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Università Ca’ Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre – Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it



To my husband Matteo





Abstract

Pattern recognition is the discipline which studies theories and methods to build
machines that are able to discover regularities in noisy data. As many of its char-
acterizations suggest, the field is usually considered as a purely engineering disci-
pline. But, in a broad sense, pattern recognition has in fact an interdisciplinary
nature. Surprisingly, the attention towards philosophical issues and foundations,
which marked the early days of the field, in time has fallen into oblivion. In this
thesis, we aim to recover this original interdisciplinary attitude by discussing the
philosophical underpinnings of today’s pattern recognition research. First we will
approach the question of the very nature of the field thanks to the recent devel-
opments of both the philosophy of technology and the philosophy of science. This
will bring us to consider pattern recognition problems from a slightly different per-
spective, that is by focusing their relations to some cognitive phenomena (and, in
particular, to categorization). Finally, we will undertake a critical analysis of the
main research tendencies by making use of Kuhn’s notion of a paradigm, one of the
cornerstones of the twentieth-century philosophy of science.
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Preface

This thesis is based on some results achieved during a period of doctoral studies
carried out at the Department of Environmental Sciences, Informatics and Statistics
(Università Ca’ Foscari). As first, it represents the attempt to formulate problems
that may often arise in pattern recognition research but that remain nevertheless in
the background of the field, or at least of its mainstream. Most of these issues are
said philosophical because they are basically concerned with a critical examination of
general notions (e.g., that of “science” or “technology”) and with a number of further
problems widely discussed in philosophy or related areas (such as cognitive sciences).
Apparently, the main challenge was to tackle such issues starting from a field, like
pattern recognition or machine learning, with a strong attitude towards technicality
and applications. Indeed, many efforts were devoted to finding a sensible equilibrium
between the philosophical reflection and the real aims of pattern recognition. This
resulted in a number of fruitful collaborations, some of which have been discussed
in international and national conferences.

In particular, the first chapter stems from the collaboration with Marcello Pelillo
and Viola Schiaffonati and includes an examination of scientific and engineering as-
pects of pattern recognition. The main points discussed in this chapter have been
presented at the international conference on History and Philosophy of Computing,
held in Paris in 2013 [81]. The third chapter is about the relationship between
pattern recognition and cognitive psychology and reports a collaboration with Ul-
rike Hahn and Todd Bailey during a visiting period in 2012 at the University of
Cardiff (UK). Some elements presented in this chapter have been discussed in 2012
at the annual meeting of the Italian association of cognitive science [99]. Finally the
fourth chapter, which is concerned with some philosophical assumptions of pattern
recognition, is based on a paper written in collaboration with Marcello Pelillo and
presented at the conference organized by the Italian association of artificial intel-
ligence in Turin, in 2013. The same paper has been also published as conference
proceedings in the Lecture Notes in Artificial Intelligence series [80].
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Introduction

“I shall reconsider human knowledge by starting from the fact
that we can know more than we can tell.”

Michael Polanyi, The Tacit Dimension (1966)

In the 1980’s Nils Nilsson recommended some important questions to those who
are involved in artificial intelligence [72]. He did it stressing the fact that the answer
should not be delegated to others outside the field. These questions pertain the
nature of artificial intelligence (e.g., “Is AI a coherent subject area? If so, is it a part
of computer science, of psychology, or of philosophy; or is it actually an amalgam
of parts of these subjects and perhaps others?” [72, p. 1]) and make explicit what
in fact contribute to build the inner core of the field. Indeed the development
of artificial intelligence, like that of many other disciplines, has been shaped on
many different theoretical assumptions. Someone understood AI as the attempt to
mechanize the “laws of thought” and ultimately the modern incarnation of what
Leibniz had already envisaged in the seventeenth century. A different approach
made reference to the Turing test and basically provided an operational definition
looking at the behaviour required to perform “intelligent” tasks. Russell and Norvig
organized some of these characterizations along two main dimensions, one expressing
different degrees of rationality and one definining different point of observations
(e.g., reasoning or behaviour), and in so doing ended up with four main definitional
styles (“Thinking humanly” - “Acting humanly” - “Thinking rationally” - “Acting
rationally”) [96]. However, beyond differences, it seems that AI definitions cannot
avoid talking about intelligence either as a phenomenon that we can experience or as
an abstract problem. Indeed, it is not by chance that a typical AI class starts with
some general questions (e.g., what is intelligence? what is learning?) which pertain
to different research areas including, among others, epistemology, psychology and
more in general cognitive sciences. After all, the development of intelligent systems
requires some theories or conjectures on the nature and the operations of the mind
suggesting a number of guidelines to the design process.

On the other hand, artificial intelligence may cover a lot of different topics. Over
the years, indeed, it has approached a variety of theoretical and technical issues
as a cohesive whole interacting with different fields of study. This, for instance,
was the experience of the early days of AI when the new engineering challenges were
spontaneously correlated to the specific contribution of different scientific disciplines
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(e.g., biology and physics) and, even more profoundly, to the philosophical inves-
tigation. Hence, it is not surprising that many constitutive documents as well as
psychological considerations or biological concepts, includes also many philosoph-
ical assertions ([66, 114] spring to mind). The same Dartmouth proposal seems
to hold that the technological enterprise supposes, in a way, a cognitive demand1

theorizing that: “every aspect of learning or any feature of intelligence can in prin-
ciple be so precisely described that a machine can be made to simulate it”[96, p.
17]. Besides the optimism, it was clear enough that speculative knowledge, and
specifically understanding the “features of intelligence”, could provide the techni-
cal endeavour with a good preamble and, more in general, with a type of activity
which did not conflict with the engineering skills. In time, this integration remained
noticeable just in few areas which, in fact, have become independent from the main-
stream of AI research. For instance, the relationship between AI and philosophy has
been pursued by the philosophy of mind and in particular by the philosophy of AI,
whereas the psychological aspects remained almost exclusively within the domain
of cognitive sciences. By contrast, the development of many AI sub-communities
(pattern recognition and machine learning are two well known examples) has pro-
gressively abandoned the interdisciplinary attitude of early stages making, above
all, great technical progress. Cornuejols and Miclet, for instance, observed the same
phenomenon analysing some aspects of machine learning curricula: “Overall, there
were strong links between Artificial Intelligence and the Cognitive Science fields,
where ideas, concepts and empirical studies circulated freely between the different
fields. As far as we know, these links tended to slacken during the 90s, following
the trends of the nascent “Machine Learning” field towards more mathematics and
statistics and more application-oriented focus”[19, p. 2]. Admittedly, the separation
between AI research and the study of cognitive phenomena had been already sug-
gested more than a decade ago by J. Hartigan who claimed that, as for classification
and clustering problems, “we pay too much attention to the details of algorithms.
[...] We must begin to subordinate engineering to philosophy.”[41, p. 3].

In this thesis we would like to recover the underlying relationship between science
and technology from the inner research development of AI. In particular we will focus
on the field of pattern recognition and its relation to philosophy, first of all, shading
light on some unexpressed questions and “tacit” ideas underlying the research ac-
tivity. These elements, indeed, do not arise frequently in scientific and technological
disciplines, especially those overspecialised like the fields of pattern recognition or
machine learning. However, a lesson we learnt from the philosophy of science of the
twentieth century just regards the unavoidable occurrence of theoretical presupposi-
tions in all scientific investigations. The practice of science, indeed, arises from the
continuous interaction of different types of knowledge (personal judgements, beliefs,
formal concepts, heuristics, etc.). This holds for observations in an experimental set-

1Namely it seems to suggest the connection between the “knowing-how” and the “knowing-
that”.
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ting, with respect to which the famous theory-ladenness principle has been stated
(see, e.g., Popper, Hanson, Kuhn), but also for the development of a new framework
which requires, among other things, the assimilation of what Kuhn calls “metaphys-
ical commitments” [53]. Michael Polanyi went one step further stressing the role of
personal knowledge in science whose influence is “passionately and far beyond our
comprehension”, and acknowledging that “of this responsibility we cannot divest
ourselves by setting up objective criteria of verifiability - or falsifiability, or testa-
bility, or what you will. For we live in it as in the garment of our own skin”[82, p.
64].

Note that a number of mid-twentieth century philosophers (e.g. Feyerabend,
Rorty) took the epistemological pluralism, i.e. the idea that knowledge, science
included, is a multifaceted enterprise, in a very radical way so that all criteria
of demarcation (attempting to separate science from pseudo-science) fall apart as
unjustified and completely useless. Normally, this idea is associated to the theory
of epistemological anarchism [33] and to a general rejection of a standard view of
rationality, that is the one in which it is possible to draw a line between objective
and subjective contents. But epistemological pluralism can be accounted also in a
positive way acknowledging the cognitive role of each form of knowledge [62] and,
at the same time, tuning specificities by a patient work of cross-fertilization (see,
e.g., the effort to develop an interdisciplinary dialogue [62, 32, 71, 68]). Our work
takes inspiration primarily by this attitude. That is by the idea that different fields
of study can really profit from the exchange of knowledge and from joint efforts to
understand complex phenomena.

The present work is organized in the following way. In the chapter 1 we will
address the problem of the nature of pattern recognition approaching the question
whether this field should be considered science, engineering or both. This will be
done by making use of some recent development in the philosophy of science and in
the philosophy of technology. In the chapter 2 we will focus on the computational
form of pattern recognition problems, that is the typical way in which problems are
formulated and solved. The discussion will give also the opportunity to consider the
problem of induction, which is a core notion of pattern recognition research, from a
philosophical point of view. The connections to the areas of artificial intelligence and
machine learning will be also examined. In the chapter 3 we will discuss the compar-
ison between pattern recognition and cognitive psychology, a parallelism which will
be carried on thanks to a common term of reference, i.e. the notion of categorization.
In the chapter 4 we will address the question whether the field of pattern recognition
have achieved the level of maturity in the sense suggested by Thomas Kuhn. This
will lead us to analyse the current status of the field with respect to a number of
profound commitments. Finally we will propose some concluding remarks.
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1
The nature of pattern recognition

Computer science has been plagued since its beginnings by the elusiveness of its
very nature, being halfway, as the name itself implies, between science and tech-
nology. Dijkstra, for example, insisted on de-emphasizing the role of the machine
stressing the intrinsic abstract character of the field; others held that the ‘science’
in computer science is a misnaming, given its engineering nature [49]. The debate
still goes on but, in time, the interdisciplinary nature of computer science has been
widely recognized and, accordingly, it is now defined partly as scientific, partly as
mathematical, and partly as technological [23]. There are some related fields, how-
ever, in which the mutual exclusiveness of the scientific and technological paradigm
is still dominant. This is quite evident in several areas of artificial intelligence, such
as machine learning and pattern recognition, where only few systematic attempts
to understand the interplay between technological and scientific factors have been
made. In this chapter, we attempt to approach the question by making use of some
recent developments in the philosophy of technology and in the philosophy of science.
Our analysis will be focused basically on the research area of pattern recognition
and it will be complemented by some concrete examples.

