

Multiobjective Combinatorial Optimization with Interactive Evolutionary Algorithms: the case of facility location problems

Journal Pre-proof

Multiobjective Combinatorial Optimization with Interactive
Evolutionary Algorithms: the case of facility location problems

Maria Barbati, Salvatore Corrente, Salvatore Greco

PII: S2193-9438(24)00003-7
DOI: https://doi.org/10.1016/j.ejdp.2024.100047
Reference: EJDP 100047

To appear in: EURO Journal on Decision Processes

Received date: 17 January 2023
Revised date: 23 January 2024
Accepted date: 15 February 2024

Please cite this article as: Maria Barbati, Salvatore Corrente, Salvatore Greco, Multiobjective Combi-
natorial Optimization with Interactive Evolutionary Algorithms: the case of facility location problems,
EURO Journal on Decision Processes (2024), doi: https://doi.org/10.1016/j.ejdp.2024.100047

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier B.V. on behalf of Association of European Operational Research
Societies (EURO).
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.ejdp.2024.100047
https://doi.org/10.1016/j.ejdp.2024.100047
http://creativecommons.org/licenses/by-nc-nd/4.0/

Multiobjective Combinatorial Optimization with Interactive Evolutionary

Algorithms: the case of facility location problems

Maria Barbatia, Salvatore Correnteb, Salvatore Grecob

aCa’ Foscari University of Venice, Department of Economics, Cannaregio 873 Fondamenta San Giobbe, 30121
Venice, Italy

bDepartment of Economics and Business, University of Catania, Corso Italia, 55, 95129 Catania, Italy

Abstract: We consider multiobjective combinatorial optimization problems handled
by preference-driven efficient heuristics. They look for the most preferred part of the
Pareto front based on some preferences expressed by the user during the process. In gen-
eral, the Pareto set of efficient solutions is searched for in this case. However, obtaining
the Pareto set does not solve the decision problem since one or more solutions, being the
most preferred for the user, have to be selected. Therefore, it is necessary to elicit their
preferences. What we are proposing can be seen as one of the first structured methodolo-
gies in facility location problems to search for optimal solutions taking into account the
preferences of the user. To this aim, we use an interactive evolutionary multiobjective
optimization procedure called NEMO-II-Ch. It is applied to a real-world multiobjective
location problem with many users and many facilities to be located. Several simulations
have been performed. The results obtained by NEMO-II-Ch are compared with those
obtained by three algorithms knowing the user’s “true” value function that is, instead,
unknown to NEMO-II-Ch. They show that in many cases, NEMO-II-Ch finds the best
subset of locations more quickly than the methods knowing the whole user’s true prefer-
ences.

Keywords: Multiobjective Optimization, Combinatorial Optimization, Preferences, NEMO,
Facility Location problems

1. Introduction

Multiple Objective Combinatorial Optimization (MOCO) problems (for a survey, see [30]) are very
complex and challenging to solve. They can be approached with different methodological approaches,
but, in general, one focuses on the computation of all the efficient solutions (see [69] for a discussion on
the different concepts of solutions of a MOCO problem). In general, the number of efficient solutions
grows exponentially with the size of the problem [30]. The combination of this, along with the inherent
complexity associated with the “non-smoothness” of the optimization problems, requires a significant
computational undertaking that far surpasses the effort needed for handling single objective cases.
[2]. The high number of efficient solutions and the required very high computational effort are
considered the main bottleneck of the MOCO problem [2, 19]. These considerations have led to the
creation of several strategies that adopt heuristics to determine an approximation of the whole set of
nondominated or efficient solutions, requiring less computational effort than exact algorithms. [31].
Nevertheless, it should be noted that while these may be considered the primary challenging factors

Email addresses: maria.barbati@unive.it (Maria Barbati), salvatore.corrente@unict.it (Salvatore
Corrente), salgreco@unict.it (Salvatore Greco)

Preprint submitted to Soft Computing February 19, 2024

of a MOCO problem in theory, there are additional complexities to consider when applying it in real-
life situations. It would be difficult to claim that a problem has been solved, even if a comprehensive
list of efficient solutions has been generated. This list may consist of numerous solutions, potentially
even in the thousands, leaving the Decision Maker (DM) feeling overwhelmed when selecting one or
more. [2, 19]. Hence, aside from the computational constraints, there are several practical issues to
consider regarding the support provided to the DM. With this in mind, the algorithms can leverage
the integration of the DM’s expressed preferences to direct the search towards the most appealing
part of the Pareto front for them. Considering different moments in which the DM is asked to provide
their preferences, in the literature, one distinguishes between a priori, interactive, and a posteriori
methods [30]:

• in a priori methods, the preferences of the DM are articulated at the beginning of the process
[e.g. 14],

• in interactive methods, the DM expresses their preferences during the search [e.g. 78],

• in a posteriori methods, the DM is given a set of all efficient solutions, and these solutions are
subsequently examined based on their preferences [e.g. 20].

On the one hand, using a priori methods asks the DM to define their preferences that are trans-
lated by some particular utility function at the beginning of the procedure. This assumes that the
DM is rational and their decisions are driven by existing preferences that just need to be uncovered.
However, this assumption is not always valid as the DM may be uncertain about their preferences
at the start and may need to develop them throughout the decision-making process [64, 65].
On the other hand, in the a posteriori methods, the DM is often presented with many solutions.
This approach has some drawbacks too, since:

• the DM has to choose the best solution(s) analyzing the tradeoffs among objectives [19],

• presenting the complete range of solutions can overwhelm the DM, posing challenges in selecting
the most optimal one(s). [48].

Based on our previous discussion, it seems that interactive methods are the most suitable approach
[18, 69, 73]. Consequently, for MOCO problems, a reasonable strategy is to utilize specific heuristics
that focus on discovering some efficient solutions that are the most preferred by the DM. This means
that the heuristics used to explore the feasible solution set should integrate preference information
provided by the DM, directing the search towards certain areas of the Pareto front that contain
the most favored solutions for the DM. This is achievable by using recently suggested heuristics
[9] that combine both the ability to explore feasible solutions efficiently (common in optimization-
oriented heuristics like NSGA-II [23] or SPEA [79]) and the ability to construct a decision model
that reflects the preferences of the decision maker (typical in some approaches of Multiple Criteria
Decision Aiding (MCDA), such as ordinal regression [40, 46]). An example of such a combined
methodology is the recently introduced NEMO-II-Ch algorithm [10], which incorporates the search
procedure of NSGA-II along with the preference representation obtained from nonadditive robust
ordinal regression [3]. This approach, which drives the search for optimal solutions guided by a
preference model incorporating the preferences expressed by the DM, seems to be a very promising
approach to MOCO problems in real-life applications. Indeed, it can give appropriate answers to all
the challenges of MOCO problems that we have described:

• it handles the large number of efficient solutions of a MOCO problem by looking only at small
subsets of efficient solutions that the DM appreciates,

2

• it manages the computational workload by employing proven heuristics that are highly efficient
in addressing intricate multiobjective problems,

• it handles the request for decision support by driving the whole search algorithm by the pref-
erences step by step expressed by the DM in an interactive procedure.

To test the usefulness of such an approach in this paper, we consider a typical MOCO problem,
i.e. a Facility Location Problem (FLP) [34].

In FLPs we aim to locate a set of facilities in a space, optimizing some objective functions and
satisfying some constraints. Historically, FLPs have been modeled using a mono-objective approach
in which a single objective function has been adopted. Many contributions have been proposed in
this sense with a multitude of objectives adopted [35] for describing several very different applications
[51]. In reality, though, DMs must manage multiple conflicting objectives all at once. Therefore,
the algorithms that they use ought to take into account a multi-objective formulation of the given
problem. [30].

The classical approach for selecting the location of a facility involves defining a function that
relates the distances between the potential facility users and the facility itself. [33]. The objective
function becomes a linear mathematical expression of the distances to optimize. By adding multiple
constraints, a combinatorial optimization model is created, and the optimal solution can be deter-
mined by solving the model, as described in what is considered the seminal paper by [41]. Therefore,
the main aim becomes the theoretical development and the description of the properties of the mod-
els and their solutions [51]. Some reviews gather the basic knowledge on location science as in [60].
Similarly, the main developments in the field are analyzed in the recent books of [29] and [51].

Multiple Objective Facility Location Problems (MOFLPs) have captured the attention of re-
searchers, especially in the last decade. Many objectives can be used, from the classical distance-
related objectives to the environmental and ecological criteria (for a list, see [34]). Most of the
methodologies aim to find the whole Pareto front or a part of it, implying a considerable computa-
tional effort [2]. To this aim, several methodologies can be adopted: from exact approaches (e.g.,
[42, 58]) to multiobjective evolutionary algorithms (e.g.[22]) for complex problems.

The underlying belief in all these approaches is that the DM possesses the capability to choose the
optimal option for themselves. This assumption is based on the presumption that the DM has dis-
tinct and well-established preferences and acts entirely rationally. In most practical problems, these
assumptions are not very realistic [2, 54]. Moreover, very few papers directly consider the opinion of
the DMs. Frequently, the stated objectives are derived from factors related to the specific problem,
without delving deeper into the perspectives of DMs. In light of this, handling complex MOFLPs
with an optimization algorithm guided by DM’s preferences seems an exciting approach to be ex-
plored. From this viewpoint, our contribution can be seen as the first comprehensive methodology
for MOFLPs that seeks optimal solutions while taking into account the preferences of the user. For
this reason, we propose to deal with MOFLPs by using NEMO-II-Ch. Interactively, the DM specifies
their preferences on some pairs of possible facility locations assignments. This process directs the
search towards the most appealing section of the Pareto front based on the DM’s preferences, and
prevents the exploration of solutions that do not meet their expectations, thereby saving time [28].

To highlight the effectiveness of NEMO-II-Ch in solving MOCO problems, we conducted simula-
tions using varying user value functions. We then compared the performance of the algorithm with
three other algorithms, namely EA-UVF [10], EA-UVF1 and EA-UVF2, which rely on the user’s
“true” value function. We observed that NEMO-II-Ch often performs better than the algorithms
knowing the user’s preferences. In order to examine the impact of the DM’s preference information
and cognitive burden on the convergence of NEMO-II-Ch to the preferred solution, we explored three
variants. These variants involved asking the DM to compare one pair of solutions every 5, 10, and 20
generations, respectively. The results proved that asking for preference information parsimoniously

3

is better than requiring an unrealistic cognitive effort from the user. Therefore, this sheds light on
the necessity to carefully study how often the user should be queried with a pairwise comparison of
solutions to ensure and speed the convergence of the algorithm [52].

The paper is structured as follows. In Section 2, an overview of location problems is provided;
MCDA and, in particular, NEMO-II-Ch are presented in Section 3; the particular MOLFP to which
we applied NEMO-II-Ch is described in Section 4, while the three algorithms based on the complete
knowledge of the user’s preference with which NEMO-II-Ch is compared are presented in Section 5.
The experimental setup and the numerical results are detailed in Section 6; in Section 7, we discuss
the obtained results; finally, the last section provides some conclusions together with possible avenues
of research.

2. Review on recent approaches to location problems

According to [35], three types of objectives can be adopted when locating facilities. The mini−
max problems, known as center problems, aim to minimize the maximum distance between a user
and its assigned facility [21]. Several variants of the center problems can be identified (see e.g.
[12]). For instance, recently, [68] proposed a new formulation to address a situation where the k-th
largest weighted distance between the users and the facilities must be minimized. The mini− sum
problems minimize the sum of the distances between users and facilities; this objective is well-known
and much studied and called the median problem [55]. Among the median problems let us recall
the Discrete Ordered Median Problem (DOMP) [26], where the objective is the minimization of an
ordered weighted average of the distances of the users to the facilities. Therefore, in this variant of
the problem, each user can be seen as an objective. Lastly, the covering models aim to find solutions
in which the maximum number of users is covered, i.e., users are positioned within a given threshold
distance from a facility [5].

