  capture:NN(x1)  ->  removal:NN(x1) 
of:IN(x1,  x2)  opponent:NN(x2)  's:VB(e1,  x2,  x3)  piece:NN(x3) 
from:IN(x3, x4) chess:NN(x4) board:NN(x5)
 </lft>
</gloss>

In summary, the problem of possessives regards those possessive 
pronouns  which  have  not  been  transformed into  LF and  those 
genitive markings which have not been identified as such.
In order to estimate the problem of possessives in XWN, I built 
two  systems:  SystemG  in  Appendix9  compare  each  definition 
with its LF looking for missing possessive pronouns, SystemH in 
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Appendix10  finds  those  genitive  markings  which  have  been 
wrongly transformed into LF. Results are shown in Table 4.6 and 
in Table 4.7 respectively. 
The  numbers  of  LFs  inspected  by  the  systems  differ  because 
SystemG checks definition-LF pairs and to do so it considers only 
the first definition and first LF of each gloss; conversely, SystemH 
analyses all the LFs of XWN.
As results show, possessive and genitive markings mistakes affect 
almost  exclusively  noun  glosses  and  in  particular  those  with 
normal quality.
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Tab 4.6 Missing Possessive Pronouns

Tab 4.7 Genitive Marking Mistakes

pos XWN file LFs checked LFs with missing 
possessive pronouns

noun 79689 1900

verb 13507 39

adjective 18561 82

adverb 3664 1

pos XWN file LFs checked LFs with genitive marking 
error

noun 94868 415

verb 14463 0

adjective 20377 0

adverb 3994 0



4.2.7 Negation

The last  notable type of error I  found during the analysis of 
XWN  LFs regards negations. 
Unlikely what is said in Rus 2002/2 and reported in section 3.2.3, 
negations  are  transformed  in  LF  and,  apart  from  nothing  and 
none, they are turned into RB - adverbial predicates. See for e.g.:

inactive:JJ(x1) -> not:RB(x1) engaged:JJ(x1) in:IN(x1, x2) full-
time:JJ(x2) work:NN(x2)

Negations  are  quite  frequent  in  the  resource  and  considering 
different  negation marks  (not,  nor,  no,  none,  nothing,  never)  I 
counted more than 3200 occurrences in XWN definitions, most of 
which in the adjective file ; verb and adverb files have very few 43

negations in their definitions. See Table 4.8 for the exact number 
of negations.

The problem this time doesn't concern with the lack of negation 
markers  in the LF but rather with how negation are scoped.44

Negation  can  receive  different  scope  according to  its  semantic 
role:

Noun file Verb file Adjective file Adverb file

Negations 1040 62 2074 82

 I  built  SystemH  in  Appendix  10  for  counting  the  number  of  negation  marks  in  XWN 43

definitions.

 I searched for missing negation markers in the LFs with SystemI in Appendix11 and the few 44

cases I found are irrelevant.
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- wide scope when it negates the main verb or modifiers of the 
verb like adverbials

- narrow scope when it negates specific arguments or adjuncts

As pointed out by Delmonte and Rotondi 2012, most of the cases 
of narrow scope in XWN LFs (1095 vs 901 of wide scope) are in 
the adjective file and they are all correctly marked, see for e.g.:

absolute:JJ(x1)  ->  not:RB(x1)  limited:JJ(x1)  by:IN(x1,  x2) 
law:NN(x2) 

An example of correctly marked wide scope is the following, 
where the negation has wide scope on the coordination of two 
verbs: 
 
alien:JJ(x1) -> not:RB(e3) contain:VB(e1, x7, x1) in:IN(e1, x5) 
or:CC(e3,  e1,  e2)  derive:VB(e2,  x1)  from:IN(e2,  x2) 
essential:JJ(x2) nature:NN(x2) of:IN(x2, x3) something:NN(x3)  

 
Most errors occur when the negation is wrongly attached to an 
auxiliary verb (be, do, have). In these cases the LF transformation 
creates two event variables, one for the auxiliary and one for the 
main verb; and then the negation is assigned narrow scope over 
the event variable of the auxiliary. See for e.g.:  
 
absentee_rate:NN(x1)  ->  percentage:NN(x1)  of:IN(x1,  x2) 
worker:NN(x2)  do:VB(e1,  x2,  e2)  not:RB(e1)  report:VB(e2,  x2, 
x26) to:IN(e2, e3) work:VB(e3, x2, x26)  
 

In several cases the scope is marked correctly on the main verb as 
in: 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lowbrow:JJ(x1)  ->  characteristic:JJ(x2)  of:IN(x1,  x2) 
person:NN(x2)  be:VB(e1,  x2)  not:RB(x5)  cultivated:JJ(x5) 
or:CC(e4, e1, e2) do:VB(e2, x2, e3) not:RB(e3) have:VB(e3, x2, 

x3) intellectual:JJ(x3) taste:NN(x3)  
 
Furthermore,  sometimes  negations  are  associated  to  a  free 
variable, as shown here below:  
 
acquit:VB(e1,  x1,  x2)  ->  pronounce:VB(e1,  x1,  x3)  not:RB(e2) 
guilty:JJ(x3) of:IN(x3, x4) criminal:JJ(x4) charge:NN(x4)  

 
Because  of  the  nature  of  this  kind  of  error,  it  is  not  easy  to 
automatically  estimate the number of  wrongly scoped negation 
markings in the whole resource. In fact,  this is not a problem of 
missing particles for which a comparison between definitions and 
LFs is enough to identify the mistakes.  
 
 
4.3 Errors in other LF Resources  

I previously clarified the reasons why I chose to work on XWN 
rather than on other resources that transform the glosses of WN in 
LFs  (ILF  and  WN30-lfs).  After  seeing  the  several  errors  that 
affect XWN, one might fairly ask if these errors affect also the 
other resources or if the LFs of XWN are particularly incorrect. 
The  answer  is  straightforward:  similar  errors  occur  in  other 
resources (and in particular in WN30-lfs); proving in this way the 
difficulty  of  automatically  transform  sentences,  more  or  less 
complex, in LFs.
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The problem of free-variables is even more serious in WN30-lfs 
than in XWN (see again Agerri and Peñas 2010 about the topic of 
free-variables), while in ILF the problem is solved mainly thanks 
to the simple pretty ilf  syntax which,  however,  is  probably too 
simple since it excludes even pos of words.  
NCs are most of the time identified in ILF but then sometimes 
wrongly mapped in LF, as in the following example where the nn-
predicates  don’t  exactly  clarify  the  relations  among  the  three 
nouns:

<text>The  professional  relation  between  a  health  care 
professional and a patient.</text>  
<pretty-ilf>the(x1)  professional(x2)  relation(x3)  det(x3,x1) 
amod(x3,x2)  prep_between(x3,x8)  prep_between(x3,x11)  a(x5) 
health(x6)  care(x7)  professional(x8)  det(x8,x5)  nn(x8,x6) 
nn(x8,x7)  conj_and(x8,x11)  a(x10)  patient(x11)  det(x11,x10)</
pretty-ilf>

In WN30-lfs the problem of NCs is often solved by erasing part 
of the compound:

<gloss>of materials from waste products</gloss>
<lf>reclaim#v#2'(e0,x0) -> of'( e2 , x0 , x1 ) + material'( e3 , 
x1 ) + dset( s0 , x1 , e3 ) + from'( e1 , x0 , x2 ) + 
waste#n#1'( e4 , x2 )</lf>

WN30-lfs identifies possessives but, often, it maps them wrongly 
in the LFs. As shown here below, the arguments of the possessive 
predicate don’t support the relation between tower and diameter:

<gloss>a structure taller than its diameter; can stand alone or 
be attached to a larger building</gloss
<lf>tower#n#1'(e0,x0) -> structure'( e1 , x1 ) + tall'( e2 , 
x2 ) + poss( s4 , x4 ) + diameter#n#2'( e4 , x4 ) + can'( e5 , 
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x7 , e12 ) + stand'( e12 , x9 , x5 ) + alone#r#2'( e7 , e6 ) + 
or'( e9 , e10 , e8 ) + be'( e11 , x8 , e15 ) + attach'( e15 , 
x12 , x11 ) + to'( e13 , e11 , x13 ) + large'( e17 , x13 ) + 
building'( e16 , x13 )</lf>

the  previous  example  proves  also  that  different  definitions  are 
wrongly transformed as a unique LF in WN30-lfs.
Also  conjunctions  predicates  are  wrongly  mapped  into  LF  in 
WN30-lfs, see for  instance the following predicate of or and its 
free variables :

<gloss>a slice of meat cut from the fleshy part of an animal or 
large fish</gloss>
<lf>steak#n#1'(e0,x0) -> slice'( e0 , x0 ) + of'( e3 , x1 , e2 ) 
+ meat'( e5 , x3 ) + cut#a#1'( e6 , x4 ) + from'( e7 , x4 , x5 ) 
+ fleshy#a#2'( e10 , x5 ) + part#n#1'( e8 , x5 ) + of'( e9 , 
x5 , x6 ) + animal'( e12 , x7 ) + or'( e14 , e15 , e13 ) + 
large'( e16 , x8 ) + fish'( e17 , x9 )</lf>

Negations appear wrongly scoped in several WN30-lfs,  see the 
following example where not is mapped to major_league rather 
than to the main verb:

<gloss>a league of teams that do not belong to a major league 
(especially baseball)</gloss>
<lf>minor_league#n#1'(e0,x0) -> league#n#1'( e6 , x0 )+nn'( e3 , 
x0 , x1 ) + of'( e2 , x1 , x2 ) + team'( e4 , x2 ) + dset( s6 , 
x2 , e4 ) + not#r#1'( e10 , e9 ) + belong_to#v#1'( e11 , x8 , x6 
) + major_league#n#1'( e12 , x9 ) + especially'( e5 , e0 ) + 

baseball#n#1'( e0 , x0 )</lf>  

ILF LFs are generally less error prone but they completely lack 
primary information like  pos  labels  while  keeping unnecessary 
parts like articles and determiners.  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4.4 Conclusions  

In  this  chapter  I  described  the  most  common  errors  of  LFs 
discovered with an accurate analysis of the XWN resource.  
Tu sum up, XWN LFs errors concern:

- Free/unbound variables of arguments
- no identification of Nominal Compounds
- missing Conjunctions and Prepositions
- missing Relative Adverbs
- wrong pos labels of predicates both in the LHS and in the RHS 

of LFs
- Possessives Pronouns and Genitive Marking
- Scope of Negations  

As shown, the number of some errors varies substantially from 
one file to the other and their distribution depends mainly on:

- the quality of LF

Even though some errors affect also manually-checked LFs (e.g. 
missing conjunctions and prepositions), they occur especially in 
normal  LFs  (  in  particular  pos  tagging  errors  and  possessives 
mistakes) proving in this way the importance of a careful human 
supervision of LF transformation.

- the nature of the sentence transformed into LF

Free variables are most frequent in verb definitions because they 
are generally made of a verb without arguments. The complexity 
of syntactic structures doesn't influence the frequency of missing 
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conjunctions  and  prepositions:  they  are  simply  related  to  the  
number of conjunctions and prepositions in the definitions (and 
therefore they affect especially adjective LFs). Relative adverbs 
are most frequent in complex definitions of nouns and this is why 
their lack affects especially the noun file.

Reflecting on how to improve the LFs of XWN, different ideas 
came out.  
One solution could be refining the syntactic parsing. As we have 
seen,  LFs  are  directly  derived  from the  parse  trees,  and  even 
thought the high accuracy achieved in this first phase, it might be 
further improved. However, we have seen also that exact parse 
trees are sometimes wrongly transformed into LFs and this lead 
me to the conclusion that a perfect parse tree is not enough to 
prevent errors in the LF.  
A second idea was to rethink the LF transformation system. This 
is a costly operation and considering the work done so far by the 
different authors who worked on the project I eventually decided 
to  work  directly  on  the  already  existing  LFs  by  semi 
automatically correcting the detected mistakes described in this 
chapter.

In Chapter5 I will describe the correction of XWN LFs which we 
will see it will bring to a new LF resource: the UXWN (United 
eXtended WordNet).
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Chapter 5

Errors Correction

5.1 Introduction

In  this  chapter  I  will  describe  the  work  carried  out  for  the 
correction of XWN LFs. Thanks to a in house parser, I corrected 
the high number of free variables of the resource and the work is 
organised following what I did before and after the application of 
the Parser.
During the correction, some interesting considerations came out, 
in particular regarding Instances vs Classes,  Proper Names and 
Nominal Compounds.
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5.2 Conjunctions and Prepositions - Correction

As  previously  shown  in  section  4.2.3,  conjunctions  and 
prepositions are sometimes erased from LFs. 
I  already mentioned the  system  I  built  to  search  for  missing 45

conjunctions in the resource. The system compares each definition 
with its LF, both divided into tokens, and records in a txt file those 
synsetIDs for which a missing conjunction is found in the LF.
I then used the list of synsetIDs to manually check and correct the 
LFs in the resource when needed.
For e.g. the synsetID 07187330 is on the list. It corresponds to the 
gloss of steak:

<gloss pos="NOUN" synsetID="07187330">

  <synonymSet>steak</synonymSet>
 <text>

   a slice of meat cut from the fleshy part of an animal or large fish  
 </text>
. . .

 <lft quality="NORMAL">
  steak:NN(x1) -> slice:NN(x1) of:IN(x1, x2) meat:NN(x2) cut:VB(e1, 

x5, x1) from:IN(e1, x3) fleshy:JJ(x3) part:NN(x3) of:IN(x3, x4) 
animal:JJ(x4) large:JJ(x4) fish:NN(x4)
 </lft>

</gloss>

Here we can see that or is missing in the LF and maybe because 
of the wrong pos label of animal, which is wrongly considered as 
adjective.  I  corrected  the  LF  by  adding  the  or  predicate,  its 
corresponding  arguments  and  by  changing  the  pos  label  of 
animal:

 System C in Appendix 545
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steak:NN(x1) -> slice:NN(x1) of:IN(x1, x2) meat:NN(x2) cut:VB(e1, x5, 
x1) from:IN(e1, x3) fleshy:JJ(x3) part:NN(x3) of:IN(x3, x4) 

animal:NN(x5) or:IN(x4, x5, x6) large:JJ(x6) fish:NN(x6)

I  manually  checked  all  the  synsetIDs  of  missing  conjunctions 
retrieved by the SystemC (more than 10K) but I did not correct all 
of them. I judged some cases adequate without the conjunctions 
as for example coordinations of adjectives:

<gloss pos="NOUN" synsetID="00016236">
  <synonymSet>object, physical_object</synonymSet>

 <text>
   a tangible and visible entity; an entity that can cast a shadow; 

"it was full of rackets, balls and other objects"  
 </text>
. . .

 <lft quality="GOLD">
  object:NN(x1) -> tangible:JJ(x1) visible:JJ(x1) entity:NN(x1)

 </lft>
. . .
</gloss>

In  section  4.2.3  I  explained  also  the  problems  regarding 
prepositions  and  phrasal  verbs.  These  particles  are  sometimes 
erased  from  LFs  and  I  searched  for  the  missing  cases  with 
SystemL  in  Appendix12.  SystemL,  similar  to  SystemC  for 
conjunctions,  compares the first definition-LF pair of each XWN 
entry and if it finds a preposition in the definition that is missing 
in the LF it marks this case as a missing preposition. The system 
records  on  a  txt  file  all  the  missing  cases  using  the  following 
structure:

preposition missing + SynsetID + Definition + Logical Form
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so for instance, SystemL detect the missing out in the LF of weed 
and records this entry as:

2022 Missing Preposition: out
SynsetID: 12334577
Definition: 
   any plant that crowds out cultivated plants   
Logical Form: 
 any:JJ(x1) plant:NN(x1) crowd:VB(e1, x1, e2) cultivate:VB(e2, 
x3, x1) plant:NN(x2)

I used the output file to check the cases recorded and to judge if 
each  case  was  or  not  a  missing  case.  If  yes  I  proceeded  by 
correcting the corresponding LF. For e.g. I corrected the previous 
case in:

any:JJ(x1) plant:NN(x1) crowd_out:VB(e1, x1, x2) cultivated_JJ:
(x2) plant:NN(x2)

Just like for conjunctions, I did not correct all the cases detected 
by  the  system  because  I  judged  some  LFs  well  formed  even 
without prepositions, see for example: 

<gloss pos="NOUN" synsetID="00081044">
  <synonymSet>award, awarding</synonymSet>
 <text>
   a grant made by a law court; "he criticized the awarding of 
compensation by the court"  
 </text>
. . .
 <lft quality="GOLD">
  award:NN(x1) -> grant:NN(x1) make:VB(e1, x2, x1) 
law_court:NN(x2)
 </lft>
</gloss>
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Here variables are enough to bear the relations of the passive 
form, the preposition can be omitted from the LF.

5.3 Possessives - Correction

As pointed out in section 4.2.6, errors regarding possessives can 
be divided into two categories: possessive pronouns which have 
not been transformed into LF and genitive markings which have 
not been identified as such. 

5.3.1 Genitive Marking 

As  mentioned  before,  I  used  SystemH  in  Appendix10  to 
identify  wrongly  transformed  genitive  markings.  The  system 
investigates  each  XWN pos  file  searching  for  those  predicates 
whose structure is: word+’+s+:NN/JJ/VB/RB e.g. employee’s:NN 
in:

employee's:NN(x2) salary:NN(x3)

To do so, for each LF the system builds a list of tuples word+pos 
(predicate without arguments); for e.g. the LF of withholding:

<gloss pos="NOUN" synsetID="00344768">
  <synonymSet>withholding</synonymSet>
 <text> the act of deducting from an employee's salary </text>
. . .
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 <lft quality=“NORMAL"> withholding:NN(x1) -> act:NN(x1) 
of:IN(x1, e1) deducting:VB(e1, x1, x26) from:IN(e1, x2) 
employee's:NN(x2) salary:NN(x3) </lft>
</gloss>

is transformed into:

[['act', 'NN'], ['of', 'IN'], ['deducting', 'VB'], ['from', 
'IN'], ["employee's", 'NN'], ['salary', ‘NN']]

after this, SystemD searches for those words that end with ’s and 
have  no  POS  predicate  as  second  element.  The  output  of  the 
system is a txt file with all these cases, each of them proceeded by 
the quality of the LF, for e.g.:

[NORMAL]  withholding:NN(x1)  ->  act:NN(x1)  of:IN(x1,  e1) 
deducting:VB(e1,  x1,  x26)  from:IN(e1,  x2)  employee's:NN(x2) 
salary:NN(x3)

I  used the output  file  as  starting point  to  manually  correct  the 
resource.
For each retrieved case, I checked whether the ’s particle was a 
genitive  marking  or  not  and  in  the  first  case  I  proceeded  by 
creating the corresponding POS predicate. E.g. the above case of 
employee’s:NN was corrected into:

employee:NN(x2) ’s:POS(x3,x2) salary:NN(x3)

Thanks to this procedure I found that the problem of not identified 
genitive markings appears only in the noun file and in particular 
in normal LFs. I checked and corrected 423 not identified genitive 
markings.
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5.3.2 Missing Possessive Pronouns

I  identified  missing  possessive  pronouns  with  SystemG  in 
Appendix9. Just like SystemH, SystemG takes as input the XML 
structure  of  XWN  and  for  each  LF  it  builds  a  list  of  tuples 
word+pos  (predicate  without  arguments).  It  then  checks  each 
definition  in  XWN:  if  a  possessive  pronoun  is  found  in  the 
definition and not in the corresponding LF the missing possessive 
pronoun case is recorded in a txt file with the structure: 

 
synsetID + missing possessive pronoun+ definition + LF

So, for e.g., for the already seen gloss of tower (see page 114), the 
system knows that there is a possessive pronoun in the definition

a structure taller than its diameter

that is missing in the LF

tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2) 
diameter:NN(x2)

and it records this case in the output as:

04287654 its
a structure taller than its diameter
tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2) 
diameter:NN(x2)

I then used the output of SystemG to manually check the XWN 
files and to correct them when needed. Sometimes I judged the 
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lack of a possessive pronoun passable as it  doesn’t  change too 
much the meaning of the LF and I didn't do any modification, see 
for e.g.:

10145344 his
French composer best known for his operas
  bizet:NN(x1) -> french:JJ(x1) composer:NN(x1) best:RB(e1) 
know:VB(e1, x3, x1) for:IN(e1, x2) opera:NN(x2)

I checked almost 2K cases of missing possessive pronouns most 
of which in the noun file.

5.4 Free Variables - The Parser

Together with Prof. Delmonte we conceived a LF Parser  that 46

counts the number of disconnected variables and corrects most of 
them.  The  data  regarding  disconnected  variables  before  the 
correction are shown in Tab 4.1, section 4.2.1, and they highlight 
an error  rate  of  54% which means that  more than half  of  LFs 
contain some disconnected variables. This result is due also to the 
fact that we considered also dummy variables generated for those 
verbs that don't have all the arguments in the sentence (see section 
3.2.3 and 4.2.1). 
Our purpose with the Parser is not just to count and correct free 
variables,  we  aimed  at  something  more:  providing  a  new 
consistent resource of LFs.
For this reason, the Parser returns as output a new file where, for 
each gloss of XWN, the SynsetID, the Lemma, the Synset and the 

In Appendix13 the Parser code 46
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LF(s) are joined. Each line in the output file is an entry and the 
whole  resource  provides  a  direct  and  easy  access  to  the  LFs 
without loosing the connection with WN and XWN (thanks to the 
SynsetIDs). For instance, the first entry of the verb file in our new 
resource is:

synset(200665984,about-face_VB(e1,x1,x2),[about-face])-
[change_VB(e2,x1,x3),mind_NN(x3),and_CC(e1,e2,e3),assume_VB(e3,x
1,x4),opposite_JJ(x4),viewpoint_NN(x4)]

We named the new resource United eXtended WordNet and I will 
describe the Parser pipeline in the following pages. 

5.4.1 Parser Pipeline

The Parser works on one XWN pos file at a time. It takes as 
input two files,  one containing the list  of LFs and another one 
containing the SynsetIDs following by the Synsets .47

Each  LF  starts  necessarily  with  the  same  lemma  which 
corresponds to the first lemma in the Sysnet, see for e.g :

<gloss pos="VERB" synsetID="00628816">
  <synonymSet>distinguish,  separate,  differentiate,  secern, 
secernate, severalize, severalise, tell, tell_apart</synonymSet>
 <text>
   mark as different; "We distinguish several kinds of maple"  
 </text>
. . .
 <lft quality="GOLD">

 Excerpts of the input files for the noun file are shown in Appendix 14 e 15.47
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 distinguish:VB(e1, x1, x2) -> mark:VB(e1, x1, x2) as:IN(e1, x3) 
different:JJ(x3)
 </lft>
</gloss>

and since each gloss can contain one or more definitions, it can 
contain also one or more LFs, see for e.g.:

<gloss pos="VERB" synsetID="02587500">
  <synonymSet>clash, jar, collide</synonymSet>
 <text>
   be incompatible; be or come into conflict; "These colors 
clash"  
 </text>
. . .
 <lft quality="GOLD">
 clash:VB(e1, x1, x2) -> be:VB(e1, x1, x3) incompatible:JJ(x3)
 </lft>
 <lft quality="GOLD">
 clash:VB(e1,  x1,  x2)  ->  be:VB(e2,  x1,  x4)  in:IN(e2,  x3) 
or:CC(e1,  e2,  e3)  come:VB(e3,  x1,  x5)  into:IN(e3,  x3) 
conflict:NN(x3)
 </lft>
</gloss>

There may be one or more LFs associated to the same SynsetID 
and the parser takes care of this during the process.
To  build  the  UXWN,  the  Parser  has  to:  connect  each 
SynsetID+Synset  with  the  corresponding  LF(s)  and  detect  and 
correct the free variables of each LF.
As to the first point, the connection is done by matching the first 
lemma in the Synset with the lemma heading the LF. After the 
correction of a matched LF, the Parser checks the rest of the LF 
input file (see Appendix15) looking for another occurrence of the 
current  lemma  and  in  that  case  it  keeps  the  same 
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SysnetID+Sysnet.  Therefore,  the  above  gloss  of  clash  is 
transformed in UXWN as two entries, one for each LF, with same 
SysnetID, Lemma and Synset and different LF:

synset(202587500,clash_VB(e1,x1,x2),[clash,jar,collide])-
[be_VB(e1,x1,x3),incompatible_JJ(x3)]

synset(202587500,clash_VB(e1,x1,x2),[clash,jar,collide])-[be_VB-
[e2,x1],in_IN-[e2,x3],or_CC-[e1,e2,e3],come_VB-[e3,x1],into_IN-
[e3,x3],conflict_NN(x3)])

As we can see, free variables of be and come have been removed.
Moreover,  we  added  a  number  in  front  of  the  SynsetID (here 
number 2) which represents the pos of the lemma. We assigned : 1 
to nouns, 2 to verbs,  3 to adjectives and 4 to adverbs. In this way 
the pos of each lemma can be smoothly identified by automatic 
systems even if an entry is treated individually (without knowing 
the file to which it belongs).
We decided to remove dummy arguments of verb predicates to 
give  more  consistency  to  the  LF.  We came  to  this  conclusion 
following Copestake 2009 who suggests that missing arguments 
should be treated appropriately in LF. 