Our discussion will advocate that pattern recognition is a suitable example of the
symbiotic relationship between scientific and technological efforts. If we look at the
history of the field indeed we observe that most technological progress springs from
very scientific issues and early attempts tried not only to provide feasible solutions,
but also to uncover the structure of the problems. The case of neural networks is
paradigmatic, as their formulation was been clearly inspired by scientific purposes,
that is, by the wish of studying and imitating the brain but, in the phase of their
renaissance, technical matters prevailed. Indeed, with the (re)invention of the back-
propagation algorithm for multi-layer neural networks and, above all, thanks to the
impressive results obtained by these new models on practical problems such as zip
code recognition and speech synthesis a new wave of excitement spread across the
artificial intelligence community. At that point, however, it was widely accepted
that these models had no pretension of being biologically plausible except of being
interesting computational devices [77]. Bayesianism is another interesting example
of the gate allowing pattern recognition to move from theoretical issues to more
practical aims. Introduced as a theory, which can characterize the strength of an
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agent’s belief, it provided many inference algorithms with a practical machinery. On
the other hand, recent advances in density estimation techniques, such as nonpara-
metric Bayesian methods, have been successfully applied to approach a variety of
cognitive processes [97]. This choice is typically useful in problems suffering from
a combinatoric explosion and particularly suitable to bridge the gap between the
computational and the algorithmic levels of rational models of cognition.

1.1 Pattern recognition between science and tech-

nology

Pattern recognition is very hard to define. Indeed, many intellectual activities can
be grouped under this term including, among others, categorization and decision-
making. Furthermore, pattern recognition has been properly applied to many other
natural phenomena (consider, for instance, the processes of pattern formation stud-
ied in biology or chemistry [4]) and in the last century it has been extended also
to the world of machines thanks to the great development in computer science and
other related areas such as cybernetics and artificial intelligence.

In artificial intelligence a popular definition of the term is presented by Bishop
in his influential work “Pattern recognition and machine learning”. Bishop claims
that “the field of pattern recognition is concerned with the automatic discovery of
regularities in data through the use of computer algorithms and with the use of these
regularities to take actions such as classifying the data into different categories” [12,
p. 1]. But if we extend a bit our examination we will find that there exist several
ways to approach the subject and at least two of them are rather different.

On the one hand we could find a “narrow” account which considers essentially a
particular interpretation of pattern recognition leaving aside other research perspec-
tives. Usually, the aspects emphasized are mostly engineering in nature and are put
forth by reason of convenience rather than of principles. Note, however, that the
narrow viewpoint represents the mainstream of today’s pattern recognition research
even though it is not made always explicit.

On the other hand, we could notice a “broad” perspective which tends, on the
contrary, to consider more aspects than those required by a technical challenge.
In this respect, the “broad” standpoint has a profound interdisciplinary inclination
because it generally brings research on discipline boundaries intersecting knowledge
from different fields of study. Unlike the narrow view, it is generally less common
in the community research although it has contributed a lot to the development of
the field.

Now, let us consider some examples drawn from the main literature so as to
make our rubrics more precise. Note, however, that we are not going to provide any
strict classification since our main purpose is in fact to point out two general ways
of conceiving the discipline.
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Normally the “narrow” approach defines pattern recognition as a engineering
problem, that is in terms of methods and solutions. Examples of this type abound
in the literature and some of them are listed below.

• “It is now abundantly clear that pattern recognition is an immensely broad
subject, with applications in fields as diverse as handwriting and gesture recog-
nition, lip-reading, geological analysis, document searching, [...]; it is central to
a host of human-machine interface problems, such as pen-based computing.”
[25, p. xvii]

• “Thus, pattern recognition, or decision-making in a broad sense, may be con-
sidered as a problem of estimating density functions in a high-dimensional
space and dividing the space into the regions of categories or classes.” [37, p.
2]

• “Pattern recognition (PR) concerns the description or classification (recogni-
tion) of measurements. PR capability is often a prerequisite for intelligent
behaviour. PR is not one technique, but rather a broad body of often loosely
related knowledge and techniques. PR may be characterized as an information
reduction, information mapping, or information labelling process.” [100]

As these characterizations may suggest, the narrow perspective is more focused
on the procedure which could successfully perform a pattern recognition task (for
instance “dividing the space into regions”), on the form of a feasible solution and
on the ways in which all these elements could be measured and compared. Hence,
the underlying motivation is always related to concrete context of application like
“geological analysis” or “document searching”. This fundamental attitude leads re-
searchers and practitioners to overlook the general issues which underlie a pattern
recognition problem and which may occur in the study of several phenomena (cogni-
tion, evolution, social behaviour, etc). Nevertheless the narrow formulation does not
really ignore the great complexity of pattern recognition problems and the profound
relationship between the technological effort and other types of investigation (e.g.,
in the fields of psychology or philosophy, etc). But such a relationship is at most
alluded and so often most of knowledge and techniques appear “loosely related.”

As for the “broad” point of view, we find out that pattern recognition is depicted
more extensively as a general problem that, before dealing with the design of effective
techniques, has to do with the study of natural processes. Two examples of this style
are the following.

• “Pattern recognition can be characterized as discerning one thing or one form
in a field of perception consisting of many parts or examples. [...] In all pro-
cesses of pattern recognition, the mental activity of unification, or integration,
as modern psychologists call it, is at work.” [120, p. 7-8]
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• “Thus pattern recognition is the decision-making process that assigns to some
experiences (carved by this very decision out of the total flow of experience)
some internal meanings.”[115, p. 365]

Usually, the “broad” picture of pattern recognition points out the general terms
of the question emphasizing the role of some abstract dynamics (e.g. “integration”
or “seeing-the-one-in-many” 1) and making reference to a broad spectrum of mental
activities (e.g. assigning meaning to experience). Note that encompassing several
aspects this approach takes a strong interdisciplinary imprint since much of its
contribution relies indeed on different fields of study. A great exemplar of the broad
perspective is easily found in the seminal work by Watanbe who regarded pattern
recognition under many different guises showing consideration for perception and
categorization as well as statistical decision-making and structure analysis.

So considered, the field of pattern recognition intersects a number of different
issues, which may go from engineering to philosophy, and combines the design of
data analysis techniques with more traditional scientific activities, such as building
models, developing theories or simply analysing conceptual notions. Sometimes this
resulted in the development of computational models of cognitive abilities [115, 64,
7, 89] and at other times in a supplementary reflection upon the pure technological
endeavour [50, 105, 94, 29, 77, 31, 28]. In particular, during the last few decades we
noticed an increase of interest towards the scientific attitude of pattern recognition
[105, 31, 28, 81] generally expressed by its “natural” inclination to model (and
therefore to work as) an empirical phenomenon and specifically the ability to abstract
or generalize from observations.

The broad and the narrow perspectives indirectly gave rise to two different char-
acterizations of the disciplinary status of pattern recognition, that is the scientific
and the engineering views, respectively. Note that the development of these points of
view did not solicit an extensive discussion like the one occurred in computer science
or in artificial intelligence, so that the general representation of pattern recognition
as a specific field of study (i.e., its disciplinary status) appears rather controversial.
Specifically, theoretical and practical issues are often perceived in contrast to each
other and, thus, the engineering and the scientific perspective are hardly presented
as two mutually related, as well as equally important, aspects of pattern recognition.

On the question whether it makes sense for pattern recognition to adopt a sci-
entific point of view, we cannot avoid to mention the clear position of one of the
fathers of the field, Theo Pavlidis who advocated a purely engineering perspective.
Indeed, according to Pavlidis “pattern recognition is engineering because we try to
design machines that read documents, count blood cells, inspect parts, etc. We
must understand the “physics” of the problem and select from amongst available
tools the ones appropriate for the problem. It is futile to look for general mathe-
matical/computational techniques that can solve all problems” [77, p. 5]. A similar

1This is another beautiful expression used by Watanbe in [120]
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position has been recommended specifically for unsupervised classification in a re-
cent paper by von Luxburg et al. precisely to suggest that “clustering should not
be treated as an application-independent mathematical problem, but should always
be studied in the context of its end-use” [118]. On the other hand this idea seems to
be contrasted by the attempts comparing pattern recognition with physical science
[105] and more in general by the belief that a scientific approach is not only plausi-
ble but even beneficial [31], not to mention the famous axiomatization proposed by
Kelinberg [51]. Note that with respect to the field of machine learning the identifi-
cation with science is even more apparent when we consider the influential work by
Pat Langley [57, 58] and the recent studies on scientific discovery [113, 3, 40, 35].
And yet, if we add the fact that the meanings of “science” and “technology” or
“engineering” remain implicit for the most part 2 we will probably come to the con-
clusion that the general picture of the field is a bit confusing and in need of some
elucidation.

The scenario presented above suggests us that some instances which are implic-
itly supposed by the narrow and the broad points of view need more considerations.
In particular we think that the engineering and the scientific characterizations of
pattern recognition should be understood in depth because the current way to ap-
proach the field seems to be strongly unbalanced. Indeed, once the broad approach
lost its popularity 3, the research community put forth essentially a narrow account
of the field and the opportunity to develop different facets of pattern recognition
became a rare case [31]. Nowadays the situation is rather marked by a sort of oppo-
sition as the majority of the descriptions get stuck on one of the two components, i.e.
the engineering or the scientific, without regard to the strong relationship between
these two. In the next sections we will suggest that the contrast between science and
technology stems from an oversimplified view of their mutual relationship and that
the field of pattern recognition, differently from what we could be used to think, is
indeed a suitable example of this cooperative interaction.

1.2 Science versus technology

The typical way the dichotomy between science and technology has been conveyed
over the years looks like a “superior-subordinate relationship”. Hans Poser described
this unfair condition without mincing words for sure. He claimed, for instance, that
philosophers in most cases “prefer to discuss the rationality of animal rationale
instead of the products of homo faber” whereas scientists generally “look down

2In the sense that they are not used to explicitly discuss what science or engineering is expected
to deal with in general and therefore in which sense pattern recognition can be considered a scientific
and/or engineering.

