

Corso di Dottorato di Ricerca in Scienze del Linguaggio

Scuola di Dottorato in Lingue, Culture e Società Moderne e

Scienze del Linguaggio
ciclo 30°

anno 2018

UXWN - Analysis and Improvement of a Logical Form
Resource for NLP

SSD: L-LIN / 01

Coordinatore del Dottorato
Chiar.mo Prof. Enric Bou Maqueda

Supervisore
Chiar.ma Prof.ssa Marina Buzzoni

Dottorando  
Agata e Rotondi
Matricola 820514

�ii

UXWN - Analysis and
Improvement of a Logical Form

Resource for NLP

http://www.unive.it/UXWN

Agata Rotondi 

�iii

http://www.unive.it/UXWN

Abstract

Logical Form is an exceptionally important linguistic
representation for highly demanding semantically related tasks
like Question Answering. In this work I present different types of
Logical Form and in particular I investigate those resources that
provide a Logical Form of the WordNet Glosses. I take a closer
look to one of them, eXtended WordNet, and I analyse its
weaknesses and strengths. After classifying the most common
errors of this resource, I semi automatically correct them and the
result is a new resource: United eXtended WordNet.  

�iv

Acknowledgments

My deepest appreciation goes to my advisor, Prof. Rodolfo
Delmonte, for his help and guidance during these years which
made it possible to achieve this work.
I would also like to thank Prof. Marina Buzzoni for her advice
and kindness.
I am very grateful to all the people I met during these path, in
particular to the JRC people, and to everyone who gave me
suggestions, support and encouragement of any kind.
Special thanks to my family & friends, Andrea, Fiamma’s girls,
Traineeland, Iyengar Yoga and (last but not least) Gozeto.

�v

List of Abbreviations

AMR Abstract Meaning Representation

CN Compound Noun

LHS Left - Hand Side

LF Logical Form

LR Lexical Resource

NC Nominal Compound

NLP Natural Language Processing

NL Natural Language

PN Proper Name

Pos Part of Speech

POS Possessive (Predicate)

Q/A Questions Answering

RHS Right - Hand Side

UXWN United eXtended WordNet

XWN eXtended WordNet

WN WordNet

WSD Word Sense Disambiguation

�vi

List of Figures

2.1 Excerpt of the WN Semantic Network 8

2.2 The Related Synsets of the Limb Synset of XWN 23

2.3 Different WN Senses of the Word Failure 29

3.1 eXtended WordNet Framework 34

3.2 XWN Preprocessing Phase 36

3.3 Example of Structure Simplification 42

3.4 nn-Predicate 44

3.5 Logical Form Transformation Process 45

3.6 Example of Boxer Output 53

3.7 ILF Output 62

5.1 Example of WN Output 135

6.1 Example of AMR 167

�vii

List of Tables

2.1 Semantic Relations in WordNet 6

2.2 SemEval 2016 Task-14 - Examples 12

2.3 Disambiguated Open Class Words in XWN 24

3.1 XWN Parsing Results 39

3.2 Average Lengths of Definitions 40

3.3 Quality of LFs 48

3.4 Number of LFs per Pos 59

3.5 Senseval-3 Results 73

4.1 LFs with Disconnected Variables 83

4.2 Missing Conjunctions 89

4.3 Cases of Missing Relative Adverbs 92

4.4 Pos Tagging Errors 96

4.5 Mistakes in LHS - Noun File 99

4.6 Missing Possessives Pronouns 102

4.7 Genitive Marking Mistakes 102

4.8 Negations in XWN Definitions 103

5.1 Disconnected Variables after Parser Correction 124

5.2 Duplicate LFs 146

�viii

Contents

Abstract iv

Acknowledgements v

List of Abbreviations vi

List of Figures vii

List of Tables viii

Contents ix

1 Introduction 1

2 WordNet Extensions 4

 2.1 Introduction 4

 2.2 A Brief Introduction to WordNet 5

 2.3 WordNet Improvements - Terminology Extension 9

 2.3.1 SemEval 2016 - Task 14 - Semantic Taxonomy Enrichment 11

 2.3.1.2 Deftor at SemEval 2016 Task 14 13

 2.4 WordNet Improvements - Relations Enhancement 17

 2.4.1 Word Sense Disambiguation in eXtended WordNet 19

 2.4.2 XWN-WSD and Lexical Chains 25

 2.4.3 Senseval-3: WSD of WN Glosses Task 26

 2.5 Conclusions 30

3 eXtended WordNet and Logical Forms 32

 3.1 Introduction 32

 3.2 eXtended WordNet 33

 3.2.1 Preprocessing and pos tagging 34

�ix

 3.2.2 Parsing 37

 3.2.3 Some considerations 39

 3.2.4 Logical Forms transformation 41

 3.2.5 XWN format 49

 3.3 Logical Forms 51

 3.3.1 LF and STEP2008 53

 3.3.2 LF resources - ILF and WN30-lfs 55

 3.3.2.1 WN30-lfs 56

 3.3.2.2 Intermediate Logic Forms - ILF 60

 3.3.3 XWN LF and Senseval3 67

 3.3.4 LF and Question Answering 73

 3.4 Conclusions 78

4 Errors Detection 80

 4.1 Introduction 80

 4.2 Errors Classification 81

 4.2.1 Free Variables 82

 4.2.2 Compound Nouns 84

 4.2.3 Conjunctions and Prepositions 87

 4.2.4 Relative Adverbs 91

 4.2.5 Pos tagging errors 92

 4.2.5.1 Tagging Errors in LHS 97

 4.2.6 Possessives 99

 4.2.7 Negation 103

 4.3 Errors in other LF resources 105

 4.4 Conclusions 108

5 Errors Correction 110

 5.1 Introduction 110

 5.2 Conjunctions and Prepositions - Correction 111

 5.3 Possessives - Correction 114

 5.3.1 Genitive Marking 114

�x

 5.3.2 Missing Possessive Pronouns 116

 5.4 Free Variables - The Parser 117

 5.4.1 Parser Pipeline 118

 5.5 The Case of Proper Names 125

 5.5.1 Classes and Instances 126

 5.5.2 Proper Names 128

 5.5.3 Proper Names - Resources 131

 5.5.3.1 WN PNs Extensions 132

 5.5.4 PNs in WN 134

 5.5.5 PNs Reorganisation 131

 5.5.5.1 PN Errors Identification 140

 5.5.5.2 PN Errors Correction 142

 5.6 Duplicate LFs 144

 5.7 Pos Tagging Errors - Correction 147

 5.8 Compound Nouns - Correction 149

 5.9 Relative Adverbs - Correction 153

 5.10 UXWN Release 155

 5.11 Conclusions 156

6 Future Work and Conlcusions 158

 6.1 Introduction 158

 6.2 Adjectives - a Further Improvement 159

 6.3 Testing the Resource 163

 6.4 UXWN and AMR 165

 6.5 Conclusions 169

Appendices 172

 1 System A - Definitions Length 173

 2 System B - Words in Synsets 175

 3 Senseval Training Data - Sentences 177

 4 Senseval Trial Data - LFs 179

�xi

 5 System C - Missing Conjunctions 181

 6 System D - Adverbs 184

 7 System E - Random Selection of LFs 187

 8 System F - LHS Tagging Errors 189

 9 System G - Missing Possessive Pronouns 190

 10 System H - Counting Negations 194

 11 System I - Missing Negation Markings 196

 12 System L - Missing Prepositions 198

 13 The Parser 202

 14 Parser Input - Synsets 218

 15 Parser Input - LFs 219

 16 System M - PN Errors 220

 17 Synsets Input 222

 18 Synsets Output 224

 19 List of PNs 226

 20 PNs Input File 227

 21 PNs Output File 229

 22 System N - Duplicates LFs 231

 23 Output of System L - Adjectives 233

 24 System O - Gathering Nouns from Synsets 235

 25 System P - CNs Correction 236

 26 System Q - LFs with Missing Relative Adverbs 238

Bibliography 239

�xii

�xiii

Chapter 1

Introduction

Think of a very easy question.

Let’s say: how many fingers on one hand?
Don’t matter the subject, the question is easy because you know
the answer. Even for easy questions we need world knowledge to
answer.
Humans, during their lifetime, acquire an incalculable amount of
diverse knowledge which they store and use in different ways.
The abilities of human brain are amazing but the extraordinary
results achieved in Artificial Intelligence are making computers
closer to us.
Everyone knows that computers are unbeatable for what concerns
complex mathematical calculations but can they answer to an easy
question like the one above? They don’t have hands, nor fingers,
and they don’t know what they are unless we don’t give them this
knowledge. But how can we teach them the things of this word?
They don’t speak (yet) our language and therefore we can’t
communicate with them in natural language. We need to represent

�1

the meaning of sentences in a machine readable way and there is
no a unique way to do this. Many efforts have been done so far to
solve the problem, and different ideas have been advanced in the
last decades.
The aim of this work is to investigate one kind of representation
named Logical Form and in particular I envisage investigating a
resource of world knowledge where information have been
automatically translated into Logical Form - eXtended WordNet.
How was the resource created? Is it well formed or are there
errors? Can we effectively use Logical Form for NLP tasks? Are
there other resources of this kind? These are some of the
questions I will tray to answer.
Before going through the main topics, I will introduce the reader
to the well known machine readable dictionary WordNet from
which the Logical Form resource has been generated. I will also
discuss some of the WordNet improvements which have been
suggested during the years. In fact, despite its popularity,
WordNet has some well known limitations that can affect the
automatic systems that use it.
EXtended WordNet was developed with the purpose to solve
some of the WordNet shortcomings and I envisage this work to be
a further step forward in the field of knowledge base and meaning
representation.

The work is organised as follow:
In chapter 2 I will briefly illustrate WordNet and some of its
improvements, with the intention of introducing eXtended
WordNet, the resource which is at the base of this work.  

�2

Chapter 3 is devoted to an in-depth description of Moldovan’s
eXtended WordNet, in particular to how WordNet glosses have
been transformed into Logical Forms. Here, I will show some
other examples of semantic representations and I will compare
eXtended WordNet to the other two resources that provide
Logical Form transformation of WordNet glosses (ILF and
WN30-lfs).
Chapter 4 deals with an accurate analysis of the problems that
affect the Logical Forms of eXtended WordNet. This resource
was automatically produced by the University of Texas at Dallas
and my intention is firstly, to determine its most common errors
and then, try to automatically correct them.
In Chapter 5 I will describe the automatic and manual procedures
I carried out for the Logical Forms correction and some
interesting considerations that came out during the work.
I will show how the efforts made for the correction led to the
creation of a new resource that I named United eXtended
WordNet.
The final chapter regards further improvements and related topics
I didn’t have the time to study in depth and which will be
interesting to investigate as future work.

The most important challenge I had to face with during this work
regards the correction of the Logical Forms of eXtended
WordNet. The resource is large and there was several kinds of
errors to correct. I had do handle a big amount of data, produce
different scripts and do manual corrections. This task was really
demanding and time consuming and left me little time to examine
interested related topics.  

�3

Chapter 2

WordNet Extensions

2.1 Introduction

This chapter is devoted to introducing the reader to WordNet
(WN) and to illustrating some improvements of this famous and
widely used resource. I will start with a brief introduction to WN
and after that I will organise WN improvements into two main
categories: terminology extension and relations enhancement.
Terminology extension, and in particular section 2.2.2, will
include my participation with H. Tanev to the task 14 of Semeval
2016. It is not the purpose of this thesis to investigate the field of
word vectors and I won’t go into details about that. This section
aims to be just an example of how to cope with the Semantic
Taxonomy Enrichment Task. In the relations enhancement section
I will introduce different types of relations that can be added to
WN and in particular I will show how the eXtended WordNet
(XWN) project succeeded in adding word sense disambiguation
to WN glosses. In the last part of this chapter I will present the
application of the disambiguated glosses of XWN for building

�4

lexical chains and the Senseval Task for which they have been
taken as standard.
 

2.2 A Brief Introduction to WordNet

WN (Miller 1995, Fellbaum1998) is one of the most popular
machine readable dictionaries; its popularity comes from the
richness of semantic relations which encodes and it is also due to
its free public availability and its broad coverage - it includes over
200K senses of 155K word forms.
It was originally conceived as a full-scale model of human
semantic organisation but its growth and later design were
subsequently guided by its success in the Natural Language
Processing (NLP) community.
Unlike traditional dictionaries, which ignore a synchronic
organisation of the lexicon, the structure of WN is based on
psycholinguistic principles.  
WN is divided into four parts, one for each of the main syntactical
categories: noun, verb, adjective, and adverb.
Words like right or back, which can be interpreted in different
syntactical ways according to the context, are entered separately.
Thus, searching the database for a word, one finds the different
senses of the word in every syntactical category and the different
words with which each sense can be expressed.
Lexical items in WN are not listed alphabetically, they are rather
encoded in sets of synonyms called Synsets. Each Synset has a
unique number, named synsetID, that identifies it. Synsets are
connected to other Synsets by pointers representing semantic

�5

relations.  
The main relation among words is synonymy but for each
syntactical category different semantic relations (antonymy,
hyponymy, meronymy, troponymy, entailment) play a major role
see Table 2.1.

Each word sense identifies a single Synset. For instance, given
car (with the sense of a motor vehicle with four wheels) the
corresponding Synset {car, auto, automobile, machine, motorcar}
is univocally determined. For each Synset WN provides a gloss,
i.e. a definition plus optional comments and examples. E.g. the
gloss of car is: a motor vehicle with four wheels; usually
propelled by an internal combustion engine; “he needs a car to
get to work”.

�6

Tab 2.1 Semantic Relations in WordNet

Searching WN for the previous example of the term back, one 1

finds that, as predicted, it belongs to several synsets in all the four
syntactic categories. See a fragment of the output here below:

N {back, dorsum}: the posterior part of a human (or animal) body from the neck to the end of
the spine, "his back was nicely tanned”
N {back, backrest}: a support that you can lean against while sitting, ”the back of the dental
chair was adjustable”
V {back} travel backward, "back into the driveway"; "The car backed up and hit the tree"
ADJ {back, hind, hinder}: located at or near the back of an animal, ”back (or hind) legs"; "the
hinder part of a carcass”
ADV {back} travel backward, "back into the driveway"; "The car backed up and hit the tree”

In Figure 2.1 (next page) an excerpt of the WN semantic network
containing the car Synset, taken from Navigli 2009, which shows
the richness and complexity of semantic relations between
Synsets.

I won’t go into more detail about WN structure and I refer the
reader to WN website and to Fellbaum 1998 for further 2

information.  

What is important for this thesis is how widely WN has been and
is currently used with considerable success for different NLP
tasks.
Its semantic relations can be exploited for Word Sense
Disambiguation (WSD) (see for e.g. Agirre and Soroa 2009,
Banerjee and Pedersen 2002, Resnik 1995), which has a crucial
role in the development of information retrieval (see for e.g. Chai

 You can search WN at http://wordnetweb.princeton.edu/perl/webwn1

 https://wordnet.princeton.edu2

�7

https://wordnet.princeton.edu
http://wordnetweb.princeton.edu/perl/webwn

and Biermann 1997, Mandala et al. 1998, Rosso et al. 2004,
Varelas et al. 2005), machine translation, summarisation, and
language generation systems in addition to query expansion
(Dipasree et al. 2014, Fang 2008) and cross-language
applications.  
Kilgariff notes that, for some NLP tasks, « not using WN requires
explanation and justification » (Kilgariff 2000).  
Another proof of its popularity is the existence of an active
Global WordNet Association which organises every two years a 3

Global WordNet Conference.  
Furthermore, almost 80 versions of WN have been developed for
more than 50 languages (from Latin to Sanskrit) and the original

 http://globalwordnet.org3

�8

Fig 2.1 Excerpt of the WN Semantic Network

http://globalwordnet.org

English WN has been mapped to several resources among which
the Ontologies SUMO, OpenCyc, Dolce etc. and aligned to
Wikipedia and Wikitionary (see for e.g. Miller and Gurevych
2014, Navigli and Ponzetto 2012, Niemann and Gurevych 2011,
Pilehvar and Navigli 2014, Ruiz-Casado et al. 2005) . The
different national versions have been linked to the original WN
providing in this way a useful interlingua alignment (see the
EuroWordNet).4

Besides its applications, WN has been investigated also in terms
of its limitations and how to solve them (see for example
Gangemi 2001). Beyond its coverage, also the quality of this
resource is very important and, as shown by Neel and Garzon
2010, it affects the performance of the applications which employ
it.
 
The efforts to improve WN may be divided into: semantic
relations enhancement and terminology extension.

2.3 WordNet Improvements - Terminology Extension

Semantic knowledge bases of WN kind are expensive to
produce and maintain. To be considered functional for NLP
applications, they must include a large amount of words senses in
a well structured hierarchy. Nevertheless, existing resources,
despite their large coverage, have often limited scope and
domains and they frequently omit lemmas and senses from
specific fields, slang usages, and terminology emerged after their

 http://projects.illc.uva.nl/EuroWordNet/4

�9

http://projects.illc.uva.nl/EuroWordNet/

construction.  
The manual updating of WN is an expensive effort which requires
a lot of time and as a result the resource is not updated frequently.
There are plenty of scientific papers, which address the automatic
taxonomy/ontology enrichment task and in particular the
automatic enrichment of WN. See among the others Haridy et al.
2010, Navigli et al. 2004 and Nimb et al. 2013.  
Existing works fall into one of the following categories:  
 

1. Adding new senses for existing terms, e.g. Nimb et al.
2013; 
2. Adding new terms, e.g. Jurgens and Pilehvar 2015.  

 
The new terms which are added may belong to already existing
terminology (Vujicic et al 2014), to a particular domain (e.g.
biomedical: Poprat et al. 2008, medical: Smith and Fellbaum
2004, or architectural: Bentivogli et al. 2004), or they can belong
to one well defined class like in Toral et al. 2008 who adds proper
nouns to WN.  
The new terms may be taken from dictionaries or extracted from a
corpus. In several cases the exploited resource is Wikipedia, like
Ponzetto and Navigli 2009 and Ruiz-Casado et al. 2005. The
majority of the works based on Wikipedia are limited mainly to
noun concepts because of its structure which mostly is organised
as: noun+description. To overcome this limitation Jurgens and
Pilehvar 2015 propose to extend WN with novel lemmas from
Wiktionary managing to double the existing number of Synsets
and attaching new ones to their appropriate hypernyms. With the
excellent results achieved, they built the publicly available

�10

resource CROWN . 5

For the WN enrichment task different resources have been
exploited and different approaches have been experimented:
distributional similarity techniques Snow et al. 2006, structured
based approaches Ruiz-Casado et al. 2005, creation of a new
ontology and its merging with the existing ones by alignment
based methods (Pilehvar and Navigli 2014) or considering the
attributes distribution (Reisinger and Pasca 2009).  
The taxonomy enrichment task can be considered as a specific
case of the ontology learning and population task, as in Buitelaar
and Cimiano 2008, whose purpose is the automatic learning of
semantic classes and relations.
As an example of how to expand the WN taxonomy, I will show
in the next section a procedure used in a task of Semeval 2016.

2.3.1 SemEval 2016 - Task 14 - Semantic Taxonomy
Enrichment

The enrichment of WN taxonomy is part of SemEval 2016 6

and in particular the task 14 - Semantic Taxonomy Enrichment - 7

« provides an evaluation framework for automatic taxonomy
enrichment techniques by measuring the placement of a new
concept into an existing taxonomy: given a new word and its
definition, systems were asked to attach or merge the concept into
an existing WN concept » (Jurgens and Pilehvar 2016).  

 https://github.com/davidjurgens/crown5

 SemEval is an ongoing series of evaluations of computational semantic analysis systems, it 6

occurs annually with different tasks. SemEval 2016 website http://alt.qcri.org/semeval2016/

 http://alt.qcri.org/semeval2016/task14/7

�11

https://github.com/davidjurgens/crown
http://alt.qcri.org/semeval2016/task14/
http://alt.qcri.org/semeval2016/

Already several works exist which try to automatically improve
WN with new concepts, but there is no a standard evaluation
framework to measure the quality of extension algorithms. The
performance of existing systems can be easily measured (for e.g.
removing terms from WN and verifying their reinsertion) whereas
accuracy is more difficult to estimate (new terms may be very
different from the ones already in WN).  
Task 14 aims to evaluate systems for WN enrichment.  
Words (not already stored in WN) from Wiktionary together with 8

their definitions and pos are provided to the participating systems
which have to identify the Synsets to which the new terms should
be merged as synonyms or attached as hyponyms. See e.g.
mudslide and changing_room in Table 2.2:

New terms to be added for the task are 1000, divided into training
and test datasets. They belong to specific domains, slangs and
neologisms and they have been manually annotated by the
organizers (as gold-standard, to check the systems results).
Systems are evaluated according two criteria:

 Wordnet version 3.08

�12

Tab 2.2 SemEval 2016 Task 14 - Examples

Lemma pos Definition Target Synset Operation

mudslide noun A mixed drink consisting of
vodka, Kailua and Bailey’s

cocktail - a short
mixed drink ATTACH

changing_room verb
A room, especially in a

gym, designed for people to
change their clothes

dressing_room -
a room in which
you can change

clothes

MERGE

- the percentage of new terms added to WN
- the accuracy of the placement

Accuracy is judged with Wu&Palmer’s similarity measure , recall 9

is measured on the percentage of terms placed. Systems can
decline to place difficult words for e.g. a gloss with many out of
vocabulary words; words declined are not considered in the
percentage.

2.3.1.2 Deftor at SemEval 2016 Task 14

Together with H. Tanev from the Joint Research Centre , I 10

attempted the task with an algorithm which transforms each
candidate definition into a term vector, where each dimension
represents a term and whose value is calculated by Tf-idf .  11

We opted for a relatively simple method for searching relevant
Synsets, which does not exploit any external dictionary or another
semantic resource. We called our system Deftor (DEFinition
vecTOR). Deftor is a system which represents the definitions
(glosses) as lexical vectors and finds the most similar one for each
new lemma.

 The Wu&P measure calculates similarity by considering the depths of the two concepts in the 9

WN hierarchy and the depth of the LCS (least common subsumer)

 https://ec.europa.eu/jrc/en - Text and Data Mining Unit10

 tf-idf (term frequency–inverse document frequency) is a statistical measure which increases 11

proportionally to the number of times a word appears in the document, but is offset by the
frequency of the word in the corpus, which helps to adjust for the fact that some words appear
more frequently in general.

�13

https://ec.europa.eu/jrc/en

Automatic enrichment of taxonomies and knowledge bases is
very important especially for rapidly changing domain. The
taxonomy enrichment task is quite challenging, mostly because of
the many possibilities when attaching a new term to an existing
taxonomy: first, a new word can be attached as a hyponym to
different concepts, which describe it at different levels of
abstraction. For example, in WN hurricane is a hyponym of
cyclone, which is a hyponym of windstorm, which itself is a
hyponym of storm and storm is a hyponym of atmospheric
phenomenon. It is not always easy to decide where to attach a
concept: in the above mentioned case the definition of storm and
windstorm are not very different. In this case, it is also difficult to
decide if a new concept should be merged with a similar concept
from WN or it should be attached as a hyponym.  
Another problem are the multiple aspects from which a concept
can be perceived. For example, one can consider hurricane to be a
natural disaster. It is also a weather condition or cause of death.

All these considerations unfortunately make taxonomy
enrichment task quite ambiguous and difficult to tackle. In some
cases, the right attachment of a new concept will be difficult also
for a human expert (see the annotation process of gold standard
data for the task in Jurgens and Pilehvar 2016).  
Our approach to the taxonomy enrichment task represents each
Synset from WN and the candidate new terms as word vectors
from their definitions and then attaches each new term as a
hyponym to the Synset for which the cosine similarity of its
definition vector and the definition vector of the new term is the
highest.  

�14

The algorithm which we propose transforms each candidate
definition into a definition vector, a term vector, where each
dimension represents a term and its weight is calculated by Tf-idf.
In this way we represent each WN definition, as well as the
definitions of the new terms for inclusion in WN. Moreover, we
expanded each definition vector with the definitions of the words
from this vector.  
We then calculated the cosine similarity between each WN Synset
definition and the definition of the candidate term whose place in
the WN hierarchy is to be identified. Then, we attach the
candidate term as a hyponym to the Synset with the most similar
definition.  
In order to create a definition vector for a word sense, we perform
part-of-speech tagging of its gloss and we represent each gloss as
a list of lemmata of its non-stop words. Words are downcased.
After that, as a second step, each definition vector is being
expanded with the lemmata from the glosses of its words,
obtained on the first step. For example, if the WN definition for
computer is a machine for performing calculations automatically,
then our algorithm creates a first version of the definition vector
with the non- stop lemmata machine, perform, calculation and the
Tf-idf values of these words. Then, the algorithm takes the
glosses of all the WN senses of the words in the first version of
the vector.  
In this particular case, we will add to the definition vector of
computer the words from the glosses of all the senses of machine,
perform, and calculation. Moreover, pos tags of these words are
known, since we perform part of speech tagging of the glosses.  
As an additional step of pre-processing we extract the genus from

�15

the gloss - usually the first word which defines the more generic
concept under which is the defined term (a machine for …).  
We have processed all the WordNet synsets, where each Synset is
represented as a definition vector. Then an inverted index was
created for each definition vector, in which a word points to the
definition vectors in which it appears.  
For each new term t, we do the following:

1. Find the definition vector d of t.

2. For each word w from d we find via the inverted index all
the synsets whose definition vectors contain w and whose
part-of-speech is the same as the one of t. Let’s denote the
set of definition vectors of these synsets as D.

3. We find the similarity of d and each vector di ∈ D. The
similarity is being calculated as d.di.cos(d, di), this formula

was empirically derived from the training data.

4. If the part of speech of t is verb, we add to the above-
calculated similarity score the similarity of the glosses of
the genus of t and the genus of the Synset under
consideration.

5. The Synset with highest similarity is taken and then the
new term is attached as its hyponym. If the similarity of the
best Synset is found to be under a certain threshold, then
we do not attach the new term and we skip it.

The results of our method can be improved but are much above
the baseline Random synset, which shows the feasibility of our

�16

approach.  
The main advantages of our strategy are: simplicity, independence
from external resources, potentially multilingual applications.  
For more details see Jurgens and Pilehvar 2016, Tanev and
Rotondi 2016.  
 
 
2.4 WordNet Improvements - Relations Enhancement

Despite the richness of its semantic relations, the network of
WN is considered relatively sparse by several researchers (see for
e.g. Moldovan and Novischi 2004, Verdezoto and Vieu 2011,
Graber et al. 2006). Graber et al. 2006 subdivides this shortage
into three fundamental limitations:  

No cross pos links: as mentioned above, searching the WN
database for a word it returns the different senses of the word in
every syntactic category. This works for words which are
semantically and morphologically related such as operate,
operator, operation. Instead, semantically related words which do
not share the same stem are not connected for e.g. [traffic,
congested, stop].

No weighted relations: WN does not consider the difference
of semantic distance between the members of hierarchically
related pairs. For e.g. if run is a subordinate of move and jog a
subordinate of run, it is intuitive that run and jog are semantically
much closer than run and move.

�17

Few relations: connections between Synsets may be
increased and refined in different ways, improving exponentially
the potential of this resource.

There are many projects in literature which aim to add new
semantic relations or to reorganise the WN network.  
Mel’cuk and Zholkovsky 1998 propose to add several different
semantic and lexical relations such as instrument for knife-cut or
actor for book-writer, but this kind of relation is not easy to
formulate. Magnini and Cavaglia 2000 present a lexical resource
where WN Synsets are linked considering topical domains, this
strategy is able to connects words across pos but cannot account
for the association of pairs like Holland and tulip. The goal of
Graber et al. 2006 is to add quantified oriented arcs between pairs
of Synset using the value of “evocation”, i.e. how much a concept
brings to mind another. This starting from the support of human
annotators combined with existing similarity measures.  
Other authors propose a manual (Gangemini et al. 2003, Guarino
1998) or semi-automatic (Verdezoto and Vieu 2011)
reorganisation of the WN taxonomy and even the mapping
between WN and other resources is often done manually, being in
such way very costly.
As already said, the structure of WN is based on psycholinguistic
principles and it was designed more as a dictionary than as a
knowledge base (Miller 1995). The small numbers of semantic
relations encoded was a authors choice with the purpose to make
it generally applicable.  
But in my opinion, enriching the semantic relations network is
profitable and among the possible enhancements of the resource,

�18

one is more valuable and needed than others: the semantic
disambiguation of WN glosses (word sense disambiguation -
WSD). We have seen that WN is widely exploited for word sense
disambiguation, it is therefore essential that also words in the
glosses be semantically disambiguated.  
 
 
2.4.1 Word Sense Disambiguation in eXtended WordNet

The disambiguation of WN glosses has been studied in
literature. Several projects aim to reach this goal (see for e.g. the
WordNet Gloss Disambiguation Project) and it is one of the 12

achievements of the eXtended WordNet project (henceforth
XWN). XWN is a project of the University of Texas at Dallas
that, under the supervision of Prof D. Moldavan, intends to «
provides several important enhancements intended to remedy the
present limitations of WordNet » . In XWN, WN glosses are 13

syntactically parsed, transformed into Logical Forms and each
content word is semantically disambiguated with high precision.  
In different papers (Moldovan and Novischi 2004, Harabagiu and
Moldovan 1998) Moldovan highlights the lack of connections
between topically related words in WN. For e.g. there is no link
between the verb hungry and the noun refrigerator: 
 

hungry#1 - feeling a need or desire to eat food  
refrigerator#1 - home appliance in which food can be

 http://wordnet.princeton.edu/glosstag.shtml12

 eXtended WordNet website: http://www.hlt.utdallas.edu/~xwn/about.html13

�19

http://wordnet.princeton.edu/glosstag.shtml
http://www.hlt.utdallas.edu/~xwn/about.html

stored at low temperature  
 
even if the word food is common to both glosses.  
In order to solve this limitation, Moldovan and Novischi 2004
built the XWN-WSD program, which has been used, together
with a in-house system, to link each content word in a gloss to its
corresponding WN concept, with a precision of almost 90%.  
Due to the nature of glosses, XWN-WSD tool differs from
ordinary systems of semantic disambiguation of open text.
Glosses have a different structure compared to standard sentences,
they are often grammatically incomplete and they may lack some
words. Furthermore, several words appear rarely in WN glosses
and consequently there is no sufficient and consistent training
data to apply statistical and learning methods.  
XWN-WSD tool employs a suite of methods based on heuristics.
These methods are various and include: comparison of bigrams
between glosses and SemCor corpus , common domain of the 14

word to disambiguate and the Synset of the gloss, similarity
between the words in the gloss of a word w and the words in the
glosses of the possible senses of w etc. See Moldovan and
Novischi 2004, pages 306-309.  
Monosemous words don’t need this procedure and they were
directly linked to the appropriate sense. An example is the gloss
of the word abbey: a monastery ruled by an abbot. The word
abbot has only one sense in WN, it is not ambiguous and it has
been tagged with the sense #1.  
The results of the different procedures come to various level of

 Texts from the Brown Corpus semantically annotated with WordNet. Different versions are 14

freely downloadable at: http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor

�20

http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor

precision and recall. Considering accuracy and coverage set,
methods have been combined to reach the best performance.
 
Using these methods (system1) together with another in-house
system (system2) of WSD of open text, Moldovan et Novischi
succeeded, with an accuracy of 86%, in semantically
disambiguating the words in WN glosses.  
Furthermore, they provided the disambiguation of each content
word in the glosses with a quality attribute. If system1 and
system2 agreed on the disambiguation of a word, a silver tag was
given to that word; if they disagreed the word was tagged as
normal. A gold label was given to those words for which a
manual intervention of a human annotator occurred (three kinds
of manual annotation were applied; see detailed information about
this in Litkowski 2004). With XWN-WSD, words senses have
been assigned to more than 630K open class words. Only a 2.5%
of these words has been tagged manually but there may be more
than one gold disambiguation in a gloss (see Example 2). All the
word forms corresponding to the verbs to have and to be were
not disambiguated automatically.
The output of the XWN-WSD has been released in XML format.
Here below the WSD for the gloss of Sundanese (I underlined the
quality of the disambiguation and the disambiguation itself) :
 
Example 1 - XWN-WSD for Sundanese gloss:
 

<gloss pos="NOUN" synsetID="06515461">
 <synonymSet>Sundanese</synonymSet>
 <text>
 the Indonesian language spoken in the Lesser Sunda Islands
 </text>

�21

 <wsd>
 <wf pos="DT" >the</wf>
 <wf pos="JJ" lemma="indonesian" quality="normal" wnsn="1"

 >indonesian</wf>
 <wf pos="NN" lemma="language" quality="silver" wnsn="1"

 >language</wf>
 <wf pos="VBN" lemma="speak" quality="gold" wnsn="1"

 >spoken</wf>
 <wf pos="IN" >in</wf>
 <wf pos="DT" >the</wf>
 <wf pos="NNPS" lemma="lesser_sunda_islands"

 quality="normal" wnsn="1" >lesser_sunda_islands</wf>
 </wsd>
</gloss>

Example 2 - XWN-WSD gold disambiguations:
 

<gloss pos="ADJ" synsetID="00128476">
 <synonymSet>subsequent</synonymSet>
 <text>
 following in time or order; "subsequent developments"
 </text>
 <wsd>
 <wf pos="VBG" lemma="follow" quality="gold" wnsn="2"

 >following</wf>
 <wf pos="IN" >in</wf>
 <wf pos="NN" lemma="time" quality="gold" wnsn="7" >time

 </wf>
 <wf pos="CC" >or</wf>
 <wf pos="NN" lemma="order" quality="gold" wnsn="4"

 >order</wf>  
 </wsd> </gloss>

As we can see in example 1 and 2, the XML format makes the
output easy to read. The element <wsd> includes the WSD
output. For each term of the definition gloss, a sub element <wf>
(word form) is generated (<punc> for punctuation marks). If the
word is open class, the sub element <wf> contains the following
attributes:

- pos for the part of speech

�22

- lemma representing the stem of the word
- quality of the WSD
- wnsn representing the disambiguated sense (or senses)

otherwise, the system attributes a single feature to the <wf> tag,
the pos.
As recognised by Rus in Rus 2002/1, XWN-WSD increases the
connectivity among synsets by at least one order of magnitude.
As said before, each term has been linked to the Synsets of the
words in its gloss. See for instance the example of the word Limb
in Figure 2.2 where new connections are marked with red arches.
The new kind of relation which occurs between a Synset and any
of the concepts in its gloss is called GLOSS(x,y); where x is the
Synset and y a concept in its gloss. In the Limb example above we
can denote this relation for e.g. as: GLOSS(limb, animal) or

�23

Fig 2.2 The Related Synsets of the Limb Synset of XWN

GLOSS(limb, grasp) etc. These connections were not part of the
semantic relations network of limb in WN.

For the WSD task, as for the others that we will see later (Logic
Form transformation, pos tagging and parsing), examples in the
glosses are removed. Therefore, the total number of open class
words disambiguated (637,252) regards only glosses definitions
and no examples and comments.  
Table 2.3 shows the number of disambiguated open class words
for each category, divided by pos (data refer to XWN2.0-1.1) .15

Results show a higher percentage (27% against the average
percentage of 17% for the other three pos classes) of monosemous
words regarding noun glosses. In fact, as we will see later, noun
definitions in WN are longer and with a richer and more specific
vocabulary than those of the other pos.

 http://www.hlt.utdallas.edu/~xwn/wsd.html15

�24

Tab 2.3 Disambiguated Open Class Words in XWN

Set of
Glosses

Number of
Glosses

Open
Class
Words

Monosem
ous Words

Gold
Words

Silver
Words

Normal
Words

Noun
Glosses 79689 505946 138274 10142 45015 296045

Verb
Glosses 13508 48200 6903 2212 5193 30813

Adjective
Glosses 18563 74108 14142 263 6599 50359

Adverb
Glosses 3664 8998 1605 1829 385 4920

TOTAL 115424 637252 160924 14446 57192 382137

http://www.hlt.utdallas.edu/~xwn/wsd.html

The XWN projects achieve the disambiguation of a huge number
of content words in the WN glosses and even though the manual
correction of gold disambiguations is very costly and time
consuming, more than 14K content words disambiguations have
been manually checked.
 
The success of XWN WSD is proved in the next sections with its
application in building lexical chains and its use as standard for a
Senseval task.
 

2.4.2 XWN-WSD and Lexical Chains

Let’s come back to the first example of the previous section, the
glosses of hungry (feeling a need or desire to eat food) and
refrigerator (home appliance in which food can be stored at low
temperature). WSD of the glosses can now be exploited to build
lexical chains and explain cohesion and intention of a simple text
like:

S1) Jim was hungry
S2) He opened the refrigerator

Lexical chains (Hrist 1995) are semantically related words that
link two concepts. They are built on resources that contain
concepts and their relations.  
In this case the word food is the key concept; thanks to XWN
WSD a lexical chain between hungry and refrigerator can be
constructed, explaining the connection between the two sentences.  

�25

A better lexical chain framework can be developed from the
disambiguated glosses rather than relying only on the WN
relations among synsets.  
This idea has been investigated and implemented in the work of
Prof Moldovan, in particular in Moldovan and Novischi 2002
lexical chains are tested in a Q/A task.

Another work for which a mention is needed but that I won’t
treat here, is the further effort to improve semantic connectivity of
XWN concepts made by Erekhinskaya and Modovan 2013.
Starting from the fact that GLOSS relation doesn’t provide
weighted connections , they transformed the glosses into 16

semantic graph using the semantic parser Polaris (Moldovan and
Blanco 2012), and replacing in this way the GLOSS relation with
lexical chains.
 
 
2.4.3 Senseval-3: WSD of WN Glosses Task

XWN-WSD is not the only project which aims to disambiguate
the WN glosses but it is, indeed, one of the most significant.
As seen earlier, in XWN WN glosses have been disambiguated
combining human annotation and automated methods. The result
is an excellent source of data which has been used as standard for

 For e.g. the gloss of the concept notation is “a technical system of symbols used to represent 16

special things”. It is obvious that GLOSS(notation,system) is stronger than
GLOSS(notation,special).

�26

one of the tasks of Senseval-3 , : Word Sense Disambiguation of 17 18

WN Glosses.
This task is analogous to other WSD tasks of texts of previous
Senseval editions. What makes it different are the peculiarities of
WN glosses: they often do not constitute standard sentences and
might be incomplete (see page 29).  
Participants have to face these characteristics to complete the task
and to do so they are allowed to exploit other data provided by
XWN: pos tags for each word in the glosses, parses and logical
forms.
All the glosses from XWN in which at least one disambiguation
was tagged as gold (more than 9k) constitute the test set provided
to participants (no training data available) which have to replicate
the hand-tagged results. The glosses were provided in XML
format, exactly as they appear in XML file, structured as:
synsetID + POS + gloss:

<gloss pos="ADJ" synsetID="00128476">
 <synonymSet>subsequent</synonymSet>
 <text>
 following in time or order; "subsequent developments"
 </text>
</gloss>

Seven teams participated to the task. They could investigate the
disambiguations already available in XWN and then they had to
develop their own systems.
After the tokenisation of the glosses, systems were asked to
replicate the hand-tagged results. The expected output for each

 Senseval is the precursor of SemEval, it can be defined as a set of evaluation exercises for the 17

semantic analysis of text. See Senseval website: http://www.senseval.org

 Senseval Task 3: WSD of WN glosses webpage: http://www.clres.com/SensWNDisamb.html18

�27

http://www.senseval.org
http://www.clres.com/SensWNDisamb.html

gloss was: pos of the gloss + its Synset number + a WN sense
number to identify each content word in the gloss.  
Due to the absence of significant context, participants employed
WN semantic relations for the disambiguation of the glosses.
Results were evaluated using precision and recall and are reported
in Litkowski 2004. They reveal good performances of the
participating systems but lower than the XWN WSD gold
standards.
The task was designed to encourage « development of technology
to make use of standard lexical resources » (like WN and XWN)
and to motivate « the lexical resource community to take up the
challenge of disambiguating dictionary definitions » (Litkowski
2004).
Motivations and results of the task lead to the conclusions that
WSD of WN glosses is an important improvement as well as a
challenging task and that XWN is one of the projects with better
results so far.  

That said, I have to mention the fact that during the evaluation of
the task’s results it came out that gold disambiguation quality of
XWN is not always synonym of correctness. It seems that
sometimes human annotators did not consider WN semantic
relations while disambiguating a word but they rather (probably)
relied only on their personal judgment.
For instance, WN definitions have often the structure:
genus+differentiae. Since most of WN Sysnsets have a hypernym,
it should be easy to disambiguate the genus of this definitions by
looking at the hypernym of a Synset’s definition. This doesn't

�28

alway happen and some gold disambiguations are incorrect. For
e.g. the word failure has different senses in WN , see Fig 2.3:19

While annotating the sense of failure in the definition of naught :
complete failure, a human annotator (as well as an automatic
system) might use the WN hypernym relation that connects the
Synset of naught to the failure one:
therefore, failure in the definition of naught should be tagged with

its first sense in WN (an act that fails) while it is tagged in XWN
with the second WN sense (an event that does not accomplish its
intended purpose) revealing in this way no consideration of WN
semantic relations by the human annotator.

 The output is taken from : http://wordnetweb.princeton.edu/perl/webwn19

�29

Fig 2.3 Different WN Senses of the Word Failure

http://wordnetweb.princeton.edu/perl/webwn

This fact reveals the importance of an accurate human annotation
which is often needed in the creation and maintenance of
resources for NLP. Manually annotating does still often mean
better accuracy but this is true only if the annotation is meticulous
and well organised.
I will show later that in other parts of the XWN resource,
specifically in the Logical Forms, manually transformed
definitions are not free of mistakes.

2.5 Conclusions

WN is an important resource for the NLP community. Despite its
success, it has been proved that it can be improved in different
ways, from the expansion of its terminology to the enrichment of
its semantic relations.
Several projects aim to create an enhanced version of WN, and
one in particular succeeded in this intention: XWN.
We have seen in this chapter how in XWN the content words of
WN glosses have been disambiguated. From the analysis of the
disambiguation results, some first differences came out between
the definitions and dimensions of each pos file: in WN, and
therefore in XWN, definitions of nouns are longer and more
complex and they constitute more than half of the whole resource.
Furthermore, WN definitions can’t be considered and treated as
normal text, their structure is different and might be sometimes
incomplete. Manually checked results are usually accurate but the
human annotation is not free of errors.

�30

XWN WSD is an important achievement but is just a part of the
whole project.
In the next chapter I will take a closer look to XWN ad in
particular to another enhancement made with this project: the
Logic Form transformation of WN glosses.

�31

Chapter 3

eXtended WordNet and Logical Forms

3.1 Introduction

In this chapter I will describe the XWN resource, its structure
and in particular how WN glosses have been transformed into
Logical Forms (henceforth LF). I will then take a closer look to
the LF as semantic representation and to several works about it. I
will start by reviewing some examples from STEP 2008,
providing in this way a brief overview on how to include more
semantics in this kind of representation. I will then describe and
comment on two resources that, like XWN, provide LF
transformation for WN glosses: WN30-lfs and ILF. In the interest
of proving LF, and in particular XWN LF, as an interesting topic
of research and a valid support for NLP tasks, I will report the
Senseval3 task on LF transformation and an example of its
application in a Q/A system. Finally, conclusions will introduce
the work of correction of XWN LFs.