The  Parser  is  divided  into  two  modules:  the  first  one  tries  to 
match variables  in  predicates  with  their  object  counterpart,  the 
second module does the opposite: it  tries to match variables in 
object formulas with their predicate counterparts.
The  Parser  takes  into  account  different  logical  structures,  in 
particular:
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- predicate argument structures governed by verbs, where (as we 
have already seen) number and order of argument are fixed, 
and the event variable might or might not have higher level 
binders or meta level formula, e.g. close:VB(e1,x1,x2);

- prepositions, conjunctions and other similar two place relation 
markers  (e.g.  of:IN(x2,x3)),  where  variables  bind  objects, 
prepositions (when introducing gerundives, e.g. by:IN(e1,e2)) 
and  conjunctions  treated  as  relation  markers  (e.g. 
since:IN(e4,e5));

- object  formulae,  which include simple one place predication 
with just one variable associated to an entity, a property or an 
attribute (e.g. bag:NN(x3)). The same specification is used also 
for  adjectives  and  adverbs  (e.g.  happy:JJ(x1), 
especially:RB(e1));

- meta-level formulae: coordinating conjunctions, which allow to 
refer to sets of objects or predicates (e.g. and:CC(x4,x1,x2,x3), 
or:IN(x7,x4,x5,x6)) and complex nominal compounds with the 
nn-predicate (e.g. nn(x7, x3, x4) truck:NN(x3) trailer:NN(x4)).

Meta level formulae and negations are transformed by reification 
in order to simplify the matching procedures. Coordinations are 
turned into one place predicates e.g.:

and_CC(x6,x1,x2,x3) -> and_CC(xc), coord(xc,x6), coord(xc,x1), 
coord(xc,x2), coord(xc,x3)

while negations are reified:

not_RB(e2) -> neg(xn,e2),not(xn)
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We eliminated all do auxiliaries and associated negation predicate 
directly to the main verb variable in order to eliminate unwanted 
auxiliary information and to associate the negation operator to the 
main verb meaning. A similar procedure was followed for cannot, 
which in XWN if often transformed without decomposition and 
wrongly tagged as noun, as in:

insomniac:NN(x1)  ->  someone:NN(x1)  cannot:NN(x2)  sleep:VB(e1, 
x2, x26)

In  this  way,  part  of  the  wrongly  scoped  negations  has  been 
automatically fixed by the Parser.
The Parser provides two types of correction. The first correction is  
made following lexical information and is addressed to all those 
predicates that contain a dummy variable for an argument which 
does not  exist  in reality.  This was done considering unergative 
verbs, unaccusative verbs, impersonal and weather verbs, verbs 
which  induce  intransitive  structures  and  cases  of  verbs  which 
allow the object to be left unexpressed. The Parser checks also for 
passivised  past  participles  in  order  to  correct  deep  subjects 
omissions. For e.g. the Parser automatically removes the dummy 
argument x26 in the LF of growth:

<gloss pos="NOUN" synsetID="12726302">
  <synonymSet>growth, growing, maturation, development, 
ontogeny, ontogenesis</synonymSet>
 <text> (biology) the process of an individual organism growing 
organically; . . .  </text>
. . .
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 <lft quality=“NORMAL"> growth:NN(x1) -> process:NN(x1) 
of:IN(x1, x2) individual:JJ(x2) organism:NN(x2) grow:VB(e1, x2, 
x26) organically:RB(e1) </lft>
 . . .
</gloss>

which results in UXWN as: 

synset(112726302, growth_NN(x1), [growth, growing, maturation, 
development, ontogeny, ontogenesis])-[process_NN(x1), of_IN(x1, 
x2), individual_JJ(x2), organism_NN(x2), grow_VB-[e1, x2], 
organically_RB(e1)]

The  second  type  of  correction  is  done  considering  structural 
information.  The  Parser  collects  variables  related  to  object 
formula separately from those related to predicate formula and 
then it does a simple intersection. Intersections are used to find 
ungrounded  variables.  In  case  no  intersection  intervenes,  the 
output is marked with the label no intersection which is used by 
the correction module. This is the case of the following example, 
where the intersection of relevant variables is empty:

INPUT
lf(approved_JJ(x1),
[generally_RB(e1),especially_RB(e1),officially_RB(e1),judge_VB(e
1,x5,x1),acceptable_JJ(x3),satisfactory_JJ(x3)]

OUTPUT - correction module
approved_JJ(x1) 6 [x5,x3] no intersection 
lf(approved_JJ(x1),
[generally_RB(e2,e1),especially_RB(e3,e1),officially_RB( e4,e1),
judge_VB(e1,e5,u,x1),acceptable_JJ(e6,e5),satisfactory_JJ(e7,e5)
]). 
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We used the two procedures in a sequence – at  first  we found 
ungrounded  variables  and  then  looked  for  predicates  with 
unneeded  variables  that  coincided  with  the  ones  found  in  the 
previous procedures – and eliminated them. 
The Parser succeeded in automatically correcting most of the LFs 
for which some inconsistency was found, reducing the error rate 
form 56% to 24%, see Table 5.1.
I  worked  then  by  manually  correcting  those  remaining  LFs 
marked with no intersection  by the Parser (more than 5K LFs) 
reducing in this way the the number of errors to the reasonable 
percentage of 15%. 

From this point forward, further corrections are made directly on 
the output of the Parser (UXWN) and not on XWN.

POS FIle
LFs with 

Disconnected 
Variables - After

Total Number of 
LFs % Before % After

Noun 15122 87819 56.00 30.75

Verb 513 13373 67.46 5.69

Adjective 8895 20337 43.74 7.87

Adverb 702 3922 12.23 6.28

TOTAL 25232 125451 54.05 23.82
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5.5 The Case of Proper Names

The Parser works smoothly with three of the four XWN pos 
files: Adjectives, Adverbs and Verbs, but when it started the file 
containing the Nouns a problem arose. WN, and therefore XWN, 
contains definitions for some 18K lemmata starting with a capital 
letter which can be computed as proper names or named entities, 
i.e.  person  names,  organisation  names,  famous  events  names, 
institution names, location names etc. This particular entities need 
to be represented univocally since they denote single referents in 
the world and not classes of individuals like common nouns. Each 
entry  in  WN that  is  a  proper  name  or  a  named  entity  should 
therefore has a Synset that univocally identifies it. For instance if 
we  are  referring  to  Johannes  Gutenberg,  the  inventor  of  the 
printing press, his Synset in WN must contain those elements that 
univocally  identify  him,  such  as:  Johannes_Gutenberg  or 
Johann_Gutenberg  or  J_Gutenberg  or  simply  Gutenberg  since 
without  any  additional  specification  his  surname is  universally 
associated  to  the  inventor,  but  it  can’t  contain  for  e.g.  only 
Johannes. Johannes is a generic proper name that doesn’t identify 
any person in particular and certainly not Johannes Gutenberg.

While working with the parser, it came out that proper names in 
WN are wrongly treated like common nouns and this required a 
further effort of correction.
In the next sections I will take a closer look to the problem of 
proper names.
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5.5.1 Classes and Instances

Talking  about  proper  names  it  is  crucial  to  firstly  clarify  the 
difference between classes and instances.
Let’s start with an example:

a) Women are numerous
b) Rosa Parks is numerous

A doesn’t  mean  that  every  particular  woman is  numerous  but  it 
rather intends that it exists a class of women which contains several 
instances.
B, on the other hand, results as a non sense. This is because women 
denotes a class whereas Rosa Park is an instance of this class. Some 
nouns are conceived as classes and the membership in these classes 
denotes the relations of hyponymy which are the base of the WN 
hierarchy of nouns.
In the first versions of WN this distinction was not considered and 
both  concepts  were  drawn  with  the  is-a  relation  and  therefore 
encoded in the same way:

- Rosa Park is a woman
- A heroine is a women

Ontologists  highlighted  the  need  of  representing  this  important 
distinction between classes and instances. In particular Gangemi et 
al. 2001 and Oltramani et al. 2002 complain about the lack of two 
different representations for individuals and concepts in WN.
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In his work Oltramani points out the confusion between concepts 
and individuals as one of the critical point of the early WN versions. 
This problem is considered to be the result of an expressivity lack 
which impedes the distinction between concept-to-concept relations 
(subsumption)  and  individual-to-concept  ones  (instantiation). 
Examples  of  this  deficit  are  the  hyponyms  of  composer  which 
consist of classes such as contrapuntist or songwriter as well as of 
individuals  (e.g.  Beethoven).  Under  organisation  there  are  the 
conceptual hyponyms alliance, federation, company, together with 
instances  like  Irish_Republican_Army,  Red  Cross,  and  so  on, 
without any particular distinction.
Miller and Hristea 2006 propose their  approach to fulfil the gap. 
They  start  from  considering  the  features  of  instances:  they  are 
nouns, precisely proper names (therefore they should be capitalised) 
and most important, they should refer to a unique entity. 
The identification is  easy for  cases  such as  persons or  cities  but 
unfortunately  the  aforementioned  properties  don’t  identify 
univocally instances because they are shared by other no-instance 
words. For this reason the authors have to proceed with a manual 
inspection of the candidates nouns.
In fact,  there are some particular  terms which can be considered 
both as instances and as classes. This is the case of Beethoven:

c) Beethoven was born in Germany, on December 16, 1770 -     
class

d) She loved to listen to Beethoven - instance

In c  it  is  clear that Beethoven has a unique referent,  the german 
composer, while in d it is used to refer to the composer’s music.
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When a  word has  two distinct  referents  they are  both  tagged as 
instances by the authors. For example, Bethlehem in Pennsylvania 
and the one near Jerusalem.
Furthermore, when an instance has more than one hypernym it is 
labelled  as  an  instance  of  all  of  them:  Venus  is  an  instance  of 
terrestrial planet (“a planet having a compact rocky surface like the 
Earth’s”) and also of inferior planet (“any of the planets whose orbit 
lies inside the earth's orbit”). But identifying instances is not always 
a straightforward task. There might be conflicts based on subjective 
interpretation of words. Miller and Hristea report their difficulties in 
classifying for example geographical regions that do not have well-
defined political boundaries (such as the Antarctic Zone or Barbary 
Coast), or sacred texts especially the Christian Bible which can be 
treated as  an  instance  or  as  a  class  with  several  hyponyms (e.g. 
American Revised Version, Douay, Vulgate etc.). 
Miller  and  Hristea  tagged  more  than  7,000  words  using  the 
annotation @ vs @i. Where @ means class as in: {peach,drupe,@}, 
a  peach  is  a  drupe  or  all  peaches  are  drupes,  and  @i  means 
instance: {Berlin,city,@i}, Berlin is an instance of a city.
Miller and Hristea’s classification has been included in WN starting 
from version 2.1, so unfortunately XWN doesn't hold it.

5.5.2 Proper Names

But  what  is  a  proper  name?  Is  there  any  difference  between 
proper names and proper nouns?
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Huddleston  in  his  outline  of  the  English  Grammar  (Payne  and 
Huddleston  2002)  asserts  that  there  are  two  reasons  to  define  a 
distinction between proper names and proper nouns:

« a)  Although  a  proper  name may have  the  form of  a  proper 
noun, as in the case of John or London, it need not have. Thus The 
Open University is a proper name but not a proper  noun:  what 
distinguishes it from, say, the older university is precisely that it is 
the official name of a particular institution.

b)  Proper  nouns do not  always function as  the head of  NPs 
serving as proper names.  Thus in They weren’t  talking about the 
same Jones the proper noun Jones is head of the NP the same Jones 
but this is clearly not a proper name. Similarly in He likes to think of 
himself as another Einstein, The Smiths are coming round tonight 
etc.    »

The distinction is not universally assumed (see Chalker 1992) and 
the Huddlestonian theory has been criticised by Anderson 2007 who 
considers it vague and unnecessary. The latter affirms the distinction 
is acceptable only if proper names cannot be considered as complex 
proper nouns.
I won’t follow the splitting theory and I will use the two terms as 
synonyms and I  will  refer  to  them using PN.  The no-distinction 
option is already employed for example by Toral et al. 2008.
Following  the  idea  of  instance,  what  it  is  important  here  is  the 
concept of a term which refers to a unique entity. In the following 
mentioned  lexical  resources  the  encoded  PNs  are  words  or 
compound  words  which  denote  singular  individuals  (and  places, 
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organisations etc.). Thus, for example, Jean Baptiste Poquelin is a 
PN as much as Molière and they both refer to the same entity: the 
french author of the famous theatrical comedy Tartuffe.

The category of PNs was often ignored or neglected in the first e-
dictionaries and it is still roughly encoded in some resources.
Identifying  PNs  is  essential  considering  that  they  occur  very 
frequently in natural language and constitute a significant part  of 
many  texts.  For  instance,  they  represent  a  considerable  part  of 
unknown words in a corpus and more than 10% of  newspaper texts. 
A resource which includes PNs has to cope with the richness of 
their forms and variants and with their temporary nature. Depending 
on the task, old PNs may not be useful anymore while new PNs 
should be constantly included in the resource. PNs are the fastest 
growing  syntactic  category  and  each  PN  can  have  spelling 
variations. For example the name Gaddhafi is a good example of a 
name  with  multiple  variants,  see:  Qaddhafi,  Qaddafi,  Gaddafi, 
Kaddafi,  Khadafy,  Qadhafi,  Qadaffi  and  Gadaffi.  This  richness 
could be not only a matter of spelling variation. One can refer to the 
same individual with his whole name, or just with a part of it, or 
adding a title e.g. Jefferson, Thomas Jefferson, President Jefferson 
or  Jesus,  Jesus  of  Nazareth,  the  Nazarene,  Jesus  Christ,  Christ, 
Savior, Saviour, Good Shepherd, Redeemer, Deliverer (from WN).
This  becomes  much  more  complex  if  we  think  about  PNs  in  a 
multilingual environment; for instance, the name of the pope John 
Paul II changes in Italian - Giovanni Paolo II, in French - Jean Paul 
II,  in  Croatian  -  Ivan Pavao II,  in  Spanish  -  Juan Pablo  II  etc. 
Furthermore, PNs may have common abbreviations (e.g Edw.  for 
Edward or Eliz. for Elizabeth).
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5.5.3 Proper Names - Resources

Despite the huge amount of information encoded in WN, there 
has not been made any special effort to include PNs and only 1% of 
the almost 80000 nominal entries in WN consists of PNs.
This  fact  makes  WN inadequate  for  treating  texts  with  PNs and 
points out the need of the creation of specific resources of PNs or 
the enrichment of generic lexical resources with PNs.
Both approaches have been developed and there exist several works 
regarding  the  creation  of  specific  resources  for  PNs  and  the 
enrichment of generic resources with them.

Most of the new resources of PNs are multilingual. See for instance: 
the Multilingual Ontology of Proper Names (Krstev er al. 2005), the 
Multilingual  Onomasticon  (Sheremetyeva  1998),  ProlexBase  2 
(Maurel 2008) and its extension ProlexFeeder (Savary et al. 2013), 
and GeoNames for  toponyms.  See also The Fine-Grained Proper 
Noun Ontology (Mann 2002) for an example of their applicability 
to  QA tasks.  This  kind  of  resources  is  structured,  organised  in 
hierarchies  and  sometimes  mapped  to  WN  synsets  and/or  to 
Wikipedia  entries.  More  advanced  projects  aim  to  automatically 
solve the problem of the fast growing  feature of PNs. This is the 
case of JRC-Names, a daily updated resource containing multi-word 
entities,  their  acronyms  and  their  variants.  The  JRC  researchers 
exploit  the  amount  of  data  collected  by  the  European  Media 
Monitor (EMM)  which automatically gathers and analyses up to 48

220,000 news articles per day in about 70 different languages from 
up  to  7,000  news  sites  (Steinberger  et  al.  2009).  Named  Entity 

 http://emm.newsbrief.eu/NewsBrief/clusteredition/it/latest.html48

�131

http://emm.newsbrief.eu/NewsBrief/clusteredition/it/latest.html


Recognition and classification of entity types (person, organisation, 
location) are performed on this data for 21 languages. JRC-Names 
is a good example of a solid resource of multilingual open-domain 
acronyms and abbreviations of  PNs.  See more at  Ehrmann et  al. 
2017 and Jacquet et al. 2016.

5.5.3.1 WN PNs Extensions

Regarding the enrichment of generic resources with PNs, and in 
particular the enrichment of WN, there are some interesting projects 
which aim to cope with the problem: Proper Noun Thesaurus (De 
Loupy et al. 2004), Named Entity WordNet (Toral et al. 2008) and 
the linkage of a gazetteer to WN made by Sundheim (Sundheim et 
al. 2006).
With Named Entity WordNet Total and colleagues attempt to extend  
WN with PNs automatically extracted from one of the most widely 
exploited source of dynamic and structured information: Wikipedia. 
They are aware of the importance of employing solid PN resources 
in several NLP tasks and they admit the inadequacy of WN on this 
subject. As mentioned before, WN distinguishes between common 
nouns (classes)  and instances (PN) only from version 2.1,  where 
they constitute less than 8 thousand entries (synsets). This shortage 
is closely related to the difficulty of creating a lexical resource for a 
class of words which grows rapidly, i.e. PNs. At the start, WN was 
created manually and it is almost unfeasible or definitely expensive 
to manually populate LRs with PNs.  Toral’s  approach essentially 
consists of two phases: in the first one the synsets-classes of WN are 
linked  to  Wikipedia  categories,  subsequently  the  entries  of 
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Wikipedia are checked in order to identify PNs. The identified PNs 
are encoded as new Synsets and linked to the input Synsets with 
instance of relations. The identification of PNs is done following 
different capitalisation norms, limiting in this way the approach to 
only those languages which share such norms (in this case: Catalan, 
Dutch, French, Italian, Norwegian, Portuguese, Romanian, Spanish 
and  Swedish).  Some  statistical  evaluations  are  made  to  exclude 
unusual capitalisation in order to evaluate as PNs only those terms 
which occur capitalised more than 91% of the times. To avoid mis-
classification  of  nouns  which  can  be  both  classes  and  instances, 
entry occurrences are examined in the body article of the entry and 
not in the Web which may be often irregular. On this way, for e.g. 
the entry Chldren’s Machine (name for a particular model of laptop) 
may  occur  in  a  sentence  where  children  and  machine  refer  to 
common  nouns.  Looking  for  this  entry  only  in  the  body  of  its 
Wikipedia  article  avoids  mistakes.  In  order  to  work  on  a  bigger 
portion of text and achieve more reliable results, for each Wikipedia 
article  the  research  of  PNs  has  been  spread  on  the  different 
languages which follow the same capitalisation norms. Moreover, 
Toral and colleagues do not consider only monosemous words from 
WN and for each polysemous word mapped to a Wiki-category they 
consider the instances for each of its senses. For example the word 
Obelisk has two senses in WN: 1) stone pillar and 2) character used 
in printing. Obelisk is mapped to the Wiki-category Obelisks where 
they  found the  instance  Washington  Monument.  In  this  case,  the 
disambiguation is straightforward and the sense chosen is the first 
one. Named Entity WordNet contains more than 310 thousand PN 
and  almost  400  thousand  instance  of  relation  and  is  publicly 
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available.  It  represents  an  interesting  and  valid  answer  to  the 
shortage of PNs in WN.

5.5.4 PNs in WN

The previous considerations and examples should have cleared 
enough  the  concept  of  instance  and  the  need  of  well  structured 
resources which have to take into account the distinction between 
classes and instances. The matter of correctly including PNs in the 
resources, and in particular in WN, has been widely studied and it is 
an indispensable point to consider while building new resources.
XWN doesn’t include terminology extensions of PNs like Named 
Entity  WN,  and  this  is  something  I  won’t  address  here,  but  the 
previous  considerations  made  me  clear  the  idea  that  the  new 
resource UXWN needs to correctly store instances and in particular 
names of people, which are about 4K in XWN.  

The reflexion about PNs comes out from the analysis of XWN and 
the discovery of its inadequacy about this topic. It is true that the 
distinction between instances and classes was introduced only from 
WN 2.1, and therefore it is missing in XWN which is based on WN 
2.0, but this distinction didn't solve the problem of how Sysnets of 
PNs  are  wrongly  structured;  ergo  this  is  a  problem  that  affects 
previous and later versions of WN as well as XWN independently 
from the version of WN which it is based on.
To understand the problem one needs to take a closer look to how 
PNs  are  encoded  in  WN.  I  have  already  said  that  instances  are 
included  in  WN starting  from the  version  2.1,  but  how?  If  one 
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searches the database for a proper name the result will clearly show 
the tag instance, as in:

but the problem still remains in how the Synsets of instances are 
structured.
Contrary to expectations, the structure for this kind of entities in the 
WN database resembles the one used for common nouns, which, as 
we know, are used to denote classes of individuals.
Each PN needs a structure that can accurately identify its referent. 
PNs are used to individuate uniquely a single referent in the world - 
they are rigid designators according to Kripke (Kripke 1980). This 
means  that  each  PN  designates  the  same  object  in  all  possible 
worlds in which that  object  exists  and never designates anything 
else.
Let's consider Synsets: Synsets are a collection or set of synonym 
lemmata  which  may  constitute  a  single  concept  in  a  specific 
language.  Lexicons  of  different  languages  may  vary  a  lot  and  a 
Synset made of several words for one concept, translated in another 
language, may turn up to be uniquely denoted by one single lemma. 
The first lemma of a Synset or the only present lemma (in case the 
Synset  is  a  singleton),  represents  the  Synset  and  in  case  of 
polysemous  common  nouns  it  can  appear  as  head  of  different 
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Synsets,  marked  with  different  SynsetIDs,  as  for  instance  plant, 
which is associated to the following four SynsetIDs: 

00014510 plant, flora, plant_life
03806817 plant, works, industrial_plant plant
05562308 plant
09760967 plant

 

From a lexicographic point of view these four entries instantiate 
totally different senses and are associated with different glosses:

00014510 a living organism lacking the power of 
locomotion

03806817 buildings for carrying on industrial labor
05562308 something planted secretly for discovery by 

another
09760967 an actor situated in the audience whose acting 

is rehearsed but seems spontaneous to the 
audience

As can be seen, the offset indices are very far from one another, 
thus  indicating  the  distance  in  meaning  involved  in  each  of  the 
different lemma forms. It would be incorrect to have same lemmata 
in  adjacency within  the  same semantic  lexical  field.  Polysemous 
words  in  WN  are  not  many,  and  their  presence  in  distant  and 
different  semantic  lexical  fields  is  an  indication  of  the  high 
frequency of usage of the word in the language. 
The problem is that in WN PNs are stored like polysemous common 
nouns,  and  the  first  lemma  of  the  Synset  is  shared  by  different 
Synsets. This may sound quite strange, seeing that the only meaning 
associated  to  a  proper  name  is  the  referent  which  they  should 
designate. This usually happens for person names which share the 
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name or the surname. As an example, here is the list of different 
entries associated to John, first lemma: 

06043175 John, Gospel_According_to_John
10364758 John, Saint_John, St_John, 

Saint_John_the_Apostle, 
St_John_the_Apostle, 
John_the_Evangelist, 
John_the_Divine

10365110 John, King_John, John_Lackland

John first appear at SynsetID 06043175 but then the two following 
mentions appear one adjacent to the other - thus belonging to the 
same semantic field. Furthermore, it is well known that to identify a 
person usually the name is not sufficient and the title or the surname 
is needed. So it is obvious that first names are ambiguous but they 
don’t have to be regarded polysemous for this reason.
In  the  case  of  John  we  are  dealing  with  three  totally  different 
referents: the Gospel, the Apostle and the King, So why use John as 
first lemma and not one of the following more distinctive lemmata 
(e.g. Saint John or King John)?
This is totally misleading from a semantic point of view, because 
here we are not dealing with polysemous words as was the case 
with plant,  but  rather  with referential  identity.  Besides,  the word 
John by itself can have additional uses. Consider for instance the 
corresponding lower case word john which is used with ambiguous 
meanings: 
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10076833 whoremaster, whoremonger, john  

04274300 toilet, lavatory, lav, can, john, privy, 
bathroom 

Here john is not the first member of the Synset but the difference in 
meaning is clearly understood by a native speaker, and is testified 
again  by  the  distance  in  terms  of  offset  index  values.  This  two 
examples are an additional proof to the fact that using a single name 
of person as referent in a Synset might be deceptive. 