3Indeed works inspired by a broad point view, like the Watanabe’s one, are also related to
a different way to approach research. Today’s criteria of evaluation (based essentially on the
number of citations) would probably create not few difficulties to researchers who aimed at more
interdisciplinary projects.
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on technology as a kind of science-less application of science” stating further that
“only if they need some sophisticated new measuring instruments do they accept
technology as an auxiliary science” [86]. Actually in the history of philosophy the
technical activity has not always been seen negatively 4 although the preference for
pure thinking persisted over the centuries. In the main we do not know whether
technology was indeed the “Cinderella” of knowledge but we can certainly concede
that it has been understood as a merely application of science for a long time. For
a general overview on the “spectre” of technology as “a subordinate exercise” we
refer the interested reader to [34, 60].

Indirectly the philosophical reflection contributed to such a result. Indeed the
early speculations of the philosophy of technology were much more concerned with
a number of issues living outside rather than inside technology. The analysis was
focused essentially on the social impacts of technology on the society with less re-
gard to technology itself. These studies were undeniably beneficial to understand
the complex relations between technology and society but, on the other hand, the
intrinsic nature of technology was for the most part ignored (and therefore viewed
more as a “black box”). A different approach has been developed since the 1960s
and nowadays it is well known under the label “analytical philosophy of technol-
ogy.” Unlike the the pre-existing studies which were in fact closer to social sciences,
the analytical approach “regards technology as a practice, basically the practice of
engineering. It analyses this practice, its goals, its concepts and its methods, and
it relates these issues to various themes from philosophy” [34]. Note that even if
throughout the work we will use systematically the term “philosophy of technology”
we in fact refer exclusively to the analytical approach.

1.3 The interplay between science and technology

Saying that between science and technology there exists a strong interplay does not
mean to remove the differences at all. Indeed even those who questioned the subor-
dination of technology with respect to science generally have never aimed at creating
one uniform camp in which both science and technology lose their identity. On the
contrary, science and technology are usually presented as grounded on two distinct
questions. The former would spring from the study of what is whereas the latter
would arise from the concern for what is to be [108]. In his renowned book “The
sciences of artificial”, Herbert Simon recalled such a distinction in a slightly different
way by noticing that science is concerned with how things are while engineering is

4For instance Aristotle thought that technique was more than imitating nature. As he put
it “generally art in some cases completes what nature cannot bring to a finish, and in others
imitates nature” (Physics II.8, 199a15). And even Plato, who maintained that technique consists
in imitating nature, applied interestingly a technological image in describing the world as the
work of an artisan (see the role of Demiurge in the Timaeus). Then much more evident is the
appreciation during Renaissance as the Bacon’s reflection attested (see for instance the utopian
vision of the world described in New Atlantis).
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concerned with how things might be [42]. More expressly the differentiation rests
on the underlying intentions. On the one hand science aims at knowing the world
(its structure, its regularities, etc.), on the other hand technology aims at produc-
ing concrete results (procedures, artefacts, etc.). Therefore it is often said that
science is characterized by a noticeable cognitive attitude (the so called knowing-
that or knowing why) while technology is more pragmatic (or more interested in
the “knowing-how”). Note that this idea in principle emphasizes two characterizing
traits: the basic contemplative demand of science, typically expressed by a disinter-
ested conception of knowledge (or what Greek philosophers called episteme), and
the engineering concern for applications with its methodical search of efficiency. In
a way these qualities could be thought as the two focal points of an ellipse. They
are representative of two specific identities but at the same time they are joined by
a sequence of infinite adjacent points. Therefore, once the foci of our ellipse have
been outlined we would like to explore in more details the nature of these connecting
points. In which terms we could say that science and technology are continuous to
each other?

The relationship between science and technology could be shaped in several ways.
The most basic one is a direct consequence of the ancient Greek notion of techne
which is often imprecisely translated as “art”. The term techne, however, bears
more resemblance to episteme than to aesthetic. Indeed what really underlies the
notion of techne is the same search for the why and hence the same contemplative
demand which characterizes episteme as well. As Agazzi put it: “ The Greek idea
techne expresses a demand for a theoretical awareness which, so to speak, justi-
fies conceptually that practical knowledge which is already established empirically.
Techne consolidates this practical knowledge and affords it a certain extension - due
to the inherent generality of theoretical knowledge - but is not bound to produce
new know-how, or to improve its efficiency” [5, p. 4]. To this end the suffix “ol-
ogy” that we find in the term “technology” makes this explicit by suggesting a clear
theoretical component which provides the reasons of a certain knowing-how.

Until the seventeenth century, however, the general conception of technical ac-
tivities was undermined by the strong Aristotelian distinction between the celestial
region (i.e., “supralunar region”), which is the realm of certain and incorruptible
knowledge, and the terrestrial region (i.e., “sublunar region”), which is, by contrast,
the world of contingencies of everyday life whose knowledge is always imperfect and
subject to change. Therefore, even though there could be a positive relationship
between the notions of “episteme” and “techne” (since technical skills might involve
the knowledge of causes in the same way as theoretical activity does), the practical
work remained “outside” of what was considered as the hard core of theoretical
knowledge. Things changed radically with the rise of modern science, that is when
knowledge acquisition became inextricably tied to experimental practice and the
development of technical tools.

Actually, the practical dimension of knowing started being explored since the
time of Renaissance in a clear connection to the idea of human primacy over the
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nature, typical of that age. Within such a perspective human knowledge started to
be exercised through the use and manipulation of nature. In this way intellectual
activity “it became strongly allied to the idea of a useful knowledge which would help
humans to dominate Nature and to establish a supremacy which would guide and
advance practice rather than merely reflect upon nature” [5, p. 5]. Hence it is not
surprising that various authors of the Fifteenth century showed great appreciation
for technical skills. For example, the erudite philosopher Juan Luis Vives (1492-
1540) acknowledged that science should not be controlled only by philosophers or
logicians but even by engineers who may know it better than those [95, p. 37]. Then,
further appraisal was suggested by essays on mechanics or arts and translations in
vernacular of many Latin works about architecture (e.g., Vetruvio’s writings) which
really abounded throughout the Fifteenth and the Sixteenth centuries.

Later, Scientific Revolution, as well as overthrowing the classical ideas concerning
the nature of the universe and the explanations of what occurs within it, introduced
new important methodological innovations on which the marriage between science
and technology has been ultimately grounded. Starting from this period science
became experimental as much of scientific investigation were conduced through ex-
periments, i.e. by means of a controlled experience in which theoretical knowledge,
the employment of specific tools (e.g., measuring devices) and practical skills com-
bined fruitfully and led to many discoveries. The new science in turn provided a
harvest of detailed knowledge that could be used to express the human genius and
to develop a new form of knowledge, i.e. a knowledge that was sought for the sake
of some technical application.

In time the scientific and technological practices became more and more clearly
intertwined. Indeed it has been widely acknowledged that experimental science can-
not work without the support of technology and on the other hand the theoretical
contribution of technology could be on a par with theoretical research of “ordinary”
science. Such analogies were stressed specifically in the philosophy of experimen-
tation 5. Hans Radder, for instance, stated that “Experiments make essential use
of (often specifically designed) technological devices, and, conversely, experimental
research often contributes to technological innovations. Moreover, there are sub-
stantial conceptual similarities between the realization of experimental and that of
technological processes, most significantly the implied possibility and necessity of
the manipulation and control of nature. Taken together, these facts justify the claim
that the science-technology relationship ought to be a central topic for the study of
scientific experimentation” [91, p. 4].

This interplay has been well captured by the recent developments in the philos-
ophy of technology and in the philosophy of science and some of these contributions
are provided in the next sections. Specifically we will present some conceptual tools

5Even the educational training for aspiring scientists and engineers is indicative of today’s
integration between science and technology. In the majority of cases the curricula are, indeed,
largely identical in the early stages while diverge gradually in rest part.
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which can suggest, on the one hand, the cognitive attitude of technology and, on
the other hand, the practical dimension of science.

1.4 The contribution of the philosophy of tech-

nology

The first great contribution to the study of technology comes from historians. They
were among the first to approach technology closely carrying out detailed studies
on the genesis and the structure of technological innovations. However, during the
second half of the last century the debate on the nature of technological activities
solicited a variety of philosophical contributions and specifically the development
of conceptual tools which remarkably improved the general understanding of tech-
nology as a form of knowledge. For instance in the 1960s three special issues of
Technology and Culture have been devoted to rethink the relationship between sci-
ence and technology and in particular the traditional idea of technology as applied
science6. But even later much has been done to deepen the special characters of
the practice of technology emphasizing, for example, the central role of the design
process as a structured series of steps which includes important creative elements
as well as practical constraints [116, 110]. Note that in the design process what
really counts is practical rationality, namely, the ability to provide the criteria on
how to act, given specific circumstances. Generating and selecting a list of actions
are indeed perceived as a crucial aspect of a technological activity and ultimately a
reason of its cognitive side. Bunge somehow encapsulated such ideas in his notion
of “operative theory” which, we think, could well characterize most of the practical
rationality incorporated by pattern recognition research.

1.4.1 Bunge’s operative theories

Bunge was one of the authors who suggested a sense in which technology may be
considered as applied science, but without blundering into the conventional idea of
subordination. According to him, indeed, technological theories might be divided in
two main classes, the substantive and the operative theories. The main difference
between them is that “substantive technological theories are always preceded by
scientific theories, whereas operative theories are born in applied research” [16, p.
331]. Therefore in technology there are some theories which are genuinely an appli-
cation of some pre-existing scientific knowledge, but there are as well many others
which are in fact originated by the technological context itself. Operative theories
express the most creative side of technology as opposed to the one which conveys
more the passive role of technology. Hence, it is easy to understand the relevance of
such theories in order to shed light on the theoretical contribution of technology.

6Some works are [16, 108, 52].
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The distinctive point of operative theories is their direct connection to the con-
text of action. Indeed, as Bugne put it “a theory may have a bearing on action either
because it provides knowledge regarding the objects of action, for example machines,
or because it is concerned with action itself, for example, with the decisions that pre-
cede and steer the manufacture or use of machines” [16, p. 331]. Unlike substantive
theories, the operative ones are strictly dependent from the practical problem they
are born to. So, while the application of the relativistic theory of gravitation to the
design of a spaceship launch is a sort of technological substantive theory all theories
of decision, planning and optimizations are suitable examples of operative theories.
Indeed queuing models or theories of airways management make little if any use of
substantive knowledge supplied by other sciences such as physics or biology.