�32

3.2 eXtended WordNet

In the previous chapter I roughly introduced the eXtended
WordNet (XWN) project and in particular I reported the efforts of
UTD people in disambiguating the glosses of WN (XWN-WSD).
This is just a little part of the whole project which we see in detail
here below.
The XWN resource is apparently less famous than WN but as
highlighted in different papers it is also very useful and
appreciated in the NLP community. Litkowski 2004 affirms that «
The eXtended WordNet is used as Core Knowledge Base for
applications such as Question Answering, Information Retrieval,
Information Extraction, Summarization, Natural Language
Generation, Inferences and other knowledge intensive
applications »

With the XWN project, the purpose of Prof Moldovan and his
group of researchers is to semantically and morphologically
enhance WN.
They envision an improvement of the rich information contained
in WN glosses with the intent to «increase the connectivity
between synsets and provide computer access to a broader
context for each concept» .20

WN was not designed to serve as lexical resource and, despite its
success, it exhibits some well-known limitations when used for
knowledge processing applications.

 http://www.hlt.utdallas.edu/~xwn/about.html20

�33

http://www.hlt.utdallas.edu/~xwn/about.html

To reach their goal of enhancement, the UTD researchers built a
tool which takes as input WN and automatically generates an 21

improved version named eXtending WordNet. The tool
framework is organised as follow:

- preprocessing and pos tagging of the glosses (it includes
tokenisation and compound words detection)

- parsing
- WSD of content words in the glosses
- logic form transformation of WN glosses

Let’s take a closer look to the different steps.  
For the WSD part we refer the reader to the previous section 2.3.1

3.2.1 Preprocessing and Pos Tagging

The first stage of the process is the preprocessing and pos
tagging of the glosses. It includes tokenisation, identification of
compound words and exclusion of examples. The accuracy
achieved in this step is crucial since it affects the rest of the
process.

 The tool is designed to take as input current and future versions of WN21

�34

Fig. 3.1 eXtended WordNet Framework

In the preprocessing stage, the glosses are parsed in order to
exclude contents between parentheses and examples. For e.g. one
of the senses of the word blind has the gloss: a hiding place
sometimes used by hunters (especially duck hunters); “he waited
impatiently in the blind”. Only the definition (a hiding place
sometimes used by hunters) is processed in the next steps.

Definitions are then tokenized with an in-house system which
complies with the Treebank tokenisation requirements. The
tokenizer includes specific glosses-extensions and identifies a
definite set of collocations (up and down, to and from, in order to
etc.).  
 
In order to obtain an accuracy of almost 100%, pos tagging has
been carried out combining the Brill tagger and the Mxpost 22

tagger ; when the two taggers disagree, the agreement for word 23

to tag is sought in WN. Eventually, a human check occurs if
needed. For e.g. the outputs of the taggers for the gloss of
abbey#3 is:

Brill’s: a/DT monastery/NN ruled/VBN by/IN an/DT abbot/NN
MXOST: a_DT monastery_NN ruled_VBN by_IN an_DT abbot_JJ

 Before applying the rules, Brill’s tagger gives to each word the most likely tag, estimated by 22

examining a large tagged corpus. If a word is unknown (not in the tagged corpus) it is
considered proper noun if capitalised, otherwise it is tagged according to the most common tag
for words ending in the same three letters. See 67

 Mxpost tagger uses a rich feature representation and for each word it generates a tag 23

probability distribution reaching an accuracy of 96%. See 69, 66

�35

In this case, the taggers disagree on the last word abbot. The
system checks the pos of abbot in WN and assigns the right tag
NN to the word.
The choice of the taggers was done after evaluating the
combination of different taggers, with refer to the work of
Mihalcea and Bunescu 2000. At the start of the project, three
taggers were chosen considering public availability, accuracy and
the set of tags used: the Mxpost tagger (a tagger based on the
minimum entropy principle)[69], the Brill tagger (a rule based pos
tagger, see Brill 1992), and the Qtag tagger (a probabilistic tagger,
see Mason 1997). After evaluating the accuracy resulting from
different combinations, the decision of using Brill + Mxpost was
made also considering the agreement sets.
Results reported in Rus 2002/1 show an achieved pos accuracy of
98,93% resulting from an accuracy of 98,50% for 91,57% of the
words, 100% accuracy for 0,94% of the words and a human

�36

Fig 3.2 XWN Preprocessing Phase

annotation of 7,52% of the words.  
Compound words were also identified semi automatically with the
intervention of a human when needed. Manual revision may be
very time consuming but, as reported in Mihalcea and Moldovan
2001, in this first stage took only few hours.  
The functions of the preprocessing and parsing stage are
combined in the xwnPreprocess tool and summarised in Figure
3.2 from Mihalcea and Moldovan 2001 (see previous page).

 
3.2.2 Parsing

To improve the parsing accuracy, an extension was first applied
to the glosses. Depending on the pos of the Synset, glosses were
extended in different ways, see the following examples:

- Nouns: noun + is + gloss + period
eggshake is a milkshake with egg in it.

- Verbs: to + verb + is to + gloss + period
to cut is to make an incision or separation.

- Adjectives: adjective + is something + gloss + period
marine is something native to or inhabiting the sea.

- Adverbs: adverb + is + gloss + period
syntactically is with respect to syntax.

Two parsers were used to complete the task: the Charniak’s parser
and an in-house parser. The last one is a bottom-up chart parser
for which the main source of errors comes from its tendency to
structure inputs as sentences. This mainly happens for glosses
containing relative clauses. The extensions of the glosses

�37

compensate this tendency improving the accuracy from 62,67% to
85,25% (the parser was tested on 400 manually tagged glosses).
The combination with the in-house parser and the Charniak’s
parser, plus a human intervention, led to an accuracy of 98,93%
(see Rus 2002/1). Here below the output of the parse tree for the
gloss of eggshake:

<gloss pos="NOUN" synsetID="07446232">
 <synonymSet>eggshake</synonymSet>
 <text>
 a milkshake with egg in it
 </text>
 <wsd>
 </wsd>
<parse quality="SILVER">
(TOP (S (NP (NN eggshake))
 (VP (VBZ is)
 (NP (NP (DT a) (NN milkshake))

 (PP (IN with)
 (NP (NP (NN egg))
 (PP (IN in)
 (NP (PRP it)))))))
</parse> <\gloss>

Also in this case, results have been classified into three quality
categories: Gold for the manually checked parsered glosses;
Silver for those parsered glosses for which the two parsers agreed
but no human verification occurred; Normal was attributed to the
rest of the glosses for which there was no agreement of the two
parsers and no human verification. Table 3.1 illustrates the 24

results arranged by pos and quality. Despite the high accuracy
achieved by automatic parsers, the human annotation improves
the final results. Data which have been manually checked are
found to be more precise. Therefore, the complete absence of gold

 http://www.hlt.utdallas.edu/~xwn/parsing.html24

�38

http://www.hlt.utdallas.edu/~xwn/parsing.html

glosses in the noun file reveals a lesser precision for the final
parsered glosses of this particular section.

The high number of normal glosses highlighted in Table 3.1 is
another important sign of this feature.  

As one can see, the noun category results are quite different from
those of other categories; they are the only ones with zero gold -
manually checked - glosses and with a consistent number of
normal glosses (i.e. the less accurate). I think that this is due
mainly to the fact that the noun glosses are more complex than
other pos categories. Definitions of nouns in WN are longer and
more complex than those of other pos categories. Results of
automatic systems reflect these characteristics.
I will come back on these differences in the next chapters.

3.2.3 Some Considerations

More than once I mentioned the fact that WN definitions have
different lengths according to the pos file they belong to, but how
different are they?

�39

Tab 3.1 XWN Parsing Results

POS Total Glosses Gold Glosses Silver Glosses Normal Glosses

Noun 87,777 0 38,087 49,690

Verb 13,560 13,560 0 0

Adjective 20,229 14,334 5,895 0

Adverb 3,922 1,058 2,864 0

These considerations might be useful both for those who is
interested in working on WN and for those who deal with XWN.
In order to calculate the average length of definitions for each pos
file I built systemA in appendix1. For each XWN pos file
SystemA gathers all the definitions and saves them in a txt file,
one per line, taking care of deleting examples, content between
parenthesis and recording separately multiple definitions. For e.g.
the definition of tease: the act of harassing someone playfully or
maliciously (especially by ridicule); provoking someone with
persistent annoyances; "he ignored their teases"; "his ribbing was
gentle but persistent” is recorder as two separated definitions:

the act of harassing someone playfully or maliciously
provoking someone with persistent annoyances

When all the definitions have been cleaned and properly recorded,
SystemA calculates their average length. Results are shown in
Table 3.2: 

 As mentioned, definitions of nouns are much longer than those of
other pos, while definitions of adverbs are the shortest.

Pos File Definitions Average Length

Noun 53

Verb 30

Adjective 37

Adverb 23

�40

Tab 3.2 Average Lengths of Definitions

A second consideration regards the procedures and results of
XWN described so far. The purpose of the first section of this
chapter was to investigate the accuracy sought by the XWN
researchers in order to better understand the results of the LF
transformation of the glosses and its errors.
I will show that the research and achievement of a good level of
correctness in the first phases of XWN (pre-processing, pos
tagging and parsing) are not enough to guarantee the
impeccability of the LF transformation of the WN definitions.

3.2.4 Logical Form Transformation

Starting from the output of the syntactic parser, transformations
and heuristics were applied to create LF of the glosses. LF is an
intermediate semantic representation which stands between the
syntactic parser and the deep semantic form.
To generate LFs, grammar rules were extracted automatically
from the parse tree and for each of them one or more
transformation rules were manually developed. Since the number
of grammar rules was large (more than 5K for nouns WN glosses,
more than 10K for all the pos), a set of most common grammar
rules were derived from a representative corpus of glosses. The
performance was then adjusted by selecting other valuable rules
and by considering some syntactic and lexical information. The
most common grammar rules were enough to cover most of the
occurrences; this was possible especially for the nature of the
definitions which are (most of the times) of the form: genus +
differentia. 

�41

Before applying the transformation rules, the output of the parser
was simplified in order to facilitate the LF transformation process:
determiners, modals and auxiliaries were eliminated, plurals and
negations ignored (NNS -› NN), proper nouns treated as common
nouns (NNP -› NN), verb tenses ignored (but passive information
kept) (VBG, VBP, VBZ, VBN -› VB) etc.
Furthermore, some of the most complex structures were
simplified (see for instance Figure 3.3).  

Transformation rules were of two types:

- intra-phrase: produce predicates for every noun, verb,
adjective or adverb and assign them the first variables. E.g.:  
 

- inter-phrase: assign arguments to verb predicates, proposition
predicates and conjunctions. E.g.:

Phrase Grammar Rule Transformation Rule

(NP(a/DT short/JJ sleep/
NN)) NP -> DT JJ NN adj/JJ noun/NN ->

noun(x1) & adj(x1)

�42

Fig 3.3 Example of Structure Simplification

 
The strategy was bottom-up: rules were applied starting from the
leaves of the tree and then climbing to the top.
In the first stage of the process nouns and verbs were identified
and an unique argument was assigned to each of them. The
argument was of the type x for nouns and e for verbs.
During this phase, complex nominals were identified and
recognised as single nominal. This was done with the nn predicate
(first introduced in the TACITUS project, see Hobbs 1986) which
can have a variable number of arguments, with the first one
representing the result of the aggregation of the nouns
corresponding to the rest of the arguments. Examples of LF with
nn predicates:

NN(x1, x2, x3) animal:NN(x2) life:NN(x3) in:IN(x1, x4)
particular:JJ(x4) region:NN(x4)

local:JJ(x1) NN(x1, x2, x3) church:NN(x2) community:NN(x3)

club:NN(x1) for:IN(x1, x2) player:NN(x2) of:IN(x2, x3) NN(x3,
x4, x5) racket:NN(x4) sport:NN(x5)

Modifiers, adjectives and adverbs take the argument of the head
of the phrase in which they are included. For nn predicates the
argument is the first one:

Phrase Grammar Rule Transformation Rule

(PP (by/IN (NP an
abbot)) PP -> IN NP prep/IN noun/NP(x) ->

prep(-, x) & noun(x)

�43

Predicates were then propagated to upper levels of the tree, trying
to connect arguments from one predicate to another. Arguments
which still remain unassigned need the intervention of heuristics.
For example, the subject of a verb is identified as the phrase head
argument preceding the verb or the prepositional object argument
of the following by preposition (if the verb is in passive voice);
the prepositional argument is identified in the following phrase
head argument etc. (see all the heuristics in Rus 2002/1). It is
important to remember for this work that when the heuristics
failed, and an argument slot remained empty, a new argument was
generated.  
In Figure 3.5 (next page) a representation of the process.  
A predicate is generate for every noun, verb, adjective or adverb
in the gloss. Following the Davidsonian treatment of action
predicates (Davidson 1967), events are reified and each verb is
transformed in a three arguments predicates (e1,x1,x2) where: e1
represents the action, state or event stated by the verb, x1 the
syntactic subject and x2 the syntactic direct object. E.g.:

writer:NN(x1) compose:VB(e1, x1, x2) rhyme:NN(x2)

monastery:NN(x1) rule:VB(e1, x2, x1) abbot:NN(x2)

�44

Fig 3.4 nn-Predicate

In case of ditransitive verbs a fourth argument is added. E.g.:

professor:NN(x1) give:VB(e1, x1, x2, x3) grade:NN(x2)
student:NN(x3)

The arguments are in the fixed order: subject, direct object,
indirect object. While the first arguments are always present in the
verb predicate, the fourth argument is added only when necessary.
If one of the syntactic roles is missing in the gloss, the argument
can be dummy, i.e. it is assigned to the verb predicate but it is not
associated to anything else in the gloss. This is the case of
intransitive verbs, e.g.:

someone:NN(x1) arrive:VB(e1, x1, x2) late:RB(e1)

As shown by late:RB(e1) in the previous example, predicates
generated from modifiers share the same arguments with the
predicates corresponding to the phrase heads. Adjectives share the

�45

Fig 3.5 Logical Form Transformation Process

arguments with the nouns they modify and Adverbs share the
arguments with the verb/adjective they refer to. See for e.g. the
gloss of the word ballroom:

large:JJ(x1) room:NN(x1) use:VB(e1, x3, x1) mainly:RB(e1)
for:IN(x1, x2) dancing:NN(x2)

Conjunctions and Prepositions are also transformed into
predicates. While conjunctions have a variable number of
arguments, of which the first one represents the result of the
aggregation, prepositions have two fixed arguments; the first
argument corresponds to the predicate of the head of the phrase to
which prepositional phrase is attached, whereas the second
argument corresponds to the prepositional object. E.g.:

apprehend:VB(e2, x1, x2) and:CC(e1, e2, e3) reproduce:VB(e3, x1,
x2) accurately:RB(e1)

bed:NN(x1) on:IN(x1, x4) ship:NN(x2) or:CC(x4, x2, x3)
train:NN(x3)

expose:VB(e2, x1, x2) to:IN(e2, x7) ray:NN(x7) of:IN(x7, x3)
sun:NN(x3) or:CC(e1, e2, e3) affect:VB(e3, x1, x2) by:IN(e3, x4)

exposure:NN(x4) to:IN(x4, x3)

As already said, XWN is divided in four files, one for each pos.
LFs are structured in different manners, one for each of these
files.

- Noun: the argument x1 is assigned to the first word
representing the Synset and in the gloss it refers to the same
entity. E.g.: 
 
frappe:NN(x1) -> thick:JJ(x1) milkshake:NN(x1)

contain:VB(e1,x1, x2) ice_cream:NN(x2)  

�46

- Verb: the argument e1 is assigned to the first word representing
the Synset, its subject is the argument x1 and its object the
argument x2. E.g.:25

prologize:VB(e1, x1, x2) -> write:VB(e2, x1, x3) or:CC(e1, e2,
e3) speak:VB(e3, x1, x3) prologue:NN(x3)

- Adjective: as for nouns, the argument x1 is assigned to the first
word representing the Synset and in the gloss it refers to the
same entity. E.g.:

ascetic:JJ(x1) -> practice:VB(e1, x1, x2) great:JJ(x2) self-
denial:NN(x2)

- Adverbs: the argument e1 is assigned to the first word
representing the Synset and in the gloss it refers to the same
action or modification of the same action. E.g.:

syntactically:RB(e1) -> with:IN(e1, x1) respect:NN(x1) to:IN(x1,
x2) syntax:NN(x2)

A quality attribute was assigned also to the LF. They were tagged
as gold when a human checked the output; when there was no
human supervision, they were tagged as silver if the parse trees
obtained from the two different parsers agreed, normal if they did
not. Thus, as the labels themselves suggest, in terms of
correctness the LFs can be arranged as:

 l’unico VB in LHS con 4 arguments è give:VB(e1, x1, x2, x3) -> allow:VB(e1, x1, x3) 25

to:IN(e1, e4) have:VB(e2, x3, x2) or:CC(e4, e2, e3) take:VB(e3, x3, x2)

�47

gold > silver > normal

Tab 3.3 gives an overview of the quality of LFs for each pos:

Comparing the quality of the LFs with that of the syntactic parser
(see page 39), we can see that a high number of normal parsing
results with a similar high number of normal LFs in the noun file
(graph 1), which is more than 50% of the whole file (just like the
normal parsered glosses). The gold qualities are not connected
since they derive from a manual annotation more than from an
automatic process (graph 2). Despite the high number of gold LFs
in the noun file the average quality of this file is lower than the
other ones, so it is likely that it is more subject to errors. Verb and
adverb LFs have all been checked manually.
The graphs and tab 3.3 give also an overview of the size of the
whole resource in terms of LFs: the noun file is the largest and at
the same time the less accurate. More than 133K definitions have
been translated into LF in XWN. It’s a huge amount of data I will
investigate in the following chapters.

POS Total LF Gold LF Silver LF Normal LF

Noun 94868 32844 7228 54796

Verb 14441 14441 0 0

Adjective 20380 16059 4321 0

Adverb 3994 3994 0 0

TOTAL 133683 67338 11549 54796

�48

Tab 3.3 Quality of LFs

Results have been evaluated by XWN people by comparing the
automatic derived LFs with a set of 1Kmanually transformed LFs.
The measure used for the evaluation was exactLFaccurancy:
number of correct LF over number of attempted LF
transformations. The accuracy achieved was almost 90%. See
Rus 2002/1 and 2.

3.2.5 XWN Format

In order to provide a flexible and scalable resource, the final
output of XWN was released in XML format. This choice allows

�49

0

10000

20000

30000

40000

Nomi Verbi Aggettivi Avverbi

LF-Gold Parser-Gold

0

10000

20000

30000

40000

Nomi Verbi Aggettivi Avverbi

LF-Silver Parser-Silver

0

15000

30000

45000

60000

Nomi Verbi Aggettivi Avverbi

LF-Normal Parser-Normal

Graph 2 Graph 3

Graph 1

for future incorporation of new information without modifying
the existing structure.
Here below the final XWN output for the verb breathe.
The first two attributes of the root element xwn identify the
version of XWN (ver) and the version of WN from which come
the glosses (wnver); xmlns provides the link to the XWN project
website.  
For each Synset in WN, the element gloss was generated. It has
two attributes: pos for the pos of the Synset (a verb here) and
synsetID for the WN ID of the synset. Gloss has five child
elements: synonymSet, text, wsd, parse, and lft. They contain
respectively: the words of the Synset (they can be one or n) , the 26

text of the gloss (examples will be removed later in the process),
wsd of the content words in the gloss, the syntactic parse tree and
the LF.

<xwn ver="2.0-1" wnver="2.0" xmlns=“http://
xwn.hlt.utdallas.edu">

<gloss pos="VERB" synsetID=“00001740">
<synonymSet>breathe, take_a_breath, respire, suspire
</synonymSet>
<text>

 draw air into, and expel out of, the lungs; "I can breathe
better when the air is clean"; "The patient is respiring"

</text>
<wsd>
<wf pos="VB" lemma="draw" quality="gold" wnsn="11" >draw
</wf>
<wf pos="NN" lemma="air" quality="gold" wnsn="1" >air</wf>
<wf pos="IN" >into</wf>
<punc>,</punc>

 I calculated the max number of words in the synsets for each XWN pos file. See Appendix 2 26

for the code and results. The longest Synset is in the noun file consists of 28 words: {buttocks,
nates, arse, butt, backside, bum, buns, can, fundament, hindquarters, hind_end, keister,
posterior, prat, rear, rear_end, rump, stern, seat, tail, tail_end, tooshie, tush, bottom, behind,
derriere, fanny, ass}

�50

<wf pos="CC" >and</wf>
<wf pos="VB" lemma="expel" quality="gold" wnsn="5" >expel
</wf>
<wf pos="IN" >out</wf>
<wf pos="IN" >of</wf>
<punc>,</punc>
<wf pos="DT" >the</wf>
<wf pos="NNS" lemma="lung" quality="gold" wnsn="1" >lungs
</wf>

</wsd>
 <parse quality="GOLD">
 (TOP (S (S (VP (TO to)
 (VP (VB breathe))))
 (VP (VBZ is)
 (S (VP (TO to)
 (VP (VP (VB draw)
 (NP (NN air))
 (PP (IN into)))
 (, ,) (CC and)
 (VP (VB expel)
 (PP (IN out)
 (PP (IN of) (, ,)
 (NP (DT the) (NNS lungs)))

))))))
 (. .)))

</parse>
<lft quality="GOLD">
breathe:VB(e1, x1, x2) -> draw:VB(e2, x1, x3) air:NN(x3)
into:IN(e2, x4) and:CC(e1, e2, e3) expel:VB(e3, x1, x3)

out_of:IN(e3, x4) lung:NN(x4)
</lft>

</gloss>
. . .
</xwn>

3.3 Logical Forms

The logical forms of XWN are a kind of semantic
representation which stands between the syntactic parse and the
deep semantic form.
Following Hobbs' guidelines and his successful representation
used in TACITUS (Hobbs 1986 and 1985) , XWN LF are thought

�51

to be as close as possible to natural language and syntactically
simple. Hobbs affirms that «for many linguistic application it is
acceptable to relax ontological scruples, intricate syntactic
explanations, and the desire for efficient deductions in favour of a
simpler notation closer to English» (in Moldovan and Rus 2001).
XWN LFs share with Hobbs' representation also the Davidsonian
treatment of action sentences (Davidson 1967) in which events
are treated as individuals.
Hobbs et al. 1993 postulated that LFs are a first step towards the
interpretation of a sentence.
XWN LFs fall in the category of natural language based
knowledge representation, a class of representations which aims
to be computer-friendly and human-friendly at the same time.
Indeed, they are undoubtedly easy to understand even for a non-
trained reader but still easy to compute.
Advantages of using LFs in NLP are manifold. As highlighted by
Anthony and Patrick 2004 «advantages specifically related to the
utilisation of logical forms in language processing include a
simplified interface between syntax and semantics, a natural and
easily exploitable representation of syntactic arguments, and the
potential for formation of conceptual predicates»
They are defined by Altaf et al. 2004 as «simple yet highly
effective» and their utility in Q/A systems has been proved in
several works (See Moldovan and Rus 2001/1 e 2, Rus 2002/2).

In the following sections I review several works on LF: the
STEP2008 workshop, the Senseval3 Task, two different projects
that map WN glosses into LF (ILF and) and applications of LF to
Q/A.

�52

3.3.1 LF and STEP2008

XWN is not the only project that aims to produce LFs for
English sentences and, as pointed out in Delmonte and Rotondi
2015, there are different ways of computing and building them.
For instance, LF can include more semantics than XWN LF do;
some valuable attempts of this kind are illustrated in the
Proceedings of the ACL Sigsem workshop on Semantic in Text
Processing (STEP 2008) (Bos and Delmonte 2008). 27

For example Bos proposed Boxer, a software for computing and
reasoning with semantic representations. This tool produces a
semantic representation named Discourse Representation
Structure (DRS) and translates it to LF in order to perform
inference. As we can see in figure 3.6 from Bos 2008, variables in
the Boxer LF representation are all of the same kind and there is
no distinction for events. Semantic/thematic roles are reified, and
head the variables of both argument and events.

 See the website of STEP2008 workshop: http://project.cgm.unive.it/events/STEP2008/27

index.htm and Sigsem website: http://www.sigsem.org/w/index.php?title=SIGSEM:About

�53

Fig 3.6 Example of Boxer Output for the Text: Cervical cancer is caused by a virus. That has
been known for some time and it has led to a vaccine that seems to prevent it. Researchers

have been looking for other cancers that may be caused by viruses.

http://project.cgm.unive.it/events/STEP2008/index.htm
http://project.cgm.unive.it/events/STEP2008/index.htm
http://www.sigsem.org/w/index.php?title=SIGSEM:About

Another approach was suggested by Clark with the BLUE system.
BLUE comprises a parser, a LF generator, an initial logic
generator and subsequent processing modules. During the parsing
the system generates also a simplified LF which includes, among
others, plurals, tense and polarity. An example of this LF from
Clark et al. 2008 is shown below.

This mixed structure is then used to «generate ground logical
assertions of the form r(x,y), containing Skolem instances
(denoting existentially quantified variables) by applying a set of
simple, syntactic rewrite rules recursively to it. Verbs are reified
as individuals, Davidsonian-style» (Clark and Harrison 2008):

As commented in Delmonte and Rotondi 2015 «predicates used
in this representation are just syntactic relations of the type
SUBJect_of, OBJect_of, and MODifier_of and all prepositions,
which typically take two variables related to the individuals they
are bound to. In particular, in this representation Skolem
instances are associated with its corresponding input word.
Syntactic relations represent deep relations: the surface subject of
the passive sentence Sent.3 is turned into an OBJect».
The STEP2008 proceedings include also another reach way of
representing meaning in LF, a component of the GETARUNS

�54

system for text understanding (Delmonte 2008). Here below an
example of this representation where two semantic elements
appear: DEFINITENESS and TENSE (associated to the
Reference Time location variable T2):

3.3.2 LF Resources - ILF and WN30-lfs

As seen in the previous section, XWN LFs are not the only
existing LFs. In additions to the representations of STEP 2008
there are other attempts in producing LFs, like for instance, the
LFToolkit by N. Rathod and J. Hobbs, the experiment reported 28

by Alshawi et al. 2011 and the work of Aoife et al. 2007. See also
Wilks 1993 for more work on the topic.
What is more interesting for this work are the other two available
resources of LF derived from WN glosses: ILF and WN30-lfs.

 See LFToolkit webpage: http://www.isi.edu/~hobbs/LFToolkit/28

�55

http://www.isi.edu/~hobbs/LFToolkit/

In the next two sections I will describe and comment these two
resources highlighting their qualities and especially their defects,
some of which affect XWN as well (more on this in Chapter 4).

3.3.2.1 WN30-lfs

In order to exploit the considerable amounts of world
knowledge contained in WN words sense definitions, USC/ISI 29

people translated WN glosses into LF. Their results are available
and freely downloadable online . As clearly stated in the project 30

’s webpage, LF provides further semantic information to
supplement the WN 3.0 release.
The resulting LFs are divided into two files, one for most of the
WN glosses and a second one regarding the Core WordNet . As 31

authors comment, LFs for the Core WN are generally of higher
quality then the other ones.
The WN30-lfs transformation pipeline works as follow:  

- each gloss is converted into a sentence of the form “word is
gloss”

- the processed definitions are parsered using the Charniak parser

 Information Science Institute of the University of California29

 https://wordnet.princeton.edu/wordnet/download/standoff30

 WN contains thousands of Synset referring to highly specific concepts that are less relevant 31

for NLP. Core WN has been semi-automatically compiled/populated? with 5 thousands synsets
that express frequent and salient concepts.

�56

https://wordnet.princeton.edu/wordnet/download/standoff

- the parse tree is converted into a logical syntax (shallow logical
form, see Hobbs 1985) by the LFToolkit that translates lexical
items into logical fragments involving variables

- after the identification of syntactic relations, variables of the
constituents are matched

- predicates are assigned word sense using the WN semantically
annotated corpus (partially achieved)32

Thus, each lexical semantic head is transformed into logical
fragments involving variables; for e.g. John works is translated
into John(x1)&work(e,x2)&present(e). At the beginning object
variables are differentiated, and then John is recognised as the
subject of works and the two variables x1 and x2 are set equal to
each other. When the system fails, the constituents are translated
into logic anyway; only the equalities between variables are lost
lacking in this way the connections between constituents.

WN30-lfs has been released in XML format for the whole WN
glosses (104K entries, half marked as partial half as complete)
and in plain text for the CoreWN glosses (3K entries).
In the following example the LF transformation for the gloss of
butter from the whole WN file and for the CoreWN respectively:

<entry word="butter#n#1" status="partial">
<gloss>an edible emulsion of fat globules made by churning

milk or cream; for cooking and table use</gloss>
<lf>butter#n#1'(e0,x0) -> edible'(e9,x1) +

emulsion#n#1'(e1,x1) + of'(e6,x1,x12) + fat#n#1’(e15,x17) +
nn'(e14,x17,x12) + globule#n#1'(e10,x12) +
dset(s5,x12,e10+e14) + make#v#15’(e2,x4,x3,x2) +

 http://wordnet.princeton.edu/glosstag.shtml32

�57

http://wordnet.princeton.edu/glosstag.shtml

by'(e3,x5,e7) + churn#v#1'(e7,x10,x14) + milk/
cream#n#2'(e11,x14) + for'(e4,x6,x11) + cooking'(e12,x16) +
table'(e13,x15)</lf>

<sublf>milk'(e11,x14) -> milk/cream#n#2'(e,x14)</sublf>
<sublf>cream#n#2'(e11,x14) -> milk/cream#n#2'(e,x14)</
sublf>
</entry>

butter'(e4,x1) -> an'(e8,x1,e5) & edible'(e9,x1) & of'(e6,x1,x6)
& emulsion'(e5,x1) & fat'(e15,x6) & globule'(e10,x6) &
typelt'(e18,x6,s2) & make'(e11,x10,x6) & by'(e14,e11,e17) &
Progressive'(e21,e17) & churn'(e17,x13,x15) &
orn'(e22,x15,x17,x18) & milk'(e24,x17) & cream'(e23,x18)

It is evident that the two LFs are different. While the XML format
allows for pos tags of (most of) the content words the LF in plain
text lack them. The last don’t include the text after semicolon in
the gloss (which usually is not part of the sentence-definiton) as
well as contents between brackets:

<entry word="getaway#n#2" status="complete">
<gloss>a rapid escape (as by criminals)</gloss>
<lf>getaway#n#2'(e0,x0) -> rapid#a#1’(e2,x0) +

escape#n#1'(e0,x0) + as'(e3,e1) + by'(e1,x0,x1) +
criminal#n#1'(e4,x1) + dset(s2,x1,e4)</lf>

</entry>

There are several other differences between the LFs in the two
formats (for e.g. inclusion/exclusion of determiners,
representation of conjunctions, arguments and features of verbs
etc.) that I do not refer here. Comparing WN30-lfs to XWN is
more interesting, and to do so I will evaluate WN30-lfs of the
whole WN glosses file.

�58

Contrary to XWN, WN30-lfs is not divided into different pos files
and a unique file contains all the LFs. The syntactic category of
the word whose gloss is translated into LF appears only in the
LHS of the LF:

<lf>apple_juice#n#1'(e0,x0) -> juice'(e0,x0) + of'(e1,x0,x1) +
apple#n#1'(e2,x1) + dset(s2,x1,e2)</lf>
<lf>cheer#v#4'(e0,x0) -> become'(e1,x1,e2) +
cheerful#a#1’(e3,x2)</lf>
<lf>agile#a#1'(e0,x0) -> moving#a#1'(e1,x1) +
quickly#r#1'(e3,e2) + lightly'(e5,e4)</lf>
<lf>artistically#r#1'(e0,x0) -> in'(e0,x0,x1) +
artistic#a#2'(e2,x1) + manner’(e1,x1)</lf>

Every word in the LHS of the LF is provided with its WSD tag
but not with the SynsetID which I think to be the best
straightforward link to a WN sense. Furthermore, no manual
checking occurred for none of the LFs.
As highlighted in Table 3.4 the size of the two resources is
different and XWN includes 20K LFs more than WN30-lfs. The
difference is more evident for nouns and adjectives.

POS WN30-lfs XWN

noun 71391 94868

verb 13156 14441

adjective 15743 20380

adverb 3502 3994

total 103792 133683

�59

Tab 3.4 Number of LFs per Pos

Both resources include WSD; WN30-lfs directly in the LF, XWN
in the dedicated element of the XML tree. While WSD in WN30-
lfs may be missing, in XWN is systematic.
The simple syntax of XWN LF is easier to follow compared to the
eventuality notation chosen for WN30-lfs, where all predicates
have an event variable e associated to them . Delmonte and
Rotondi 2015 find this «representation in eventuality notation too
cluttered with additional event variables, which makes the LF
entry too heavy to read». They also points out that LF of WN30-
lfs, especially the partial ones, «contains a lot of unbound or
ungrounded variables» see for instance make(e2,x4,x3,x2) in the
LF of butter above «where none of the object variables have an
individual ground object linked to them». The problem of
unbound variables is pointed out also by Agerri and Peñas 2010:
«…it is difficult to understand the fact that the logical forms of
WN30-lfs often contain free variables and/or predicates without
any relation with any other predicates in the definition». They
agree with Delmonte and Rotondi 2015 also about the complexity
of WN30-lfs representation: «Another issue is the apparent
complexity of the logical forms themselves, containing predicates
of an unclear number of arguments, or making decisions (such as
collapsing the coordinating disjunction ‘or’ into the two
predicates that it links) with no explained benefits».

3.3.2.2 Intermediate Logic Forms - ILF

Inspired by XWN and WN30-lfs Agerri and Peñas 2010
«believe that there is still some need for providing lexical and/or

�60

knowledge resources suitable for computational semantics tasks
that required formalized knowledge». They propose a LF of WN
glosses named Intermediate Logic Form (ILF) which includes
«neo-Davidsonian reification in a simple and flat syntax close to
natural language».
Agirre and Peñas don’t use first-order-logic operators and aim to
provide a formal representation close to NL and suitable for
semantic inference tasks. The pipeline of their system performs
the following operations:  

- Pre-processing of the gloss inspired by XWN (some contents
are deleted and definitions are extended depending on POS)

- tokenization using the C&C tokenizer tokkie (Clark and Curran
2007)

- POS tagging using the CRFTtagger)33

- Syntactic analysis using the Stanford Dependency Parser34

- ILF generation directly from the dependency structure using an
in-house system

The final output is a well structured XML tree whose elements are
briefly described here below.
Considering Example 3.7, which illustrates the output for the
gloss of the adjective Bigheaded, we can se that the ILF output is
structured in Synsets. Every sense element has three attributes:
offset (a unique numeric identifier whose first number identifies
the pos), its pos category and the Synset name (word+pos+sense
number). Every sense element has some sub-elements, two of

 http://sourceforge.net/projects/crftagger/33

 https://nlp.stanford.edu/software/lex-parser.shtml34

�61

https://nlp.stanford.edu/software/lex-parser.shtml
http://sourceforge.net/projects/crftagger/

them are required: gloss and one or more lemma, which contain
the different words by which a sense is expressed, while example
is optional. The nested elements of gloss contain the definition of
the word, the pos tagging, the dependency structure and the
logical form.

�62

Fig 3.7 ILF Output

The pretty-ilf element provides a better readability version of the
LF.
The authors «performed extreme neo-davidsonian reification
aiming to reduce the number of free-variables in the resultant
logical form» and «every relation between discourse referents is
expressed by a predicate» without using logic boolean
connectives. The resulting flat and simple syntax is similar to
XML LF.
Inspired by WN30-lfs and XWN, ILF aims to provide lexical
knowledge improving the weakness of the previous resources.
To do so they start by strengthening the preprocessing phase.
They modify the definitions by extending them depending on the
pos and by removing «any redundant and superfluous 35

information».
The gloss of the previous example, bigheaded:

used colloquially of one who is overly conceited or arrogant; "a
snotty little scion of a degenerate family"-Laurent Le Sage;
"they're snobs--stuck-up and uppity and persnickety”

results in the ILF LF :

something(x1) amod(x1,x3) amod(x1,x5) overly(x2) conceited(x3)
advmod(x3,x2) conj_or(x3,x5) arrogant(x5)

as authors comments, the most relevant concepts of the definition
result to be in a prominent position and not buried among other

 NOUN and ADV glosses were extended with a period at the end of it, VERB glosses were 35

extended with "to" in front of the gloss and a period at the end of it, ADJ glosses were extended
with "Something" in front of the gloss and a period at the end of it.

�63

not so relevant information. I think that by removing part of the
definition the risk of loosing information is high.
Furthermore, during the pre-processing phase, if a semicolon is
present in the gloss, they delete everything after it. This works
well when a gloss contains one definition + 1 or more examples,
but sometimes after a semicolon there is still some knowledge it
is worth considering. See the following examples
(pos+word+gloss), one for each pos category:

N position = the act of positing; an assumption taken as a
postulate or axiom

V beam = smile radiantly; express joy through one's facial
expression

A clean = free from clumsiness; precisely or deftly executed;
"he landed a clean left on his opponent's cheek"; "a clean
throw"; "the neat exactness of the surgeon's knife"

R well = without unusual distress or resentment; with good
humor; "took the joke well"; "took the tragic news well"

In XWN examples are excluded from LF but the content after
semicolon is represented as additional LF. Thus, for instance, the
previous gloss of beam is represented in XWN with a double LF:

<lft quality="GOLD">
beam:VB(e1,x1,x2) -> smile:VB(e1,x1,x3) radiantly:RB(e1)
</lft>
<lft quality="GOLD">
beam:VB(e1,x1,x2) -> express:VB(e1,x1,x3) joy:NN(x3)
through:IN(e1,x4) facial:JJ(x4) expression:NN(x4)
</lft>

�64

The result of this choice is that even though both XWN and ILF
translate all the glosses of WN into LF, only XWN contains all
their world knowledge.
Moreover, in the pre-processing phase, text between brackets
should be removed but this sometimes doesn’t happen in ILF:

<sense offset="114709791" pos="n"
synset_name="absolute_alcohol.n.01">
 <gloss>
 <text>Pure ethyl alcohol (containing no more than 1%
water).</text>
 <parse>...</parse>
 <ilf>..</ilf>
 <pretty-ilf>pure(x1) ethyl(x2) alcohol(x3) amod(x3,x1)

nn(x3,x2) ((x4) nsubj(x4,x3) dep(x4,x5) contain(x5)
advmod(x5,x6) dobj(x5,x12) no(x6) dep(x6,x10) more(x7)

than(x8) advmod(x8,x7) 1(x9) quantmod(x9,x8) %(x10)
num(x10,x9) water(x11))(x12) nn(x12,x11)</pretty-ilf>
 </gloss>
 <lemma id="0">absolute_alcohol</lemma>
</sense>

The use of the predicate nn for compound nouns has been
improved in comparison with XWN, this in particular if we check
for the particular case of world_war_II (more on this in the next
chapter); but taking a closer look we found many unneeded uses
of the predicate nn as for instance in coarse tobacco:

<sense offset="114715356" pos="n" synset_name="shag.n.01">
 <gloss>
 <text>A strong coarse tobacco that has been shredded.

 </text>
 <parse>
 <s id="1">
 <words pos="true">
 <word ind="1" pos="DT">a</word>

�65

 <word ind="2" pos="JJ">strong</word>
 <word ind="3" pos="NN">coarse</word>
 <word ind="4" pos="NN">tobacco</word>
 ...
 </parse>
 <ilf>...</ilf>
 <pretty-ilf>a(x1) strong(x2) coarse(x3) tobacco(x4)

det(x4,x1) amod(x4,x2) nn(x4,x3) rcmod(x4,x8) that(x5)
have(x6) be(x7) shred(x8) nsubjpass(x8,x4) rel(x8,x5)
aux(x8,x6) auxpass(x8,x7)</pretty-ilf>
 </gloss>
 <lemma id="0">shag</lemma>
</sense>

where it might have been a tagging error. More tagging errors
occur with colour, nouns and past participles.
Other mistakes concern wrong cases of pp attachment as in the
following example:

 <sense offset="107312829" pos="n" synset_name="migration.n.
03">
 <gloss>
 <text>The nonrandom movement of an atom or radical from

one place to another within a molecule.</text>
 <parse>
 <s id="1">
 <words pos="true">
 <word ind="1" pos="DT">the</word>
 <word ind="2" pos="JJ">nonrandom</word>
 <word ind="3" pos="NN">movement</word>
 <word ind="4" pos="IN">of</word>
 <word ind="5" pos="DT">a</word>
 <word ind="6" pos="NN">atom</word>
 <word ind="7" pos="CC">or</word>
 <word ind="8" pos="JJ">radical</word>
 ...
 </parse>
 <ilf>...</ilf>

�66

 <pretty-ilf>the(x1) nonrandom(x2) movement(x3) det(x3,x1)
amod(x3,x2) prep_of(x3,x6) prep_of(x3,x11) prep_to(x3,x13)
a(x5) atom(x6) det(x6,x5) conj_or(x6,x11) radical(x8)
prep_from(x8,x10) one(x10) place(x11) amod(x11,x8)
another(x13) prep_within(x13,x16) a(x15) molecule(x16)

det(x16,x15)</pretty-ilf>
 </gloss>
 <lemma id="0">migration</lemma>
 </sense>

Here again the errors might be caused by the wrong tag associated
to radical. It would be interesting to know the error rate due to the
LF-transformation algorithm compared to tagging errors, but for
our purposes it is enough to know that some kind of errors affect
both ILF and XWN.
Last but not least, contrary to XWN and WN30-lfs, ILF doesn't
perform WSD. WSD is an important feature and its lack in ILF is
seen as a required improvement by the authors themselves.
Considering positive features of ILF, it is important to point out
that, contrary to XWN and WN30-lfs, in ILF there are no
unbound variables. This is a remarkable improvement and we will
face the problem of unbound variables in XWN in the next
chapter.

3.3.3 XWN LF and Senseval3

The work of Moldovan and Rus, i.e. XWN LF, inspired one of
the tasks of the Third International Workshop on the Evaluation of
Systems for the Semantic Analysis (Senseval-3): Identification of

�67

Logic Forms in English . The goal of the task is the evaluation of 36

systems that transform English sentences into LF. The
motivations that stand behind this further research on LF are their
advantages over similar representations (Montague-style recursive
semantics and Description Grammars). According to the
coordinator of the task (see Rus 2004) LFs:

- have a simple syntax/semantics interface
- are user-friendly even for no trained users
- have positional syntactic arguments that ease other NLP tasks

such as textual interpretation
- are easy customisable
- predicates might be disambiguated and turned into concept

predicates (see Rus 2009)

For the Senseval task a gold standard of 300 LF was provided.
The gold LF were automatically produced by applying an
extended version of the LF derivation engine developed by Rus
for XWN to English sentences. The output of Rus’ engine was
checked manually (by different annotators) before the release.
The outputs of participant systems were compared to the gold
standard LF, evaluating precision and recall.
The target LF of the task are very similar to XWN LF. They share
most of the features: they are both flat, scope-free first order logic
representations formed by the conjunction of individual
predicates related via shared arguments.

 See the task web page: http://www.cs.memphis.edu/~vrus/logic/indexLF.html and Senseval-3 36

web site: http://web.eecs.umich.edu/~mihalcea/senseval/senseval3/

�68

http://www.cs.memphis.edu/~vrus/logic/indexLF.html
http://web.eecs.umich.edu/~mihalcea/senseval/senseval3/

Predicates are generated for content words, prepositions and
conjunctions. The name of the predicate is formed by the
lemmatised word and the pos category. The types of argument are
two: e for events, x for entities and their order is fixed.
Simplifications similar to XWN LF are adopted: determiners,
punctuation, plurals, auxiliaries and verb tenses are ignored.
There is no quantification or negation. Few features differentiate
the LF of Senseval task from XWN LF. The most important one is
the distinction between complements and adjuncts which is not
considered at all in WXN LF . See the LF for the sentence: The 37

earth provides the food humans eat every day.