MOFLPs have been generated from these classical location problems optimizing at the same time
more objectives. The very first example was proposed by [71], which optimized the median and the
center objectives. Indeed, it proposes to use the median together with other objectives. [13] proposed
a multiobjective model in which the classical median problem is integrated with a robustness measure
that considers potential demand changes. [7] adopted as an additional objective the maximization of
the distance from the nearest affected region to decrease the impact of the facility on the population.
On a similar topic, [63] described a model in which the total number of users affected by the facility
is minimized. [47] modified the median problem in the presence of more DMs, considering that the
evaluation of the distances between users and facilities is different for each DM. Finally, covering
objectives are combined with median objectives as in [58].

Minimizing the distances between the facility (e.g. a disposal site) and the users is also defined in
[19]. They generate solutions containing one of the two objectives adopted (minimizing the distance
from the container) and imposing a threshold distance that counts as user dissatisfaction.

In addition to the described objectives, equality measures can be adopted as objective functions
in FLPs [53]. These measures are often combined with an efficient objective (e.g., median) to avoid
inefficient solutions far from all the users [33]. For example, [59] minimized the sum of the abso-
lute differences, the equality measure, and the sum of squared users-facility distances, either to be
minimized or maximized for a desirable or obnoxious facility, respectively.

[28] included all the different types of objectives described so far. They model how to choose the
location for a given number of casualty collection points in the State of California. They adopt five
objectives: the median, the center objective, the covering objectives (using two different distance
thresholds), and the variance as an equality measure.

It can be noted that many models also include location costs that can depend on several param-
eters for different potential locations, such as construction costs or maintenance costs [50]. Other

4

MOFLPs adopting several objectives can be found in the recent survey by [34], often related to the
particular case study. They also categorized the MOFLPs based on the developed methodology,
identifying both exact and heuristic approaches [52]. Beyond that, several metaheuristics have been
applied. Among these, we focus our attention on evolutionary algorithms [77]. The first group of
applications uses NSGA-II [23]. For example, in [75] NSGA-II is adopted for the choice of the loca-
tion of depots in the Colombian coffee supply network, maximizing the cover provided by the depots,
minimizing the costs of locating the depots, and minimizing the distances from purchasing centers to
the depot. Similarly, in [6], the NSGA-II methodology is implemented for the location of warehouses
and distribution centers in the supply chain perspective, optimizing the cost of locating warehouses
and the cost of transportation from these. Another case for the location of the warehouses in the
supply chain is reported in [70]. In addition to that, some specific applications are approached in
[25] for the location of public services in high-risk tsunami areas or in [44] for the selection of the
best raster points in a Geographical Information System. Finally, [62] proposed a generic problem
in which the first objective function minimizes the total setup cost of facilities while the second
minimizes the total expected traveling and waiting time for the customers.

Other examples of evolutionary algorithms include the application of SPEA2 in [43] for deciding
the location of depots that serve a single product type to several customers. Furthermore, Swarm
Optimization has been used in [76] for approximating the Pareto front in a bi-objective FLP.

While several applications are tackled with evolutionary algorithms, very few examples have been
proposed in the literature implementing interactive methods [31]. A first example of the use of inter-
active evolutionary multiobjective techniques for MOCO problems was proposed by [61]; the authors
presented an interactive methodology for two well-known MOCO problems where the DM’s utility
function is estimated by comparing population members. An offspring with a better-estimated utility
function triggers a new interaction with the DM. In addition, thanks to a probabilistic evaluation,
the interactions can be proposed for some offspring with a lower utility function, especially at the
beginning of the process, to ensure that the algorithm is not overly assured relying on the estimated
utility function.

In [57], for some generic objective functions of the distances between users and the facility, the DM
is asked to indicate some reference levels to be introduced as constraints in the model. Many years
later, [48] proposed for the two objectives mini −max and mini − sum an interactive geometrical
branch and bound algorithm in which good regions for the location of the facility are selected through
the interaction with the DM. In [24], a memetic algorithm integrates DM’s preferences. In particular,
the DM can indicate reference levels for the objectives, or they can provide the upper bound on the
objective function levels. The algorithm can be adapted for several MOFLPs. Besides, [37] proposed
an EMO algorithm introducing convex preference cones to guide the selection of the solutions to
the most preferred ones of the DM. In this sense, they introduced the possibility of introducing
DM preferences in an EMO algorithm for MOCO problems. Later, in [52], the authors proposed an
adaption of the same algorithm for some MOCO problems, including two MOFLPs with two or three
objectives. By examining multiple factors, such as the number of interactions, the design of their
interaction with the DM, and the inconsistencies in their judgment, they found that the results are
quite resilient. Alterations to these parameters do not have an impact on the quality of the solutions
obtained.

A useful tool to help DMs in the interactive phase can be the use of the Geographical Information
System (GIS) to help DMs visualize the potential solutions as in [1]. Recently, [36] developed a
Decision Support System for a bi-objective problem; in the computation phase, the lexicographic
optima and the ideal point are found, while in the dialog phase, the DM can choose the area in
which looking for more non-dominated solutions, analyzing maps provided in a GIS environment.
This process can be repeated until the DM is satisfied with the final position for the facilities [2].
Lately, evolutionary methods in a GIS environment have also been adopted by [4] to deal with a

5

zoning management problem for marine spatial planning.

3. Brief Introduction to MCDA and NEMO-II-Ch

3.1. MCDA and the Choquet integral

Evolutionary multiobjective optimization techniques, as noted in earlier sections, are effective
in solving intricate multiobjective optimization problems. Using these algorithms will provide the
user with a collection of possibly optimal solutions that are well-distributed across the Pareto front.
The user is, therefore, asked to choose among them the best one(s) with respect to their preferences.
Making this choice could be challenging as there tends to be a considerable number of non-dominated
solutions, which might make the DM feel uneasy about making a selection.

To avoid this, in recent years, interactive methods have been spread out [8]. They aim to include
some preference information from the part of the DM addressing the search to the subset of the Pareto
front more interesting for them. To do that, MCDA methods are used together with evolutionary
algorithms (for an updated state-of-the-art survey on MCDA see [40]).

Given a set of alternatives A = {a, b, . . .} evaluated on a set of n evaluation criteria G =
{f1, . . . , fn}1, MCDA methods deal with ranking, choice, and sorting problems. We will be more in-
terested in ranking and choice problems in this case. In ranking problems, all considered alternatives
have to be rank-ordered from the best to the worst, while, in choice problems, the best alternative
(eventually more than one) has to be chosen, removing all the others. Since the dominance relation2

stemming from evaluating the alternatives on the criteria at hand is too poor, several aggregation
methods can be considered. In this paper, we will use as an aggregation method the Choquet inte-
gral [15] (see [38] for a survey on the use of the Choquet integral in MCDA), a method that can be
included under the family of Multiattribute Value Theory (MAVT) [49]. MAVT methods are based
on value functions U : A → R such that the greater the value assigned to an alternative a by U ,
that is U(a), the better a can be considered. In particular, a preference (�) and an indifference (∼)
relations can be defined such that a � b iff U(a) > U(b), while a ∼ b iff U(a) = U(b).

The most common value function U is the additive one:

U(a) = U(f1(a), . . . , fn(a)) =
n∑

j=1

uj(fj(a)), (1)

where, uj : A → R are non-decreasing functions of the evaluations fj(a) for all fj ∈ G. Moreover,
due to its simplicity, the additive value function most used in applications is the weighted sum

U(a) = U(f1(a), . . . , fn(a)) = WS(a) =
n∑

j=1

wj · fj(a) (2)

where wj are the weights attached to criteria fj ∈ G such that wj > 0 for all fj ∈ G and
n∑

j=1

wj = 1.

Using an additive value function assumes that the set of criteria is mutually preferentially independent
[49] even if, in real-world applications, this assumption is not always verified. Indeed, the evaluation
criteria can present a certain degree of positive or negative interaction. On the one hand, two criteria
positively interact if the weight assigned to them (together) is greater than the sum of the weights

1Let us observe that the criteria in MCDA will be the objective functions of the considered multiobjective opti-
mization problem on which the different solutions have to be evaluated.

2An alternative a dominates an alternative b iff a is at least as good as b for all considered criteria and better for
at least one of them.

6

assigned to the two criteria taken alone. On the other hand, two criteria are negatively interacting
if the weight assigned to them (together) is lower than the sum of the weights assigned to the two
criteria singularly. Non-additive integrals are used in literature to address the interaction between
criteria [38]; among them, the most well-known is the Choquet integral [15].

The Choquet integral is based on a set function µ : 2G → [0, 1] (referred to as capacity) satisfying
the following constraints:

1a) µ(∅) = 0 and µ(G) = 1 (normalization),

2a) µ(S) 6 µ(T) for all S ⊆ T ⊆ G (monotonicity).

Let us observe that a capacity is a function assigning a value not only to every single criterion but
to all possible subsets S ⊆ G of criteria. µ(S) represents the weight of the set of criteria S and this
is not necessarily equal to the sum of the weights of single criteria in the set, i.e., we could have

µ(S) 6=
∑

fi∈S
µ ({fi}) .

Capacities permit the representation of possible interactions between the criteria mentioned above.
Given a ∈ A, the Choquet integral of (f1(a), . . . , fn(a)) with respect to µ (in the following, for

the sake of simplicity, we shall write “the Choquet integral of a w.r.t. µ) is computed as follows

Cµ(a) = Cµ(f1(a), . . . , fn(a)) =
n∑

j=1

[
f(j)(a)− f(j−1)(a)

]
µ({fi ∈ G : fi(a) > f(j)(a)}) (3)

where ((1), (2), . . . , (n)) is a permutation of the indices of criteria (1, 2, . . . , n) such that 0 = f(0)(a) 6
f(1)(a) 6 · · · 6 f(n)(a).

Let us observe that the original formulation of the Choquet integral is the following:

Cµ(a) =

∫ f(n)(a)

0=f(0)(a)

µ ({fi ∈ G : fi(a) > t}) dt =
n∑

j=1

∫ f(j)(a)

f(j−1)(a)

µ ({fi ∈ G : fi(a) > t}) dt. (4)

For each j ∈ {1, . . . , n} and for each t ∈
]
f(j−1)(a), f(j)(a)

]
,

µ ({fi ∈ G : fi(a) > t}) = µ
{
fi ∈ G : fi(a) > f(j)(a)

}

so that

∫ f(j)(a)

f(j−1)(a)

µ ({fi ∈ G : fi(a) > t}) dt =
(
f(j)(a)− f(j−1)(a)

)
µ
{
fi ∈ G : fi(a) > f(j)(a)

}

and, therefore, eq. (4) boils down to eq. (3). This explains the reason for which eq. (3) represents
an integral.

The ability of the Choquet integral to represent the possible interactions between criteria is
nevertheless counterbalanced by its complexity since 2|G| values (one for each possible subset of
criteria in G) need to be defined. The Möbius transformation of the capacity µ can be utilized, along
with k-additive capacities, to consider the interaction between criteria while typically requiring fewer
parameters. This approach tends to be more efficient in terms of the number of parameters needed.
[39]. Formally,

7

• the Möbius transformation of the capacity µ is a set function m : 2G → R such that µ(S) =∑

T⊆S
m(T) for all S ⊆ G (conversely, m(S) =

∑

T⊆S
(−1)|S−T |µ(T) for all S ⊆ G) and constraints

1a) and 2a) are replaced by the following ones:

1b) m(∅) = 0,
∑

T⊆G
m(T) = 1,

2b) for all fj ∈ G and for all S ⊆ G \ {fj},
∑

T⊆S
m(T ∪ {fj}) > 0.

In this case, the Choquet integral of a w.r.t. µ can be written as follows:

Cµ(a) = Cµ(f1(a), . . . , fn(a)) =
∑

T⊆G
m(T) min

fj∈T
fj(a); (5)

• a capacity µ is said k-additive if its Möbius transformation m is such that m(T) = 0 for all
T ⊆ G such that |T | > k.

