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Introduction: Oxford Nanopore Technologies (ONT) is a third generation
sequencing approach that allows the analysis of individual, full-length nucleic
acids. ONT records the alterations of an ionic current flowing across a nano-
scaled pore while a DNA or RNA strand is threading through the pore. Basecalling
methods are then leveraged to translate the recorded signal back to the nucleic
acid sequence. However, basecall generally introduces errors that hinder the
process of barcode demultiplexing, a pivotal task in single-cell RNA sequencing
that allows for separating the sequenced transcripts on the basis of their cell of
origin.

Methods: To solve this issue, we present a novel framework, called UNPLEX,
designed to tackle the barcode demultiplexing problem by operating directly on
the recorded signals. UNPLEX combines two unsupervised machine learning
methods: autoencoders and self-organizing maps (SOM). The autoencoders
extract compact, latent representations of the recorded signals that are then
clustered by the SOM.

Results and Discussion: Our results, obtained on two datasets composed of in
silico generated ONT-like signals, show that UNPLEX represents a promising
starting point for the development of effective tools to cluster the signals
corresponding to the same cell.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a widely adopted
approach to carry out high-precision analysis of complex
biological systems, with particular impact on stem cell biology
and cancer research (Navin, 2014). In fact, the ability to measure
and model gene expression profiles from individual cells allows
for deconvolving heterogeneous cell types and functional
populations (Paul et al., 2015; van Galen et al., 2019),
especially via high-throughput, short-read approaches (e.g.,
Illumina Next-Generation Sequencing technology) that can
process up to thousands of cells in a single experiment
(Macosko et al., 2015; Zheng et al., 2017; Ziegenhain et al.,
2017). In addition to transcriptomics, emerging technologies
aim to integrate different types of molecular information from
the same cell including, e.g., genomics, epigenomics, and
proteomics profiles; such approaches hold the potential to
uncover novel insights in biological systems, and represent a
great promise in the field of precision medicine (Ogbeide et al.,
2022).

In this context, nanopore sequencing is a recent nucleic acid
sequencing approach developed by Oxford Nanopore Technologies
(ONT) that allows for sequencing individual, full-length DNA or
RNA molecules. The principle of this technology is based on
ratcheting a nucleic acid strand through a proteic nanopore in
the presence of an ionic current across the pore itself. As the
molecule is threaded through the pore, the chemical composition
of the nucleotides residing within the pore at any given moment
alters the ionic flow. Thanks to a current sensor coupled to each
pore, these current alterations are continuously recorded, producing
a trace of current (picoAmperes) over time. This signal can then be
translated into a nucleic acid sequence in a process called basecalling

using dedicated algorithms. Both ONT and the scientific community
have developed several alternative basecallers in an attempt to
maximize the accuracy of the generated sequences.

The existing sequencing platforms are characterized by different
read lengths, and related benefits and flaws. Short-read scRNA-seq
methods (i.e., Illumina) allow for effectively reconstructing the
biological complexity in terms of gene expression; though, the
fact they rely on sequencing just the 3′ or 5’ end of transcripts
prevents an accurate exploration of other levels of heterogeneity,
such as expressed mutations and alternative splicing events. On the
contrary, long-read sequencing methods (i.e., ONT or PacBio)
enable to cover the entire length of the transcripts and to
perform the aforementioned analyses, but they can only exploit
bulk RNA that is not multiplexed at the cellular level (Kovaka et al.,
2019; Tang et al., 2020). To overcome the limits of transcript end-
biased protocols, in recent years a number of experimental
approaches have been devised to couple high-throughput short-
read scRNA-seq with long-read sequencing, taking advantage of key
features from both technologies (Gupta et al., 2018; Singh et al.,
2019; Tian et al., 2021). A typical workflow consists in exploiting
existing scRNA-seq platforms (mostly 10X Genomics Chromium
(Zheng et al., 2017)) to produce a pool of full-length cDNA
molecules, each tagged with a cellular barcode (BC), which is
needed to associate each transcript with a single cell, and a
unique molecular identifier (UMI), used to correct for
amplification artifacts (Figure 1A). Subsequently, the barcoded
cDNA can be split between short and long-read sequencing. The
first step of downstream analysis aims to retrieve cellular BCs that
are shared between short and long-read datasets; this is facilitated by
the fact that, based on the known structure of the library, the cellular
BC is expected to be in a fixed position in both short and long reads
(Figure 1B). Finally, the analysis of cells that are present in both