Senseval LF: earth:n_(x1) provide:v_(e1, x1, x2)
food:n_(x2) human:n_(x3) eat:v_(e2, x3, x2; x4) day:n_(x4)

In the example above, we can see that the verb eat has two
arguments separated by comma, whereas the semicolon separates
the adjuncts (in this case x4). More examples in appendix 3 and 4
(trial data).
Only 4 out of 27 participating teams completed the assignment
and produced a valid output:

- The University of Amsterdam (Ahn et al. 2004, AMS): the core
of the dutch system is a syntactic analysis module with the
following framework: pos tagging, syntactic parsing (Collins),
conversion of the parser output into a dependency structure,
improvement of the dependency structure with non local

 From [83] it seems that the distinction between complements and adjuncts was not required in 37

the task.

�69

dependencies and functional tags obtained from the Wall Street
Journal corpus. LF are derived directly from the dependency
structure. The main sources of errors identified for the dutch
LF are: errors in the dependency parser, not identified multi-
word compounds and inconsistencies in the provided LFs.

- The University of Sidney (Anthony and Patrick 2004, SYD):
Anthony and Patrick used a functional dependency parser
which includes properties associated to each token (e.g. main
element, syntactic object position etc.). Examples of
dependency functions employed are: agent, object
complement, subject etc. The output of the parser is
transformed into a linear data structure sorted by word position
and passed to the filter module that removes elements like
determiners and auxiliaries. The logical form processor, fed
with the remaining tokens, builds an inverted index with
grammatical dependencies and constructs the LF
representation. Most of the errors in the final LF comes from a
poor handling of nominal group complexes and coordinating
conjunctions (and, or etc.)

- The MITRE (Bayer et al. 2004, MITRE): the MITRE’s
contribution is a system whose first component is a link
grammar parser which produces labeled undirected links
among pairs of words. A link interpretation language made of
rules is used to convert the link parser output into a
dependency graph. LFs are not derived directly from the
dependency structure and before the LF transformation step,
extra information is added from external resources and
argument networks are constructed for each dependency object.

�70

- The Language Computer Corporation (Altaf et al. 2004, LCC):
LCC’s approach is similar to the one used for the generation of
XWN LFs. LCC LFs are derived directly from the output of
the syntactic parser with a bottom-up procedure that generates
independent arguments first, and then propagates up the parse
tree marking heads of phrases and identifying dependent
arguments.

The four participating teams agree about the lack of complete
specification for different special cases in the target LF (e.g. little
guidance about collocation as pointed out by Bayer et al. 2004);
the details of the task seem to be vague in different cases and this
might have affected the results. Beside that, the Dutch team found
inconsistencies in the provided target LF (trial corpus); in
particular they found discrepancies in the LF representations of
verbs with particles (sometimes represented as combinations,
sometimes not), missing arguments and verbs not reduced to base
form.
Results of the task were evaluated considering precision and
recall at argument and predicate level; they estimated also the
number of sentences correctly transformed over the total number
of sentences attempted.
The measures of the task evaluation are described in Rus 2004: «
precision at argument level: number of correct identified
arguments divided by the number of all identified arguments;
recall at argument level: number of correctly identified arguments
divided by the number of arguments that were supposed to be
identified. Precision at predicate level: number of correctly and
fully identified predicates (with all arguments correctly identified)

�71

divided by the number of all attempted predicates; recall at
predicate level: number of correctly and fully identified predicates
(with all arguments correctly identified) divided by the number of
all predicates that were supposed to be identified»;
and in Anthony and Patrick 2004: «Sentence-argument is defined
as the number of sentences that have all arguments correctly
identified divided by the number of sentences attempted. Sentence-
predicate is similar except conditioned on predicates. Sentence-
argument-predicate is defined to be the number of sentences that
have all arguments correctly identified divided by the number of
sentences which have all predicates correctly identified. Sentence-
argument-predicate-sentences refers to the number of sentences
that have all arguments and all predicates correctly identified
divided by the number of sentences attempted».
In Table 3.5 (next page) a comparative view of the results form
Rus 2004, the section regarding Sentence-argument-predicate-
sentences (Sent-APSent) results, i.e. LF entirely correctly derived,
is highlighted. Tab8 is organised in alphabetic order considering
the names of the teams (and not considering the results).
At a glance it is clear that results are not satisfactory, especially if
we envisage using this LFs for a NLP application whose success
relies on the accuracy achieved by its components.
This is even more clear if we consider Sent-AP Sent value.
Discrepancies in the trial corpus and the results of the task are a
clear sign of how inconsistencies affect LF transformation
(especially when fully automatic). In addition to this, the fact that
only 4 teams over the 24 registered produced a valid output
proves the difficulty of the task and of the LF automatic
transformation in general.

�72

3.3.4 LF and Question Answering

LF have been applied in several challenging tasks such as
question answering and learning by reading (see for e.g Barker et
al. 2007).
In particular, the XWN logic representation was developed in
order to «enable reasoning mechanisms for many practical
applications» (Moldovan and Rus 2001/2).
I will briefly show here below an example of how to use LFs in
Q/A.

TEAM
Argument Level Predicate Level

Precision Recall Precision Recall

AMS 0,729 0,691 0,819 0,783

LCC 0,776 0,777 0,876 0,908

MITRE 0,734 0,659 0,839 0,781

SYD 0,763 0,655 0,839 0,849

Sent-A Sent-P Sent-AP Sent-AP Sent

AMS 0,256 0,320 0,510 0,163

LCC 0,236 0,516 0,419 0,216

MITRE 0,266 0,213 0,406 0,086

SYD 0,160 0,353 0,386 0,136

�73

Tab 3.5 Senseval-3 Results

Q/A is a very challenging and widely studied task for which
several approaches have been proposed. The employment of LFs
has been proved to be a valid support for its accomplishment in
numerous papers (see Harabagiu et al. 2000, Moldovan et al.
2002, Moldovan et al. 2003, Moldovan and Rus 2001/ 1 and 2,
Rus 2002/2) 
It is well known that, in order to solve common sense reasoning
problems, it is necessary to have world knowledge. A human
being can add to a sentence many information that are not
explicitly stated and that come from his knowledge of the world.
This part of information is extremely important and affects the
results of automatic inference systems. Grasser 1981 affirms that
the ratio of explicit to implicit facts is 1 to 8. Let’s see some
examples.
Given the sentence:

A soldier was killed in gun battle

a reader may infer that:

There was a war; The soldier was shot; The soldier died

These additional information might seem obvious, but, in order to
get them, an automatic system needs a large resource to consult.
WN Glosses encode a lot of knowledge that can be exploited for
this purpose. Considering the above example, the gloss of
battle:N#1 (first sense of noun battle) is a hostile meeting of
opposing military forces in the course of a war, the gloss of
kill:V#1 (first sense of the verb kill) is cause to die, and the gloss

�74

of gun:V#1 (first sense of the verb gun) is shoot with a gun. Given
these extra information is now possible for an automatic system to
infer that a battle can be part of a war where soldiers are shot with
guns and die.
Another example is from TREC 2000 . Given the question:38

How did Socrates die?

The answer appears in the text “… Socrates’s death came when he
chose to drink poisoned wine…”. To prove that this sentence
contains the answer to the previous question, a system needs to
know that poison can be used to kill. This knowledge is found in
WN glosses and in particular in the gloss of poison:V#2 (second
sense of the verb poison) kill with poison plus the already seen
gloss of kill:V#1 (first sense of the verb kill) cause to die.
All this precious extra knowledge needs to be represented in a
suitable way in order to be understood by a system. LF has been
proved to be fit for the purpose thanks to its unambiguous and
simple syntax.
The automatic Q/A systems proposed in the aforementioned
papers (in particular: Moldovan et al. 2002, Moldovan and Rus
2001/1 and 2, Rus 2002/2) follow a similar pipeline:

- first of all, for each question, a set of candidates paragraph that
may contain the answer is retrieved

 TREC is the Text REtrieval Conference whose purpose is «to support research within the 38

information retrieval community by providing the infrastructure necessary for large-scale
evaluation of text retrieval methodologies». Workshops and exercises are provided every year;
resulting data and evaluation software «are available to the retrieval research community at
large, so organizations can evaluate their own retrieval systems at any time». See TREC
Website: http://trec.nist.gov

�75

http://trec.nist.gov

- evaluating pairs of question(Q)-candidate answer(A) in LF, if
all the keywords of Q are found in A the system checks the
preservation of syntactic relations considering their LFs

- if some keywords are missing the system tries to establish
lexical chains (LC) between pairs of concepts in Q and A
favouring short path and hypernym relations. A chain is
established when two words have a WN concept in common.

- Once LC are established, the resulting LFs are used to perform
agreement unification. In a successful unification the arguments
of a question predicate are bound to the arguments of an
answer predicate.

During the LC phase LFs are expanded with axioms obtained
from WN and then predicates and arguments from Q are matched
with predicates and arguments from A in a recursive way. A Q is
successfully proven when all its predicates and arguments are
matched with the ones of A.
I use another example from TREC to show how the system
works. Considering the question:

Who shot Billy the Kid?

The system retrieves two paragraphs that contain all the keywords
from Q and A:

P1- The scene called for Philips’ character to be saved from a
lynching when Billy the Kid (Emilio Estevez) shot the rope in half
just as he was about to be hanged.

�76

P2- In 1881, outlaw William H. Bonney Jr., alias Billy the Kid,
was shot and killed by Sheriff Pat Garrett in Fort Sumner, N.M.

Question and candidate answers are translated into LF as follow
(only the relevant parts are shown):

Q- PERSON(x1) & shoot(e1,x1,x2) & Billy_the_Kid(x2)
P1- Billy_the_Kid(x1) & shoot(e1,x1,x2) & rope(x2)
P2- Billy_the_Kid(x2) & shoot(e1,x1,x2) &
Sheriff_Pat_Garrett(x1)

The system tries to prove the question starting from the
paragraphs: it fails for P1 because Billy_the_Kid is the agent and
not the object as requested in the question and then it succeeds
with P2 by unifying Sheriff_Pat_Garrett with PERSON. As
pointed out by Moldovan et al. 2002 the LF fixed slot allocation
of verb predicate plays here a crucial role.

If not all the keywords are found in Q and A, the system uses LC.
Considering the following question:

Q- When did Lucelly Garcia, former ambassador of Columbia to
Honduras, die?

whose answer is found in the paragraph:

P- Several gunmen on a highway leading to the Colombian city of
Ibague murdered Colombian Ambassador to Honduras Lucelly
Garcia today

�77

here only some of the Q-keywords are found in P
(Lucelly_Garcia, ambassador, TIME-STAMP), and lexical chains
are built from Colombian to Columbia and from murder to die
before the system succeeds in identifying the answer (more details
in Moldovan and Rus 2001/2).

3.4 Conclusions

Considering the proved usefulness of LF and in particular the
need of LF resources for computational semantics tasks, I decided
to give my contribution by creating an accurate LF resource.
Delmonte and Rotondi 2012 points out the need of a precise LF
representation and affirms that «Logical Forms are useful as long
as they are consistent, otherwise they would be useless if not
harmful».
As highlighted by the different works on LF, it seems that this
kind of representation cannot be produced fully automatically and
need a lot of additional work. The automatic production of LF is
still error prone and the already existing resources of LF suffer
from lack of an accurate manual checking phase; WN30-lfs and
ILF don’t make use of manual checking and only the 34% of
XWN LF has been manually checked.
Thus, I thought it is worthwhile to correct existing LF resources
rather than producing a new one from scratch.
I considered in particular those resources that translate WN
glosses into LF because of the importance of WN for the NLP
community and the huge amount of world knowledge and
semantic relations that it encodes.

�78

After comparing the three existing resources of LF, I chose to
improve XWN. The reasons of my choice are manifold.
As seen above, XWN is the most extended freely downloadable
resource of LFs. Its bigger size, compared to the other two
resources, is due to the transformation of all the glosses of WN
without loosing part of them.
XWN is divided into 4 files, one for each pos, and this makes its
application easier; furthermore the XML format allows a simple
access to the data encoded.
XWN provides WSD and its LF has a simple syntax close to NL.
As pointed out in different papers, XWN is not devoid of errors.
In the next chapter I will examine XWN showing which kinds of
errors affect the resource (in particular the LFs).

�79

Chapter 4

Errors Detection

4.1 Introduction

LF is an exceptionally important linguistic representation for
highly demanding semantically related tasks like QA. We have
seen in the previous chapter how its automatic production at
runtime is error-prone and therefore I decided to improve one of
the existing resources by correcting its errors.
I chose to work on XWN for the above mentioned reasons and I
will start the work by classifying the mistakes I found in XWN
LFs in order to facilitate the revision of the resource.
This chapter concerns the errors I found in XWN LFs; the most
interesting common mistakes will be shown, grouped into classes,
from section 4.2.1 to section 4.2.7.
As I will illustrate, errors affect all the qualities of LFs, even
those that have been manually checked. Moreover, we will see
that a good syntactic parsing is necessary but doesn't guarantee
the correctness of the LF.

�80

4.2 Errors Classification

Any resource that aims at providing a meaning representation
for NLP tasks must be as more accurate as possible as its errors
would damage possible applications.
LF transformation still requires a big effort in manual checking
which is often missing in exiting LF resources. The number of
errors in XWN, ILF and WN30-lfs is too high to make these
resources usable as they are.
Some papers mention different problems that affect the LFs of
these resources and therefore I will start my analysis from the
already-known mistakes of XWN before pursuing with the
detection of new cases. The investigation will be done by
manually checking the resource with the help of regular
expressions and some in-house Python systems.
I will group the most interesting common mistakes into classes
and I will present them in the next sections.

I won’t accurately investigate the reasons why these errors affect
LFs or what went wrong during the LF transformation because
the purpose here is to correct LFs and not to improve the accuracy
of the WXN LF transformation system. Therefore, I won’t
systematically compare LFs errors with the parse trees from
which they have been derived. I will rather show the most
common errors I found in the LFs in order to correct them.
The purpose of the work is twofold:

- providing the NLP community with a consistent and usable LF
resource

�81

- classifying the most important mistakes of LFs with the
intention of helping future implementations and new works

4.2.1 Free Variables

Indexed variables are fundamental elements of the LF and are
used to indicate relations intervening between event and
arguments or modifiers. As we have seen in section 3.2.3, number
and order of arguments of an event are fixed (en, xn/subject, xn/39

direct object) and are generated for every verb even when it
doesn’t have these syntactic roles (e.g. one place-predicate). In
these cases arguments are dummy and their variables free:

laugh:NN(x1) -> sound:NN(x1) of:IN(x1, e1) laugh:VB(e1, x1, x26)

hibernate:VB(e1, x1, x2) -> sleep:VB(e1, x1, x9) during:IN(e1,
x3) winter:NN(x3)

basket:NN(x1) -> score:NN(x1) in:IN(x1, x2) basketball:NN(x2)
make:VB(e1, x5, x1) by:IN(e1, e2) throw:VB(e2, x5, x3)
ball:NN(x3) through:IN(e2, x4) hoop:NN(x4)  
 

However, when the arguments are actually present they should be
coindexed with the event, with particular attention to intransitive
or passivised structures. Very often this does not happen, as in the
following case:  
 
able:JJ(x1) -> have:VB(e1, x1, x8) necessary:JJ(x8) means:NN(x2)
skill:NN(x3) know-how:NN(x4) or:CC(x8, x2, x3, x4, x5)
authority:NN(x5) to:IN(x8, e2) do:VB(e2, x8, x6)
something:NN(x6)  

 Actually, for ditransitive verbs the number of arguments should change (one more argument 39

for indirect object).

�82

 

In the latter example, the subject of do should be x1 (and not x8)
that is the person that is able, subject of predication of have and
also head of the adjective modifier.  
The problem of free variables was previously identified by Agerri
and Peñas 2010 who point out that in XWN LF «there are
variables that do not belong to anything, and others that are left
free (not related in any way with the rest of the formula)». 
Unbound variables don’t allow relations indicated by predicate-
arguments associations, which are thus disconnected. Variables
associated to predicates need to be equated with those of the
arguments of the predicate in order to acquire semantic
consistency.
This is the main source of errors of XWN and from my analysis
more than half of all LFs suffer from that problem.
The results of the analysis are shown, divided by pos, in Table
4.1:

POS FIle
LFs with

Disconnected
Variables

Total Number of
examined LFs %

Noun 49178 87819 56.00

Verb 9021 13373 67.46

Adjective 8895 20337 43.74

Adverb 479 3922 12.23

TOTAL 67573 125451 54.05

�83

Tab 4.1 LFs with Disconnected Variables

The higher percentage of disconnected variables in the verb file is
mainly due to the nature of its definitions which very often consist
of verbs without arguments:

scour:VB(e1, x1, x2) -> examine:VB(e1, x1, x3) minutely:RB(e1)

darken:VB(e1, x1, x2) -> tarnish:VB(e2, x1, x3) or:CC(e1, e2,

e3) stain:VB(e3, x1, x4)  

while adverb definitions have very few verbs and this explains the
low percentage of disconnected variables in the adverb file; here
below an example of on an entry from the adverb file:  
 
convivially:RB(e1) -> in:IN(e1,x1) convivial:JJ(x1)manner:NN(x1) 

4.2.2 Compound Nouns 

As previously described, the detection of compound words
during the LF transformation is a tricky task which might require
human intervention and whose achievement is often error-prone.
This is proved in particular by difficulties observed in ILF and in
Senseval task in the previous chapter.
In XWN, as well as in ILF, special attention has been given to the
detection of compound words and in particular of Compound
Nouns (CN) which are mapped into LF by means of the nn-40

predicate. E.g (from XWN):

 I will use Nominal Compounds to refer to those nouns that are the result of the union of words 40

from different syntactic categories and Compound Nouns for those nouns that arise from the
union of one or more nouns.

�84

jab:NN(x1) -> sharp:JJ(x1) nn(x1,x2,x3) hand:NN(x2) gesture:NN(x3)

The nn-predicate transformation doesn’t occur methodically in
XWN and even when a CN has already been detected in the
resource, it can appear in LF also as disconnected words:

ball:NN(x1) -> pitch:NN(x1) be:VB(e1, x1, x5) not:RB(e1)
in:IN(e1, x4) nn(x4, x2, x3) strike:NN(x2) zone:NN(x3)

strike:NN(x1) -> pitch:NN(x1) that:IN(e4, e1) be:VB(e1, x1, x26)
in:IN(e1, x2) strike:NN(x2) zone:NN(x3) and:CC(e4, e1)
that:IN(e4, x4) batter:NN(x4) do:VB(e2, x4, e3) not:RB(e2)
hit:VB(e3, x5, x4)

Other CNs are transformed in LF without the nn-predicate but as
a single words, see for e.g.:

baseball_league:NN(x1) -> league:NN(x1) of:IN(x1, x2)
baseball_team:NN(x2)

But these options don’t seem to be subject to any particular rule,
and some CNs are detected but then transformed differently in
different contexts. This is the case of world war which appears
159 times in the noun file and mapped in several ways:

snafu:NN(x1) -> acronym:NN(x1) often:RB(e0) use:VB(e1,x2,x1) by:IN(e1,

x2) soldier:NN(x2) in:IN(e1,x3) world:NN(x3) war:NN(x4) ii:JJ(x3)
situation:NN(x5) normal:JJ(x6) all:JJ(x6) fucked:NN(x6) up:IN(e1,x6)

battle_of_the_ardennes_bulge:NN(x1) -> battle:NN(x1) during:IN(x1, x2)
world:NN(x2) war:JJ(x2) ii:NN(x3)

coral_sea:NN(x1) -> japanese:JJ(x1) defeat:NN(x1) in:IN(x1,x2)

world_war_ii:NN(x2)

�85

wac:NN(x1) -> member:NN(x1) of:IN(x1,x2) women's:NN(x2) army:NN(x3)
corp:NN(x4) be:VB(e1,x2,e2) organize:VB(e2,x9,x2) during:IN(e2,x5)

world:NN(x5) war:NN(x6) ii:NN(x7) but:CC(e4,e0,e3) be:VB(e3,x1,x8)
no:RB(e3) longer:RB(e3) separate:JJ(x8) branch:NN(x8)

Other words are sometimes considered as compounds:

hampton_roads:NN(x1) -> naval_battle:NN(x1) of:IN(x1,x2)
american_civil_war:NN(x2)

while in other cases they are not:

philippine_sea:NN(x1) -> naval:JJ(x1) battle:NN(x1) in:IN(e0, x2)

world:NN(x2) war:JJ(x2) ii:NN(x3)

One could affirm that both the above transformations of naval
battle can be considered correct, which is true, but a consistent
resource should provide a unique way to transform those words
which are considered to be compounds.
Moreover, there are cases of CNs that have never been detected in
the whole resource, see for e.g. waste-product:

reclamation:NN(x1) -> recovery:NN(x1) of:IN(x1, x2) useful:JJ(x2)

substance:NN(x2) from:IN(x2, x3) waste:NN(x3) product:NN(x4)

Sometimes, CNs are not identified even if they previously appear
as subject of a definition:

healthcare:NN(x1) -> preservation:NN(x1) of:IN(x1, x2) mental:JJ(x2)

physical:JJ(x2) health:NN(x2) by:IN(x2, e4) preventing:VB(e1, x2, x26)
or:CC(e4, e1, e2) treating:VB(e2, x2, x26) illness:NN(x3)

through:IN(x3, x4) services:NN(x4) offer:VB(e3, x5, x4) by:IN(e3, x5)
health:NN(x5) profession:NN(x6)

�86

healthcare_delivery:NN(x1) -> provision:NN(x1) of:IN(x1,x2)
health:NN(x2) care:NN(x3)

Not-identified CNs are wrongly transformed into two or more
different predicates damaging in this way the consistency of LFs.
In fact, in case a CN is not detected, two or more predicates are
generated in the LF and their variables result improperly mapped,
losing in this way the whole sense of the sentence.

4.2.3 Conjunctions and Prepositions

As described at page 53, also conjunctions and prepositions are
transformed into predicates. Conjunctions are turned into
predicates with a variable number of arguments, of which the first
one represents the result of the aggregation, while prepositions
have two fixed arguments. From my analysis it turns out that
several conjunctions and prepositions are missing in the LFs. The
problem doesn’t seem to depend on the quality of the LF as it
occurs even in gold - manually checked - LFs.
See for e.g. the LF of seedcake:

<gloss pos="NOUN" synsetID="07164600">
 <synonymSet>seedcake, seed_cake</synonymSet>
 <text>a sweet cake flavored with sesame or caraway seeds and lemon
 </text>
 …
 <lft quality="GOLD">
 seedcake:NN(x1) -> sweet:JJ(x1) cake:NN(x1) flavor:VB(e1, x7, x1)
with:IN(e1, x6) sesame:NN(x2) caraway:JJ(x5) seed:NN(x3) and:CC(x30,
x31, x32) lemon:NN(x4)
 </lft>
</gloss>

�87

Without dwelling on other errors of the previous LF (free
variables and CNs), we can see that the first conjunction or is
missing and the coordinating conjunction and is assigned
variables which do not have any correspondence in the
representation.  
In order to estimate the amount of missing conjunctions, for each
entry in XWN I automatically compared each definition with its 41

LF, if the definition includes a conjunction that is missing in the
LF I counted this case as a missing-conjunction-error. Results are
shown in Table 4.2 (next page) divided by and/or missing cases;
in the last column of Table 4.2 the number of LFs with
conjunctions errors (I counted them by considering the synsetID
of the missing cases, avoiding in this way double counts for those
LFs that have both a missing or and a missing and).
Here again, results depend on the nature of the glosses.
Definitions of adjectives and adverbs include more conjunctions
than those of other pos category. At the same time they are usually
less complex than for e.g. noun glosses (shorter, less subordinate
clauses etc.). This means that the LF transformation failed for
conjunctions independently from the complexity of the structure
they occur in.

Most frequent prepositions appearing in the database are: on, in,
to, by, for, with, at, of, from, as, out. Some of them are not
transformed into LF especially if they appear at the end of the

 In Appendix5 the system I built for the comparison (and some examples). The system takes as 41

input each pos XWN files (one by one) and, climbing the XML tree, for each entry it gathers the
definition and the corresponding LF. If there is more than one definition in the gloss, the system
consider only the first one. Errors have been counted for missing AND and missing OR as
separate cases, as well as as number of LFs.

�88

gloss. The problem is the incoherence that affects LF
transformation of prepositions in XWN: sometimes they are
transformed, sometimes they are not, showing in this way no
logic. This happens also for gold LFs; see the following examples
where to is first preserved in the LF of powder and then erased
from the LF of talc:

<gloss pos="VERB" synsetID="00040699">
 <synonymSet>powder</synonymSet>
. . .
 <text> apply powder to; "She powdered her nose"; "The King
wears a powdered wig"</text>
<lft quality=“GOLD"> powder:VB(e1, x1, x2) -> apply:VB(e1, x1,
x3) powder:NN(x3) to:IN(e1, x2) </lft>
</gloss>

<gloss pos="VERB" synsetID="00040890">
 <synonymSet>talc</synonymSet>
. . .
 <text> apply talcum powder to (one's body) </text>
<lft quality=“GOLD"> talc:VB(e1, x1, x2) -> apply:VB(e1, x1, x3)
talcum_powder:NN(x3) </lft>
</gloss>

�89

POS file LF examined missing AND missing OR
LFs with

conjunctions
errors (num and

%):

noun 79.689 3.156 2.981 5.964 - 7,5%

verb 13.507 320 1.017 1.322 - 9,8%

adjective 18.561 752 2.950 3.658 - 15,9%

adverb 3.664 148 331 476 - 13%

TOTAL 115.421 4376 7279 11.420 - 9,9%

Tab 4.2 Missing Conjunctions

When prepositions are part of phrasal verbs the treatment is again
not homogeneous and sometimes the verb particle may be simply
erased. In the following examples it appears attached to the verb
in work_out, as a separate entry in set up and erased in line (up):

<gloss pos="VERB" synsetID="00243111">
 <synonymSet>elaborate, work_out</synonymSet>
 <text> work out in detail; "elaborate a plan" </text>
 . . .
 <lft quality="GOLD">
 elaborate:VB(e1, x1, x2) -> work_out:VB(e1, x1, x4) in:IN(e1,
x3) detail:NN(x3) </lft>
</gloss>

<gloss pos="NOUN" synsetID="03977417">
 <synonymSet>sampling_station, sampler</synonymSet>
 <text> an observation station that is set up to make sample
observations of something </text>
. . .
 <lft quality="GOLD">
 sampling_station:NN(x1) -> observation_station:NN(x1)
be:VB(e1, x1, e2) set:VB(e2, x6, x1) up:IN(e2, x5) to:IN(e2, e3)
make:VB(e3, x1, x2) sample:NN(x2) observation:NN(x3) of:IN(x2,
x4) something:NN(x4) </lft>
</gloss>

<gloss pos="NOUN" synsetID="07918617">
 <synonymSet>secondary</synonymSet>
 <text>
 the defensive football players who line up behind the linemen
 </text>
. . .
 <lft quality="NORMAL">
 secondary:JJ(x4) -> defensive:JJ(x1) football:NN(x1)
player:NN(x1) line:VB(e1, x1, x26) behind:IN(e1, x2)
linemen:NN(x2) </lft>
</gloss>

�90

4.2.4 Relative Adverbs

As described in Rus 2002/1 when relative adverbs such as
where, when, how, why introduce a relative clause they should be
represented in LF as «predicates with two arguments referring to
the argument of the relative clause or phrase, respectively
argument of the main clause or phrase»; see the following LF:

arena:NN(x1) -> playing_field:NN(x1) where:IN(x1, e1) nn(x4, x2,
x3) sport:NN(x2) event:NN(x3) take_place:VB(e1, x4, x5)

In this LF we can see also two cases of compound words, one
treated as single word (playing_field) and another one
transformed with a nn predicate (sport event); X5 is a free
variable.
Relative adverbs are not always correctly transformed into LF and
sometimes they are erased.
In order to automatically check for this type of mistake, I
modified the previous system and I searched for missing relative 42

adverbs in the LFs. The results of the analysis are shown in Table
4.3 (next page).
As we already know, definitions of nouns are longer and much
more complex than those of other POS. Relative clauses and
relative adverbs are more frequent in the noun file and the most
part of errors has been detected here.

 In Appendix 6 the system employed for searching missing relative adverbs.42

�91

4.2.5 Pos Tagging Errors

Another frequent type of error resulting from the analysis
concerns the wrong pos label assigned to predicates of LFs.
Sometimes tagging errors are just the result of a wrong syntactic
parsing, see the following example of Hebrew:

<gloss pos="NOUN" synsetID="10304135">
 <synonymSet>Habakkuk</synonymSet>
 <text> a Hebrew minor prophet</text>
 <wsd>
 <wf pos="DT" >a</wf>
 <wf pos="NNP" lemma="hebrew" >hebrew</wf>
 <wf pos="JJ" lemma="minor" quality="normal" wnsn="1"
>minor</wf>
 <wf pos="NN" lemma="prophet" quality="normal" wnsn="2"
>prophet</wf>
 </wsd>
<parse quality="SILVER">
(TOP (S (NP (NN Habakkuk))
 (VP (VBZ is)
 (NP (DT a) (NNP Hebrew) (JJ minor) (NN prophet)))
 (. .)))
</parse>

�92

Tab 4.3 Cases of Missing Relative Adverbs

POS file LFs examined LFs with missing rel advs

noun 79.689 1.252

verb 13.507 12

adjective 18.561 25

adverb 3.664 0

TOTAL 115.421 1.289

 <lft quality="SILVER">
 habakkuk:NN(x1) -> hebrew:NN(x1) minor:JJ(x1) prophet:NN(x2)
 </lft>
</gloss>

but errors of this type doesn’t always result from mistakes in the
syntactic parsing; as we can see in the following example, the
adjective English has been correctly tagged in the parse but it
results with a wrong pos in the LF:

<gloss pos="NOUN" synsetID="02319609">
 <synonymSet>Durham, shorthorn</synonymSet>
 <text> English breed of short-horned cattle </text>
 <wsd>
 <wf pos="JJ" lemma="english" quality="normal" wnsn="1" >english</
wf>
 <wf pos="NN" lemma="breed" quality="silver" wnsn="2" >breed</wf>
 <wf pos="IN" >of</wf>
 <wf pos="JJ" lemma="short" quality="normal" wnsn="6" >short</wf>
 <punc>-</punc>
 <wf pos="JJ" lemma="horned" quality="silver" wnsn="1" >horned</
wf>
 <wf pos="NNS" lemma="cattle" quality="silver" wnsn="1" >cattle</
wf>
 </wsd>
<parse quality="NORMAL">
(TOP (S (NP (NNP Durham))
 (VP (VBZ is)
 (NP (NP (JJ English) (NN breed))
 (PP (IN of)
 (NP (JJ short-horned) (NNS cattle)))))
 (. .)))
</parse>
 <lft quality="NORMAL">
 durham:NN(x1) -> english:NN(x1) breed:NN(x2) of:IN(x1, x3) short-
horned:JJ(x3) cattle:NN(x3)
 </lft>
</gloss>

Moreover, tagging errors can occur also in gold LFs, as in the
following example of English tagged as NN:

<lft quality="GOLD">

�93

wilkes:NN(x1) -> english:NN(x1) reformer:JJ(x1) publish:VB(e1,
x1, x2) attack:NN(x2) on:IN(x2, x3) george_iii:NN(x3) and:CC(e3,
e1, e2) support:VB(e2, x1, x4) right:NN(x4) of:IN(x4, x5)
american:JJ(x5) colonist:NN(x5)
<\lft>

Most of the tagging errors occur for those words that can belong
to different syntactic categories according to the context. This
happens in XWN in particular for colours, numbers, nationality
adjectives (especially when compounds), participles and
gerundives.
Let’s see some examples:

colour - black and grey:

jackdaw:NN(x1) -> common:JJ(x1) black-and-gray:NN(x1)
eurasian:JJ(x1) bird:NN(x1) note:VB(e1, x3, x1) for:IN(e1, x2)
thievery:NN(x2)

number - ten:

large_integer:NN(x1) -> integer:NN(x1) equal:JJ(x1) to:IN(x1, x3)

greater:JJ(x2) than:IN(x1, x2) ten:JJ(x2)

nationality adjective - North American:

solitaire:NN(x1) -> dull:JJ(x5) gray:JJ(x1) north:NN(x1)
american:NN(x2) thrush:NN(x3) note:VB(e1, x6, x1) for:IN(e1, x4)
beautiful:JJ(x4) song:NN(x4)

Some participles, present and past, can be used as adjectives and
should be recognised and correctly transformed into LF. This
often does not happen as in the definition of chance-medley
(unpremeditated killing of a human being in self defense):

�94

chance-medley:NN(x1) -> unpremeditated:VB(e1, x5, x1)
killing:NN(x1) of:IN(x1, x2) human:NN(x2) in:IN(x2, x3)
self:NN(x3) defense:NN(x4)

Furthermore, I found the wrong interpretation even for some
words that end with -ed, like regular past participles, but that can’t
be participles, whatever the context is:

esthetician:NN(x1) -> worker:NN(x1) skilled:VB(e1, x4, x1)
in:IN(e1, e2) give:VB(e2, x1, x2) beauty:NN(x2) treatment:NN(x3)

Gerundives and present participles, when appearing at the
beginning of a definition, are mapped into the verb base form
preceded by act of, as in the definition of going (advancing
toward a goal):

going:NN(x1) -> act:NN(x1) of:IN(x1, e1) advance:VB(e1, x2, x26)
toward:IN(e1, x2) goal:NN(x2)

this should be avoided when the -ing form is used as nominalised
verb as in the definition of notepaper (writing paper intended for
writing short notes or letters):

notepaper:NN(x1) -> act:NN(x1) of:IN(x1, e1) write:VB(e1, x2,
x2) paper:NN(x2) intend:VB(e2, x6, x2) for:IN(e2, e3)
write:VB(e3, x2, x5) short:JJ(x5) note:NN(x3) or:CC(x5, x3, x4)
letters:NN(x4)

The total number of tagging errors is hard to measure.
Comparing pos labels of LF predicates with those of the parse
trees is not an option as we have seen that they may be both

�95

wrong. Furthermore, there seems to be no coherence in how the
tagging errors have been generated, some words may be both
correctly and wrongly labeled.
In order to estimate the number of errors, I manually judged
samples of LFs. For each Pos file I took 150 LFs: 50 normal, 50
silver, 50 gold for the noun file, 75 gold and 75 silver for the
adjective file (no normal LFs in this file), and 150 gold for the
adverb and the verb file (no normal or silver LFs in this files). I
did not choose the first LFs of the files for the evaluation but I
randomly selected them. This was done in order to avoid groups
of particularly well or bad formed LFs. In fact, the entities in
XWN files are not alphabetically ordered, and one can find groups
of simple and short definitions (for e.g. definitions of cities)
whose LF transformations are simpler and less error-prone than
other of more complex definitions. Moreover, some groups of
gold LFs can be more accurate than others due to a more careful
human annotator (more than one worked on the project). The
system I built for the random selection is in Appendix 7 and
results of the manual evaluation are shown in Table 4.4. For the
evaluation I marked as wrong those LFs with at least one wrong
pos label.

POS File
normal LF silver LF gold LF

correct wrong correct wrong correct wrong

noun 31 / 50 19 / 50 45 / 50 5 / 50 47 / 50 3 / 50

verb X X 148 / 150 2 / 150

adjective X 62 / 75 13 / 75 71 / 75 4 / 75

adverb X X 147 / 150 3 / 150

�96

Tab 4.4 Pos Tagging Errors

Even though I previously showed that wrong pos labels occur also
in manually-checked LFs, results show that the number of errors
is directly connected with the quality of LFs. Even thought the
evaluated data are limited, they are enough to show us the
inaccuracy of not-manually checked LFs and in particular of
normal LFs for which I estimate a tagging error rate of almost
40%.

4.2.5.1 Tagging Errors in LHS

Pos tagging errors may occur even in the LHS of the LF which
is quite curious if we consider that XWN is divided into pos files
with rigorous LHS structures.
As we have seen in the previous chapter, LFs have specific LHS
structures according to the pos category of the lemma (and
therefore according to the pos file they belong to):

noun file = noun :NN(x1) -> definition in LF

chocolate_cake:NN(x1) -> cake:NN(x1) contain:VB(e1, x1, x2)
chocolate:NN(x2)

verb file = verb :VB(e1,x1,x2) -> definition in LF

bake:VB(e1, x1, x2) -> prepare:VB(e1, x1, x2) with:IN(e1, x3)
dry:JJ(x3) heat:NN(x3) in:IN(e1, x4) oven:NN(x4)

adj file = adjective :JJ(x1) -> definition in LF

home-baked:JJ(x1) -> baked:JJ(x1) at:IN(x1, x2) home:NN(x2)

�97

adv file = adverb :RB(e1) -> definiton in LF

dolce:RB(e1) -> gently:RB(e1) sweetly:RB(e1)

Therefore, for the XWN LF transformation system it should be
enough to consider the pos of the file that it is processing to
correctly generate the LHS of the LFs.
These parameters seem to be not enough and wrong pos labels
have been detected in several LHS. See the following examples:

burn - noun as verb

<gloss pos="NOUN" synsetID="00386296">
 <synonymSet>burn</synonymSet>
 <text> damage inflicted by burning </text>
 <wsd>
 <wf pos="NN" lemma="damage" quality="normal" wnsn="3" >damage</
wf>
 <wf pos="VBN" lemma="inflict" quality="silver" wnsn="1"
. . .
 </wsd>
<parse quality="NORMAL">
(TOP (S (NP (NN burn))
 (VP (VBZ is)
 (NP (NP (NN damage))
 . . .
</parse>
 <lft quality="NORMAL">
 burn:VB(e1, x3) -> damage:NN(x1) inflict:VB(e3, x2, x1) by:IN(e3,
x2) burning:NN(x2)
 </lft>
</gloss>

flip - noun as adjective

<gloss pos="NOUN" synsetID="01176224">
 <synonymSet>flip, toss</synonymSet>
 <text> the act of flipping a coin </text>
 <wsd>
 <wf pos="DT" >the</wf>
 <wf pos="NN" lemma="act" quality="gold" wnsn="2" >act</wf>
 <wf pos="IN" >of</wf>

�98

 <wf pos="VBG" lemma="flip" quality="normal" wnsn="4" >flipping</
wf>
 <wf pos="DT" >a</wf>
 <wf pos="NN" lemma="coin" quality="silver" wnsn="1" >coin</wf>
 </wsd>
<parse quality="NORMAL">
(TOP (S (NP (NN flip))
 (VP (VBZ is)
 (NP (NP (DT the) (NN act))
 (PP (IN of)
 (S (VP (VBG flipping)
 (NP (DT a) (NN coin)))))))
 (. .)))
</parse>
 <lft quality="NORMAL">
 flip:JJ(x3) -> act:NN(x1) of:IN(x1, e2) flip:VB(e2, x1, x2)
coin:NN(x2)
 </lft>
</gloss>

I found the LHS tagging error only in the noun file and I counted
the mistakes for each wrong pos assigned with SystemF in
Appendix8. Results are shown in Table 4.5 (for e.g. the case of
flip here above is counted as JJ in LHS, burn as VB in LHS).

4.2.6 Possessives

As Moldovan and Novischi 2004 explain, possessives pronouns
are transformed into LF with the predicate POS. This predicate
reifies the relation of ownership between two entities. Number
and order of arguments are fixed. See e.g. below:

LFs checked VB in LHS JJ in LHS RB in LHS Total mistakes
in LHS

94.868 572 512 227 1311

�99

Tab 4.5 Mistakes in LHS - Noun File

<gloss pos="NOUN" synsetID="06193120">
 <synonymSet>topic_sentence</synonymSet>

 <text> a sentence that states the topic of its paragraph </text>
. . .

 <lft quality=“GOLD"> topic_sentence:NN(x1) -> sentence:NN(x1)
state:VB(e1, x1, x2) topic:NN(x2) of:IN(x2, x3) its:POS(x3, x1)
paragraph:NN(x3) </lft>

</gloss>

This structure seems to be more a suggestion of the author than a
real implementation because the number of possessive pronouns
transformed with the POS predicate is really small in the resource
and they appear only in gold LFs (added manually by a human
annotator?). In the whole XWN I found 1249 POS predicates over
133K LFs; in fact many possessive pronouns are erased from the
LF as in the following example:

<gloss pos="NOUN" synsetID="04287654">

 <synonymSet>tower</synonymSet>
 <text> a structure taller than its diameter; . . . </text>

. . .
 <lft quality=“GOLD"> tower:NN(x1) -> structure:NN(x1) tall:JJ(x1)
than:IN(x1, x2) diameter:NN(x2) </lft>

. . .
</gloss>

Like possessive pronouns, also the genitive marking should be
represented in LF with the POS predicate; see the following
example:

<gloss pos="VERB" synsetID="00038132">
 <synonymSet>marcel</synonymSet>
 <text> make a marcel in a woman's hair </text>

. . .
 <lft quality=“GOLD"> marcel:VB(e1, x1, x2) -> make:VB(e1, x1, x3)

marcel:NN(x3) in:IN(e1, x5) woman:NN(x4) 's:POS(x5, x4) hair:NN(x5)
 </lft>
</gloss>

�100

However, in the noun file several genitive markings are not
identified and they are interpreted in different ways both as part of
the word they standby and as a single element. See the following
examples:

<gloss pos="NOUN" synsetID="08026917">
 <synonymSet>culmination</synonymSet>
 <text> (astronomy) a heavenly body's highest celestial point
above an observer's horizon </text>
. . .
 <lft quality=“NORMAL"> culmination:NN(x1) -> heavenly:JJ(x1)
body's:NN(x1) highest:JJ(x2) celestial:JJ(x2) point:NN(x2)
above:IN(e0, x2) observer's:NN(x3) horizon:NN(x4)
 </lft>
</gloss>

<gloss pos="NOUN" synsetID="00157666">
 <synonymSet>capture</synonymSet>
 <text> the removal of an opponent's piece from the chess board
 </text>
. . .
 <lft quality=“NORMAL"> capture:NN(x1) -> removal:NN(x1)
of:IN(x1, x2) opponent:NN(x2) 's:VB(e1, x2, x3) piece:NN(x3)
from:IN(x3, x4) chess:NN(x4) board:NN(x5)
 </lft>
</gloss>

In summary, the problem of possessives regards those possessive
pronouns which have not been transformed into LF and those
genitive markings which have not been identified as such.
In order to estimate the problem of possessives in XWN, I built
two systems: SystemG in Appendix9 compare each definition
with its LF looking for missing possessive pronouns, SystemH in

�101

Appendix10 finds those genitive markings which have been
wrongly transformed into LF. Results are shown in Table 4.6 and
in Table 4.7 respectively.
The numbers of LFs inspected by the systems differ because
SystemG checks definition-LF pairs and to do so it considers only
the first definition and first LF of each gloss; conversely, SystemH
analyses all the LFs of XWN.
As results show, possessive and genitive markings mistakes affect
almost exclusively noun glosses and in particular those with
normal quality.