The use of k-additive capacities involves the definition of 1 + n +
(
n
2

)
+ · · · +

(
n
k

)
coefficients m(T).

with |T | 6 k. In the following, we shall consider and apply the Choquet integral using a 2-additive
capacity since it involves the definition of n+

(
n
2

)
parameters only (one parameter m ({fj}) for each

fj ∈ G and one parameter m ({fi, fj}) for each {fi, fj} ⊆ G) and it is generally sufficient in practice
to represent the preferences of the DM [39].

By using a 2-additive capacity, the Choquet integral can be written in the following way

Cµ(a) = Cµ(f1(a), . . . , fn(a)) =
∑

fj∈G
m({fj})fj(a) +

∑

{fi,fj}⊆G
m({fi, fj}) min{fi(a), fj(a)} (6)

while monotonicity 1b) and normalization constraints 2b) become

1c) m(∅) = 0,
∑

fi∈G
m({fi}) +

∑

{fi,fj}⊆G
m({fi, fj}) = 1,

2c)

m({fi}) > 0, for all fi ∈ G,
m({fi}) +

∑

fj∈T
m({fi, fj}) > 0, for all fi ∈ G and for all T ⊆ G \ {fi}, T 6= ∅.

3.2. A motivating example

Let us show here the importance of taking into account the Choquet integral and its formulation
in terms of 2-additive capacities.
Inspired by [38], let us suppose that the Dean of a school has to evaluate three students a, b, c whose
scores on scientific (S) and humanistic (H) subjects are shown in Table 1. In particular, let us suppose

Table 1: Scores of three students on scientific and humanistic subjects

S(·) H(·)
a 30 23
b 23 30
c 25 25

that the Dean wants to formally represent their preferences for which they prefer c over the other two

8

students. Indeed, they prefer students who have balanced scores to students who are outstanding in
a few subjects and above the minimum level in the others.
Trying to represent the preferences by a weighted sum (see eq. 2) where wS is the weight of scientific
subjects, wH is the weight of humanistic subjects, and wS + wH = 1, one gets that

c � a ⇔ wS · S(c) + (1− wS) ·H(c) > wS · S(a) + (1− wS) ·H(a)⇔ 25 > 7wS + 23⇔ wS <
2

7
,

c � b ⇔ wS · S(c) + (1− wS) ·H(c) > wS · S(b) + (1− wS) ·H(b)⇔ 25 > −7wS + 30⇔ wS >
5

7
.

Since the inequalities wS < 2
7

and wS > 5
7

are incompatible, the Dean’s preferences cannot be
represented by a weighted sum.
Trying to represent the same preferences by the Choquet integral expressed in terms of a capacity
(see eq. 3) where µ ({S}) is the weight of scientific subjects, µ ({H}) is the weight of humanistic
subjects and µ ({S,H}) = 1 is the weight of scientific and humanistic subjects considered together,
one gets that

c � a ⇔ 25 · µ ({S,H}) > 23 · µ ({S,H}) + (30− 23) · µ ({S})⇔ µ ({S}) < 2

7
,

c � b ⇔ 25 · µ ({S,H}) > 23 · µ ({S,H}) + (30− 23) · µ ({H})⇔ µ ({H}) < 2

7
.

Considering, for example, the following capacity µ

µ({S}) = 0.25, µ({H}) = 0.25, and µ({S,H}) = 1, (7)

one is able to represent the Dean’s preferences by the Choquet integral. Let us observe that since
µ({S,H}) > µ({S})+µ({H}), then, there is a positive interaction between scientific and humanistic
subjects.
Considering the Möbius transformation of the capacity in (7), one has µ ({S}) = m ({S}) =
0.25, µ ({H}) = m ({H}) = 0.25 and µ ({S,H}) = m ({S}) + m ({H}) + m ({S,H}) from which
m ({S,H}) = 0.5. It is easy to observe that, in this case (and, in general, when only two criteria are
considered), the computation of the Choquet integral in terms of a capacity (see eq. (3)) or in terms
of Möbius (see eq. (5)) involves the same parameters number (3). However, computing the Choquet
integral of one of the three alternatives in terms of Möbius, one gets

Cµ(a) = Cµ (S(a), H(a)) = m ({S}) · S(a) +m ({H}) ·H(a)︸ ︷︷ ︸
WS(a)

+m ({S,H}) ·min{S(a), H(a)}

clearly showing that the Choquet integral expressed in terms of Möbius is an extension of the weighted
sum where the second part (m ({S,H}) ·min{S(a), H(a)}) represents the eventual interactions be-
tween criteria.
Let us conclude this section by computing the Choquet integral of the alternatives a, b, c using the
previous Möbius parameters (m ({S}) = m ({H}) = 0.25 and m ({S,H}) = 0.5) and eq. (6) obtain-
ing

Cµ(a) = m ({S}) · S(a) +m ({H}) ·H(a) +m ({S,H}) ·min{S(a), H(a)} =

= 0.25 · 30 + 0.25 · 23 + 0.5 · 23 = 24.75,

Cµ(b) = m ({S}) · S(b) +m ({H}) ·H(b) +m ({S,H}) ·min{S(b), H(b)} =

= 0.25 · 23 + 0.25 · 30 + 0.5 · 23 = 24.75,

Cµ(c) = m ({S}) · S(c) +m ({H}) ·H(c) +m ({S,H}) ·min{S(c), H(c)} =

= 0.25 · 25 + 0.25 · 25 + 0.5 · 25 = 25

9

that perfectly represent the Dean’s preferences.

3.3. NEMO-II-Ch

NEMO-II-Ch [10] is an interactive multiobjective optimization method aiming to drive the search
for the most interesting Pareto front region for the DM. The method belongs to the family of NEMO3

methods [9] which, based on NSGA-II, integrate some preferences provided by the DM during the
iterations of the algorithm. The aim is to get points focused on a particular region of the Pareto
front, avoiding wasting time surfing through regions not interesting for the DM. Initially, the model
employs a straightforward weighted sum (2) as the preference function. However, if required, it
switches to the 2-additive Choquet integral (6) when the weighted sum is no longer able to represent
the DM’s preferences.

Algorithm 1 NEMO-II-Ch method

1: Current preference model = WEIGHTED SUM.
2: Generate the initial population of solutions and evaluate them
3: repeat
4: if Time to ask the DM then
5: Elicit user’s preferences by asking DM to compare two randomly selected non-dominated

solutions
6: if there is no value function remaining compatible with the user’s preferences then
7: if Current preference model = WEIGHTED SUM then
8: Current preference model = CHOQUET and go to 6:
9: else

10: Remove information on pairwise comparisons, starting from the oldest one, until fea-
sibility is restored and reintroduce them in the reverse order as long as feasibility is
maintained

11: end if
12: end if
13: Rank solutions into fronts by iteratively identifying all solutions that are most preferred for

at least one compatible value function. Rank within each front using crowding distance
14: end if
15: Select solutions for mating
16: Generate offspring using crossover and mutation and add them to the population
17: Rank solutions into fronts by iteratively identifying all solutions that are most preferred for at

least one compatible value function. Rank within each front using crowding distance
18: Reduce population size back to initial size by removing worst solutions
19: until Stopping criterion met

In the following, we shall describe the different steps in Algorithm 1:

1: As mentioned above, at the beginning, a weighted sum is used to represent the preferences of
the DM;

2: An initial population of solutions is generated, and they are assessed based on the objective
functions being considered;

4-5: If it is time to ask the DM for preference information, we order the solutions in fronts using
the dominance relation, exactly as done in NSGA-II. The non-dominated solutions are put in

3NEMO: Necessary preference enhanced Evolutionary Multiobjective Optimizer

10

the first front. Once removed from the population, the other non-dominated solutions are put
in the second front, and so on until all solutions have been ordered in different fronts. Inside
the same front, the solutions are ordered using the crowding distance [23]. The DM is therefore
presented with two non-dominated solutions. They are taken randomly from the first front (if
there are at least two solutions) or from the following ones with at least two non-dominated
solutions. In the extreme case in which there is only one solution for each front and, therefore,
we have a complete order of the solutions, the DM is not presented with any pair of solutions,
and we can pass to step 15:.
Let us suppose that solutions a and b have been chosen to be presented to the DM. They are
asked to pairwise compare the two objective function vectors (f1(a), . . . , fn(a)) and (f1(b), . . . , fn(b))
stating if a is preferred to b (a �DM b), b is preferred to a (b �DM a) or a and b are indifferent
(a ∼DM b). A linear constraint will be used to translate this preference information. In partic-
ular, a �DM b is translated to the constraint U(a) > U(b) and, a ∼DM b iff U(a) = U(b). Let
us observe that U is the function in (2) if the current preference model is the weighted sum,
while U is the function in (6) if the current preference model is the 2-additive Choquet integral;

6: Checking if there exists at least one value function compatible with the preferences provided
by the DM:

– If the current preference model is the weighted sum (2), then one has to solve the following
LP problem:

εlinearDM = max ε subject to

U(a) > U(b) + ε, if a �DM b,

U(a) = U(b), if a ∼DM b,
n∑

j=1

wj = 1,

wj > 0, for all j = 1, . . . , n.

Elinear
DM

Let us observe that one constraint U(a) > U(b) + ε should be included for all pairs
(a, b) ∈ A × A for which the DM states that a is preferred to b (a �DM b), while one
constraint U(a) = U(b) should be included for all pairs (a, b) ∈ A× A for which the DM
states that a is indifferent to b (a ∼DM b). If Elinear

DM is feasible and εlinearDM > 0, then there
is at least one weighted sum compatible with the preferences provided by the DM.

– If the current preference model is the 2-additive Choquet integral in (6), then one has to

11

solve the following problem:

εChDM = max ε subject to

Cµ(w1f1(a), . . . , wnfn(a)) > Cµ(w1f1(b), . . . , wnfn(b)) + ε, if a �DM b,

Cµ(w1f1(a), . . . , wnfn(a)) = Cµ(w1f1(b), . . . , wnfn(b)), if a ∼DM b,

wj > 0, for all j = 1, . . . , n,
n∑

j=1

wj = 1,

m(∅) = 0, and
∑

fi∈G
m({fi}) +

∑

{fi,fj}⊆G
m({fi, fj}) = 1,

m({fj}) > 0, for all, j = 1, . . . , n,

m({fj}) +
∑

fi∈T
m({fi, fj}) > 0, for all j = 1, . . . , n,

and for all T ⊆ {f1, . . . , fn} \ {fj}, T 6= ∅.

ECh
DM

Let us underline that in the set of constraints above, we need to introduce a set of weights

(w1, . . . , wn) so that wj > 0 and
n∑

j=1

wj = 1 since the Choquet integral application implies

that all objectives are expressed on the same scale. Therefore, the set of weights is
necessary to put the objectives on the same scale, and, for this reason, they become
unknown variables of our model [10].
If ECh

DM is feasible and εChDM > 0, then there is at least one value function, being a 2-
additive Choquet integral, compatible with the preferences provided by the DM. Let us
observe that the previous problem is no longer linear; consequently, we use the Nelder-
Mead method [56] to get the set of weights and the Möbius parameters optimizing it. It
is a numerical algorithm used to solve non-linear optimization problems that, iteratively,
evaluates solutions belonging to a simplex. At each iteration, this simplex is transformed
and the procedure continues until a stopping criterion is met (see [10] for a description of
the application of the method in this context). The non-linearity of the problem comes
from the constraints translating the preferences of the DM since, for all a ∈ A,

Cµ(w1f1(a), . . . , wnfn(a)) =
n∑

j=1

wjfj(a) ·m ({fj}) +
∑

{fi,fj}⊆G
m ({fi, fj}) ·min{wifi(a), wjfj(a)}

and, consequently, a �DM b is translated into the constraint

n∑

j=1

wjfj(a) ·m ({fj}) +
∑

{fi,fj}⊆G
m ({fi, fj}) ·min{wifi(a), wjfj(a)} >

n∑

j=1

wjfj(b) ·m ({fj}) +
∑

{fi,fj}⊆G
m ({fi, fj}) ·min{wifi(b), wjfj(b)}.