FIGURE 1
Typical workflow to couple short-read with long-read scRNA-seq using the 10x Chromium platform. (A) Overview of library preparation,
sequencing, and downstream analysis. Single cells are captured into Gel Beads-in-emulsion (GEMs) through a microfluidic chip. Inside the GEMs, poly-
adenylated mRNA transcripts undergo tagging with a cellular barcode (BC) and unique molecular identifier (UMI), followed by reverse transcription for
full-length cDNA production. After the GEMs are broken, cDNA can be split between short-read (SR) and long-read (LR) sequencing. During
downstream analysis, shared BCs are used to link SR and LR data, enabling the integration of multiomics information. (B) Structure of read templates. The
SR template (left) consists of poly-adenylated fragmented transcripts attached to an Illumina adapter, BC, and UMI of fixed length, in a fixed sequence. The
LR template (right) is essentially the same as the SR template but for the addition of the LR sequencing adapter and length of the transcript.
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datasets allows the integration of transcriptional profiles (from short
reads) with complementary layers of information (accessible from
long reads).

One critical issue of this process is BCs demultiplexing, which
consists of re-assigning every read to its origin sample after all
reads have been sequenced together. This task is generally
performed by the software of the sequencing platform,
exploiting as information the sequence of the BC associated
with each sample. BCs demultiplexing on Illumina data relies
on the low error rate (around 0.1%) of the sequencing platform
(Goodwin et al., 2016); instead, ONT data are typically noisy,
because the electric signal that is generated during the sequencing
needs to be deconvolved through the official ONT basecaller
Guppy, which has relatively low single molecule accuracy (Kono
and Arakawa, 2019). Therefore, errors are frequently introduced
in the sequence of cellular BCs, which makes BC matching
between Illumina and ONT data computationally challenging.
To deal with this specific problem, methods for BC
demultiplexing that exploit both Illumina-generated short
reads and ONT-generated long reads have been recently
developed, including SiCeLoRe (Lebrigand et al., 2020),
FLAMES (Tian et al., 2021) and scTagger (Ebrahimi et al.,
2022). However, despite differences in computational strategies
and implementations, all of these methods still rely on the
analysis of basecalled ONT reads, which does not eliminate
the issue of inherent low accuracy, and require high-
throughput short-read data to establish a trustworthy consensus.

One possible way to bypass the challenges posed by the analysis
of basecalled sequences is to directly study the raw electric signals
produced by the ONT sequencing (Figure 2). In order to proceed
along this path one has to handle technical issues that are inherently
related to the sequencing process and the type of data that is
produced: the most significant of such problems is due to the
fact that the speed at which a polymer transverses a pore on the
capture region is not constant and is affected by a number of factors,
such as the density of the electrolyte solution. A consequence of this
phenomenon is the fact that the same polymer can be represented by
multiple electric current signals. Therefore, in order to cluster
together signals representing the same cellular BC, one has to
take into account the presence of time-warping between such
time-series, i.e., dilation or compression of the signal along the

time axis. To the best of our knowledge, DeepBinner (Wick et al.,
2018) is the only publishedmethod that can directly demultiplex raw
electric signals, exploiting a supervised machine learning approach
based on a convolutional neural network trained on a set of very
specific BCs. However, it is important to note that when ONT
sequencing is not paired with a parallel Illumina sequencing run (or
any other external control experiment), the BC demultiplexing
problem is of inherently unsupervised nature, that is, there are
no reference electric signals for the cellular BCs to make any
meaningful comparison and the only available information is the
expected number of unique Moreover, no datasets containing
labeled electric signals are available in the literature, which are
necessary to train or test any supervised machine learning
approach based on the analysis of ONT-generated and not pre-
processed raw signals.