In this respect operative theories do not differ so much from the theories of sci-
ence. Many characteristic traits of theorizing in science are indeed presented even by
operative theories. For instance, like scientific theories they generally make reference
to some idealized models of reality and employ a great deal of theoretical concepts
(e.g., probability, causation, generalization, etc.). Yet, if there is a proper training
(e.g., the system is provided with empirical information) they could produce pre-
dictions or retrodictions of events and accordingly undergo various empirical tests.
In so doing, Bunge ultimately suggests us to consider technology on par with pure
science and operative theories as the exercise of scientific method in the solution of
practical problem. But at the same time he maintains that the epistemological rela-
tion between science and technology is asymmetrical since pure theory can ground
successful practice but practical successes cannot ground pure theory. Indeed Bunge
specifies that “the practical success or failure of a scientific theory is no objective
index of its truth value” [16, p. 334] as what technology primarily aims to is the
achievement of practical goals and this in general does not require a fully consistent
theory. Interestingly the same idea seems to be mirrored by the Laudan’s account
of empirical problems and thereby required by those investigations which look at
how science and technology overlap.

1.5 The contribution of the philosophy of science

Formally, the philosophy of science claims a much longer tradition compared to the
philosophy of technology. But in fact its contribution to an integrated view of science
and technology is rather new and this delay may be reasonable ascribed to the early
indifference towards technology itself we have already discussed. Yet, what really
increased the growth of such a novel perspective is the influence of the history of
science in many philosophical studies in particular during the 1960s and 1970s. And
probably Kuhn’s contribution is one of the most famous example of the prominence
of history to the analysis of scientific changes. Kuhn, indeed, in the very beginning
of his well-known book says clearly that “history, if viewed as a repository for more
than anecdote or chronology, could produce a decisive transformation in the image of
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science by which we are now possessed” [53, p. 1]. In time Kuhn’s analysis has been
fruitful even to explore the analogies between technology and science and this can be
easily verified by looking at the wide application of Kuhn’s model within technology
but, e.g., also within economics and social sciences 7. As well as Kuhn many other
philosophers attempt to model scientific changes through the lens of history and
with profitable results even to the study of technology. Some interesting examples
are given by Lakatos and Laudan. In particular the latter explained science as the
result of a problem-solving activity whose progress is legitimate by the achievement
of specific (“non-transcendent”) goals. Even though Laudan’s proposal could be
critical if applied to the entire spectrum of scientific activity [67] we think that
it may be suitable, on the other hand, to understand how science moves towards
technology and, in our specific case, how science may be carried out in pattern
recognition.

1.5.1 Laudan’s problem solving approach

According to Laudan “science is essentially a problem-solving activity” [59, p. 11]
and its characterization can perfectly avoid any reference to the tiresome questions
of truth and ontology. Even though many earlier philosophers of science exploit
the idea of problem-solving (e.g., Peirce, Dewey, Kuhn), Laudan thinks that the
very nature of (scientific) problems and that of their solutions have been largely
ignored. Specifically he aims at providing more details about the very ramification
of this approach by scrutinizing the types of problems and the possible relationships
between problems and theories.

One important distinction in Laudan analysis is between empirical and concep-
tual problems. Empirical problems are “anything about the natural world which
strikes us as odd, or otherwise in need of explanation” [59, p. 15]. Popular ex-
amples of empirical problems are those raised by events that present impressive
regularities (e.g., the fall of heavy bodies towards earth or the effect of certain com-
bined elements, etc.). While conceptual problems are “higher-order questions about
the well-foundedness of the conceptual structures (e.g., theories) which have been
devised to answer the first-order questions” [59, p. 48]. Usually they can spring
from internal inconsistencies, that is, when a theory exhibits incoherences or ambi-
guities, or from external conflicts, for example, when a theory “makes assumptions
about the world that run counter to other theories or to prevailing metaphysical
assumptions” [59, p. 146].

What we would like to consider now is the essential character of the empirical
problems. They are called empirical because we treat them as if they were problems
about the world. This means that an empirical problem should not be equated
with the notion of a fact. Laudan argues that what matters for being an empirical

7For a general overview of the application of Kuhn’s model to different fields of study see [39].
For a specific application to technology see [18, 124] and to artificial intelligence see for instance
[102, 43, 22]. Note moreover that even the last chapter of this thesis will exploit a kuninan analysis.
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problem is to be believed to be a fact. In the history of science there were indeed
several examples of facts which did not pose any problems and problems which
turned out to be in fact counterfactual 8. Note that within this perspective what
is shaped by engineers or computer scientists in a design process can be properly
considered an empirical problem as it is thought to be an actual state of affairs.

Another basic consideration regards the rationale of problem solution. Accord-
ing to Laudan the logic of “solving a problem” is rather different from the logic
of “explaining a fact”. Laudan, indeed, associates explanations to a requirement
of exactness which would be lacking in the pragmatics of solutions. Accordingly a
theory solves a problem “so long as it entails an approximate statement of the prob-
lem” [59, p. 22]. This approximate character of problem solution is found in several
experimental experiences (“Newton was not able to explain exactly the motion of
the planets, Einstein’s theory did not exactly entails Eddington’s telescopic observa-
tions” [59, p. 23]). Moreover the question whether a theory solves or not a problem
is fundamentally independent from the truth of the theory itself (“Ptolemy’s theory
of epicycles solved the problem of retrograde motion of the planets, regardless of
whether we accept the truth of epicyclic astronomy”[59, p. 24]). This suggests ulti-
mately that in appraising the merits of theories, it is more important to ask whether
they are adequate solutions to the focused problem than it is to ask whether they
are “true” or “well-confirmed” 9. Laudan, indeed, noticed that the history of sci-
ence abounds with theories which were considered perfectly adequate at a time and
hopelessly inadequate at another one and that much of these changes depended on
the evolution of criteria for the assessment of solution acceptability.

1.6 Science and technology in pattern recognition

If we look at the history of the field, we observe that most of the technological
progress springs from very scientific issues and early attempts tried not only to
provide feasible solutions, but also to uncover the structure of the problems. The
case of neural networks is paradigmatic, as their formulation was been clearly in-
spired by scientific purposes, that is, by the wish of studying and imitating the brain
but, in the phase of their renaissance, technical matters prevailed. Indeed, with the
(re)invention of the back-propagation algorithm for multi-layer neural networks and,
above all, thanks to the impressive results obtained by these new models on practical
problems such as zip code recognition and speech synthesis a new wave of excitement
spread across the artificial intelligence community. At that point, however, it was
widely accepted that these models had no pretension of being biologically plausible

8For instance Laudan mentioned the early members of Royal Society of London who were
convinced by mariners’ tales of the existence of sea serpents and studied the properties of such
serpents as an empirical problem [59].

9Note that what Bunge says about the relevance of practice in theory evaluation is here evoked
even by Laudan but, in this case, from the side of science.
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except of being interesting computational devices [77].
The evolution of neural networks clearly suggests that research hypotheses which

fail to cope with more traditional questions of science (such as explanations or pre-
dictions) are not necessarily expected to miss other types of problems, such as those
posed by technology. Moreover, for the reasons we previously seen on the overlap-
ping activities of science and technology, they are neither expected to be exclusively
engineering. Neural network, indeed, even after their exiting technological successes
did not stop providing cues for other scientific investigations, for instance, on spe-
cific aspects of learning (see, e.g., works on regularizations networks or more recent
studies on deep learning). But we dare say that this time the way in which neural
networks approached science has been much more similar to the one presented by
Bunge or Laudan and more in general by the disciplines which lies between science
and technology. Furthermore, many other techniques may well exemplify the ideas
we introduced before thanks to Laudan’s and Bunge’s contributions. In particular
we think that pattern recognition research presents several elements of creativity,
which might typically arise in various technological activities (e.g., in the form of
operative theories), and, on the other hand, a high degree of pragmatic attitude to-
wards more theoretical efforts (as the same way as that found in Laundan’s problem
solution).

In the field of pattern recognition there are several technical approaches that can
be viewed as “theories of action” in the sense supposed by Bunge. Many techniques
indeed arose from specific practical problems and created a real tradition over the
years. A famous example is the case of kernel methods. They represent a family of
techniques whose fundamental success relies on the so called “kernel trick”. Basically
kernels can be considered as a non-linear generalization of standard dot products.
They allow one to handle input data, (x1, y1), ..., (xn, yn) ∈ X × Y , as they were
linearly-separable in the feature space H without computing directly the mapping
Φ : X → H (“kernel trick”). By this technique one is allowed to solve a practi-
cal problem and in particular to deal with “virtual” representations of non-linear
structures. Hence the kernel trick and more in general kernel methods work as “op-
erative theories” in view of the fact they arose specifically to address crucial aspects
of pattern recognition research (e.g., representation and generalization). Another
interesting example of techniques which were introduced to deal with specific con-
text of action is given by search algorithms. In both their blind or informed version
(heuristics) such procedures are formulated just as a sequence of actions bearing
one to an initial state to a goal state. We find that the searching strategies which
they were built on (in the case of blind search, e.g., see the breadth-first search and
the depth-first search) represent indeed a creative attitude of practical rationality
described by Bunge.

In a sense it might be easy to define the field of pattern recognition as a problem-
solving activity. But what does this mean in the light of Laudan’s argumentation?
It could mean, for instance, that a theory in pattern recognition can be used in-
dependently from the fact that it is true or well-corroborated. This indeed occurs
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several times in pattern recognition. Consider, for instance, the theories for ob-
ject recognition, such as the shape-based or the appearance-based models (see [1]
for a interesting historical account). Basically their employment was determined
by the successes achieved in particular aspects of the problem (for instance shape-
based models, like Biederman’s theory, are suitable in dealing with the viewpoint
invariance) not by their internal consistency and neither by their ability to account
extensively the issue of object recognition. Similarly the application of evolution-
ary game theory in clustering problems occurs basically regardless of the ability
of the theory in explaining pattern recognition mechanisms. Yet, the same hap-
pens Markov Chain Monte Carlo methods whose application differs with the fields
and accordingly with the criteria adopted to evaluate the adequacy of a solution.
Therefore while in the field of cognitive science such methods are asked to solve
the gap between rational models of cognition and psychological processes [98], in
the fields of pattern recognition and machine learning they are asked to cope with
high-dimensional models and massive datasets[9].

1.7 Summary

In conclusion, with the contributions of philosophy of technology and philosophy of
science, we argued that we should rethink the classical dichotomy between science
and technology in order to understand why the field of pattern recognition could be
properly considered as both science and engineering. Specifically we suggested that,
on the one hand, engineering activities are often continuous to the work of ordinary
science and on the other hand, many scientific enterprises can be characterized as
an engineering effort. We described these interactions by means of some analytical
tools developed by Bunge (in the philosophy of technology) and by Laudan (in the
philosophy of science). We argued that Bunge’s operative theories can contribute to
shed light on the creative strength of practical rationality within the field pattern
recognition as well as within other engineering disciplines. While Laudan’s problem
solving approach can in turn provides interesting cues to look at pattern recogni-
tion in scientific terms thereby exploring the logics and the pragmatics of problem
solution.