�102

Tab 4.6 Missing Possessive Pronouns

Tab 4.7 Genitive Marking Mistakes

pos XWN file LFs checked LFs with missing
possessive pronouns

noun 79689 1900

verb 13507 39

adjective 18561 82

adverb 3664 1

pos XWN file LFs checked LFs with genitive marking
error

noun 94868 415

verb 14463 0

adjective 20377 0

adverb 3994 0

4.2.7 Negation

The last notable type of error I found during the analysis of
XWN LFs regards negations.
Unlikely what is said in Rus 2002/2 and reported in section 3.2.3,
negations are transformed in LF and, apart from nothing and
none, they are turned into RB - adverbial predicates. See for e.g.:

inactive:JJ(x1) -> not:RB(x1) engaged:JJ(x1) in:IN(x1, x2) full-
time:JJ(x2) work:NN(x2)

Negations are quite frequent in the resource and considering
different negation marks (not, nor, no, none, nothing, never) I
counted more than 3200 occurrences in XWN definitions, most of
which in the adjective file ; verb and adverb files have very few 43

negations in their definitions. See Table 4.8 for the exact number
of negations.

The problem this time doesn't concern with the lack of negation
markers in the LF but rather with how negation are scoped.44

Negation can receive different scope according to its semantic
role:

Noun file Verb file Adjective file Adverb file

Negations 1040 62 2074 82

 I built SystemH in Appendix 10 for counting the number of negation marks in XWN 43

definitions.

 I searched for missing negation markers in the LFs with SystemI in Appendix11 and the few 44

cases I found are irrelevant.

�103

Tab 4.8 Negations in XWN Definitions

- wide scope when it negates the main verb or modifiers of the
verb like adverbials

- narrow scope when it negates specific arguments or adjuncts

As pointed out by Delmonte and Rotondi 2012, most of the cases
of narrow scope in XWN LFs (1095 vs 901 of wide scope) are in
the adjective file and they are all correctly marked, see for e.g.:

absolute:JJ(x1) -> not:RB(x1) limited:JJ(x1) by:IN(x1, x2)
law:NN(x2)

An example of correctly marked wide scope is the following,
where the negation has wide scope on the coordination of two
verbs: 
 
alien:JJ(x1) -> not:RB(e3) contain:VB(e1, x7, x1) in:IN(e1, x5)
or:CC(e3, e1, e2) derive:VB(e2, x1) from:IN(e2, x2)
essential:JJ(x2) nature:NN(x2) of:IN(x2, x3) something:NN(x3)  

 
Most errors occur when the negation is wrongly attached to an
auxiliary verb (be, do, have). In these cases the LF transformation
creates two event variables, one for the auxiliary and one for the
main verb; and then the negation is assigned narrow scope over
the event variable of the auxiliary. See for e.g.:  
 
absentee_rate:NN(x1) -> percentage:NN(x1) of:IN(x1, x2)
worker:NN(x2) do:VB(e1, x2, e2) not:RB(e1) report:VB(e2, x2,
x26) to:IN(e2, e3) work:VB(e3, x2, x26)  
 

In several cases the scope is marked correctly on the main verb as
in: 
 

�104

lowbrow:JJ(x1) -> characteristic:JJ(x2) of:IN(x1, x2)
person:NN(x2) be:VB(e1, x2) not:RB(x5) cultivated:JJ(x5)
or:CC(e4, e1, e2) do:VB(e2, x2, e3) not:RB(e3) have:VB(e3, x2,

x3) intellectual:JJ(x3) taste:NN(x3)  
 
Furthermore, sometimes negations are associated to a free
variable, as shown here below:  
 
acquit:VB(e1, x1, x2) -> pronounce:VB(e1, x1, x3) not:RB(e2)
guilty:JJ(x3) of:IN(x3, x4) criminal:JJ(x4) charge:NN(x4)  

 
Because of the nature of this kind of error, it is not easy to
automatically estimate the number of wrongly scoped negation
markings in the whole resource. In fact, this is not a problem of
missing particles for which a comparison between definitions and
LFs is enough to identify the mistakes.  
 
 
4.3 Errors in other LF Resources  

I previously clarified the reasons why I chose to work on XWN
rather than on other resources that transform the glosses of WN in
LFs (ILF and WN30-lfs). After seeing the several errors that
affect XWN, one might fairly ask if these errors affect also the
other resources or if the LFs of XWN are particularly incorrect.
The answer is straightforward: similar errors occur in other
resources (and in particular in WN30-lfs); proving in this way the
difficulty of automatically transform sentences, more or less
complex, in LFs.

�105

The problem of free-variables is even more serious in WN30-lfs
than in XWN (see again Agerri and Peñas 2010 about the topic of
free-variables), while in ILF the problem is solved mainly thanks
to the simple pretty ilf syntax which, however, is probably too
simple since it excludes even pos of words.  
NCs are most of the time identified in ILF but then sometimes
wrongly mapped in LF, as in the following example where the nn-
predicates don’t exactly clarify the relations among the three
nouns:

<text>The professional relation between a health care
professional and a patient.</text>  
<pretty-ilf>the(x1) professional(x2) relation(x3) det(x3,x1)
amod(x3,x2) prep_between(x3,x8) prep_between(x3,x11) a(x5)
health(x6) care(x7) professional(x8) det(x8,x5) nn(x8,x6)
nn(x8,x7) conj_and(x8,x11) a(x10) patient(x11) det(x11,x10)</
pretty-ilf>

In WN30-lfs the problem of NCs is often solved by erasing part
of the compound:

<gloss>of materials from waste products</gloss>
<lf>reclaim#v#2'(e0,x0) -> of'(e2 , x0 , x1) + material'(e3 ,
x1) + dset(s0 , x1 , e3) + from'(e1 , x0 , x2) +
waste#n#1'(e4 , x2)</lf>

WN30-lfs identifies possessives but, often, it maps them wrongly
in the LFs. As shown here below, the arguments of the possessive
predicate don’t support the relation between tower and diameter:

<gloss>a structure taller than its diameter; can stand alone or
be attached to a larger building</gloss
<lf>tower#n#1'(e0,x0) -> structure'(e1 , x1) + tall'(e2 ,
x2) + poss(s4 , x4) + diameter#n#2'(e4 , x4) + can'(e5 ,

�106

x7 , e12) + stand'(e12 , x9 , x5) + alone#r#2'(e7 , e6) +
or'(e9 , e10 , e8) + be'(e11 , x8 , e15) + attach'(e15 ,
x12 , x11) + to'(e13 , e11 , x13) + large'(e17 , x13) +
building'(e16 , x13)</lf>

the previous example proves also that different definitions are
wrongly transformed as a unique LF in WN30-lfs.
Also conjunctions predicates are wrongly mapped into LF in
WN30-lfs, see for instance the following predicate of or and its
free variables :

<gloss>a slice of meat cut from the fleshy part of an animal or
large fish</gloss>
<lf>steak#n#1'(e0,x0) -> slice'(e0 , x0) + of'(e3 , x1 , e2)
+ meat'(e5 , x3) + cut#a#1'(e6 , x4) + from'(e7 , x4 , x5)
+ fleshy#a#2'(e10 , x5) + part#n#1'(e8 , x5) + of'(e9 ,
x5 , x6) + animal'(e12 , x7) + or'(e14 , e15 , e13) +
large'(e16 , x8) + fish'(e17 , x9)</lf>

Negations appear wrongly scoped in several WN30-lfs, see the
following example where not is mapped to major_league rather
than to the main verb:

<gloss>a league of teams that do not belong to a major league
(especially baseball)</gloss>
<lf>minor_league#n#1'(e0,x0) -> league#n#1'(e6 , x0)+nn'(e3 ,
x0 , x1) + of'(e2 , x1 , x2) + team'(e4 , x2) + dset(s6 ,
x2 , e4) + not#r#1'(e10 , e9) + belong_to#v#1'(e11 , x8 , x6
) + major_league#n#1'(e12 , x9) + especially'(e5 , e0) +

baseball#n#1'(e0 , x0)</lf>  

ILF LFs are generally less error prone but they completely lack
primary information like pos labels while keeping unnecessary
parts like articles and determiners.  

�107

4.4 Conclusions  

In this chapter I described the most common errors of LFs
discovered with an accurate analysis of the XWN resource.  
Tu sum up, XWN LFs errors concern:

- Free/unbound variables of arguments
- no identification of Nominal Compounds
- missing Conjunctions and Prepositions
- missing Relative Adverbs
- wrong pos labels of predicates both in the LHS and in the RHS

of LFs
- Possessives Pronouns and Genitive Marking
- Scope of Negations  

As shown, the number of some errors varies substantially from
one file to the other and their distribution depends mainly on:

- the quality of LF

Even though some errors affect also manually-checked LFs (e.g.
missing conjunctions and prepositions), they occur especially in
normal LFs (in particular pos tagging errors and possessives
mistakes) proving in this way the importance of a careful human
supervision of LF transformation.

- the nature of the sentence transformed into LF

Free variables are most frequent in verb definitions because they
are generally made of a verb without arguments. The complexity
of syntactic structures doesn't influence the frequency of missing

�108

conjunctions and prepositions: they are simply related to the
number of conjunctions and prepositions in the definitions (and
therefore they affect especially adjective LFs). Relative adverbs
are most frequent in complex definitions of nouns and this is why
their lack affects especially the noun file.

Reflecting on how to improve the LFs of XWN, different ideas
came out.  
One solution could be refining the syntactic parsing. As we have
seen, LFs are directly derived from the parse trees, and even
thought the high accuracy achieved in this first phase, it might be
further improved. However, we have seen also that exact parse
trees are sometimes wrongly transformed into LFs and this lead
me to the conclusion that a perfect parse tree is not enough to
prevent errors in the LF.  
A second idea was to rethink the LF transformation system. This
is a costly operation and considering the work done so far by the
different authors who worked on the project I eventually decided
to work directly on the already existing LFs by semi
automatically correcting the detected mistakes described in this
chapter.

In Chapter5 I will describe the correction of XWN LFs which we
will see it will bring to a new LF resource: the UXWN (United
eXtended WordNet).

�109

 
Chapter 5

Errors Correction

5.1 Introduction

In this chapter I will describe the work carried out for the
correction of XWN LFs. Thanks to a in house parser, I corrected
the high number of free variables of the resource and the work is
organised following what I did before and after the application of
the Parser.
During the correction, some interesting considerations came out,
in particular regarding Instances vs Classes, Proper Names and
Nominal Compounds.

�110

5.2 Conjunctions and Prepositions - Correction

As previously shown in section 4.2.3, conjunctions and
prepositions are sometimes erased from LFs.
I already mentioned the system I built to search for missing 45

conjunctions in the resource. The system compares each definition
with its LF, both divided into tokens, and records in a txt file those
synsetIDs for which a missing conjunction is found in the LF.
I then used the list of synsetIDs to manually check and correct the
LFs in the resource when needed.
For e.g. the synsetID 07187330 is on the list. It corresponds to the
gloss of steak:

<gloss pos="NOUN" synsetID="07187330">

 <synonymSet>steak</synonymSet>
 <text>

 a slice of meat cut from the fleshy part of an animal or large fish
 </text>
. . .

 <lft quality="NORMAL">
 steak:NN(x1) -> slice:NN(x1) of:IN(x1, x2) meat:NN(x2) cut:VB(e1,

x5, x1) from:IN(e1, x3) fleshy:JJ(x3) part:NN(x3) of:IN(x3, x4)
animal:JJ(x4) large:JJ(x4) fish:NN(x4)
 </lft>

</gloss>

Here we can see that or is missing in the LF and maybe because
of the wrong pos label of animal, which is wrongly considered as
adjective. I corrected the LF by adding the or predicate, its
corresponding arguments and by changing the pos label of
animal:

 System C in Appendix 545

�111

steak:NN(x1) -> slice:NN(x1) of:IN(x1, x2) meat:NN(x2) cut:VB(e1, x5,
x1) from:IN(e1, x3) fleshy:JJ(x3) part:NN(x3) of:IN(x3, x4)

animal:NN(x5) or:IN(x4, x5, x6) large:JJ(x6) fish:NN(x6)

I manually checked all the synsetIDs of missing conjunctions
retrieved by the SystemC (more than 10K) but I did not correct all
of them. I judged some cases adequate without the conjunctions
as for example coordinations of adjectives:

<gloss pos="NOUN" synsetID="00016236">
 <synonymSet>object, physical_object</synonymSet>

 <text>
 a tangible and visible entity; an entity that can cast a shadow;

"it was full of rackets, balls and other objects"
 </text>
. . .

 <lft quality="GOLD">
 object:NN(x1) -> tangible:JJ(x1) visible:JJ(x1) entity:NN(x1)

 </lft>
. . .
</gloss>

In section 4.2.3 I explained also the problems regarding
prepositions and phrasal verbs. These particles are sometimes
erased from LFs and I searched for the missing cases with
SystemL in Appendix12. SystemL, similar to SystemC for
conjunctions, compares the first definition-LF pair of each XWN
entry and if it finds a preposition in the definition that is missing
in the LF it marks this case as a missing preposition. The system
records on a txt file all the missing cases using the following
structure:

preposition missing + SynsetID + Definition + Logical Form

�112

so for instance, SystemL detect the missing out in the LF of weed
and records this entry as:

2022 Missing Preposition: out
SynsetID: 12334577
Definition:
 any plant that crowds out cultivated plants
Logical Form:
 any:JJ(x1) plant:NN(x1) crowd:VB(e1, x1, e2) cultivate:VB(e2,
x3, x1) plant:NN(x2)

I used the output file to check the cases recorded and to judge if
each case was or not a missing case. If yes I proceeded by
correcting the corresponding LF. For e.g. I corrected the previous
case in:

any:JJ(x1) plant:NN(x1) crowd_out:VB(e1, x1, x2) cultivated_JJ:
(x2) plant:NN(x2)

Just like for conjunctions, I did not correct all the cases detected
by the system because I judged some LFs well formed even
without prepositions, see for example:

<gloss pos="NOUN" synsetID="00081044">
 <synonymSet>award, awarding</synonymSet>
 <text>
 a grant made by a law court; "he criticized the awarding of
compensation by the court"
 </text>
. . .
 <lft quality="GOLD">
 award:NN(x1) -> grant:NN(x1) make:VB(e1, x2, x1)
law_court:NN(x2)
 </lft>
</gloss>

�113

Here variables are enough to bear the relations of the passive
form, the preposition can be omitted from the LF.

5.3 Possessives - Correction

As pointed out in section 4.2.6, errors regarding possessives can
be divided into two categories: possessive pronouns which have
not been transformed into LF and genitive markings which have
not been identified as such. 

5.3.1 Genitive Marking

As mentioned before, I used SystemH in Appendix10 to
identify wrongly transformed genitive markings. The system
investigates each XWN pos file searching for those predicates
whose structure is: word+’+s+:NN/JJ/VB/RB e.g. employee’s:NN
in:

employee's:NN(x2) salary:NN(x3)

To do so, for each LF the system builds a list of tuples word+pos
(predicate without arguments); for e.g. the LF of withholding:

<gloss pos="NOUN" synsetID="00344768">
 <synonymSet>withholding</synonymSet>
 <text> the act of deducting from an employee's salary </text>
. . .

�114

 <lft quality=“NORMAL"> withholding:NN(x1) -> act:NN(x1)
of:IN(x1, e1) deducting:VB(e1, x1, x26) from:IN(e1, x2)
employee's:NN(x2) salary:NN(x3) </lft>
</gloss>

is transformed into:

[['act', 'NN'], ['of', 'IN'], ['deducting', 'VB'], ['from',
'IN'], ["employee's", 'NN'], ['salary', ‘NN']]

after this, SystemD searches for those words that end with ’s and
have no POS predicate as second element. The output of the
system is a txt file with all these cases, each of them proceeded by
the quality of the LF, for e.g.:

[NORMAL] withholding:NN(x1) -> act:NN(x1) of:IN(x1, e1)
deducting:VB(e1, x1, x26) from:IN(e1, x2) employee's:NN(x2)
salary:NN(x3)

I used the output file as starting point to manually correct the
resource.
For each retrieved case, I checked whether the ’s particle was a
genitive marking or not and in the first case I proceeded by
creating the corresponding POS predicate. E.g. the above case of
employee’s:NN was corrected into:

employee:NN(x2) ’s:POS(x3,x2) salary:NN(x3)

Thanks to this procedure I found that the problem of not identified
genitive markings appears only in the noun file and in particular
in normal LFs. I checked and corrected 423 not identified genitive
markings.

�115

5.3.2 Missing Possessive Pronouns

I identified missing possessive pronouns with SystemG in
Appendix9. Just like SystemH, SystemG takes as input the XML
structure of XWN and for each LF it builds a list of tuples
word+pos (predicate without arguments). It then checks each
definition in XWN: if a possessive pronoun is found in the
definition and not in the corresponding LF the missing possessive
pronoun case is recorded in a txt file with the structure:

 
synsetID + missing possessive pronoun+ definition + LF

So, for e.g., for the already seen gloss of tower (see page 114), the
system knows that there is a possessive pronoun in the definition

a structure taller than its diameter

that is missing in the LF

tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2)
diameter:NN(x2)

and it records this case in the output as:

04287654 its
a structure taller than its diameter
tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2)
diameter:NN(x2)

I then used the output of SystemG to manually check the XWN
files and to correct them when needed. Sometimes I judged the

�116

lack of a possessive pronoun passable as it doesn’t change too
much the meaning of the LF and I didn't do any modification, see
for e.g.:

10145344 his
French composer best known for his operas
 bizet:NN(x1) -> french:JJ(x1) composer:NN(x1) best:RB(e1)
know:VB(e1, x3, x1) for:IN(e1, x2) opera:NN(x2)

I checked almost 2K cases of missing possessive pronouns most
of which in the noun file.

5.4 Free Variables - The Parser

Together with Prof. Delmonte we conceived a LF Parser that 46

counts the number of disconnected variables and corrects most of
them. The data regarding disconnected variables before the
correction are shown in Tab 4.1, section 4.2.1, and they highlight
an error rate of 54% which means that more than half of LFs
contain some disconnected variables. This result is due also to the
fact that we considered also dummy variables generated for those
verbs that don't have all the arguments in the sentence (see section
3.2.3 and 4.2.1).
Our purpose with the Parser is not just to count and correct free
variables, we aimed at something more: providing a new
consistent resource of LFs.
For this reason, the Parser returns as output a new file where, for
each gloss of XWN, the SynsetID, the Lemma, the Synset and the

In Appendix13 the Parser code 46

�117

LF(s) are joined. Each line in the output file is an entry and the
whole resource provides a direct and easy access to the LFs
without loosing the connection with WN and XWN (thanks to the
SynsetIDs). For instance, the first entry of the verb file in our new
resource is:

synset(200665984,about-face_VB(e1,x1,x2),[about-face])-
[change_VB(e2,x1,x3),mind_NN(x3),and_CC(e1,e2,e3),assume_VB(e3,x
1,x4),opposite_JJ(x4),viewpoint_NN(x4)]

We named the new resource United eXtended WordNet and I will
describe the Parser pipeline in the following pages.

5.4.1 Parser Pipeline

The Parser works on one XWN pos file at a time. It takes as
input two files, one containing the list of LFs and another one
containing the SynsetIDs following by the Synsets .47

Each LF starts necessarily with the same lemma which
corresponds to the first lemma in the Sysnet, see for e.g :

<gloss pos="VERB" synsetID="00628816">
 <synonymSet>distinguish, separate, differentiate, secern,
secernate, severalize, severalise, tell, tell_apart</synonymSet>
 <text>
 mark as different; "We distinguish several kinds of maple"
 </text>
. . .
 <lft quality="GOLD">

 Excerpts of the input files for the noun file are shown in Appendix 14 e 15.47

�118

 distinguish:VB(e1, x1, x2) -> mark:VB(e1, x1, x2) as:IN(e1, x3)
different:JJ(x3)
 </lft>
</gloss>

and since each gloss can contain one or more definitions, it can
contain also one or more LFs, see for e.g.:

<gloss pos="VERB" synsetID="02587500">
 <synonymSet>clash, jar, collide</synonymSet>
 <text>
 be incompatible; be or come into conflict; "These colors
clash"
 </text>
. . .
 <lft quality="GOLD">
 clash:VB(e1, x1, x2) -> be:VB(e1, x1, x3) incompatible:JJ(x3)
 </lft>
 <lft quality="GOLD">
 clash:VB(e1, x1, x2) -> be:VB(e2, x1, x4) in:IN(e2, x3)
or:CC(e1, e2, e3) come:VB(e3, x1, x5) into:IN(e3, x3)
conflict:NN(x3)
 </lft>
</gloss>

There may be one or more LFs associated to the same SynsetID
and the parser takes care of this during the process.
To build the UXWN, the Parser has to: connect each
SynsetID+Synset with the corresponding LF(s) and detect and
correct the free variables of each LF.
As to the first point, the connection is done by matching the first
lemma in the Synset with the lemma heading the LF. After the
correction of a matched LF, the Parser checks the rest of the LF
input file (see Appendix15) looking for another occurrence of the
current lemma and in that case it keeps the same

�119

SysnetID+Sysnet. Therefore, the above gloss of clash is
transformed in UXWN as two entries, one for each LF, with same
SysnetID, Lemma and Synset and different LF:

synset(202587500,clash_VB(e1,x1,x2),[clash,jar,collide])-
[be_VB(e1,x1,x3),incompatible_JJ(x3)]

synset(202587500,clash_VB(e1,x1,x2),[clash,jar,collide])-[be_VB-
[e2,x1],in_IN-[e2,x3],or_CC-[e1,e2,e3],come_VB-[e3,x1],into_IN-
[e3,x3],conflict_NN(x3)])

As we can see, free variables of be and come have been removed.
Moreover, we added a number in front of the SynsetID (here
number 2) which represents the pos of the lemma. We assigned : 1
to nouns, 2 to verbs, 3 to adjectives and 4 to adverbs. In this way
the pos of each lemma can be smoothly identified by automatic
systems even if an entry is treated individually (without knowing
the file to which it belongs).
We decided to remove dummy arguments of verb predicates to
give more consistency to the LF. We came to this conclusion
following Copestake 2009 who suggests that missing arguments
should be treated appropriately in LF.

The Parser is divided into two modules: the first one tries to
match variables in predicates with their object counterpart, the
second module does the opposite: it tries to match variables in
object formulas with their predicate counterparts.
The Parser takes into account different logical structures, in
particular:

�120

- predicate argument structures governed by verbs, where (as we
have already seen) number and order of argument are fixed,
and the event variable might or might not have higher level
binders or meta level formula, e.g. close:VB(e1,x1,x2);

- prepositions, conjunctions and other similar two place relation
markers (e.g. of:IN(x2,x3)), where variables bind objects,
prepositions (when introducing gerundives, e.g. by:IN(e1,e2))
and conjunctions treated as relation markers (e.g.
since:IN(e4,e5));

- object formulae, which include simple one place predication
with just one variable associated to an entity, a property or an
attribute (e.g. bag:NN(x3)). The same specification is used also
for adjectives and adverbs (e.g. happy:JJ(x1),
especially:RB(e1));

- meta-level formulae: coordinating conjunctions, which allow to
refer to sets of objects or predicates (e.g. and:CC(x4,x1,x2,x3),
or:IN(x7,x4,x5,x6)) and complex nominal compounds with the
nn-predicate (e.g. nn(x7, x3, x4) truck:NN(x3) trailer:NN(x4)).

Meta level formulae and negations are transformed by reification
in order to simplify the matching procedures. Coordinations are
turned into one place predicates e.g.:

and_CC(x6,x1,x2,x3) -> and_CC(xc), coord(xc,x6), coord(xc,x1),
coord(xc,x2), coord(xc,x3)

while negations are reified:

not_RB(e2) -> neg(xn,e2),not(xn)

�121

We eliminated all do auxiliaries and associated negation predicate
directly to the main verb variable in order to eliminate unwanted
auxiliary information and to associate the negation operator to the
main verb meaning. A similar procedure was followed for cannot,
which in XWN if often transformed without decomposition and
wrongly tagged as noun, as in:

insomniac:NN(x1) -> someone:NN(x1) cannot:NN(x2) sleep:VB(e1,
x2, x26)

In this way, part of the wrongly scoped negations has been
automatically fixed by the Parser.
The Parser provides two types of correction. The first correction is
made following lexical information and is addressed to all those
predicates that contain a dummy variable for an argument which
does not exist in reality. This was done considering unergative
verbs, unaccusative verbs, impersonal and weather verbs, verbs
which induce intransitive structures and cases of verbs which
allow the object to be left unexpressed. The Parser checks also for
passivised past participles in order to correct deep subjects
omissions. For e.g. the Parser automatically removes the dummy
argument x26 in the LF of growth:

<gloss pos="NOUN" synsetID="12726302">
 <synonymSet>growth, growing, maturation, development,
ontogeny, ontogenesis</synonymSet>
 <text> (biology) the process of an individual organism growing
organically; . . . </text>
. . .

�122

 <lft quality=“NORMAL"> growth:NN(x1) -> process:NN(x1)
of:IN(x1, x2) individual:JJ(x2) organism:NN(x2) grow:VB(e1, x2,
x26) organically:RB(e1) </lft>
 . . .
</gloss>

which results in UXWN as:

synset(112726302, growth_NN(x1), [growth, growing, maturation,
development, ontogeny, ontogenesis])-[process_NN(x1), of_IN(x1,
x2), individual_JJ(x2), organism_NN(x2), grow_VB-[e1, x2],
organically_RB(e1)]

The second type of correction is done considering structural
information. The Parser collects variables related to object
formula separately from those related to predicate formula and
then it does a simple intersection. Intersections are used to find
ungrounded variables. In case no intersection intervenes, the
output is marked with the label no intersection which is used by
the correction module. This is the case of the following example,
where the intersection of relevant variables is empty:

INPUT
lf(approved_JJ(x1),
[generally_RB(e1),especially_RB(e1),officially_RB(e1),judge_VB(e
1,x5,x1),acceptable_JJ(x3),satisfactory_JJ(x3)]

OUTPUT - correction module
approved_JJ(x1) 6 [x5,x3] no intersection
lf(approved_JJ(x1),
[generally_RB(e2,e1),especially_RB(e3,e1),officially_RB(e4,e1),
judge_VB(e1,e5,u,x1),acceptable_JJ(e6,e5),satisfactory_JJ(e7,e5)
]).

�123

We used the two procedures in a sequence – at first we found
ungrounded variables and then looked for predicates with
unneeded variables that coincided with the ones found in the
previous procedures – and eliminated them.
The Parser succeeded in automatically correcting most of the LFs
for which some inconsistency was found, reducing the error rate
form 56% to 24%, see Table 5.1.
I worked then by manually correcting those remaining LFs
marked with no intersection by the Parser (more than 5K LFs)
reducing in this way the the number of errors to the reasonable
percentage of 15%.

From this point forward, further corrections are made directly on
the output of the Parser (UXWN) and not on XWN.

POS FIle
LFs with

Disconnected
Variables - After

Total Number of
LFs % Before % After

Noun 15122 87819 56.00 30.75

Verb 513 13373 67.46 5.69

Adjective 8895 20337 43.74 7.87

Adverb 702 3922 12.23 6.28

TOTAL 25232 125451 54.05 23.82

�124

Tab 5.1 Disconnected Variables after Parser Correction

5.5 The Case of Proper Names

The Parser works smoothly with three of the four XWN pos
files: Adjectives, Adverbs and Verbs, but when it started the file
containing the Nouns a problem arose. WN, and therefore XWN,
contains definitions for some 18K lemmata starting with a capital
letter which can be computed as proper names or named entities,
i.e. person names, organisation names, famous events names,
institution names, location names etc. This particular entities need
to be represented univocally since they denote single referents in
the world and not classes of individuals like common nouns. Each
entry in WN that is a proper name or a named entity should
therefore has a Synset that univocally identifies it. For instance if
we are referring to Johannes Gutenberg, the inventor of the
printing press, his Synset in WN must contain those elements that
univocally identify him, such as: Johannes_Gutenberg or
Johann_Gutenberg or J_Gutenberg or simply Gutenberg since
without any additional specification his surname is universally
associated to the inventor, but it can’t contain for e.g. only
Johannes. Johannes is a generic proper name that doesn’t identify
any person in particular and certainly not Johannes Gutenberg.

While working with the parser, it came out that proper names in
WN are wrongly treated like common nouns and this required a
further effort of correction.
In the next sections I will take a closer look to the problem of
proper names.

�125

5.5.1 Classes and Instances

Talking about proper names it is crucial to firstly clarify the
difference between classes and instances.
Let’s start with an example:

a) Women are numerous
b) Rosa Parks is numerous

A doesn’t mean that every particular woman is numerous but it
rather intends that it exists a class of women which contains several
instances.
B, on the other hand, results as a non sense. This is because women
denotes a class whereas Rosa Park is an instance of this class. Some
nouns are conceived as classes and the membership in these classes
denotes the relations of hyponymy which are the base of the WN
hierarchy of nouns.
In the first versions of WN this distinction was not considered and
both concepts were drawn with the is-a relation and therefore
encoded in the same way:

- Rosa Park is a woman
- A heroine is a women

Ontologists highlighted the need of representing this important
distinction between classes and instances. In particular Gangemi et
al. 2001 and Oltramani et al. 2002 complain about the lack of two
different representations for individuals and concepts in WN.

�126

In his work Oltramani points out the confusion between concepts
and individuals as one of the critical point of the early WN versions.
This problem is considered to be the result of an expressivity lack
which impedes the distinction between concept-to-concept relations
(subsumption) and individual-to-concept ones (instantiation).
Examples of this deficit are the hyponyms of composer which
consist of classes such as contrapuntist or songwriter as well as of
individuals (e.g. Beethoven). Under organisation there are the
conceptual hyponyms alliance, federation, company, together with
instances like Irish_Republican_Army, Red Cross, and so on,
without any particular distinction.
Miller and Hristea 2006 propose their approach to fulfil the gap.
They start from considering the features of instances: they are
nouns, precisely proper names (therefore they should be capitalised)
and most important, they should refer to a unique entity.
The identification is easy for cases such as persons or cities but
unfortunately the aforementioned properties don’t identify
univocally instances because they are shared by other no-instance
words. For this reason the authors have to proceed with a manual
inspection of the candidates nouns.
In fact, there are some particular terms which can be considered
both as instances and as classes. This is the case of Beethoven:

c) Beethoven was born in Germany, on December 16, 1770 -
class

d) She loved to listen to Beethoven - instance

In c it is clear that Beethoven has a unique referent, the german
composer, while in d it is used to refer to the composer’s music.

�127

When a word has two distinct referents they are both tagged as
instances by the authors. For example, Bethlehem in Pennsylvania
and the one near Jerusalem.
Furthermore, when an instance has more than one hypernym it is
labelled as an instance of all of them: Venus is an instance of
terrestrial planet (“a planet having a compact rocky surface like the
Earth’s”) and also of inferior planet (“any of the planets whose orbit
lies inside the earth's orbit”). But identifying instances is not always
a straightforward task. There might be conflicts based on subjective
interpretation of words. Miller and Hristea report their difficulties in
classifying for example geographical regions that do not have well-
defined political boundaries (such as the Antarctic Zone or Barbary
Coast), or sacred texts especially the Christian Bible which can be
treated as an instance or as a class with several hyponyms (e.g.
American Revised Version, Douay, Vulgate etc.).
Miller and Hristea tagged more than 7,000 words using the
annotation @ vs @i. Where @ means class as in: {peach,drupe,@},
a peach is a drupe or all peaches are drupes, and @i means
instance: {Berlin,city,@i}, Berlin is an instance of a city.
Miller and Hristea’s classification has been included in WN starting
from version 2.1, so unfortunately XWN doesn't hold it.

5.5.2 Proper Names

But what is a proper name? Is there any difference between
proper names and proper nouns?

�128

Huddleston in his outline of the English Grammar (Payne and
Huddleston 2002) asserts that there are two reasons to define a
distinction between proper names and proper nouns:

« a) Although a proper name may have the form of a proper
noun, as in the case of John or London, it need not have. Thus The
Open University is a proper name but not a proper noun: what
distinguishes it from, say, the older university is precisely that it is
the official name of a particular institution.

b) Proper nouns do not always function as the head of NPs
serving as proper names. Thus in They weren’t talking about the
same Jones the proper noun Jones is head of the NP the same Jones
but this is clearly not a proper name. Similarly in He likes to think of
himself as another Einstein, The Smiths are coming round tonight
etc. »

The distinction is not universally assumed (see Chalker 1992) and
the Huddlestonian theory has been criticised by Anderson 2007 who
considers it vague and unnecessary. The latter affirms the distinction
is acceptable only if proper names cannot be considered as complex
proper nouns.
I won’t follow the splitting theory and I will use the two terms as
synonyms and I will refer to them using PN. The no-distinction
option is already employed for example by Toral et al. 2008.
Following the idea of instance, what it is important here is the
concept of a term which refers to a unique entity. In the following
mentioned lexical resources the encoded PNs are words or
compound words which denote singular individuals (and places,

�129

organisations etc.). Thus, for example, Jean Baptiste Poquelin is a
PN as much as Molière and they both refer to the same entity: the
french author of the famous theatrical comedy Tartuffe.

The category of PNs was often ignored or neglected in the first e-
dictionaries and it is still roughly encoded in some resources.
Identifying PNs is essential considering that they occur very
frequently in natural language and constitute a significant part of
many texts. For instance, they represent a considerable part of
unknown words in a corpus and more than 10% of newspaper texts.
A resource which includes PNs has to cope with the richness of
their forms and variants and with their temporary nature. Depending
on the task, old PNs may not be useful anymore while new PNs
should be constantly included in the resource. PNs are the fastest
growing syntactic category and each PN can have spelling
variations. For example the name Gaddhafi is a good example of a
name with multiple variants, see: Qaddhafi, Qaddafi, Gaddafi,
Kaddafi, Khadafy, Qadhafi, Qadaffi and Gadaffi. This richness
could be not only a matter of spelling variation. One can refer to the
same individual with his whole name, or just with a part of it, or
adding a title e.g. Jefferson, Thomas Jefferson, President Jefferson
or Jesus, Jesus of Nazareth, the Nazarene, Jesus Christ, Christ,
Savior, Saviour, Good Shepherd, Redeemer, Deliverer (from WN).
This becomes much more complex if we think about PNs in a
multilingual environment; for instance, the name of the pope John
Paul II changes in Italian - Giovanni Paolo II, in French - Jean Paul
II, in Croatian - Ivan Pavao II, in Spanish - Juan Pablo II etc.
Furthermore, PNs may have common abbreviations (e.g Edw. for
Edward or Eliz. for Elizabeth).

�130

5.5.3 Proper Names - Resources

Despite the huge amount of information encoded in WN, there
has not been made any special effort to include PNs and only 1% of
the almost 80000 nominal entries in WN consists of PNs.
This fact makes WN inadequate for treating texts with PNs and
points out the need of the creation of specific resources of PNs or
the enrichment of generic lexical resources with PNs.
Both approaches have been developed and there exist several works
regarding the creation of specific resources for PNs and the
enrichment of generic resources with them.

Most of the new resources of PNs are multilingual. See for instance:
the Multilingual Ontology of Proper Names (Krstev er al. 2005), the
Multilingual Onomasticon (Sheremetyeva 1998), ProlexBase 2
(Maurel 2008) and its extension ProlexFeeder (Savary et al. 2013),
and GeoNames for toponyms. See also The Fine-Grained Proper
Noun Ontology (Mann 2002) for an example of their applicability
to QA tasks. This kind of resources is structured, organised in
hierarchies and sometimes mapped to WN synsets and/or to
Wikipedia entries. More advanced projects aim to automatically
solve the problem of the fast growing feature of PNs. This is the
case of JRC-Names, a daily updated resource containing multi-word
entities, their acronyms and their variants. The JRC researchers
exploit the amount of data collected by the European Media
Monitor (EMM) which automatically gathers and analyses up to 48

220,000 news articles per day in about 70 different languages from
up to 7,000 news sites (Steinberger et al. 2009). Named Entity

 http://emm.newsbrief.eu/NewsBrief/clusteredition/it/latest.html48

�131

http://emm.newsbrief.eu/NewsBrief/clusteredition/it/latest.html

Recognition and classification of entity types (person, organisation,
location) are performed on this data for 21 languages. JRC-Names
is a good example of a solid resource of multilingual open-domain
acronyms and abbreviations of PNs. See more at Ehrmann et al.
2017 and Jacquet et al. 2016.

5.5.3.1 WN PNs Extensions

Regarding the enrichment of generic resources with PNs, and in
particular the enrichment of WN, there are some interesting projects
which aim to cope with the problem: Proper Noun Thesaurus (De
Loupy et al. 2004), Named Entity WordNet (Toral et al. 2008) and
the linkage of a gazetteer to WN made by Sundheim (Sundheim et
al. 2006).
With Named Entity WordNet Total and colleagues attempt to extend
WN with PNs automatically extracted from one of the most widely
exploited source of dynamic and structured information: Wikipedia.
They are aware of the importance of employing solid PN resources
in several NLP tasks and they admit the inadequacy of WN on this
subject. As mentioned before, WN distinguishes between common
nouns (classes) and instances (PN) only from version 2.1, where
they constitute less than 8 thousand entries (synsets). This shortage
is closely related to the difficulty of creating a lexical resource for a
class of words which grows rapidly, i.e. PNs. At the start, WN was
created manually and it is almost unfeasible or definitely expensive
to manually populate LRs with PNs. Toral’s approach essentially
consists of two phases: in the first one the synsets-classes of WN are
linked to Wikipedia categories, subsequently the entries of

�132

Wikipedia are checked in order to identify PNs. The identified PNs
are encoded as new Synsets and linked to the input Synsets with
instance of relations. The identification of PNs is done following
different capitalisation norms, limiting in this way the approach to
only those languages which share such norms (in this case: Catalan,
Dutch, French, Italian, Norwegian, Portuguese, Romanian, Spanish
and Swedish). Some statistical evaluations are made to exclude
unusual capitalisation in order to evaluate as PNs only those terms
which occur capitalised more than 91% of the times. To avoid mis-
classification of nouns which can be both classes and instances,
entry occurrences are examined in the body article of the entry and
not in the Web which may be often irregular. On this way, for e.g.
the entry Chldren’s Machine (name for a particular model of laptop)
may occur in a sentence where children and machine refer to
common nouns. Looking for this entry only in the body of its
Wikipedia article avoids mistakes. In order to work on a bigger
portion of text and achieve more reliable results, for each Wikipedia
article the research of PNs has been spread on the different
languages which follow the same capitalisation norms. Moreover,
Toral and colleagues do not consider only monosemous words from
WN and for each polysemous word mapped to a Wiki-category they
consider the instances for each of its senses. For example the word
Obelisk has two senses in WN: 1) stone pillar and 2) character used
in printing. Obelisk is mapped to the Wiki-category Obelisks where
they found the instance Washington Monument. In this case, the
disambiguation is straightforward and the sense chosen is the first
one. Named Entity WordNet contains more than 310 thousand PN
and almost 400 thousand instance of relation and is publicly

�133

available. It represents an interesting and valid answer to the
shortage of PNs in WN.

5.5.4 PNs in WN

The previous considerations and examples should have cleared
enough the concept of instance and the need of well structured
resources which have to take into account the distinction between
classes and instances. The matter of correctly including PNs in the
resources, and in particular in WN, has been widely studied and it is
an indispensable point to consider while building new resources.
XWN doesn’t include terminology extensions of PNs like Named
Entity WN, and this is something I won’t address here, but the
previous considerations made me clear the idea that the new
resource UXWN needs to correctly store instances and in particular
names of people, which are about 4K in XWN.  

The reflexion about PNs comes out from the analysis of XWN and
the discovery of its inadequacy about this topic. It is true that the
distinction between instances and classes was introduced only from
WN 2.1, and therefore it is missing in XWN which is based on WN
2.0, but this distinction didn't solve the problem of how Sysnets of
PNs are wrongly structured; ergo this is a problem that affects
previous and later versions of WN as well as XWN independently
from the version of WN which it is based on.
To understand the problem one needs to take a closer look to how
PNs are encoded in WN. I have already said that instances are
included in WN starting from the version 2.1, but how? If one

�134

searches the database for a proper name the result will clearly show
the tag instance, as in:

but the problem still remains in how the Synsets of instances are
structured.
Contrary to expectations, the structure for this kind of entities in the
WN database resembles the one used for common nouns, which, as
we know, are used to denote classes of individuals.
Each PN needs a structure that can accurately identify its referent.
PNs are used to individuate uniquely a single referent in the world -
they are rigid designators according to Kripke (Kripke 1980). This
means that each PN designates the same object in all possible
worlds in which that object exists and never designates anything
else.
Let's consider Synsets: Synsets are a collection or set of synonym
lemmata which may constitute a single concept in a specific
language. Lexicons of different languages may vary a lot and a
Synset made of several words for one concept, translated in another
language, may turn up to be uniquely denoted by one single lemma.
The first lemma of a Synset or the only present lemma (in case the
Synset is a singleton), represents the Synset and in case of
polysemous common nouns it can appear as head of different

�135

Fig 5.1 Example of WN Output

Synsets, marked with different SynsetIDs, as for instance plant,
which is associated to the following four SynsetIDs:

00014510 plant, flora, plant_life
03806817 plant, works, industrial_plant plant
05562308 plant
09760967 plant

 

From a lexicographic point of view these four entries instantiate
totally different senses and are associated with different glosses:

00014510 a living organism lacking the power of
locomotion

03806817 buildings for carrying on industrial labor
05562308 something planted secretly for discovery by

another
09760967 an actor situated in the audience whose acting

is rehearsed but seems spontaneous to the
audience

As can be seen, the offset indices are very far from one another,
thus indicating the distance in meaning involved in each of the
different lemma forms. It would be incorrect to have same lemmata
in adjacency within the same semantic lexical field. Polysemous
words in WN are not many, and their presence in distant and
different semantic lexical fields is an indication of the high
frequency of usage of the word in the language.
The problem is that in WN PNs are stored like polysemous common
nouns, and the first lemma of the Synset is shared by different
Synsets. This may sound quite strange, seeing that the only meaning
associated to a proper name is the referent which they should
designate. This usually happens for person names which share the

�136

name or the surname. As an example, here is the list of different
entries associated to John, first lemma:

06043175 John, Gospel_According_to_John
10364758 John, Saint_John, St_John,

Saint_John_the_Apostle,
St_John_the_Apostle,
John_the_Evangelist,
John_the_Divine

10365110 John, King_John, John_Lackland

John first appear at SynsetID 06043175 but then the two following
mentions appear one adjacent to the other - thus belonging to the
same semantic field. Furthermore, it is well known that to identify a
person usually the name is not sufficient and the title or the surname
is needed. So it is obvious that first names are ambiguous but they
don’t have to be regarded polysemous for this reason.
In the case of John we are dealing with three totally different
referents: the Gospel, the Apostle and the King, So why use John as
first lemma and not one of the following more distinctive lemmata
(e.g. Saint John or King John)?
This is totally misleading from a semantic point of view, because
here we are not dealing with polysemous words as was the case
with plant, but rather with referential identity. Besides, the word
John by itself can have additional uses. Consider for instance the
corresponding lower case word john which is used with ambiguous
meanings:

�137

10076833 whoremaster, whoremonger, john  

04274300 toilet, lavatory, lav, can, john, privy,
bathroom

Here john is not the first member of the Synset but the difference in
meaning is clearly understood by a native speaker, and is testified
again by the distance in terms of offset index values. This two
examples are an additional proof to the fact that using a single name
of person as referent in a Synset might be deceptive.