In this work, we argue that the direct analysis of the raw
electric signal that is produced by ONT sequencing—still
immune to any basecalling error rate—might provide a
means to achieve more reliable demultiplexing of BC signals
generated by scRNA-seq experiments. As no tools are currently
available to deal with this type of data, we developed UNPLEX, a
novel method based on the combination of two unsupervised
machine learning algorithms: autoencoders and self-organizing
maps (SOM). Specifically, we use autoencoders to build a
compact, latent representation of the BC regions of the
nanopore electrical signals; then, we cluster such
representations using a SOM. To test and evaluate the
performance of UNPLEX we used in silico generated ONT-
like raw signals. Our results show that this approach
represents a promising starting point for the development of
tools to effectively separate signals coming from the same cell,
with small errors in the case of similar BC signals. Indeed, the
ONT is currently evolving as the nanopore models as well as the
strategies to control the speed of the DNA/RNA strand in the
pore are improving.

The paper is structured as follows. In Section 2 we describe how
raw signals were generated in silico, and explain the unsupervised
machine learning approaches—autoencoders and self-organizing
maps—used in this work. Then, we introduce the UNPLEX
framework and describe the hyper-parameter optimization
process employed to enhance UNPLEX performance. In Section

FIGURE 2
Demultiplexing of BC signals in ONT sequencing can be carried out using basecalled (top) or raw (bottom) signals.
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3 we show the results obtained by running UNPLEX on two in silico
datasets. Finally, in Section 4 we discuss the results obtained and
draw future research directions for this work.

2 Materials and methods

2.1 In silico generation of raw signals

The generation of raw signals consists of two consecutive phases,
starting with the creation of random nucleic acids sequences,
followed by the generation of the corresponding current signals
(Figure 3).

Phase 1. The creation of the dataset containing the nucleic acids
sequences (denoted as Dseq in the following) consists of three steps:
(i) a set of A different BCs are created by sampling each nucleotide
from a uniform distribution so that, for each position of every BC
sequence, all nucleotides have the same probability to be sampled;
(ii) a set of B different UMI sequences are created by sampling each
nucleotide from a uniform distribution so that, for each position of
every UMI sequence, all nucleotides have the same probability to be
sampled; (iii) each UMI is concatenated to each BC.

At the end of this process, the dataset Dseq contains a number of
sequences equal to A · B. We highlight that only the portions
regarding the BC and UMI sequences were generated because
they can be isolated from a ONT signal: indeed, the polyA-tail
can be identified thanks to its characteristic signal, while the signal
derived from the adapter is shared among all the sequences. On the
contrary, it is not possible to determine where the BC signal ends
and the UMI signal starts; thus, a heuristic is required to deal with
signals generated from BC plus UMI sequences.

Phase 2. Starting from each sequence in Dseq, we obtain a dataset
Dsig of ONT-like signals by means of an iterative process that
emulates the molecule threading through the pore. Namely, for
each 6-mer of a sequence considered in the reading order, a portion
of the raw signal is sampled according to the data made publicly
available by Oxford Nanopore Technologies (Nanoporetech, 2017).

It is worth noting that the ONT-like signals in Dsig generally
have different lengths because the required time for a 6-mer to
thread through the pore varies according to many biochemical
factors, e.g., the nucleic acids appearing in the 6-mer itself. Non-

etheless, since the BC sequences and the UMI sequences have similar
lengths in terms of the number of nucleic acids, we assume that also
the raw signals derived from them share a similar—although not
necessarily identical—length.

2.2 Autoencoders

Autoencoders are neural networks whose objective is to learn
how to reproduce the input data (Bourlard and Kamp, 1988).
Autoencoders leverage two sub-networks: the first, named
encoder, receives as input the vector of original data and outputs
a vector of real values that is typically smaller than the input vector;
the second, named decoder, reconstructs the original data starting
from the real values vector computed by the encoder. Thanks to this
topology, autoencoders learn how to represent the data in a different
feature space by extracting the most relevant latent features of the
input data. The extracted features generally represent hidden
structures within the input and allow for learning an effective
encoding to regenerate the original data. Both the encoder and
the decoder are simultaneously trained following the standard
supervised training process of neural networks. Though,
autoencoders are usually considered as an unsupervised machine
learning approach since they are trained with unlabeled data. In this
work, we use a convolutional autoencoder whose topology (see
Supplementary Table S1) is derived from a convolutional
autoencoder previously used to perform feature extraction of
electroencephalography signals (Wen and Zhang, 2018). Due to
the different dimensionality of the signals considered in this work
and the necessity to have a succinct representation for the successive
computational steps of UNPLEX, we modify the topology proposed
in (Wen and Zhang, 2018) by adding a convolutional layer of
16 filters at the end of the encoder and a maximum pooling
operator. This convolutional layer is used to reduce the number
of filters from 64 to 16, while the maximum pooling operator halves
the size of each filter of the embedding; such a topology results in a
great reduction of the size of the embedding. Symmetrically, an up
sampling operator and a convolutional layer are added to the
decoder.