2
Pattern recognition as a
computational problem

In this chapter we would like to consider in which way problems of pattern recogni-
tion are formulated, pointing out some basic characterizations. Note that the work
of pattern recognition has been often associated to the problem of induction which
is a fundamental notion even in the field of philosophy. Therefore we will also at-
tempt a brief philosophical account of such notion so as to highlight some interesting
distinctions between a modern and an ancient conception.

In order to better understand what pattern recognition deals with we will devote
the last part of our chapter to investigate the connections with some related areas.
Specifically we will tray to outline how pattern recognition is related to artificial in-
telligence (is pattern recognition a sub-field of artificial intelligence) and to machine
learning (do pattern recognition and machine learning coincide?).

2.1 Pattern recognition problems

Generally when we are dealing with a pattern recognition problem we would like to
discover regularities among data. basically we start from a number of observations
that can be represented into a feature vector space so that each object can be
characterized in terms of a finite number of properties. Note that feature-vector
representations are extremely attractive because geometric spaces provide powerful
analytical as well as computational tools. However, besides the typical feature-
based representation, we may describe objects even by structural and similarity
information (e.g., by graphs or trees). 1

Note that for most practical applications the selection of appropriate features is a
crucial task as it reduces the variability within classes. To this end a common pattern
recognition procedure requires a step for the extraction of “strategic” features (see
the feature extraction step in figure 2.1). Once the features have been selected we
need to find a “good” classifier, that is a function which collect similar objects and
separate different ones. This task may also be called generalization and consist

1For a discussion on similarity-based representation see [79]
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Figure 2.1: Typical steps in a pattern recognition problem.

mainly in a learning activity because a pattern recognition system should learn
somehow how to relate objects. Note that this task can be fulfilled in several ways.
For instance, we could generalize the information provided by a training phase. In
this case we talk about “supervised learning” because the system is presented by
some exemplars, that is by a set of objects provided with their corresponding labels.
After presenting training exemplars it follows a test phase, in which the system has
to label the unseen objects. By contrast when there is no training step the system is
asked to discover the “structure” underlying data without any supervision. For this
reason we should talk about unsupervised learning or clustering. Then, between the
supervised and the unsupervised condition there is an intermediate situation, often
called “semi-supervised learning” in which classification occurs with both a small
set of labelled data and a large number of unlabelled data. Another type of scenario
is that described by reinforcement learning. In this case the system is supposed to
discover optimal output interacting with the environment by a mechanism of trial
and error. Finally a pattern recognition problem has to be evaluated. Validation
may vary based on the learning scenario (for instance, where it is supervised or
unsupervised). But usually the sense of validation is to estimate the error of the
obtained classification and might be done by counting the misclassified test items
(i.e., objects labelled during the test phase) 2.

2.2 Pattern recognition as induction

It is widely acknowledged that pattern recognition and machine learning provide
computational tools to perform induction inferences [40, 122, 117]. Therefore, find-
ing a pattern is often a synonym of induction. Harman and Kulkarni, indeed, stated
that “an inductive method is a principle for finding a pattern in the data that can be
used to classify new cases or to estimate the value of a function for new arguments.
So the problem of finding a good inductive method is sometimes called a pattern
recognition problem” [40, p. 22]. Yet, other researchers expressly advocated that
machine learning is concerned with algorithmic induction [75]. Such correlations

2Note that the evaluation of a clustering problem could be much more critical since “there are
a huge number of possibilities regarding what will be done with it” [118, p. 2]
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were used even to show that machine learning and the philosophy of science are
involved in similar tasks as both fields are concerned with the tasks of selecting and
testing hypotheses [122].

In philosophy induction can be described as a process of generalization going
from experience to the formulation of laws, from what is already known to what
is yet unknown. Commonly is defined in opposition to the deductive reasoning.
The latter is notoriously formulated by syllogism like “all people are mortal. I am
a person. So, I am mortal” and it is associated to a sort of “perfect reliability”
[40] which induction hardly provides. Indeed induction derives hypotheses from
a finite number of observations so that its predictions are preferably expressed in
probabilistic terms. This led many philosophers to address the problem of induction
(Hume, for instance, was one of the most famous) posing the question whether
one is rationally justify in drawing conclusions about future things or events. But
even if it raised many skeptical reasonings the philosophical evolution of induction
was inextricably tied to the development of one of the most fundamental form of
knowledge, i.e. (modern) science.

2.2.1 An ancient and a modern sense of induction

In the modern age induction soon became the name to indicate the scientific method.
Rather than being a simple matter of enumeration, induction outlined the methodi-
cal work of science which collects information and repeats experiments so as to infer
causal relations and thereby formulate laws of nature. Accordingly, within modern
philosophy the notion of induction were essentially associated to the problem of
how justify scientific statement. Basically modern philosophy regimented the clas-
sical enumerative induction according to the criteria of the new science (consider,
for instance, the influence of Bacon’s method).

But modern induction is rather different from other early accounts and in par-
ticular from the Aristotelian conception. In Aristotle’s writings we find at least two
ways of thinking of induction. The former is essentially the enumerative version that
was in time criticized by modern philosophy, while the latter coincides with the abil-
ity of grasping “universal forms” from individual experiences. Therefore the second
Aristotelian meaning is strictly related to the overall process regarding the knowl-
edge of universal concepts. In the Posterior Analytics Aristotle introduces induction
as a form of abstraction which allows humans to pass from sensory information to
the knowledge of things. This passage, hence, would consists in “transforming” sen-
sory data into cognitive representations3 which in time became the building-blocks
of human cognition. In the end we may compare the process by which humans
achieved knowledge “ to the way in which order is restored in a battle after a rout.

3Here the notion of representation is rather different from that one could find in modern phi-
losophy. According to Aristotle a cognitive representation is a sort of immaterial “presence” of the
object within the soul and should not be confused with the (modern)representationalism criticized
later by Wittgenstein.
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First one man stops in his flight, then another, then one more, until there is a nu-
cleus for real work. Similarly, the flow of fugitive impressions stops at one point; a
similar impression comes along, is arrested by the first, and reinforces it; thus, after
a time, there is formed a single experience. This supplies the starting point for the
conscious process by which a system of conceptions is formed” [121, p. 155].

2.3 Pattern recognition and artificial intelligence

Pattern recognition is often considered a sub-area of artificial intelligence and, more
expressly, as a field dealing with a number of typical problems and techniques sprung
from a process of overspecialization. On the other hand, the idea that “pattern
recognition encompasses a wide range of information processing problems of great
practical significance, from speech recognition and the classification of handwrit-
ten characters, to fault detection in machinery and medical diagnosis” [13, p. 1] is
rather popular in the literature. As a consequence, its development and its current
role could be viewed on a par with many other sub-areas which finally have made
progress on specific topics (machine learning, computer vision etc.) or methodolog-
ical approaches (neural networks, support vector machines, etc.). But, there is also
a different perspective which holds exactly the other way around and, hence, insists
on the primacy of pattern recognition over the other areas of artificial intelligence.
In this respect, pattern recognition is at the very core of cognition and, accord-
ingly, of each attempt to build intelligent machines. Interestingly, more than 40
years ago, Hubert Dreyfus had already noticed that “the resolution of the difficul-
ties which have arrested development in game playing, language translation, and
problem solving presupposes success in the field of pattern recognition.” [24, p. 97]
So, how should we figure the relationship between pattern recognition and artificial
intelligence? how do these fields really stand to each other?

From an historical perspective, it is undeniable that pattern recognition and
artificial intelligence are intertwined and at the early stages of their development
the two really overlap. As Duin pointed out [26], before artificial intelligence were
officially established at the famous workshop in Dartmouth, in 1956, there was
no formal distinction between pattern recognition and the other research projects
dealing with the mechanization of the mind. Indeed, at the same Western Joint
Computer Conference (WJCC55) held in 1955, we can find a session on machine
learning which included some papers explicitly devoted to the problem of pattern
recognition. However, it is interesting to note that all presented works were ulti-
mately perceived as mutually related and, in particular, as reflecting distinct levels
of increasing (biological) complexity 4.

4Indeed, Willis Whare introduced the papers of this session pointing out that “these levels
of complexity may be likened respectively to the initial organizational efforts of neural nets in
the earliest days of evolution (Farley-Clark), the learning of pattern recognition by a maturing
individual (Selfridge-Dineen), and the action of an entire man as he copes with the complicated
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Along the way the computational approach to pattern recognition became more
and more defined and application-oriented (see, e.g., the abundance, at that time,
of models for recognizing symbols in written texts). This process of consolidation
involved researchers from different domains including, among others, psychologists,
engineers and computer scientists as well as physics and mathematicians. During
70’s the separation between pattern recognition and artificial intelligence went ev-
ident and culminated with the institution of separate journals and conferences. In
1968 it was founded the first journal on pattern recognition and two years later one
which was completely dedicated to AI. Most importantly, as Duin put it “after the
first International Joint Conference on PR, Washington DC, 1973, it was decided
that in the even years there would be an international conference on PR to avoid
a collision with the international conferences on AI, which were organized in the
odd years from 1969.” [26] Therefore, in the light of its historical evolution, pattern
recognition may be reasonably considered a sub-field of artificial intelligence as a
by-product of a process of fragmentation. From this standpoint the establishment
of particular resources for the growth of research, along with the connected social
effects (e.g., “narrow” membership, stereotyped research, etc.), has for sure con-
tributed to the idea that pattern recognition is in a way “subordinated” to artificial
intelligence, even though due mostly to incidental reasons. Nevertheless, this did
not prevent the two communities to support joint activities (see, e.g., journals cov-
ering both domains like International Journal of Pattern Recognition and Artificial
Intelligence or IEEE Transactions on Pattern Analysis and Machine Intelligence).

Admittedly, according to Duin the separation between pattern recognition and
artificial intelligence was a process which in fact expressed two distinct problem-
solving approaches, equally important (i.e., without subordination) but going in
two opposite directions. Yet, Duin holds that these two areas diverge in a very
scientific way and outlines such a distinction thanks to the popular comparison
between two of the most influential philosophers of the Western culture, Plato and
his pupil Aristotle. Hence, artificial intelligence, following a “top-down” approach,
typically found in Plato’s doctrines, would move from some fixed, given concepts
to the objects of real world 5, whereas pattern recognition would proceed in the
opposite direction, generalizing from observations which therefore come first, as it
is supposed to happened in a genuine “bottom-up” scheme.