Let us underline that in the above programming problems, the strict inequalities have been
converted into weak inequalities by using an auxiliary variable ε, the maximization of which
is the objective of our problems. For example, the strict inequality U(a) > U(b) has been
converted into the weak inequality U(a) > U(b) + ε;

12

7-10: If there is no model compatible with the preferences provided by the DM, we have to distinguish
the case in which the current preference model is the weighted sum from the case in which the
current preference model is the 2-additive Choquet integral. In the first case, given that no
weighted sum is capable of representing the preferences of the DM, we opt to enhance the
model’s complexity by transitioning to the 2-additive Choquet integral. Having more degrees
of freedom, it is more flexible and, therefore, can better adapt itself to the preferences of the
DM. In the second case, if we already passed to the 2-additive Choquet integral but there is
not any model (therefore weights and Möbius parameters) compatible with the preferences of
the DM, we remove some pieces of this preference information starting from the oldest one
until the feasibility is restored. Let us observe that removing a piece of preference information
should be performed only if the DM agrees. This is a relevant aspect since the DM could be
very convinced about a certain comparison and, consequently, they don’t want to remove it;

13: To use the information gathered until now from the DM and, consequently, to address the
search for the most interesting region of the Pareto front, we shall order the solutions in fronts
in a different way than before. For each solution x in the current population (we shall denote
by A the current set of solutions), we have to check if there is at least one compatible function
such that x is strictly preferred to all other solutions in A. Again, we have to distinguish two
cases:

– If the current preference model is the weighted sum one, the following LP problem has to
be solved:

εlinearx = max ε subject to,

U(x) > U(a) + ε, for all a ∈ A \ {x},
Elinear
DM .

}
Elinear
x

If Elinear
x is feasible and εlinearx > 0, then x is put in the first front.

– If, instead, the current preference model is the 2-additive Choquet integral preference
model, then the following programming problem has to be solved:

εChx = max ε subject to,

Cµ(w1f1(x), . . . , wnfn(x)) > Cµ(w1f1(a), . . . , wnfn(a)) + ε, for all a ∈ A \ {x},
ECh
DM .

}
ECh
x

If ECh
x is feasible and εChx > 0, then x is put in the first front.

Once the first front has been built, all solutions are removed from the current population, and
the same procedure is used with the remaining solutions to build the second front. We shall
continue in this way until all solutions have been ordered on different fronts. Inside the same
front, solutions are ordered using the crowding distance.
In the rare case in which there is not any solution that can be preferred to the others for any
compatible model, all solutions are retained equally preferable and, therefore, they are put in
the same front;

15-18: The usual evolution of the population is performed by using the selection, crossover, and
mutation operators together with the ordering of the population described above;

3-19: Repeat steps 4-18 until the stopping condition has been met.

13

4. Using Interactive Evolutionary Multiobjective Optimization in location problems: a
case study

We test our approach on a well-known multiobjective location problem introduced in [27] and
later in [28]. The problem, considered as a reference in its domain, consists in choosing the location
of a given number p of facilities among a set of potential locations, optimizing five different classical
objective functions for FLPs. More in detail, the facilities are Casualty Collection Points (CCPs) to
which people can go if they need help in case disasters have happened. These centers should operate
where a huge amount of people need to be provided with emergency services. In [27] a comparison
of the different objectives is proposed and also a first multiobjective version, including only three
objectives, is formulated; whereas in [28] a multiobjective heuristic has been introduced adopting the
five objective functions described later. The problem is of particular interest among the MOFLPs
because at least one mini − max objective is selected, one for the mini − sum, and one equality
measure are simultaneously optimized.

We define:

• I = {1, . . . , q}: the set of demand points,

• L = {1, . . . ,m}: the set of potential locations for the facilities,

• dij: the distance between demand point i and potential facility j,

• popi: the population at the demand point i,

• p: the total number of facilities to locate,

• P ⊆ L: a vector of p selected facilities in L,

• Di(P): the distance from a demand point i to the closest facility in P ,

Di(P) = min
k∈P
{dik}.

We consider five objectives:

1. The median objective, minimizes the sum of the distances between the demand points and the
closest facility [41]:

min
P
f1(P) = min

P

[
1

q

q∑

i=1

Di(P)

]
,

2. The maximum distance objective, minimizes the distance of the farthest demand point [41]:

min
P
f2(P) = min

P
{max

i
{Di(P)}},

3. The maximum covering objectives, maximize the population inside two different distance thresh-
olds S1 and S2 [16]:

max
P

f3(P) = max
P

∑

i: Di(P)6S1

popi,

max
P

f4(P) = max
P

∑

i: Di(P)6S2

popi.

14

4. The minimum variance objective, balances the distances between demand points and the closest
facility, minimizing the variance of the closest distances for all the demand points [53]:

min
P
f5(P) = min

P

∑q
i=1[Di(P)− f1(P)]2

q
.

The case study has I = {1, . . . , 577} demand points and L = {1, . . . , 141} potential sites for the
facilities located in Orange County in California, an area where the careful planning for the location
of CCPs represents an essential requirement due to frequent earthquakes. The data, which include
coordinates and associated weights for the demand points and coordinates for the potential facilities,
are available upon request to the authors of [28].

Let us point out that this is just one of the possible examples that our methodology can handle.
Our approach is very flexible, and we could adopt many different objective functions.

5. Algorithms used for the comparison

As already observed above, using a heuristic not taking into account the preferences of the DM,
such as NSGA-II, gives the user a set of non-dominated vectors of p-facilities. The user then needs
to select the most suitable solution based on their preferences. For this reason, we proposed to apply
NEMO-II-Ch to address the search not to the entire Pareto front but to the most interesting part
for the user.
We shall consider the full-size problem in which the 141 different locations will be taken into account,
choosing the best p among them with p = 4, 5. Moreover, we will simulate different users’ value
functions. On the one hand, we will show that, in most of the cases, NEMO-II-Ch can find the
best subset of p locations for the user by asking for a few pieces of preference information. On the
other hand, to test its performance, we will compare them to the performance of three algorithms:
EA-UVF, EA-UVF1, and EA-UVF2. These are based on the knowledge of the user’s “true” value
function that is, instead, unknown to the NEMO-II-Ch algorithm. While the EA-UVF algorithm
has been presented in [10], its two variants, namely EA-UVF1 and EA-UVF2, are presented in this
paper for the first time. The three algorithms are briefly described in the following sections.

5.1. EA-UVF: Evolutionary Algorithm based on User’s Value Function

This algorithm has been presented in [10] and its main steps, which are listed in Algorithm 2 are
detailed in the following lines:

Algorithm 2 Evolutionary Algorithm User’s Value Function (EA-UVF) algorithm

1: Generate the initial population of solutions and evaluate them
2: Compute the utility of each solution by the user’s true value function
3: Rank the solutions into fronts with respect to their true value
4: repeat
5: Select solutions for mating
6: Generate offspring using crossover and mutation and add them to the population
7: Rank the solutions into fronts with respect to their true value
8: Reduce population size back to initial size by removing worst solutions
9: until Stopping criterion met

1: Generate an initial population of solutions and evaluate them with respect to the considered
objective functions;

15

2: Compute the utility of each solution by using the user’s true value function;

3: Rank the solutions into fronts by using the values assigned to them from the user’s true value
function and computed at the previous step. The solution having the best utility value (the
minimum [maximum] value if the user’s true value function has to be minimized [maximized])
is put in the first front; the solution having the second best utility value is put in the second
front and so on until the solution having the worst utility value that is included in the last
front. Solutions having the same utility value are included in the same front;

5-8: Evolve the population;

4-9: Repeat steps 5-8 until the stopping condition has not been met.

5.2. EA-UVF1: NSGA-II with diversification replaced by User’s Value Function

The steps of the EA-UVF1 algorithm are shown in Algorithm 3 and detailed in the following
lines:

Algorithm 3 NSGA-II with diversification replaced by User’s Value Function (EA-UVF1)

1: Generate the initial population of solutions and evaluate them
2: Rank solutions into fronts by dominance, and inside each front, order them using their true value

3: repeat
4: Select solutions for mating
5: Generate offspring using crossover and mutation and add them to the population
6: Rank solutions into fronts by dominance, and inside each front, order them using their true

value
7: Reduce population size back to initial size by removing worst solutions
8: until Stopping criterion met

1: Generate an initial population of solutions and evaluate them with respect to the considered
objective functions;

2: Rank solutions in non-dominated fronts. Then, inside each front, compute the true value of all
solutions and rank them by these utility values;

4-7: Evolve the population;

3-8: Repeat steps 4-7 until the stopping condition has not been met.

The EA-UVF1 implements exactly the NSGA-II method with the replacement of the crowding dis-
tance, used to diversify solutions inside the same front, with the value assigned to the solutions by
the user’s true value function.

5.3. EA-UVF2: NSGA-II with a roulette wheel driven by User’s Value Function

The steps of the EA-UVF2 algorithm are shown in Algorithm 4 and detailed in the following
lines:

1: Generate an initial population of solutions and evaluate them with respect to the considered
objective functions;

16

Algorithm 4 NSGA-II with a roulette wheel driven by User’s Value Function (EA-UVF2)

1: Generate the initial population of solutions and evaluate them
2: repeat
3: Assign a probability to be parent to each solution by using their true value
4: Select solutions for mating
5: Generate offspring using crossover and mutation and add them to the population
6: Rank solutions into fronts by dominance, and inside each front, order them by the crowding

distance
7: Reduce population size back to initial size by removing worst solutions
8: until Stopping criterion met

3: A probability to be a parent of the next generation is assigned to each solution in the population.
This probability, denoted by Prob(P), is computed as

Prob(P) =
U(P)∑

P∈POP
U(P)

if U has to be maximized, (8)

Prob(P) =

1
U(P)

∑

P∈POP

1

U(P)

if U has to be minimized (9)

and POP denotes the current population of solutions;

4-7: Evolve the population;

2-8: Repeat steps 3-7 until the stopping condition has not been met.

The EA-UVF2 algorithm follows all the steps of the NSGA-II method and assigns a probability for
each solution to be a parent in the next generation based on the user’s true value function. The
better the value assigned by the user’s true value function to a solution, the higher its probability of
becoming a parent of the next generation.

Let us conclude this section by underlining that the EA-UVF represents the ideal situation where
the algorithm has perfect knowledge of how the user decides between two solutions and thus has the
greatest amount of theoretically available preference information. At the same time, the EA-UVF1
and the EA-UVF2 use this information, on the one hand, to select solutions within non-dominated
fronts of the generated population and, on the other hand, to decide which solutions are the best
to be parents of the next generation. However, all of them use the whole preference information
that the DM could theoretically provide by preferentially ranking all solutions at all iterations of the
evolutionary algorithm. In practice, its important to note that a DM cannot realistically provide
all this preference information due to the excessive and impractical cognitive load resulting from
making numerous comparisons during each iteration. Observe also that too much preference infor-
mation could not be helpful for the optimization algorithm because it could prematurely steer to
some uninteresting regions of the Pareto front. For these reasons, a methodology being much more
parsimonious in asking preferences to the DM is requested for any real-world application. To inves-
tigate the most appropriate amount of preference information to request from the DM and obtain
reasonably algorithmically acceptable solutions (i.e., to prevent the algorithm from being diverted

17

to uninteresting areas of the Pareto front), we study the relationship between, on the one hand, the
frequency with which preferences are requested from the user and, on the other hand, the quality of
the results and the speed of convergence of the algorithms To this aim, in the following simulations,
we run NEMO-II-Ch asking the DM one preference every 5, 10, and 20 generations, respectively.