Being based on convolutional layers, the input data of the
autoencoder must be of a fixed length. Since the ONT-like

FIGURE 3
Workflow used for in silico generation of ONT-like signals.
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signals have different lengths, as described in Section 2.1, we
perform a pre-processing step to produce a new dataset Dtsig,
which will contain signals whose lengths are all equal to the half
length (denoted by l) of the longest signal in the dataset Dsig. To this
aim, we first isolate the first half of each signal: this is a heuristic used
to remove a portion of the UMI signal, since the BC and UMI
sequences have similar lengths. Then, each half of the signal is
concatenated to itself until the signal length is equal to l. In case the
concatenation step produces signals with a length higher than l, the
signal is truncated at length l. Finally, the intensity values of the
signals are normalized in the unit interval by using as the minimum
(maximum) value the lowest (highest) intensity value among all
signals used to train the autoencoder. It is worth noting that the
isolation of the first half is performed on the signals and not on the
original sequences because, in real-world applications, the
information regarding the original sequences is not available.

The autoencoder is used to generate a new dataset Demb by
extracting the latent representations, or embeddings, of all signals
belonging to Dtsig. The dataset Demb will thus contain vectors of real
numbers used to train the Self-Organizing Map, as described in
Section 2.3. To produce the embeddings, the dataset Dtsig is
partitioned into a training set and validation set according to a
80 − 20 split. We exploit the Adam optimizer, and an early stopping
criterion monitoring the Mean Squared Error (MSE) computed on
the validation set.

2.3 Self-organizing maps and clustering

Self-Organizing Maps (SOMs) are a class of unsupervised neural
networks that exploit a competitive learning approach to cluster the
input data in a regular grid of elements called neurons (Kohonen,
1982; Kaski, 1997). Neurons correspond to real-valued vectors,
whose components are usually referred to as weights. The
training of a SOM is an iterative process in which the neurons
are updated to better represent all the elements in a dataset that, at
each iteration, are fed to the SOM to determine the so called Best
Matching Unit (BMU). The BMU is the neuron that minimizes a
given distance function calculated with respect to the input vector.
Then, both the BMU and the neurons in its neighborhood are
updated to better resemble the input vector. At the end of the
training process, the neurons representing similar samples are
topologically near to each other, while the neurons representing
different samples are in further regions of the grid.

The performance of a SOM is influenced by many hyper-
parameters, such as the number and initial value of neurons, the
learning rate, the network topology, the neighborhood function, and
the distance function. The weights initialization strategy is based on
principal component analysis (PCA) (Jolliffe, 2002), which was
proved to allow SOMs to converge starting from any initial state
(Kohonen, 2013). The PCA-based strategy computes the first two
eigen-vectors of Demb, and the weights are then sampled from the
hyper-plane defined by the two eigen-vectors. The learning rate is a
real-valued number that determines the magnitude of each neuron’s
update and prevents the neurons from “forgetting too quickly” input
vectors previously received. The topology determines how the
neurons are organized in a regular grid; in this work, we
consider squared tiles and hexagon-shaped tiles. The topology

directly impacts on the choice of the most suitable neighborhood
function, which determines how the neurons in the BMU’s
neighborhood interact, compete and learn to better match the
samples. The neighborhood functions are time-dependent,
meaning that the size of the neighborhood they identify
decreases as the training of the SOM proceeds. The
neighborhood function also influences the magnitude of the
update of the weights: the further from the BMU the neuron is,
the weaker the update. In this work, we test four neighborhood
functions: Gaussian, Bubble, Mexican hat, and Triangle (see
Supplementary Table S2). The Gaussian function leverages a
normal distribution to determine the intensity of the weights
update: the neurons closer to the BMU (mean) are more
influenced than the further neurons, while the size of the
neighborhood is determined by the standard deviation. The main
drawback of this function is the computational cost required to
compute the exponential function of the normal distribution;
therefore, for the sake of computational efficiency, we also
consider the other three neighborhood functions that are
approximations of the Gaussian function. Finally, we test the
impact of four distance functions: Cosine, Manhattan, Euclidean,
and Chebyshev (see Supplementary Table S3).