However, if we want to characterize the fields of pattern recognition and artificial
intelligence from a scientific standpoint, that is looking at the sort of phenomena
these two areas get in touch, we will suggest further considerations. More than a
different working style, what relates pattern recognition to artificial intelligence is
a sort of profound dependency precisely as the one connecting categorization to all

problems of his life (Newell).” [119, p. 85]
5Duin calls this process also “adaptation” [31, 30]. Note that he associates this approach also

to the troubled story of neural networks and the related incentive towards alternative researches
based on logic and reasoning.
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intellectual activities 6. Pattern recognition, as we have seen before, has been indeed
understood as a way to point out categorization or, more basically, to “see the one
in many” [120]. More recently, it has been explicitly argue that in the analysis of
cognition everything, in some way or another, can be reduced to pattern recognition
[61]. And even in the philosophy of science it has been proposed that “we use our
somewhat innate capabilities of pattern-recognition to find our way through the
maze of facts and hypotheses” [109, p. 31]. Therefore, as a cross-cutting notion,
pattern recognition looks more like a starting point or a principle of discovery than
a side effect of the development of artificial intelligence.

2.4 Pattern recognition and machine learning

More than ten years ago a paper by Duin, Roli and de Ridder noticed that “although
many pattern recognition scientists seem pretty sure about the cultural identity of
their research field, [...] the recent developments of closely related disciplines (e.g.
machine learning and neural networks) and the increasing number of research issues
that pattern recognition shares with such disciplines”[29, p. 1] makes difficult to
answer questions about the cultural identity of pattern recognition7. The complex-
ity of this scenario then increases when we consider that pattern recognition and
machine learning are in fact considered as “two facets of the same field” [12, p. 1].
From a practical point of view, this intuition often results in a general attitude to-
wards exchangeability, that is in presenting several pattern recognition works on the
“machine learning” platform and vice versa [27]. But if we look at some traditional
features which generally characterizes the establishment of a research community
(conferences, journals, etc.) we will conclude that pattern recognition and machine
learning are two distinct areas since both have their own journals and conferences.
Moreover we would genuinely expect some differences from two areas which were
designated under two distinct terms. One the one hand such differences may be
explained just in terms of historical or sociological factors, maybe associated to the
opposition between influential traditions (e.g., the symbolic and the connectionist
approaches). On the other hand there might be the possibility to identify more
profound difference. This is, for instance, the idea suggested by Duin in an informal
discussion where he said that, in fact, between machine learning and pattern recog-
nition “there in an essential difference in focus” [27]. According to Duin pattern
recognition and machine learning would diverge because the former is about the
recognition of patterns itself, in general, without restrictions, whereas the latter is

6This is not only a basic tenet of modern cognitive sciences [17] but also a cornerstone of any
philosophical theory of knowledge since antiquity. Indeed, how should we understand the debate
which traversed the whole history of philosophy on the constituents of thought but for a testimony
of the crucial role of categorization?

7Actually that paper was devoted to statistical pattern recognition but we think that their
motivating questions could be suitable even for pattern recognition in general
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primarily concerned with the study of learning process. We do not know how much
this theoretical distinction affect the concrete practice within the two communities
but we think that the idea of distinguishing the recognition from the learning has
some reasons.

The fact that pattern recognition is strictly correlated to the process of learn-
ing was known since the early days of artificial intelligence. In 1955 Selfridge, for
instance, at the western joint computer conference claimed that pattern recognition
“leads naturally to studying other processes, such as learning” [103, p. 91]. Its
definition, however, seems to not really require a reference to learning and in fact
even the development of pattern recognition techniques may occur without learning
(nearest-neighbour methods come immediately to mind). In this respect pattern
recognition may be referred to representation and, from a philosophical standpoint
to one of the Aristotelian ways to conceive induction. As we suggested above Aristo-
tle meant induction even as a form of immediate abstract “representation” of what
one can perceive by senses. Interestingly, in a purely Aristotelian formulation we
would not say that pattern recognition is a real process as it seems conceived outside
the logics of time and it looks like a type“intuition”. Therefore pattern recognition
could be more properly associated to the Aristotelian idea of induction as “abstrac-
tion”. While machine learning could be more directly connected to the modern
account of inductive inference. Interestingly even a more recent study on the re-
lationship between the problem of induction and pattern recognition acknowledged
that “rules of classification must be carefully distinguished from inductive methods
for finding such rules”. And while rules of classification are more concerned with
categorization or function estimation the induction method is about the use and the
choice of such rules. therefore, in very informal terms we could say that when the
mind “meets” the world many ingredients for categorizations are present but one
needs experience and training to understand how they can be “used”. With respect
to the characterization of the field of pattern recognition this differentiation may in
turn may lead to a “list” of primary issues, such as pre-processing procedures (how
to represent objects, how to choose proper features etc.) [27].

2.5 Summary

In this chapter we sketched out some classical components of a pattern recognition
problem. Then we presented pattern recognition as an inductive problem. We ob-
served that, besides the modern formulation (which is probably the most popular)
there is also another important sense of induction which arises from Aristotle’s phi-
losophy. The two meanings in the end could be useful to distinguish between learning
(modern induction) and recognition (Aristotelian induction as abstraction). These
elements then could in turn be used some special focuses within machine learning
and pattern recognition, two areas which are often seen in strict correlation (and
sometimes really as the same thing). To better characterize the role of pattern
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recognition we also considered some connections to the broad area of artificial in-
telligence. In this respect we may conclude that the two positions sketched above -
i.e. the one asserting the primacy of artificial intelligence and the other maintain-
ing the priority of pattern recognition - are in fact partly true. For we have good
reasons to believe that historically the field of pattern recognition has come out of
artificial intelligence as a particular scientific community, with its own journal and
conferences. But, on the other and, we are also provided with several convincing
arguments which make it clear that pattern recognition is the very building block
of intelligence and, accordingly, of its mechanical version.



3
Pattern recognition as categorization

Categorization is another way to paraphrase the subject matter of pattern recog-
nition. When we speak about categorization we usually suppose a situation which
bears a strong resemblance to a classical pattern recognition task. Indeed when we
are involved in a categorization task basically we are asked to place particular ob-
jects into classes (that may be called “concepts” or “category”). But this problem
is a central issue even in the field of cognitive psychology, as well as in the area of
pattern recognition.

Cognitive psychology is concerned with the study of several mental processes such
as perception, memory, attention, etc. Its approach is based on the assumption that
the brain can be in principle described as an information-processing system. There-
fore analogies to computer science are very common as it is believed that, like a
computer, the brain takes information from the world, it converts the received data
into some representation and then it produces a (sensible) result. This analogy is
particularly significant in the study of categorization. In this respect, cognitive psy-
chology has developed several computational models that could be easily associated
to pattern recognition techniques. Indeed, many such models result in algorithms
which produce quantitative predictions on specific categorization tasks. But the
similarities between pattern recognition and cognitive psychology also have deep
historical roots since many researchers have contributed significantly in both camps
(Marr or Biedermann are two well-known examples). Nowadays such connections
are stressed by interdisciplinary projects which stem from the practice of cognitive
sciences and aim at a closer link to machine learning.

But behind the apparent formal analogies, pattern recognition and cognitive psy-
chology hide two different perspectives on categorization. Looking at the research
activity of cognitive psychologists, for instance, we may have the (strange) impres-
sion, on the one hand, to deal with abstract data sets that have few relations to
the every-day classification tasks (e.g., sorting images, ordering objects in the desk,
etc.) and, on the other hand, when we look at the field of pattern recognition, by
contrast, we may come to the conclusion that we handle useful tools which are far
away from the study of cognitive phenomena. Therefore, we might realize that if we
face the issue of categorization from the standpoint of one of these two particular
fields we will not be guaranteed to account the same phenomena. Rather, working
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separately in one of these two areas we may end up with an original conception
of what categorization is and how it should be studied. Therefore, it makes sense
to pose some questions like: do cognitive psychology and pattern recognition really
address the same problem? what common attitudes do they share? and, on the
other hand, what peculiarities do they exhibit? To what extent are their methods
effective in performing categorization?

Recalling Laudan’s terminology we would say that we are interested in how
pattern recognition and cognitive psychology shape their problem-solving activity.
Specifically we would like to address a particular instance of categorization activity,
that is unsupervised classification. The latter may fall under different labels (e.g.,
unsupervised learning, unconstrained classification, clustering, spontaneous catego-
rization) and in general corresponds to the task of grouping a number of objects
without receiving any previous training or guidelines. Humans are very familiar
with such tasks (a lot of every-day experiences come to mind, e.g., naming things,
arranging clothes in the closet, etc.) whose intrinsic spontaneity in fact constitute
the main challenge of computational approaches.

In our discussion as well as proposing some general considerations about how
cognitive psychology and pattern recognition conduct their modelling activity we
will develop a concrete comparison between some models and methods coming from
both fields. Note that the selection of such models has not been motivated by
particular experimental goals but for the interest in making our discussion more
effective. We do not have any pretension of exhaustiveness and we hope to offer just
a contribution to the interdisciplinary dialogue on these neighbouring areas.

3.1 Formal approaches to categorization

Categorization is probably one of the most intriguing problems in the history of phi-
losophy. It has been studied from several points of view and in different philosophical
traditions (e.g., continental, analytical, pragmatics, etc.). Nowadays, categorization
may be approached in a different way, by means of formal models and techniques
allowing quantitative predictions. This approach is greatly present in both cognitive
psychology and pattern recognition and guides the very development of computa-
tional accounts of categorization.

In order to point out how cognitive psychology and pattern recognition conceive
spontaneous categorization we provide a brief outline of their common methodologi-
cal inclination. At the moment we prefer to leave aside the question whether pattern
recognition and cognitive psychology produce models like those of traditional science
because such a problem would deserve a discussion apart 1. But in reference to our
discussion we could take for granted that a “formal model is one that unambigu-
ously specifies transformations from one or more independent variables to one or

1For a general overview on the role of models in science see [36].



3.1. Formal approaches to categorization 29

more dependent variables. In the case of formal models of categorization, one inde-
pendent variable is category structure, and one dependent variable is categorization
accuracy” [123, p. 102].

From a general point of view models in science can be used for two main pur-
poses. They can be built to represent a selected part of the world 2 (what is usually
called “target system”) or to interpret the laws and the axioms of a theory (e.g.
Euclidean geometry). In a way the problem-solving activity of pattern recognition
and cognitive psychology could be understood as a modelling activity. Indeed, ulti-
mately, both aim at formalizing a type of inference which takes some data as input
and returns a grouping hypothesis as output. With respect to the great variety
of models (analogical models, computational models, explanatory models, heuristic
models, etc.), what is common in pattern recognition and cognitive psychology is
the tendency to express that inference in a formal way, that is without ambiguities
or vague concepts, and with the support of computers. To this end, formal models
of categorization rely on a vast collection of mathematical tools with the advantage
of getting quantitative results which can be easily compared. In addition, they can
count on the progress of computer science and the great expansion of the algorithmic
language. In particular these elements make models suitable for computer simula-
tions, which seems almost to play the role of definition in the traditional philosophy.
That is, instead of explaining categorization by addressing the typical philosophi-
cal question about the essence (what categorization is?), cognitive psychology and
pattern recognition moved their efforts towards an operational approach, looking at
the process and the aspects of measurement (how does categorization work?).