In WN there are only sparse cases of first names as first lemma in
adjacent Synsets before reaching the section of the Noun file where
all proper names are collected. Here, the choice to use a proper
name or a surname as referent of the Synset becomes very common
in the more restricted list of person names made up of some 4K
entries that start around SynsetID 110102000. Here are some
examples:

110102151 Aaron
110102325 Aaron, Henry_Louis_Aaron, Hank_Aaron

110105319 Agrippina, Agrippina_the_Elder  
110105487 Agrippina, Agrippina_the_Younger  

The situation is even more complex when the shared lemma is a
common english surname such as Anderson or Robinson:

110112423 Anderson, Carl_Anderson,
Carl_David_Anderson  

110112636 Anderson, Marian_Anderson  
110112784 Anderson, Maxwell_Anderson  

�138

110112893 Anderson, Philip_Anderson,
Philip_Warren_Anderson, Phil_Anderson  

110113110 Anderson, Sherwood_Anderson

110534424 Robinson, Edward_G._Robinson,
Edward_Goldenberg_Robinson

110534598 Robinson, Edwin_Arlington_Robinson
110534737 Robinson, Jackie_Robinson,

Jack_Roosevelt_Robinson
110534919 Robinson, James_Harvey_Robinson
110535121 Robinson, Lennox_Robinson,

Esme_Stuart_Lennox_Robinson
110535282 Robinson, Ray_Robinson,

Sugar_Ray_Robinson,Walker_Smith
110535526 Robinson, Robert_Robinson,

Sir_Robert_Robinson

Instances are clearly treated as common nouns, when instead the
first lemma of the Synset should be the distinctive trait of the
entry and not something shared with others, furthermore in the
same semantic field.
It is clear that this unmotivated choice of representing PNs is
completely useless and needs to be reorganised.

5.5.5 PNs reorganisation

Regarding PNs, the purpose here is to provide the new resource
UXWN with the correct organisation of these entities.  
To build the resource, the Parser takes as input two files, one
containing the list of LFs and and another one containing the

�139

SynsetIDs following by the Synsets. For the reorganisation of
PNs Synsets I worked on the input files.

5.5.5.1 PN Errors Identification

The first step in the reorganisation of PNs is identifying those
PNs with different Synset IDs and same first member of the
synset:

110442065 Mayer, Louis_B_Mayer, Louis_Burt_Mayer
110442275 Mayer, Marie_Goeppert_Mayer

 

To save time, I decided to parse automatically the 4K entries of
person names in order to highlight the errors.
SystemM in Appendix16 takes as input the LFs file and the
SynsetIDs+Sysnet file and returns the same files with the errors
marked by a *.
The SynsetIDs+Sysnet file is taken as input as Synsets.txt and
each entry is converted into a list. Since the file is already in
alphabetic order, I can proceed comparing the entries two at time.
I start with the first entry which is compared with the second one,
then the second one is compared with the third one and so on… If
the two entries have different Synset IDs but same first lemma
they are marked with *. For example, part of the input file (see
Appendix 17):

gloss_synsetID(110442065,

[Mayer,Louis_B_Mayer,Louis_Burt_Mayer])

gloss_synsetID(110442275,[Mayer,Marie_Goeppert_Mayer])

�140

gloss_synsetID(110442455,

[Mays,Willie_Mays,Willie_Howard_Mays_Jr_,the_Say_Hey_Kid])

gloss_synsetID(110442607,[Mazzini,Giuseppe_Mazzini])

gloss_synsetID(110442783,

[McCarthy,Joseph_McCarthy,Joseph_Raymond_McCarthy])

gloss_synsetID(110442979,

[McCarthy,Mary_McCarthy,Mary_Therese_McCarthy]) 

has the following output (see Appendix 18):

*gloss_synsetID(110442065,
[Mayer,Louis_B_Mayer,Louis_Burt_Mayer])  

gloss_synsetID(110442275,[Mayer,Marie_Goeppert_Mayer])  

gloss_synsetID(110442455,

[Mays,Willie_Mays,Willie_Howard_Mays_Jr_,the_Say_Hey_Kid])  

gloss_synsetID(110442607,[Mazzini,Giuseppe_Mazzini])  

*gloss_synsetID(110442783,
[McCarthy,Joseph_McCarthy,Joseph_Raymond_McCarthy])  

gloss_synsetID(110442979,

[McCarthy,Mary_McCarthy,Mary_Therese_McCarthy])

When an error is identified, the first lemma of the entry is stored
in a list (see Appendix 19):

 […, mayer, mccarthy, mccormick, mead, meade, meissner,
menninger, meredith,…]

which is used to analyse the second input file, the LF file (see
Appendix 20):

lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])

lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f

�141

or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])

lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)])

If the first lemma of the LF is in the list, the LF is marked with *
(see Appendix 21):

*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])

*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f
or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])

lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)]) 

5.5.5.2 PN Errors - Correction

Now that errors have been identified and marked, I can proceed
with their correction. This second task of the process is done
manually due to the diversity of PN forms.
For the SynsetID+Synset file it is often sufficient to add first
names to a shared surname (or vice-versa) as in:

gloss_synsetID(110305694,
[Haldane,Elizabeth_Haldane,Elizabeth_Sanderson_Haldane])

gloss_synsetID(110305872,
[Haldane,John_Haldane,John_Scott_Haldane])

which have been corrected in:

�142

gloss_synsetID(110305694,  
[Haldane_Elizabeth,Elizabeth_Haldane,Elizabeth_Sanderson_Haldane
])

gloss_synsetID(110305872,  
[Haldane_John,John_Haldane, John_Scott_Haldane])

but in several cases a human interpretation is needed. This is the
case for e.g. of Henry_II:

gloss_synsetID(110323405,[Henry_II])

gloss_synsetID(110323655,[Henry_II])

here there is no any surname to add for identifying the individuals
and I have to decide how to proceed. I solved the ambiguity by
adding the feature of_England and of_France but it is clear that
occurrences of this kind must be considered case by case:

gloss_synsetID(110323405,[Henry_II_of_England])

gloss_synsetID(110323655,[Henry_II_of_France])

Human interpretation is even more required for the
disambiguation of LFs. For instance, we need to know which
Rousseau was the French philosopher and which one the French
painter between Jean Jacques and Henri to disambiguate the
corresponding LF:

gloss_synsetID(110541545,
[Rousseau,Jean-Jacques_Rousseau,]).

gloss_synsetID(110541808,
[Rousseau,Henri_Rousseau,Le_Douanier_Rousseau,])

lf(rousseau_NN(x1),
[french_JJ(x1),philosopher_NN(x2),and_CC(x1,x2,x3),writer_NN(x3)
,born_VB(e1,x1),in_IN(e1,x4),switzerland_NN(x4)])

�143

lf(rousseau_NN(x1),
[french_JJ(x1),primitive_JJ(x1),painter_NN(x1)])

After completing the disambiguation of PNs Synsets and PNs LFs
in the two input files, I started again the Parser in order to finish
the correction of free variables and complete the creation of
UXWN.

5.6 Duplicate LFs

Every sense of a word needs to be identified with an
unequivocal definition. If this doesn’t happen, and two LFs are
identical of each other, the meaning associated to one Synset
would be interchangeable with the meaning associated to another
Synset, which is clearly a sign of inconsistency.
I checked all the LFs in UXWN and I found duplicate LFs in all
the four pos categories. There are two cases of duplicates:

1. Same synsetID, same lemma, same LF. In this case LFs are
copies and need to be removed, e.g.:

synset(201238255, line_VB(e1, x1, x2), [line])-[mark_VB-[e1, x1],

with_IN-[e1, x3], line_NN(x3)]).
synset(201238255, line_VB(e1, x1, x2), [line])-[mark_VB-[e1, x1],
with_IN-[e1, x3], line_NN(x3)]).

This is due to the fact that in XWN some entries have a double
LF, e.g.:

<gloss pos="VERB" synsetID="01238255">
 <synonymSet>line</synonymSet>

�144

 <text>mark with lines; "sorrow had lined his face"</text>
. . .
 <lft quality="GOLD">
 line:VB(e1, x1, x2) -> mark:VB(e1, x1, x4) with:IN(e1, x3)
line:NN(x3)
 </lft>
 <lft quality="GOLD">
 line:VB(e1, x1, x2) -> mark:VB(e1, x1, x5) with:IN(e1, x3)
line:NN(x3)
 </lft>
</gloss>

In the above case the Parser links the SynsetID with the two LFs,
and after correcting them (free variables x4 and x5 are removed)
the result in UXWN are two entries with same synsetID and LF.

2. Different synsetID, same lemma, same LF. In this case two
(ore more) senses of a word have the same definition, e.g.:

synset(200621145, multiply_VB(e1, x1, x2), [multiply])-[combine_VB-

[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).
synset(200239103, multiply_VB(e1, x1, x2), [multiply, manifold])-

[combine_VB-[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).

Also here, the problem comes from some entries in XWN where a
lemma is associated with one LF plus the one(s) of the other
senses of the lemma, e.g.:

<gloss pos="VERB" synsetID="00621145">
 <synonymSet>multiply</synonymSet>
 <text>combine by multiplication; "multiply 10 by 15"</text>
 . . .
 <lft quality="GOLD">
 multiply:VB(e1, x1, x2) -> combine:VB(e1, x1, x2) by:IN(e1, x3)
multiplication:NN(x3)
 </lft>
</gloss>

<gloss pos="VERB" synsetID="00239103">
 <synonymSet>multiply, manifold</synonymSet>

�145

 <text>combine or increase by multiplication; "He managed to multiply
his profits"</text>
 …
 <lft quality="GOLD">
 multiply:VB(e1, x1, x2) -> combine:VB(e2, x1, x4) or:CC(e1, e2, e3)
increase:VB(e3, x1, x5) by:IN(e1, x3) multiplication:NN(x3)
 </lft>
 <lft quality="GOLD">
 multiply:VB(e1, x1, x2) -> combine:VB(e1, x1, x4) by:IN(e1, x3)
multiplication:NN(x3)
 </lft>
</gloss>

The Parser produces three entries for the above example:

synset(200621145, multiply_VB(e1, x1, x2), [multiply])-[combine_VB-

[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).
synset(200239103, multiply_VB(e1, x1, x2), [multiply, manifold])-

[combine_VB-[e2, x1], or_CC-[e1, e2, e3], increase_VB-[e3, x1], by_IN-
[e1, x3], multiplication_NN(x3)]).
synset(200239103, multiply_VB(e1, x1, x2), [multiply, manifold])-

[combine_VB-[e1, x1], by_IN-[e1, x3], multiplication_NN(x3)]).

and the last one must be removed.
Here below I illustrate in Table 5.2 the situation I found checking
for these mistakes.

POS FIle LFs Duplicate LFs -
SameSynsetID

Duplicate LFs -
DifferentSynset

ID
Duplicate LFs -

TOTAL

Noun 91,927 253 318 3571

Verb 14,447 8 98 106

Adjective 20,314 52 54 106

Adverb 3982 2 20 22

TOTAL 130,670 315 490 3805

�146

Tab 5.2 Duplicate LFs

We can see that this kind of errors doesn’t seriously compromise
the resource as other errors do, and that the most affected
category is again that of nouns.
I automatically inspected UXWN by building a system (System 49

L in Appendix 22) that takes as input the resource and returns as
output two files with the duplicate LFs, one file for each of the
above mentioned cases. The output files contain SynsetID, lemma
and LF of each duplicate LF.
To clean UXWN from unneeded LF duplicates, I used the output
files of systemN to manually retrieve and remove the unwanted
LFs.

5.7 Pos Tagging Errors - Correction

As previously described in section 4.2.5, the problem of wrong
pos labels is quite common in XWN LFs. Unlike other types of
errors, pos tagging errors occur both in the LHS and in the RHS
of the LFs. Errors in the RHS are various and their total number is
difficult to estimate. On the contrary, errors in the LHS have been
measured and they are 1311 (only in the noun file).
I treated LHS errors and RHS errors separately:

LHS errors have been adjusted directly by the Parser previously
described. Each LF taken by the Parser for the correction is then
returned in UXWN with the correct LHS pos label. So for e.g. the
LF of flip which was wrongly transformed as adjective in XWN:

 In appendix 22 and 23 the SystemL and its output for the adjective section (as example)49

�147

<gloss pos="NOUN" synsetID="01176224">
 <synonymSet>flip, toss</synonymSet>
 <text> the act of flipping a coin </text>
. . .
 <lft quality="NORMAL">
 flip:JJ(x3) -> act:NN(x1) of:IN(x1, e2) flip:VB(e2, x1, x2)
coin:NN(x2)
 </lft>
</gloss>

results with the correct pos label in UXWN:

synset(101176224,flip_NN(x1),[flip,toss])-
[act_NN(x1),of_IN(x1,e2),flip_VB-[e2,x2],coin_NN(x2)]

RHS errors have been manually corrected. Since their detection
was not systematic due to the multiform nature of the errors and
the incongruities with the parse trees, I proceeded in two ways:
firstly, using regex I searched for the most common pos tagging
mistakes (colours, numbers, nationality adjectives) and I corrected
them; secondly, for each LF I manually inspected for whatever
reason during the whole work of correction, I checked every pos
labels and corrected the errors. Here below some typical examples
regarding nationality adjectives and colours; in the LF of dulse a
second wrong pos label has been assigned to the noun seaweed:

XWN
orpington:NN(x1) -> english:NN(x1) breed:NN(x2) of:IN(x1, x3)
large:JJ(x3) white-skinned:JJ(x3) chicken:NN(x3)

UXWN
synset(101713098,orpington_NN(x1),[‘Orpington'])-
[english_JJ(x1),breed_NN(x1),of_IN(x1,x3),large_JJ(x3),'white-
skinned_JJ'(x3),chicken_NN(x3)]

XWN

�148

dulse:NN(x1) -> coarse:JJ(x1) edible:JJ(x1) red:NN(x1)
seaweed:VB(e1, x2, x1)

UXWN
synset(101339113,dulse_NN(x1),[dulse,'Rhodymenia_palmata'])-
[coarse_JJ(x1),edible_JJ(x1),red_JJ(x1),seaweed_NN(x1)]

5.8 Compound Nouns - Correction 

As seen in section 4.2.2, the detection of nominal compounds is
a tricky task which leads to different representations in XWN
LFs.
In particular, CNs are transformed sometimes by means of the nn-
predicate (nn(x4, x2, x3) strike:NN(x2) zone:NN(x3)) and can also
occur as single words (baseball_team:NN(x2)). The most serious
problem arises when CNs are not detected and appear in the LF as
different predicates, with disconnected variables:

XWN
malevolent_program:NN(x1) -> computer:NN(x1) program:NN(x2)
design:VB(e1, x4, x1) to:IN(e1, e2) have:VB(e2, x1, x3)
undesirable:JJ(x3) harmful:JJ(x3) effects:NN(x3)

The sense of this LF results to be that malevolent program is a
computer designed to have undesirable and harmful effect while it
is instead a computer program, a software not an hardware.
To cope with this problem I considered the fact that many CNs
are stored in WN and therefore they appear in the Synsets. I
decided to automatically compare the sequences of nouns in the
LFs with the nouns in the Synsets. With this purpose I built
SystemP in Appendix 25. I decided to treat only CNs - and not
nominal compounds in general - mostly because they are

�149

numerous in the resource and also because their misdetection
always bring to a wrong LF while instead, for instance, LF of
nominal compounds made of adjective+noun are often acceptable
although not considered as compounds, e.g.:

synset(100093905, playing_NN(x1), [playing])-[act_NN(x1),
of_IN(x1, e1), play_VB-[e1, x2], musical_JJ(x2),
instrument_NN(x2)]

Moreover, I decided to work only on simple CNs and not on
coordinated CNs (e.g. goat and camel hair) for which particular
attention was provided by Rus in Rus 2002/2.
The first step is to gather all the lemmata from the Synsets of
nouns. This is done with SystemO in Appendix24, which takes
care of splitting Synsets with multiple lemmata and returns a txt
file with one lemma per line.
Now that the list of nouns is available, for each LF, the system
compares possible sequences of nouns with the lemmata in the
list. It works directly on UXWN. Every time two nouns appear
one next to the other in the LF, and there is no nn-predicate, it
tries to find their union in the list by connecting them in different
ways. So for e.g. in the following entry the SystemO finds the two
consecutive nouns health and care and tries to connect them in
different ways (healthcare, health-care, health_care):

synset(100999111, healthcare_delivery_NN(x1), [healthcare_delivery,
health_care_delivery, care_delivery])-[provision_NN(x1), of_IN(x1, x2),
health_NN(x2), care_NN(x3)]

The results are compared with the list of nouns and one of them
has a match in the list: healthcare.

�150

While replacing the two predicates with the CN one, the system
needs to take care also of variables. They have to be correctly
bound and with this purpose it keeps the first one. The resulting
LF in UXWN is:

synset(100999111, healthcare_delivery_NN(x1), [healthcare_delivery,
health_care_delivery, care_delivery])-[provision_NN(x1), of_IN(x1, x2),
healthcare_NN(x2)]

The LF results to be well structured, variables of arguments are
correctly bound among them and the whole sense is preserved.
The first run of the system was done looking for CNs made of
three words, in this way it identifies CNs like:
little_bighorn_river, roman_catholic_church, sun_myung_moon,
posterior_cardinal_vein etc. Also in this case the system keeps
the first variables and succeed in correcting LFs such as:

UXWN - Before SystemP
synset(101225246, tarawa_NN(x1), ['Tarawa', 'Makin', 'Tarawa-
Makin'])-[battle_NN(x1), in_IN(x1, x2), world_NN(x2),
war_NN(x3), ii_NN(x4), in_IN(x2, x5), pacific_NN(x5)]

UXWN - After SystemP
synset(101225246, tarawa_NN(x1), ['Tarawa', 'Makin', 'Tarawa-
Makin'])-[battle_NN(x1), in_IN(x1, x2), world_war_ii_NN(x2),
in_IN(x2, x5), pacific_NN(x5)]

With the second run the system looks for CNs made of two words
and corrects them in the same way. So for example, in the
following case, the system firstly identifies the three-words CN
new_york_bay and then the two-words CN liberty_island:

UXWN - Before SystemP

�151

synset(104141426, statue_of_liberty_NN(x1),
['Statue_of_Liberty'])-[large_JJ(x1), monumental_JJ(x1),
statue_NN(x1), symbolize_VB-[e1, x1, x2], liberty_NN(x2),
on_IN(x2, x3), liberty_NN(x3), island_NN(x4), in_IN(x3, x5),
new_NN(x5), york_NN(x6), bay_NN(x7)]

UXWN - After SystemP - First Run
synset(104141426, statue_of_liberty_NN(x1),
['Statue_of_Liberty'])-[large_JJ(x1), monumental_JJ(x1),
statue_NN(x1), symbolize_VB-[e1, x1, x2], liberty_NN(x2),
on_IN(x2, x3), liberty_NN(x3), island_NN(x4), in_IN(x3, x5),
new_york_bay_NN(x5)]

UXWN - After SystemP - Second Run
synset(104141426, statue_of_liberty_NN(x1),
['Statue_of_Liberty'])-[large_JJ(x1), monumental_JJ(x1),
statue_NN(x1), symbolize_VB-[e1, x1, x2], liberty_NN(x2),
on_IN(x2, x3), liberty_island_NN(x3), in_IN(x3, x5),
new_york_bay_NN(x5)]

As last run, the systems looks again for two-words CNs in order
to find multiple cases of two words CNs in a same LF, as in:

UXWN - Before SystemP
synset(100509974, rumba_NN(x1), [rumba])-[ballroom_NN(x1),
dance_NN(x2), base_VB-[e1, x1], on_IN-[e1, x3], cuban_JJ(x3),
folk_NN(x3), dance_NN(x4)]

UXWN - After the last run of SystemP
synset(100509974, rumba_NN(x1), [rumba])-[ballroom_dance_NN(x1),
base_VB-[e1, x1], on_IN-[e1, x3], cuban_JJ(x3),
folk_dance_NN(x3)]

Each LF modified by SystemP is marked with * in order to allow
for manual check.
The majority of corrections concerns those LFs that are
definitions of nouns having them the most number of CNs.
Thanks to SystemP I succeeded in correcting more than 9K two-
words CNs and about 150 three-words CNs.

�152

5.9 Relative Adverbs - Correction

As shown in section 4.2.4, relative adverbs are sometimes
erased from the LFs. SystemD in Appendix6 takes care of
detecting all the cases of missing relative adverbs in the LFs; it
takes as input each XWN pos file at time and records the
synsetIDs of those LFs with missing relative adverbs in a txt file.
For the correction I worked directly on UXWN using the
previously mentioned txt file with the recorded SynsetIDs.
I manually checked those LFs with missing relative adverbs,
adding the relative adverb when needed. For picking out the
affected LFs in UXWN I built SystemQ that compares each
UXWN entry with the SynsetIDs stored in the file and marks the
matched ones. Let’s consider as example the definition of
Reign_of_Terror: the historic period (1793-94) during the French
Revolution when thousands were executed. The corresponding LF
in XWN is:

reign_of_terror:NN(x1) -> historic:JJ(x1) period:NN(x1)
during:IN(x1, x2) french:NN(x2) revolution:NN(x3)
thousand:NN(x4) be:VB(e1, x4, e2) execute:VB(e2, x5, x4)

which results in UXWN, after the Parser correction, as:

synset(114397271, reign_of_terror_NN(x1), ['Reign_of_Terror'])-
[historic_JJ(x1), period_NN(x1), during_IN(x1, x2),
french_NN(x2), revolution_NN(x3), thousand_NN(x4), be_VB-[e1,
x4, e2], execute_VB-[e2, x4]]

�153

the free variable x5 has been removed. After the automatic CNs
correction, french:NN(x2) revolution:NN(x3) is correctly
transformed into a CN with one bound variable:

synset(114397271, reign_of_terror_NN(x1), ['Reign_of_Terror'])-
[historic_JJ(x1), period_NN(x1), during_IN(x1, x2),
french_revolution_NN(x2), thousand_NN(x4), be_VB-[e1, x4, e2],
execute_VB-[e2, x4]]

Now, SystemQ identifies the SynsetID of this LF as a possible
case of missing relative adverbs and this is true considering that
when is missing in the LF. I eventually corrected the LF adding
the relative adverb and the final result is:

synset(114397271, reign_of_terror_NN(x1), ['Reign_of_Terror'])-
[historic_JJ(x1), period_NN(x1), during_IN(x1, x2),
french_revolution_NN(x2), when_IN(x1,e1), thousand_NN(x4),
be_VB-[e1, x4, e2], execute_VB-[e2, x4]]

Some LFs, even though correctly identified by the system, don't
need the insertion of the missing relative adverb as the sense of
the LF is preserved anyway, see for e.g:

Edmund_I : king of the English who succeeded Athelstan
UXWN

synset(110236213,edmund_i_NN(x1),[‘Edmund_I'])-
[king_NN(x1),of_IN(x1,x2),english_NN(x2),succeed_VB-
[e1,x1,x3],athelstan_NN(x3)]

Opkins_Sir_Frederick_Gowland: English biochemist who did
pioneering work that led to the discovery of vitamins
(1861-1947)

UXWN
synset(110340955, hopkins_sir_frederick_gowland_NN(x1),
['Hopkins_Sir_Frederick_Gowland',

�154

'Sir_Frederick_Gowland_Hopkins'])-[english_JJ(x1),
biochemist_NN(x1), do_VB-[e1, x1, x2], pioneering_JJ(x2),
work_NN(x2), lead_VB-[e2, x2], to_IN-[e2, x3], discovery_NN(x3),
of_IN(x3, x4), vitamin_NN(x4)]

The work was fast and easy for definitions of verbs and adjectives
where LFs with errors were a few, it took longer for definitions of
nouns where the LFs to check where more than 1K.

5.10 UXWN Release

In order to guarantee an easy access to the resource, UXWN
has been released in XML format and it is freely downloadable
at : http://www.unive.it/UXWN .
Due to the large size of whole resource, each pos file of UXWN is
downloadable separately.
The output of the Parser is a txt file that, after the corrections, has
been converted in a XML graph. Each entry of the txt file e.g:

synset(100002560,nothing_NN(x1),[nothing,nonentity])-
[nonexistent_JJ(x1),thing_NN(x1)]

is represented in the XML tree as a synset element where the
attribute ID contains the WN synsetID (preceded by the number
representing the pos), its sub-elements s, w and lf contain
respectively: Synset, Lemma and LF as follow:

<uxwn>
. . .
 <synset ID="100002560">
 <s>nothing, nonentity</s>

�155

http://www.unive.it/UXWN

 <w>nothing_NN(x1)</w>
 <lf>nonexistent_JJ(x1), thing_NN(x1)</lf>
 </synset>
. . .
</uxwn>

The XML format allows systems to easily access the information
stored, it is extendable, readable and understandable (even by
novices).

5.11 Conclusions

The precise number of corrected LFs is hard to measure. Some
LFs had different kinds of errors and some cases detected by the
automatic systems have not been considered as errors. For these
reasons, to count the corrected LFs it is not proper to consider the
results of automatic systems.
Even thought I can’t provide a final percentage, it is fair to affirm
that LFs have been substantially improved. Free variables have
been almost removed (error rate from 54% to 15%), conjunctions
and prepositions are no longer missing in the LFs as well as
possessive pronouns and relative adverbs. More than 400 genitive
markings have been manually corrected and the quality of pos
labels has been refined. Many CNs (9K) have been finally
identified and correctly transformed into LF and the almost 4K
names of person are provided with Synsets that respect their
instance nature. The manual checking have been costly and time
consuming but it brought to really good results.

�156

The improved LFs are provided in a new resource that, thanks to
its clear structure and to the XML format, aims to be smoothly
queryable by automatic systems.

�157

Chapter 6

Future Work and Conclusions

6.1 Introduction

The efforts made so far to automatically and manually correct
the LFs of XWN have led to the creation of the improved
resource UXWN. The most common errors have been detected
and corrected but are there more improvements it is worth
considering? One of the advantages of this kind of LF is definitely
its simple structure, augmenting the semantics encoded or adding
more features might ruin this quality. The only profitable
structural modification I envisage, regards how the adjectives are
transformed in LF. I will discuss adjectives transformation in this
final chapter where I will also ponder on how to test the new
resource and on a possible alignment between UXWN and AMR
(Abstract Meaning Representation), topics that, due to a lack of
time, I couldn't study in depth.

�158

6.2 Adjectives - a Further Improvement

As previously seen, object formulae include simple one place
predication with just one variable associated to an entity. This
formula is used for entities (e.g. cat_NN(x1)) as well as for
modifiers like adjectives (e.g. angry_JJ(x1)).
It is well known that adjectives have different proprieties both
syntactic and semantic and therefore a simple object formula
might be inadequate to represent their relations with nouns.
Considering Larson’s analysis of adjectives (Larson 1998), I will
suggest here to add an event variable to adjectives in order to
adjust they LF representation.
Form a syntactic point of view, English adjectives can occur
predicatively when they are the main predicate in a clause or in a
clause-like structure, as in:

- the stone is weighty

or they can occur attributively when they function as modifiers
in a nominal, e.g.:

- two small elephants

Introducing an event variable for adjectives can allow to
differentiate cases in which the same adjectival word plays the
role of predicate or of attribute, as red in the following sentences:

a) The stiff hat was red

b) The red hat was stiff

�159

The two sentences could be differentiated as follows, in a) x1 is
associated to the subject of predication, hat, and the predication
itself is constituted by a different property identified by variable
e3; In b) the attribute is associated to the nominal head object
variable x1 and is specified with event variable e2, assuming in
this way that the property of being stiff is independent of the
property of being red, but they are both associated to the entity
x1:

a) be_VB(e1,x1), hat_NN(x1), stiff_JJ(e2,x1), red_JJ(e3,e1)

b) be_VB(e1,x1), hat_NN(x1), red_JJ(e2,x1), stiff_JJ(e3,e1)

Considering inferential proprieties of adjectives used attributively,
different interpretations are possible.
As discussed by Gal et al. 1991, adjectives can be categorised as
restrictive and non restrictive, the latter are very few (e.g. false,
artificial etc.). Restrictive adjectives are used to limit the number
of items matching a given description and can be further divided
into scalar adjectives and descriptive adjectives. Scalar
adjectives like small or tall describe qualities that are measurable
but in general the property is not fixed, it rather depends on the
noun. For example, the scalar adjective short can refer to different
measures according to the context: a short person (height), a
short journey (temporal or distance). Furthermore the scalar-
property is often comparative, a big ant is still a small living
being. On the contrary, descriptive adjectives add some
information to the noun they qualify (rather than referring to one
of its properties). Descriptive adjectives can be represented

�160

directly as predicates bound to the noun they qualify (a simple
conjunction of predicates), a representation that is unsatisfactory
for scalar adjectives that are generally implicit comparisons. In
fact saying that a person is short means that he is shorter than the
average person. But how can be represented in LF this difference
between descriptive and scalar adjectives?
The need for a further research arises also from the well known
difference between intersective and non intersective adjectives.
Considering the following sentences:

- Mary is Italian
- Mary is a surgeon

we can think about Mary as a member of two different sets: the
Italians and the surgeons. She is also a member of the intersection
of these sets, therefore:

- Mary is an Italian surgeon

This reasoning doesn’t work for other adjectives, for example the
following sentences:

- Mary is skilful
- Mary is a painter

don’t necessarily entail that:

- Mary is a skilful painter

�161

In fact Mary can be skilful in general or as a surgeon but not as a
painter.  
The intersective non-intersective reading has been widely discuss
in literature, often considering the following Larson’s famous
example:

- Olga is a beautiful dancer

Where Olga can be considered beautiful even if her dancing is
awkward (in an intersective reading) or she can just be seen as
someone who dances beautifully (in a non intersective reading).
Moreover, as illustrated by Cinque 2014, the interpretative
proprieties of adjectives appear to be related to the two types of
syntactic modification: abdominal adjectives as direct modifiers
of the NP or as predicates of a reduced relative clause that
modifies the NP. This is something to take into account while
formulating a new representation.
Also the interpretation of adjacent adjectives needs to bee
considered. For example, with the current LF, the sentence:

- the invisible visible stars

would have the following representation:

invisible_JJ(x1) visible_JJ(x1) star_NN(x1)

where invisible and visible modify the name in the same way
without representing the real meaning of the sentence, i.e. those
stars that are usually visible and are invisible in this moment.

�162

Furthermore, if we invert the order of the adjectives, the meaning
of the sentence changes but this LF can’t be used to represent this
difference, as both adjectives are represented in the same way:
These considerations lead to the conclusion that it is worth to
reconsider and reorganise the LF transformation of adjectives and
this is one of the envisaged future works.

6.3 Testing the Resource

Another important topic I din’t have the time to develop and
that is among the first points of future works, regards the use of
UXWN. How much the new resource improve the results of NLP
systems in comparison to XWN? This is something it is worth
considering for a thorough evaluation of the resource.
We have seen that XWN, and LFs in general, have been used in
Q/A. As results in Moldovan and Rus 2001/1 show, such
application is satisfactory but still improvable. It is right to expect
that a better resource can influence positively the results of its
applications.
Let’s consider an example:

- Is Mick Jagger a singer?

�163

Answering this question is easy for every one, but a computer
needs some world knowledge to choose the right answer. As
already seen, WN Glosses encode a lot of knowledge that can be
exploited for this purpose. A system can reply this question
simply by querying the database. In fact, thanks to WN, we know
that:

1. Jagger, Mick Jagger, Michael Philip Jagger : English rock
star (born in 1943)

2. rock star : a famous singer of rock music

the LFs of these glosses in XWN are (respectively):

1. jagger:NN(x1) -> english:NN(x1) rock:NN(x2) star:NN(x3)
2. rock_star:NN(x1) -> famous:JJ(x1) singer:NN(x1) of:IN(x1,

x2) rock_music:NN(x2)

the two LFs contain the knowledge a system needs to answer the
question, the problem is that it is wrongly encoded. According to
the first LF, Jagger is an English but there is no relation to the fact
that he is also a rock star. In fact rock and star are represented as
two different entities, two different predicates with different
variables. This doesn’t allow a possible system to build the
connection between rock star and singer.  
Let’s now consider the two corresponding representations in
UXWN:

�164

1. synset(110357697, jagger_NN(x1), ['Jagger', 'Mick_Jagger',
'Michael_Philip_Jagger'])-[english_JJ(x1),
rock_star_NN(x1)]

2. synset(109850134,rock_star_NN(x1),[rock_star])-
[famous_JJ(x1),singer_NN(x1),of_IN(x1,x2),rock_music_N
N(x2)]

Here the encoding problem has been solved: English has been
correctly labeled as adjective and rock star has been transformed
as CN. The automatic inference is now allowed.  
As shown in chapters 4 and 5, various kinds of error have been
detected and corrected during for the creation of UXWN. In the
previous example, we have seen how the correction of pos labels
and the proper transformation of CNs can significantly improve
the result of a simple Q/A task. The intention is to test the
resource with an automatic system and collect a sufficient amount
of data to estimate its application in comparison to other similar
resources.

6.4 UXWN and AMR

The abstract meaning representation (AMR) is a graph-based
semantic representation of a natural language sentence that
embeds annotations related to traditional tasks such as semantic
role labelling, wsd, named entity recognition etc. One of the goals
of AMR is to include in a single dataset different basic
disambiguation information which are usually encoded in
different datasets. In fact, semantic annotation today is divided

�165

into different annotations associated to different evaluations and
training data, split across many resources.  
There exist different corpora that have been manually transformed
in AMR and nowadays, the growing interest of the NLP
community for this compact, readable, whole-sentence semantic
annotation, is reflected in a number of different works that aim at
automatically transforming English sentences into AMR graphs.
Both in SemEval-2016 and in SemEval-2017 one task was 50 51

dedicated to the automatic generation of this representation and
different parsers have been built with this purpose (see for e.g.
Pust et al. 2015, Vanderwende et al. 2015, Wang et al. 2016).  
Just like the LF subject of this thesis, following a neo-
Davidsonian fashion, AMR introduces variables for entity and
events and in addition also for properties and states. In the AMR
graph, not all the individual words in a sentence are annotated,
leaves are rather labeled with concepts and relations link entities.
AMR concepts are either English words (“boy”), PropBank
framesets (“want-01”), or special keywords. AMR uses
approximately 100 relations: frame arguments, following
PropBank conventions (e.g. :arg0), general semantic relations
(e.g. :cause), relations for quantities (e.g. :quant), relations for
date-entities (e.g. :day), relations for lists (e.g. op1). For a detailed
description, the reader is referred to the AMR guidelines .52

Below, an example of AMR for the sentence the boy wants the
girl to believe him :

 http://alt.qcri.org/semeval2016/task8/50

 http://alt.qcri.org/semeval2017/task9/51

 https://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf52

�166

http://alt.qcri.org/semeval2016/task8/
http://alt.qcri.org/semeval2017/task9/
https://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf

another way to represent the same sentence with AMR:

(w / want-01
 :ARG0 (b / boy)
 :ARG1 (b2 / believe-01
 :ARG0 (g / girl)
 :ARG1 b))

Despite some similarities with our LF, AMR is quite different.
Both the representations attempt to provide the same structure for
sentences that have the same basic meaning. The difference is that
our LF relies more on the single words of a sentence than what
AMR does. For example, if it is true that the following sentences

a) the boy was killed by the girl

b) the girl killed the boy

 have the same LF

boy_NN(x2), kill(e1, x1, x2), girl(x1)  

it is also true that the following sentences

�167

Fig 6.1 Example of AMR

c) The girl made adjustments to the machine.

d) The girl adjusted the machine.

e) The machine was adjusted by the girl.

have different LFs but a unique AMR:

(a / adjust-01
 :ARG0 (b / girl)
 :ARG1 (m / machine))

Obviously, this is not the only difference between the two
representations. Our LF is definitely more simple and less rich in
semantics features, and this is considered its greatest strength.
But considering the growing interest of the NLP community
towards AMR, I’d like to investigate a possible alignment
between the simple LF and this new representation. This might be
done in two ways: or making the LF more close to AMR, for
example by adding some of those semantic features which are
missing or by making the structure more close to the AMR
format, or by providing each entry of UXWN with the
corresponding AMR representation.
As proved also by the results of SemEval (see May 2016), the
automatic generation of AMR is still a difficult and competitive
task which results are sometimes quite far from the gold standards
(manually annotated AMR). Therefore, using one of the existing
AMR parsers might be risky for the whole correctness of the
resource. It is reasonable to consider other solutions and one idea
in this sense would be to take a closer look to the work of J. Bos
2016 who proposes a systematic translation from AMR to first
order logic formulas.

�168

Furthermore, a comparative analysis between the two
representations might be useful to discover strengths and
weaknesses of these structures.

6.5 Conclusions

WordNet is one of the most famous resources for NLP. It is
widely used and studied and, during the last decades, many
researchers have investigated and implemented different
improvements and extensions.
My work began from here, with a summary of different
improvements divided into two categories: Terminology
Extension and Relations Enhancement. The first category includes
my participation to the Task 14 of SemEval 2016 (Semantic
Taxonomy Enrichment), while the second one concerns in
particular WSD of WN glosses. Chapter 2 is a first introduction to
the real topics of this dissertation: XWN and LF.
In fact, the idea of this thesis was to analyse XWN, a resource that
aims at providing several important enhancements to WN. In
XWN the WN glosses are syntactically parsed, transformed into
LF and content words are semantically disambiguated. Therefore,
XWN brings mainly two important improvements to the WN
glosses: WSD and the LF.
LF is a kind of semantic representation which stands between the
syntactic parse and the deep semantic form. It is a simple and
highly effective representation which is used in several NLP
systems. There are different types of LF and 3 different resources

�169

that provides the LF of WN glosses. In Chapter 3 I showed
different representations and I compared the three LF resources
justifying the choice to work on XWN.
In Chapter 4 and 5 I described respectively the work of analysis
of XWN and the improvements made, which led to a new
resource that I named UXWN and which is freely downloadable
from the dedicated webpage: http://www.unive.it/UXWN .
During the analysis, it comes out that even if a correct LF
transformation relies on the quality of the syntactic parsing, this is
necessary but not sufficient to guarantee the correctness of the
representation. Furthermore, comparing the different existing LF
resources, I observed that some types of error are recurring when
the LF is automatically derived. Taking into account these
considerations might be useful for father implementations.

At the beginning of this work my aim was to study the LF, to
analyse XWN, its errors and possible applications. But the more I
went ahead with the project, the more I understood that my
contribution to the NLP community could be something more. I
eventually produced a proper and usable resource where world
knowledge is represented as consistent LFs.

As discussed in the last pages, other improvements are possible
and the ongoing UXWN project will take care of implementing
them.

�170

http://www.unive.it/UXWN

�171

Appendices

�172

APPENDIX 1

SYSTEM A - AVERAGE LENGHT OF DEFINITIONS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("FilePOS.xml")
root=tree.getroot()
lista_definizioni=[]
definizioni=open("definizioni_POS.txt","a")
for w in root.iter(tag="text"):

glossa=w.text
 newglossa1= re.sub(r"\(.*?\)", "", glossa)
 if re.search(r"\; \".*?\"", newglossa1):
 newglossa2= re.sub(r"\; \".*?\"", "", newglossa1)
 else:
 newglossa2=newglossa1
 if re.search(r"\; [a-z]*", newglossa2):
 temp=newglossa2.split(";")
 for x in temp:
 newdefinition=x.lstrip()
 definition=newdefinition.rstrip()
 definizioni.write(definition+"\n")
 lista_definizioni.append(definition)
 else:
 newdefinition=newglossa2.lstrip()
 definition=newdefinition.rstrip()
 definizioni.write(definition+"\n")
 lista_definizioni.append(definition)
lunghezzadefinizioni=[]
for w in lista_definizioni:
 x=len(w)
 lunghezzadefinizioni.append(x)
tot=0
for x in lunghezzadefinizioni:
 tot=tot+x
averagelenght= tot/numerodefinizioni

definizioni=open("definizioni_POS.txt","a")
definizioni.write("\n"+"the average length of the definitions in
the pos file is : "+str(averagelenght)+"\n")
definizioni.close()

 - - - - - - - - - -

Excerpt from the file output - verb pos file:

. . .
drench or submerge or be drenched or submerged
become empty of water
get foggy

�173

burn to charcoal
become hazy, dull, or cloudy
cause to burn rapidly and with great intensity

the average length of the definitions in the noun file is : 53

�174

APPENDIX 2

SYSTEM B - MAX NUMBER OF WORDS IN THE SYNSETS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("POS.xml")
root=tree.getroot()
count=0
lista_count=[]
lista_nomi=[]
for w in root.iter(tag="synonymSet"):

synset=w.text
contasynset=open("synsets_POS.txt","a")
contasynset.write(synset+"\n")
contasynset.close()

s=open("synsets_POS.txt", "r").readlines()
for x in s:
 if "," in x:
 temp=x.split(",")
 for w in temp:
 count=count+1
 lista_count.append(count)
 lista_nomi.append(x)
 count=0
 else:
 count=1
 lista_count.append(count)
 lista_nomi.append(x)
 count=0

listacheck=zip(lista_count, lista_nomi)
#listacheck is a list of tuples integer+string
c=listacheck[0]
d=c[0]
syn=c[1]
for x in listacheck:
 if x[0]>d:
 syn=x[1]
 d=x[0]
 else:
 pass
print "the lenght of the longest synset is %d" %d
print syn

for x in listacheck:
#if instead of d we insert a positive integer y we find all the
synsets
#with lenght y
 if x[0]==d:

�175

 maxsyn=open("maxsynset_POS.txt","a")
 maxsyn.write(x[1]+"\n")
 maxsyn.close()
 else:
 pass

System Description

For each element in XWN, the system gathers the synset and saves it in a txt file. Then, for each
synset saved, it counts the number of words it is made of. Finally, it finds the longest synset and
it prints it out.
The system works on one XWN pos file at time and therefore it returns 4 different outputs.

Results are shown here below:

POS MAX LENGHT SYNSET

NOUN 28

buttocks, nates, arse, butt,
backside, bum, buns, can,
fundament, hindquarters,

hind_end, keister, posterior,
prat, rear, rear_end, rump,
stern, seat, tail, tail_end,

tooshie, tush, bottom, behind,
derriere, fanny, ass

VERB 24

roll_in_the_hay, love,
make_out, make_love,
sleep_with, get_laid,

have_sex, know, do_it,
be_intimate,

have_intercourse,
have_it_away, have_it_off,

screw, fuck, jazz, eff, hump,
lie_with, bed,

have_a_go_at_it, bang,
get_it_on, bonk

ADJECTIVE 25

besotted, blind_drunk, blotto,
crocked, cockeyed, fuddled,

loaded, pie-eyed, pissed,
pixilated, plastered, potty,

slopped, sloshed, smashed,
soaked, soused, sozzled,
squiffy, stiff, tiddly, tiddley,

tight, tipsy, wet

ADVERB 11

immediately, instantly,
straightaway, straight_off,
directly, now, right_away,

at_once, forthwith,
in_real_time, like_a_shot

�176

APPENDIX 3

SENSEVAL3 - IDENTIFICATION OF LOGIC FORMS IN ENGLISH

TRIAL DATA - ENGLIS SENTENCES

Some students like to study in the mornings.
Juan and Arturo play football every afternoon.
Alicia goes to the library and studies every day.
I tried to speak Spanish, and my friend tried to speak English.
Alejandro played football, so Maria went shopping.
Alejandro played football, for Maria went shopping.
When he handed in his homework, he forgot to give the teacher the last
page.
The teacher returned the homework after she noticed the error.
The students who are on the bus to the United States are studying
English.
After they finished studying, Juan and Maria went to the movies.
Juan and Maria went to the movies after they finished studying.
You can look up my number in the telephone directory.
I look forward to meeting you.
If you heat ice it melts.
If I am late for work my boss gets angry.
She acts as if she were Queen.
She will be delighted to see you.
Mary is a teacher.
Tara is beautiful.
That sounds interesting.
The sky became dark.
The bread has gone bad.
Mary seemed able to win the race, but she became fatigued near the
finish line.
Greg is kicking the ball now.
The wind blows constantly in Chicago.
He accepted my apology.
The cake smells good!
Ellen smells the cake.
The woman grew silent.
The gardener grew some flowers.
Jane appeared uninjured after the accident.
Before I could leave, Jane appeared.
The dog was sick.
Fred felt funny.
Mad dogs and Englishmen go out in the midday sun.
They are jealous.
What she said is untrue.
Fred bit his thumb.
The chimpanzees groomed each other.
Jane gave the gorilla a kiss.
Jane gave a kiss to the gorilla.
Sunshine makes me very happy.
The voters elected Clinton president of the USA.
They ran quickly.
He went home twice nightly.