In WN there are only sparse cases of first names as first lemma in 
adjacent Synsets before reaching the section of the Noun file where 
all  proper  names are  collected.  Here,  the  choice  to  use  a  proper 
name or a surname as referent of the Synset becomes very common 
in the more restricted list  of person names made up of some 4K 
entries  that  start  around  SynsetID  110102000.  Here  are  some 
examples: 

110102151 Aaron
110102325 Aaron, Henry_Louis_Aaron, Hank_Aaron 

110105319 Agrippina, Agrippina_the_Elder  
110105487 Agrippina, Agrippina_the_Younger  

The situation is even more complex when the shared lemma is a 
common english surname such as Anderson or Robinson:

110112423 Anderson, Carl_Anderson, 
Carl_David_Anderson  

110112636 Anderson, Marian_Anderson  
110112784 Anderson, Maxwell_Anderson  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110112893 Anderson, Philip_Anderson, 
Philip_Warren_Anderson, Phil_Anderson  

110113110 Anderson, Sherwood_Anderson

110534424 Robinson, Edward_G._Robinson, 
Edward_Goldenberg_Robinson

110534598 Robinson, Edwin_Arlington_Robinson
110534737 Robinson, Jackie_Robinson, 

Jack_Roosevelt_Robinson
110534919 Robinson, James_Harvey_Robinson
110535121 Robinson, Lennox_Robinson, 

Esme_Stuart_Lennox_Robinson
110535282 Robinson, Ray_Robinson, 

Sugar_Ray_Robinson,Walker_Smith
110535526 Robinson, Robert_Robinson, 

Sir_Robert_Robinson

Instances are clearly treated as common nouns, when instead the 
first  lemma of  the Synset  should be the distinctive trait  of  the 
entry and not something shared with others, furthermore in the 
same semantic field.
It  is  clear  that  this  unmotivated  choice  of  representing  PNs is 
completely useless and needs to be reorganised.

5.5.5 PNs reorganisation

Regarding PNs, the purpose here is to provide the new resource 
UXWN with the correct organisation of these entities.  
To build  the  resource,  the  Parser  takes  as  input  two files,  one 
containing  the  list  of  LFs  and  and  another  one  containing  the 
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SynsetIDs  following  by  the  Synsets.  For  the  reorganisation  of 
PNs Synsets I worked on the input files.

5.5.5.1 PN Errors Identification

The first step in the reorganisation of PNs is identifying those 
PNs with  different  Synset  IDs and same first  member of  the 
synset:

110442065 Mayer, Louis_B_Mayer, Louis_Burt_Mayer
110442275 Mayer, Marie_Goeppert_Mayer

 

To save time, I decided to parse automatically the 4K entries of 
person names in order to highlight the errors.
SystemM  in  Appendix16  takes  as  input  the  LFs  file  and  the 
SynsetIDs+Sysnet file and returns the same files with the errors 
marked by a *.
The SynsetIDs+Sysnet  file  is  taken as  input  as  Synsets.txt  and 
each entry  is  converted into  a  list.  Since  the  file  is  already in 
alphabetic order, I can proceed comparing the entries two at time. 
I start with the first entry which is compared with the second one, 
then the second one is compared with the third one and so on… If 
the two entries have different Synset IDs but same first lemma 
they are marked with *. For example, part of the input file (see 
Appendix 17):

gloss_synsetID(110442065,

[Mayer,Louis_B_Mayer,Louis_Burt_Mayer])

gloss_synsetID(110442275,[Mayer,Marie_Goeppert_Mayer])
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gloss_synsetID(110442455,

[Mays,Willie_Mays,Willie_Howard_Mays_Jr_,the_Say_Hey_Kid])

gloss_synsetID(110442607,[Mazzini,Giuseppe_Mazzini])

gloss_synsetID(110442783,

[McCarthy,Joseph_McCarthy,Joseph_Raymond_McCarthy])

gloss_synsetID(110442979,

[McCarthy,Mary_McCarthy,Mary_Therese_McCarthy]) 

has the following output (see Appendix 18):

*gloss_synsetID(110442065,
[Mayer,Louis_B_Mayer,Louis_Burt_Mayer])  

gloss_synsetID(110442275,[Mayer,Marie_Goeppert_Mayer])  

gloss_synsetID(110442455,

[Mays,Willie_Mays,Willie_Howard_Mays_Jr_,the_Say_Hey_Kid])  

gloss_synsetID(110442607,[Mazzini,Giuseppe_Mazzini])  

*gloss_synsetID(110442783,
[McCarthy,Joseph_McCarthy,Joseph_Raymond_McCarthy])  

gloss_synsetID(110442979,

[McCarthy,Mary_McCarthy,Mary_Therese_McCarthy])

When an error is identified, the first lemma of the entry is stored 
in a list (see Appendix 19):

 […, mayer, mccarthy, mccormick, mead, meade, meissner, 
menninger, meredith,…]

which is used to analyse the second input file, the LF file (see 
Appendix 20 ):

lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])

lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f

�141



or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])

lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)])

If the first lemma of the LF is in the list, the LF is marked with * 
(see Appendix 21):

*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])

*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f
or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])

lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)]) 

5.5.5.2 PN Errors - Correction

Now that errors have been identified and marked, I can proceed 
with  their  correction.  This  second  task  of  the  process  is  done 
manually due to the diversity of  PN forms.
For  the  SynsetID+Synset  file  it  is  often  sufficient  to  add  first 
names to a shared surname (or vice-versa) as in:

gloss_synsetID(110305694,
[Haldane,Elizabeth_Haldane,Elizabeth_Sanderson_Haldane])

gloss_synsetID(110305872,
[Haldane,John_Haldane,John_Scott_Haldane])

which have been corrected in:
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gloss_synsetID(110305694,  
[Haldane_Elizabeth,Elizabeth_Haldane,Elizabeth_Sanderson_Haldane
])

gloss_synsetID(110305872,  
[Haldane_John,John_Haldane, John_Scott_Haldane])

but in several cases a human interpretation is needed. This is the 
case for e.g. of Henry_II:

gloss_synsetID(110323405,[Henry_II])

gloss_synsetID(110323655,[Henry_II])

here there is no any surname to add for identifying the individuals 
and I have to decide how to proceed. I solved the ambiguity by 
adding the feature of_England and of_France but it is clear that 
occurrences of this kind must be considered case by case:

gloss_synsetID(110323405,[Henry_II_of_England])

gloss_synsetID(110323655,[Henry_II_of_France])

Human  interpretation  is  even  more  required  for  the 
disambiguation of LFs.   For instance,  we need to know which 
Rousseau was the French philosopher and which one the French 
painter  between  Jean  Jacques  and  Henri  to  disambiguate  the 
corresponding LF:

gloss_synsetID(110541545,
[Rousseau,Jean-Jacques_Rousseau,]).

gloss_synsetID(110541808,
[Rousseau,Henri_Rousseau,Le_Douanier_Rousseau,])

lf(rousseau_NN(x1),
[french_JJ(x1),philosopher_NN(x2),and_CC(x1,x2,x3),writer_NN(x3)
,born_VB(e1,x1),in_IN(e1,x4),switzerland_NN(x4)])
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lf(rousseau_NN(x1),
[french_JJ(x1),primitive_JJ(x1),painter_NN(x1)])

After completing the disambiguation of PNs Synsets and PNs LFs 
in the two input files, I started again the Parser in order to finish 
the  correction  of  free  variables  and  complete  the  creation  of 
UXWN. 

5.6 Duplicate LFs

Every  sense  of  a  word  needs  to  be  identified  with  an 
unequivocal definition. If this doesn’t happen, and two LFs are 
identical  of  each  other,  the  meaning  associated  to  one  Synset 
would be interchangeable with the meaning associated to another 
Synset, which is clearly a sign of inconsistency.
I checked all the LFs in UXWN and I found duplicate LFs in all 
the four pos categories. There are two cases of duplicates: 

1. Same synsetID, same lemma, same LF. In this case LFs are 
copies and need to be removed, e.g.:

synset(201238255,  line_VB(e1,  x1,  x2),  [line])-[mark_VB-[e1,  x1], 

with_IN-[e1, x3], line_NN(x3)]).
synset(201238255,  line_VB(e1,  x1,  x2),  [line])-[mark_VB-[e1,  x1], 
with_IN-[e1, x3], line_NN(x3)]).

This is due to the fact that in XWN some entries have a double 
LF, e.g.:

<gloss pos="VERB" synsetID="01238255">
  <synonymSet>line</synonymSet>
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 <text>mark with lines; "sorrow had lined his face"</text>
. . .
 <lft quality="GOLD">
 line:VB(e1, x1, x2) -> mark:VB(e1, x1, x4) with:IN(e1, x3) 
line:NN(x3)
 </lft>
 <lft quality="GOLD">
 line:VB(e1, x1, x2) -> mark:VB(e1, x1, x5) with:IN(e1, x3) 
line:NN(x3)
 </lft>
</gloss>

In the above case the Parser links the SynsetID with the two LFs, 
and after correcting them (free variables x4 and x5 are removed) 
the result in UXWN are two entries with same synsetID and LF.

2. Different synsetID, same lemma, same LF. In this case two 
(ore more) senses of a word have the same definition, e.g.:

synset(200621145, multiply_VB(e1, x1, x2), [multiply])-[combine_VB-

[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).
synset(200239103, multiply_VB(e1, x1, x2), [multiply, manifold])-

[combine_VB-[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).

Also here, the problem comes from some entries in XWN where a 
lemma is  associated  with  one  LF plus  the  one(s)  of  the  other 
senses of the lemma, e.g.:

<gloss pos="VERB" synsetID="00621145">
  <synonymSet>multiply</synonymSet>
 <text>combine by multiplication; "multiply 10 by 15"</text>
 . . . 
 <lft quality="GOLD">
 multiply:VB(e1,  x1,  x2)  ->  combine:VB(e1,  x1,  x2)  by:IN(e1,  x3) 
multiplication:NN(x3)
 </lft>
</gloss>

<gloss pos="VERB" synsetID="00239103">
  <synonymSet>multiply, manifold</synonymSet>
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 <text>combine or increase by multiplication; "He managed to multiply 
his profits"</text>
  …
 <lft quality="GOLD">
 multiply:VB(e1, x1, x2) -> combine:VB(e2, x1, x4) or:CC(e1, e2, e3) 
increase:VB(e3, x1, x5) by:IN(e1, x3) multiplication:NN(x3)
 </lft>
 <lft quality="GOLD">
 multiply:VB(e1,  x1,  x2)  ->  combine:VB(e1,  x1,  x4)  by:IN(e1,  x3) 
multiplication:NN(x3)
 </lft>
</gloss>

The Parser produces three entries for the above example:

synset(200621145, multiply_VB(e1, x1, x2), [multiply])-[combine_VB-

[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).
synset(200239103, multiply_VB(e1, x1, x2), [multiply, manifold])-

[combine_VB-[e2, x1], or_CC-[e1, e2, e3], increase_VB-[e3, x1], by_IN-
[e1, x3], multiplication_NN(x3)]).
synset(200239103, multiply_VB(e1, x1, x2), [multiply, manifold])-

[combine_VB-[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).

and the last one must be removed.
Here below I illustrate in Table 5.2 the situation I found checking 
for these mistakes.

POS FIle LFs Duplicate LFs - 
SameSynsetID

Duplicate LFs - 
DifferentSynset

ID
Duplicate LFs - 

TOTAL

Noun 91,927 253 318 3571

Verb 14,447 8 98 106

Adjective 20,314 52 54 106

Adverb 3982 2 20 22

TOTAL 130,670 315 490 3805
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We can see that this kind of errors doesn’t seriously compromise 
the  resource  as  other  errors  do,  and  that  the  most  affected 
category is again that of nouns.
I automatically inspected UXWN by building a system (System 49

L in Appendix 22) that takes as input the resource and returns as 
output two files with the duplicate LFs, one file for each of the 
above mentioned cases. The output files contain SynsetID, lemma  
and LF of each duplicate LF.
To clean UXWN from unneeded LF duplicates, I used the output 
files of systemN to manually retrieve and remove the unwanted 
LFs.

5.7 Pos Tagging Errors - Correction

As previously described in section 4.2.5, the problem of wrong 
pos labels is quite common in XWN LFs. Unlike other types of 
errors, pos tagging errors occur both in the LHS and in the RHS 
of the LFs. Errors in the RHS are various and their total number is 
difficult to estimate. On the contrary, errors in the LHS have been 
measured and they are 1311 (only in the noun file).
I treated LHS errors and RHS errors separately:

LHS errors have been adjusted directly by the Parser previously 
described. Each LF taken by the Parser for the correction is then 
returned in UXWN with the correct LHS pos label. So for e.g. the 
LF of flip which was wrongly transformed as adjective in XWN:

 In appendix 22 and 23 the SystemL and its output for the adjective section (as example)49
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<gloss pos="NOUN" synsetID="01176224">
  <synonymSet>flip, toss</synonymSet>
 <text> the act of flipping a coin </text>
. . .
 <lft quality="NORMAL">
  flip:JJ(x3) -> act:NN(x1) of:IN(x1, e2) flip:VB(e2, x1, x2) 
coin:NN(x2)
 </lft>
</gloss>

results with the correct pos label in UXWN:

synset(101176224,flip_NN(x1),[flip,toss])-
[act_NN(x1),of_IN(x1,e2),flip_VB-[e2,x2],coin_NN(x2)]

RHS errors have been manually corrected. Since their detection  
was not systematic due to the multiform nature of the errors and 
the incongruities with the parse trees, I proceeded in two ways: 
firstly, using regex I searched for the most common pos tagging 
mistakes (colours, numbers, nationality adjectives) and I corrected 
them; secondly, for each LF I manually inspected for whatever 
reason during the whole work of correction, I checked every pos 
labels and corrected the errors. Here below some typical examples 
regarding nationality adjectives and colours; in the LF of dulse a 
second wrong pos label has been assigned to the noun seaweed:

XWN
orpington:NN(x1) -> english:NN(x1) breed:NN(x2) of:IN(x1, x3) 
large:JJ(x3) white-skinned:JJ(x3) chicken:NN(x3)

UXWN
synset(101713098,orpington_NN(x1),[‘Orpington'])-
[english_JJ(x1),breed_NN(x1),of_IN(x1,x3),large_JJ(x3),'white-
skinned_JJ'(x3),chicken_NN(x3)]

XWN
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dulse:NN(x1) -> coarse:JJ(x1) edible:JJ(x1) red:NN(x1) 
seaweed:VB(e1, x2, x1)

UXWN
synset(101339113,dulse_NN(x1),[dulse,'Rhodymenia_palmata'])-
[coarse_JJ(x1),edible_JJ(x1),red_JJ(x1),seaweed_NN(x1)]

5.8 Compound Nouns - Correction 

As seen in section 4.2.2, the detection of nominal compounds is 
a  tricky  task  which  leads  to  different  representations  in  XWN 
LFs. 
In particular, CNs are transformed sometimes by means of the nn-
predicate (nn(x4, x2, x3) strike:NN(x2) zone:NN(x3)) and can also 
occur  as  single  words  (baseball_team:NN(x2)).  The most  serious 
problem arises when CNs are not detected and appear in the LF as 
different predicates, with disconnected variables:

XWN
malevolent_program:NN(x1)  ->  computer:NN(x1)  program:NN(x2) 
design:VB(e1,  x4,  x1)  to:IN(e1,  e2)  have:VB(e2,  x1,  x3) 
undesirable:JJ(x3) harmful:JJ(x3) effects:NN(x3)

The sense of this LF results to be that malevolent program is a 
computer designed to have undesirable and harmful effect while it 
is instead a computer program, a software not an hardware. 
To cope with this problem I considered the fact that many CNs 
are  stored  in  WN and  therefore  they  appear  in  the  Synsets.  I 
decided to automatically compare the sequences of nouns in the 
LFs  with  the  nouns  in  the  Synsets.  With  this  purpose  I  built 
SystemP in Appendix 25. I decided to treat only CNs - and not 
nominal  compounds  in  general  -  mostly  because  they  are 
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numerous  in  the  resource  and  also  because  their  misdetection 
always bring to a wrong LF while instead,  for instance,  LF of 
nominal compounds made of adjective+noun are often acceptable 
although not considered as compounds, e.g.:

synset(100093905, playing_NN(x1), [playing])-[act_NN(x1), 
of_IN(x1, e1), play_VB-[e1, x2], musical_JJ(x2), 
instrument_NN(x2)]

Moreover,  I  decided  to  work  only  on  simple  CNs and  not  on 
coordinated CNs (e.g. goat and camel hair) for which particular 
attention was provided by Rus in  Rus 2002/2.
The first  step is  to gather all  the lemmata from the Synsets of 
nouns. This is done with SystemO in Appendix24, which takes 
care of splitting Synsets with multiple lemmata and returns a txt 
file with one lemma per line.
Now that the list of nouns is available, for each LF, the system 
compares possible sequences of nouns with the lemmata in the 
list. It works directly on UXWN. Every time two nouns appear 
one next to the other in the LF, and there is no nn-predicate, it 
tries to find their union in the list by connecting them in different 
ways. So for e.g. in the following entry the SystemO finds the two 
consecutive nouns health and care and tries to connect them in 
different ways (healthcare, health-care, health_care):

synset(100999111, healthcare_delivery_NN(x1), [healthcare_delivery, 
health_care_delivery, care_delivery])-[provision_NN(x1), of_IN(x1, x2), 
health_NN(x2), care_NN(x3)]

The results are compared with the list of nouns and one of them 
has a match in the list: healthcare. 
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While replacing the two predicates with the CN one, the system 
needs to take care also of variables.  They have to be correctly 
bound and with this purpose it keeps the first one. The resulting 
LF in UXWN is:

synset(100999111, healthcare_delivery_NN(x1), [healthcare_delivery, 
health_care_delivery, care_delivery])-[provision_NN(x1), of_IN(x1, x2), 
healthcare_NN(x2)]

The LF results to be well structured, variables of arguments are 
correctly bound among them and the whole sense is preserved.
The first run of the system was done looking for CNs made of 
three  words,  in  this  way  it  identifies  CNs  like: 
little_bighorn_river,  roman_catholic_church,  sun_myung_moon, 
posterior_cardinal_vein  etc.  Also in this case the system keeps 
the first variables and succeed in correcting LFs such as:

UXWN - Before SystemP
synset(101225246, tarawa_NN(x1), ['Tarawa', 'Makin', 'Tarawa-
Makin'])-[battle_NN(x1), in_IN(x1, x2), world_NN(x2), 
war_NN(x3), ii_NN(x4), in_IN(x2, x5), pacific_NN(x5)]

UXWN - After SystemP
synset(101225246, tarawa_NN(x1), ['Tarawa', 'Makin', 'Tarawa-
Makin'])-[battle_NN(x1), in_IN(x1, x2), world_war_ii_NN(x2), 
in_IN(x2, x5), pacific_NN(x5)]

With the second run the system looks for CNs made of two words 
and  corrects  them  in  the  same  way.  So  for  example,  in  the 
following case, the system firstly identifies the three-words CN 
new_york_bay and then the two-words CN liberty_island:

UXWN - Before SystemP
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synset(104141426, statue_of_liberty_NN(x1), 
['Statue_of_Liberty'])-[large_JJ(x1), monumental_JJ(x1), 
statue_NN(x1), symbolize_VB-[e1, x1, x2], liberty_NN(x2), 
on_IN(x2, x3), liberty_NN(x3), island_NN(x4), in_IN(x3, x5), 
new_NN(x5), york_NN(x6), bay_NN(x7)]

UXWN - After SystemP - First Run
synset(104141426, statue_of_liberty_NN(x1), 
['Statue_of_Liberty'])-[large_JJ(x1), monumental_JJ(x1), 
statue_NN(x1), symbolize_VB-[e1, x1, x2], liberty_NN(x2), 
on_IN(x2, x3), liberty_NN(x3), island_NN(x4), in_IN(x3, x5), 
new_york_bay_NN(x5)]

UXWN - After SystemP - Second Run
synset(104141426, statue_of_liberty_NN(x1), 
['Statue_of_Liberty'])-[large_JJ(x1), monumental_JJ(x1), 
statue_NN(x1), symbolize_VB-[e1, x1, x2], liberty_NN(x2), 
on_IN(x2, x3), liberty_island_NN(x3), in_IN(x3, x5), 
new_york_bay_NN(x5)]

As last run, the systems looks again for two-words CNs in order 
to find multiple cases of two words CNs in a same LF, as in:

UXWN - Before SystemP
synset(100509974, rumba_NN(x1), [rumba])-[ballroom_NN(x1), 
dance_NN(x2), base_VB-[e1, x1], on_IN-[e1, x3], cuban_JJ(x3), 
folk_NN(x3), dance_NN(x4)]

UXWN - After the last run of SystemP
synset(100509974, rumba_NN(x1), [rumba])-[ballroom_dance_NN(x1), 
base_VB-[e1, x1], on_IN-[e1, x3], cuban_JJ(x3), 
folk_dance_NN(x3)]

Each LF modified by SystemP is marked with * in order to allow 
for manual check.
The  majority  of  corrections  concerns  those  LFs  that  are 
definitions of nouns having them the most number of CNs.
Thanks to SystemP I succeeded in correcting more than 9K two-
words CNs and about 150 three-words CNs.
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5.9 Relative Adverbs - Correction

As  shown  in  section  4.2.4,  relative  adverbs  are  sometimes 
erased  from  the  LFs.  SystemD  in  Appendix6  takes  care  of 
detecting all the cases of missing relative adverbs in the LFs; it 
takes  as  input  each  XWN  pos  file  at  time  and  records  the 
synsetIDs of those LFs with missing relative adverbs in a txt file.
For  the  correction  I  worked  directly  on  UXWN  using  the 
previously mentioned txt file with the recorded SynsetIDs.
I  manually  checked  those  LFs  with  missing  relative  adverbs, 
adding  the  relative  adverb  when  needed.  For  picking  out  the 
affected  LFs  in  UXWN  I  built  SystemQ  that  compares  each 
UXWN entry with the SynsetIDs stored in the file and marks the 
matched  ones.  Let’s  consider  as  example  the  definition  of 
Reign_of_Terror: the historic period (1793-94) during the French 
Revolution when thousands were executed. The corresponding LF 
in XWN is:

reign_of_terror:NN(x1) -> historic:JJ(x1) period:NN(x1) 
during:IN(x1, x2) french:NN(x2) revolution:NN(x3) 
thousand:NN(x4) be:VB(e1, x4, e2) execute:VB(e2, x5, x4)

which results in UXWN, after the Parser correction, as:

synset(114397271, reign_of_terror_NN(x1), ['Reign_of_Terror'])-
[historic_JJ(x1), period_NN(x1), during_IN(x1, x2), 
french_NN(x2), revolution_NN(x3), thousand_NN(x4), be_VB-[e1, 
x4, e2], execute_VB-[e2, x4]]
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the free variable x5 has been removed. After the automatic CNs 
correction,   french:NN(x2)  revolution:NN(x3)  is  correctly 
transformed into a CN with one bound variable:

synset(114397271, reign_of_terror_NN(x1), ['Reign_of_Terror'])-
[historic_JJ(x1), period_NN(x1), during_IN(x1, x2), 
french_revolution_NN(x2), thousand_NN(x4), be_VB-[e1, x4, e2], 
execute_VB-[e2, x4]]

Now, SystemQ identifies the SynsetID of this LF as a possible 
case of missing relative adverbs and this is true considering that 
when is missing in the LF. I eventually corrected the LF adding 
the relative adverb and the final result is:

synset(114397271, reign_of_terror_NN(x1), ['Reign_of_Terror'])-
[historic_JJ(x1), period_NN(x1), during_IN(x1, x2), 
french_revolution_NN(x2), when_IN(x1,e1), thousand_NN(x4), 
be_VB-[e1, x4, e2], execute_VB-[e2, x4]]

Some LFs, even though correctly identified by the system, don't 
need the insertion of the missing relative adverb as the sense of 
the LF is preserved anyway, see for e.g:

Edmund_I : king of the English who succeeded Athelstan
UXWN

synset(110236213,edmund_i_NN(x1),[‘Edmund_I'])-
[king_NN(x1),of_IN(x1,x2),english_NN(x2),succeed_VB-
[e1,x1,x3],athelstan_NN(x3)]

Opkins_Sir_Frederick_Gowland: English biochemist who did 
pioneering work that led to the discovery of vitamins 
(1861-1947)

UXWN
synset(110340955, hopkins_sir_frederick_gowland_NN(x1), 
['Hopkins_Sir_Frederick_Gowland', 

�154



'Sir_Frederick_Gowland_Hopkins'])-[english_JJ(x1), 
biochemist_NN(x1), do_VB-[e1, x1, x2], pioneering_JJ(x2), 
work_NN(x2), lead_VB-[e2, x2], to_IN-[e2, x3], discovery_NN(x3), 
of_IN(x3, x4), vitamin_NN(x4)]

The work was fast and easy for definitions of verbs and adjectives 
where LFs with errors were a few, it took longer for definitions of 
nouns where the LFs to check where more than 1K.

5.10 UXWN Release

In order to guarantee an easy access to the resource, UXWN 
has been released in XML format and it is freely downloadable 
at : http://www.unive.it/UXWN .
Due to the large size of whole resource, each pos file of UXWN is 
downloadable separately.
The output of the Parser is a txt file that, after the corrections, has 
been converted in a XML graph. Each entry of the txt file e.g:

synset(100002560,nothing_NN(x1),[nothing,nonentity])-
[nonexistent_JJ(x1),thing_NN(x1)]

is  represented in  the  XML tree  as  a  synset  element  where  the 
attribute ID contains the WN synsetID (preceded by the number 
representing  the  pos),  its  sub-elements  s,  w  and  lf  contain 
respectively: Synset, Lemma and LF as follow:

<uxwn>
. . .
 <synset ID="100002560">
  <s>nothing, nonentity</s>
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  <w>nothing_NN(x1)</w>
  <lf>nonexistent_JJ(x1), thing_NN(x1)</lf>
 </synset>
. . .
</uxwn>

The XML format allows systems to easily access the information 
stored,  it  is  extendable,  readable  and  understandable  (even  by 
novices).