6. Experimental setup and numerical results

The parameters and the technical details used in the simulations are the following:

• The population POP is composed of 30 solutions where each solution is a vector P of p different
integer values taken in the interval [1,m];

• The mating selection is performed by tournament selection in all methods apart from EA-UVF2
where it is performed by a roulette wheel selection:

– Tournament selection: Let us denote by P1, . . . , P30 the solutions in the current popu-
lation. To each solution Ps is associated the front it belongs to (Fs). Moreover, in all
methods each solution is associated with a second score. In NEMO-II-Ch and EA-UVF2
this second score is the crowding distance (CDs)

4, while in EA-UVF1 the second score
is the true value. We create a random permutation of the solutions in the population
denoted by P(1), . . . , P(30). Then, a tournament is performed between Ps and P(s) for each
s = 1, . . . , 30, to choose which solution has to be selected as parent of the next generation.
The tournament is won from the solution being in the lowest front (Ps iff Fs < F(s) or P(s)

iff F(s) < Fs) or, if they belong to the same front (Fs = F(s)), from the solution having the
greatest second score. If Ps and P(s) belong to the same front, and they have the same
second score, the winner is chosen randomly. Thus, thirty tournaments will be performed;
consequently, 30 solutions will become parents of the next generation. Denoting by P

′
s the

winner of the tournament between Ps and P(s), the pairs of parents which will generate
the offsprings of the next generation are, therefore, (P

′
1, P

′
2), (P

′
3, P

′
4),. . .,(P

′
29, P

′
30);

– Roulette wheel selection: Since, as in the tournament selection, 15 pairs of parents (P
′
1, P

′
2),

(P
′
3, P

′
4),. . .,(P

′
29, P

′
30) have to be chosen, for each k = 1, . . . , 30, a solution is sampled

randomly from the probability distribution given by eq. (8) if the user’s true value function
U has to be maximized or by eq. (9) if the same function as instead to be minimized; the
sampled solution becomes, therefore, the parent P

′
k of the next generation;

• Each pair of parents generate two offsprings by one-point crossover with a probability of 1 and
random resetting mutation5 with a probability of 1

p
[32]; in particular, since each solution can

contain a certain location at most once, the one-point crossover has to be slightly modified if
the two considered solutions have some common locations. In this case, the common potential
location(s) are inherited by both offsprings, while the one-point crossover is performed on the
two vectors composed of uncommon potential locations for both parents. For example, let us
suppose that the two parents solutions are (10,15,21,30) and (6,10,20,50). In this case, the
potential location labeled by 10 is present in both parents and, therefore, it is inherited by the
two offsprings. The remaining vectors of uncommon locations are (15,21,30) and (6,20,50). The

4Citing [23], the crowding distance is ...“the average distance of two points on either side of a particular solution
along each of the objectives, and it is computed to maintain the diversification of the population. The higher the
crowding distance of a solution Ps, the more isolated the solution is in the considered population.

5“...in each position independently, with probability pm, a new value is chosen at random from the set of permissible
values [32]

18

one-point crossover is applied to exchange the two tails to these two vectors. Supposing that
the cut point is the second integer, exchanging the two tails, we obtain the vectors (15,21,50)
and (6,20,30). The two offsprings will therefore be the vectors (10,15,21,50) and (6,10,20,30).
Let us underline that the evolution of the population is performed in such a way that if a
new offspring is exactly the same as another solution in the current population, it is “killed.
Therefore, it is not possible to have multiple copies of the same solutions in the population;

• Considering the set L of potential locations and a solution P composed of p of these potential
locations, we assumed the following different user’s value functions:

UD) the maximal deviation from the optimal objective values [28] is computed as follows

UD(P) = max
k∈{1,...,5}

{∆k(P)}

where

∆k(P) =

fk(P)−f∗k
f∗k

, if the objective fk is to be minimized,

f∗k−fk(P)

f∗k
, if the objective fk is to be maximized,

and

f ∗k =

fmink = min
P⊆L: |P |=p

fk(P), if the objective fk is to be minimized,

fmaxk = max
P⊆L: |P |=p

fk(P), if the objective fk is to be maximized,

that is, f ∗k is the optimal value for the objective fk, k = 1, . . . , 5; a solution P is preferred
to a solution P ′ if UD(P) < UD(P ′);

UD
v) On the basis of the UD defined above, we considered the function UD

v computed as follows:

UD
v (P) = max

k∈v
{∆k(P)}

where v ∈ {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}. In this way, we shall
take into account only four of the five objective functions simultaneously;

UN) the value is computed as follows

UN(P) =
5∑

k=1

wk · fk(P)

where

fk(P) =

fk(P)−fmin
k

fmax
k −fmin

k
, if the objective fk is to be minimized,

fmax
k −fk(P)

fmax
k −fmin

k
, if the objective fk is to be maximized,

w = (0.1, 0.15, 0.2, 0.25, 0.3), and a solution P is preferred to a solution P ′ if UN(P) <
UN(P ′);

UN
v) the value is computed as follows

UN
v (P) =

∑

k∈v
w′k · fk(P)

19

where w′ = (0.1, 0.2, 0.3, 0.4) and v ∈ {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}6.
Also in this case we consider a subset composed of four of the five objective functions and
a solution P is preferred to a solution P ′ if UN

v (P) < UN
v (P ′).

For all considered user’s value functions, the best subset of p locations is Pb ⊆ L, such that
|Pb| = p and U(Pb) = min

P⊆L: |P |=p
U(P) where U ∈ {UD, UD

v , U
N , UN

v };

• All algorithms are run for a maximum of 1,000 generations. In particular, for NEMO-II-
Ch we asked the user to provide one preference comparison every 5, 10 and 20 generations.
The resulting algorithms are therefore denoted by NIICh 5, NIICh 10 and NIICh 20. All the
algorithms stop as soon as Pb is present in the current population or when the maximum
number of generations has been reached.

After we described the setup of the simulations, let us present the results of applying the compared
methods to the considered full-size problem. This means that we shall check for the best subset of
p locations, with p = 4, 5, among the 141 taken into account. Of course, this problem is quite
tricky since the possible subsets of p locations from which the best has to be discovered are

(
141
4

)
=

15, 777, 195 and
(
141
5

)
= 432, 295, 143, respectively. Therefore, we would like to prove that the method

can deal with big-size problems in which a massive number of solutions is involved. We performed
50 independent runs for each of the twelve different users true value functions defined in the previous
section (changing, therefore, the starting population), and we applied the three NEMO-II-Ch variants
(NIICh 5, NIICh 10 and NIICh 20) as well as the three algorithms knowing the user’s true value
function (EA-UVF, EA-UVF1 and EA-UVF2).
In the tables below, we used the following performance measures and the corresponding notation to
present the results of the simulations. Let us note that for UN and UD we related the performance
measures to the 50 implemented runs for each of the users true value functions, while for the UN

v

and UD
v we related the performance measures to the total number of runs implemented for each of

the users true value functions for the five possible combinations of the four objectives, i.e., 250 for
UN
v considering v ∈ {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}} and further 250 for UD

v

considering v ∈ {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}} :

• #SR: number of runs in which the algorithm was able to discover the best subset Pb of possible
locations;

• M#G: mean number of generations necessary to the algorithm to discover Pb;

• S#G: standard deviation of the number of generations necessary to the algorithm to discover
Pb;

• A#P : mean number of pairwise comparisons asked to the user in a single run and necessary
to discover Pb. We did not include this data for EA-UVF and EA-UVF1 since they are only
used as a benchmark and a comparison between the number of pairwise comparisons asked
from the NEMO-II-Ch versions and the one involved in the application of both algorithms is
meaningless. Of course, the number of times the user is queried by NEMO-II-Ch is only a
small portion of the times the user has to provide a pairwise comparison in the two algorithms.
Just to give an example, let us underline that in EA-UVF and EA-UVF1, where solutions are
ranked with respect to the user’s true value function, to rank order p solutions it is necessary
to perform p(p−1)

2
pairwise comparisons7. This means that to rank order 30 solutions in the

6Let us observe that in the computation of UN
v (P) the functions fk have a weight increasing with k. For example,

if v = {1, 3, 4, 5}, then, UN
v (P) = 0.1 · f1(P) + 0.2 · f3(P) + 0.3 · f4(P) + 0.4 · f5(P).

7The best solution is found after p− 1 comparisons, the second after p− 2 comparisons and so on.

20

population, the user has to provide 435 pairwise comparisons in a single iteration and, as will be
clear in the next section, this number is much higher than the number of pairwise comparisons
asked from the three NEMO-II-Ch versions in whichever considered test problem.
With respect to EA-UVF2, the user is not asked to provide any pairwise comparison. However,
the algorithm can never be applied in practice since it is assumed that the user can assign a
utility to each solution, a utility that needs to be used to implement the roulette wheel selection
described above. Of course, this is not realistic at all;

• S#P : standard deviation of the number of pairwise comparisons asked to the user necessary
to discover Pb;

• MT : mean time (in seconds) necessary for the algorithm to discover Pb; all simulations have
been performed using the commercial software MATLAB2019 but on different PCs. The 50
runs have been performed on the same machine for each method and user’s value function. In
the tables presenting the results, we reported the characteristics of the PCs used to perform
the different simulations;

• ST : standard deviation of the time necessary to the algorithm to discover Pb
8;

• A BRSD: the average distance of the best solution in the final population from the optimal
solution Pb. The distance, denoted by BRSD(U), is computed only for the simulations in which
the algorithm was not able to discover Pb (in the case in which the algorithm can discover Pb
the distance is zero). Denoting by PBest the best solution in the final population, following
[72], BRSD(U) is computed as

BRSD(U) =
|U(PBest)− U(Pb)|

U(Pb)
. (10)

The less BRSD(U), the better the algorithm’s performance. The value A BRSD is then
obtained by averaging BRSD(U) over the number of runs in which the algorithm could not
discover Pb.

6.1. Comparison with EA-UVF, EA-UVF1 and EA-UVF2

In Tables 2-5 we reported the results of applying the three versions of NEMO-II-Ch and those
obtained by the three algorithms knowing the user’s true value function. We have considered the
twelve different user’s true value functions defined in the previous section and the cases p = 4 and
p = 5 for the number of best locations to be discovered.
In the following, by (U, p) we denote the case in which the user’s true value function is U , and the
number of best locations is p. The following can be observed:

•
(
UN , 4

)
and

(
UN
v , 4

)
:

– Convergence: The three variants of NEMO-II-Ch as well as EA-UVF and EA-UVF1 are
always able to find the best solution in the 50 runs. This is not the case for EA-UVF2
that, with respect to UN is not able to converge in one of the 50 runs, while, with respect
to UN

1245, quite surprisingly, it can find the best subset of 4 locations only in 5 of the 50
runs;

8The mean and the standard deviation are computed for the runs in which Pb is discovered.

21

Table 2: Results for functions UN and UN
v considering p = 4.

UN NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 50/50 50/50 50/50 50/50 50/50 49/50

M#G 80.92 80.44 113.16 79.7 77.54 152.78

S#G 55.28 46.99 76.45 50.34 49.16 137.43

A#P 16.80 8.60 6.16

S#P 11.04 4.69 3.83

MT 51.71s 36.40s 46.87s

ST 43.99s 24.29s 33.16s

A BRSD 0.41

UN
v NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 250/250 250/250 250/250 250/250 250/250 205/250

M#G 98.38 104.30 129.47 74.81 92.18 159.53

S#G 72.95 77.40 95.56 58.86 72.61 156.23

A#P 20.31 11.00 6.99

S#P 14.56 7.72 4.82

MT 111.36s 102.97s 89.63s

ST 139.59s 113.46s 84.40s

A BRSD 0.233

Table 3: Results for functions UN and UN
v considering p = 5. All simulations have been performed with four different

PCs which characteristics and labels are the following: (PC1) intel core i7 3.6GHz; (PC2) intel core i5 2.5GHz; (PC3)
intel core i7 2.7GHz; (PC4) intel core i7 1.9GHz.