At the end of the training process, the SOM is employed to
determine the BMU of each element of the input dataset, thus
grouping the elements according to their representative neuron. In
particular, it is possible to apply a clustering algorithm to the SOM’s
neurons to obtain a mapping from the input vector to the BMU. To
evaluate the quality of a clustering, extrinsic metrics can be leveraged
when the ground truth for each sample is available. In this work, we
use two extrinsic metrics: Adjusted Random Score (ARS) (Hubert
and Arabie, 1985) and Fowlkes-Mallows Score (FMS) (Fowlkes and
Mallows, 1983). ARS is an overall measure that aims to reward the
clustering when: (i) a couple of samples is supposed to belong to the
same cluster and it is correctly grouped into the same cluster; (ii) a
couple of samples is not supposed to belong to the same cluster and
it does not belong to the same cluster. Similarly, FMS considers all
the possible couples of samples and rewards the clustering when the
couples are correctly clustered together. Conversely, a penalization is
used in FMS when two samples that should belong to different
clusters are grouped together and when the samples that should
belong to different clusters are grouped together.

2.4 Hyper-parameters optimization

The performance of any machine learning algorithm is
influenced by the values of its hyper-parameters, whose tuning is
typically based on a trial-and-error approach that is time-
consuming, error-prone, and hampers the repeatability of the
experiments (Hutter et al., 2019). The trial-and-error approach
might also prevent the user to find optimal parameterizations
since the search is solely guided by the user experience and
insights. For these reasons, over the last decade the problem of
tuning the hyper-parameters has been formulated as an
optimization problem—Hyper-Parameter Optimization (HPO)—
whose objective is to find a parameterization that maximizes the
performance obtained by the machine learning model. The
strategies proposed to solve the HPO problem range from the
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application of genetic programming or genetic algorithms to
sequential approaches (Yu and Zhu, 2020; Alibrahim and
Ludwig, 2021). In general, they evaluate and evolve a number of
different parameterizations, and let the obtained performance guide
the search toward more promising parameterizations. The main
drawback concerns the computational cost required by this process,
because for each candidate parameterization the model has to be
trained and evaluated. A strategy to limit such issue is the use of
surrogate models—built starting from the performance of the model
obtained on a small set of parameterizations—that are cheaper to
evaluate in terms of running time (Hutter et al., 2019). Though, the
quality of the surrogate model is related to the number of evaluated
parameterizations: the higher the number of evaluated
parameterizations, the better the surrogate model.

In this work, we use the Sequential Model Based Optimization
(SMBO), a general-purpose method specifically defined to optimize
the hyper-parameters of an algorithm by means of a Bayesian
optimization process (Hutter et al., 2011). The SMBO method
can be summarized in the following steps: (i) build a surrogate
model on the basis of the results of randomly sampled
parameterizations; (ii) find the optimum of the surrogate model;
(iii) evaluate the corresponding parameterization; (iv) update the
surrogate model. Steps (ii)-(iv) are repeated until a termination
criterion is met (e.g., a number of Model Evaluations (MEs) have
been performed). The main advantage of this sequential approach is
that the first surrogate model is built by leveraging a fraction of the
MEs available. So doing, the remaining MEs are used to
simultaneously update the surrogate model and effectively search
for an optimal parameterization. The sequential approach also
allows for performing a reduced number of MEs, which is ideal
when the training and evaluation of a model are expensive in terms
of computational resources. In fact, the execution of a sequential
search can be interrupted at any iteration and the method provides a
sub-optimal solution.

2.5 The UNPLEX framework

The UNPLEX framework leverages a pipeline composed of three
unsupervised machine learning techniques—autoencoder, SOM,
clustering—to cluster ONT-like raw signals according to their
BCs (Figure 4). We opted for the autoencoders because they can
build compact data representations that can be effectively clustered
(see, for example (Peng et al., 2018; Lim et al., 2020)); the SOM was
instead chosen considering its capability to perform clustering by
keeping different representatives for each cluster.