5.11 Conclusions

The precise number of corrected LFs is hard to measure. Some 
LFs had different kinds of errors and some cases detected by the 
automatic systems have not been considered as errors. For these 
reasons, to count the corrected LFs it is not proper to consider the 
results of automatic systems. 
Even thought I can’t provide a final percentage, it is fair to affirm 
that LFs have been substantially improved. Free variables have 
been almost removed (error rate from 54% to 15%), conjunctions 
and  prepositions  are  no  longer  missing  in  the  LFs  as  well  as 
possessive pronouns and relative adverbs. More than 400 genitive 
markings have been manually corrected and the quality of  pos 
labels  has  been  refined.  Many  CNs  (9K)  have  been  finally 
identified and correctly transformed into LF and the almost 4K 
names  of  person  are  provided  with  Synsets  that  respect  their 
instance nature. The manual checking have been costly and time 
consuming but it brought to really good results. 
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The improved LFs are provided in a new resource that, thanks to 
its clear structure and to the XML format, aims to be smoothly 
queryable by automatic systems. 
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Chapter 6

Future Work and Conclusions

6.1 Introduction

The efforts made so far to automatically and manually correct 
the  LFs  of  XWN  have  led  to  the  creation  of  the  improved 
resource UXWN. The most common errors have been detected 
and  corrected  but  are  there  more  improvements  it  is  worth 
considering? One of the advantages of this kind of LF is definitely 
its simple structure, augmenting the semantics encoded or adding 
more  features  might  ruin  this  quality.  The  only  profitable 
structural modification I envisage, regards how the adjectives are 
transformed in LF. I will discuss adjectives transformation in this 
final  chapter  where I  will  also ponder  on how to test  the new 
resource and on a possible alignment between UXWN and AMR 
(Abstract Meaning Representation), topics that, due to a lack of 
time, I couldn't study in depth.
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6.2 Adjectives - a Further Improvement

As previously seen, object formulae include simple one place 
predication with  just  one  variable  associated  to  an  entity.  This 
formula  is  used  for  entities  (e.g.  cat_NN(x1))  as  well  as  for 
modifiers like adjectives (e.g. angry_JJ(x1)). 
It  is  well  known that  adjectives have different  proprieties  both 
syntactic  and  semantic  and  therefore  a  simple  object  formula 
might be inadequate to represent their relations with nouns.
Considering Larson’s analysis of adjectives (Larson 1998), I will 
suggest  here to add an event  variable to adjectives in order  to 
adjust they LF representation.
Form  a  syntactic  point  of  view,  English  adjectives  can  occur 
predicatively when they are the main predicate in a clause or in a 
clause-like structure, as in:

- the stone is weighty

or they can occur attributively when they function as modifiers 
in a nominal, e.g.:

- two small elephants

Introducing  an  event  variable  for  adjectives  can  allow  to 
differentiate cases in which the same adjectival word plays the 
role of predicate or of attribute, as red in the following sentences:

a) The stiff hat was red

b) The red hat was stiff
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The two sentences could be differentiated as follows, in a) x1 is 
associated to the subject of predication, hat, and the predication 
itself is constituted by a different property identified by variable 
e3; In b) the attribute is  associated to the nominal head object 
variable x1 and is specified with event variable e2, assuming in 
this  way  that  the  property  of  being  stiff  is  independent  of  the 
property of being red, but they are both associated to the entity 
x1:

a) be_VB(e1,x1), hat_NN(x1), stiff_JJ(e2,x1), red_JJ(e3,e1) 

b) be_VB(e1,x1), hat_NN(x1), red_JJ(e2,x1), stiff_JJ(e3,e1) 

Considering inferential proprieties of adjectives used attributively, 
different interpretations are possible.
As discussed by Gal et al. 1991, adjectives can be categorised as 
restrictive and non restrictive, the latter are very few (e.g. false, 
artificial etc.). Restrictive adjectives are used to limit the number 
of items matching a given description and can be further divided 
into  scalar  adjectives  and  descriptive  adjectives.  Scalar 
adjectives like small or tall describe qualities that are measurable 
but in general the property is not fixed, it rather depends on the 
noun. For example, the scalar adjective short can refer to different 
measures  according to  the context:  a short  person (height),   a 
short  journey  (temporal  or  distance).  Furthermore  the  scalar-
property  is  often  comparative,  a  big  ant  is  still  a  small  living 
being.  On  the  contrary,  descriptive  adjectives  add  some 
information to the noun they qualify (rather than referring to one 
of  its  properties).  Descriptive  adjectives  can  be  represented 
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directly as predicates bound to the noun they qualify (a simple 
conjunction of predicates), a representation that is unsatisfactory 
for scalar adjectives that are generally implicit  comparisons. In 
fact saying that a person is short means that he is shorter than the 
average person. But how can be represented in LF this difference 
between descriptive and scalar adjectives?
The need for a further research arises also from the well known 
difference  between intersective  and non intersective  adjectives. 
Considering the following sentences:

- Mary is Italian
- Mary is a surgeon

we can think about Mary as a member of two different sets: the 
Italians and the surgeons. She is also a member of the intersection 
of these sets, therefore:

- Mary is an Italian surgeon

This reasoning doesn’t work for other adjectives, for example the 
following sentences:

- Mary is skilful
- Mary is a painter

don’t necessarily entail that:

- Mary is a skilful painter
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In fact Mary can be skilful in general or as a surgeon but not as a 
painter.  
The intersective non-intersective reading has been widely discuss 
in  literature,  often  considering  the  following  Larson’s  famous 
example:

- Olga is a beautiful dancer

Where Olga can be considered beautiful even if her dancing is 
awkward (in an intersective reading) or she can just be seen as 
someone who dances beautifully (in a non intersective reading). 
Moreover,  as  illustrated  by  Cinque  2014,  the  interpretative 
proprieties of adjectives appear to be related to the two types of 
syntactic modification: abdominal adjectives as direct  modifiers 
of  the  NP or  as  predicates  of  a  reduced  relative  clause  that 
modifies  the  NP.  This  is  something to  take into  account  while 
formulating a new representation.
Also  the  interpretation  of  adjacent  adjectives  needs  to  bee 
considered. For example, with the current LF, the sentence:

- the invisible visible stars

would have the following representation:

invisible_JJ(x1) visible_JJ(x1) star_NN(x1)

where  invisible  and  visible  modify  the  name in  the  same way  
without representing the real meaning of the sentence, i.e. those 
stars that are usually visible and are invisible in this moment. 
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Furthermore, if we invert the order of the adjectives, the meaning 
of the sentence changes but this LF can’t be used to represent this 
difference, as both adjectives are represented in the same way:
These  considerations  lead to  the  conclusion that  it  is  worth  to 
reconsider and reorganise the LF transformation of adjectives and 
this is one of the envisaged future works.

6.3 Testing the Resource

Another important topic I din’t have the time to develop and 
that is among the first points of future works, regards the use of 
UXWN. How much the new resource improve the results of NLP 
systems in comparison to XWN? This is something it  is worth 
considering for a thorough evaluation of the resource. 
We have seen that XWN, and LFs in general, have been used in 
Q/A.  As  results  in  Moldovan  and  Rus  2001/1  show,  such 
application is satisfactory but still improvable. It is right to expect 
that  a better  resource can influence positively the results  of  its 
applications.
Let’s consider an example:

- Is Mick Jagger a singer?
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Answering this question is  easy for every one,  but a computer 
needs  some  world  knowledge  to  choose  the  right  answer.  As 
already seen, WN Glosses encode a lot of knowledge that can be 
exploited  for  this  purpose.  A system  can  reply  this  question 
simply by querying the database. In fact, thanks to WN, we know 
that:

1.  Jagger, Mick Jagger, Michael Philip Jagger : English rock 
star (born in 1943)

2. rock star : a famous singer of rock music

the LFs of these glosses in XWN are (respectively):

1. jagger:NN(x1) -> english:NN(x1) rock:NN(x2) star:NN(x3)
2. rock_star:NN(x1) -> famous:JJ(x1) singer:NN(x1) of:IN(x1, 

x2) rock_music:NN(x2)

the two LFs contain the knowledge a system needs to answer the 
question, the problem is that it is wrongly encoded. According to 
the first LF, Jagger is an English but there is no relation to the fact 
that he is also a rock star. In fact rock and star are represented as 
two  different  entities,  two  different  predicates  with  different 
variables.  This  doesn’t  allow  a  possible  system  to  build  the 
connection between rock star and singer.  
Let’s  now  consider  the  two  corresponding  representations  in 
UXWN:
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1. synset(110357697, jagger_NN(x1), ['Jagger', 'Mick_Jagger', 
'Michael_Philip_Jagger'])-[english_JJ(x1), 
rock_star_NN(x1)]

2. synset(109850134,rock_star_NN(x1),[rock_star])-
[famous_JJ(x1),singer_NN(x1),of_IN(x1,x2),rock_music_N
N(x2)]

Here the encoding problem has been solved:  English  has  been 
correctly labeled as adjective and rock star has been transformed 
as CN. The automatic inference is now allowed.  
As shown in chapters 4 and 5, various kinds of error have been 
detected and corrected during for the creation of UXWN. In the 
previous example, we have seen how the correction of pos labels 
and the proper transformation of CNs can significantly improve 
the  result  of  a  simple  Q/A task.  The  intention  is  to  test  the 
resource with an automatic system and collect a sufficient amount 
of data to estimate its application in comparison to other similar 
resources.

6.4 UXWN and AMR

The abstract meaning representation (AMR) is a graph-based 
semantic  representation  of  a  natural  language  sentence  that 
embeds annotations related to traditional tasks such as semantic 
role labelling, wsd, named entity recognition etc. One of the goals 
of  AMR  is  to  include  in  a  single  dataset  different  basic 
disambiguation  information  which  are  usually  encoded  in 
different  datasets.  In fact,  semantic annotation today is  divided 
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into different annotations associated to different evaluations and 
training data, split across many resources.  
There exist different corpora that have been manually transformed 
in  AMR  and  nowadays,  the  growing  interest  of  the  NLP 
community for this compact, readable, whole-sentence semantic 
annotation, is reflected in a number of different works that aim at 
automatically transforming English sentences into AMR graphs. 
Both  in  SemEval-2016  and  in  SemEval-2017  one  task  was 50 51

dedicated to the automatic generation of this representation and 
different parsers have been built with this purpose (see for e.g. 
Pust et al. 2015, Vanderwende et al. 2015, Wang et al. 2016).  
Just  like  the  LF  subject  of  this  thesis,  following  a  neo-
Davidsonian  fashion,  AMR introduces  variables  for  entity  and 
events and in addition also for properties and states. In the AMR 
graph, not all the individual words in a sentence are annotated, 
leaves are rather labeled with concepts and relations link entities. 
AMR  concepts  are  either  English  words  (“boy”),  PropBank 
framesets  (“want-01”),  or  special  keywords.  AMR  uses 
approximately  100  relations:  frame  arguments,  following 
PropBank  conventions  (e.g.  :arg0),  general  semantic  relations 
(e.g.  :cause),  relations  for  quantities  (e.g.  :quant),  relations  for 
date-entities (e.g. :day), relations for lists (e.g. op1). For a detailed 
description, the reader is referred to the AMR guidelines .52

Below, an example of AMR for the sentence the boy wants the 
girl to believe him :

 http://alt.qcri.org/semeval2016/task8/50

 http://alt.qcri.org/semeval2017/task9/51

 https://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf52
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another way to represent the same sentence with AMR:

(w / want-01 
   :ARG0 (b / boy) 
   :ARG1 (b2 / believe-01 
             :ARG0 (g / girl) 
             :ARG1 b)) 

Despite some similarities with our LF, AMR is quite different. 
Both the representations attempt to provide the same structure for 
sentences that have the same basic meaning. The difference is that 
our LF relies more on the single words of a sentence than what 
AMR does. For example, if it is true that the following sentences

a) the boy was killed by the girl

b) the girl killed the boy

 have the same LF

boy_NN(x2), kill(e1, x1, x2), girl(x1)  

it is also true that the following sentences
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c) The girl made adjustments to the machine.

d) The girl adjusted the machine.

e) The machine was adjusted by the girl.

have different LFs but a unique AMR:

(a / adjust-01 
   :ARG0 (b / girl) 
   :ARG1 (m / machine)) 

Obviously,  this  is  not  the  only  difference  between  the  two 
representations. Our LF is definitely more simple and less rich in 
semantics features, and this is considered its greatest strength.
But  considering  the  growing  interest  of  the  NLP community 
towards  AMR,  I’d  like  to  investigate  a  possible  alignment 
between the simple LF and this new representation. This might be 
done in two ways:  or  making the LF more close to AMR, for 
example by adding some of  those semantic  features  which are 
missing  or  by  making  the  structure  more  close  to  the  AMR 
format,  or  by  providing  each  entry  of  UXWN  with  the 
corresponding AMR representation.
As proved also by the results of SemEval (see May 2016), the 
automatic generation of AMR is still a difficult and competitive 
task which results are sometimes quite far from the gold standards 
(manually annotated AMR). Therefore, using one of the existing 
AMR parsers  might  be  risky  for  the  whole  correctness  of  the 
resource. It is reasonable to consider other solutions and one idea 
in this sense would be to take a closer look to the work of J. Bos  
2016 who proposes a systematic translation from AMR to first 
order logic formulas. 
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Furthermore,  a  comparative  analysis  between  the  two 
representations  might  be  useful  to  discover  strengths  and 
weaknesses of these structures.

6.5 Conclusions

WordNet  is  one  of  the  most  famous  resources  for  NLP.  It  is 
widely  used  and  studied  and,  during  the  last  decades,  many 
researchers  have  investigated  and  implemented  different 
improvements and extensions. 
My  work  began  from  here,  with  a  summary  of  different 
improvements  divided  into  two  categories:  Terminology 
Extension and Relations Enhancement. The first category includes 
my  participation  to  the  Task  14  of  SemEval  2016  (Semantic 
Taxonomy  Enrichment),  while  the  second  one  concerns  in 
particular WSD of WN glosses. Chapter 2 is a first introduction to 
the real topics of this dissertation: XWN and LF.
In fact, the idea of this thesis was to analyse XWN, a resource that 
aims  at  providing  several  important  enhancements  to  WN.  In 
XWN the WN glosses are syntactically parsed, transformed into 
LF and content words are semantically disambiguated. Therefore, 
XWN  brings  mainly  two  important  improvements  to  the  WN 
glosses: WSD and the LF. 
LF is a kind of semantic representation which stands between the 
syntactic parse and the deep semantic form. It  is  a simple and 
highly  effective  representation  which  is  used  in  several  NLP 
systems. There are different types of LF and 3 different resources 
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that  provides  the  LF  of  WN  glosses.  In  Chapter  3  I  showed 
different representations and I compared the three LF resources 
justifying the choice to work on XWN.
In Chapter 4 and 5 I described respectively the work of analysis 
of  XWN  and  the  improvements  made,  which  led  to  a  new 
resource that I named UXWN and which is freely downloadable 
from the dedicated webpage: http://www.unive.it/UXWN .
During  the  analysis,  it  comes  out  that  even  if  a  correct  LF 
transformation relies on the quality of the syntactic parsing, this is 
necessary but  not  sufficient  to guarantee the correctness of  the 
representation. Furthermore, comparing the different existing LF 
resources, I observed that some types of error are recurring when 
the  LF  is  automatically  derived.  Taking  into  account  these 
considerations might be useful for father implementations.

At the beginning of this work my aim was to study the LF, to  
analyse XWN, its errors and possible applications. But the more I 
went  ahead  with  the  project,  the  more  I  understood  that  my 
contribution to the NLP community could be something more. I 
eventually produced a proper and usable resource where world 
knowledge is represented as consistent LFs.

As discussed in the last pages, other improvements are possible 
and the ongoing UXWN project will take care of implementing 
them.
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APPENDIX 1

SYSTEM A - AVERAGE LENGHT OF DEFINITIONS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("FilePOS.xml")
root=tree.getroot()
lista_definizioni=[]
definizioni=open("definizioni_POS.txt","a")
for w in root.iter(tag="text"):

glossa=w.text
    newglossa1= re.sub(r"\(.*?\)", "", glossa)
    if re.search(r"\; \".*?\"", newglossa1):
        newglossa2= re.sub(r"\; \".*?\"", "", newglossa1)
    else:
        newglossa2=newglossa1
    if re.search(r"\; [a-z]*", newglossa2):
        temp=newglossa2.split(";")
        for x in temp:
            newdefinition=x.lstrip()
            definition=newdefinition.rstrip()
            definizioni.write(definition+"\n")
            lista_definizioni.append(definition)
    else:
        newdefinition=newglossa2.lstrip()
        definition=newdefinition.rstrip()
        definizioni.write(definition+"\n")
        lista_definizioni.append(definition)
lunghezzadefinizioni=[]
for w in lista_definizioni:
        x=len(w)
        lunghezzadefinizioni.append(x)
tot=0
for x in lunghezzadefinizioni:
        tot=tot+x
averagelenght= tot/numerodefinizioni

definizioni=open("definizioni_POS.txt","a")
definizioni.write("\n"+"the average length of the definitions in 
the pos file is : "+str(averagelenght)+"\n")
definizioni.close()

   - - - - - - - - - -

Excerpt from the file output - verb pos file:

. . . 
drench or submerge or be drenched or submerged
become empty of water
get foggy

�173



burn to charcoal
become hazy, dull, or cloudy
cause to burn rapidly and with great intensity

the average length of the definitions in the noun file is : 53     
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APPENDIX 2

SYSTEM B - MAX NUMBER OF WORDS IN THE SYNSETS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("POS.xml")
root=tree.getroot()
count=0
lista_count=[]
lista_nomi=[]
for w in root.iter(tag="synonymSet"):

synset=w.text
contasynset=open("synsets_POS.txt","a")
contasynset.write(synset+"\n")
contasynset.close()

s=open("synsets_POS.txt", "r").readlines()
for x in s:
    if "," in x:
        temp=x.split(",")
        for w in temp:
            count=count+1
        lista_count.append(count)
        lista_nomi.append(x)
        count=0
    else:
        count=1
        lista_count.append(count)
        lista_nomi.append(x)
        count=0

listacheck=zip(lista_count, lista_nomi)
#listacheck is a list of tuples integer+string
c=listacheck[0]
d=c[0]
syn=c[1]
for x in listacheck:
    if x[0]>d:
        syn=x[1]
        d=x[0]
    else:
        pass
print "the lenght of the longest synset is %d" %d
print syn

for x in listacheck:
#if instead of d we insert a positive integer y we find all the 
synsets
#with lenght y
    if x[0]==d:
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        maxsyn=open("maxsynset_POS.txt","a")
        maxsyn.write(x[1]+"\n")
        maxsyn.close()
    else:
        pass

System Description

For each element in XWN, the system gathers the synset and saves it in a txt file. Then, for each 
synset saved, it counts the number of words it is made of. Finally, it finds the longest synset and 
it prints it out.
The system works on one XWN pos file at time and therefore it returns 4 different outputs. 

Results are shown here below:

POS MAX LENGHT SYNSET

NOUN 28

buttocks, nates, arse, butt, 
backside, bum, buns, can, 
fundament, hindquarters, 

hind_end, keister, posterior, 
prat, rear, rear_end, rump, 
stern, seat, tail, tail_end, 

tooshie, tush, bottom, behind, 
derriere, fanny, ass

VERB 24

roll_in_the_hay, love, 
make_out, make_love, 
sleep_with, get_laid, 

have_sex, know, do_it, 
be_intimate, 

have_intercourse, 
have_it_away, have_it_off, 

screw, fuck, jazz, eff, hump, 
lie_with, bed, 

have_a_go_at_it, bang, 
get_it_on, bonk

ADJECTIVE 25

besotted, blind_drunk, blotto, 
crocked, cockeyed, fuddled, 

loaded, pie-eyed, pissed, 
pixilated, plastered, potty, 

slopped, sloshed, smashed, 
soaked, soused, sozzled, 
squiffy, stiff, tiddly, tiddley, 

tight, tipsy, wet

ADVERB 11

immediately, instantly, 
straightaway, straight_off, 
directly, now, right_away, 

at_once, forthwith, 
in_real_time, like_a_shot
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APPENDIX 3

SENSEVAL3 - IDENTIFICATION OF LOGIC FORMS IN ENGLISH

TRIAL DATA - ENGLIS SENTENCES

Some students like to study in the mornings.
Juan and Arturo play football every afternoon.
Alicia goes to the library and studies every day.
I tried to speak Spanish, and my friend tried to speak English.
Alejandro played football, so Maria went shopping.
Alejandro played football, for Maria went shopping.
When he handed in his homework, he forgot to give the teacher the last 
page.
The teacher returned the homework after she noticed the error.
The students who are on the bus to the United States are studying 
English.
After they finished studying, Juan and Maria went to the movies.
Juan and Maria went to the movies after they finished studying.
You can look up my number in the telephone directory.
I look forward to meeting you.
If you heat ice it melts.
If I am late for work my boss gets angry.
She acts as if she were Queen.
She will be delighted to see you.
Mary is a teacher.
Tara is beautiful.
That sounds interesting.
The sky became dark.
The bread has gone bad.
Mary seemed able to win the race, but she became fatigued near the 
finish line.
Greg is kicking the ball now.
The wind blows constantly in Chicago.
He accepted my apology.
The cake smells good!
Ellen smells the cake. 
The woman grew silent.
The gardener grew some flowers.
Jane appeared uninjured after the accident.
Before I could leave, Jane appeared.
The dog was sick.
Fred felt funny.
Mad dogs and Englishmen go out in the midday sun.
They are jealous.
What she said is untrue.
Fred bit his thumb.
The chimpanzees groomed each other. 
Jane gave the gorilla a kiss.
Jane gave a kiss to the gorilla.
Sunshine makes me very happy.
The voters elected Clinton president of the USA.
They ran quickly.
He went home twice nightly.
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We walked on the playground.
My friend phoned me this morning.
I was happy when I saw her again.
The bus was full. However, Fred found a seat. 