UN NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 50/50 50/50 50/50 50/50 50/50 49/50

M#G 140.94 156.08 184.96 112.22 137.20 269.08

S#G 68.73 66.12 94.43 69.82 86.82 192.38

A#P 28.82 16.16 9.78

S#P 13.75 6.63 4.68

MT 135.11s 115.65s 118.8s

ST 81.27s 63.21s 71.40s

A BRSD 0.127

UN
v NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 250/250 249/250 247/250 245/250 250/250 189/250

M#G 163.42 175.88 195.06 159.09 143.25 339.79

S#G 141.67 129.87 131.35 151.05 110.22 257.24

A#P 33.32 18.13 10.33

S#P 28.34 12.95 6.57

MT 261.97s 225.75s 212.60s

ST 406.12s 305.28s 267.40s

A BRSD 0.007 0.007 0.007 0.23

– Convergence speed: As can be observed from the data in Table 2, apart from the UN

case in which the EA-UVF1 converges more quickly (in terms of number of generations
necessary to find Pb) than all the other algorithms, the EA-UVF is the quickest among the
considered algorithms. As to the comparison between the three NEMO-II-Ch variants,
on average, NIICh 5 converges more quickly than NIICh 10 in four of the six considered
cases, while NIICh 20 is always the slowest. However, as already observed before, the

22

Table 4: Results for functions UD and UD
v considering p = 4.

UD NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 50/50 50/50 50/50 46/50 50/50 27/50

M#G 223.16 216.64 211.72 275.72 221.40 340.52

S#G 163.75 145.92 178.78 192.93 135.63 268.00

A#P 45.30 22.22 11.14

S#P 32.76 14.62 8.91

MT 6695.94s 3911.24s 1200.07s

ST 12289.79s 8526.89s 3314.57s

A BRSD 0.217 0.091

UD
v NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 250/250 250/250 250/250 207/250 239/250 172/250

M#G 200.16 208.69 210.94 249.67 204.62 281.53

S#G 156.24 163.38 183.76 185.98 144.05 244.34

A#P 40.68 21.41 11.11

S#P 31.26 16.35 9.18

MT 24304.79s 7808.71s 972.20s

ST 74985.61s 18913.41s 3038.36s

A BRSD 0.13 0.08 0.09

number of pairwise comparisons asked by EA-UVF and EA-UVF1 is tremendously higher
than the one involved in whichever NEMO-II-Ch version. For this reason, it is more
meaningful to give a more in-depth analysis of the NEMO-II-Ch variants to understand
if and how the number of times the user is queried with a pairwise comparison affects the
convergence speed of the algorithm. It can be observed that the lowest number of pairwise
comparisons is asked in correspondence of NIICh 20, followed by NIICh 10 and, then, by
NIICh 5 (see values in italics). This means that not only NIICh 20 is efficient in finding
Pb, but it can find it by asking very few pairwise comparisons to the user;

– Distance from Pb: Considering EA-UVF2 and assuming that the best solution in the final
population is the optimal one, the user makes an error, on average, of the 40.6% in the
UN case, and of the 23.3% in the UN

1245 one;

•
(
UN , 5

)
and

(
UN
v , 5

)
:

– Convergence: The three variants on NEMO-II-Ch can find Pb in all considered runs for all
test problems apart from the case

(
UN
1235

)
in which NIICh 10 and NIICh 20 are not always

able to find Pb. In particular, NIICh 10 does not find the best subset of five locations in
one of the 50 runs, while NIICh 20 does not find the same subset of best locations in 3
out of the 50 runs.
As to the three algorithms knowing the user’s true value functions, EA-UVF1 can always
find the best subset of five locations, while this is not true for the other two. In particular,
EA-UVF does not find Pb in five of the fifty runs in the UN

1235 case, while EA-UVF2 has
its best performance when UN is considered (49/50), and its worst one in the case UN

1235

23

Table 5: Results for functions UD and UD
v considering p = 5.

UD NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 45/50 43/50 40/50 21/50 33/50 10/50

M#G 433.33 365.49 455.20 214.71 508.92 337.70

S#G 281.33 229.93 239.48 204.39 392.73 266.71

A#P 87.31 37.19 23.25

S#P 56.25 22.95 12.00

MT 49028.23s 17697.06s 6549.91s

ST 45308.66s 26193.39s 8809.27s

A BRSD 0.038 0.093 0.104 0.103 0.101 0.175

UD
1234 NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

#SR 193/250 185/250 178/250 114/250 144/250 36/250

M#G 363.45 339.81 416.45 211.67 217.64 367.00

S#G 259.70 227.57 236.80 175.07 161.94 289.25

A#P 73.33 34.59 21.30

S#P 51.94 22.74 11.84

MT 20765.65s 17287.27s 10285.38s

ST 23766.28s 28641.42s 17749.90s

A BRSD 0.02 0.03 0.05 0.09 0.07 0.23

is the user’s true value function (11/50). This suggests that using the user’s true value
function to assign a probability of becoming a parent of the next generation is worse than
using the same function to rank the solutions belonging to the same front;

– Convergence speed: As in the p = 4 cases, it results that NIICh 20 is the quickest among
the three NEMO-II-Ch versions to reach Pb since it asks the user to provide almost half
of the pairwise comparisons asked by NIICh 10 and almost one-third of the pairwise
comparisons asked by NIICh 5.
Regarding EA-UVF and its two variants, once again, EA-UVF2 is the worst among them.
Moreover, we would like to underline that the number of generations necessary to get Pb
is lower for EA-UVF1 than for EA-UVF. In particular, it is meaningful to observe that
the number of pairwise comparisons asked to the user by EA-UVF1 is not greater than
the number of times the user is queried with a pairwise comparison in the EA-UVF. In
fact, the application of the EA-UVF1 implies the same number of pairwise comparisons of
EA-UVF only in case all solutions are non-dominated and, therefore, they are in one non-
dominated front only. This suggests once again that parsimonious preference information
is beneficial for the convergence of the algorithms to Pb;

– Distance from Pb: In the UN
1235 case, in average, the error done in assuming that the best

solution in the last population is the optimal one is almost 7% for NIICh 10, NIICh 20 and
EA-UVF, while it is 21.3% for the EA-UVF2. An higher error is also done by EA-UVF2
in the UN

1234, U
N
1245 and UN

2345 cases.

•
(
UD, 4

)
and

(
UD
v , 4

)
:

24

– Convergence: The three variants of NEMO-II-Ch are always able to find Pb in all consid-
ered runs. This is not true for the three algorithms knowing the user’s true value function.
In particular, EA-UVF1 finds in all 50 runs the best subset of four locations for all user’s
true value functions apart from UD

1245 in which it finds Pb in 39 of the 50 runs; the EA-UVF
never finds the best subset of locations in all runs. The same holds for EA-UVF2 that
in the UD

1234 and UD
1245 cases finds Pb 49 and 47 times, respectively. Considering all other

user’s true value functions, it can find the best subset of four locations more or less half
of the times;

– Convergence speed: NIICh 20 is confirmed as the best among the three variants of the
NEMO-II-Ch since it asks a lower number of pairwise comparisons than the other two
always maintaining the best possible convergence since, as observed in the previous item,
it is always able to find Pb. Comparing NIICh 10 and NIICh 5, the first is better than
the second in terms of number of pairwise comparisons asked to the DM;

– Distance from Pb: Assuming that the best solution in the last population is optimal, one
makes an error ranging from 7.9% to 40.8% considering the EA-UVF, from 7.4% to 25.8%
considering the EA-UVF2 and of the 7.8% considering the EA-UVF1.

•
(
UD, 5

)
and

(
UD
v , 5

)
:

– Convergence: For all considered cases, one of the three variants of NEMO-II-Ch finds Pb
more often than the algorithms based on the knowledge of the user’s true value function.
Even more, in all cases the worst among the three NEMO-II-Ch variants performs at least
as well as all three algorithms knowing the user’s true value function in terms of number
of runs in which it converges to Pb;

– Convergence speed: Looking at the average number of pairwise comparisons asked to the
user, once more we have the confirmation that NIICh 20 is the best among the three
variants of NEMO-II-Ch since it finds Pb asking less pairwise comparisons than NIICh 5
and NIICh 10. However, differently from the previous cases, the doubt is now related to
the fact that NIICh 20 is not able to find the best subset of locations as frequently as
NIICh 5 and NIICh 10 and, therefore, it could be better to ask more pairwise comparisons
to increase the probability to converge to the best solution.

– Distance from Pb: Comparing the three versions of NEMO-II-Ch one can observe that,
apart from UD

1235 and UD
1245 cases, NIICh 5 presents the best A BRSD. In particular,

the maximum average error is equal to 6.7% for NIICh 5, while it is 9.3% for NIICh 10
and even 10.4% for NIICh 20. The situation is even worse for the three algorithms based
on the full knowledge of the user’s true value function since, apart from the UD

1245 case in
which the average error done assuming as an optimal solution the best solution in the final
population is 1.9% considering EA-UVF1 and 4.6% considering EA-UVF, in all the other
cases, this average error is at least equal to 9.8% with a pick of 51.8% done by EA-UVF2
in the UD

1234 case. This means that, in the case in which the EA-UVF algorithm and the
other two variants cannot find Pb, they are very far from the area of the Pareto front most
interesting with respect to the user’s preferences.

To evaluate the significance of the data provided above we performed the Mann-Whitney U test
with 5% significance level [45] to two different indicators:

1. considering BRSD of each of the six algorithms in each of the 50 considered runs,

2. considering the number of pairwise comparisons asked to the user in each run for algorithms
NIICh 5, NIICh 10 and NIICh 20.

25

Regarding the BRSD, we performed the test only for problems where at least one algorithm did
not converge in at least one of the 50 runs. Indeed, if all methods had converged to the optimal
solution in all runs, the BRSD would be always equal to 0 and, consequently, the comparison between
the algorithms would be absolutely meaningless.
Regarding the number of pairwise comparisons asked to the user, we performed the test on the
NIICh 5, NIICh 10 and NIICh 20 only, since the number of pairwise comparisons asked to the
user in EA-UVF, EA-UVF1 and EA-UVF2 is only virtual due to the unrealistic applicability of the
algorithms. In particular, in the case in which the algorithm did not converge to the optimal solution,
for that run, we considered the maximum number of pairwise comparisons asked to the user being 200
for NIICh 5, 100 for NIICh 10 and 50 for NIICh 20 since each of them asks one pairwise comparison
every 5, 10 and 20 generations, respectively, and the maximum number of admitted generations is
1,000.

In the supplementary material, we included the results of the two tests. For brevity, we report
here just the tables for the

(
UD, 5

)
case obtained performing the Mann-Whitney U test with 5%

significance level on the BRSD (Table 6) and on the number of pairwise comparisons asked to the
user (Table 7). In both tables, we give the p-value together with the difference between the A BRSD
of each ordered pair of algorithms in Table 6 and the difference between A#P of each ordered pair
of algorithms in Table 7. Bold values represent significant values considering the performed test.

Table 6: Mann-Whitney U test with 5% significance level performed on BRSD for the
(
UD, 5

)
. In the table, the

p-value is provided, as well as the difference between the A BRSD of each ordered pair of algorithms. In bold are the
significant values.

UD NIICh 5 NIICh 10 NIICh 20 EA-UVF EA-UVF1 EA-UVF2

NIICh 5 0.4598
(0.0038−0.013)

0.1137
(0.0038−0.0209)

5.28·10−8

(0.0038−0.0595)
0.0013

(0.0038−0.0345)
4.10·10−13

(0.0038−0.1398)

NIICh 10 0.4355
(0.0130−0.0209)

9.59·10−6

(0.013−0.0595)
0.0220

(0.0130−0.0345)
3.31·10−11

(0.013−0.1398)

NIICh 20 0.0002
(0.0209−0.0595)

0.1517
(0.0209−0.0345)

6.42·10−10

(0.0209−0.1398)

EA-UVF 0.0120
(0.0595−0.0345)

0.0001
(0.0595−0.1398)

EA-UVF1 1.36·10−7

(0.0345−0.1398)

Table 7: Mann-Whitney U test with 5% significance level on the number of pairwise comparisons asked to the user in
algorithms NIICh 5, NIICh 10 and NIICh 20 for the

(
UD, 5

)
case. In the table the p-value is provided as well as the

difference between A#P of each ordered pair of algorithms. In bold the significant values.