In order to understand this modelling process we would like to stress two funda-
mental components: the elaboration of assumptions or hypothesis about the mecha-
nism of categorization and the formulation of validation methods for the assessment
of model predictions. We think that these two aspects can provide a common ground
for our comparison, besides the particularities of each field (e.g. terminology, tech-
nical details, etc...).

• Assumptions. One of the possible ways to approach a model of categorization
is to analyse the set of implicit or explicit ideas, which influences the formal-
ization of the proposed method. Sometimes this phase doesn’t constitute a
distinct or an expressed passage, however, even if implicitly, assumptions may
constrain the technical choices in a very deep way.

• Validation. This component provides the principles that are used in evaluating
algorithm performance and comparing results of different models. As well
as being a practical tool, methods of validation offer an indirect measure of
coherence. Indeed, by looking at the validation criteria one indirectly express
an ideal picture of what categorization should look like.

2Note that “depending on the nature of the target, such models are either models of phenomena
or models of data” [36]. For a discussion on models of data see: [111]
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In the next two sections we will briefly introduce the approaches of cognitive
psychology and machine learning keeping in mind these two aspects (assumption -
validation) so as to draw some general considerations.

3.2 Spontaneous categorization in cognitive psy-

chology

In cognitive psychology a simple way to understand the process of spontaneous cat-
egorization is to evoke a typical experimental scenario: “participants are asked to
divide some stimuli into categories that are intuitive, without any corrective feed-
back” [87, p. 1]. This is the behaviour that cognitive psychology studies and tends
to formalize in models of unconstrained categorization. Note that the objective in
this context does not consist in solving a specific classification task but in examin-
ing and representing a human phenomenon. Consequently, cognitive psychology is
more inclined to express accurate assumptions about categorization, relating mod-
els to some well-defined theory (such as the exemplar or the prototype theory, or
the Bayesian framework, etc.) or claiming which principles inspire the technical
choices. For example, there are some models supporting the hypothesis that cate-
gories spring from similarities among objects and then develop methods exploiting
such information. At the same time, others suggest that a “category is coherent if
it fits well with our overall understanding of the world” arguing “that explanations
based on similarity are inadequate” [87, p. 1]. An alternative view states that the
process of categorization serves certain functions of the organism and puts forward
models based on category utility. An example of this approach is given by methods
addressing questions such as: how useful is the category in predicting the features
of its members? or which category is more appropriate to communicate a collection
of properties? [20].

From a philosophical point of view the instantiation of these theoretical coordi-
nates provides explanations and arguments on the nature of relations joining objects
together, or, in other words, the reasons underlying grouping mechanism. Some peo-
ple, for instance, argue that the formation of general entities (group or categories) is
a matter of general knowledge since that each concept is inseparable from the overall
knowledge of the world and, in turn, without this knowledge it seems difficult to
appreciate the significance of a concept [70]. Others support the idea that objects
are grouped because of their mutual similarities (see, for instance, the models based
on multidimensional scaling techniques). While all these considerations put for-
ward mainly qualitative information and support the general setting of the models,
mechanisms of validation provide quantitative tools and represent a complementary
way to speak about the structure of a category (e.g., the degree of coherence or the
requirements for a good category).

Usually, the evaluation task occurs with relatively small artificial data sets
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(points or abstract figures) both with humans and algorithms. But such data sets
are often the result of a precise experiment design expressing a number of proper-
ties which may be relevant for the model testing. The main purpose of evaluation
is to assess the ability of models to “minimize the quantitative difference between
their outputs and some empirical observations” [123, p. 110]. Such observations
commonly are collected while a sample of humans performs a (categorization) task
during appropriate experiment sessions. A step further in this evaluating process
could be the comparison with different model predictions. Indeed there might be
models which provide a better account of empirical phenomena and which should be
preferred to other competitors. Note that there are several options to evaluate the
performance of models. Many approaches are based on the sum of squared errors
(SSE), that is the distance between the output of models and the human predictions.
However, such a measure may not be always adequate. Indeed Wills and Pothos
pointed out that “two models can have the same SSE in cases where most theorists
would agree one is superior, and better SSE can sometimes indicate a less adequate
model” [123, p. 111]. An alternative view suggests that model evaluation should
include more considerations for the qualitative properties of model behaviour. Ac-
cording to this view, the evaluation should be arranged against a criterion of ordinal
adequacy so as to assess wether models capture the ordinal properties of a data set.
For example, a criterion of ordinal adequacy has been included in some recent stud-
ies on category intuitiveness [87, 88]. Such studies try to assess how good are models
in predicting intuitive category structures. Interestingly, the proposal leads models
to the very heart of unsupervised classification providing a measure for intuitiveness,
or, in other words, for spontaneity. Note that the problem faced by this investiga-
tion is related to many ordinary experiences: “why do we consider a category like
’chair’ as intuitive (coherent), a category like ‘games’ as less intuitive (in the sense
that people disagree more about the membership of this category), and a category
composed of ‘babies, the moon, and rulers’ completely nonsensical?” [88, p. 84]. To
better understand how intuitiveness is conceived consider, for instance, the figure
3.1. Assuming that such images represent a psychological space where each point is
taken to correspond to a physical stimulus, we may find out that classification in top
graph is perceived as more intuitive than classification in the bottom graph, maybe,
because of the difference between the ratio within-between similarity. In the studies,
then, intuitiveness has been measured by the frequency of the preferred classifica-
tion (i.e., that more produced by humans) for each data set, that is measuring how
much participant agree in producing classifications (thus a strong agreement would
indicate a high level of intuitiveness while a large disagreement would be a signal
of low intuitiveness). Interestingly, as well as proposing a dependent variable for
unsupervised classification (i.e., category intuitiveness), this study evaluates models
by an ordinal criterion. Indeed, it assesses models not really to measure the error
with respect to each data set but to compare the order of (preferred) classifications
produced by models and humans. Note that in this way it does not care to find
the right classification for a single stimulus set, but rather to capture the degree of
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Figure 3.1: Items in psychological space. The top graph represents an intuitive
category structure whereas the bottom graph a corresponding less intuitive one.
Reproduced from [87] with permission.
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intuitiveness of different category structures. We will return on this basic test later
on, since such studies deal with a crucial notion for unsupervised categorization.

3.3 Spontaneous categorization in pattern recog-

nition

Spontaneous categorization somehow corresponds to what in pattern recognition and
machine learning is called “clustering” [117]. However this problem does not belong
exclusively to the domain of pattern recognition since there are many other research
areas which are interested in discovering regularities among data (e.g., data mining,
statistics, etc.). Hence, when we speak about clustering we are in fact considering a
cross section in computer science. However, the problem of clustering is historically
associated with the dawn of artificial intelligence, when computer scientists started
studying and designing intelligent agents. The key elements of machine learning and
pattern recognition (representation, generalization, evaluation) emerges as a special
instantiation of human skills and at the same time as an alternative way of explo-
ration 3. Thus, at the very beginning of clustering there was the attempt to make
machine intelligent and, possibly, to bring computers near to human qualities. But,
over the years, these origins have been disregarded in favour of a greater emphasis
on application-oriented approaches. As a result, in computer science spontaneous
categorization has lost the “genuine” reference to the agent of categorization prefer-
ring a more abstract characterization. Indeed it is usually supposed that: “the field
of machine learning does not study the process of learning in living organisms, but
instead studies the process of learning in the abstract” [117, p. 652]. In clustering
research the problem is to discover some “structures” on the underlying space of
instances and, in so doing, to provide effective solutions to many ordinary situa-
tions. For instance “an online retailer might want to cluster his customers based on
shopping profiles. He collects all kinds of potentially meaningful information about
his customers [...] and then wants to discover groups of customers with similar be-
haviour. [...] It is not specified beforehand which customer should belong to which
group it is the task of the clustering algorithm to work that out” [117, p. 652].

Focusing primarily on problem solution, the field of pattern recognition has de-
veloped a different kind of assumptions compared to cognitive psychology. Generally,
the majority of clustering algorithms are constrained by computational principles
(complexity, efficiency, robustness, reliability, applicability, etc.) or by general prop-
erties that a solution ought to satisfy (see, e.g., the axioms proposed by Kleinberg:
consistency, richness, scale-invariance [51]). In the last few decades the computa-

3Usually introductions to classification and clustering stress this origin: “Classification is both
an ancient discipline (Aristotles classification of animals, plants, and other objects is still largely
valid), and a modern one. Classification is a way of thinking about things, rather than a study
of things in themselves, and so it draws its theory and applications from the complete range of
human thought and experience” [41, p. 1].
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tional and the engineering concerns prevailed against other factors (e.g., psycholog-
ical o philosophical). However the development of clustering techniques implies at
least an intuitive idea about what a categorization mechanism ought to be. It may
remain undisclosed or just outlined but such an idea puts forward an hypothesis
on how categorization works and after all influences the entire design process. A
widespread supposition (that we can call “feature-based approach”), for instance, is
the idea that categories are defined on the basis of a collection of properties or fea-
tures. From this point of view, instances are represented by a collection of features
and grouped in accordance with the properties required by categories. In terms of
coherence, the notion of a category coincides with a set of attributes and induces
fixed boundaries in the same way as the set-theoretical model introduced by Lakoff
4. Similar considerations emerge in the analysis of validation methods which reveal
different points of view.

Validation in clustering occurs in several forms. A recent review of common
methods has pointed out some popular practices different types of data-sets (ar-
tificial, classification benchmark or real world). But in all cases, there exists a
source (e.g.: expert people or particular assumptions on the data generating pro-
cess) providing a sort of ground truth against which the algorithm performance
can be compared. Another possibility is given by the so called “internal clustering
quality scores” approach. In such scenario, one can use many different measures
(e.g.: sum of square distances to cluster centres, ratio between-within similarities,
likelihood scores, etc.) to express the goodness of clustering and consequently to
determine the internal cluster coherence5. However, there is no agreement on the
reliability of these evaluation procedures and different judgments are possible. Some
people advocates for a “universal” way to compare algorithms legitimizing the idea
of a single right solution for clustering, independently from contextual informa-
tion. Others take this further and maintain that the right answer is determinable
by the data (alone, without reference to the intended use): “the data should vote
for their preferred model type and model complexity” [15, p. 1]. An alternative
view shifts the point of interest from data to the specific purposes that clustering is
asked to serve. According to this perspective: “clustering should not be treated as
an application-independent mathematical problem, but should always be studied in
the context of its end-use” [118, p. 1].