In the first step of the pipeline, the raw signals in the dataset Dsig

are pre-processed to generate the dataset Dtsig; then, the
convolutional autoencoder is trained by exploiting all available
signals and produce their latent representations, which are
collected in dataset Demb. In the second step, the SOM is trained
using all embeddings in Demb, and a BMU is assigned to each
embedding. In the third step, the BMUs are clustered using an
agglomerative approach to identify the neurons of the SOM that
represent the embeddings of all raw signals sharing the same BC
(represented in Figure 4 with different colors).

To enhance the performance of UNPLEX, we perform the
hyper-parameter optimization by means of SMBO, using a
random forest as a surrogate model (Breiman, 2001). Random
forests were chosen as they are more suited to handle discrete
hyper-parameters as compared to other approaches like, for
instance, Gaussian processes. In particular, we optimize the
number of neurons of a square SOM, the learning rate, the
neighborhood function (including the respective starting value of
standard deviation), the network topology and the distance function.
The considered values for each parameter are reported in
Supplementary Table S4.

UNPLEX is fully developed with Python 3 and leverages three
module packages: Keras, to build and train the autoencoder (Gulli
and Pal, 2017); minisom, to implement the SOM (Vettigli, 2018);

FIGURE 4
Workflow of the UNPLEX. The dataset containing ONT-like signals (Dseq) is pre-processed to achieve a dataset of signals of the same length (Dtsig),
which are fed to the autoencoder to obtain their latent representations (Demb). The data included in dataset Demb are processed by the SOM, whose
outcome is finally clustered, resulting in the classification of ONT-like signals according to their BCs.

Frontiers in Bioinformatics frontiersin.org06

Papetti et al. 10.3389/fbinf.2023.1067113

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1067113


SMAC3, to perform the hyper-parameter optimization step
(Lindauer et al., 2022).

3 Results

Two in silico generated datasets D1 and D2 are used to test the
capability of the unsupervised machine learning pipeline UNPLEX
to demultiplex BCs ONT-like raw signals. D1 and D2 consists in 50
000 and 100 000 signals, respectively, derived from a number of A =
50 (BCs) and B = 1 000 (UMIs) forD1, and A = 100 and B = 1 000 for

D2. The chosen value of A represents the number of cells in each
dataset, and B roughly represents the number of transcripts derived
from each cell. Given the different size of the two initial datasets, the
hyper-parameters of UNPLEX are optimized by leveraging a budget
of 60 MEs for D1, and 30 MEs for D2 due to the higher
computational costs. The score function used to guide the
optimization process of SMBO is defined as the average between
the FMS and ARS score values. For both datasets, the number of
clusters to be identified by UNPLEX is set equal toA, i.e., the number
of BCs present in the datasets.

In Figure 5, we show an example of the first half of an in silico
generated signal (left panel), the corresponding pre-processed signal
in Dtsig (middle panel), and the signal reconstructed by the
autoencoder (right panel). Noteworthy, the autoencoder output
signal is a de-noised version of the input signal: the embedding
does not contain any information about the noise introduced by the
recording process of the nanopore. At the end of the training, the
reconstructed signals are thus similar but not identical to the input
signals, suggesting that the autoencoder successfully learn an
embedding that can be used to reconstruct the input.

In Figure 6 we illustrate the clustering performed by UNPLEX
on D1 with the best hyper-parameterization found by SMBO. Each
SOM’s neuron is highlighted with a color representing the cluster it
is assigned to. Figure 7 provides a different representation of this
result. Specifically, the left plot shows the gold standard clustering, in
which all signals in D1 are perfectly grouped according to their BC,
producing a sequence of uniformly colored vertical bars. In the right
plot, the signals are displayed with the colors corresponding to the
clusters they are assigned to by UNPLEX, and are arranged in
vertical bars that can follow a different order with respect to those of
the gold standard. If the right panel shows only uniformly colored
columns, this means that UNPLEX perfectly clusters all the signals,
i.e., both FMS and ARS are maximized. In the case of Figure 7, we
observe that some columns are characterized by more than one
color. Such phenomenon indicates that some signals are inserted in
the wrong cluster by UNPLEX. Non-etheless, the performance
metrics for D1 (ARS = 0.90 and FMS = 0.92), which provide a
numerical indication of the clustering results, confirm the good
outcome achieved by UNPLEX.

FIGURE 5
(Left) First half of an in silico generated signal in Dsig. (Middle) Pre-processed signal in Dtsig given as input to the autoencoder. (Right) Corresponding
signal representation generated as output by the autoencoder.