UD NIICh 5 NIICh 10 NIICh 20

NIICh 5 1.82·10−5

(98.68−46.12)
2.12·10−9

(98.68−28.8)

NIICh 10 0.0105
(46.12−28.8)

In Table 6 one can observe that the difference in the BRSD between the NEMO variants is not
significant, while the difference between the BRSD of each NEMO variant and each of the algorithms
based on the knowledge of the user’s true value function is significant apart from the comparison
between NIICh 20 and EA-UVF1 for which the difference between their BRSD is not significant
for the Mann-Whitney U test. This means that, on the one hand, the NEMO-II-Ch variants can be
considered equivalent, while each of them is better than the three algorithms knowing the user’s true
value function. On the other hand, one can conclude that EA-UVF1 is better than EA-UVF which,
in turn, is better than EA-UVF2.

Going at the data in Table 7, one can see that the difference between the distributions of the
number of pairwise comparisons asked to the user in each pair of NEMO variants is significant. This
means that the number of pairwise comparisons asked to the user by NIICh 20 to converge to the

26

optimal solution is retained significantly smaller than the one involved in NIICh 10 and NIICh 5;
consequently, with respect to the required preference information, NIICh 20 is better than NIICh 10
that, in turn, is better than NIICh 5.

Similar conclusions can be gathered by looking at all the other tables in the supplementary
material. Once again, they confirm that the difference in the BRSD between the NEMO variants
and the algorithm based on the user’s true value function is considered significant and that with
respect to the three NEMO variants, the difference between the number of pairwise comparisons
asked to the user from each algorithm is significant. The last fact proves that asking the user for less
information does not affect, in general, the algorithmic capacity of NEMO-II-Ch to converge to the
optimal solution.

7. Discussion

To prove the efficiency of the method in this setting, we considered a classical FLP very well-
known in the literature [28] based on the most typical objective functions adopted in the domain.
We performed different simulations running NEMO-II-Ch and comparing its performance with those
of other three algorithms, namely EA-UVF, EA-UVF1, and EA-UVF2, based on the knowledge of
the user’s true value function that is, instead, unknown to NEMO-II-Ch.
In the comparison, we tested twelve different types of users’ value functions and two different values
for the number of facilities p that need to be located (p = 4 and p = 5). Moreover, to investigate
how the number of comparisons asked to the user influences the convergence of the algorithm, we
considered three different versions of the NEMO-II-Ch method, namely NIICh 5, NIICh 10, and
NIICh 20, asking the user to compare one pair of non-dominated solutions every 5, 10 and 20
generations, respectively.

The results obtained should be read as an answer to the question: “is there any methodological
tool to handle real-world multiobjective facility problems? The considered problem is very complex
for the following reasons:

1. There is a plurality of objectives to be optimized,

2. Some of these objectives are quite complex in themselves (this is, in particular, the case of
f5(P) [28]),

3. The preferences of the user have to be considered,

4. The preference information has to be collected while maintaining tolerable the cognitive burden
for the DM,

5. The computation time should be acceptable for real-world operational applications.

Considering the number of pairwise comparisons requested by NEMO-II-Ch we have to conclude
that it is acceptable. Indeed, it is interesting to compare our approach regarding the number of
pairwise comparisons requested with one of the most well-known and most adopted MCDA methods,
i.e., the AHP [67]. Let us consider the didactic example presented in [66] in which three schools
(alternatives) are evaluated with respect to six different aspects (criteria). Regarding FLPs, it would
be a really easy problem that will concern the selection of a single facility among three potential
locations to optimize six different objectives. Since the DM must provide a pairwise comparison
in terms of a qualitative judgment on a nine-point scale for each non-ordered pair of criteria and
a comparison for each non-ordered pair of alternatives with respect to each criterion, the decision
maker has to provide

(
6
2

)
+ 6
(
3
2

)
= 15 + 6 · 3 = 33 pairwise comparisons in total. This means that in

a didactic example of, probably, the most adopted MCDA method [74], the DM is asked to give 33
pairwise comparisons. Looking again at the performance of NIICh 20, one can see that with a single
exception, in all our cases, the algorithm was able to find the best solution with a number of pairwise
comparisons much smaller than 33. Observe also that very often, the required average number of

27

pairwise comparisons asked to the user by NIICh 20 is lower than 15 (in 17 out of 24 considered
cases). In addition, observe that while the pairwise comparisons of AHP require an evaluation on a
nine-point scale, the pairwise comparisons considered in NEMO-II-Ch require simply to say which
solution is preferred among the two. To have a more fair comparison between the judgments required
by AHP and the information required by NEMO-II-Ch, consider that for each pair of items α and
β being alternatives (α, β ∈ A) or criteria (α, β ∈ G) AHP requires, in fact, two comparisons: the
first related to which one between α and β has the greatest priority and the second, expressed on the
nine-point scale, related to how much greater is the priority of the item with the greatest priority
with respect to the other. In general, it seems reasonable that the second comparison of AHP (the
one on the nine-point scale) is more demanding than the pairwise comparison of NEMO-II-Ch related
to which solution is the preferred among the two. Consequently, for each comparison asked by AHP
on a pair of non-ordered items, one should assign a cognitive burden at least double with respect
to the pairwise comparison required by NEMO-II-Ch. Let us note that we used an even pattern of
interactions, maintaining a constant number of generations between each interaction, and we did not
explore the impact of changing to other patterns such as front-loaded or rear-loaded [52]. It is surely
something that could be explored as an avenue for future research. Additionally, we did not consider
DM inconsistencies and we assumed that the pairwise comparisons were correctly performed. In
conclusion, we can say that, on average, NEMO-II-Ch can handle a quite challenging problem with
a complexity comparable to that of one of the most demanding real-world problems, asking the user
a cognitive burden much smaller than the one required by the most adopted MCDA method in a
very didactic example.
Coming to the computational time, even considering the case taking more time, NIICh 20 is almost
always (apart from one case only) achieving the optimal solution, on average, in less than three hours
and, very often, in less than one hour (quite frequently in the UN and UN

v cases in some minutes).
This seems a very reasonable running time for such a complex problem.

Beyond the specific interest in the multiobjective facility location problems, the results we ob-
tained are also relevant from the general point of view of the multiobjective optimization algorithms.
The procedure that has been proposed can be seen as a parsimonious exploration of the space of
solutions and the DM’s preferences. The parsimony of the multiobjective optimization procedure we
have applied can be decomposed into two components:

• a component related to the optimization procedure: it is based on the evaluations of combi-
nations of the most promising solutions maintaining a certain level of diversification typical of
the evolutionary algorithms,

• a component related to the preference learning procedure: it is based on a “dynamical induc-
tion of the DM’s utility function” based on few preference comparisons, typical of the ordinal
regression approach [46] that is properly applied in an “incremental version” adding time by
time preferences related to new solutions discovered by the optimization algorithm.

Note that while EA-UVF1, functioning as NSGA-II but with diversification changed to the User’s
value function, can enhance EA-UVF’s performance, it still falls short of achieving the same efficiency
as NIICh 20. Taking into consideration the number of runs in which the optimal solution was
discovered, NIICh 20 can obtain better results than EA-UVF1 in 6 cases, while EA-UVF1 can
perform better than NIICh 20 in one case only. We believe that this can be interpreted in the
sense that the parsimony in the required preference information of NIICh 20 permits us to obtain
better performance of an algorithm using the whole preference information as EA-UVF1. To sum
up, our findings from the multiobjective facility location problem indicate that for highly intricate
combinatorial optimization problems, employing an evolutionary algorithm and a minimal elicitation
of the DM’s preference information can be a suitable strategy. Of course, this hypothesis needs to

28

be tested on other multiobjective combinatorial problems and, more generally, on other complex
multiobjective problems (not necessarily combinatorial), to obtain a more precise and definitive
confirmation.

8. Conclusions

We considered a very complex problem resulting from combining two other complex problems.
The combination of the two problems highly exacerbates the difficulty. The two problems are the
facility location problem and the search for optimal solutions in multiobjective decision problems
taking into account the user’s preferences. In this perspective, the research question of the paper is:
“Is it possible to give an adequate answer, especially taking into account real-world applications, to the
so complex problem resulting from the combination of the above-mentioned problems?” Technically,
the answer to the problem is obtained from applying a state-of-the-art multiobjective optimization
procedure to the standard formulation of a multiobjective facility location problem. The contribution
of the paper is in handling the question and in providing a surprisingly very positive answer: the
two complex problems can be solved together with a reasonable cognitive burden (comparable and
even smaller than the cognitive burden required from didactic examples of the most adopted MCDA
methods) and with reasonable computational times (especially considering the use of non-specialized
programming languages and the computation on common laptops daily used). Apart from applying
the presented methodology to other complex multiobjective combinatorial optimization problems
to gather additional evidence on its effectiveness and reliability in such intricate decision-making
scenarios, the following potential research directions can be emphasized:

• Research should be addressed on determining the optimal frequency at which users should
be prompted to provide preference information, in order to expedite the convergence of the
algorithm. Additionally, investigating techniques that determine which solutions should be
presented to the user in order to enhance the algorithm’s learning capabilities can also con-
tribute to improving convergence [11, 17];

• In order to address larger real-world problems, a more efficient implementation of NEMO-II-Ch
needs to be developed. Upon examining the computational time required to run the algorithm,
it becomes clear that nearly 93% of the time is consumed by the execution of the Nelder-Mead
method. Integrating alternative methods for solving non-linear optimization problems could
significantly accelerate the algorithm and enhance its practical applicability;

• Considering the favorable outcomes achieved with NEMO-II-Ch in addressing location prob-
lems, we believe it would be worthwhile to explore its application in various other classical
combinatorial optimization problems that can formulated from a multiobjective standpoint
such as the ones described in [25] and [42].

Acknowledgements

The authors are grateful to Professor Tammy Drezner for making available the data concerning the
real-world problem.

Funding

The second and the third authors wish to acknowledge the support of the Ministero dell’Istruzione,
dell’Universitá e della Ricerca (MIUR) - PRIN 2017, project Multiple Criteria Decision Analysis and
Multiple Criteria Decision Theory, grant 2017CY2NCA.

29

References

[1] L. Alcada-Almeida, J. Coutinho-Rodrigues, and J. Current. A multiobjectrive modeling ap-
proach to Locating incinerators. Socio-Economic Planning Sciences, 43(2):111–120, 2009.

[2] M.J. Alves and J. Cĺımaco. A review of interactive methods for multiobjective integer and
mixed-integer programming. European Journal of Operational Research, 180(1):99–115, 2007.

[3] S. Angilella, S. Greco, and B. Matarazzo. Non-additive robust ordinal regression: A multiple cri-
teria decision model based on the Choquet integral. European Journal of Operational Research,
201(1):277–288, 2010.

[4] M. Basirati, R. Billot, and P. Meyer. Two parameter-tuned multi-objective evolutionary-based
algorithms for zoning management in marine spatial planning. Annals of Mathematics and
Artificial Intelligence, pages 1–32, 2023.

[5] O. Berman, Z. Drezner, and D. Krass. Generalized coverage: new developments in covering
location models. Computer & Operations Research, 37(10):1675–1687, 2010.

[6] R. Bhattacharya and S. Bandyopadhyay. Solving conflicting bi-objective facility location prob-
lem by NSGA II evolutionary algorithm. The International Journal of Advanced Manufacturing
Technology, 51(1-4):397–414, 2010.

[7] R. Blanquero and E. Carrizosa. A DC biobjective location model. Journal of Global Optimiza-
tion, 23(2):139–154, 2002.

[8] J. Branke, K. Deb, K. Miettinen, and R. S lowiński, editors. Multiobjective Optimization: Inter-
active and Evolutionary Approaches, volume 5252 of LNCS. Springer, Berlin, 2008.

[9] J. Branke, S. Greco, R. S lowiński, and P. Zielniewicz. Learning Value Functions in Interactive
Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation,
19(1):88–102, 2015.

[10] J. Branke, S. Corrente, S. Greco, R. S lowiński, and P. Zielniewicz. Using Choquet integral as
preference model in interactive evolutionary multiobjective optimization. European Journal of
Operational Research, 250:884–901, 2016.

[11] J. Branke, S. Corrente, S. Greco, and W.J. Gutjahr. Efficient pairwise preference elicitation
allowing for indifference. Computers and Operations Research, 88:175–186, 2017.