�177

We walked on the playground.
My friend phoned me this morning.
I was happy when I saw her again.
The bus was full. However, Fred found a seat. 

�178

APPENDIX 4

SENSEVAL3 - IDENTIFICATION OF LOGIC FORMS IN ENGLISH

TRIAL DATA - LOGIC FORMS

student:n_ (x1) like:v_ (e4, x1, e5) to (e4, e5) study:v_ (e5, x1, x2)
in (e5, x2) morning:n_ (x2) .
Juan:n_ (x1) and (x7, x1, x2) Arturo:n_ (x2) play:v_ (e6, x7, x3, x4)
football:n_ (x3) afternoon:n_ (x4) .
Alicia:n_ (x1) go:v_ (e6, x1, x7) to (e6, x2) library:n_ (x2) and (e7,
e6, e3) study:v_ (e3, x1, x4) day:n_ (x4) .
I (x3) try:v_ (e6, x3, e7) to (e6, e7) speak:v_ (e7, x3, x11)
Spanish:n_ (x11) and (e10, e6, e8) my (x1) friend:n_ (x1) try:v_ (e8,
x1, e9) to (e8, e9) speak:v_ (e9, x1, x2) English:n_ (x2) .
Alejandro:n_ (x1) play:v_ (e7, x1, x2) football:n_ (x2) so (e9, e7,
e8) Maria:n_ (x3) go:v_ (e8, x3, x4) shopping:n_ (x4) .
Alejandro:n_ (x1) play:v_ (e7, x1, x2) football:n_ (x2) for(e2, e7,
e8) Maria:n_ (x3) go:v_ (e8, x3, x4) shopping:n_ (x4) .
When (e11, e10) he (x4) hand:v_ (e10, x4, x1) in (e10) his (x1)
homework:n_ (x1) he (x6) forget:v_ (e11, x6, e12) to (e11, e12)
give:v_ (e12, x6, x3, x2) teacher:n_ (x2) last:a_ (x3) page:n_ (x3) .
teacher:n_ (x1) return:v_ (e6, x1, x2) homework:n_ (x2) after (e6, e7)
she (x4) notice:v_ (e7, x4, x3) error:n_ (x3) .
student:n_ (x1) be:v_ (e8, x1, x2) on (e8, x2) bus:n_ (x2) to (x2, x4)
United_States:n_ (x4) study:v_ (e9, x1, x6) English:n_ (x6) .
After (e8, e6) they (x4) finish:v_ (e6, x4, e7) study:v_ (e7, x4)
Juan:n_ (x1) and (x9, x1, x2) Maria:n_ (x2) go:v_ (e8, x9, x3) to (e8,
x3) movie:n_ (x3) .
Juan:n_ (x1) and (x8, x1, x2) Maria:n_ (x2) go:v_ (e5, x8, x3) to (e5,
x3) movie:n_ (x3) after (e8, e6) they (x4) finish:v_ (e6, x4, e7)
study:v_ (e7, x4) .
You (x5) look_up:v_ (e8, x5, x1, x4) my (x1) number:n_ (x1) in (e8,
x4) telephone:n_ (x2) directory:n_ (x3) nn (x4, x2, x3) .
I (x1) look_forward_to:v_ (e4, x1, e5) meet:v_ (e5, x1, x2) you (x2) .
If (e5, e4) you (x2) heat:v_ (e4, x2, x1) ice:n_ (x1) it (x3) melt:v_
(e5, x3) .
If (e6, e5) I (x3) be:v_ (e5, x3, x1) late:a_ (x3) for (x3, x1)
work:n_ (x1) my (x2) boss:n_ (x2) get:v_ (e6, x2) angry:a_ (x2) .
She (x2) act:v_ (e5, x2) as_if (e5, e6) she (x3) be:v_ (e6, x3, x1)
Queen:n_ (x1) .
She (x1) be;v_ (e4, x1) delighted(x1) to (e4, e5) see:v_ (e5, x1, x2)
you (x2) .
Mary:n_ (x1) be:v_ (e4, x1, x2) teacher:n_ (x2) .
Tara:n_ (x1) be:v_ (e2, x1) beautiful:a_ (x1) .
That (x1) sound:v_ (e1, x1) interesting:a_ (x1) .
sky:n_ (x1) become:v_ (e2, x1) dark:a_ (x1) .
bread:n_ (x1) go:v_ (e2, x1) bad:a_ (x1) .
Mary:n_ (x1) seem:v_ (e9, x1) able:a_ (x1) to (e9, e10) win:v_ (e10,
x1, x2) race:n_ (x2) but (e13, e9, e11) she (x6) become:v_ (e11, x6)
fatigued:a_ (x6) near (e11, x5) finish:v_ (x3) line:n_ (x4) nn (x5,
x3, x4) .
Greg:n_ (x1) kick:v_ (e3, x1) ball:n (x2) now:r_ (e3) .

�179

wind:n_ (x1) blow:v_ (e2, x1, x3) constantly:r_ (e2) in (e2, x3)
Chicago:n_ (x3) .
He (x2) accept:v_ (e5, x2, x1) my (x3) apology:n_ (x1) .
cake:n_ (x1) smell:v_ (e2, x1) good:a_ (x1) !
Ellen:n_ (x1) smell:v_ (e4, x1, x2) cake:n_ (x2) .
woman:n_ (x1) grow:v_ (e2, x1) silent:a_ (x1) .
gardener:n_ (x1) grow:v_ (e4, x1, x2) flower:n_ (x2) .
Jane:n_ (x1) appear:v_ (e4, x1, x2) uninjured:a_ (x1) after (e4, x2)
accident:n_ (x2) .
Before (e4, e3) I (x2) leave:v_ (e3, x2) Jane:n_ (x1) appear:v_ (e4,
x1) .
dog:n_ (x1) be:v_ (e2, x1) sick:a_ (x1) .
Fred:n_ (x1) felt:v_ (e2, x1) funny:a_ (x1) .
Mad:a_ (x1) dog:n_ (x1) and (x9, x1, x2) englishman:n_ (x2) go:v_ (e8,
x9, x5) out:r_ (e8) in (e8, x5) midday:n_ (x3) sun:n_ (x4) nn (x5, x3,
x4) .
They (x1) be:v_ (e2, x1) jealous:a_ (x1) .
What (x4) she (x1) say:v_ (e2, x1, x4) be:v_ (e3, e2) untrue:r_ (e2) .
Fred:n_ (x1) bit:v_ (e4, x1, x2) his (x2) thumb:n_ (x2) .
chimpanzee:n_ (x1) groom:v_ (e4, x1, x2) each_other:n_ (x2) .
Jane:n_ (x1) give:v_ (e5, x1, x3, x2) gorilla:n_ (x2) kiss:n_ (x3) .
Jane:n_ (x1) give:v_ (e5, x1, x2, x3) kiss:n_ (x2) to (e5, x3)
gorilla:n_ (x3) .
Sunshine:n_ (x1) make:v_ (e3, x1, x2) me (x2) very:r_ (x2) happy:a_
(x2) .
voter:n_ (x1) elect:v_ (e7, x1, x2) Clinton:n_ (x2) president:n_ (x2)
of (x2, x5) USA:n_ (x5) .
They (x1) run:v_ (e2, x1) quickly:r_ (e2) .
He (x1) go:v_ (e2, x1, x3) home:n_ (x3) twice:r (e2) nightly:r (e2) .
We (x2) walk:v_ (e4, x2, x1) on (e4, x1) playground:n_ (x1) .
My (x1) friend:n_ (x1) phone:v_ (e6, x1, x4, x2) me (x4) morning:n_
(x2) .
I (x1) be:v_ (e4, x1) happy:a_ (x1) when (e4, e5) I (x2) saw:v_ (e5,
x2, x3) her (x3) again:r_ (e5) .
bus:n_ (x1) be:v_ (e2, x1) full:a_ (x1) .
However:r_ (e4) Fred:n_ (x1) found:v_ (e4, x1, x2) seat:n_ (x2) .

�180

APPENDIX 5

SYSTEM C - MISSING CONJUNCTIONS

import xml.etree.ElementTree as ET
import re
tree=ET.parse(“POSfile.xml")
synset=open(“SynsetsPOS.txt","a")
root=tree.getroot()
countnoncontrollate=0
missingand=0
missingor=0
listatext=[]
listalf=[]
count=0
tx=[]
countcontrollate=0
listasynset=[]

for element in root.iter(tag="gloss"):
 count=count+1
lenght=count
x=0

while x<lenght:
text=root[x].find("text").text

 if ";" in text:#it takes only the first definition, no
examples
 tx=text.split(";")
 text1=tx[0]
 else:
 text1=text
 if "(" in text1:#deletes content between brackets
 text2=re.sub("\(.*?\)", "", text1)
 listatext=text2.split()
 else:
 listatext=text1.split()

for n in range(len(listatext)):#deletes commas from tokens
 if "," in listatext[n]:
 y=re.sub(",", "", listatext[n])
 listatext[n]=y
 else:
 pass
 lf=root[x].find("lft").text
 countcontrollate=countcontrollate+1
 lft=re.sub("\:[A-Z]*\(.*?\)", "", lf)#deletes predicates
and arguments
 lfts=re.sub(".*?\-\>", "", lft)#deletes word to define and
->
 listalf=lfts.split()

if "and" in listatext:

�181

 if "and" not in listalf:
 missingand=missingand+1

syn=root[x].get(“synsetID”)#check the synsetID
 if syn not in listasynset:
 listasynset.append(syn)
 else:
 pass

 else:
 pass

else:
pass

 if "or" in listatext:
 if "or" not in listalf:
 missingor=missingor+1

syn=root[x].get(“synsetID”)#check the synsetID
 if syn not in listasynset:
 listasynset.append(syn)
 else:
 pass
 else:
 pass

else:
pass

 x=x+1
for s in listasynset:

synset.write(s+"\n")
synset.close()

print “I checked %d text-lf pairs“ %countcontrollate
print “AND is missing in %d cases" %missingand
print "OR is missing in %d cases" %missingor
print “There are %d LFs with conjunctions errors” %missingor

System Description

System C takes as input XWN (one pos file at time) and for each entry it gathers the
definition (first one if there are more than one) and its LF. Definitions are split into
tokens as well as LFs. The system deletes the first part of LFs (word+”->”), commas,
predicates and arguments. So for e.g. for the gloss of benthos:

<gloss pos="NOUN" synsetID="00004358">
 <synonymSet>benthos</synonymSet>
 <text>
 organisms (plants and animals) that live at or near the bottom of a
sea
 </text>
 . . .

�182

 <lft quality="SILVER">
 benthos:NN(x1) -> organism:NN(x1) live:VB(e1, x1, x26) at:IN(e1, x4)
near:IN(e1, x5) bottom:NN(x2) of:IN(x2, x3) sea:NN(x3)
 </lft>
</gloss>

the system compares:

text ['organisms', 'that', 'live', 'at', 'or', 'near', 'the',

'bottom', 'of', 'a', ‘sea']

with

lf ['organism', 'live', 'at', 'near', 'bottom', 'of', 'sea']

and checks if and or or are in the definition and not in the LF.
In this case it founds that or appears in the definition but is missing in the LF and counts
this case as a missing-or case. Furthermore, the system records the SynsetIds of those
LFs with missing conjunctions in order to count them (if a LF has tow cases of missing
conjunctions it is only one time).
The final output of the system has the structure:

I checked n text-lf pairs
AND is missing in n cases
OR is missing in n cases

There are n LFs with conjunctions errors

Final output in the Python Shell:  

�183

APPENDIX 6

SYSTEM D - RELATIVE ADVERBS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("POS.xml")
root=tree.getroot()
count1=0
count2=0
listatext=[]
listalf=[]
listasynset=[]
count=0
tx=[]
reladvs=["where","when","why","how","why"]
tag=0
gat=0

for element in root.iter(tag="gloss"):
 count=count+1
lenght=count
x=0

while x<lenght:
 text=root[x].find("text").text
 if ";" in text:#it takes only the firt definition, no examples
 tx=text.split(";")
 text1=tx[0]
 else:
 text1=text
 if "(" in text1:#delete content between brackets
 text2=re.sub("\(.*?\)", "", text1)
 listatext=text2.split()
 else:
 listatext=text1.split()
 for n in range(len(listatext)):
 if "," in listatext[n]:
 y=re.sub(",", "", listatext[n])
 listatext[n]=y
 else:
 pass
 lf=root[x].find("lft").text
 count1=count1+1
 lft=re.sub(".*?\-\>", "", lf)#delete word to define and ->
 lfts=re.sub("\:[A-Z]*\(.*?\)", "", lft)#delete predicates and arguments
 listalf=lfts.split()
 for adv in reladvs: #check if one adverb is in the definition but is missing in the LF
 if adv in listatext and adv not in listalf:
 for element in listalf:
 if "_" in element:

�184

 check=element.split("_")
 for token in check:
 if adv==token: #e.g. as_when
 tag=tag+1
 else:
 pass
 if tag<1:
 count2=count2+1

 syn=root[x].get(“synsetID”)
 if syn not in listasynset:
 listasynset.append(syn)
 else:

pass
 print "\n MISSING ADVERB \n %s" %syn, “\n listatext %s" %listatext, "\n

listalf %s" %listalf
 else:
 pass
 else:
 pass
 tag=0

 x=x+1

l=open(“synsets_missingradverbs_POS.txt”, “a”)
for syn in listasynset:

l.write(syn+”\n”)
l.close()

print "I checked %d" %count1, " lf-text pairs there are %d LFs with missing relative
adverbs" %count2

System Description

For each entry in XWN, the system compares the definition and its LF both divided into tokens.
In order to do not count as possible errors those adverbs transformed into LF attached to other
particles e.g.:

definition of halloo: shout `halloo', as when greeting someone
or attracting attention

LF: halloo:VB(e1, x1, x2) -> shout:VB(e1, x1, x2) halloo:NN(x2)
as_when:IN(e1, e5) greet:VB(e3, x1, x3) someone:NN(x3) or:CC(e5,
e3, e4) attract:VB(e4, x1, x4) attention:NN(x4)

the system checks both parts of compounds-tokens (as and when in this case).

The output is structured as following:

For each LF with missing relative adverb(s):

�185

an alert message saying MISSING ADVERB + synsetID of the gloss where missing adverb(s)
is/are found in the LF + definition tokens + LF tokens

at the end:

number of checked defintion-LF pairs + numebr of LFs with missing relative adverbs

The synsetsID of LFs with missing relative adverbs are recorder in a txt file I will use for the
correction.

Example of the output in the Python Shell - noun file:  

�186

APPENDIX 7

SYSTEM E - RANDOM SELECTION OF LFs

import xml.etree.ElementTree as ET
import re
from random import randint

tree=ET.parse("POS.xml")
root=tree.getroot()
lf=open("formelogichePOS.txt","a")
for element in root.iter(tag="lft"):
 x=element.text
 quality=element.attrib["quality"]
 lf.write("["+quality+"]"+x)
lf.close()

lf=open("formelogicheNN.txt").readlines()
listarandom=[]
begin=0
end=len(lf)-1
countgold=0
countsilver=0
countnormal=0
while countgold<=50 and countsilver<=50 and countnormal<=50:
 x=randint(begin,end)
 if x not in listarandom: #be sure the random number is
different
 if "[GOLD]" in lf[x] and countgold!=50:
 fiftygold=open("50goldNN.txt", "a")
 fiftygold.write(lf[x])
 fiftygold.close()
 countgold=countgold+1
 elif "[SILVER]" in lf[x] and countsilver!=50:
 fiftysilver=open("50silverNN.txt", "a")
 fiftysilver.write(lf[x])
 fiftysilver.close()
 countsilver=countsilver+1
 elif "[NORMAL]" in lf[x] and countnormal!=50:
 fiftynormal=open("50normalNN.txt", "a")
 fiftynormal.write(lf[x])
 fiftynormal.close()
 countnormal=countnormal+1
 else:
 pass
 else:
 pass

�187

System Description

As first thing, the system takes as input each XWN pos file (one per time) and considers each
LF and its quality.
It creates 4 pos files (.txt) where each line is structured as: quality of the LF + LF. E.g. from the
noun file:

[NORMAL] entity:NN(x1) -> that:IN(e1, e2) be:VB(e2, x1, e8) perceive:VB(e3, x3, x1)
or:CC(e7, e3, e4) know:VB(e4, x4, x1) or:CC(e8, e7, e5) infer:VB(e5, x5, x1) to:IN(e5, e6)
have:VB(e6, x1, x2) own:JJ(x2) distinct:JJ(x2) existence:NN(x2)
[NORMAL] thing:NN(x1) -> separate:JJ(x1) self-contained:JJ(x1) entity:NN(x1)
[GOLD] anything:NN(x1) -> thing:NN(x1) of:IN(x1, x2) any:JJ(x2) kind:NN(x2)
[GOLD] something:NN(x1) -> thing:NN(x1) of:IN(x1, x2) some:JJ(x2) kind:NN(x2)
[SILVER] nothing:NN(x1) -> nonexistent:JJ(x1) thing:NN(x1)

Then, the system randomly selects different LFs to estimate and saves them in different .txt files
which I used for the manual evaluation. During the random selection the system considers the
qualities of the LFs.
Here above the code for the selection of 50 gold 50 silver 50 normal LFs from the noun file.

�188

APPENDIX 8

SYSTEM F - LHS TAGGING MISTAKES IN THE NOUN FILE

import xml.etree.ElementTree as ET
import re

tree=ET.parse("noun.xml")
root=tree.getroot()
countVB=0
countJJ=0
countRB=0
countLF=0

for element in root.iter(tag="lft"):
 countLF=countLF+1
 lf=element.text
 y=lf.split("->")
 lhs=y[0]
 lhspos=re.search(r"\:.*\(", lhs).group()
 pos=lhspos[1:-1]
 if pos == "VB":
 countVB=countVB+1
 elif pos == "JJ":
 countJJ=countJJ+1
 elif pos == "RB":
 countRB=countRB+1
 else:
 pass

print "I checked %d LFs in the noun file and I found: \n %d
wrong VB LHS" %(countLF, countVB), "\n %d wrong JJ LHS"
%countJJ, "\n %d wrong RB LHS" %countRB

The output system in the Python Shell:

�189

APPENDIX 9

SYSTEM G - MISSING POSSESSIVE PRONOUNS

import xml.etree.ElementTree as ET
import re
root=tree.getroot()
count1=0
listatext=[]
listalf=[]
listatemp=[]
listasynset=[]
count=0
tx=[]
possessives=["its","their","my","our","mine","her","his"]
tag=0
gat=0

for element in root.iter(tag="gloss"):
 count=count+1
lenght=count
x=0

missingpp=open("missingppPOS.txt","a")
while x<lenght:
 text=root[x].find("text").text
 if ";" in text: #it takes only the first definition, no
examples
 tx=text.split(";")
 text1=tx[0]
 else:
 text1=text
 if "(" in text1: #delete content between brackets
 text2=re.sub("\(.*?\)", "", text1)
 listatext=text2.split()
 else:
 listatext=text1.split()
 for n in range(len(listatext)):
 if "," in listatext[n]:
 y=re.sub(",", "", listatext[n])
 listatext[n]=y
 else:
 pass
 lf=root[x].find("lft").text
 count1=count1+1
 lft=re.sub(".*?\-\>", "", lf) #delete word to define and ->
 lfts=re.sub(r"\(.*?\)", "", lft) #delete arguments
 splitlf=lfts.split()
 for eachelement in splitlf:
 wordpos=eachelement.split(":")
 listalf.append(wordpos)

�190

 for possessive in possessives:
 z=[possessive, 'POS']
 if possessive in listatext and z not in listalf:
 syn=root[x].get("synsetID")
 if syn not in listasynset:
 listasynset.append(syn)
 missingpp.write(syn+" "+possessive+lf[1:]+”\n”)
 else:
 pass
 x=x+1
 listalf=[]

missingpp.close()

print "\n I checked %d lf-text pairs there are %d LFs with
missing POS predicates" %(count1, len(listasynset))

System Description

Similarly to SystemC for missing conjunctions and SystemD for relative adverbs, SystemG
takes as input the XML structure of XWN and for each LF it builds a list of tuples word+pos
(predicate without arguments). It then checks each definition (divided in tokens) in XWN: if a
possessive pronoun is found in the definition and not in the corresponding LF the missing
possessive pronoun case is recorded in a txt file with the structure:

 
synsetID + missing possessive pronoun+ definition + LF

So, for e.g., for the gloss of tower, the system knows that there is a possessive pronoun in the
definition

a structure taller than its diameter

that is missing in the LF

tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2)
diameter:NN(x2)

comparing the tokens of the definitions:

['a', 'structure', 'taller', 'than', 'its', 'diameter']

with the tuples of the corresponding LF:

�191

[['structure', 'NN'], ['tall', 'JJ'], ['than', 'IN'],
['diameter', ‘NN']]

The system finds the missing case and records in the output file this entry as:

04287654 its
a structure taller than its diameter
tower:NN(x1) -> structure:NN(x1) tall:JJ(x1) than:IN(x1, x2)
diameter:NN(x2)
At the end of the process SystemG prints the number of checked LFs and the number of LFs
with missing possessive pronouns for each pos file.

The final output in the Python Shell:

Excerpt from the output file - adjective file:

00005114 its
being the most comprehensive of its class
 comprehensive:JJ(x1) -> be:VB(e1, x1, x2) most:RB(x4) comprehensive:JJ(x4) of:IN(e1, x2)
class:NN(x2)

00051022 its
being or pertaining to something added to a product to increase its value or price
 value-added:JJ(x1) -> be:VB(e1, x1) or:CC(e5, e1, e2) pertain:VB(e2, x1) to:IN(e2, x2)
something:NN(x2) add:VB(e3, x9, x2) to:IN(e3, x3) product:NN(x3) to:IN(e3, e4)
increase:VB(e4, x2, x7) value:NN(x4) or:CC(x7, x4, x5) price:NN(x5)

00063893 its
not decorated with something to increase its beauty or distinction

�192

 unadorned:JJ(x1) -> not:RB(e1) decorate:VB(e1, x8, x1) with:IN(e1, x2) something:NN(x2)
to:IN(x2, e2) increase:VB(e2, x2, x6) beauty:NN(x3) or:CC(x6, x3, x4) distinction:NN(x4)

00160893 their
used of persons or their behavior
 unashamed:JJ(x1) -> feel:VB(e1, x1, x2) no:JJ(x2) shame:NN(x2)

00218538 its
supporting no vertical weight other than its own
 nonbearing:JJ(x1) -> support:VB(e1, x1, x2) no:JJ(x2) vertical:JJ(x2) weight:NN(x2)
other_than:IN(x2, x4) own:JJ(x4)

00430582 their
used of British soldiers during the Revolutionary War because of their red coats
 red-coated:JJ(x1) -> use:VB(e1, x8, x1) of:IN(e1, x2) british:JJ(x2) soldier:NN(x2)
during:IN(e1, x3) revolutionary:NN(x3) war:NN(x4) because:IN(e1, x5) of:IN(e1, x5)
red:JJ(x5) coat:NN(x5)

�193

APPENDIX 10

SYTEM H - COUNTING NEGATIONS (IN DEFINITIONS)

import xml.etree.ElementTree as ET
import re

tree=ET.parse("POS.xml")
root=tree.getroot()
countnot=0
count=0
listatext=[]
listalf=[]
tx=[]
negations=["no","not","none","nothing","never","nor"]

for element in root.iter(tag="gloss"):
 count=count+1
lenght=count
x=0

while x<lenght:
 text=root[x].find("text").text
 if ";" in text: #it takes only the firt definition, no
examples
 tx=text.split(";")
 text1=tx[0]
 else:
 text1=text
 if "(" in text1: #delete content between brackets
 text2=re.sub("\(.*?\)", "", text1)
 listatext=text2.split()
 else:
 listatext=text1.split()
 for n in range(len(listatext)):
 if "," in listatext[n]:
 y=re.sub(",", "", listatext[n])
 listatext[n]=y
 else:
 pass
 for negation in negations:
 if negation in listatext:
 countnot=countnot+1
 else:
 pass
 x=x+1

print "I found %d negations in the noun file" %countnot

�194

System Description

SystemG divides each definition in tokens and search for negation markings. Eg for the gloss of
ball :

a pitch that is not in the strike zone; "he threw nine straight balls before the manager yanked
him"

the system takes only the definition (a pitch that is not in the strike zone) and splits it into
tokens:

['a', 'pitch', 'that', 'is', 'not', 'in', 'the', 'strike', ‘zone']

It counts not as negation marking.
I run the system for each pos XWN file and results are shown (how they appear in the Python
Shell) here below:

�195

APPENDIX 11

SYSTEM I - COUNTING MISSING NEGATION MARKINGS

import xml.etree.ElementTree as ET
import re

tree=ET.parse("POS.xml")
root=tree.getroot()
count1=0
listatext=[]
listalf=[]
listasynset=[]
count=0
tx=[]
negations=["no","not","none","nothing","never","nor"]
tag=0

for element in root.iter(tag="gloss"):
 count=count+1
lenght=count
x=0

while x<lenght:
 text=root[x].find("text").text
 if ";" in text: #it takes only the firt definition, no
examples
 tx=text.split(";")
 text1=tx[0]
 else:
 text1=text
 if "(" in text1: #delete content between brackets
 text2=re.sub("\(.*?\)", "", text1)
 listatext=text2.split()
 else:
 listatext=text1.split()
 for n in range(len(listatext)):
 if "," in listatext[n]:
 y=re.sub(",", "", listatext[n])
 listatext[n]=y
 else:
 pass
 lf=root[x].find("lft").text
 count1=count1+1
 lft=re.sub(".*?\-\>", "", lf) #delete word to define and ->
 lfts=re.sub("\:[A-Z]*\(.*?\)", "", lft) #delete predic and
arguments
 listalf=lfts.split()
 for negation in negations:
 if negation in listatext and negation not in listalf:
 syn=root[x].get("synsetID")

�196

 if syn not in listasynset:
 listasynset.append(syn)
 else:
 pass
 print "\n MISSING negation \n %s" %syn, "\n
listatext %s" %listatext, "\n listalf %s" %listalf
 else:
 pass
 x=x+1

print "\n I checked %d lf-text pairs there are %d LFs with
missing negation" %(count1,len(listasynset))

System Description

Just like SystemD for relative adverbs, SystemH compares each definition with its
corresponding LF. If a Negation Marking is found in the definition and not in the LF the system
counts it as missing negation marking and prints out SynsetID of the gloss, definition and LF.
E.g. SystemH’s output for the gloss of leakproof:

 MISSING negation
 02019151
 listatext ['having', 'no', 'leaks']
 listalf ['have', 'leak']

This time I didn't ask the system to record the missing cases in a txt file since they are a few and
I did not consider them as a common error to correct.
The system counts missing negation marking for each pos XWN file and the total number is <
50.
This result proves that XWN LFs are not affected by missing negations.

�197

APPENDIX 12

SYSTEM L - MISSING PREPOSITIONS

import xml.etree.ElementTree as ET
import re
tree=ET.parse("POS.xml")
root=tree.getroot()
countnoncontrollate=0
missingprep=0
listatext=[]
listalf=[]
synsetIDlist=[]
count=0
c=0
p=0
tx=[]
cont=0
countcontrollate=0
prepositions=["on","in","to","by","for","with","at","of","from",
"as","out"]
for element in root.iter(tag="gloss"):
 count=count+1
lenght=count
x=0

missprep=open("missingprepPOS.txt","a")

while x<lenght:
 text=root[x].find("text").text
 if ";" in text:#it takes only the first definition, no
examples
 tx=text.split(";")
 text1=tx[0]
 else:
 text1=text
 if "(" in text1:#delete content between brackets
 text2=re.sub("\(.*?\)", "", text1)
 listatext=text2.split()
 else:
 listatext=text1.split()
 for n in range(len(listatext)):
 if "," in listatext[n]:
 y=re.sub(",", "", listatext[n])
 listatext[n]=y
 else:
 pass
 lf=root[x].find("lft").text
 countcontrollate=countcontrollate+1
 lft=re.sub(".*?\-\>", "", lf)#delete word to define and ->

�198

 lfts=re.sub("\:[A-Z]*\(.*?\)", "", lft)#delete predicates
and arguments
 listalf=lfts.split()
 for token in listatext:
 if token in prepositions:
 p=p+1
 prep=token
 for tok in listalf:
 if tok == prep:
 cont=cont+1
 elif "_" in tok:
 z=tok.split("_")
 for s in z:
 if s==prep:
 cont=cont+1
 else:
 pass
 elif "-" in tok:
 z=tok.split("-")
 for s in z:
 if s==prep:
 cont=cont+1
 else:
 pass
 else:
 pass
 else:
 pass
 if p>0 and cont==0:
 syn=root[x].get("synsetID")
 if syn not in synsetIDlist:
 synsetIDlist.append(syn)
 c=c+1
 missprep.write(str(c)+" Missing Preposition: " +
prep + "\n" + "SynsetID: " + syn + "\n" + "Definition:

" + text1 + "\n" + "Logical Form: " + lft +
"\n\n")
 else:
 pass
 else:
 pass
 prep=''
 cont=0
 p=0
 x=x+1
missprep.close()

�199

System Description

Just like SystemC for conjunctions, For each XWN pos file, SystemL compares the first
defintion-LF pair of each gloss (divided into tokens).
If it founds a preposition in the definition which is not present in the LF, it considers this case as
a missing preposition and save the synsetID of the gloss in a txt file (if not already in it).
During the comparison definition-LF the system takes care of those compound words with
hyphens or underscores. It splits these words in different tokens and search for the preposition.
This is done in order to avoid false positives of missing prepositions which have been
transformed into LF as part of a phrasal verb, for e.g for the gloss of elaborate.:

<gloss pos="VERB" synsetID="00243111">
 <synonymSet>elaborate, work_out</synonymSet>
 <text> work out in detail; "elaborate a plan" </text>
 . . .
 <lft quality="GOLD">
 elaborate:VB(e1, x1, x2) -> work_out:VB(e1, x1, x4) in:IN(e1,
x3) detail:NN(x3) </lft>
</gloss>

SystemL checks both part of the word work_out.
The system records the results of the analysis in different txt files, one for each XWN pos file,
and for each missing case detected, it saves:

preposition missing + SynsetID + Definition + Logical Form

each entry is preceded by a growing number in order to count the cases.
Excerpt from the adjective output file:

220 Missing Preposition: by
SynsetID: 01326135
Definition:
 showing or motivated by sympathy and understanding and generosity
Logical Form:
 show:VB(e1, x1, x6) or:CC(e4, e1, e2) motivate:VB(e2, x6, x1) sympathy:NN(x2)
understanding:NN(x3) and:CC(x6, x2, x3, x4) generosity:NN(x4)

…

232 Missing Preposition: out
SynsetID: 01383285
Definition:
 spread out irregularly
Logical Form:
 spread:VB(e1, x4, x1) irregularly:RB(e1)

�200

233 Missing Preposition: out
SynsetID: 01383937
Definition:
 not extended or stretched out
Logical Form:
 not:RB(e3) extend:VB(e1, x4, x1) or:CC(e3, e1, e2) stretch:VB(e2, x5, x1)

�201

APPENDIX 13

THE PARSER

:- style_check(-singleton).

% or_CC(x8,x2,x3,x4,x5) - coordination of properties/entities
% or_CC(x6,x2,x3,x4) - coordination of properties/entities
% or_CC(x5,x2,x3) - coordination of properties/entities
% and_CC(e3,e1,e2) - coordination of predicates
% by_IN(e1,x2) - a preposition modifying a predicate and a
property/entity
% of_IN(x2,x3) - a preposition modifying two properties/entities
% to_IN(x6,e5) - a preposition modifying a property/entity and a
predicate (tendency to)
% to_TO(e2,e3) - a particle linking two predicates

% exist_VB(e1,x1), borrow_VB(e2,x1)

%xwn_lookup(File,NewXWn):-
% consult(File),
sxwn_lookup(File,WN,NewXWn):-
 consult(File),
 readrecursive(Wffs,Preds),
% tell(errs),
 consult(WN),
 readrecursiveWN(Syns),
 tell(new_xwn),
% newreadrecursiveWN(Syns),
% infnewreadrecursiveWN(Syns),
 createnewxwn(Wffs,Syns,Preds,NewXWn),
% told,
 writeall(NewXWn),
 told,
 !.

writeall([]):-!.
writeall([N-D|Diss]):-
 writenl(_,N-D),nl,
 writeall(Diss),
 !.

readrecursive(Sents,Feats):-
 findall(Pred,lf(Pred,Sent),Sents),
 findall(Sent,lf(Pred,Sent),Feats),
 !.
readrecursiveWN(Sents):-
 findall(ID-Syn,gloss_synsetID(ID,Syn),Sents),
 !.
newreadrecursiveWN(Sents):-

�202

 findall(Syn-ID,gloss_synsetID(ID,Syn),Sentss),
 sort(Sentss,Sents),
 tell(wnsort),
 writeall(Sents),
 told,
 !.
infnewreadrecursiveWN(Sents):-
 findall(Syn-ID,hypv(ID,Syn),Sentss),
 sort(Sentss,Sents),
 !.

% newcreatexwn(Sent,Feat,Vars,Predss,Out):-

createnewxwn([],Syns,[],[]):-!.
createnewxwn([Ind|Sents],Syns,[Feat|Feats],[Id-LF|NewVit]):-
 length(Feat,L),
% newcreaxwn(L,Feat,Feat,New),
 newcreaxwns(L,Feat,Feat,New),
 checklexicalpredicates(L,New,Feat,Lexs,Errs),
 transformnew(Feat,Lexs,LF),
% infnewappendsynset(Ind,Sents,Syns,Rest,Id),
% newappendsynset(Ind,Sents,Syns,Rest,Id),
 appendsynset(Ind,Sents,Syns,Rest,Id),
% hyfappendsynset(Ind,Sents,Syns,Rest,Id),
% creanewxwns(L,Feat,Feat,New),
% write(Ind),write(' '), write(L), write(' '),
% write(Errs),nl,
 writeqnl(_,Id-LF),nl,
 createnewxwn(Sents,Rest,Feats,NewVit),
 !.
createnewxwn([Ind|Sents],Syns,Feats,NewVit):-
 createnewxwn(Sents,Syns,Feats,NewVit),
 !.

infnewappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
 reconstr1(LF,Pre),
 (Sy=[[Pre|_]|_]
 ;
 Sy=[[_,Pre|_]|_]
 ;
 Sy=[[PreUp|_]|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 LF1=..[synset,ID,LF,Sy],
 (Sents=[LF|_],Syns=[Sec-_|_],Sec=[[Pre1|_]|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns];Rest=Syns),
 !.
infnewappendsynset(LF,Sents,Syns,Rest,LF1):-
 reconstr1(LF,Pre),

�203

 infgetsys(Pre,Sents,Syns,ID,Sy,Rest),
 LF1=..[synset,ID,LF,Sy],
 !.
infnewappendsynset(LF,Sents,Syns,Rest,LF1):-
 reconstr1(LF,Pre),
 mcon(Pre,ing,Pre1),
 infgetsys(Pre1,Sents,Syns,ID,Sy,Rest),
 LF1=..[synset,ID,LF,Sy],
 !.
infnewappendsynset(LF,Sents,Syns,Rest,LF1):-
 reconstr1(LF,Pre),
 mcon(Pre,s,Pre1),
 infgetsys(Pre1,Sents,Syns,ID,Sy,Rest),
 LF1=..[synset,ID,LF,Sy],
 !.

infgetsys(Pre,Sents,Syns,ID,Sy,Rest):-
 remove(Sy-ID,Syns,Res),
 (Sy=[[Pre|_]|_]
 ;
 Sy=[[_,Pre|_]|_]
 ;
 Sy=[[PreUp|_]|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 (Sents=[LF|_],Syns=[Sec-_|_],Sec=[[Pre1|_]|_],Pre1\=Pre,
 Rest=[Sy-ID|Res];Rest=Res),
 !.

newappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
 reconstr1(LF,Pre),
 (Sy=[Pre|_]
 ;
 Sy=[_,Pre|_]
 ;
 Sy=[PreUp|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 LF1=..[synset,ID,LF,Sy],
 (Sents=[LF|_],Syns=[Sec-_|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns];Rest=Syns),
 !.
newappendsynset(LF,Sents,Syns,Rest,LF1):-
 reconstr1(LF,Pre),
 getsys(Pre,Sents,Syns,ID,Sy,Rest),
 LF1=..[synset,ID,LF,Sy],
 !.

�204

getsys(Pre,Sents,Syns,ID,Sy,Rest):-
 remove(Sy-ID,Syns,Res),
 (Sy=[Pre|_]
 ;
 Sy=[_,Pre|_]
 ;
 Sy=[PreUp|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 (Sents=[LF|_],Syns=[Sec-_|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Res];Rest=Res),
 !.

hyfappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
 reconstr1(LF,Pre),
 (Sy=[Pre|_]
 ;
 Sy=[_,Pre|_]
 ;
 Sy=[PreUp|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 LF1=..[synset,ID,LF,Sy],
 LF=..[Pref|_],
 Sents=[LF2|_],
 LF2=..[Pref2|_],
 (LF=LF2,
% Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns]
 ;
 reconstr1(LF2,Pre2),
 tolower(Pre,LowP),
 LowP=Pre2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns]
 ;
 Pref=Pref2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns]
 ;
 Rest=Syns),
 !.
hyfappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
 reconstr1(LF,Pre),
 modifyending(Pre,Pre3),
 (Sy=[Pre3|_]
 ;
 Sy=[_,Pre|_]
 ;

�205

 Sy=[PreUp|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 LF1=..[synset,ID,LF,Sy],
 LF=..[Pref|_],
 Sents=[LF2|_],
 LF2=..[Pref2|_],
 (LF=LF2,
% Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns]
 ;
 reconstr1(LF2,Pre2),
 tolower(Pre,LowP),
 LowP=Pre2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns]
 ;
 Pref=Pref2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[Sy-ID|Syns]
 ;
 Rest=Syns),
 !.
hyfappendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
 append(Syns,[Sy-ID],Synss),
 hyfappendsynset(LF,Sents,Synss,Rest,LF1),
 !.

appendsynset(LF,Sents,[ID-Sy|Syns],Rest,LF1):-
%appendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
 reconstr1(LF,Pre),
 (Sy=[Pre|_]
 ;
 Sy=[_,Pre|_]
 ;
 Sy=[PreUp|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 LF1=..[synset,ID,LF,Sy],
 LF=..[Pref|_],
 Sents=[LF2|_],
 LF2=..[Pref2|_],
 (LF=LF2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[ID-Sy|Syns]
 ;
 reconstr1(LF2,Pre2),
 tolower(Pre,LowP),
 LowP=Pre2,

�206

 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[ID-Sy|Syns]
 ;
 Pref=Pref2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[ID-Sy|Syns]
 ;
 Rest=Syns),
 !.
appendsynset(LF,Sents,[ID-Sy|Syns],Rest,LF1):-
%appendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
 reconstr1(LF,Pre),
 modifyending(Pre,Pre3),
 (Sy=[Pre3|_]
 ;
 Sy=[_,Pre|_]
 ;
 Sy=[PreUp|_],
 atomic(PreUp),
 tolower(PreUp,Low),
 Low=Pre),
 LF1=..[synset,ID,LF,Sy],
 LF=..[Pref|_],
 Sents=[LF2|_],
 LF2=..[Pref2|_],
 (LF=LF2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[ID-Sy|Syns]
 ;
 reconstr1(LF2,Pre2),
 tolower(Pre,LowP),
 LowP=Pre2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[ID-Sy|Syns]
 ;
 Pref=Pref2,
 Syns=[_-Sec|_],Sec=[Pre1|_],Pre1\=Pre,
 Rest=[ID-Sy|Syns]
 ;
 Rest=Syns),
 !.
appendsynset(LF,Sents,[ID-Sy|Syns],Rest,LF1):-
%appendsynset(LF,Sents,[Sy-ID|Syns],Rest,LF1):-
% write(ID),write(' '),write(Sy),nl,nl,
 append(Syns,[Sy-ID],Synss),
 appendsynset(LF,Sents,Synss,Rest,LF1),
 !.

modifyending(Pre,Pre3):-
 stringof(List,Pre),
 reverse(List,[e|Rest]),

�207

 reverse([g,n,i|Rest],Pre3);
 mcon(Pre,ing,Pre3);
 mcon(Pre,s,Pre3),
 !.

reconstr1(Pre,Pred):-
 Pre=..[Pref|_],
 stringof(List,Pref),
 reverse(List,[A,B,'_'|Rev]),
 reverse(Rev,Lis),
 stringof(Lis,Pred),
 !.

transformnew([],[],[]):-!.
transformnew([LF|Feat],[Pred|Lexs],[NewLF|LFs]):-
 LF=..[Pre|C],
 Pred=Pre-C1,
 NewLF=Pre-C1,
 transformnew(Feat,Lexs,LFs),
 !.
transformnew([LF|Feat],Lexs,[LF|LFs]):-
 transformnew(Feat,Lexs,LFs),
 !.

checklexicalpredicates(L,[],Feat,[],[]):-!.
checklexicalpredicates(L,New,Feat,Out,Errs):-
 findall(Pre-D,(
 member(Pred,Feat),
 Pred=..[Pre,A,B|C],
 stringof(Lis,A),Lis=[e|_],
 D=[A,B|C]),Predd),
 Predd\=[],
 matchverbss(New,Feat,Predd,Out,Errs),
 !.
checklexicalpredicates(L,New,Feat,[],[]):-
 !.

matchverbss(New,Feat,Predd,Out,Errs):-
 matchverbs(New,Predd,Out,Err,Pass),
 append(Err,Pass,All),
 removeall(All,New,Errs),
 !.

removeall(Sent,[],[]):-!.
removeall(Sent,Tops,Rest):-
 remove(W,Sent,ResS),
 remove(W,Tops,ResT),
 removeall(ResS,ResT,Rest),
 !.
removeall(Sent,Tops,Tops):-
 !.