FIGURE 6
Graphical representation of the 50 clusters identified by the SOM
on dataset D1. Each hexagon represents a neuron colored according
to the cluster it belongs to, that is, the BC it represents.
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Figure 8 reports the clustering obtained by UNPLEX on D2 with
the best parameterization found by SMBO. Figure 9 shows the gold
standard (left) and the results obtained by UNPLEX with dataset D2

(right). In this case, although the column structure is maintained in
most cases, the percentage of misclustered signals is increased with

respect to the results obtained on dataset D1. Indeed, the
performance metrics indicate a slight decrement of the quality of
the clustering (ARS = 0.82 and FMS = 0.81) but yet confirm the
effectiveness of UNPLEX.

We argue that the difference in performance between D1 and D2

is not caused by the inherent stochasticity of the employed methods,
but by the higher number of BCs considered in D2. Indeed, since the
number of BCs in D2 is twice the amount of D1, the dissimilarity of
the signals produced by different BCs decreases, causing an increase
in the error rate of UNPLEX. In fact, in the tests performed on both
datasets, we observe that the misclustered signals that should have
been assigned to a specific cluster, are instead all inserted into a
unique other cluster, i.e., UNPLEX assigns these signals to only one
other BC. We hypothesize that this behavior is caused by the fact
that such signals are assigned to BMUs of the SOM that lie on the
border between two clusters. Stated in other words, considering the
graphical representations of the SOM in Figures 6, 8, these BMUs are
hexagons adjacent to at least one hexagon having a different color.
Specific tests regarding this issue might be helpful to determine
which signals are on the borders between two regions, in order to
mark them as “unknown” and let the user decide whether to keep
them in the current analysis or to consider this subset of signals in a
further, more focused experiment to the aim of correctly
discriminate the misclustered signals.

4 Discussion

Long-read sequencing methods such as ONT, coupled with
high-throughput single-cell sequencing platforms, hold the
promise to greatly expand the scope of scRNA-seq analyses
towards multi-omics approaches, enabling the exploration of
additional layers of biological complexity (Kovaka et al., 2023).

FIGURE 7
(Left) Gold standard clustering where each bar corresponds to all the signals pertaining the same BC in datasetD1. (Right) Clustering outcomewhere
the signals are colored according to the result achieved with UNPLEX, non-uniform coloring in a bar indicates the presence of misclustered signals.

FIGURE 8
Graphical representation of the 100 clusters identified by the
SOM on dataset D2. Each hexagon represents a neuron colored
according to the cluster it belongs to, that is, the BC it represents.
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In this work, we presented UNPLEX, a new computational
framework devised to match and demultiplex signals from ONT
sequencing with corresponding BC in the coupled scRNA-seq
experiment. Specifically, UNPLEX leverages two types of
unsupervised neural networks (i.e., a convolutional autoencoder
and a SOM), in order to cluster signals containing the same BC.

In our tests, UNPLEX reaches high values of ARS and FMS on
two datasets containing 50 000 and 100 000 signals; this result
highlights that the raw signals can be properly clustered according to
their BC. Contrary to other published methods (Lebrigand et al.,
2020; Tian et al., 2021; Ebrahimi et al., 2022), UNPLEX could be
successfully applied to demultiplex a relatively small dataset of ONT
reads, without the need for expensive high-throughput experiments.
Moreover, UNPLEX does not rely on a basecaller to infer nucleotide
sequences from Nanopore signals, making its performance
independent from the low accuracy of the official ONT basecaller.

The main drawback of the current implementation of UNPLEX
is related to the running time, caused by the quadratic scale with
respect to the SOM dimension, and the necessity to tune the SOM
hyper-parameters to obtain a better clustering of the embeddings. A
possible strategy to limit the impact of the computational costs
would be analyzing the relationship between the hyper-parameters
and the clustering quality of datasets composed of different numbers
of signals. In fact, if the optimal hyper-parameterization depends
only on the number of signals in the dataset, and not on the signals
themselves, it will be possible to perform preemptive hyper-
parameter optimizations for different sizes of datasets generated
in silico. So doing, when a new, real-world dataset has to be clustered,
the optimal hyper-parameters for the respective dataset size can be
identified by looking at the previous analysis and at the signals
properly clustered without any optimization step.