�178



APPENDIX 4

SENSEVAL3 - IDENTIFICATION OF LOGIC FORMS IN ENGLISH

TRIAL DATA - LOGIC FORMS

student:n_ (x1) like:v_ (e4, x1, e5) to (e4, e5) study:v_ (e5, x1, x2) 
in (e5, x2) morning:n_ (x2) .
Juan:n_ (x1) and (x7, x1, x2) Arturo:n_ (x2) play:v_ (e6, x7, x3, x4) 
football:n_ (x3) afternoon:n_ (x4) .
Alicia:n_ (x1) go:v_ (e6, x1, x7) to (e6, x2) library:n_ (x2) and (e7, 
e6, e3) study:v_ (e3, x1, x4) day:n_ (x4) .
I (x3) try:v_ (e6, x3, e7) to (e6, e7) speak:v_ (e7, x3, x11) 
Spanish:n_ (x11) and (e10, e6, e8) my (x1) friend:n_ (x1) try:v_ (e8, 
x1, e9) to (e8, e9) speak:v_ (e9, x1, x2) English:n_ (x2) .
Alejandro:n_ (x1) play:v_ (e7, x1, x2) football:n_ (x2) so (e9, e7, 
e8) Maria:n_ (x3) go:v_ (e8, x3, x4) shopping:n_ (x4) .
Alejandro:n_ (x1) play:v_ (e7, x1, x2) football:n_ (x2) for(e2, e7, 
e8) Maria:n_ (x3) go:v_ (e8, x3, x4) shopping:n_ (x4) .
When (e11, e10) he (x4) hand:v_ (e10, x4, x1) in (e10) his (x1) 
homework:n_ (x1) he (x6) forget:v_ (e11, x6, e12) to (e11, e12) 
give:v_ (e12, x6, x3, x2) teacher:n_ (x2) last:a_ (x3) page:n_ (x3) .
teacher:n_ (x1) return:v_ (e6, x1, x2) homework:n_ (x2) after (e6, e7) 
she (x4) notice:v_ (e7, x4, x3) error:n_ (x3) .
student:n_ (x1) be:v_ (e8, x1, x2) on (e8, x2) bus:n_ (x2) to (x2, x4) 
United_States:n_ (x4) study:v_ (e9, x1, x6) English:n_ (x6) .
After (e8, e6) they (x4) finish:v_ (e6, x4, e7) study:v_ (e7, x4) 
Juan:n_ (x1) and (x9, x1, x2) Maria:n_ (x2) go:v_ (e8, x9, x3) to (e8, 
x3) movie:n_ (x3) .
Juan:n_ (x1) and (x8, x1, x2) Maria:n_ (x2) go:v_ (e5, x8, x3) to (e5, 
x3) movie:n_ (x3) after (e8, e6) they (x4) finish:v_ (e6, x4, e7) 
study:v_ (e7, x4) .
You (x5) look_up:v_ (e8, x5, x1, x4) my (x1) number:n_ (x1) in (e8, 
x4) telephone:n_ (x2) directory:n_ (x3) nn (x4, x2, x3) .
I (x1) look_forward_to:v_ (e4, x1, e5) meet:v_ (e5, x1, x2) you (x2) .
If (e5, e4) you (x2) heat:v_ (e4, x2, x1) ice:n_ (x1) it (x3) melt:v_ 
(e5, x3) .
If (e6, e5) I (x3) be:v_ (e5, x3, x1) late:a_ (x3) for (x3, x1) 
work:n_ (x1) my (x2) boss:n_ (x2) get:v_ (e6, x2) angry:a_ (x2) .
She (x2) act:v_ (e5, x2) as_if (e5, e6) she (x3) be:v_ (e6, x3, x1) 
Queen:n_ (x1) .
She (x1) be;v_ (e4, x1) delighted(x1) to (e4, e5) see:v_ (e5, x1, x2) 
you (x2) .
Mary:n_ (x1) be:v_ (e4, x1, x2) teacher:n_ (x2) .
Tara:n_ (x1) be:v_ (e2, x1) beautiful:a_ (x1) .
That (x1) sound:v_ (e1, x1) interesting:a_ (x1) .
sky:n_ (x1) become:v_ (e2, x1) dark:a_ (x1) .
bread:n_ (x1) go:v_ (e2, x1) bad:a_ (x1) .
Mary:n_ (x1) seem:v_ (e9, x1) able:a_ (x1) to (e9, e10) win:v_ (e10, 
x1, x2) race:n_ (x2) but (e13, e9, e11) she (x6) become:v_ (e11, x6) 
fatigued:a_ (x6) near (e11, x5) finish:v_ (x3) line:n_ (x4) nn (x5, 
x3, x4) .
Greg:n_ (x1) kick:v_ (e3, x1) ball:n (x2) now:r_ (e3) .
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wind:n_ (x1) blow:v_ (e2, x1, x3) constantly:r_ (e2) in (e2, x3) 
Chicago:n_ (x3) .
He (x2) accept:v_ (e5, x2, x1) my (x3) apology:n_ (x1) .
cake:n_ (x1) smell:v_ (e2, x1) good:a_ (x1) !
Ellen:n_ (x1) smell:v_ (e4, x1, x2) cake:n_ (x2) .
woman:n_ (x1) grow:v_ (e2, x1) silent:a_ (x1) .
gardener:n_ (x1) grow:v_ (e4, x1, x2) flower:n_ (x2) .
Jane:n_ (x1) appear:v_ (e4, x1, x2) uninjured:a_ (x1) after (e4, x2) 
accident:n_ (x2) .
Before (e4, e3) I (x2) leave:v_ (e3, x2) Jane:n_ (x1) appear:v_ (e4, 
x1) .
dog:n_ (x1) be:v_ (e2, x1) sick:a_ (x1) .
Fred:n_ (x1) felt:v_ (e2, x1) funny:a_ (x1) .
Mad:a_ (x1) dog:n_ (x1) and (x9, x1, x2) englishman:n_ (x2) go:v_ (e8, 
x9, x5) out:r_ (e8) in (e8, x5) midday:n_ (x3) sun:n_ (x4) nn (x5, x3, 
x4) .
They (x1) be:v_ (e2, x1) jealous:a_ (x1) .
What (x4) she (x1) say:v_ (e2, x1, x4) be:v_ (e3, e2) untrue:r_ (e2) .
Fred:n_ (x1) bit:v_ (e4, x1, x2) his (x2) thumb:n_ (x2) .
chimpanzee:n_ (x1) groom:v_ (e4, x1, x2) each_other:n_ (x2) .
Jane:n_ (x1) give:v_ (e5, x1, x3, x2) gorilla:n_ (x2) kiss:n_ (x3) .
Jane:n_ (x1) give:v_ (e5, x1, x2, x3) kiss:n_ (x2) to (e5, x3) 
gorilla:n_ (x3) .
Sunshine:n_ (x1) make:v_ (e3, x1, x2) me (x2) very:r_ (x2) happy:a_ 
(x2) .
voter:n_ (x1) elect:v_ (e7, x1, x2) Clinton:n_ (x2) president:n_ (x2) 
of (x2, x5) USA:n_ (x5) .
They (x1) run:v_ (e2, x1) quickly:r_ (e2) .
He (x1) go:v_ (e2, x1, x3) home:n_ (x3) twice:r (e2) nightly:r (e2) .
We (x2) walk:v_ (e4, x2, x1) on (e4, x1) playground:n_ (x1) .
My (x1) friend:n_ (x1) phone:v_ (e6, x1, x4, x2) me (x4) morning:n_ 
(x2) .
I (x1) be:v_ (e4, x1) happy:a_ (x1) when (e4, e5) I (x2) saw:v_ (e5, 
x2, x3) her (x3) again:r_ (e5) .
bus:n_ (x1) be:v_ (e2, x1) full:a_ (x1) .
However:r_ (e4) Fred:n_ (x1) found:v_ (e4, x1, x2) seat:n_ (x2) .
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APPENDIX 5

SYSTEM C - MISSING CONJUNCTIONS

import xml.etree.ElementTree as ET
import re
tree=ET.parse(“POSfile.xml")
synset=open(“SynsetsPOS.txt","a")
root=tree.getroot()
countnoncontrollate=0
missingand=0
missingor=0
listatext=[]
listalf=[]
count=0
tx=[]
countcontrollate=0
listasynset=[]

for element in root.iter(tag="gloss"):
    count=count+1
lenght=count
x=0

while x<lenght:
text=root[x].find("text").text

    if ";" in text:#it takes only the first definition, no 
examples
        tx=text.split(";")
        text1=tx[0]
   else:
        text1=text
    if "(" in text1:#deletes content between brackets
        text2=re.sub("\(.*?\)", "", text1)
        listatext=text2.split()
    else:
        listatext=text1.split()

for n in range(len(listatext)):#deletes commas from tokens
        if "," in listatext[n]:
            y=re.sub(",", "", listatext[n])
            listatext[n]=y
        else:
            pass
   lf=root[x].find("lft").text
  countcontrollate=countcontrollate+1
   lft=re.sub("\:[A-Z]*\(.*?\)", "", lf)#deletes predicates 
and arguments
    lfts=re.sub(".*?\-\>", "", lft)#deletes word to define and 
->
    listalf=lfts.split()

if "and" in listatext:
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     if "and" not in listalf:
           missingand=missingand+1

syn=root[x].get(“synsetID”)#check the synsetID
           if syn not in listasynset:
                listasynset.append(syn)
           else:
                pass

     else:
            pass

else:
pass

    if "or" in listatext:
      if "or" not in listalf:
           missingor=missingor+1

syn=root[x].get(“synsetID”)#check the synsetID
           if syn not in listasynset:
                listasynset.append(syn)
           else:
                pass 
      else:
           pass

else:
pass

    x=x+1
for s in listasynset:

synset.write(s+"\n")
synset.close()        

print “I checked %d text-lf pairs“ %countcontrollate
print “AND is missing in %d cases" %missingand
print "OR is missing in %d cases" %missingor
print “There are %d LFs with conjunctions errors” %missingor

System Description

System C takes as input XWN (one pos file at time) and for each entry it gathers the 
definition (first one if there are more than one) and its LF. Definitions are split into 
tokens as well as LFs. The system deletes the first part of  LFs (word+”->”), commas, 
predicates and arguments. So for e.g. for the gloss of benthos:

<gloss pos="NOUN" synsetID="00004358">
  <synonymSet>benthos</synonymSet>
 <text>
   organisms (plants and animals) that live at or near the bottom of a 
sea  
 </text>
 . . . 
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 <lft quality="SILVER">
  benthos:NN(x1) -> organism:NN(x1) live:VB(e1, x1, x26) at:IN(e1, x4) 
near:IN(e1, x5) bottom:NN(x2) of:IN(x2, x3) sea:NN(x3)
 </lft>
</gloss>

the system compares:

text ['organisms', 'that', 'live', 'at', 'or', 'near', 'the', 

'bottom', 'of', 'a', ‘sea']

with

lf ['organism', 'live', 'at', 'near', 'bottom', 'of', 'sea']

and checks if and or or are in the definition and not in the LF.
In this case it founds that or appears in the definition but is missing in the LF and counts 
this case as a missing-or case. Furthermore, the system records the SynsetIds of those 
LFs with missing conjunctions in order to count them (if a LF has tow cases of missing 
conjunctions it is only one time).
The final output of the system has the structure:

I checked n text-lf pairs
AND is missing in n cases
OR is missing in n cases

There are n LFs with conjunctions errors

Final output in the Python Shell:  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APPENDIX 6

SYSTEM D - RELATIVE ADVERBS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("POS.xml")
root=tree.getroot()
count1=0
count2=0
listatext=[]
listalf=[]
listasynset=[]
count=0
tx=[]
reladvs=["where","when","why","how","why"]
tag=0
gat=0

for element in root.iter(tag="gloss"):
    count=count+1
lenght=count
x=0

while x<lenght:
    text=root[x].find("text").text
    if ";" in text:#it takes only the firt definition, no examples
        tx=text.split(";")
        text1=tx[0]
    else:
        text1=text
    if "(" in text1:#delete content between brackets
        text2=re.sub("\(.*?\)", "", text1)
        listatext=text2.split()
    else:
        listatext=text1.split()
    for n in range(len(listatext)):
        if "," in listatext[n]:
            y=re.sub(",", "", listatext[n])
            listatext[n]=y
        else:
            pass
   lf=root[x].find("lft").text
   count1=count1+1
    lft=re.sub(".*?\-\>", "", lf)#delete word to define and ->
    lfts=re.sub("\:[A-Z]*\(.*?\)", "", lft)#delete predicates and arguments
    listalf=lfts.split()
   for adv in reladvs: #check if one adverb is in the definition but is missing in the LF
        if adv in listatext and adv not in listalf:
            for element in listalf:
                if "_" in element:
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                    check=element.split("_")
                    for token in check:
                        if adv==token: #e.g. as_when
                            tag=tag+1
                       else:
                            pass
            if tag<1:
                count2=count2+1

    syn=root[x].get(“synsetID”)
    if syn not in listasynset:
    listasynset.append(syn)
    else:

pass
    print "\n MISSING ADVERB \n %s" %syn, “\n listatext %s" %listatext, "\n 

listalf %s" %listalf
            else:
                pass
        else:
            pass
        tag=0

    x=x+1

l=open(“synsets_missingradverbs_POS.txt”, “a”)
for syn in listasynset:

l.write(syn+”\n”)
l.close()

print "I checked %d" %count1, " lf-text pairs there are %d LFs with missing relative 
adverbs" %count2

System Description

For each entry in XWN, the system compares the definition and its LF both divided into tokens. 
In order to do not count as possible errors those adverbs transformed into LF attached to other 
particles e.g.:

definition of halloo: shout `halloo', as when greeting someone 
or attracting attention

LF: halloo:VB(e1, x1, x2) -> shout:VB(e1, x1, x2) halloo:NN(x2) 
as_when:IN(e1, e5) greet:VB(e3, x1, x3) someone:NN(x3) or:CC(e5, 
e3, e4) attract:VB(e4, x1, x4) attention:NN(x4)

the system checks both parts of compounds-tokens (as and when in this case).

The output is structured as following:

For each LF with missing relative adverb(s):
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an alert message saying MISSING ADVERB + synsetID of the gloss where missing adverb(s) 
is/are found in the LF + definition tokens + LF tokens

at the end:

number of checked defintion-LF pairs + numebr of LFs with missing relative adverbs

The synsetsID of LFs with missing relative adverbs are recorder in a txt file I will use for the 
correction.

Example of the output in the Python Shell - noun file:  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APPENDIX 7

SYSTEM E - RANDOM SELECTION OF LFs

import xml.etree.ElementTree as ET
import re
from random import randint

tree=ET.parse("POS.xml")
root=tree.getroot()
lf=open("formelogichePOS.txt","a")
for element in root.iter(tag="lft"):
    x=element.text
    quality=element.attrib["quality"]
    lf.write("["+quality+"]"+x)
lf.close()

lf=open("formelogicheNN.txt").readlines()
listarandom=[]
begin=0
end=len(lf)-1
countgold=0
countsilver=0
countnormal=0
while countgold<=50 and countsilver<=50 and countnormal<=50:
    x=randint(begin,end)
    if x not in listarandom: #be sure the random number is 
different
        if "[GOLD]" in lf[x] and countgold!=50:
            fiftygold=open("50goldNN.txt", "a")
            fiftygold.write(lf[x])
            fiftygold.close()
            countgold=countgold+1
        elif "[SILVER]" in lf[x] and countsilver!=50:
            fiftysilver=open("50silverNN.txt", "a")
            fiftysilver.write(lf[x])
            fiftysilver.close()
            countsilver=countsilver+1
        elif "[NORMAL]" in lf[x] and countnormal!=50:
            fiftynormal=open("50normalNN.txt", "a")
            fiftynormal.write(lf[x])
            fiftynormal.close()
            countnormal=countnormal+1
        else:
            pass
    else:
        pass
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System Description 

As first thing, the system takes as input each XWN pos file (one per time) and considers each 
LF and its quality.
It creates 4 pos files (.txt) where each line is structured as: quality of the LF + LF. E.g. from the 
noun file:

[NORMAL] entity:NN(x1) -> that:IN(e1, e2) be:VB(e2, x1, e8) perceive:VB(e3, x3, x1) 
or:CC(e7, e3, e4) know:VB(e4, x4, x1) or:CC(e8, e7, e5) infer:VB(e5, x5, x1) to:IN(e5, e6) 
have:VB(e6, x1, x2) own:JJ(x2) distinct:JJ(x2) existence:NN(x2)
[NORMAL] thing:NN(x1) -> separate:JJ(x1) self-contained:JJ(x1) entity:NN(x1)
[GOLD] anything:NN(x1) -> thing:NN(x1) of:IN(x1, x2) any:JJ(x2) kind:NN(x2)
[GOLD] something:NN(x1) -> thing:NN(x1) of:IN(x1, x2) some:JJ(x2) kind:NN(x2)
[SILVER] nothing:NN(x1) -> nonexistent:JJ(x1) thing:NN(x1)

Then, the system randomly selects different LFs to estimate and saves them in different .txt files 
which I used for the manual evaluation. During the random selection the system considers the 
qualities of the LFs.
Here above the code for the selection of 50 gold 50 silver 50 normal LFs from the noun file.
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APPENDIX 8

SYSTEM F - LHS TAGGING MISTAKES IN THE NOUN FILE

import xml.etree.ElementTree as ET
import re

tree=ET.parse("noun.xml")
root=tree.getroot()
countVB=0
countJJ=0
countRB=0
countLF=0

for element in root.iter(tag="lft"):
    countLF=countLF+1
    lf=element.text
    y=lf.split("->")
    lhs=y[0]
    lhspos=re.search(r"\:.*\(", lhs).group()
    pos=lhspos[1:-1]
    if pos == "VB":
        countVB=countVB+1
    elif pos == "JJ":
        countJJ=countJJ+1
    elif pos == "RB":
        countRB=countRB+1
    else:
        pass

print "I checked %d LFs in the noun file and I found: \n %d 
wrong VB LHS" %(countLF, countVB), "\n %d wrong JJ LHS" 
%countJJ, "\n %d wrong RB LHS" %countRB 

The output system in the Python Shell:
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APPENDIX 9

SYSTEM G - MISSING POSSESSIVE PRONOUNS

import xml.etree.ElementTree as ET
import re
root=tree.getroot()
count1=0
listatext=[]
listalf=[]
listatemp=[]
listasynset=[]
count=0
tx=[]
possessives=["its","their","my","our","mine","her","his"]
tag=0
gat=0

for element in root.iter(tag="gloss"):
    count=count+1
lenght=count
x=0

missingpp=open("missingppPOS.txt","a")
while x<lenght:
    text=root[x].find("text").text
    if ";" in text: #it takes only the first definition, no 
examples
        tx=text.split(";")
        text1=tx[0]
    else:
        text1=text
    if "(" in text1: #delete content between brackets
        text2=re.sub("\(.*?\)", "", text1)
        listatext=text2.split()
    else:
        listatext=text1.split()
    for n in range(len(listatext)):
        if "," in listatext[n]:
            y=re.sub(",", "", listatext[n])
            listatext[n]=y
        else:
            pass
   lf=root[x].find("lft").text
   count1=count1+1
   lft=re.sub(".*?\-\>", "", lf) #delete word to define and ->
   lfts=re.sub(r"\(.*?\)", "", lft) #delete arguments
   splitlf=lfts.split()
   for eachelement in splitlf:
        wordpos=eachelement.split(":")
        listalf.append(wordpos)
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    for possessive in possessives:
        z=[possessive, 'POS']
        if possessive in listatext and z not in listalf:
            syn=root[x].get("synsetID")
            if syn not in listasynset:
                listasynset.append(syn)
                missingpp.write(syn+" "+possessive+lf[1:]+”\n”)
            else:
                pass
   x=x+1
   listalf=[]

missingpp.close()

print "\n I checked %d lf-text pairs there are %d LFs with 
missing POS predicates" %(count1, len(listasynset))

System Description

Similarly to SystemC for missing conjunctions and SystemD for relative adverbs,  SystemG 
takes as input the XML structure of XWN and for each LF it builds a list of tuples word+pos 
(predicate without arguments). It then checks each definition (divided in tokens) in XWN: if a 
possessive pronoun is  found in  the definition and not  in  the corresponding LF the missing 
possessive pronoun case is recorded in a txt file with the structure: 

 
synsetID + missing possessive pronoun+ definition + LF

So, for e.g., for the gloss of tower, the system knows that there is a possessive pronoun in the 
definition

a structure taller than its diameter

that is missing in the LF

tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2) 
diameter:NN(x2)

comparing the tokens of the definitions:

['a', 'structure', 'taller', 'than', 'its', 'diameter']

with the tuples of the corresponding LF:
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[['structure', 'NN'], ['tall', 'JJ'], ['than', 'IN'], 
['diameter', ‘NN']]

The system finds the missing case and records in the output file this entry as:

04287654 its
a structure taller than its diameter
tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2) 
diameter:NN(x2)
At the end of the process SystemG prints the number of checked LFs and the number of LFs 
with missing possessive pronouns for each pos file.

The final output in the Python Shell:

Excerpt from the output file - adjective file:

00005114 its
being the most comprehensive of its class
 comprehensive:JJ(x1) -> be:VB(e1, x1, x2) most:RB(x4) comprehensive:JJ(x4) of:IN(e1, x2) 
class:NN(x2)
 
00051022 its
being or pertaining to something added to a product to increase its value or price
 value-added:JJ(x1) -> be:VB(e1, x1) or:CC(e5, e1, e2) pertain:VB(e2, x1) to:IN(e2, x2) 
something:NN(x2) add:VB(e3, x9, x2) to:IN(e3, x3) product:NN(x3) to:IN(e3, e4) 
increase:VB(e4, x2, x7) value:NN(x4) or:CC(x7, x4, x5) price:NN(x5)
 
00063893 its
not decorated with something to increase its beauty or distinction
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 unadorned:JJ(x1) -> not:RB(e1) decorate:VB(e1, x8, x1) with:IN(e1, x2) something:NN(x2) 
to:IN(x2, e2) increase:VB(e2, x2, x6) beauty:NN(x3) or:CC(x6, x3, x4) distinction:NN(x4)
 
00160893 their
used of persons or their behavior
 unashamed:JJ(x1) -> feel:VB(e1, x1, x2) no:JJ(x2) shame:NN(x2)
 
00218538 its
supporting no vertical weight other than its own
 nonbearing:JJ(x1) -> support:VB(e1, x1, x2) no:JJ(x2) vertical:JJ(x2) weight:NN(x2) 
other_than:IN(x2, x4) own:JJ(x4)
 
00430582 their
used of British soldiers during the Revolutionary War because of their red coats
 red-coated:JJ(x1) -> use:VB(e1, x8, x1) of:IN(e1, x2) british:JJ(x2) soldier:NN(x2) 
during:IN(e1, x3) revolutionary:NN(x3) war:NN(x4) because:IN(e1, x5) of:IN(e1, x5) 
red:JJ(x5) coat:NN(x5)
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APPENDIX 10

SYTEM H - COUNTING NEGATIONS (IN DEFINITIONS)

import xml.etree.ElementTree as ET
import re

tree=ET.parse("POS.xml")
root=tree.getroot()
countnot=0
count=0
listatext=[]
listalf=[]
tx=[]
negations=["no","not","none","nothing","never","nor"]

for element in root.iter(tag="gloss"):
    count=count+1
lenght=count
x=0

while x<lenght:
    text=root[x].find("text").text
    if ";" in text: #it takes only the firt definition, no 
examples
        tx=text.split(";")
        text1=tx[0]
    else:
        text1=text
    if "(" in text1: #delete content between brackets
        text2=re.sub("\(.*?\)", "", text1)
        listatext=text2.split()
    else:
        listatext=text1.split()
    for n in range(len(listatext)):
        if "," in listatext[n]:
            y=re.sub(",", "", listatext[n])
            listatext[n]=y
        else:
            pass
    for negation in negations:
        if negation in listatext:
            countnot=countnot+1
        else:
            pass
    x=x+1

print "I found %d negations in the noun file" %countnot
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System Description

SystemG divides each definition in tokens and search for negation markings. Eg for the gloss of 
ball : 

a pitch that is not in the strike zone; "he threw nine straight balls before the manager yanked 
him"  

the system takes only the definition (a pitch that is not in the strike zone) and splits it into 
tokens: 

['a', 'pitch', 'that', 'is', 'not', 'in', 'the', 'strike', ‘zone']

It counts not as negation marking.
I run the system for each pos XWN file and results are shown (how they appear in the Python 
Shell) here below:
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APPENDIX 11

SYSTEM I - COUNTING MISSING NEGATION MARKINGS

import xml.etree.ElementTree as ET
import re

tree=ET.parse("POS.xml")
root=tree.getroot()
count1=0
listatext=[]
listalf=[]
listasynset=[]
count=0
tx=[]
negations=["no","not","none","nothing","never","nor"]
tag=0

for element in root.iter(tag="gloss"):
    count=count+1
lenght=count
x=0

while x<lenght:
    text=root[x].find("text").text
    if ";" in text: #it takes only the firt definition, no 
examples
        tx=text.split(";")
        text1=tx[0]
    else:
        text1=text
    if "(" in text1: #delete content between brackets
        text2=re.sub("\(.*?\)", "", text1)
        listatext=text2.split()
    else:
        listatext=text1.split()
    for n in range(len(listatext)):
        if "," in listatext[n]:
            y=re.sub(",", "", listatext[n])
            listatext[n]=y
        else:
            pass
   lf=root[x].find("lft").text
   count1=count1+1
   lft=re.sub(".*?\-\>", "", lf) #delete word to define and ->
   lfts=re.sub("\:[A-Z]*\(.*?\)", "", lft) #delete predic and 
arguments
   listalf=lfts.split()
   for negation in negations:
        if negation in listatext and negation not in listalf:
            syn=root[x].get("synsetID")
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            if syn not in listasynset:
                listasynset.append(syn)
            else:
                pass
            print "\n MISSING negation  \n %s" %syn,  "\n 
listatext %s" %listatext, "\n listalf %s" %listalf
        else:
            pass
    x=x+1

print "\n I checked %d lf-text pairs there are %d LFs with 
missing negation" %(count1,len(listasynset))

System Description

Just like SystemD for relative adverbs, SystemH compares each definition with its 
corresponding LF. If a Negation Marking is found in the definition and not in the LF the system 
counts it as missing negation marking and prints out SynsetID of the gloss, definition and LF. 
E.g. SystemH’s output for the gloss of leakproof:

 MISSING negation  
 02019151 
 listatext ['having', 'no', 'leaks'] 
 listalf ['have', 'leak']

This time I didn't ask the system to record the missing cases in a txt file since they are a few and 
I did not consider them as a common error to correct.
The system counts missing negation marking for each pos XWN file and the total number is < 
50.
This result proves that XWN LFs are not affected by missing negations.
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APPENDIX 12

SYSTEM L - MISSING PREPOSITIONS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("POS.xml")
root=tree.getroot()
countnoncontrollate=0
missingprep=0
listatext=[]
listalf=[]
synsetIDlist=[]
count=0
c=0
p=0
tx=[]
cont=0
countcontrollate=0
prepositions=["on","in","to","by","for","with","at","of","from",
"as","out"]
for element in root.iter(tag="gloss"):
    count=count+1
lenght=count
x=0

missprep=open("missingprepPOS.txt","a")

while x<lenght:
    text=root[x].find("text").text
    if ";" in text:#it takes only the first definition, no 
examples
        tx=text.split(";")
        text1=tx[0]
    else:
        text1=text
    if "(" in text1:#delete content between brackets
        text2=re.sub("\(.*?\)", "", text1)
        listatext=text2.split()
    else:
        listatext=text1.split()
    for n in range(len(listatext)):
        if "," in listatext[n]:
            y=re.sub(",", "", listatext[n])
            listatext[n]=y
        else:
            pass
    lf=root[x].find("lft").text
    countcontrollate=countcontrollate+1
    lft=re.sub(".*?\-\>", "", lf)#delete word to define and ->
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    lfts=re.sub("\:[A-Z]*\(.*?\)", "", lft)#delete predicates 
and arguments
    listalf=lfts.split()
    for token in listatext:
        if token in prepositions:
            p=p+1
            prep=token
            for tok in listalf:
                if tok == prep:
                    cont=cont+1
                elif "_" in tok:
                    z=tok.split("_")
                    for s in z:
                        if s==prep:
                            cont=cont+1
                        else:
                            pass
                elif "-" in tok:
                    z=tok.split("-")
                    for s in z:
                        if s==prep:
                            cont=cont+1
                        else:
                            pass
                else:
                    pass
        else:
            pass
    if p>0 and cont==0:
        syn=root[x].get("synsetID")
        if syn not in synsetIDlist:
            synsetIDlist.append(syn)
            c=c+1
            missprep.write(str(c)+" Missing Preposition: " + 
prep + "\n" + "SynsetID: " + syn + "\n" + "Definition: 

" + text1 + "\n" + "Logical Form: " + lft + 
"\n\n")
        else:
            pass
    else:
        pass
    prep=''
    cont=0
    p=0
    x=x+1
missprep.close()
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System Description

Just like SystemC for conjunctions, For each XWN pos file, SystemL compares the first 
defintion-LF pair of each gloss (divided into tokens).
If it founds a preposition in the definition which is not present in the LF, it considers this case as 
a missing preposition and save the synsetID of the gloss in a txt file (if not already in it).
During the comparison definition-LF the system takes care of those compound words with 
hyphens or underscores. It splits these words in different tokens and search for the preposition. 
This is done in order to avoid false positives of missing prepositions which have been 
transformed into LF as part of a phrasal verb, for e.g for the gloss of elaborate.:

<gloss pos="VERB" synsetID="00243111">
  <synonymSet>elaborate, work_out</synonymSet>
 <text> work out in detail; "elaborate a plan" </text>
  . . .
 <lft quality="GOLD">
 elaborate:VB(e1, x1, x2) -> work_out:VB(e1, x1, x4) in:IN(e1, 
x3) detail:NN(x3) </lft>
</gloss> 

SystemL checks both part of the word work_out.
The system records the results of the analysis in different txt files, one for each XWN pos file, 
and for each missing case detected, it saves:

preposition missing + SynsetID + Definition + Logical Form

each entry is preceded by a growing number in order to count the cases.
Excerpt from the adjective output file:

220 Missing Preposition: by
SynsetID: 01326135
Definition: 
   showing or motivated by sympathy and understanding and generosity
Logical Form: 
 show:VB(e1, x1, x6) or:CC(e4, e1, e2) motivate:VB(e2, x6, x1) sympathy:NN(x2) 
understanding:NN(x3) and:CC(x6, x2, x3, x4) generosity:NN(x4)

…

232 Missing Preposition: out
SynsetID: 01383285
Definition: 
   spread out irregularly
Logical Form: 
 spread:VB(e1, x4, x1) irregularly:RB(e1)
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233 Missing Preposition: out
SynsetID: 01383937
Definition: 
   not extended or stretched out
Logical Form: 
 not:RB(e3) extend:VB(e1, x4, x1) or:CC(e3, e1, e2) stretch:VB(e2, x5, x1)
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APPENDIX 13

THE PARSER 

:- style_check(-singleton).