�208

matchverbs(New,[],[],[],[]):-!.
matchverbs(New,[Pre-Args|Predd],[Pre-Argg|Out],[Var|
Rest],Ergs):-
 reconstr(Pre,Pred),
 v(Pred,Cats),
 member(Var,New),
 member(Var,Args),
 stringof(Lis,Var),Lis=[E|_],E\=e,
 remove(Var,Args,Argg),
 matchverbs(New,Predd,Out,Rest,Ergs),
 !.
matchverbs(New,[Pre-Args|Predd],[Pre-Argg|Out],Ergs,[Var|
Rest]):-
 reconstr(Pre,Pred),
 \+ v(Pred,Cats),
 member(Var,New),
 member(Var,Args),
 stringof(Lis,Var),Lis=[E|_],E\=e,
 remove(Var,Args,Argg),
 matchverbs(New,Predd,Out,Ergs,Rest),
 !.
matchverbs(New,[Pre-Args|Predd],[Pre-Args|Out],Ergs,Rest):-
 matchverbs(New,Predd,Out,Ergs,Rest),
 !.
reconstr(Pre,Pred):-
 stringof(List,Pre),
 reverse(List,[A,B,'_'|Rev]),
 reverse(Rev,Lis),
 stringof(Lis,Pred),
 !.
newcreaxwns(L,Sent,Feat,Out):-
 findall(B,(
 member(Pred,Sent),
 Pred=..['NN'|B]),Predd1),
 findall(B,(
 member(Pred,Sent),
 (Pred=..[or_CC|B];
 Pred=..[and_CC|B])),Predd2),
 findall(D,(
 member(Pred,Sent),
 (Pred=..[Pre,A,B|C],
 stringof(Lis,A),Lis=[e|_],(A=e1,D=[B|
C];A\=e1,D=[A,B|C]);
 Pred=..[Pre,A,B|C],stringof(Lis,A),Lis=[x|_],
 (A=x1,D=[B|
C];A\=x1,D=[A,B|C]))),
 Predd3),
 findall(D,(
 member(Pred,Sent),
 Pred=..[Pre,A,B],D=[A,B]),Predd4),

�209

 appiattisci(Predd4,Pre4),
 sort(Pre4,Pre44),
 (member(e1,Pre44),remove(e1,Pre44,Pred4);
 Pred4=Pre44),
 append(Pre44,Predd1,Pred11),
 append(Pred11,Predd2,Predd),
 appiattisci(Predd,Preddas),
 sort(Preddas,Predda),
 append(Predd,Predd3,Preds1),
 append(Preds1,Pred4,Preds),
 appiattisci(Preds,Pres),
 sort(Pres,Predss),
 findall(B,(
 (member(Pred,Sent),
 Pred=..[Pre,B],B\=x1,B\=e1,B\=e0)
),Varss),
 sort(Varss,Vars),
 newcreatexwn(Sent,Predda,Vars,Predss,Out),
 !.

%evaluateintersect(Rest,Vars,[],Vars):-
% append(Rest,Vars,Out),
evaluateintersect([],[],[],[]):-!.
evaluateintersect(Rest,Vars,[],Out):-
 write('no intersection'),nl,
 append(Rest,Vars,Out),
 !.
evaluateintersect(Rest,Vars,Outs,Out):-
 Outs\=[],
% eliminateshared(Vars,Outs,Out),
 eliminateshared(Vars,Outs,Out1),
 eliminateshared(Rest,Outs,Out2),
 append(Out1,Out2,Out),
 !.
eliminateshared(Vars,Outs,Out):-
 member(X,Vars),
 member(X,Outs),
 remove(X,Outs,Rest),
 remove(X,Vars,Var),
 eliminateshared(Var,Rest,Out),
 !.
eliminateshared(Vars,[],Vars):-
 !.
eliminateshared(Vars,Outs,Out):-
 append(Outs,Vars,Out),
 !.
newcreatexwn(Sent,Feat,Vars,Predss,Out):-
 (remove(x1,Predss,Restt);Restt=Predss),
 (remove(e1,Restt,Rest);Rest=Restt),
 append(Feat,Vars,Varss),
 sort(Varss,Varrs),

�210

 (remove(x1,Varrs,Varr1);Varr1=Varrs),
 (remove(e1,Varr1,Varr);Varr=Varrs),
 intersection(Rest,Varr,Outs),
 evaluateintersect(Rest,Varr,Outs,Out),
 !.
newcreatexwn(Sent,Feat,[x1],Predss,[]):-!.
newcreatexwn(Sent,Feat,Vars,Predss,Out):-
 intersection(Predss,Vars,Outs),
 evaluateintersect(Predss,Vars,Outs,Out),
 !.
newcreatexwn(Sent,Feat,Vars,Predss,Vars):-
 Predss\=[],!.
newcreatexwn(Sent,Feat,Vars,Predss,Vars):-
 Predss=[],\+ member(x1,Vars),!.
newcreatexwn(Sent,Feat,Vars,[],[]):-!.

creanewxwns(L,Sent,Feat,Preds):-
 findall(Pred,(
 member(Pred,Sent),
 Pred=..['NN'|_]),Predd),
 Predd\=[], member(Pred,Predd),
 remove(Pred,Feat,Feat1),
 Pred=..['NN',A|B],
 reifycoord(xm,B,Predss),
 Coord=[coord(xm,A)],
 append(Predss,Coord,NewP),
 append(NewP,Feat1,New),
 creanewxwns(L,Sent,New,Preds),
 !.
creanewxwns(L,Sent,Feat,Preds):-
 findall(Pred,(
 member(Pred,Sent),
 (Pred=..[or_CC,A|B],Pre=or_CC;
 Pred=..[and_CC,A|B],Pre=or_CC)),Predd),
 Predd\=[], member(Pred,Predd),
 remove(Pred,Feat,Feat1),
 (Pred=..[or_CC,A|B],Pre=or_CC;
 Pred=..[and_CC,A|B],Pre=or_CC),
 reifycoord(xc,B,Predss),
 Pres=..[Pre,xc],
 Coord=[coord(xc,A),Pres],
 append(Predss,Coord,NewP),
 append(NewP,Feat1,New),
 creanewxwns(L,Sent,New,Preds),
 !.
/*
creanewxwns(L,[Pred|Sent],Feat,Preds):-
 creanewxwns(L,Sent,Feat,Preds),
 !.
*/

�211

creanewxwns(L,Sent,Feat,Preds):-
 creanewxwn(L,Feat,Preds),
 !.

reifycoord(First,[],[]):-!.
reifycoord(First,[Var|Pred],[New|Preds]):-
 New=coord(First,Var),
 reifycoord(First,Pred,Preds),
 !.

creanewxwn(L,[],[]):-!.

creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[not_RB,B],
 Pred1=[neg(B,xn),not(xn)],
 append(Pred1,Sent,Sent1),
 !,
 creanewxwn(L,Sent1,Preds),
 !.
creanewxwn(L,[Pred|Sent],[]):-
 Pred=..[A,e1,C],
 checkvariabless([C],Sent,New),
 New=[],
 !.
creanewxwn(L,[Pred|Sent],[]):-
 Pred=..[A,e1,C],
 checkvariabless([C],Sent,New),
 findall(W,(member(Pre,New),Pre=..[W,D1],D=D1),Ws),
 Ws=[],
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,e1,C],
 checkvariabless([C],Sent,New),
 findall(W,(member(Pre,New),Pre=..[W,D1],D=D1),Ws),
 Ws\=[],
 !,
 creanewxwn(L,[Pred|New],Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,e1,C],
 checkvariabless([C],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],[]):-
 Pred=..[A,e1,x1,D],
 checkvariabless([D],Sent,New),
 New=[],

�212

 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,e1,x1,D],
 checkvariabless([D],Sent,New),
 findall(W,(member(Pre,New),Pre=..[W,D1],D=D1),Ws),
 findall(W1,(member(Pre1,New),Pre1=..[W1,B,D1],D=D1),Ws1),
 findall(W2,(member(Pre2,New),Pre2=..[W2,D1,B],D=D1),Ws2),
 Ws=[],Ws1=[],Ws2=[],
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,e1,x1,D],
 checkvariabless([D],Sent,New),
 findall(W,(member(Pre,New),Pre=..[W,D]),Ws),
 findall(W1,(member(Pre1,New),Pre1=..[W1,B,D]),Ws1),
 findall(W2,(member(Pre2,New),Pre2=..[W2,D1,B],D=D1),Ws2),
 append(Ws,Ws1,Wss),
 (Wss\=[];Ws2\=[]),
 !,
 creanewxwn(L,[Pred|New],Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,e1,C,D],
 checkvariabless([C,D],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,e1,x1,D,E],
 checkvariabless([D,E],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,e1,C,D,E],
 checkvariabless([C,D,E],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,B,C],
 checkvariabless([B,C],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,B,C,D],
 checkvariabless([B,C,D],Sent,New),
 !,
 creanewxwn(L,New,Preds),

�213

 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,B,C,D,E],
 checkvariabless([B,C,D,E],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,B,C,D,E,F],
 checkvariables([B,C,D,E,F],Sent,New),
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,B,C,D,E,F,G],
 checkvariabless([B,C,D,E,F,G],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 Pred=..[A,B,C,D,E,F,G,H],
 checkvariabless([B,C,D,E,F,G,H],Sent,New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,[Pred|Sent],[Pred|New]):-
 atomic(Pred),
 creanewxwn(L,Sent,New),
 !.
creanewxwn(L,[Pred|Sent],New):-
 Pred=..[Attr,x1],
 creanewxwn(L,Sent,New),
 !.
creanewxwn(L,[Pred|Sent],Preds):-
 append(Sent,[Pred],New),
 !,
 creanewxwn(L,New,Preds),
 !.
creanewxwn(L,Preds,Preds):-!.

checkvariabless(Vars,Sent,[]):-
 collectallvarss(Sent,AllV),
 findall(Var,(member(Var,Vars),
 \+ member(Var,AllV)),Varr),
 Varr=[],
% checkvariables(Vars,Sent,Rest),
 !.
checkvariabless(Vars,Sent,Varr):-
 collectallvarss(Sent,AllV),
 findall(Var,(member(Var,Vars),
 \+ member(Var,AllV)),Varr),

�214

 Varr\=[],
 !.

collectallvarss(Sent,AllVs):-
 collectallvars(Sent,AllV),
 appiattisci(AllV,Alss),
 sort(Alss,AllVs),
 !.

collectallvars([],[]):-!.
collectallvars([Pred|Sent],[Vars|AllV]):-
 Pred=..[Ent|Vars],
 collectallvars(Sent,AllV),
 !.

checkvariable([],Sent,[]):-!.
checkvariable([B],[Pred|Sent],[]):-
 Pred=..[A,B],
 !.
checkvariable([B],[Pred|Sent],[]):-
 Pred=..[A,B|Vars],
 !.
checkvariable([B],[Pred|Sent],[]):-
 Pred=..[A,C,B|Vars],
 !.
checkvariable([B|Rest],[Pred|Sent],Rest):-
 Pred=..[A,B],
 !.
checkvariable([B|Rest],[Pred|Sent],Rest):-
 Pred=..[A,B|Vars],
 !.
checkvariable([C|Rest],[Pred|Sent],Rest):-
 Pred=..[A,B,C|Vars],
 !.
checkvariable([D|Rest],[Pred|Sent],Rest):-
 Pred=..[A,B,C,D|Vars],
 !.
checkvariable([E|Rest],[Pred|Sent],Rest):-
 Pred=..[A,B,C,D,E|Vars],
 !.
checkvariable([F|Rest],[Pred|Sent],Rest):-
 Pred=..[A,B,C,D,E,F|Vars],
 !.

checkvariables([],Sent,[]):-!.
checkvariables([B],[Pred|Sent],Sent):-
 Pred=..[A,B],
 !.
checkvariables([B],[Pred|Sent],Sent):-
 Pred=..[A,B|Vars],

�215

 !.
checkvariables([B],[Pred|Sent],Sent):-
 Pred=..[A,C,B|Vars],
 !.
checkvariables([B|Rest],[Pred|Sent],New):-
 Pred=..[A,B],
 !,
 checkvariables(Rest,Sent,New),
 !.
checkvariables([B|Rest],[Pred|Sent],New):-
 Pred=..[A,B|Vars],
% Pred1=..[A|Vars],
 !,
 checkvariables(Rest,[Pred|Sent],New),
 !.
checkvariables([C|Rest],[Pred|Sent],New):-
 Pred=..[A,B,C|Vars],
% Pred1=..[A,B|Vars],
 !,
 checkvariables(Rest,[Pred|Sent],New),
 !.
checkvariables([D|Rest],[Pred|Sent],New):-
 Pred=..[A,B,C,D|Vars],
% Pred1=..[A,B,C|Vars],
 !,
 checkvariables(Rest,[Pred|Sent],New),
 !.
checkvariables([E|Rest],[Pred|Sent],New):-
 Pred=..[A,B,C,D,E|Vars],
% Pred1=..[A,B,C,D|Vars],
 !,
 checkvariables(Rest,[Pred|Sent],New),
 !.
checkvariables([F|Rest],[Pred|Sent],New):-
 Pred=..[A,B,C,D,E,F|Vars],
% Pred1=..[A,B,C,D,E|Vars],
 !,
 checkvariables(Rest,[Pred|Sent],New),
 !.
checkvariables(Rest,[Pred|Sent],New):-
 Sent=[Pred1|Sent1],
 (Pred=..[A,B],
 checkvariable(Rest,Sent,Vars),
 !,
 checkvariables(Vars,Sent,New)
 ;
% \+ Pred=..[A,B],
 !,
 append(Sent1,[Pred],Preds),
 checkvariables(Rest,[Pred1|Preds],New)
),

�216

 !.
checkvariables(Rest,Sent,Rest):-
 !.

/*
lf(independent_JJ(x1),
[not_RB(e2),dependent_on_JJ(x4),condition_VB(e1,x5,x1),by_IN(e1,
x5),or_CC(e2,e1),relative_JJ(x2),to_IN(e2,x2),anything_NN(x2),el
se_JJ(x2)]).
lf(independent_JJ(x1),
[not_RB(e3),dependent_on_JJ(e1,x1,x2),condition_NN(x2),by_IN(x2,
x4),or_CC(e3,e1,e2),relative_JJ(e2,x1,e4),to_IN(e4,x4),anything_
NN(x4),else_JJ(x4)]).

*/

�217

APPENDIX 14

PARSER - INPUT FILE - NOUN SYNSETID+SYNSET

gloss_synsetID(100001740,[entity]).
gloss_synsetID(100002056,[thing]).
gloss_synsetID(100002342,[anything]).
gloss_synsetID(100002452,[something]).
gloss_synsetID(100002560,[nothing,nonentity]).
gloss_synsetID(100002645,[whole,whole_thing,unit]).
gloss_synsetID(100003009,[living_thing,animate_thing]).
gloss_synsetID(100003226,[organism,being]).
gloss_synsetID(100004358,[benthos]).
gloss_synsetID(100004483,[heterotroph]).
gloss_synsetID(100004609,[life]).
gloss_synsetID(100004740,[biont]).
gloss_synsetID(100004824,[cell]).
gloss_synsetID(100005598,[causal_agent,cause,causal_agency]).
gloss_synsetID(100006026,
[person,individual,someone,somebody,mortal,human,soul]).
gloss_synsetID(100012748,
[animal,animate_being,beast,brute,creature,fauna]).
gloss_synsetID(100014510,[plant,flora,plant_life]).
gloss_synsetID(100016236,[object,physical_object]).
gloss_synsetID(100017087,[natural_object]).
gloss_synsetID(100017572,[substance,matter]).
gloss_synsetID(100018827,[food,nutrient]).
gloss_synsetID(100019244,[artifact,artefact]).
gloss_synsetID(100020136,[article]).
gloss_synsetID(100020333,[psychological_feature]).
gloss_synsetID(100020486,[abstraction]).
gloss_synsetID(100020729,[cognition,knowledge,noesis]).
gloss_synsetID(100021213,[motivation,motive,need]).
gloss_synsetID(100021668,[feeling]).
gloss_synsetID(100022625,[location]).
gloss_synsetID(100023103,[shape,form]).
gloss_synsetID(100023548,[time]).
gloss_synsetID(100023929,[space]).
gloss_synsetID(100024197,[absolute_space]).
gloss_synsetID(100024304,[phase_space]).
gloss_synsetID(100024568,[state]).
gloss_synsetID(100025950,[event]).
gloss_synsetID(100026194,[act,human_action,human_activity]).
gloss_synsetID(100026769,[group,grouping]).
gloss_synsetID(100027371,[possession]).
gloss_synsetID(100027563,[attribute]).
gloss_synsetID(100027929,[relation]).
gloss_synsetID(100028549,[social_relation]).
gloss_synsetID(100028764,[communication]).
gloss_synsetID(100029305,[measure,quantity,amount]).
gloss_synsetID(100029881,[phenomenon]).  

�218

APPENDIX 15

PARSER - INPUT FILE - LOGICAL FORMS

entity:NN(x1) -> that:IN(e1, e2) be:VB(e2, x1, e8)
perceive:VB(e3, x3, x1) or:CC(e7, e3, e4) know:VB(e4, x4, x1)
or:CC(e8, e7, e5) infer:VB(e5, x5, x1) to:IN(e5, e6) have:VB(e6,
x1, x2) own:JJ(x2) distinct:JJ(x2) existence:NN(x2)
thing:NN(x1) -> separate:JJ(x1) self-contained:JJ(x1)
entity:NN(x1)
anything:NN(x1) -> thing:NN(x1) of:IN(x1, x2) any:JJ(x2)
kind:NN(x2)
something:NN(x1) -> thing:NN(x1) of:IN(x1, x2) some:JJ(x2)
kind:NN(x2)
nothing:NN(x1) -> nonexistent:JJ(x1) thing:NN(x1)
whole:NN(x1) -> assemblage:NN(x1) of:IN(x1, x2) parts:NN(x2)
be:VB(e1, x2, e2) regard:VB(e2, x4, x2) as:IN(e2, x3)
single:JJ(x3) entity:NN(x3)
living_thing:NN(x1) -> live:VB(e1, x1, x1) entity:NN(x1)
organism:NN(x1) -> live:VB(e1, x1, x1) thing:NN(x1) have:VB(e2,
x1, x2) ability:NN(x2) to:IN(x2, e5) act:VB(e3, x2, x26)
or:CC(e5, e3, e4) function:VB(e4, x2, x26) independently:RB(e4)
benthos:NN(x1) -> organism:NN(x1) live:VB(e1, x1, x26) at:IN(e1,
x4) near:IN(e1, x5) bottom:NN(x2) of:IN(x2, x3) sea:NN(x3)
heterotroph:NN(x1) -> organism:NN(x1) depend:VB(e1, x1, x26)
on:IN(e1, x2) complex:JJ(x2) organic:JJ(x2) substance:NN(x2)
for:IN(x2, x3) nutrition:NN(x3)
life:NN(x1) -> living:JJ(x1) thing:NN(x1) collectively:RB(e1)
biont:NN(x1) -> discrete:JJ(x1) unit:NN(x1) of:IN(x1, x2)
living:JJ(x2) matter:NN(x2)
cell:NN(x1) -> basic:JJ(x1) structural:JJ(x1) functional:JJ(x1)
unit:NN(x1) of:IN(x1, x2) all:JJ(x2) organism:NN(x2)
cell:NN(x1) -> cell:NN(x1) exist:VB(e1, x1, x26) as:IN(e1, x2)
independent:JJ(x2) unit:NN(x2) of:IN(x2, x3) life:NN(x3)
or:CC(e3, e1, e2) form:VB(e2, x1, x8) colony:NN(x4) or:CC(x8,
x4, x5) tissue:NN(x5) as:IN(x8, x9) in:IN(x8, x9) higher:JJ(x9)
plant:NN(x6) and:CC(x9, x6, x7) animal:NN(x7)
causal_agent:NN(x1) -> any:JJ(x1) entity:NN(x1) cause:VB(e1, x1,
x2) event:NN(x2) to:IN(x2, e2) happen:VB(e2, x2, x26)
person:NN(x1) -> human_being:NN(x1)
animal:NN(x1) -> living:JJ(x1) organism:NN(x1) be:VB(e1, x1, x2)
characterized:JJ(x2) by:IN(e1, x3) voluntary:JJ(x3)
movement:NN(x3)
plant:NN(x1) -> living:JJ(x1) organism:NN(x1) lack:VB(e1, x1,
x2) power:NN(x2) of:IN(x2, x3) locomotion:NN(x3)
object:NN(x1) -> tangible:JJ(x1) visible:JJ(x1) entity:NN(x1)
object:NN(x1) -> entity:NN(x1) cast:VB(e1, x1, x2) shadow:NN(x2)
natural_object:NN(x1) -> object:NN(x1) occur:VB(e1, x1, x2)
naturally:RB(e1)
natural_object:NN(x1) -> not:RB(e1) make:VB(e1, x2, x1)
man:NN(x2)  

�219

APPENDIX 16

SYSTEM M - PNs ERRORS

fstr = open("Synsets.txt","r").read()
frasi=fstr.split()
lunghezza=len(frasi)
prova=""
x=0
y=1
lista=[]
termini=[]
while y<lunghezza:
 frase=frasi[x].split(",")
 check=frasi[y].split(",")
 if frase[0]!=check[0] and frase[1]==check[1]:
 errori=open("SynsetsSegnati.txt","a")
 errori.write("*"+frasi[x]+"\n")
 errori.close()
 if frase[1].lower() not in lista: #the list is
lowercased
 lista.append(frase[1].lower())
 else:
 lista=lista
 else:
 errori=open("SynsetsSegnati.txt","a")
 errori.write(frasi[x]+"\n")
 errori.close()
 x=x+1
 y=y+1
for i in lista:
 termini.append(i[2:-1]) #cleaning the list from brackets
for w in range(len(termini)):
 if "']" in termini[w]:
 d=list(termini[w])
 d.remove("'")
 d.remove("]")
 c=''.join(d)
 termini[w]=c
 else:
 pass
for w in termini:
 l=open("ListaTermini.txt","a")
 l.write(w+"\n")
 l.close()
#now the LFs
f = open("LF.txt","r").read()
fr=f.split()
lenght=len(fr)
a=0
count=0

�220

while a<lenght:
 s=fr[a].split("(")
 d=s[1]
 if d.count("_")>1:
 #es meyer_guggenheim_NN
 test=d.split("_")
 for w in test:
 if w in termini:
 count=count+1
 else:
 count=count
 if count>0:
 lfsegnate=open("LFPROVA.txt","a")
 lfsegnate.write("*"+fr[a]+"\n")
 lfsegnate.close()
 else:
 lfsegnate=open("LFPROVA.txt","a")
 lfsegnate.write(fr[a]+"\n")
 lfsegnate.close()
 else:
 #es guarneri_NN
 if d[:-3] in termini:
 lfsegnate=open("LFPROVA.txt","a")
 lfsegnate.write("*"+fr[a]+"\n")
 lfsegnate.close()
 else:
 lfsegnate=open("LFPROVA.txt","a")
 lfsegnate.write(fr[a]+"\n")
 lfsegnate.close()
 count=0
 a=a+1  

�221

APPENDIX 17

SYNSETID+SYNSET INPUT FILE - PNs

gloss_synsetID(110441921,
['Mayakovski','Vladimir_Vladimirovich_Mayakovski'])
gloss_synsetID(110442065,
['Mayer','Louis_B_Mayer','Louis_Burt_Mayer'])
gloss_synsetID(110442275,['Mayer','Marie_Goeppert_Mayer'])
gloss_synsetID(110442455,
['Mays','Willie_Mays','Willie_Howard_Mays_Jr_','the_Say_Hey_Kid'
])
gloss_synsetID(110442607,['Mazzini','Giuseppe_Mazzini'])
gloss_synsetID(110442783,
['McCarthy','Joseph_McCarthy','Joseph_Raymond_McCarthy'])
gloss_synsetID(110442979,
['McCarthy','Mary_McCarthy','Mary_Therese_McCarthy'])
gloss_synsetID(110443138,
['McCartney','Paul_McCartney','Sir_James_Paul_McCartney'])
gloss_synsetID(110443402,
['McCauley','Mary_McCauley','Mary_Ludwig_Hays_McCauley','Molly_P
itcher'])
gloss_synsetID(110443696,['McCormick','John_McCormick'])
gloss_synsetID(110443827,
['McCormick','Cyrus_McCormick','Cyrus_Hall_McCormick'])
gloss_synsetID(110444019,
['McCullers','Carson_McCullers','Carson_Smith_McCullers'])
gloss_synsetID(110444153,
['McGraw','John_McGraw','John_Joseph_McGraw'])
gloss_synsetID(110444312,['McGuffey','William_Holmes_McGuffey'])
gloss_synsetID(110444470,['McKim','Charles_Follen_McKim'])
gloss_synsetID(110444593,
['McKinley','William_McKinley','President_McKinley'])
gloss_synsetID(110444769,
['McLuhan','Marshall_McLuhan','Herbert_Marshall_McLuhan'])
gloss_synsetID(110444937,['McMaster','John_Bach_McMaster'])
gloss_synsetID(110445115,['McPherson','Aimee_Semple_McPherson'])
gloss_synsetID(110445294,['Mead','George_Herbert_Mead'])
gloss_synsetID(110445418,['Mead','Margaret_Mead'])
gloss_synsetID(110445607,['Meade','George_Gordon_Meade'])
gloss_synsetID(110445772,['Meade','James_Edward_Meade'])
gloss_synsetID(110445934,['Meany','George_Meany'])
gloss_synsetID(110446082,
['Medawar','Peter_Medawar','Sir_Peter_Brian_Medawar'])
gloss_synsetID(110446325,['Meiji_Tenno','Mutsuhito'])
gloss_synsetID(110446465,['Meir','Golda_Meir'])
gloss_synsetID(110446575,['Meissner','Fritz_W_Meissner'])
gloss_synsetID(110446678,['Meissner','Georg_Meissner'])
gloss_synsetID(110446778,['Meitner','Lise_Meitner'])
gloss_synsetID(110447014,
['Melanchthon','Philipp_Melanchthon','Philipp_Schwarzerd'])

�222

gloss_synsetID(110447207,
[‘Melba','Dame_Nellie_Melba','Helen_Porter_Mitchell'])
gloss_synsetID(110447342,['Melchior'])
gloss_synsetID(110447571,
['Melchior','Lauritz_Melchior','Lauritz_Lebrecht_Hommel_Melchior
'])
gloss_synsetID(110447768,
['Mellon','Andrew_Mellon','Andrew_W_Mellon','Andrew_William_Mell
on'])
gloss_synsetID(110447952,['Melville','Herman_Melville'])
gloss_synsetID(110448085,['Menander'])
gloss_synsetID(110448186,
['Mencken','H_L_Mencken','Henry_Louis_Mencken'])
gloss_synsetID(110448352,
['Mendel','Gregor_Mendel','Johann_Mendel'])
gloss_synsetID(110448608,
['Mendeleyev','Mendeleev','Dmitri_Mendeleyev','Dmitri_Mendeleev'
,'Dmitri_Ivanovich_Mendeleyev','Dmitri_Ivanovich_Mendeleev'])
gloss_synsetID(110448910,['Mendelsohn','Erich_Mendelsohn'])
gloss_synsetID(110449048,
['Mendelssohn','Felix_Mendelssohn','Jakob_Ludwig_Felix_Mendelsso
hn-Bartholdy'])
gloss_synsetID(110449249,['Meniere','Prosper_Meniere'])
gloss_synsetID(110449483,
['Menninger','Charles_Menninger','Charles_Frederick_Menninger'])
gloss_synsetID(110449691,
['Menninger','Karl_Menninger','Karl_Augustus_Menninger'])
gloss_synsetID(110449857,
['Menninger','William_Menninger','William_Claire_Menninger'])
gloss_synsetID(110450027,['Menotti','Gian_Carlo_Menotti'])
gloss_synsetID(110450165,
['Menuhin','Yehudi_Menuhin','Sir_Yehudi_Menuhin'])
gloss_synsetID(110450367,
['Mercator','Gerardus_Mercator','Gerhard_Kremer'])
gloss_synsetID(110450568,['Mercer','John_Mercer'])
gloss_synsetID(110450727,['Merckx','Eddy_Merckx'])
gloss_synsetID(110450869,
['Mercouri','Melina_Mercouri','Anna_Amalia_Mercouri'])
gloss_synsetID(110450995,['Meredith','George_Meredith'])
gloss_synsetID(110451123,
['Meredith','James_Meredith','James_Howard_Meredith'])
gloss_synsetID(110451347,['Mergenthaler','Ottmar_Mergenthaler'])
gloss_synsetID(110451504,[‘Merlin'])
gloss_synsetID(110451642,['Merman','Ethel_Merman'])
gloss_synsetID(110451783,
['Merton','Robert_Merton','Robert_King_Merton'])
gloss_synsetID(110451910,['Merton','Thomas_Merton'])
gloss_synsetID(110452043,
['Mesmer','Franz_Anton_Mesmer','Friedrich_Anton_Mesmer'])

�223

APPENDIX 18

SYNSETID+SYNSET OUTPUT FILE - PNs

gloss_synsetID(110441921,
['Mayakovski','Vladimir_Vladimirovich_Mayakovski'])
*gloss_synsetID(110442065,
['Mayer','Louis_B_Mayer','Louis_Burt_Mayer'])
gloss_synsetID(110442275,['Mayer','Marie_Goeppert_Mayer'])
gloss_synsetID(110442455,
['Mays','Willie_Mays','Willie_Howard_Mays_Jr_','the_Say_Hey_Kid'
])
gloss_synsetID(110442607,['Mazzini','Giuseppe_Mazzini'])
*gloss_synsetID(110442783,
['McCarthy','Joseph_McCarthy','Joseph_Raymond_McCarthy'])
gloss_synsetID(110442979,
['McCarthy','Mary_McCarthy','Mary_Therese_McCarthy'])
gloss_synsetID(110443138,
['McCartney','Paul_McCartney','Sir_James_Paul_McCartney'])
gloss_synsetID(110443402,
['McCauley','Mary_McCauley','Mary_Ludwig_Hays_McCauley','Molly_P
itcher'])
*gloss_synsetID(110443696,['McCormick','John_McCormick'])
gloss_synsetID(110443827,
['McCormick','Cyrus_McCormick','Cyrus_Hall_McCormick'])
gloss_synsetID(110444019,
['McCullers','Carson_McCullers','Carson_Smith_McCullers'])
gloss_synsetID(110444153,
['McGraw','John_McGraw','John_Joseph_McGraw'])
gloss_synsetID(110444312,['McGuffey','William_Holmes_McGuffey'])
gloss_synsetID(110444470,['McKim','Charles_Follen_McKim'])
gloss_synsetID(110444593,
['McKinley','William_McKinley','President_McKinley'])
gloss_synsetID(110444769,
['McLuhan','Marshall_McLuhan','Herbert_Marshall_McLuhan'])
gloss_synsetID(110444937,['McMaster','John_Bach_McMaster'])
gloss_synsetID(110445115,['McPherson','Aimee_Semple_McPherson'])
*gloss_synsetID(110445294,['Mead','George_Herbert_Mead'])
gloss_synsetID(110445418,['Mead','Margaret_Mead'])
*gloss_synsetID(110445607,['Meade','George_Gordon_Meade'])
gloss_synsetID(110445772,['Meade','James_Edward_Meade'])
gloss_synsetID(110445934,['Meany','George_Meany'])
gloss_synsetID(110446082,
['Medawar','Peter_Medawar','Sir_Peter_Brian_Medawar'])
gloss_synsetID(110446325,['Meiji_Tenno','Mutsuhito'])
gloss_synsetID(110446465,['Meir','Golda_Meir'])
*gloss_synsetID(110446575,['Meissner','Fritz_W_Meissner'])
gloss_synsetID(110446678,['Meissner','Georg_Meissner'])
gloss_synsetID(110446778,['Meitner','Lise_Meitner'])

�224

gloss_synsetID(110447014,
['Melanchthon','Philipp_Melanchthon','Philipp_Schwarzerd'])
gloss_synsetID(110447207,
['Melba','Dame_Nellie_Melba','Helen_Porter_Mitchell'])
gloss_synsetID(110447342,['Melchior'])
gloss_synsetID(110447571,
['Melchior','Lauritz_Melchior','Lauritz_Lebrecht_Hommel_Melchior
'])
gloss_synsetID(110447768,
['Mellon','Andrew_Mellon','Andrew_W_Mellon','Andrew_William_Mell
on'])
gloss_synsetID(110447952,['Melville','Herman_Melville'])
gloss_synsetID(110448085,['Menander'])
gloss_synsetID(110448186,
['Mencken','H_L_Mencken','Henry_Louis_Mencken'])
gloss_synsetID(110448352,
['Mendel','Gregor_Mendel','Johann_Mendel'])
gloss_synsetID(110448608,
['Mendeleyev','Mendeleev','Dmitri_Mendeleyev','Dmitri_Mendeleev'
,'Dmitri_Ivanovich_Mendeleyev','Dmitri_Ivanovich_Mendeleev'])
gloss_synsetID(110448910,['Mendelsohn','Erich_Mendelsohn'])
gloss_synsetID(110449048,
['Mendelssohn','Felix_Mendelssohn','Jakob_Ludwig_Felix_Mendelsso
hn-Bartholdy'])
gloss_synsetID(110449249,['Meniere','Prosper_Meniere'])
*gloss_synsetID(110449483,
['Menninger','Charles_Menninger','Charles_Frederick_Menninger'])
*gloss_synsetID(110449691,
['Menninger','Karl_Menninger','Karl_Augustus_Menninger'])
gloss_synsetID(110449857,
['Menninger','William_Menninger','William_Claire_Menninger'])
gloss_synsetID(110450027,['Menotti','Gian_Carlo_Menotti'])
gloss_synsetID(110450165,
['Menuhin','Yehudi_Menuhin','Sir_Yehudi_Menuhin'])
gloss_synsetID(110450367,
['Mercator','Gerardus_Mercator','Gerhard_Kremer'])
gloss_synsetID(110450568,['Mercer','John_Mercer'])
gloss_synsetID(110450727,['Merckx','Eddy_Merckx'])
gloss_synsetID(110450869,
['Mercouri','Melina_Mercouri','Anna_Amalia_Mercouri'])
*gloss_synsetID(110450995,['Meredith','George_Meredith'])
gloss_synsetID(110451123,
['Meredith','James_Meredith','James_Howard_Meredith'])
gloss_synsetID(110451347,['Mergenthaler','Ottmar_Mergenthaler'])
gloss_synsetID(110451504,['Merlin'])
gloss_synsetID(110451642,['Merman','Ethel_Merman'])
*gloss_synsetID(110451783,
['Merton','Robert_Merton','Robert_King_Merton'])
gloss_synsetID(110451910,['Merton','Thomas_Merton'])

�225

APPENDIX 19

EXTRACT FROM THE OUTPUT - LIST OF PNs

[…]
marx
mason
mayer
mccarthy
mccormick
mead
meade
meissner
menninger
meredith
merton
mill
miller
mitchell
mitford
monroe
montgolfier
montgomery
moody
moore
morgan
morris
morrison
muller
murdoch
murray
newman
niebuhr
noguchi
norman
oates
owen
page
paine
parker
parkinson
paul
peirce
percy
perry
philemon
philip_ii
pitt
pliny
porter
[…]  

�226

APPENDIX 20

LF INPUT FILE - PNs

lf(mayakovski_NN(x1),[soviet_JJ(x1),poet_NN(x1)])
lf(mayakovski_NN(x1),
[leader_NN(x1),of_IN(x1,x2),russian_JJ(x2),futurism_NN(x2)])
lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])
lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f
or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])
lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)])
lf(mazzini_NN(x1),
[italian_JJ(x4),nationalist_JJ(x5),writings_NN(x1),spur_VB(e1,x6
,x1),movement_NN(x2),for_IN(x2,x3),unified_JJ(x3),independent_JJ
(x3),italy_NN(x3)])
lf(mccarthy_NN(x1),
[united_NN(x1),state_NN(x2),politician_NN(x3),unscrupulously_RB(
e1),accuse_VB(e1,x1,x4),many_JJ(x4),citizen_NN(x4),of_IN(e1,x5),
communist_NN(x5)])
lf(mccarthy_NN(x1),
[united_NN(x2),state_NN(x3),satirical_JJ(x1),novelist_NN(x4),and
_CC(x1,x2,x3,x4,x5),literary_JJ(x1),critic_NN(x5)])
lf(mccartney_NN(x1),
[english_NN(x2),rock_NN(x3),star_NN(x4),bass_NN(x5),guitarist_NN
(x6),and_CC(x1,x2,x3,x4,x5,x6,x7),songwriter_NN(x7),with_IN(x1,x
8),john_NN(x8),lennon_NN(x9),write_VB(e1,x8,x10),most_JJ(x12),of
_IN(e1,x10),music_NN(x10),for_IN(x10,x11),beatles_NN(x11)])
lf(mccauley_NN(x1),
[heroine_NN(x1),of_IN(x1,x2),american_NN(x2),revolution_NN(x3),c
arry_VB(e1,x2,x4),water_NN(x4),to_IN(e1,x5),soldier_NN(x5),durin
g_IN(e1,x6),battle_NN(x6),of_IN(x6,x7),monmouth_NN(x7),court_NN(
x8),house_NN(x9),and_CC(e5,e1,e2),take_VB(e2,x2,e3),over_IN(e2,x
10),'husband-
s_NN'(x10),gun_NN(x11),be_VB(e3,x2,e4),overcome_VB(e4,x12,x2),by
_IN(e4,x12),heat_NN(x12)])
lf(mccormick_NN(x1),
[united_NN(x1),state_NN(x2),operatic_JJ(x1),tenor_NN(x3)])
lf(mccormick_NN(x1),
[united_NN(x2),state_NN(x3),inventor_NN(x4),and_CC(x1,x2,x5),man
ufacturer_NN(x5),of_IN(x1,x6),mechanical_JJ(x6),harvester_NN(x6)
])
lf(mccullers_NN(x1),
[united_NN(x1),state_NN(x2),novelist_NN(x3)])

�227

lf(mcgraw_NN(x1),
[united_NN(x2),state_NN(x3),baseball_NN(x4),player_NN(x5),and_CC
(x1,x2,x6),manager_NN(x6)])
lf(mcguffey_NN(x1),
[united_NN(x1),state_NN(x2),educator_NN(x3),compile_VB(e1,x1,x4)
,mcguffey_NN(x4),eclectic_JJ(x4),reader_NN(x5)])
lf(mckim_NN(x1),
[united_NN(x1),state_NN(x2),neoclassical_JJ(x1),architect_NN(x3)
])
lf(mckinley_NN(x1),
['25th_JJ'(x1),president_of_the_united_states_NN(x1)])
lf(mckinley_NN(x1),[assassinate_VB(e1,x2,x1),anarchist_NN(x2)])
lf(mcluhan_NN(x1),
[canadian_JJ(x1),writer_NN(x1),note_VB(e1,x4,x1),for_IN(e1,x2),h
is_POS(x2,x1),analysis_NN(x2),of_IN(x2,x3),mass_media_NN(x3)])
lf(mcmaster_NN(x1),
[united_NN(x1),state_NN(x2),historian_NN(x3),write_VB(e1,x1,x4),
nine_JJ(x4),volume_NN(x4),history_NN(x5),of_IN(x4,x6),people_NN(
x6),of_IN(x4,x7),united_NN(x7),state_NN(x8)])
lf(mcpherson_NN(x1),
[united_NN(x1),state_NN(x2),evangelist_NN(x3),note_VB(e1,x5,x1),
for_IN(e1,x4),extravagant_JJ(x4),religious_JJ(x4),services_NN(x4
)])
lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),philosopher_NN(x3),of_IN(x1,x4),prag
matism_NN(x4)])
lf(mead_NN(x1),
[be_VB(e1,x1,e2),milkweed_VB(e2,x4,x1),of_IN(e2,x1),central_NN(x
1),north_NN(x2),america_NN(x3)])
lf(mead_NN(x1),
[be_VB(e1,x1,e2),threaten_VB(e2,x2,x1),species_NN(x1)])
lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),anthropologist_NN(x3),note_VB(e1,x10
,x1),for_IN(e1,x4),claim_NN(x4),about_IN(x1,x9),adolescence_NN(x
5),and_CC(x9,x5,x6),sexual_JJ(x9),behavior_NN(x6),in_IN(x9,x7),p
olynesian_NN(x7),culture_NN(x8)])
lf(meade_NN(x1),
[united_NN(x1),state_NN(x2),general_JJ(x7),in_IN(x1,x3),charge_N
N(x3),of_IN(x3,x4),union_NN(x4),troops_NN(x5),at_IN(x4,x6),battl
e_of_gettysburg_NN(x6)])
lf(meade_NN(x1),
[english_NN(x1),economist_NN(x2),note_VB(e1,x7,x1),for_IN(e1,x3)
,study_NN(x3),of_IN(x3,x6),international_JJ(x6),trade_NN(x4),and
_CC(x6,x4,x5),finance_NN(x5)])
lf(meany_NN(x1),
[united_NN(x1),state_NN(x2),labor_NN(x3),leader_NN(x4),be_VB(e1,
x1,x5),first_JJ(x5),president_NN(x5),of_IN(x5,x6),'afl-
cio_NN'(x6)])

�228

APPENDIX 21

LF OUTPUT FILE - PNs

lf(mayakovski_NN(x1),[soviet_JJ(x1),poet_NN(x1)])
lf(mayakovski_NN(x1),
[leader_NN(x1),of_IN(x1,x2),russian_JJ(x2),futurism_NN(x2)])
*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),filmmaker_NN(x3),found_VB(e1,x1,x4),
own_JJ(x4),film_NN(x4),company_NN(x5),and_CC(e3,e1,e2),later_RB(
e2),merge_VB(e2,x8,x1),with_IN(e2,x6),samuel_NN(x6),goldwyn_NN(x
7)])
*lf(mayer_NN(x1),
[united_NN(x1),state_NN(x2),physicist_NN(x3),note_VB(e1,x7,x1),f
or_IN(e1,x4),research_NN(x4),on_IN(x4,x5),structure_NN(x5),of_IN
(x5,x6),atom_NN(x6)])
lf(mays_NN(x1),
[united_NN(x1),state_NN(x2),baseball_NN(x3),player_NN(x4)])
lf(mazzini_NN(x1),
[italian_JJ(x4),nationalist_JJ(x5),writings_NN(x1),spur_VB(e1,x6
,x1),movement_NN(x2),for_IN(x2,x3),unified_JJ(x3),independent_JJ
(x3),italy_NN(x3)])
*lf(mccarthy_NN(x1),
[united_NN(x1),state_NN(x2),politician_NN(x3),unscrupulously_RB(
e1),accuse_VB(e1,x1,x4),many_JJ(x4),citizen_NN(x4),of_IN(e1,x5),
communist_NN(x5)])
*lf(mccarthy_NN(x1),
[united_NN(x2),state_NN(x3),satirical_JJ(x1),novelist_NN(x4),and
_CC(x1,x2,x3,x4,x5),literary_JJ(x1),critic_NN(x5)])
lf(mccartney_NN(x1),
[english_NN(x2),rock_NN(x3),star_NN(x4),bass_NN(x5),guitarist_NN
(x6),and_CC(x1,x2,x3,x4,x5,x6,x7),songwriter_NN(x7),with_IN(x1,x
8),john_NN(x8),lennon_NN(x9),write_VB(e1,x8,x10),most_JJ(x12),of
_IN(e1,x10),music_NN(x10),for_IN(x10,x11),beatles_NN(x11)])
lf(mccauley_NN(x1),
[heroine_NN(x1),of_IN(x1,x2),american_NN(x2),revolution_NN(x3),c
arry_VB(e1,x2,x4),water_NN(x4),to_IN(e1,x5),soldier_NN(x5),durin
g_IN(e1,x6),battle_NN(x6),of_IN(x6,x7),monmouth_NN(x7),court_NN(
x8),house_NN(x9),and_CC(e5,e1,e2),take_VB(e2,x2,e3),over_IN(e2,x
10),'husband-
s_NN'(x10),gun_NN(x11),be_VB(e3,x2,e4),overcome_VB(e4,x12,x2),by
_IN(e4,x12),heat_NN(x12)])
*lf(mccormick_NN(x1),
[united_NN(x1),state_NN(x2),operatic_JJ(x1),tenor_NN(x3)])
*lf(mccormick_NN(x1),
[united_NN(x2),state_NN(x3),inventor_NN(x4),and_CC(x1,x2,x5),man
ufacturer_NN(x5),of_IN(x1,x6),mechanical_JJ(x6),harvester_NN(x6)
])
lf(mccullers_NN(x1),
[united_NN(x1),state_NN(x2),novelist_NN(x3)])