[12] H. Calik, M. Labbé, and H. Yaman. p-Center problems. In Location Science, pages 79–92.
Springer, 2015.

[13] E. Carrizosa, A. Ushakov, and I. Vasilyev. Threshold robustness in discrete facility location
problems: a bi-objective approach. Optimization Letters, 9(7):1297–1314, 2015.

[14] A. Charnes and W. W. Cooper. Goal programming and multiple objective optimizations: Part
1. European Journal of Operational Research, 1(1):39–54, 1977.

[15] G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5(54):131–295, 1953.

[16] R.L. Church and C.S. ReVelle. The maximal covering location problem. Papers in Regional
Science, 32(1):101–118, 1974.

30

[17] K. Ciomek, M. Kadziński, and T. Tervonen. Heuristics for prioritizing pair-wise elicitation
questions with additive multi-attribute value models. Omega, 71:27–45, 2017.

[18] C.A. Coello Coello. Theoretical and numerical constraint-handling techniques used with evolu-
tionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics
and Engineering, 191(11-12):1245–1287, 2002.

[19] J. Coutinho-Rodrigues, L. Tralhão, and L. Alçada-Almeida. A bi-objective modeling approach
applied to an urban semi-desirable facility location problem. European Journal of Operational
Research, 223(1):203–213, 2012.

[20] P. Czyzżak and A. Jaszkiewicz. Pareto simulated annealinga metaheuristic technique for
multiple-objective combinatorial optimization. Journal of Multi-criteria Decision Analysis, 7
(1):34–47, 1998.

[21] M.S. Daskin. Network and discrete location: models, algorithms, and applications. Wiley, New
York, USA, 1995.

[22] K. Deb. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley,
2001.

[23] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[24] J. Dias, M.E. Captivo, and J. Cĺımaco. A memetic algorithm for multi-objective dynamic
location problems. Journal of Global Optimization, 42(2):221–253, 2008.

[25] K.F. Doerner, W.J. Gutjahr, and P.C. Nolz. Multi-criteria location planning for public facilities
in tsunami-prone coastal areas. Or Spectrum, 31(3):651–678, 2009.

[26] P. Domı́nguez-Maŕın. The Discrete Ordered Median Problem: Models and Solution Methods.
Springer Science & Business Media, 2013.

[27] T. Drezner. Location of casualty collection points. Environment and Planning C: Government
and Policy, 22(6):899–912, 2004.

[28] T. Drezner, Z. Drezner, and S. Salhi. A multi-objective heuristic approach for the casualty
collection points location problem. Journal of the Operational Research Society, 57(6):727–734,
2006.

[29] Z. Drezner and H.M. Hamacher. Facility location: applications and theory. Springer, New York,
USA, 2001.

[30] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective combi-
natorial optimization. OR Spectrum, 22(4):425–460, 2000.

[31] M. Ehrgott and X. Gandibleux. Hybrid Metaheuristics for Multi-objective Combinatorial Op-
timization. Studies in Computational Intelligence, 114:221–259, 2008.

[32] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

[33] H.A. Eiselt and G. Laporte. Objectives in location problems. Springer-Verlag, New York, USA,
1995.

31

[34] R. Z. Farahani, M. SteadieSeifi, and N. Asgari. Multiple criteria facility location problems: A
survey. Operations Research, 34(7):1689–1709, 2010.

[35] H.A. Fernandes and V. Marianov. Foundations of location analysis. International Series in
Operations Research and Management Science. Springer, New York, USA, 2011.

[36] S. Fernandes, M.E. Captivo, and J. Cĺımaco. A DSS for bicriteria location problems. Decision
Support Systems, 57:224–244, 2014.

[37] J. W. Fowler, E. S. Gel, M. Köksalan, P. Korhonen, J. L. Marquis, and J. Wallenius. Interac-
tive evolutionary multi-objective optimization for quasi-concave preference functions. European
Journal of Operational Research, 206(2):417–425, 2010.

[38] M. Grabisch. The application of fuzzy integrals in multicriteria decision making. European
Journal of Operational Research, 89(3):445–456, 1996.

[39] M. Grabisch and C. Labreuche. Fuzzy measures and integrals in MCDA. In S. Greco, M. Ehrgott,
and J.R. Figueira, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages
553–603. Springer, New York, NY, 2016.

[40] S. Greco, M. Ehrgott, and J.R. Figueira. Multiple Criteria Decision Analysis: State of the Art
Surveys. Springer, New York, 2016.

[41] S.L. Hakimi. Optimum location of switching center and the absolute centers and medians of a
graph. Operations Research, 12(3):450–459, 1964.

[42] H.W. Hamacher, M. Labbe, S. Nickel, and A.J. Skriver. Multicriteria semi-obnoxious network
location problems (MSNLP) with sum and center objectives. Annals of Operations Research,
110(1-4):33–53, 2002.

[43] I. Harris, C.L. Mumford, and M.M. Naim. An evolutionary bi-objective approach to the capac-
itated facility location problem with cost and CO2 emissions. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation, pages 697–704. ACM, 2011.

[44] A.M. Heyns and J.H. van Vuuren. Multi-objective optimisation of discrete GIS-based facility
location problems. Optimization and Engineering, 2015.

[45] M. Hollander, D.A. Wolfe, and E. Chicken. Nonparametric statistical methods, volume 751. John
Wiley & Sons, 2013.

[46] E. Jacquet-Lagreze and Y. Siskos. Assessing a set of additive utility functions for multicriteria
decision-making, the UTA method. European Journal of Operational Research, 10(2):151–164,
1982.

[47] J. Kalcsics, S. Nickel, M.A. Pozo, J. Puerto, and A.M. Rodŕıguez-Ch́ıa. The multicriteria p-
facility median location problem on networks. European Journal of Operational Research, 235
(3):484–493, 2014.

[48] E. Karasakal and D. Nadirler. An interactive solution approach for a bi-objective semi-desirable
location problem. Journal of Global Optimization, 42(2):177–199, 2008.

[49] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value tradeoffs.
J. Wiley, New York, 1976.

32

[50] J. Krarup and P.M. Pruzan. The simple plant location problem: survey and synthesis. European
Journal of Operational Research, 12(1):36–81, 1983.

[51] G. Laporte, S. Nickel, and F.S. da Gama. Location science. Springer, Berlin, 2015.

[52] J. Marquis, E. S. Gel, J. W. Fowler, M. Köksalan, P. Korhonen, and J. Wallenius. Impact of
number of interactions, different interaction patterns, and human inconsistencies on some hybrid
evolutionary multiobjective optimization algorithms. Decision Sciences, 46(5):981–1006, 2015.

[53] M.T. Marsh and D.A. Schilling. Equity measurement in facility location analysis: A review and
framework. European Journal of Operational Research, 74(1):1–7, 1994.

[54] K. Miettinen, F. Ruiz, and A.P. Wierzbicki. Introduction to multiobjective optimization: inter-
active approaches. In J. Branke, K. Deb, R. S lowiński, and K. Miettinen, editors, Multiobjective
optimization, pages 27–57. Berlin: Springer, 2008.

[55] N. Mladenovic, J. Brimberg, P. Hansen, and J.A. Moreno-Perez. The p-median problem: A
survey of metaheuristic approaches. European Journal of Operational Research, 179(3):927–939,
2007.

[56] J.A. Nelder and R. Mead. A simplex method for function minimization. The computer journal,
7(4):308–313, 1965.

[57] P. Nijkamp and J. Spronk. Interactive multidimensional programming models for locational
decisions. European Journal of Operational Research, 6(2):220–223, 1981.

[58] Y. Ohsawa and K. Tamura. Efficient location for a semi-obnoxious facility. Annals of Operations
Research, 123(1-4):173–188, 2003.

[59] Y. Ohsawa, N. Ozaki, and F. Plastria. Equity-effciency bicriteria location with squared Euclidean
distances. Operations Research, 56(1):79–87, 2008.

[60] S.H. Owen and M.S. Daskin. Strategic facility location: a review. European Journal of Opera-
tional Research, 111(3):423–447, 1998.

[61] S. Phelps and M. Köksalan. An interactive evolutionary metaheuristic for multiobjective com-
binatorial optimization. Management Science, 49(12):1726–1738, 2003.

[62] S.H.A. Rahmati, A. Ahmadi, M. Sharifi, and A. Chambari. A multi-objective model for facility
location–allocation problem with immobile servers within queuing framework. Computers &
Industrial Engineering, 74:1–10, 2014.

[63] J. Rakas, D. Teodorović, and T. Kim. Multi-objective modeling for determining location of
undesirable facilities. Transportation Research Part D: Transport and Environment, 9(2):125–
138, 2004.

[64] B. Roy. Meaning and validity of interactive procedures as tools for decision making. European
Journal of Operational Research, 31(3):297–303, 1987.

[65] B. Roy. Decision science or decision-aid science? European Journal of Operational Research, 66
(2):184–203, 1993.

[66] T. Saaty. A scaling method for priorities in hierarchical structures. Journal of Mathematical
Psychology, 15(3):234–281, 1977.

33

[67] T. Saaty. The Analytic Hierarchy Process. New York, McGraw-Hill, 1980.

[68] T. Schnepper, K. Klamroth, M. Stiglmayr, and J. Puerto. Exact algorithms for handling outliers
in center location problems on networks using k-max functions. European Journal of Operational
Research, 273(2):441–451, 2019.

[69] P. Serafini. Some considerations about computational complexity for multi objective combina-
torial problems. In J. Jahn and W. Krabs, editors, Recent Advances and Historical Development
of Vector Optimization, pages 222–232. Springer, 1987.

[70] B.L. Shankar, S. Basavarajappa, J.C.H. Chen, and R.S. Kadadevaramath. Location and alloca-
tion decisions for multi-echelon supply chain network–A multi-objective evolutionary approach.
Expert Systems with Applications, 40(2):551–562, 2013.

[71] B.C. Tansel, R.L. Francis, and T.J. Lowe. A biobjective multifacility minimax location problem
on a tree network. Transportation Science, 16(4):407–429, 1982.

[72] M.K. Tomczyk and M. Kadzinski. EMOSOR: Evolutionary multiple objective optimization
guided by interactive stochastic ordinal regression. Computers & Operations Research, 108:134
– 154, 2019.

[73] M.K. Tomczyk and M. Kadzinski. Decomposition-based co-evolutionary algorithm for interac-
tive multiple objective optimization. Information Sciences, 549:178 – 199, 2021.

[74] O.S. Vaidya and S.l Kumar. Analytic hierarchy process: An overview of applications. European
Journal of operational research, 169(1):1–29, 2006.

[75] J.G. Villegas, F. Palacios, and A.L. Medaglia. Solution methods for the bi-objective (cost-
coverage) unconstrained facility location problem with an illustrative example. Annals of Op-
erations Research, 147(1):109–141, 2006.

[76] H. Yapicioglu, A.E. Smith, and G. Dozier. Solving the semi-desirable facility location problem
using bi-objective particle swarm. European Journal of Operational Research, 177(2):733–749,
2007.

[77] A. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, and Q. Zhang. Multiobjective evolutionary
algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1):32–49,
2011.

[78] S. Zionts and J. Wallenius. An interactive programming method for solving the multiple criteria
problem. Management Science, 22(6):652–663, 1976.

[79] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolution-
ary Algorithm for multiobjective optimization. In K.C. Giannakoglou et al., editors, Evolu-
tionary Methods for Design, Optimisation and Control with Application to Industrial Problems
(EUROGEN 2001), pages 95–100. International Center for Numerical Methods in Engineering
(CIMNE), 2002.

34

▪ We deal with Multiobjective Combinatorial Optimization (MOCO) problems

▪ We use Interactive Evolutionary Multiobjective Optimization (IEMO) methods for

MOCO problems

▪ IEMO integrates preferences provided by Decision Makers in the search procedure

▪ We applied a IEMO methodology, called NEMO-II-Ch, to facility location problems

Highlights (for review)

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Conflict of Interest