% or_CC(x8,x2,x3,x4,x5) - coordination of properties/entities
% or_CC(x6,x2,x3,x4) - coordination of properties/entities
% or_CC(x5,x2,x3) - coordination of properties/entities
% and_CC(e3,e1,e2) - coordination of predicates
% by_IN(e1,x2) - a preposition modifying a predicate and a 
property/entity
% of_IN(x2,x3) - a preposition modifying two properties/entities
% to_IN(x6,e5) - a preposition modifying a property/entity and a 
predicate (tendency to)
% to_TO(e2,e3) - a particle linking two predicates

% exist_VB(e1,x1), borrow_VB(e2,x1)

%xwn_lookup(File,NewXWn):-
%   consult(File),
sxwn_lookup(File,WN,NewXWn):-
   consult(File),
   readrecursive(Wffs,Preds),
%   tell(errs),
   consult(WN),
   readrecursiveWN(Syns),
   tell(new_xwn),
%   newreadrecursiveWN(Syns),
%   infnewreadrecursiveWN(Syns),
   createnewxwn(Wffs,Syns,Preds,NewXWn),
%   told,
   writeall(NewXWn),
   told,
   !.

writeall([]):-!.
writeall([N-D|Diss]):-
   writenl(_,N-D),nl,
   writeall(Diss),
   !.
   
readrecursive(Sents,Feats):-
   findall(Pred,lf(Pred,Sent),Sents),
   findall(Sent,lf(Pred,Sent),Feats),
   !.
readrecursiveWN(Sents):-
   findall(ID-Syn,gloss_synsetID(ID,Syn),Sents),
   !.
newreadrecursiveWN(Sents):-
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   findall(Syn-ID,gloss_synsetID(ID,Syn),Sentss),
   sort(Sentss,Sents),
   tell(wnsort),
   writeall(Sents),
   told,
   !.
infnewreadrecursiveWN(Sents):-
   findall(Syn-ID,hypv(ID,Syn),Sentss),
   sort(Sentss,Sents),
   !.

% newcreatexwn(Sent,Feat,Vars,Predss,Out):-

createnewxwn([],Syns,[],[]):-!.
createnewxwn([Ind|Sents],Syns,[Feat|Feats],[Id-LF|NewVit]):-
   length(Feat,L),
%   newcreaxwn(L,Feat,Feat,New),
   newcreaxwns(L,Feat,Feat,New),
   checklexicalpredicates(L,New,Feat,Lexs,Errs),
   transformnew(Feat,Lexs,LF),
%   infnewappendsynset(Ind,Sents,Syns,Rest,Id),
%   newappendsynset(Ind,Sents,Syns,Rest,Id),
   appendsynset(Ind,Sents,Syns,Rest,Id),
%   hyfappendsynset(Ind,Sents,Syns,Rest,Id),
%   creanewxwns(L,Feat,Feat,New),
%   write(Ind),write('  '), write(L), write('  '),
%   write(Errs),nl,
   writeqnl(_,Id-LF),nl,
   createnewxwn(Sents,Rest,Feats,NewVit),
   !.
createnewxwn([Ind|Sents],Syns,Feats,NewVit):-
   createnewxwn(Sents,Syns,Feats,NewVit),
   !.

infnewappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
   reconstr1(LF,Pre),
   (Sy=[[Pre|_]|_]
     ;
    Sy=[[_,Pre|_]|_]
     ;
    Sy=[[PreUp|_]|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    LF1=..[synset,ID,LF,Sy],
    (Sents=[LF|_],Syns=[Sec-_|_],Sec=[[Pre1|_]|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns];Rest=Syns),
    !.
infnewappendsynset(LF,Sents,Syns,Rest,LF1):-
   reconstr1(LF,Pre),
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   infgetsys(Pre,Sents,Syns,ID,Sy,Rest),
   LF1=..[synset,ID,LF,Sy],
    !.
infnewappendsynset(LF,Sents,Syns,Rest,LF1):-
   reconstr1(LF,Pre),
   mcon(Pre,ing,Pre1),
   infgetsys(Pre1,Sents,Syns,ID,Sy,Rest),
   LF1=..[synset,ID,LF,Sy],
    !.
infnewappendsynset(LF,Sents,Syns,Rest,LF1):-
   reconstr1(LF,Pre),
   mcon(Pre,s,Pre1),
   infgetsys(Pre1,Sents,Syns,ID,Sy,Rest),
   LF1=..[synset,ID,LF,Sy],
    !.

infgetsys(Pre,Sents,Syns,ID,Sy,Rest):-
   remove(Sy-ID,Syns,Res),
   (Sy=[[Pre|_]|_]
     ;
    Sy=[[_,Pre|_]|_]
     ;
    Sy=[[PreUp|_]|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    (Sents=[LF|_],Syns=[Sec-_|_],Sec=[[Pre1|_]|_],Pre1\=Pre,
      Rest=[Sy-ID|Res];Rest=Res),
    !.

newappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
   reconstr1(LF,Pre),
   (Sy=[Pre|_]
     ;
    Sy=[_,Pre|_]
     ;
    Sy=[PreUp|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    LF1=..[synset,ID,LF,Sy],
    (Sents=[LF|_],Syns=[Sec-_|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns];Rest=Syns),
    !.
newappendsynset(LF,Sents,Syns,Rest,LF1):-
   reconstr1(LF,Pre),
   getsys(Pre,Sents,Syns,ID,Sy,Rest),
   LF1=..[synset,ID,LF,Sy],
    !.
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getsys(Pre,Sents,Syns,ID,Sy,Rest):-
   remove(Sy-ID,Syns,Res),
   (Sy=[Pre|_]
     ;
    Sy=[_,Pre|_]
     ;
    Sy=[PreUp|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    (Sents=[LF|_],Syns=[Sec-_|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Res];Rest=Res),
    !.

hyfappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
   reconstr1(LF,Pre),
   (Sy=[Pre|_]
     ;
    Sy=[_,Pre|_]
     ;
    Sy=[PreUp|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    LF1=..[synset,ID,LF,Sy],
    LF=..[Pref|_],
    Sents=[LF2|_],
    LF2=..[Pref2|_],
    (LF=LF2,
%      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns]
      ;
     reconstr1(LF2,Pre2),
     tolower(Pre,LowP),
     LowP=Pre2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns]
     ;
     Pref=Pref2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns]
      ;
      Rest=Syns),
    !.
hyfappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
   reconstr1(LF,Pre),
   modifyending(Pre,Pre3),
   (Sy=[Pre3|_]
     ;
    Sy=[_,Pre|_]
     ;
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    Sy=[PreUp|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    LF1=..[synset,ID,LF,Sy],
    LF=..[Pref|_],
    Sents=[LF2|_],
    LF2=..[Pref2|_],
    (LF=LF2,
%      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns]
      ;
     reconstr1(LF2,Pre2),
     tolower(Pre,LowP),
     LowP=Pre2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns]
     ;
     Pref=Pref2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[Sy-ID|Syns]
      ;
      Rest=Syns),
    !.
hyfappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
   append(Syns,[Sy-ID],Synss),
   hyfappendsynset(LF,Sents,Synss,Rest,LF1),
   !.

appendsynset(LF,Sents,[ID-Sy|Syns],Rest,LF1):-
%appendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
   reconstr1(LF,Pre),
   (Sy=[Pre|_]
     ;
    Sy=[_,Pre|_]
     ;
    Sy=[PreUp|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    LF1=..[synset,ID,LF,Sy],
    LF=..[Pref|_],
    Sents=[LF2|_],
    LF2=..[Pref2|_],
    (LF=LF2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[ID-Sy|Syns]
      ;
     reconstr1(LF2,Pre2),
     tolower(Pre,LowP),
     LowP=Pre2,
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      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[ID-Sy|Syns]
     ;
     Pref=Pref2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[ID-Sy|Syns]
      ;
      Rest=Syns),
    !.
appendsynset(LF,Sents,[ID-Sy|Syns],Rest,LF1):-
%appendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
   reconstr1(LF,Pre),
   modifyending(Pre,Pre3),
   (Sy=[Pre3|_]
     ;
    Sy=[_,Pre|_]
     ;
    Sy=[PreUp|_],
    atomic(PreUp),
    tolower(PreUp,Low),
    Low=Pre),
    LF1=..[synset,ID,LF,Sy],
    LF=..[Pref|_],
    Sents=[LF2|_],
    LF2=..[Pref2|_],
    (LF=LF2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[ID-Sy|Syns]
      ;
     reconstr1(LF2,Pre2),
     tolower(Pre,LowP),
     LowP=Pre2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[ID-Sy|Syns]
     ;
     Pref=Pref2,
      Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
      Rest=[ID-Sy|Syns]
      ;
      Rest=Syns),
    !.
appendsynset(LF,Sents,[ID-Sy|Syns],Rest,LF1):-
%appendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
%   write(ID),write('  '),write(Sy),nl,nl,
   append(Syns,[Sy-ID],Synss),
   appendsynset(LF,Sents,Synss,Rest,LF1),
   !.

modifyending(Pre,Pre3):-
     stringof(List,Pre),
     reverse(List,[e|Rest]),
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     reverse([g,n,i|Rest],Pre3);
     mcon(Pre,ing,Pre3);
     mcon(Pre,s,Pre3),
     !.

reconstr1(Pre,Pred):-
     Pre=..[Pref|_],
     stringof(List,Pref),
     reverse(List,[A,B,'_'|Rev]),
     reverse(Rev,Lis),
     stringof(Lis,Pred),
     !.

transformnew([],[],[]):-!.
transformnew([LF|Feat],[Pred|Lexs],[NewLF|LFs]):-
            LF=..[Pre|C],
            Pred=Pre-C1,
            NewLF=Pre-C1,
   transformnew(Feat,Lexs,LFs),
   !.
transformnew([LF|Feat],Lexs,[LF|LFs]):-
   transformnew(Feat,Lexs,LFs),
   !.

checklexicalpredicates(L,[],Feat,[],[]):-!.
checklexicalpredicates(L,New,Feat,Out,Errs):-
     findall(Pre-D,(
            member(Pred,Feat),
            Pred=..[Pre,A,B|C],
            stringof(Lis,A),Lis=[e|_],
            D=[A,B|C]),Predd),
            Predd\=[],
     matchverbss(New,Feat,Predd,Out,Errs),
     !.
checklexicalpredicates(L,New,Feat,[],[]):-
     !.

matchverbss(New,Feat,Predd,Out,Errs):-
     matchverbs(New,Predd,Out,Err,Pass),
     append(Err,Pass,All),
     removeall(All,New,Errs),
     !.

removeall(Sent,[],[]):-!.
removeall(Sent,Tops,Rest):-
    remove(W,Sent,ResS),
    remove(W,Tops,ResT),
    removeall(ResS,ResT,Rest),
    !.
removeall(Sent,Tops,Tops):-
    !.
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matchverbs(New,[],[],[],[]):-!.
matchverbs(New,[Pre-Args|Predd],[Pre-Argg|Out],[Var|
Rest],Ergs):-
     reconstr(Pre,Pred),
     v(Pred,Cats),
     member(Var,New),
     member(Var,Args),
     stringof(Lis,Var),Lis=[E|_],E\=e,
     remove(Var,Args,Argg),
     matchverbs(New,Predd,Out,Rest,Ergs),
     !.     
matchverbs(New,[Pre-Args|Predd],[Pre-Argg|Out],Ergs,[Var|
Rest]):-
     reconstr(Pre,Pred),
     \+ v(Pred,Cats),
     member(Var,New),
     member(Var,Args),
     stringof(Lis,Var),Lis=[E|_],E\=e,
     remove(Var,Args,Argg),
     matchverbs(New,Predd,Out,Ergs,Rest),
     !.     
matchverbs(New,[Pre-Args|Predd],[Pre-Args|Out],Ergs,Rest):-
     matchverbs(New,Predd,Out,Ergs,Rest),
     !.     
reconstr(Pre,Pred):-
     stringof(List,Pre),
     reverse(List,[A,B,'_'|Rev]),
     reverse(Rev,Lis),
     stringof(Lis,Pred),
     !.
newcreaxwns(L,Sent,Feat,Out):-
   findall(B,(
            member(Pred,Sent),
            Pred=..['NN'|B]),Predd1),
   findall(B,(
            member(Pred,Sent),
             (Pred=..[or_CC|B];
             Pred=..[and_CC|B])),Predd2),
   findall(D,(
            member(Pred,Sent),
             (Pred=..[Pre,A,B|C],
                        stringof(Lis,A),Lis=[e|_],(A=e1,D=[B|
C];A\=e1,D=[A,B|C]);
             Pred=..[Pre,A,B|C],stringof(Lis,A),Lis=[x|_],
                                            (A=x1,D=[B|
C];A\=x1,D=[A,B|C]))),
             Predd3),
   findall(D,(
            member(Pred,Sent),
             Pred=..[Pre,A,B],D=[A,B]),Predd4),
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   appiattisci(Predd4,Pre4),
   sort(Pre4,Pre44),
   (member(e1,Pre44),remove(e1,Pre44,Pred4);
      Pred4=Pre44),
   append(Pre44,Predd1,Pred11),
   append(Pred11,Predd2,Predd),
   appiattisci(Predd,Preddas),
   sort(Preddas,Predda),
   append(Predd,Predd3,Preds1),
   append(Preds1,Pred4,Preds),
   appiattisci(Preds,Pres),
   sort(Pres,Predss),
   findall(B,(
            (member(Pred,Sent),
             Pred=..[Pre,B],B\=x1,B\=e1,B\=e0)
             ),Varss),
   sort(Varss,Vars),
   newcreatexwn(Sent,Predda,Vars,Predss,Out),
   !.

%evaluateintersect(Rest,Vars,[],Vars):-
%   append(Rest,Vars,Out),
evaluateintersect([],[],[],[]):-!.
evaluateintersect(Rest,Vars,[],Out):-
   write('no intersection'),nl,
   append(Rest,Vars,Out),
   !.
evaluateintersect(Rest,Vars,Outs,Out):-
   Outs\=[],
%   eliminateshared(Vars,Outs,Out),
   eliminateshared(Vars,Outs,Out1),
   eliminateshared(Rest,Outs,Out2),
   append(Out1,Out2,Out),
   !.
eliminateshared(Vars,Outs,Out):-
   member(X,Vars),
   member(X,Outs),
   remove(X,Outs,Rest),
   remove(X,Vars,Var),
   eliminateshared(Var,Rest,Out),
   !.
eliminateshared(Vars,[],Vars):-
   !.
eliminateshared(Vars,Outs,Out):-
   append(Outs,Vars,Out),
   !.
newcreatexwn(Sent,Feat,Vars,Predss,Out):-
   (remove(x1,Predss,Restt);Restt=Predss),
   (remove(e1,Restt,Rest);Rest=Restt),
   append(Feat,Vars,Varss),
   sort(Varss,Varrs),
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   (remove(x1,Varrs,Varr1);Varr1=Varrs),
   (remove(e1,Varr1,Varr);Varr=Varrs),
   intersection(Rest,Varr,Outs),
   evaluateintersect(Rest,Varr,Outs,Out),
   !.
newcreatexwn(Sent,Feat,[x1],Predss,[]):-!.
newcreatexwn(Sent,Feat,Vars,Predss,Out):-
   intersection(Predss,Vars,Outs),
   evaluateintersect(Predss,Vars,Outs,Out),
   !.
newcreatexwn(Sent,Feat,Vars,Predss,Vars):-
   Predss\=[],!.
newcreatexwn(Sent,Feat,Vars,Predss,Vars):-
   Predss=[],\+ member(x1,Vars),!.
newcreatexwn(Sent,Feat,Vars,[],[]):-!.

creanewxwns(L,Sent,Feat,Preds):-
   findall(Pred,(
            member(Pred,Sent),
            Pred=..['NN'|_]),Predd),
   Predd\=[], member(Pred,Predd),
   remove(Pred,Feat,Feat1),
   Pred=..['NN',A|B],
   reifycoord(xm,B,Predss),
   Coord=[coord(xm,A)],
   append(Predss,Coord,NewP),
   append(NewP,Feat1,New),
   creanewxwns(L,Sent,New,Preds),
   !.
creanewxwns(L,Sent,Feat,Preds):-
   findall(Pred,(
            member(Pred,Sent),
             (Pred=..[or_CC,A|B],Pre=or_CC;
             Pred=..[and_CC,A|B],Pre=or_CC)),Predd),
   Predd\=[], member(Pred,Predd),
   remove(Pred,Feat,Feat1),
   (Pred=..[or_CC,A|B],Pre=or_CC;
    Pred=..[and_CC,A|B],Pre=or_CC),
   reifycoord(xc,B,Predss),
   Pres=..[Pre,xc],
   Coord=[coord(xc,A),Pres],
   append(Predss,Coord,NewP),
   append(NewP,Feat1,New),
   creanewxwns(L,Sent,New,Preds),
   !.
/*
creanewxwns(L,[Pred|Sent],Feat,Preds):-
   creanewxwns(L,Sent,Feat,Preds),
   !.
*/
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creanewxwns(L,Sent,Feat,Preds):-
   creanewxwn(L,Feat,Preds),
   !.

reifycoord(First,[],[]):-!.
reifycoord(First,[Var|Pred],[New|Preds]):-
   New=coord(First,Var),
   reifycoord(First,Pred,Preds),
   !.
   

creanewxwn(L,[],[]):-!.

creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[not_RB,B],
   Pred1=[neg(B,xn),not(xn)],
   append(Pred1,Sent,Sent1),
   !,
   creanewxwn(L,Sent1,Preds),
   !.
creanewxwn(L,[Pred|Sent],[]):-
   Pred=..[A,e1,C],
   checkvariabless([C],Sent,New),
   New=[],
   !.
creanewxwn(L,[Pred|Sent],[]):-
   Pred=..[A,e1,C],
   checkvariabless([C],Sent,New),
   findall(W,(member(Pre,New),Pre=..[W,D1],D=D1),Ws),
   Ws=[],
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,e1,C],
   checkvariabless([C],Sent,New),
   findall(W,(member(Pre,New),Pre=..[W,D1],D=D1),Ws),
   Ws\=[],
   !,
   creanewxwn(L,[Pred|New],Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,e1,C],
   checkvariabless([C],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],[]):-
   Pred=..[A,e1,x1,D],
   checkvariabless([D],Sent,New),
   New=[],
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   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,e1,x1,D],
   checkvariabless([D],Sent,New),
   findall(W,(member(Pre,New),Pre=..[W,D1],D=D1),Ws),
   findall(W1,(member(Pre1,New),Pre1=..[W1,B,D1],D=D1),Ws1),
   findall(W2,(member(Pre2,New),Pre2=..[W2,D1,B],D=D1),Ws2),
   Ws=[],Ws1=[],Ws2=[],
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,e1,x1,D],
   checkvariabless([D],Sent,New),
   findall(W,(member(Pre,New),Pre=..[W,D]),Ws),
   findall(W1,(member(Pre1,New),Pre1=..[W1,B,D]),Ws1),
   findall(W2,(member(Pre2,New),Pre2=..[W2,D1,B],D=D1),Ws2),
   append(Ws,Ws1,Wss),
   (Wss\=[];Ws2\=[]),
   !,
   creanewxwn(L,[Pred|New],Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,e1,C,D],
   checkvariabless([C,D],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,e1,x1,D,E],
   checkvariabless([D,E],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,e1,C,D,E],
   checkvariabless([C,D,E],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,B,C],
   checkvariabless([B,C],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,B,C,D],
   checkvariabless([B,C,D],Sent,New),
   !,
   creanewxwn(L,New,Preds),
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   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,B,C,D,E],
   checkvariabless([B,C,D,E],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,B,C,D,E,F],
   checkvariables([B,C,D,E,F],Sent,New),
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,B,C,D,E,F,G],
   checkvariabless([B,C,D,E,F,G],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],Preds):-
   Pred=..[A,B,C,D,E,F,G,H],
   checkvariabless([B,C,D,E,F,G,H],Sent,New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,[Pred|Sent],[Pred|New]):-
   atomic(Pred),
   creanewxwn(L,Sent,New),
   !.   
creanewxwn(L,[Pred|Sent],New):-
   Pred=..[Attr,x1],
   creanewxwn(L,Sent,New),
   !.   
creanewxwn(L,[Pred|Sent],Preds):-
   append(Sent,[Pred],New),
   !,
   creanewxwn(L,New,Preds),
   !.
creanewxwn(L,Preds,Preds):-!.

checkvariabless(Vars,Sent,[]):-
   collectallvarss(Sent,AllV),
   findall(Var,(member(Var,Vars),
                 \+ member(Var,AllV)),Varr),
   Varr=[],
%   checkvariables(Vars,Sent,Rest),
   !.
checkvariabless(Vars,Sent,Varr):-
   collectallvarss(Sent,AllV),
   findall(Var,(member(Var,Vars),
                 \+ member(Var,AllV)),Varr),
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   Varr\=[],
   !.

collectallvarss(Sent,AllVs):-
   collectallvars(Sent,AllV),
   appiattisci(AllV,Alss),
   sort(Alss,AllVs),
   !.
   
collectallvars([],[]):-!.
collectallvars([Pred|Sent],[Vars|AllV]):-
   Pred=..[Ent|Vars],
   collectallvars(Sent,AllV),
   !.
   
checkvariable([],Sent,[]):-!.
checkvariable([B],[Pred|Sent],[]):-
   Pred=..[A,B],
   !.
checkvariable([B],[Pred|Sent],[]):-
   Pred=..[A,B|Vars],
   !.
checkvariable([B],[Pred|Sent],[]):-
   Pred=..[A,C,B|Vars],
   !.
checkvariable([B|Rest],[Pred|Sent],Rest):-
   Pred=..[A,B],
   !.
checkvariable([B|Rest],[Pred|Sent],Rest):-
   Pred=..[A,B|Vars],
   !.
checkvariable([C|Rest],[Pred|Sent],Rest):-
   Pred=..[A,B,C|Vars],
   !.
checkvariable([D|Rest],[Pred|Sent],Rest):-
   Pred=..[A,B,C,D|Vars],
   !.
checkvariable([E|Rest],[Pred|Sent],Rest):-
   Pred=..[A,B,C,D,E|Vars],
   !.
checkvariable([F|Rest],[Pred|Sent],Rest):-
   Pred=..[A,B,C,D,E,F|Vars],
   !.

checkvariables([],Sent,[]):-!.
checkvariables([B],[Pred|Sent],Sent):-
   Pred=..[A,B],
   !.
checkvariables([B],[Pred|Sent],Sent):-
   Pred=..[A,B|Vars],
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   !.
checkvariables([B],[Pred|Sent],Sent):-
   Pred=..[A,C,B|Vars],
   !.
checkvariables([B|Rest],[Pred|Sent],New):-
   Pred=..[A,B],
   !,
   checkvariables(Rest,Sent,New),
   !.
checkvariables([B|Rest],[Pred|Sent],New):-
   Pred=..[A,B|Vars],
%   Pred1=..[A|Vars],
   !,
   checkvariables(Rest,[Pred|Sent],New),
   !.
checkvariables([C|Rest],[Pred|Sent],New):-
   Pred=..[A,B,C|Vars],
%   Pred1=..[A,B|Vars],
   !,
   checkvariables(Rest,[Pred|Sent],New),
   !.
checkvariables([D|Rest],[Pred|Sent],New):-
   Pred=..[A,B,C,D|Vars],
%   Pred1=..[A,B,C|Vars],
   !,
   checkvariables(Rest,[Pred|Sent],New),
   !.
checkvariables([E|Rest],[Pred|Sent],New):-
   Pred=..[A,B,C,D,E|Vars],
%   Pred1=..[A,B,C,D|Vars],
   !,
   checkvariables(Rest,[Pred|Sent],New),
   !.
checkvariables([F|Rest],[Pred|Sent],New):-
   Pred=..[A,B,C,D,E,F|Vars],
%   Pred1=..[A,B,C,D,E|Vars],
   !,
   checkvariables(Rest,[Pred|Sent],New),
   !.
checkvariables(Rest,[Pred|Sent],New):-
   Sent=[Pred1|Sent1],
   (Pred=..[A,B],
    checkvariable(Rest,Sent,Vars),
     !,
   checkvariables(Vars,Sent,New)
   ;
%   \+ Pred=..[A,B],
   !,
   append(Sent1,[Pred],Preds),
   checkvariables(Rest,[Pred1|Preds],New)
   ),
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   !.
checkvariables(Rest,Sent,Rest):-
   !.