�229

lf(mcgraw_NN(x1),
[united_NN(x2),state_NN(x3),baseball_NN(x4),player_NN(x5),and_CC
(x1,x2,x6),manager_NN(x6)])
lf(mcguffey_NN(x1),
[united_NN(x1),state_NN(x2),educator_NN(x3),compile_VB(e1,x1,x4)
,mcguffey_NN(x4),eclectic_JJ(x4),reader_NN(x5)])
lf(mckim_NN(x1),
[united_NN(x1),state_NN(x2),neoclassical_JJ(x1),architect_NN(x3)
])
lf(mckinley_NN(x1),
['25th_JJ'(x1),president_of_the_united_states_NN(x1)])
lf(mckinley_NN(x1),[assassinate_VB(e1,x2,x1),anarchist_NN(x2)])
lf(mcluhan_NN(x1),
[canadian_JJ(x1),writer_NN(x1),note_VB(e1,x4,x1),for_IN(e1,x2),h
is_POS(x2,x1),analysis_NN(x2),of_IN(x2,x3),mass_media_NN(x3)])
lf(mcmaster_NN(x1),
[united_NN(x1),state_NN(x2),historian_NN(x3),write_VB(e1,x1,x4),
nine_JJ(x4),volume_NN(x4),history_NN(x5),of_IN(x4,x6),people_NN(
x6),of_IN(x4,x7),united_NN(x7),state_NN(x8)])
lf(mcpherson_NN(x1),
[united_NN(x1),state_NN(x2),evangelist_NN(x3),note_VB(e1,x5,x1),
for_IN(e1,x4),extravagant_JJ(x4),religious_JJ(x4),services_NN(x4
)])
*lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),philosopher_NN(x3),of_IN(x1,x4),prag
matism_NN(x4)])
*lf(mead_NN(x1),
[be_VB(e1,x1,e2),milkweed_VB(e2,x4,x1),of_IN(e2,x1),central_NN(x
1),north_NN(x2),america_NN(x3)])
*lf(mead_NN(x1),
[be_VB(e1,x1,e2),threaten_VB(e2,x2,x1),species_NN(x1)])
*lf(mead_NN(x1),
[united_NN(x1),state_NN(x2),anthropologist_NN(x3),note_VB(e1,x10
,x1),for_IN(e1,x4),claim_NN(x4),about_IN(x1,x9),adolescence_NN(x
5),and_CC(x9,x5,x6),sexual_JJ(x9),behavior_NN(x6),in_IN(x9,x7),p
olynesian_NN(x7),culture_NN(x8)])
*lf(meade_NN(x1),
[united_NN(x1),state_NN(x2),general_JJ(x7),in_IN(x1,x3),charge_N
N(x3),of_IN(x3,x4),union_NN(x4),troops_NN(x5),at_IN(x4,x6),battl
e_of_gettysburg_NN(x6)])
*lf(meade_NN(x1),
[english_NN(x1),economist_NN(x2),note_VB(e1,x7,x1),for_IN(e1,x3)
,study_NN(x3),of_IN(x3,x6),international_JJ(x6),trade_NN(x4),and
_CC(x6,x4,x5),finance_NN(x5)])
lf(meany_NN(x1),
[united_NN(x1),state_NN(x2),labor_NN(x3),leader_NN(x4),be_VB(e1,
x1,x5),first_JJ(x5),president_NN(x5),of_IN(x5,x6),'afl-
cio_NN'(x6)])

�230

APPENDIX 22

SYSTEM N - DUPLICATES LFs

import re
output=open("output_POS.txt").readlines()
daeliminare=[]
listatuple=[]
listadoppie=[]
count1=0
count2=0

for x in output:
 temp=x.split(")-[")
 y=temp[0]
 sy=re.search(r"\([0-9]*\,", y)
 synum=sy.group()
 num=synum[1:-1]
 w=re.search(num+r"\, .*\, \[", y)
 wo=w.group()
 word=wo[11:-3]
 z=temp[1]
 lf=z[:-2]
#make a list of tuples synsID+word+logicform
 listatuple.append([num,word,lf])
for i in range(len(listatuple)):
 a=listatuple[i]
 for n in range(len(listatuple)):
 b=listatuple[n]
 if i==n:
 pass
 else:
 if a[0]==b[0] and a[1]==b[1] and a[2]==b[2]:
 #Case1
 daeliminare.append(b)
 count1=count1+1
 elif a[0]!=b[0] and a[1]==b[1] and a[2]==b[2]:
 #Case2
 listadoppie.append(b)
 count2=count2+1

sorted_listadoppie=sorted(listadoppie, key=lambda tup: tup[1])
sorted_daeliminare=sorted(daeliminare, key=lambda tup: tup[1])
lfdoppie=open("POS_Case1.txt", "a")
for x in sorted_listadoppie:
 resul=' / '.join(x)
 lfdoppie.write(resul+"\n")
lfdoppie.close()
copie=open("POS_Case2.txt", "a")
for x in sorted_daeliminare:
 resul=' / '.join(x)

�231

 copie.write(resul+"\n")
copie.close()

print "In POS I found \n %d of Case1 \n" %count1
print "In POS I found \n %d of Case2 \n" %count2  

�232

APPENDIX 23

OUTPUT OF SYSTEM L - ADJECTIVES

CASE 1 (Same SynsetID, same lemma, same LF)

302269787 / based_JJ(x1) / have_VB(e1, x1, x2), base_NN(x2)
302061319 / based_JJ(x1) / have_VB(e1, x1, x2), base_NN(x2)
301845387 / clean_JJ(x1) / free_JJ(x1), from_IN(x1, x2), impurity_NN(x2)
300392688 / clean_JJ(x1) / free_JJ(x1), from_IN(x1, x2), impurity_NN(x2)
300928036 / common_JJ(x1) / commonly_RB(e1), encounter_VB(e1, x1)
300458805 / common_JJ(x1) / commonly_RB(e1), encounter_VB(e1, x1)
302600938 / cytotoxic_JJ(x1) / of_IN(x1, x2), relate_VB-[e1, x1], to_IN-[e1,
x2], substance_NN(x2), be_VB-[e2, x2, x3], toxic_JJ(x3), to_IN(x3, x4),
cell_NN(x4)
302361205 / cytotoxic_JJ(x1) / of_IN(x1, x2), relate_VB-[e1, x1], to_IN-[e1,
x2], substance_NN(x2), be_VB-[e2, x2, x3], toxic_JJ(x3), to_IN(x3, x4),
cell_NN(x4)
301835744 / disarming_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), allay_VB(e1, x1,
x2), hostility_NN(x2)
301747662 / disarming_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), allay_VB(e1, x1,
x2), hostility_NN(x2)
301506903 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301506903 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301795613 / grassroots_JJ(x1) / fundamental_JJ(x1)
300460273 / grassroots_JJ(x1) / fundamental_JJ(x1)
302353520 / lidded_JJ(x1) / have_VB(e1, x1, x2), lid_NN(x2)
301397581 / lidded_JJ(x1) / have_VB(e1, x1, x2), lid_NN(x2)
301151103 / light-armed_JJ(x1) / armed_JJ(x1), with_IN(x1, x2), light_JJ(x2),
weapon_NN(x2)
300148032 / light-armed_JJ(x1) / armed_JJ(x1), with_IN(x1, x2), light_JJ(x2),
weapon_NN(x2)
300786396 / new_JJ(x1) / in_IN(x1, x2), use_NN(x2), after_IN(x2, x3),
medieval_JJ(x3), time_NN(x3)
301589642 / new_JJ(x1) / in_IN(x1, x2), use_NN(x2), after_IN(x2, x3),
medieval_JJ(x3), time_NN(x3)
301707826 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
301707826 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
301252370 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
301252370 / nonindulgent_JJ(x1) / not_RB(x1), indulgent_JJ(x1)
302496645 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302496645 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302090576 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302090576 / noteworthy_JJ(x1) / worthy_JJ(x1), of_IN(x1, x2), notice_NN(x2)
302642589 / premedical_JJ(x1) / prepare_VB-[e1, x1], for_IN-[e1, x2],
study_NN(x2), of_IN(x2, x3), medicine_NN(x3)
300131871 / premedical_JJ(x1) / prepare_VB-[e1, x1], for_IN-[e1, x2],
study_NN(x2), of_IN(x2, x3), medicine_NN(x3)
300622713 / uncrossed_JJ(x1) / not_RB(x1), crossed_JJ(x1)
300622476 / uncrossed_JJ(x1) / not_RB(x1), crossed_JJ(x1)
302236474 / uncurled_JJ(x1) / not_RB(x1), curled_JJ(x1)
300986826 / uncurled_JJ(x1) / not_RB(x1), curled_JJ(x1)
301272981 / uncut_JJ(x1) / not_RB(x1), cut_JJ(x1)
300631802 / uncut_JJ(x1) / not_RB(x1), cut_JJ(x1)
301559958 / undiscovered_JJ(x1) / not_RB(x1), discovered_JJ(x1)
301330201 / undiscovered_JJ(x1) / not_RB(x1), discovered_JJ(x1)
300671373 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)

�233

300671373 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)
300670937 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)
300670937 / uninflected_JJ(x1) / not_RB(x1), inflected_JJ(x1)
302497933 / unmerited_JJ(x1) / not_RB(x1), merited_JJ(x1)
301324701 / unmerited_JJ(x1) / not_RB(x1), merited_JJ(x1)
301560093 / unobserved_JJ(x1) / not_RB(x1), observed_JJ(x1)
301558829 / unobserved_JJ(x1) / not_RB(x1), observed_JJ(x1)
302042650 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
302042650 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
301934504 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
301934504 / unresponsive_JJ(x1) / not_RB(x1), responsive_JJ(x1)
302082526 / unsheared_JJ(x1) / not_RB(x1), sheared_JJ(x1)
300633432 / unsheared_JJ(x1) / not_RB(x1), sheared_JJ(x1)

CASE 2 (Different SynsetID, same lemma , same LF)

300646823 / acyclic_JJ(x1) / not_RB(x1), cyclic_JJ(x1)
300646823 / acyclic_JJ(x1) / not_RB(x1), cyclic_JJ(x1)
300224255 / beneficent_JJ(x1) / do_VB(e1, x1, x2), or_CC(e3, e1, e2),
produce_VB(e2, x1, x2), good_NN(x2)
300224255 / beneficent_JJ(x1) / do_VB(e1, x1, x2), or_CC(e3, e1, e2),
produce_VB(e2, x1, x2), good_NN(x2)
302891484 / bladed_JJ(x1) / often_RB(e1), use_VB-[e1, x1], in_IN-[e1, x2],
combination_NN(x2)
302891484 / bladed_JJ(x1) / often_RB(e1), use_VB-[e1, x1], in_IN-[e1, x2],
combination_NN(x2)
300819602 / cathartic_JJ(x1) / emotionally_RB(e1), purge_VB(e1, x1)
300819602 / cathartic_JJ(x1) / emotionally_RB(e1), purge_VB(e1, x1)
300624265 / comate_JJ(x1) / bear_VB(e1, x1, x2), coma_NN(x2)
300624265 / comate_JJ(x1) / bear_VB(e1, x1, x2), coma_NN(x2)
302205396 / consonantal_JJ(x1) / of_IN(x1, x5), liquid_NN(x2), and_CC(x5, x2,
x3), nasal_NN(x3)
302205396 / consonantal_JJ(x1) / of_IN(x1, x5), liquid_NN(x2), and_CC(x5, x2,
x3), nasal_NN(x3)
300385058 / dark_JJ(x1) / have_VB(e1, x1, x2), dark_JJ(x2), hue_NN(x2)
300385058 / dark_JJ(x1) / have_VB(e1, x1, x2), dark_JJ(x2), hue_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301139129 / earthborn_JJ(x1) / of_IN(x1, x2), earthly_JJ(x2), origin_NN(x2)
301078036 / embezzled_JJ(x1) / take_VB-[e1, x1], for_IN-[e1, x2], own_JJ(x2),
use_NN(x2), in_IN-[e1, x3], violation_NN(x3), of_IN(x3, x4), trust_NN(x4)
301078036 / embezzled_JJ(x1) / take_VB-[e1, x1], for_IN-[e1, x2], own_JJ(x2),
use_NN(x2), in_IN-[e1, x3], violation_NN(x3), of_IN(x3, x4), trust_NN(x4)
300883871 / exhaustible_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), use_up_VB(e1,
x1)
300883871 / exhaustible_JJ(x1) / capable_JJ(x1), of_IN(x1, e1), use_up_VB(e1,
x1)
301899595 / first-string_JJ(x1) / not_RB(x1), substitute_NN(x1)
301899595 / first-string_JJ(x1) / not_RB(x1), substitute_NN(x1)
301899595 / first-string_JJ(x1) / of_IN(x1, x2), member_NN(x2), of_IN(x2, x3),
team_NN(x3)
301899595 / first-string_JJ(x1) / of_IN(x1, x2), member_NN(x2), of_IN(x2, x3),
team_NN(x3)
300593230 / incorrupt_JJ(x1) / free_JJ(x1), of_IN(x1, x5), corruption_NN(x2),
or_CC(x5, x2, x3), immorality_NN(x3)
300593230 / incorrupt_JJ(x1) / free_JJ(x1), of_IN(x1, x5), corruption_NN(x2),
or_CC(x5, x2, x3), immorality_NN(x3)
302466704 / industrial_JJ(x1) / employed_JJ(x1), in_IN(x1, x2),
industry_NN(x2)

�234

APPENDIX 24

SYSTEM O - GATHERING NOUNS FROM SYNSETS

import xml.etree.ElementTree as ET
import re

tree=ET.parse("Noun.xml")
root=tree.getroot()
lista_synset=[]

for w in root.iter(tag="synonymSet"):
 synset=w.text
 if "," in synset:
 temp=synset.split(",")
 for x in temp:
 if " " in x:
 s=x.lstrip()
 lista=open("listaSynsetNomi.txt","a")
 lista.write(s+”\n")
 lista.close()
 else:
 lista=open("listaSynsetNomi.txt","a")
 lista.write(x+”\n")
 lista.close()
 else:
 lista=open("listaSynsetNomi.txt","a")
 lista.write(synset+"\n")
 lista.close()

- - - - - - - - - -

The output is a txt file with one lemma per line:

entity
thing
anything
something
nothing
nonentity
whole
whole_thing
unit
living_thing
animate_thing
organism
being
benthos
heterotroph …. 

�235

APPENDIX 25

SYSTEM P - COMPOUND NOUNS CORRECTION

import re
l=open("listaSynsetNomi.txt","r").read()
lt=l.split(",")
ls=[]
listacorrezioni=[]
for w in lt:
 x=w.lower()
 ls.append(x) #list of lemmas in the synsets lowercase

f=open("output_nomi_TerzaParte.txt", "r").readlines()
count=0
for w in f:
 new=open("output1TS.txt","a")
 a=re.search(r"[synset].*\)\-\[",w).group(0)
 new.write(a)
 new.close()
 lf=re.search(r"\-\[.*$",w).group(0)
 if re.search(r"[a-z]*_NN\([x]*[0-9]*\)\, [a-z]*_NN\
([x]*[0-9]*\), [a-z]*_NN\([x]*[0-9]*\)",lf):
 x=re.search(r"[a-z]*_NN\([x]*[0-9]*\)\, [a-z]*_NN\

([x]*[0-9]*\), [a-z]*_NN\
([x]*[0-9]*\)",lf).group()
 tovar=x.split(",")
 var=tovar[0]
 variabile=var[-6:] #it keeps the first variable
 y=x.split(",")
 a=y[0]
 b=y[1][1:]
 c=y[2][1:]
 ao=a[:-7]
 bo=b[:-7]
 co=c[:-7]
 d=ao+"_"+bo+"_"+co
 e=ao+"-"+bo+"-"+co
 g=ao+"-"+bo+"_"+co
 h=ao+"_"+bo+"-"+co
 if d in ls and " nn" not in lf:
 m=lf.replace(x,d+"_"+variabile)
 new=open("output1TS.txt","a")
 new.write("*"+m[2:]+"\n")
 new.close()
 count=count+1
 listacorrezioni.append(d)
 elif e in ls and " nn" not in lf:
 m=lf.replace(x,e+"_"+variabile)
 new=open("output1TS.txt","a")
 new.write("*"+m[2:]+"\n")

�236

 new.close()
 count=count+1
 listacorrezioni.append(e)
 elif g in ls and " nn" not in lf:
 m=lf.replace(x,g+"_"+variabile)
 new=open("output1TS.txt","a")
 new.write("*"+m[2:]+"\n")
 new.close()
 count=count+1
 listacorrezioni.append(g)
 elif h in ls and " nn" not in lf:
 m=lf.replace(x,h+"_"+variabile)
 new=open("output1TS.txt","a")
 new.write("*"+m[2:]+"\n")
 new.close()
 count=count+1
 listacorrezioni.append(h)
 else:
 new=open("output1TS.txt","a")
 new.write(lf[2:]+"\n")
 new.close()
 else:
 new=open("output1TS.txt","a")
 new.write(lf[2:]+"\n")
 new.close()

print "I corrected %d compound nouns" %count
print "The corrected compound nouns are the following: ",
listacorrezioni

- - - - - - - - - -

The System returns the UXWN file with corrected and marked (*) CNs; it also prints out the
CNs and the number of CNs corrected, see the following example regarding part of the UXWN
noun definitions: 

�237

APPENDIX 26

SYSTEM Q - MARKING LFs WITH MISSING RELATIVE ADVERBS

listasynsets=[]

#the system opens the file where synsetIDs have been previously
stored
synsets=open("synsets_missingradverbs_POS.txt").readlines()

for synset in synsets:
 listasynsets.append(synset[:-1])

check=open(“output_POS.txt").readlines()
#the system opens the part of UXWN we want to check

for element in check:
 splitted=element.split(",")
 s=splitted[0]
 synsetID=s[7:]
 if synsetID[1:] in listasynsets:#check if the synsetID
corresponds
 tocheck=open("tocheck_verb.txt","a")
 tocheck.write("*"+element)
 tocheck.close()
 else:
 tocheck=open("tocheck_verb.txt","a")
 tocheck.write(element)
 tocheck.close()

�238

Bibliography

• Agerri R. and Peñas A., 2010, On the Automatic Generation of
Intermediate Logic Forms for WordNet Glosses, in Proceedings of the
11th International Conference on Intelligent Text Processing and
Computational Linguistics (CICILing 2010), Iasi, Romania;

• Agirre E. and Soroa A., 2009, Personalizing PageRank for Word Sense
Disambiguation, in Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2009),
Athens, Greece;

• Ahn D., Fissaha S., Jijkoun V. and De Rijke M., 2004, The University of
Amsterdam at Senseval3: Semantic Roles and Logic Forms, in
Proceedings of the 3rd Workshop on Sense Evaluation, in the 42th Annual
Meeting of the Association for Computational Linguistics (ACL
SENSEVAL 2004), Barcelona, Spain;

• Alshawi H., Chang P. and Ringgaard M., 2011, Deterministic Statistical
Mapping of Sentences to Underspecified Semantics, in Proceedings of the
9th International Conference on Computational Semantics (IWCS 2011),
Oxford, UK;

• Altaf M., Moldovan D. and Parker P., 2004, Sensevale3 Logic Forms: a
System and Possible Improvements, in Proceedings of the 3rd Workshop
on Sense Evaluation, in the 42th Annual Meeting of the Association for
Computational Linguistics (ACL SENSEVAL 2004), Barcelona, Spain;

• Anderson J.M., 2007, The Grammar of Names, Oxford University Press;

• Anthony S. and Patrick J., 2004, Dependency Based Logial Form
Transformation, in Proceedings of the 3rd Workshop on Sense
Evaluation, in the 42th Annual Meeting of the Association for
Computational Linguistics (ACL SENSEVAL 2004), Barcelona, Spain;

�239

• Aoife C., Mccarthy M., Burke M., Van Genabith J. and Way A., 2007,
Deriving Quasi-Logical Forms From F-Structures For The Penn
Treebank, in Studies in Linguistics and Philosophy, vol. 83, pages 33-53;

• Banerjee S. and Pedersen T., 2002, An Adapted Lesk Algorithm for Word
Sense Disambiguation Using WordNet, in Proceedings of the 3rd
International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing 2002), Mexico City, Mexico;

• Barker K., Agashe B., Chaw S., Fan J., Friedland N., Glass M., Hobbs J.,
Hovy E., Israel D., Kim D., Mulkar-Mehta R., Patwardhan S., Porter B.,
Tecuci D., Yeh P., 2007, Learning by Reading : A Prototype System,
Performance Baseline and Lessons Learned, in Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI 2007), Vancouver,
Canada;

• Bayer S., Burger J., Greiff W. and Wellen B., 2004, The MITRE Logical
Form Generation System, in Proceedings of the 3rd Workshop on Sense
Evaluation, in the 42th Annual Meeting of the Association for
Computational Linguistics (ACL SENSEVAL 2004), Barcelona, Spain;

• Bentivogli L., Bocco A. and Pianta E., 2004, Archiwordnet: Integrating
WordNet with Domain-Specific Knowledge, in Proceedings of the 2nd
International Global WordNet Conference (GWC 2004), Brno, Czech
Republic;

• Bos J., 2008, Wide-Coverage Semantic Analysis with Boxer, in
Proceedings of Semantics in Text Processing Conference (STEP 2008),
Venice, Italy;

• Bos J., 2016, Expressive Power of Abstract Meaning Representations,
Computational Linguistics, vol. 42 (3), MIT Press Cambridge, MA;

• Bos J. and Delmonte R. eds., 2008, Semantics in Text Processing (STEP
2008), Research in Computational Semantics, vol.1, College Publications,
London;

• Brill E., 1992, A Simple Rule-Based Art of Speech Tagger, in Proceeding
of the 3rd Conference on Applied Natural Language Processing (ANLC
1992), Trento, Italy;

• Buitelaar P. and Cimiano P., 2008, Ontology Learning and Population:
Bridging the Gap between Text and Knowledge, Frontiers in Artificial

�240

Intelligence and Applications, vol. 167, IOS Press, Amsterdam, The
Netherlands;

• Carreras X. and Marquez L., 2004, Introduction to the CoNLL-2004
Shared Task: Semantic Role Labeling, in Proceedings of the 8th
Conference on Computational Natural Language Learning (CoNLL
2004), Boston, MA;

• Chai J.Y. and Biermann A., 1997, The Use of Lexical Semantics in
Information Extraction, In Proceedings of the Workshop in Automatic
Information Extraction and Building of Lexical Semantic Resources
(ACL EACL 1997), Madrid, Spain;

• Chalker S., 1992, Proper Noun, in McArthur T. eds., The Oxford
Companion to the English Language., Oxford University Press;

• Cinque G., 2014, The Semantic Classification of Adjectives, a View from
Syntax, in Studies in Chinese Linguistics, vol. 35, pages 3 -32;

• Clark P., Fellbaum C., Hobbs J. R., Harrison P., Murray W. R. and
Thompson J., 2008, Augmenting WordNet for Deep Understanding of
Text, in Proceedings of Semantics in Text Processing Conference (STEP
2008), Venice, Italy;

• Clark P. and Harrison P., 2008, Boeing’s NLP System and the Challenges
of Semantic Representation, in Proceedings of Semantics in Text
Processing Conference (STEP 2008), Venice, Italy;

• Clark S. and Curran, J., 2007, Wide-Coverage Efficient Statistical Parsing
with CCG and Log-Linear Models, Computational Linguistics, vol. 33,
pages 493–553;

• Coates-Stephens S., 1992, The Analysis and Acquisition of Proper Names
for the Understanding of Free Text, in Computers and the Humanities,
vol. 26(5/6), pages 285-296;

• Copestake A., 2009, Slacker Semantics: Why Superficiality, Dependency
and Avoidance of Commitment can be the Right Way to Go, Invited Talk
in Proceedings of the 12th Conference of the European Chapter of the
ACL (EACL 2009), Athens, Greece;

• Davidson D., 1967, The Logical Form of Action Sentences, in Rescher N.
eds. The Logic of Decision and Action, University of Pittsburgh Press,
pages 81-95, Pittsburgh, PA;

�241

• Davies, M., 1991, Acts and Scenes, in Cooper N. and Engel P. eds New
Enquiries into Meaning and Truth, pages 41-82, Hemel Hempstead:
Harvester Wheatsheaf;

• De Loupy C., Crestan E. and Lemaire E., 2004, Proper Nouns Thesaurus
for Document Retrieval and Question Answering, in Atelier Question-
Réponse, Traitement Automatique des Langues Naturelles (TALN);

• Delmonte R., 2008, Semantic and Pragmatic Computing with
GETARUNS, in Proceedings of Semantics in Text Processing
Conference (STEP 2008), Venice, Italy;

• Delmonte R. and Rotondi A., 2012, Treebanks of Logical Forms: They
Are Useful Only if Consistent, in Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC 2012),
Istanbul, Turkey;

• Delmonte R. and Rotondi A., 2015, A Logical Form Parser for
Correction and Consistency Checking of LF Resources, in Proceedings of
the 12th International Workshop on Natural Language Processing and
Cognitive Science (NLPCS 2015), Krakow, Poland;

• Dipasree P., Mandar M. and Kalyankumar D., 2014, Improving Query
Expansion Using WordNet, in Proceedings of the Journal of the
Association for Information Science & Technology, vol. 65(12), pages
2469-2478;

• Ehrmann M., Jacquet G. and Steinberger R., 2017, JRC-Names:
Multilingual entity name variants and titles as Linked Data, in Semantic
Web, vol. 2, pages 283-295;

• Erekhinskaya T. and Moldovan D., 2013, Lexical Chains on WordNet and
Extensions, in Proceedings of the 26th International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2013), St. Pete
Beach, FL;

• Fang, H., 2008, A Re-Examination of Query Expansion Using Lexical
Resources, in Proceedings of the Human Language Technology
Conference (ACL/HLT 2008), Stroudsburg, PA;

• Fellbaum C., 1998, WordNet: an Electronic Lexical Database,
Cambridge, MA: MIT Press;

�242

• Gal A., Lapalme G., St-Dizier P. and Somers H., 1991, Prolog for Natural
Language Processing, Wiley eds.;

• Gangemi A, Guarino N, Masolo C. and Oltramari A., 2003, Sweetening
WordNet with DOLCE, in AI Magazine 24(3), pages 13-24;

• Gangemi A., Guarino N. and Oltramari A., 2001, Conceptual Analysis of
Lexical Taxonomies: the Case of WordNet Top-Level, in Formal Ontology
in Information Systems: Proceedings of the 2nd International Conference
on Formal Ontology in Information Systems (FOIS 2001), Ogunquit, ME;

• Gildea D. and Jurafsky D., 2002, Automatic Labeling of Semantic Roles,
in Computational Linguistics, vol. 28(3), pages 245–288;

• Graber, J., Fellbaum, C., Osherson, D. and Schapire, R., 2006, Adding
Dense, Weighted Connections to WordNet, in Proceedings of the 3rd
International WordNet Conference, Jeju Island, Korea;

• Grasser, A. C., 1981, Prose Comprehension Beyond the Word, New York:
Spring-Verlag;

• Guarino N., 1998, Some Ontological Principles for Designing Upper
Level Lexical Resources, in Proceedings of the First International
Conference on Language Resources and Evaluation (LREC 1998),
Grenada, Spain;

• Harabagiu S., Miller A. and Moldovan D., 1999, WordNet 2 - a
Morphologically and Semantically Enhanced Resource, in Proceedings of
the ACL SIGLEX Workshop on Standardizing Lexical Resources,
College Park, MD;

• Harabagiu S. and Moldovan D., 1998, Knowledge Processing on an
Extended WordNet, in: Fellbaum C. eds. WordNet - an Electronic Lexical
Database, MIT press, pages 379-406;

• Harabagiu S., Moldovan D., Pasca M., Mihalcea R., Surdeanu M.,
Bunescu R., Girju R., Rus V and Morarescu P., 2000, FALCON: Boosting
Knowledge for Answer Engines, in proceedings of 9th Text Retrieval
Conference (TREC 9), Gaithersburg, MD;

• Haridy S., Badr N., Karam O. and Gharib T., 2010, Enriching Ontologies
Using Coarse-Grained Word Senses in the Case of: Wordnet, Egyptian
Computer Science Journal, 34(2);

�243

• Hirst G. and St-Onge D., 1995, Lexical Chains as Representations of
Context for the Detection and Correction of Malapropism;

• Hobbs J. R., 1985, Ontological Promiscuity, in Proceedings of the 23rd
Annual Meeting of the Association for Computational Linguistics (ACL
1985), Chicago, IL;

• Hobbs J. R., 1986, Overview of the TACITUS project, in Proceedings of
the Workshop on Strategic Computing - Natural Language, Marina del
Rey, CA;

• Hobbs J. R., Stickel M., Martin P. and Edwards D., 1993, Interpretation
as Abduction, Artificial Intelligence, vol. 63, pages 69-142;

• Jacquet G., Ehrmann M., Steinberger R. and Väyrynen J., 2016, Cross-
Lingual Linking of Multi-Word Entities and their Corresponding
Acronyms, in Proceedings of the 10th International Conference on
Language Resources and Evaluation (LREC 2016), Portorož, Slovenia;

• Jurgens D. and Pilehvar M., 2015, Reserating the Awesometastic: An
Automatic Extension of the WordNet Taxonomy for Novel Terms, in
Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT 2015), Denver, CO;

• Jurgens D. and Pilehvar M., 2016, SemEval 2016: Task 14 Semantic
Taxonomy Enrichment, in Proceeindgs of the 10th International Workshop
on Semantic Evaluation (ACL SemEval 2016), San Diego, CA;

• Kilgarriff A., 2000, Review of WordNet : An electronic lexical database,
in Language, vol. 76, pages 706–708;

• Kripke S.A., 1980, Naming and Necessity, Harvard University Press;

• Krstev C., Vitas D., Maurel D. and Tran M., 2005, Multilingual Ontology
of Proper Names, in Proceedings of the 2nd Language & Technology
Conference (LTC 2005), Poznań, Poland;

• Larson R. K., 1998, Events and Modification in Nominals, in Proceedings
of the 8th Semantics and Linguistic Theory Conference (SALT 8),
Massachusetts Institute of Technology, MA;

• Litkowski K. C., 2004, Senseval-3 Task Word-Sense Disambiguation of
WordNet Glosses, in Proceedings of the 3rd Workshop on Sense

�244

Evaluation, in the 42th Annual Meeting of the Association for
Computational Linguistics (ACL SENSEVAL 2004), Barcelona, Spain;

• Magnini B. and Cavaglia G., 2000, Integrating Subject Field Codes into
WordNet, in Proceedings of the 3rd International Conference on Language
Resources and Evaluation (LREC 2000), Athens, Greece;

• Mandala R., Takenobu T. and Hozumi T., 1998, The Use of WordNet in
Information Retrieval, in Proceedings of the Workshop Usage of WordNet
in Natural Language Processing Systems (Coling ACL), Montréal,
Canada;

• Mann G., 2002, Fine-Grained Proper Noun Ontologies for Question
Answering, in Proceedings of the SemaNet Workshop, Taipei, Taiwan;

• Mason O., 1997, Q-TAG a Portable Probabilistic Tagger, Corpus
Research, University of Birmingham;

• Maurel D., 2008, Prolexbase: a Multilingual Relational Lexical Database
of Proper Names, in Proceedings of the 6th International Conference on
Language Resources and Evaluation (LREC 2008), Marrakech, Morocco;

• May J., 2016, SemEval 2016 Task 8 : Meaning Representation Parsing, in
Proceedings of the 10th International Workshop on Semantic Evaluation,
(ACL SemEval 2016), San Diego, CA;

• Mel’cuk I. and Zholkovsky A., 1998, The Explanatory Combinatorial
Dictionary, in Relational Model of the Lexicon, Cambridge University
Press;

• Mihalcea R. and Bunescu R., 2000, Levels of Confidence in Building a
Tagged Corpus, Technical Report, SMU;

• Mihalcea R. and Moldovan D., 2001, eXtended WordNet: Progress
Report, in Proceedings of the 2nd Meeting of the North American Chapter
of the Association for Computational Linguistics (NAACL 2001),
Pittsburgh, PA;

• Miller G. A., 1995, WordNet: A Lexical Database for English,
Communications of the ACM vol. 38(11), pages 39-41;

• Miller G. A. and Hristea F., 2006, WordNet Nouns: Classes and Instances,
in Computational Linguistics, vol. 32(1), pages 1-3;

�245

• Miller T. and Gurevych I., 2014, WordNet Wikipedia-Wikitionary:
Construction of a Three-Way Alignment, in Proceedings of the 9th
International Conference on Language Resources and Evaluation (LREC
2014), Maui, HI;

• Moldova D. and Blanco E., 2012, Polaris: Lymba’s Semantic Parser, in
Proceedings of the 8th International Conference on Language Resources
and Evaluation (LREC 2012), Istanbul, Turkey;

• Moldovan D., Clark C., Harabagiu S. and Maiorano S., 2003, COGEX: A
Logic Prover for Question Answering, in Proceedings of the North
American Chapter of the Association for Computational Linguistics
(HLTC NAACL 2003), Edmonton, Canada;

• Moldovan D., Harabagiu S., Girju R., Morarescu P., Lacatusu V. F.,
Novischi A., Badulescu A., Bolohan O., 2002, LCC Tools for Question
Answering, in Proceedings of the 11th Text Retrieval Conference (TREC
2002), Gaithersburg, MD;

• Moldovan D. and Novischi A., 2002, Lexical Chain for Question
Answering, in Proceedings of the 19th International Conference on
Computational Linguistics (ACL COLING 2002), Taipei, Taiwan;

• Moldovan D. and Novischi A., 2004, Word Sense Disambiguation of
WordNet Glosses, in Computer Speech and Language, vol. 18, pages
297-313;

• Moldovan D. and Rus V., 2001, Explaining Answers with Extended
WordNet, in Proceedings of the 39th Annual Meeting on Association for
Computational Linguistics (ACL 2001), Toulouse, France;

• Moldovan D. and Rus V., 2001, Logic Form Transformation of WordNet
and its Applicability to Question Answering, in Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics (ACL
2001), Toulouse, France;

• Mooney R. J., 2007, Learning for Semantic Parsing, in Proceedings of
the 8th International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing 2007), Mexico City, Mexico;

• Morzycki M., 2015, The Lexical Semantics of Adjectives: More than Just
Scales, in Modification, pages 13–87, Cambridge University Press;

�246

• Navigli R., 2009, Word Sense Disambiguation: A Survey, in Journal ACM
Computing Surveys (CSUR), vol. 41(2), February;

• Navigli R. and Ponzetto S.P., 2012, BabelNet: the Automatic
Construction, Evaluation and Application of a Wide Coverage
Multilingual Semantic Network, in Artificial Intelligence (193), pages
217-250;

• Navigli R., Velardi P., Cucchiarelli A., Neri F. and Cucchiarelli R., 2004,
Extending and Enriching WordNet with Ontolearn, in Proceedings of the
2nd Global WordNet Conference (GWC 2004), Brno, Czech Republic;

• Neel A. and Garzon M., 2010, Semantic Methods for Textual Entailment:
How Much World Knowledge is Enough? In Proceedings of the 23rd
International Florida Artificial Intelligence Research Society
Conference(FLAIRS 2010), Daytona Beach, FL;

• Niemann E. and Gurevych I., 2011, The People’s Web Meets linguistic
Knowledge: Automatic Sense Alignment of Wikipedia and WordNet, in
Proceedings of the 9th International Conference on Computational
Semantics (IWCS 2011), Oxford, UK;

• Nimb S., Pedersen B., Braasch A., Sørensen N. and Troelsgard T., 2013,
Enriching a WordNet from a Thesaurus, Lexical Semantic Resources for
NLP, page 36;

• Oltramari A., Gangemi A., Guarino N. and Masolo C., 2002,
Restructuring WordNet’s Top-Level: the OntoClean Approach, in
Proceedings of the 3rd International Conference on Language Resources
and Evaluation (LREC 2002), (OntoLex workshop), Las Palmas, Spain;

• Payne J. and Huddleston R., 2002, Nouns and Noun Phrases, in Pullum
G. and Huddleston R. eds., The Cambridge Grammar of the English
Language, Cambridge University Press;

• Pilehvar M. T. and Navigli R., 2014, A Robust Approach to Align
Heterogenous Lexical Resources, in Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (ACL 2014),
Baltimore MD;

• Ponzetto S. P. and Navigli R., 2009, Large-Scale Taxonomy Mapping for
Restructuring and Integrating Wikipedia, in Proceedings of the 21st

�247

International Joint Conference on Artificial Intelligence (IJCAI 09),
Pasadena, CA;

• Poprat M., Beisswanger E. and Hahn U., 2008, Building a BioWordNet by
Using WordNets Data Formats and WordNets Software Infrastructurea
Failure Story, in Software Engineering, Testing, and Quality As- surance
for Natural Language, page 31;

• Pust M., Hermjakob U., Knight K., Marcu D. and May J., 2015, Using
Syntax-Based Machine Translation to Parse English into Abstract
Meaning Representation, in Proceedings of the Empirical Methods in
Natural Language Processing Conference (EMNLP 2015), Lisbon,
Portugal;

• Ratnaparkhi A., 1996, A Maximum-Entropy Part of Speech Tagger, in
Proceedings of the 1st Empirical Methods in Natural Language
Processing Conference (EMNLP 1996), Philadelphia, PA;

• Reisinger J. and Pasca M., 2009, Latent Variable Models of Concept-
Attribute Attachment, In Proceedings of the Joint Conference of the 47th
Annual Meeting of the Association for Computational Linguistics and the
4th International Joint Conference on Natural Language Processing of the
AFNLP, Singapore;

• Resnik P., ,1995, Disambiguating Noun Grouping with Respect to
WordNet Senses, in Proceedings of the 3rd Workshop on Very Large
Corpora, Cambridge, MA;

• Rosso P., Molina A., Pla F., Jiménez D. and Vidal V., 2004, Text
Categorization and Information Retrieval Using WordNet Senses, in
Proceedings of the 5th International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing 2004), Seul, Korea;

• Rus V., 2002, High Precision Logic Form Transformation, International
Journal on Artificial Intelligence Tools, vol. 11(3);

• Rus V., 2002, Logic Form for WordNet Glosses, PhD Thesis, Computer
Science Department, School of Engineering, Southern Methodist
University, Dallas, TX;

• Rus V., 2004, A First Evaluation of Logic Form Identification Systems, in
Proceedings of the 3rd International Workshop on the Evaluation of

�248

Systems for the Semantic Analysis of Text (ACL SENSEVAL 2004),
Barcelona, Spain;

• Rus V., 2009, What Next in Knowledge Representation?, in Proceedings
of The Knowledge Engineering: Principles and Techniques International
Conference, Cluj, Romania;

• Ruiz-Casado M., Alfonseca E. and Castells P., 2005, Automatic
Assignment of Wikipedia Encyclopaedic Entries to WN Senses, in
Proceedings of the 3rd International Conference on Advances in Web
Intelligence (AWIC 2005), Lodz, Poland;

• Savary, A., Manicki, L., and Baron, M., 2013, Populating a Multilingual
Ontology of Proper Names from Open Sources, in Journal of Language
Modelling, Vol 2(2), pages189-225;

• Schafer U., 2007, Integrating deep and shallow natural language
processing components – representations and hybrid architectures, Ph.D.
thesis, Faculty of Mathematics and Computer Science, Saarland
University, Saarbrucken, Germany;

• Sheremetyeva S., Cowie J., Nirenburg S. and Zajac R., 1998, Multilingual
Onomasticon as a Multipurpose NLP Resource, in Proceedings of the
First International Conference on Language Resources and Evaluation
(LREC 1998), Grenada, Spain;

• Smith B. and Fellbaum C., 2004, Medical WordNet: a New Methodology
for the Construction and Validation of Information Resources for
Consumer Health, in Proceedings of the 20th International Conference on
Computational Linguistics, Association for Computational
Linguistics(ACL COLING 2004), Geneva, Switzerland;

• Snow R., Jurafsky D. and Y Ng A., 2006, Semantic Taxonomy Induction
from Heterogenous Evidence, in Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of
the Association for Computational Linguistics (ACL COLING 2006),
Sydney, Australia;

• Steinberger R., Pouliquen B. and Van Der Goot E., 2009, An Introduction
to the Europe Media Monitor Family of Applications, in Proceedings of
the 32nd International ACM SIGIR conference on research and
development in Information Retrieval (SIGIR 2009), Boston, MA;

�249

• Sundheim B.M., Mardis S., and Burger J., 2006, Gazetteer Linkage to
WordNet, in Proceedings of the 3rd International WordNet Conference,
Jeju Island, Korea;

• Tanev H. and Rotondi A., 2016, Deftor at SemEval-2016 Task 14:
Taxonomy Enrichment Using Definition Vectors, in Proceedings of the
10th International Workshop on Semantic Evaluation, (ACL SemEval
2016), San Diego, CA;

• Toral A., Muñoz R. and Monachini M., 2008, Named Entity WordNet, in
Proceedings of the 6th Conference on Language Resources and
Evaluation (LREC 2008), Marrakech, Morocco;

• Vanderwende L., Menezes A. and Quirk C., 2015, An AMR Parser for
English, French, German, Spanish and Japanese and a New AMR-
Annotated Corpus, in Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL HLT 2015), Denver, CO;

• Varelas G., Voutsakis E., Raftopoulou P., Petrakis E.G.M. and Milio E.,
2005, Semantic Similarity Methods in WordNet and their Application to
Information Retrieval on the Web, in Proceedings of the 7th Annual ACM
International Workshop on Web Information and Data Management,
Bremen, Germany;

• Verdezoto N. and Vieu L., 2011, Towards Semi-Automatic Methods for
Improving WordNet, in Proceedings of the 9th International Conference
on Computational Semantics (IWCS 2011), Oxford, United Kingdom;

• Vujicic Stankovic S., Krstev C. and Vitas D., 2014, Enriching Serbian
WordNet and Electronic Dictionaries with Terms from the Culinary
Domain, in Proceedings of the 7th Global WordNet Conference (GWC
2014), Tartu, Estonia;

• Wang C., Pradhan S., Xue N., Pan X. and Ji H., 2016, CAMR at
SemEval-2016 Task 8: an Extended Transition-Based AMR Parser, in
Proceedings of the 10th International Workshop on Semantic Evaluation,
(ACL SemEval 2016), San Diego, CA.

• Wilks Y., Guthrie, L., Guthrie, J., Cowie, J., Farwell, D., Slator, B., Bruce,
R., 1993, A Research Program on Machine-Tractable Dictionaries and

�250

Their Application to Text Analysis, in Literary and Linguistic Computing,
8.4. special issue, (eds. Ostler & Zampolli).

�251