In the future, we plan to improve UNPLEX with the
introduction of a highly parallel implementation of the SOM to

alleviate the computational burden introduced by the training
step. We will also explore the use of implicit metrics (e.g., the
silhouette) to assess the clustering quality instead of leveraging a
ground truth. In this way, it would be possible to perform the
optimization of hyper-parameters also for datasets whose ground
truth is unknown. Finally, we will also consider the development of a
novel signal generator that leverages the latest signals reported in the
literature, since the k-mer models used in this work (Nanoporetech,
2017) are no longer supported by Oxford Nanopore Technologies.

At present, UNPLEX was only tested on in silico generated
signals due to the great challenge of measuring classification
accuracy on a real Nanopore sequencing dataset, where the
ground truth is unknown. Indeed, the performance of UNPLEX
cannot be compared to existing methods because of two reasons.
First and foremost, all existing general-purpose methods rely on
basecallers, which cannot (by definition) be considered ground
truth. As a matter of fact, UNPLEX could (in principle) be more
accurate in clustering similar BCs than a basecaller-based approach,
but that would be paradoxically counted as an error, affecting the
overall accuracy. Second, all existing methods require a high
coverage to yield high quality results, which is not the case for
UNPLEX that is designed to be effective using a single ONT
experiment (i.e., with coverage equal to 1). We are currently
working on the generation of a reference dataset to further assess
the performance of UNPLEX. Generating ground truth data that
include known barcodes typically requires implementing a separate
protocol for creating synthetic datasets. A recommended approach
would use deep learning techniques to simulate and verify the
dataset, taking into account the 5%–15% error rate typically
observed in nanopore data due to substitution, deletion, and
insertion events. In any case, the obtained signals should be clean
enough to avoid misinterpretation by the Dynamic Time Warping
(DTW)method, which requires an additional step to pre-process the

FIGURE 9
(Left) Gold standard clustering where each bar corresponds to all the signals pertaining the same BC in datasetD2. (Right) Clustering outcomewhere
the signals are colored according to the result achieved with UNPLEX, non-uniform coloring in a bar indicates the presence of misclustered signals.
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signals. A validation step of the generated signals is also necessary to
make sure they are very close to reality. DTW is a technique used to
compare time series data that may have variations in the timing and
alignment of their features. Applying DTW to barcode identification
in Nanopore sequencing data can be challenging due to the
computational complexity of the algorithm, the need for
appropriately selecting parameter values, and the requirement for
sufficient training data. However, with careful optimization and pre-
processing, DTW can be a powerful tool for identifying barcodes in
Nanopore sequencing data with high accuracy and enhancing
UNPLEX performance.

Although our data generation procedure aimed to faithfully
represent a Nanopore signal generated by scRNA-seq libraries, the
analysis of real sequencing datasets will likely pose additional challenges
in terms of signal complexity and noise profile. Future experimental and
analytical work will allow us to extend the applicability of UNPLEX to
real Nanopore sequencing datasets. In any case, novel nanopore models
and strategies to control the speed of the DNA/RNA strand in the pore
are nowadays under investigation by many research groups; therefore,
UNPLEX need to be equipped with additional features to keep up with
the ONT that is currently evolving (Ying et al., 2022).

Finally, we plan to further improve our methods by studying the
neurons of the SOM which fire in response to signals derived from
different BCs. In fact, if such neurons are located on the borders
between two groups of neurons representing two different BCs, a fine-
grained analysis can be performed tomark these signals as “unsure” to
the user. Another possible strategy to mitigate this issue is to perform
an additional clustering on signals whose BMUs are located on the
borders. To this aim, it could be possible to develop a “two-step”
framework whereby, after the execution of UNPLEX, only the signals
located at the borders are considered and further clustered. During
this second step, larger embeddings could be computed to introduce
in the compact representations the features that might help to
properly cluster such signals; then, such embeddings can be
clustered by leveraging a SOM or another clustering approach.
Larger embeddings would be computed only for a small subset of
signals, since computing larger embeddings for the whole dataset
would significantly increase the computational burden, thus making
UNPLEX unfeasible due to computational or time limitations. We
envision that UNPLEX could be easily adapted to cluster different
types of signals, for example, to discriminate UMIs or methylated
nucleotide sequences.
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