/*
lf(independent_JJ(x1),
[not_RB(e2),dependent_on_JJ(x4),condition_VB(e1,x5,x1),by_IN(e1,
x5),or_CC(e2,e1),relative_JJ(x2),to_IN(e2,x2),anything_NN(x2),el
se_JJ(x2)]).
lf(independent_JJ(x1),
[not_RB(e3),dependent_on_JJ(e1,x1,x2),condition_NN(x2),by_IN(x2,
x4),or_CC(e3,e1,e2),relative_JJ(e2,x1,e4),to_IN(e4,x4),anything_
NN(x4),else_JJ(x4)]).

*/
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APPENDIX 14

PARSER - INPUT FILE - NOUN SYNSETID+SYNSET

gloss_synsetID(100001740,[entity]).
gloss_synsetID(100002056,[thing]).
gloss_synsetID(100002342,[anything]).
gloss_synsetID(100002452,[something]).
gloss_synsetID(100002560,[nothing,nonentity]).
gloss_synsetID(100002645,[whole,whole_thing,unit]).
gloss_synsetID(100003009,[living_thing,animate_thing]).
gloss_synsetID(100003226,[organism,being]).
gloss_synsetID(100004358,[benthos]).
gloss_synsetID(100004483,[heterotroph]).
gloss_synsetID(100004609,[life]).
gloss_synsetID(100004740,[biont]).
gloss_synsetID(100004824,[cell]).
gloss_synsetID(100005598,[causal_agent,cause,causal_agency]).
gloss_synsetID(100006026,
[person,individual,someone,somebody,mortal,human,soul]).
gloss_synsetID(100012748,
[animal,animate_being,beast,brute,creature,fauna]).
gloss_synsetID(100014510,[plant,flora,plant_life]).
gloss_synsetID(100016236,[object,physical_object]).
gloss_synsetID(100017087,[natural_object]).
gloss_synsetID(100017572,[substance,matter]).
gloss_synsetID(100018827,[food,nutrient]).
gloss_synsetID(100019244,[artifact,artefact]).
gloss_synsetID(100020136,[article]).
gloss_synsetID(100020333,[psychological_feature]).
gloss_synsetID(100020486,[abstraction]).
gloss_synsetID(100020729,[cognition,knowledge,noesis]).
gloss_synsetID(100021213,[motivation,motive,need]).
gloss_synsetID(100021668,[feeling]).
gloss_synsetID(100022625,[location]).
gloss_synsetID(100023103,[shape,form]).
gloss_synsetID(100023548,[time]).
gloss_synsetID(100023929,[space]).
gloss_synsetID(100024197,[absolute_space]).
gloss_synsetID(100024304,[phase_space]).
gloss_synsetID(100024568,[state]).
gloss_synsetID(100025950,[event]).
gloss_synsetID(100026194,[act,human_action,human_activity]).
gloss_synsetID(100026769,[group,grouping]).
gloss_synsetID(100027371,[possession]).
gloss_synsetID(100027563,[attribute]).
gloss_synsetID(100027929,[relation]).
gloss_synsetID(100028549,[social_relation]).
gloss_synsetID(100028764,[communication]).
gloss_synsetID(100029305,[measure,quantity,amount]).
gloss_synsetID(100029881,[phenomenon]).  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APPENDIX 15

PARSER - INPUT FILE - LOGICAL FORMS

entity:NN(x1) -> that:IN(e1, e2) be:VB(e2, x1, e8) 
perceive:VB(e3, x3, x1) or:CC(e7, e3, e4) know:VB(e4, x4, x1) 
or:CC(e8, e7, e5) infer:VB(e5, x5, x1) to:IN(e5, e6) have:VB(e6, 
x1, x2) own:JJ(x2) distinct:JJ(x2) existence:NN(x2)
thing:NN(x1) -> separate:JJ(x1) self-contained:JJ(x1) 
entity:NN(x1)
anything:NN(x1) -> thing:NN(x1) of:IN(x1, x2) any:JJ(x2) 
kind:NN(x2)
something:NN(x1) -> thing:NN(x1) of:IN(x1, x2) some:JJ(x2) 
kind:NN(x2)
nothing:NN(x1) -> nonexistent:JJ(x1) thing:NN(x1)
whole:NN(x1) -> assemblage:NN(x1) of:IN(x1, x2) parts:NN(x2) 
be:VB(e1, x2, e2) regard:VB(e2, x4, x2) as:IN(e2, x3) 
single:JJ(x3) entity:NN(x3)
living_thing:NN(x1) -> live:VB(e1, x1, x1) entity:NN(x1)
organism:NN(x1) -> live:VB(e1, x1, x1) thing:NN(x1) have:VB(e2, 
x1, x2) ability:NN(x2) to:IN(x2, e5) act:VB(e3, x2, x26) 
or:CC(e5, e3, e4) function:VB(e4, x2, x26) independently:RB(e4)
benthos:NN(x1) -> organism:NN(x1) live:VB(e1, x1, x26) at:IN(e1, 
x4) near:IN(e1, x5) bottom:NN(x2) of:IN(x2, x3) sea:NN(x3)
heterotroph:NN(x1) -> organism:NN(x1) depend:VB(e1, x1, x26) 
on:IN(e1, x2) complex:JJ(x2) organic:JJ(x2) substance:NN(x2) 
for:IN(x2, x3) nutrition:NN(x3)
life:NN(x1) -> living:JJ(x1) thing:NN(x1) collectively:RB(e1)
biont:NN(x1) -> discrete:JJ(x1) unit:NN(x1) of:IN(x1, x2) 
living:JJ(x2) matter:NN(x2)
cell:NN(x1) -> basic:JJ(x1) structural:JJ(x1) functional:JJ(x1) 
unit:NN(x1) of:IN(x1, x2) all:JJ(x2) organism:NN(x2)
cell:NN(x1) -> cell:NN(x1) exist:VB(e1, x1, x26) as:IN(e1, x2) 
independent:JJ(x2) unit:NN(x2) of:IN(x2, x3) life:NN(x3) 
or:CC(e3, e1, e2) form:VB(e2, x1, x8) colony:NN(x4) or:CC(x8, 
x4, x5) tissue:NN(x5) as:IN(x8, x9) in:IN(x8, x9) higher:JJ(x9) 
plant:NN(x6) and:CC(x9, x6, x7) animal:NN(x7)
causal_agent:NN(x1) -> any:JJ(x1) entity:NN(x1) cause:VB(e1, x1, 
x2) event:NN(x2) to:IN(x2, e2) happen:VB(e2, x2, x26)
person:NN(x1) -> human_being:NN(x1)
animal:NN(x1) -> living:JJ(x1) organism:NN(x1) be:VB(e1, x1, x2) 
characterized:JJ(x2) by:IN(e1, x3) voluntary:JJ(x3) 
movement:NN(x3)
plant:NN(x1) -> living:JJ(x1) organism:NN(x1) lack:VB(e1, x1, 
x2) power:NN(x2) of:IN(x2, x3) locomotion:NN(x3)
object:NN(x1) -> tangible:JJ(x1) visible:JJ(x1) entity:NN(x1)
object:NN(x1) -> entity:NN(x1) cast:VB(e1, x1, x2) shadow:NN(x2)
natural_object:NN(x1) -> object:NN(x1) occur:VB(e1, x1, x2) 
naturally:RB(e1)
natural_object:NN(x1) -> not:RB(e1) make:VB(e1, x2, x1) 
man:NN(x2)  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APPENDIX 16

SYSTEM M - PNs ERRORS

fstr = open("Synsets.txt","r").read()
frasi=fstr.split()
lunghezza=len(frasi)
prova=""
x=0
y=1
lista=[]
termini=[]
while y<lunghezza:
    frase=frasi[x].split(",")
    check=frasi[y].split(",")
    if frase[0]!=check[0] and frase[1]==check[1]:
        errori=open("SynsetsSegnati.txt","a")
        errori.write("*"+frasi[x]+"\n")
        errori.close()
        if frase[1].lower() not in lista: #the list is 
lowercased
            lista.append(frase[1].lower())
        else:
            lista=lista
    else:
        errori=open("SynsetsSegnati.txt","a")
        errori.write(frasi[x]+"\n")
        errori.close()
    x=x+1
    y=y+1
for i in lista:
    termini.append(i[2:-1]) #cleaning the list from brackets
for w in range(len(termini)):
    if "']" in termini[w]:
        d=list(termini[w])
        d.remove("'")
        d.remove("]")
        c=''.join(d)
        termini[w]=c
    else:
        pass
for w in termini:
    l=open("ListaTermini.txt","a")
    l.write(w+"\n")
    l.close()
#now the LFs
f = open("LF.txt","r").read() 
fr=f.split()                
lenght=len(fr)              
a=0
count=0
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while a<lenght:
    s=fr[a].split("(")
    d=s[1]
    if d.count("_")>1:
        #es meyer_guggenheim_NN
        test=d.split("_")
        for w in test:
            if w in termini:
                count=count+1
            else:
                count=count
        if count>0:
            lfsegnate=open("LFPROVA.txt","a")
            lfsegnate.write("*"+fr[a]+"\n")
            lfsegnate.close()
        else:
            lfsegnate=open("LFPROVA.txt","a")
            lfsegnate.write(fr[a]+"\n")
            lfsegnate.close()                       
    else:
        #es guarneri_NN
        if d[:-3] in termini:
            lfsegnate=open("LFPROVA.txt","a")
            lfsegnate.write("*"+fr[a]+"\n")
            lfsegnate.close()
        else:
            lfsegnate=open("LFPROVA.txt","a")
            lfsegnate.write(fr[a]+"\n")
            lfsegnate.close()
    count=0
    a=a+1  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APPENDIX 17

SYNSETID+SYNSET INPUT FILE - PNs

gloss_synsetID(110441921,
['Mayakovski','Vladimir_Vladimirovich_Mayakovski'])
gloss_synsetID(110442065,
['Mayer','Louis_B_Mayer','Louis_Burt_Mayer'])
gloss_synsetID(110442275,['Mayer','Marie_Goeppert_Mayer'])
gloss_synsetID(110442455,
['Mays','Willie_Mays','Willie_Howard_Mays_Jr_','the_Say_Hey_Kid'
])
gloss_synsetID(110442607,['Mazzini','Giuseppe_Mazzini'])
gloss_synsetID(110442783,
['McCarthy','Joseph_McCarthy','Joseph_Raymond_McCarthy'])
gloss_synsetID(110442979,
['McCarthy','Mary_McCarthy','Mary_Therese_McCarthy'])
gloss_synsetID(110443138,
['McCartney','Paul_McCartney','Sir_James_Paul_McCartney'])
gloss_synsetID(110443402,
['McCauley','Mary_McCauley','Mary_Ludwig_Hays_McCauley','Molly_P
itcher'])
gloss_synsetID(110443696,['McCormick','John_McCormick'])
gloss_synsetID(110443827,
['McCormick','Cyrus_McCormick','Cyrus_Hall_McCormick'])
gloss_synsetID(110444019,
['McCullers','Carson_McCullers','Carson_Smith_McCullers'])
gloss_synsetID(110444153,
['McGraw','John_McGraw','John_Joseph_McGraw'])
gloss_synsetID(110444312,['McGuffey','William_Holmes_McGuffey'])
gloss_synsetID(110444470,['McKim','Charles_Follen_McKim'])
gloss_synsetID(110444593,
['McKinley','William_McKinley','President_McKinley'])
gloss_synsetID(110444769,
['McLuhan','Marshall_McLuhan','Herbert_Marshall_McLuhan'])
gloss_synsetID(110444937,['McMaster','John_Bach_McMaster'])
gloss_synsetID(110445115,['McPherson','Aimee_Semple_McPherson'])
gloss_synsetID(110445294,['Mead','George_Herbert_Mead'])
gloss_synsetID(110445418,['Mead','Margaret_Mead'])
gloss_synsetID(110445607,['Meade','George_Gordon_Meade'])
gloss_synsetID(110445772,['Meade','James_Edward_Meade'])
gloss_synsetID(110445934,['Meany','George_Meany'])
gloss_synsetID(110446082,
['Medawar','Peter_Medawar','Sir_Peter_Brian_Medawar'])
gloss_synsetID(110446325,['Meiji_Tenno','Mutsuhito'])
gloss_synsetID(110446465,['Meir','Golda_Meir'])
gloss_synsetID(110446575,['Meissner','Fritz_W_Meissner'])
gloss_synsetID(110446678,['Meissner','Georg_Meissner'])
gloss_synsetID(110446778,['Meitner','Lise_Meitner'])
gloss_synsetID(110447014,
['Melanchthon','Philipp_Melanchthon','Philipp_Schwarzerd'])
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gloss_synsetID(110447207,
[‘Melba','Dame_Nellie_Melba','Helen_Porter_Mitchell'])
gloss_synsetID(110447342,['Melchior'])
gloss_synsetID(110447571,
['Melchior','Lauritz_Melchior','Lauritz_Lebrecht_Hommel_Melchior
'])
gloss_synsetID(110447768,
['Mellon','Andrew_Mellon','Andrew_W_Mellon','Andrew_William_Mell
on'])
gloss_synsetID(110447952,['Melville','Herman_Melville'])
gloss_synsetID(110448085,['Menander'])
gloss_synsetID(110448186,
['Mencken','H_L_Mencken','Henry_Louis_Mencken'])
gloss_synsetID(110448352,
['Mendel','Gregor_Mendel','Johann_Mendel'])
gloss_synsetID(110448608,
['Mendeleyev','Mendeleev','Dmitri_Mendeleyev','Dmitri_Mendeleev'
,'Dmitri_Ivanovich_Mendeleyev','Dmitri_Ivanovich_Mendeleev'])
gloss_synsetID(110448910,['Mendelsohn','Erich_Mendelsohn'])
gloss_synsetID(110449048,
['Mendelssohn','Felix_Mendelssohn','Jakob_Ludwig_Felix_Mendelsso
hn-Bartholdy'])
gloss_synsetID(110449249,['Meniere','Prosper_Meniere'])
gloss_synsetID(110449483,
['Menninger','Charles_Menninger','Charles_Frederick_Menninger'])
gloss_synsetID(110449691,
['Menninger','Karl_Menninger','Karl_Augustus_Menninger'])
gloss_synsetID(110449857,
['Menninger','William_Menninger','William_Claire_Menninger'])
gloss_synsetID(110450027,['Menotti','Gian_Carlo_Menotti'])
gloss_synsetID(110450165,
['Menuhin','Yehudi_Menuhin','Sir_Yehudi_Menuhin'])
gloss_synsetID(110450367,
['Mercator','Gerardus_Mercator','Gerhard_Kremer'])
gloss_synsetID(110450568,['Mercer','John_Mercer'])
gloss_synsetID(110450727,['Merckx','Eddy_Merckx'])
gloss_synsetID(110450869,
['Mercouri','Melina_Mercouri','Anna_Amalia_Mercouri'])
gloss_synsetID(110450995,['Meredith','George_Meredith'])
gloss_synsetID(110451123,
['Meredith','James_Meredith','James_Howard_Meredith'])
gloss_synsetID(110451347,['Mergenthaler','Ottmar_Mergenthaler'])
gloss_synsetID(110451504,[‘Merlin'])
gloss_synsetID(110451642,['Merman','Ethel_Merman'])
gloss_synsetID(110451783,
['Merton','Robert_Merton','Robert_King_Merton'])
gloss_synsetID(110451910,['Merton','Thomas_Merton'])
gloss_synsetID(110452043,
['Mesmer','Franz_Anton_Mesmer','Friedrich_Anton_Mesmer'])
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APPENDIX 18

SYNSETID+SYNSET OUTPUT FILE - PNs

gloss_synsetID(110441921,
['Mayakovski','Vladimir_Vladimirovich_Mayakovski'])
*gloss_synsetID(110442065,
['Mayer','Louis_B_Mayer','Louis_Burt_Mayer'])
gloss_synsetID(110442275,['Mayer','Marie_Goeppert_Mayer'])
gloss_synsetID(110442455,
['Mays','Willie_Mays','Willie_Howard_Mays_Jr_','the_Say_Hey_Kid'
])
gloss_synsetID(110442607,['Mazzini','Giuseppe_Mazzini'])
*gloss_synsetID(110442783,
['McCarthy','Joseph_McCarthy','Joseph_Raymond_McCarthy'])
gloss_synsetID(110442979,
['McCarthy','Mary_McCarthy','Mary_Therese_McCarthy'])
gloss_synsetID(110443138,
['McCartney','Paul_McCartney','Sir_James_Paul_McCartney'])
gloss_synsetID(110443402,
['McCauley','Mary_McCauley','Mary_Ludwig_Hays_McCauley','Molly_P
itcher'])
*gloss_synsetID(110443696,['McCormick','John_McCormick'])
gloss_synsetID(110443827,
['McCormick','Cyrus_McCormick','Cyrus_Hall_McCormick'])
gloss_synsetID(110444019,
['McCullers','Carson_McCullers','Carson_Smith_McCullers'])
gloss_synsetID(110444153,
['McGraw','John_McGraw','John_Joseph_McGraw'])
gloss_synsetID(110444312,['McGuffey','William_Holmes_McGuffey'])
gloss_synsetID(110444470,['McKim','Charles_Follen_McKim'])
gloss_synsetID(110444593,
['McKinley','William_McKinley','President_McKinley'])
gloss_synsetID(110444769,
['McLuhan','Marshall_McLuhan','Herbert_Marshall_McLuhan'])
gloss_synsetID(110444937,['McMaster','John_Bach_McMaster'])
gloss_synsetID(110445115,['McPherson','Aimee_Semple_McPherson'])
*gloss_synsetID(110445294,['Mead','George_Herbert_Mead'])
gloss_synsetID(110445418,['Mead','Margaret_Mead'])
*gloss_synsetID(110445607,['Meade','George_Gordon_Meade'])
gloss_synsetID(110445772,['Meade','James_Edward_Meade'])
gloss_synsetID(110445934,['Meany','George_Meany'])
gloss_synsetID(110446082,
['Medawar','Peter_Medawar','Sir_Peter_Brian_Medawar'])
gloss_synsetID(110446325,['Meiji_Tenno','Mutsuhito'])
gloss_synsetID(110446465,['Meir','Golda_Meir'])
*gloss_synsetID(110446575,['Meissner','Fritz_W_Meissner'])
gloss_synsetID(110446678,['Meissner','Georg_Meissner'])
gloss_synsetID(110446778,['Meitner','Lise_Meitner'])
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gloss_synsetID(110447014,
['Melanchthon','Philipp_Melanchthon','Philipp_Schwarzerd'])
gloss_synsetID(110447207,
['Melba','Dame_Nellie_Melba','Helen_Porter_Mitchell'])
gloss_synsetID(110447342,['Melchior'])
gloss_synsetID(110447571,
['Melchior','Lauritz_Melchior','Lauritz_Lebrecht_Hommel_Melchior
'])
gloss_synsetID(110447768,
['Mellon','Andrew_Mellon','Andrew_W_Mellon','Andrew_William_Mell
on'])
gloss_synsetID(110447952,['Melville','Herman_Melville'])
gloss_synsetID(110448085,['Menander'])
gloss_synsetID(110448186,
['Mencken','H_L_Mencken','Henry_Louis_Mencken'])
gloss_synsetID(110448352,
['Mendel','Gregor_Mendel','Johann_Mendel'])
gloss_synsetID(110448608,
['Mendeleyev','Mendeleev','Dmitri_Mendeleyev','Dmitri_Mendeleev'
,'Dmitri_Ivanovich_Mendeleyev','Dmitri_Ivanovich_Mendeleev'])
gloss_synsetID(110448910,['Mendelsohn','Erich_Mendelsohn'])
gloss_synsetID(110449048,
['Mendelssohn','Felix_Mendelssohn','Jakob_Ludwig_Felix_Mendelsso
hn-Bartholdy'])
gloss_synsetID(110449249,['Meniere','Prosper_Meniere'])
*gloss_synsetID(110449483,
['Menninger','Charles_Menninger','Charles_Frederick_Menninger'])
*gloss_synsetID(110449691,
['Menninger','Karl_Menninger','Karl_Augustus_Menninger'])
gloss_synsetID(110449857,
['Menninger','William_Menninger','William_Claire_Menninger'])
gloss_synsetID(110450027,['Menotti','Gian_Carlo_Menotti'])
gloss_synsetID(110450165,
['Menuhin','Yehudi_Menuhin','Sir_Yehudi_Menuhin'])
gloss_synsetID(110450367,
['Mercator','Gerardus_Mercator','Gerhard_Kremer'])
gloss_synsetID(110450568,['Mercer','John_Mercer'])
gloss_synsetID(110450727,['Merckx','Eddy_Merckx'])
gloss_synsetID(110450869,
['Mercouri','Melina_Mercouri','Anna_Amalia_Mercouri'])
*gloss_synsetID(110450995,['Meredith','George_Meredith'])
gloss_synsetID(110451123,
['Meredith','James_Meredith','James_Howard_Meredith'])
gloss_synsetID(110451347,['Mergenthaler','Ottmar_Mergenthaler'])
gloss_synsetID(110451504,['Merlin'])
gloss_synsetID(110451642,['Merman','Ethel_Merman'])
*gloss_synsetID(110451783,
['Merton','Robert_Merton','Robert_King_Merton'])
gloss_synsetID(110451910,['Merton','Thomas_Merton'])
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APPENDIX 19

EXTRACT FROM THE OUTPUT - LIST OF PNs 

[…]
marx
mason
mayer
mccarthy
mccormick
mead
meade
meissner
menninger
meredith
merton
mill
miller
mitchell
mitford
monroe
montgolfier
montgomery
moody
moore
morgan
morris
morrison
muller
murdoch
murray
newman
niebuhr
noguchi
norman
oates
owen
page
paine
parker
parkinson
paul
peirce
percy
perry
philemon
philip_ii
pitt
pliny
porter
[…]  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APPENDIX 20

LF INPUT FILE - PNs

lf(mayakovski_NN(x1),[soviet_JJ(x1),poet_NN(x1)])
lf(mayakovski_NN(x1),
[leader_NN(x1),of_IN(x1,x2),russian_JJ(x2),futurism_NN(x2)])
lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])
lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f
or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])
lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)])
lf(mazzini_NN(x1),
[italian_JJ(x4),nationalist_JJ(x5),writings_NN(x1),spur_VB(e1,x6
,x1),movement_NN(x2),for_IN(x2,x3),unified_JJ(x3),independent_JJ
(x3),italy_NN(x3)])
lf(mccarthy_NN(x1),
[united_NN(x1),state_NN(x2),politician_NN(x3),unscrupulously_RB(
e1),accuse_VB(e1,x1,x4),many_JJ(x4),citizen_NN(x4),of_IN(e1,x5),
communist_NN(x5)])
lf(mccarthy_NN(x1),
[united_NN(x2),state_NN(x3),satirical_JJ(x1),novelist_NN(x4),and
_CC(x1,x2,x3,x4,x5),literary_JJ(x1),critic_NN(x5)])
lf(mccartney_NN(x1),
[english_NN(x2),rock_NN(x3),star_NN(x4),bass_NN(x5),guitarist_NN
(x6),and_CC(x1,x2,x3,x4,x5,x6,x7),songwriter_NN(x7),with_IN(x1,x
8),john_NN(x8),lennon_NN(x9),write_VB(e1,x8,x10),most_JJ(x12),of
_IN(e1,x10),music_NN(x10),for_IN(x10,x11),beatles_NN(x11)])
lf(mccauley_NN(x1),
[heroine_NN(x1),of_IN(x1,x2),american_NN(x2),revolution_NN(x3),c
arry_VB(e1,x2,x4),water_NN(x4),to_IN(e1,x5),soldier_NN(x5),durin
g_IN(e1,x6),battle_NN(x6),of_IN(x6,x7),monmouth_NN(x7),court_NN(
x8),house_NN(x9),and_CC(e5,e1,e2),take_VB(e2,x2,e3),over_IN(e2,x
10),'husband-
s_NN'(x10),gun_NN(x11),be_VB(e3,x2,e4),overcome_VB(e4,x12,x2),by
_IN(e4,x12),heat_NN(x12)])
lf(mccormick_NN(x1),
[united_NN(x1),state_NN(x2),operatic_JJ(x1),tenor_NN(x3)])
lf(mccormick_NN(x1),
[united_NN(x2),state_NN(x3),inventor_NN(x4),and_CC(x1,x2,x5),man
ufacturer_NN(x5),of_IN(x1,x6),mechanical_JJ(x6),harvester_NN(x6)
])
lf(mccullers_NN(x1),
[united_NN(x1),state_NN(x2),novelist_NN(x3)])
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lf(mcgraw_NN(x1),
[united_NN(x2),state_NN(x3),baseball_NN(x4),player_NN(x5),and_CC
(x1,x2,x6),manager_NN(x6)])
lf(mcguffey_NN(x1),
[united_NN(x1),state_NN(x2),educator_NN(x3),compile_VB(e1,x1,x4)
,mcguffey_NN(x4),eclectic_JJ(x4),reader_NN(x5)])
lf(mckim_NN(x1),
[united_NN(x1),state_NN(x2),neoclassical_JJ(x1),architect_NN(x3)
])
lf(mckinley_NN(x1),
['25th_JJ'(x1),president_of_the_united_states_NN(x1)])
lf(mckinley_NN(x1),[assassinate_VB(e1,x2,x1),anarchist_NN(x2)])
lf(mcluhan_NN(x1),
[canadian_JJ(x1),writer_NN(x1),note_VB(e1,x4,x1),for_IN(e1,x2),h
is_POS(x2,x1),analysis_NN(x2),of_IN(x2,x3),mass_media_NN(x3)])
lf(mcmaster_NN(x1),
[united_NN(x1),state_NN(x2),historian_NN(x3),write_VB(e1,x1,x4),
nine_JJ(x4),volume_NN(x4),history_NN(x5),of_IN(x4,x6),people_NN(
x6),of_IN(x4,x7),united_NN(x7),state_NN(x8)])
lf(mcpherson_NN(x1),
[united_NN(x1),state_NN(x2),evangelist_NN(x3),note_VB(e1,x5,x1),
for_IN(e1,x4),extravagant_JJ(x4),religious_JJ(x4),services_NN(x4
)])
lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),philosopher_NN(x3),of_IN(x1,x4),prag
matism_NN(x4)])
lf(mead_NN(x1),
[be_VB(e1,x1,e2),milkweed_VB(e2,x4,x1),of_IN(e2,x1),central_NN(x
1),north_NN(x2),america_NN(x3)])
lf(mead_NN(x1),
[be_VB(e1,x1,e2),threaten_VB(e2,x2,x1),species_NN(x1)])
lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),anthropologist_NN(x3),note_VB(e1,x10
,x1),for_IN(e1,x4),claim_NN(x4),about_IN(x1,x9),adolescence_NN(x
5),and_CC(x9,x5,x6),sexual_JJ(x9),behavior_NN(x6),in_IN(x9,x7),p
olynesian_NN(x7),culture_NN(x8)])
lf(meade_NN(x1),
[united_NN(x1),state_NN(x2),general_JJ(x7),in_IN(x1,x3),charge_N
N(x3),of_IN(x3,x4),union_NN(x4),troops_NN(x5),at_IN(x4,x6),battl
e_of_gettysburg_NN(x6)])
lf(meade_NN(x1),
[english_NN(x1),economist_NN(x2),note_VB(e1,x7,x1),for_IN(e1,x3)
,study_NN(x3),of_IN(x3,x6),international_JJ(x6),trade_NN(x4),and
_CC(x6,x4,x5),finance_NN(x5)])
lf(meany_NN(x1),
[united_NN(x1),state_NN(x2),labor_NN(x3),leader_NN(x4),be_VB(e1,
x1,x5),first_JJ(x5),president_NN(x5),of_IN(x5,x6),'afl-
cio_NN'(x6)])
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APPENDIX 21

LF OUTPUT FILE - PNs

lf(mayakovski_NN(x1),[soviet_JJ(x1),poet_NN(x1)])
lf(mayakovski_NN(x1),
[leader_NN(x1),of_IN(x1,x2),russian_JJ(x2),futurism_NN(x2)])
*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])
*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f
or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])
lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)])
lf(mazzini_NN(x1),
[italian_JJ(x4),nationalist_JJ(x5),writings_NN(x1),spur_VB(e1,x6
,x1),movement_NN(x2),for_IN(x2,x3),unified_JJ(x3),independent_JJ
(x3),italy_NN(x3)])
*lf(mccarthy_NN(x1),
[united_NN(x1),state_NN(x2),politician_NN(x3),unscrupulously_RB(
e1),accuse_VB(e1,x1,x4),many_JJ(x4),citizen_NN(x4),of_IN(e1,x5),
communist_NN(x5)])
*lf(mccarthy_NN(x1),
[united_NN(x2),state_NN(x3),satirical_JJ(x1),novelist_NN(x4),and
_CC(x1,x2,x3,x4,x5),literary_JJ(x1),critic_NN(x5)])
lf(mccartney_NN(x1),
[english_NN(x2),rock_NN(x3),star_NN(x4),bass_NN(x5),guitarist_NN
(x6),and_CC(x1,x2,x3,x4,x5,x6,x7),songwriter_NN(x7),with_IN(x1,x
8),john_NN(x8),lennon_NN(x9),write_VB(e1,x8,x10),most_JJ(x12),of
_IN(e1,x10),music_NN(x10),for_IN(x10,x11),beatles_NN(x11)])
lf(mccauley_NN(x1),
[heroine_NN(x1),of_IN(x1,x2),american_NN(x2),revolution_NN(x3),c
arry_VB(e1,x2,x4),water_NN(x4),to_IN(e1,x5),soldier_NN(x5),durin
g_IN(e1,x6),battle_NN(x6),of_IN(x6,x7),monmouth_NN(x7),court_NN(
x8),house_NN(x9),and_CC(e5,e1,e2),take_VB(e2,x2,e3),over_IN(e2,x
10),'husband-
s_NN'(x10),gun_NN(x11),be_VB(e3,x2,e4),overcome_VB(e4,x12,x2),by
_IN(e4,x12),heat_NN(x12)])
*lf(mccormick_NN(x1),
[united_NN(x1),state_NN(x2),operatic_JJ(x1),tenor_NN(x3)])
*lf(mccormick_NN(x1),
[united_NN(x2),state_NN(x3),inventor_NN(x4),and_CC(x1,x2,x5),man
ufacturer_NN(x5),of_IN(x1,x6),mechanical_JJ(x6),harvester_NN(x6)
])
lf(mccullers_NN(x1),
[united_NN(x1),state_NN(x2),novelist_NN(x3)])
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lf(mcgraw_NN(x1),
[united_NN(x2),state_NN(x3),baseball_NN(x4),player_NN(x5),and_CC
(x1,x2,x6),manager_NN(x6)])
lf(mcguffey_NN(x1),
[united_NN(x1),state_NN(x2),educator_NN(x3),compile_VB(e1,x1,x4)
,mcguffey_NN(x4),eclectic_JJ(x4),reader_NN(x5)])
lf(mckim_NN(x1),
[united_NN(x1),state_NN(x2),neoclassical_JJ(x1),architect_NN(x3)
])
lf(mckinley_NN(x1),
['25th_JJ'(x1),president_of_the_united_states_NN(x1)])
lf(mckinley_NN(x1),[assassinate_VB(e1,x2,x1),anarchist_NN(x2)])
lf(mcluhan_NN(x1),
[canadian_JJ(x1),writer_NN(x1),note_VB(e1,x4,x1),for_IN(e1,x2),h
is_POS(x2,x1),analysis_NN(x2),of_IN(x2,x3),mass_media_NN(x3)])
lf(mcmaster_NN(x1),
[united_NN(x1),state_NN(x2),historian_NN(x3),write_VB(e1,x1,x4),
nine_JJ(x4),volume_NN(x4),history_NN(x5),of_IN(x4,x6),people_NN(
x6),of_IN(x4,x7),united_NN(x7),state_NN(x8)])
lf(mcpherson_NN(x1),
[united_NN(x1),state_NN(x2),evangelist_NN(x3),note_VB(e1,x5,x1),
for_IN(e1,x4),extravagant_JJ(x4),religious_JJ(x4),services_NN(x4
)])
*lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),philosopher_NN(x3),of_IN(x1,x4),prag
matism_NN(x4)])
*lf(mead_NN(x1),
[be_VB(e1,x1,e2),milkweed_VB(e2,x4,x1),of_IN(e2,x1),central_NN(x
1),north_NN(x2),america_NN(x3)])
*lf(mead_NN(x1),
[be_VB(e1,x1,e2),threaten_VB(e2,x2,x1),species_NN(x1)])
*lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),anthropologist_NN(x3),note_VB(e1,x10
,x1),for_IN(e1,x4),claim_NN(x4),about_IN(x1,x9),adolescence_NN(x
5),and_CC(x9,x5,x6),sexual_JJ(x9),behavior_NN(x6),in_IN(x9,x7),p
olynesian_NN(x7),culture_NN(x8)])
*lf(meade_NN(x1),
[united_NN(x1),state_NN(x2),general_JJ(x7),in_IN(x1,x3),charge_N
N(x3),of_IN(x3,x4),union_NN(x4),troops_NN(x5),at_IN(x4,x6),battl
e_of_gettysburg_NN(x6)])
*lf(meade_NN(x1),
[english_NN(x1),economist_NN(x2),note_VB(e1,x7,x1),for_IN(e1,x3)
,study_NN(x3),of_IN(x3,x6),international_JJ(x6),trade_NN(x4),and
_CC(x6,x4,x5),finance_NN(x5)])
lf(meany_NN(x1),
[united_NN(x1),state_NN(x2),labor_NN(x3),leader_NN(x4),be_VB(e1,
x1,x5),first_JJ(x5),president_NN(x5),of_IN(x5,x6),'afl-
cio_NN'(x6)])
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APPENDIX 22

SYSTEM N - DUPLICATES LFs

import re
output=open("output_POS.txt").readlines()
daeliminare=[]
listatuple=[]
listadoppie=[]
count1=0
count2=0

for x in output:
    temp=x.split(")-[")
    y=temp[0]
    sy=re.search(r"\([0-9]*\,", y)
    synum=sy.group()
    num=synum[1:-1]
    w=re.search(num+r"\, .*\, \[", y)
    wo=w.group()
    word=wo[11:-3]
    z=temp[1]
    lf=z[:-2]
#make a list of tuples synsID+word+logicform
    listatuple.append([num,word,lf])
for i in range(len(listatuple)):
    a=listatuple[i]
    for n in range(len(listatuple)):
        b=listatuple[n]
        if i==n:
            pass
        else:
            if a[0]==b[0] and a[1]==b[1] and a[2]==b[2]:
                #Case1
                daeliminare.append(b)
                count1=count1+1
            elif a[0]!=b[0] and a[1]==b[1] and a[2]==b[2]:
                #Case2
                listadoppie.append(b)
                count2=count2+1

sorted_listadoppie=sorted(listadoppie, key=lambda tup: tup[1])
sorted_daeliminare=sorted(daeliminare, key=lambda tup: tup[1])
lfdoppie=open("POS_Case1.txt", "a")
for x in sorted_listadoppie:
    resul=' / '.join(x)
    lfdoppie.write(resul+"\n")
lfdoppie.close()
copie=open("POS_Case2.txt", "a")
for x in sorted_daeliminare:
    resul=' / '.join(x)
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    copie.write(resul+"\n")
copie.close()

print "In POS I found \n %d of Case1 \n" %count1
print "In POS I found \n %d of Case2 \n" %count2  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APPENDIX 23

OUTPUT OF SYSTEM L - ADJECTIVES

CASE 1 (Same SynsetID, same lemma, same LF)

302269787 / based_JJ(x1) / have_VB(e1, x1, x2), base_NN(x2)
302061319 / based_JJ(x1) / have_VB(e1, x1, x2), base_NN(x2)
301845387 / clean_JJ(x1) / free_JJ(x1), from_IN(x1, x2), impurity_NN(x2)
300392688 / clean_JJ(x1) / free_JJ(x1), from_IN(x1, x2), impurity_NN(x2)
300928036 / common_JJ(x1) / commonly_RB(e1), encounter_VB(e1, x1)
300458805 / common_JJ(x1) / commonly_RB(e1), encounter_VB(e1, x1)
302600938 / cytotoxic_JJ(x1) / of_IN(x1, x2), relate_VB-[e1, x1], to_IN-[e1, 
x2], substance_NN(x2), be_VB-[e2, x2, x3], toxic_JJ(x3), to_IN(x3, x4), 
cell_NN(x4)
302361205 / cytotoxic_JJ(x1) / of_IN(x1, x2), relate_VB-[e1, x1], to_IN-[e1, 
x2], substance_NN(x2), be_VB-[e2, x2, x3], toxic_JJ(x3), to_IN(x3, x4), 
cell_NN(x4)
301835744 / disarming_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), allay_VB(e1, x1, 
x2), hostility_NN(x2)
301747662 / disarming_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), allay_VB(e1, x1, 
x2), hostility_NN(x2)
301506903 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301506903 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301795613 / grassroots_JJ(x1) / fundamental_JJ(x1)
300460273 / grassroots_JJ(x1) / fundamental_JJ(x1)
302353520 / lidded_JJ(x1) / have_VB(e1, x1, x2), lid_NN(x2)
301397581 / lidded_JJ(x1) / have_VB(e1, x1, x2), lid_NN(x2)
301151103 / light-armed_JJ(x1) / armed_JJ(x1), with_IN(x1, x2), light_JJ(x2), 
weapon_NN(x2)
300148032 / light-armed_JJ(x1) / armed_JJ(x1), with_IN(x1, x2), light_JJ(x2), 
weapon_NN(x2)
300786396 / new_JJ(x1) / in_IN(x1, x2), use_NN(x2), after_IN(x2, x3), 
medieval_JJ(x3), time_NN(x3)
301589642 / new_JJ(x1) / in_IN(x1, x2), use_NN(x2), after_IN(x2, x3), 
medieval_JJ(x3), time_NN(x3)
301707826 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
301707826 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
301252370 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
301252370 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
302496645 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302496645 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302090576 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302090576 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302642589 / premedical_JJ(x1) / prepare_VB-[e1, x1], for_IN-[e1, x2], 
study_NN(x2), of_IN(x2, x3), medicine_NN(x3)
300131871 / premedical_JJ(x1) / prepare_VB-[e1, x1], for_IN-[e1, x2], 
study_NN(x2), of_IN(x2, x3), medicine_NN(x3)
300622713 / uncrossed_JJ(x1) / not_RB(x1), crossed_JJ(x1)
300622476 / uncrossed_JJ(x1) / not_RB(x1), crossed_JJ(x1)
302236474 / uncurled_JJ(x1) / not_RB(x1), curled_JJ(x1)
300986826 / uncurled_JJ(x1) / not_RB(x1), curled_JJ(x1)
301272981 / uncut_JJ(x1) / not_RB(x1), cut_JJ(x1)
300631802 / uncut_JJ(x1) / not_RB(x1), cut_JJ(x1)
301559958 / undiscovered_JJ(x1) / not_RB(x1), discovered_JJ(x1)
301330201 / undiscovered_JJ(x1) / not_RB(x1), discovered_JJ(x1)
300671373 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)
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300671373 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)
300670937 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)
300670937 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)
302497933 / unmerited_JJ(x1) / not_RB(x1), merited_JJ(x1)
301324701 / unmerited_JJ(x1) / not_RB(x1), merited_JJ(x1)
301560093 / unobserved_JJ(x1) / not_RB(x1), observed_JJ(x1)
301558829 / unobserved_JJ(x1) / not_RB(x1), observed_JJ(x1)
302042650 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
302042650 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
301934504 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
301934504 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
302082526 / unsheared_JJ(x1) / not_RB(x1), sheared_JJ(x1)
300633432 / unsheared_JJ(x1) / not_RB(x1), sheared_JJ(x1)

CASE 2 (Different SynsetID, same lemma , same LF)

300646823 / acyclic_JJ(x1) / not_RB(x1), cyclic_JJ(x1)
300646823 / acyclic_JJ(x1) / not_RB(x1), cyclic_JJ(x1)
300224255 / beneficent_JJ(x1) / do_VB(e1, x1, x2), or_CC(e3, e1, e2), 
produce_VB(e2, x1, x2), good_NN(x2)
300224255 / beneficent_JJ(x1) / do_VB(e1, x1, x2), or_CC(e3, e1, e2), 
produce_VB(e2, x1, x2), good_NN(x2)
302891484 / bladed_JJ(x1) / often_RB(e1), use_VB-[e1, x1], in_IN-[e1, x2], 
combination_NN(x2)
302891484 / bladed_JJ(x1) / often_RB(e1), use_VB-[e1, x1], in_IN-[e1, x2], 
combination_NN(x2)
300819602 / cathartic_JJ(x1) / emotionally_RB(e1), purge_VB(e1, x1)
300819602 / cathartic_JJ(x1) / emotionally_RB(e1), purge_VB(e1, x1)
300624265 / comate_JJ(x1) / bear_VB(e1, x1, x2), coma_NN(x2)
300624265 / comate_JJ(x1) / bear_VB(e1, x1, x2), coma_NN(x2)
302205396 / consonantal_JJ(x1) / of_IN(x1, x5), liquid_NN(x2), and_CC(x5, x2, 
x3), nasal_NN(x3)
302205396 / consonantal_JJ(x1) / of_IN(x1, x5), liquid_NN(x2), and_CC(x5, x2, 
x3), nasal_NN(x3)
300385058 / dark_JJ(x1) / have_VB(e1, x1, x2), dark_JJ(x2), hue_NN(x2)
300385058 / dark_JJ(x1) / have_VB(e1, x1, x2), dark_JJ(x2), hue_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301078036 / embezzled_JJ(x1) / take_VB-[e1, x1], for_IN-[e1, x2], own_JJ(x2), 
use_NN(x2), in_IN-[e1, x3], violation_NN(x3), of_IN(x3, x4), trust_NN(x4)
301078036 / embezzled_JJ(x1) / take_VB-[e1, x1], for_IN-[e1, x2], own_JJ(x2), 
use_NN(x2), in_IN-[e1, x3], violation_NN(x3), of_IN(x3, x4), trust_NN(x4)
300883871 / exhaustible_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), use_up_VB(e1, 
x1)
300883871 / exhaustible_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), use_up_VB(e1, 
x1)
301899595 / first-string_JJ(x1) / not_RB(x1), substitute_NN(x1)
301899595 / first-string_JJ(x1) / not_RB(x1), substitute_NN(x1)
301899595 / first-string_JJ(x1) / of_IN(x1, x2), member_NN(x2), of_IN(x2, x3), 
team_NN(x3)
301899595 / first-string_JJ(x1) / of_IN(x1, x2), member_NN(x2), of_IN(x2, x3), 
team_NN(x3)
300593230 / incorrupt_JJ(x1) / free_JJ(x1), of_IN(x1, x5), corruption_NN(x2), 
or_CC(x5, x2, x3), immorality_NN(x3)
300593230 / incorrupt_JJ(x1) / free_JJ(x1), of_IN(x1, x5), corruption_NN(x2), 
or_CC(x5, x2, x3), immorality_NN(x3)
302466704 / industrial_JJ(x1) / employed_JJ(x1), in_IN(x1, x2), 
industry_NN(x2)
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APPENDIX 24

SYSTEM O - GATHERING NOUNS FROM SYNSETS

import xml.etree.ElementTree as ET
import re

tree=ET.parse("Noun.xml")
root=tree.getroot()
lista_synset=[]

for w in root.iter(tag="synonymSet"):
    synset=w.text
    if "," in synset:
        temp=synset.split(",")
        for x in temp:
            if " " in x:
                s=x.lstrip()
                lista=open("listaSynsetNomi.txt","a")
                lista.write(s+”\n")
                lista.close()
            else:
                lista=open("listaSynsetNomi.txt","a")
                lista.write(x+”\n")
                lista.close()
    else:
        lista=open("listaSynsetNomi.txt","a")
        lista.write(synset+"\n")
        lista.close()

- - - - - - - - - - 

The output is a txt file with one lemma per line:

entity
thing
anything
something
nothing
nonentity
whole
whole_thing
unit
living_thing
animate_thing
organism
being
benthos
heterotroph …. 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APPENDIX 25

SYSTEM P - COMPOUND NOUNS CORRECTION

import re
l=open("listaSynsetNomi.txt","r").read()
lt=l.split(",")
ls=[]
listacorrezioni=[]
for w in lt:
    x=w.lower()
    ls.append(x) #list of lemmas in the synsets lowercase

f=open("output_nomi_TerzaParte.txt", "r").readlines()
count=0
for w in f:
    new=open("output1TS.txt","a")
    a=re.search(r"[synset].*\)\-\[",w).group(0)
    new.write(a)
    new.close()
    lf=re.search(r"\-\[.*$",w).group(0)
    if re.search(r"[a-z]*\_NN\([x]*[0-9]*\)\, [a-z]*\_NN\
([x]*[0-9]*\), [a-z]*\_NN\([x]*[0-9]*\)",lf):
        x=re.search(r"[a-z]*\_NN\([x]*[0-9]*\)\, [a-z]*\_NN\

([x]*[0-9]*\), [a-z]*\_NN\
([x]*[0-9]*\)",lf).group()
        tovar=x.split(",")
        var=tovar[0]
        variabile=var[-6:] #it keeps the first variable
        y=x.split(",")
        a=y[0]
        b=y[1][1:]
        c=y[2][1:]
        ao=a[:-7]
        bo=b[:-7]
        co=c[:-7]
        d=ao+"_"+bo+"_"+co
        e=ao+"-"+bo+"-"+co
        g=ao+"-"+bo+"_"+co
        h=ao+"_"+bo+"-"+co
        if d in ls and "  nn" not in lf:
            m=lf.replace(x,d+"_"+variabile)
            new=open("output1TS.txt","a")
            new.write("*"+m[2:]+"\n")
            new.close()
            count=count+1
            listacorrezioni.append(d)
        elif e in ls and " nn" not in lf:
            m=lf.replace(x,e+"_"+variabile)
            new=open("output1TS.txt","a")
            new.write("*"+m[2:]+"\n")
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            new.close()
            count=count+1
            listacorrezioni.append(e)
        elif g in ls and " nn" not in lf:
            m=lf.replace(x,g+"_"+variabile)
            new=open("output1TS.txt","a")
            new.write("*"+m[2:]+"\n")
            new.close()
            count=count+1
            listacorrezioni.append(g)
        elif h in ls and " nn" not in lf:
            m=lf.replace(x,h+"_"+variabile)
            new=open("output1TS.txt","a")
            new.write("*"+m[2:]+"\n")
            new.close()
            count=count+1
            listacorrezioni.append(h)
        else:
            new=open("output1TS.txt","a")
            new.write(lf[2:]+"\n")
            new.close()
    else:
        new=open("output1TS.txt","a")
        new.write(lf[2:]+"\n")
        new.close()

print "I corrected %d compound nouns" %count
print "The corrected compound nouns are the following: ", 
listacorrezioni

- - - - - - - - - -

The System returns the UXWN file with corrected and marked (*) CNs; it also prints out the 
CNs and the number of CNs corrected, see the following example regarding part of the UXWN 
noun definitions: 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APPENDIX 26

SYSTEM Q - MARKING LFs WITH MISSING RELATIVE ADVERBS

listasynsets=[]

#the system opens the file where synsetIDs have been previously 
stored
synsets=open("synsets_missingradverbs_POS.txt").readlines()

for synset in synsets:        
    listasynsets.append(synset[:-1])

check=open(“output_POS.txt").readlines()
#the system opens the part of UXWN we want to check

for element in check:
    splitted=element.split(",")
    s=splitted[0]
    synsetID=s[7:]
    if synsetID[1:] in listasynsets:#check if the synsetID 
corresponds
        tocheck=open("tocheck_verb.txt","a")
        tocheck.write("*"+element)
        tocheck.close()
    else:
        tocheck=open("tocheck_verb.txt","a")
        tocheck.write(element)
        tocheck.close()
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