4The set-theoretical model lies at the heart of the classical theory of categories according to
which “given any property (or collection of properties), there exists a category in the world con-
sisting of the entities that have that property” [56, p. 159]

5It is worth mentioning that in computer vision there is a benchmark (the Berkeley segmentation
benchmark) which actually provides an empirical basis for research.
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3.4 Points of interaction

In the light of these few observations now we can derive some points of interactions.
Indeed we may say that in the end cognitive psychology and pattern recognition
present a specific view with respect the objects, the process and the theory of cate-
gorization.

• Object of categorization. This point mainly regards the type of data sets used.
How do cognitive psychology and pattern recognition look at the object of
categorization? From the brief account provided above we can observe two
distinct attitudes. Most of the time in cognitive psychology we cope with
artificial data sets whose final usage is restricted to the psychological inquiry.
As the example in figure 3.1, they might be very abstract, simply representing
some stimuli in a psychological space, and with a small number of items (e.g.:
20-30 objects). On the contrary, pattern recognition, as well as managing
artificial data sets, handles “real-world” objects (e.g.: images, texts, biological
data, etc.), whose size normally exceeds hundreds of items.

• Process of categorization. In both disciplines there is the idea of modelling a
process. But what kind of process is the field of pattern recognition looking
at? In the majority of cases categorization tasks are primarily a matter of
engineering, concrete problems which need effective solutions. This emerges
clearly in the evaluation practice where algorithm output is compared against
a ground truth which makes sense with regard to statistical information (i.e.
the process generating data) or the knowledge of experts but which is almost
indifferent with regard to human thinking. By contrast, cognitive psychology
is interested in categorization as a human activity and builds its models on
the correlation between human response (the empirical observation) and the
output of algorithms. These distinct characters arise in the elaboration of
preliminary hypotheses as well. In fact we observed that models of cognitive
psychology are frequently inspired by theories of categorization whereas pat-
tern recognition algorithms express their hypothesis in an implicit way. Nev-
ertheless, it is worth noticing two facts. On the one hand, the lack of a specific
interest in human categorization does not prevent pattern recognition algo-
rithms from advancing useful applications in many real world categorization
tasks. On the other hand, because of their explanatory function, psychologi-
cal models of categorization are not necessarily asked to be computationally
efficient or robust (even if there are some exceptions such as the models based
on optimal inference, see [98]) but, rather, to be as close as possible to human
preferences.

• Theory of categorization. What kind of modelling activity can we draw from
cognitive psychology and pattern recognition? Which relation between the
practical level and the theoretical one? The main work in the community of
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pattern recognition is not devoted to the development of a theory of catego-
rization, at least in the sense implied by ordinary science [112]. The theories
developed by pattern recognition are in principle technological [16]. They
work indeed as ordinary science (e.g., they are built on idealization of the
problem, they employs a great deal of mathematical tools, they undergo sev-
eral tests) but are constrained by applicative issues. So, we could also say
that they are theory for “applications”. For what concerns cognitive psychol-
ogy we observe that the theoretical work is strictly joined to the amount of
intuitions about categorization. Generally models of categorization do not live
in solitude but mostly in families of related models. Actually this may hold
even for pattern recognition but in this case the networks of methods (e.g.,
support vector machines) are based on common technical approaches whereas
models of cognitive psychology are usually related by common explanatory
hypotheses. Such models are built to express in a formal language what has
been articulated in an an informal way (for instance, by argumentation and
observations). Then, experimental results (derived from comparing model pre-
dictions against empirical observations) are used to get information about the
explanatory hypothesis underlying models and their practical relevance goes
beyond the logic of problem solution.

3.5 A practical comparison

In the next sections we will extend the comparison between cognitive psychology
and pattern recognition to a testing phase. We did not undertake such a compar-
ison as a real experimental activity, whose accomplishment has some traditional
requirements 6, but essentially as a concrete opportunity to make practice with the
methodological attitude of both fields. In fact, the main purpose in this phase is to
observe how algorithms behave in a different context from their usual application
without any pretension of completeness. Specifically we would like to know how
models of cognitive psychology deal with data sets commonly used in the field of
pattern recognition, and, on the other hand, how some pattern recognition methods
cope with an experimental scenario developed for cognitive purposes.

From the field of pattern recognition we decided to select the techniques of k-
means [46] and dominant sets [69]. While, from the field of cognitive psychology we
opted for the generalized context model (GCM) [73] and the rational model [8]. A
brief description of these models and techniques are presented below.

6To explore the relationship between experimental activity and computer science see, e.g.,
[6, 101]
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3.5.1 The generalized context model

The generalized context model is based on the assumption that “people represent
categories by storing individual exemplars (or examples) in memory, and classify
objects based on their similarity to these sorted exemplars” [89, p. 18]. In the stan-
dard version of the model exemplars are represented as points in a multidimensional
psychological space and the similarity between points is the decreasing function of
their distance. Note that similarity is a notion highly context-dependent since it
is modelled in terms of a set of selective-attention weights. This means that not
all dimensions are always relevant for classification, i.e. the weight can stretch the
psychological space along attended dimensions. Practically the model presents and
initial training phase, in which the learner is presented with some exemplars of each
category, and a test phase, in which both exemplars and new items might be pre-
sented. During classification the learner assigns the test items to one of the Kn

available categories. Specifically new assignments are computed in this way:

P (F|i) =
bF [

n
j=1 VjFSij]

γ
K bK [

n
z=1 VzKSiz]γ

where P (F|i) is the probability that a new item i is assigned to the category F ; bF
is the response-bias for category F ; VjF denotes the memory strength of exemplar j
with respect to the category F ; and S is the similarity between the exemplar j and
the new item i. Finally, γ is a response-scaling parameter which affects the degree
of determinism in label assignment. Hence, the probability of assigning an item to
a particularly category is proportional to the overall similarity between that item
and the category exemplars. The similarity between item i and exemplar j is given
by

sij = e−cdpii

where c is a free sensitivity parameter which reflects the rate at which similarity
declines with distance, while determines the shape of the function relating similarity
to distance (e.g., exponential or gaussian). In the standard version of the model,
the distance between i and j are given by the weighted Minkowski power model:

dij =

 M
m=1

wm|xim − xjm|r]1/r


where r determines the form of the distance metric (e.g., euclidean, city-block) and
w is the attention-weight parameter referred to dimension m and with 0 ≤ wm ≤ 1
and


wm = 1.

Note that in order to measure how good the model is in predicting category
intuitiveness Pothos et al. provided an unsupervised version of the model (UGCM).
In so doing they estimated the intuitiveness of a classification by considering how
well each stimulus is predictable given the assignment of the other stimuli to their
intended categories. “Suppose we are interested in evaluating a classification for
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a set of stimuli, {123}{456789} (the numbers are stimulus ids). We can consider
each item in turn as a test item whose classification is to be predicted, and all the
other items as training items whose classification is given” [88, p. 88]. The model
parameters are adjusted until the predicted classification probabilities for individual
test items are as close as possible to the classification of interest.

The unsupervised version of the model suffers from a combinatorial explosion
when the number of items increases (indeed all assignments have to be explored
until the good one is found). So in order to employ the model on larger data sets we
adopted a semi-supervised version (i.e., we presented the learner with one randomly
selected exemplar per group and the rest of unlabelled items). Our adaptation is
based on the “translation” of some variables:

• The bias for category bF = prior probability associated to category F , P (F)

• The memory strength of exemplar j with respect to category F , VjF = the
posterior probability P (F|j)

Substituting these variables we obtain an iterative method which computes the
posterior probability P (F|i) on the basis of the previous step. The initial probability
values can be uniformly distributed or randomly selected. The only condition we
impose is that for each item the sum of its probability distribution (over categories)
is equal to 1.

3.5.2 The rational model

John Anderson’s rational model is arguably one of the most influential model of
unsupervised categorization. Instead of focusing on the psychological processes in-
volved in category learning, the rational model aims to explain categorization as an
optimal solution to the computational problem faced by the human agent. Specif-
ically, the rational model is based on the idea that categorization reflects the goal
of optimally predicting the unseen features of objects, that is, we wish to be able
to predict Pi(j|Fn) the probability that (as yet unseen) dimension i of the object
possesses the value j, given the feature structure Fn observed so far. Categories are
formed to assist this goal. Hence, objects are assigned to categories in such a way
as to make the feature structures of those objects most probable. As a Bayesian
model, the rational model assigns a new object to the most probable category k
given the features observed, P (k|F ). This posterior probability is based on the
prior probability of category k, and the likelihood term, P (F |k), the conditional
probability of object features F ,given membership in category k. Thus the ratio-
nal model, like Bayesian models generally, makes it necessary to choose a particular
prior concerning category membership. Anderson specifies this prior in the following
way:

P (k) =
cnk

(1− c) + cn
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where nk is the number of objects assigned to category k thus far, n is the total
number of classified objects and c is the so-called coupling parameter. This param-
eter governs the probability that a new instance will receive an entirely new label.
In other words, the coupling parameter determines how readily new categories will
be formed: for high values of the coupling parameter, larger clusters are favoured by
the prior, whereas for low values the model will favour greater numbers of smaller
categories.For what concerns the conditional probability, P (F |k), we need to com-
pute the probability of displaying features F on several dimensions given that F
belongs to k: P (F |k) =


i fi(i|k) (assuming independence between values on dif-

ferent dimensions). In the case of continuous dimensions, which is the case we will
consider in this paper, the function of conditional probability takes the form of the
Student’s t distribution, with ai degrees of freedom.

The original version of Anderson’s rational model uses an incremental algorithm
to assign objects to categories. Objects arrive sequentially for classification, and at
each point in time new objects are assigned to the most likely cluster; though new
clusters can be added, there is no other opportunity for re-partitioning the item
set. Hence the algorithm provides only an approximation to the optimal estimates,
and, given different presentation orders, can yield different partitions. Following
Sanborn et al. we will refer to this algorithm as the local MAP (as in maximum
a posteriori) algorithm [98]. Approximation is necessitated by the combinatorial
explosion associated with considering all possible clusters, and, it allowed Anderson
to test the model on data sets of several hundred items that would otherwise have
been beyond reach.

Recently, Sanborn et al. proposed two alternative methods of approximation
(Gibbs sampling and particle filters) that better approximate the posterior distribu-
tion and on the tests conducted fit human data at least as well as Anderson original
(1991) algorithm [98]. They thus argued that these algorithms have greater psy-
chological plausibility and may, more generally, provide a useful basis for rational
process models. In their model evaluation, Sanborn et al. focused on particle filters,
so the research reported here was aimed at taking a closer look at Gibbs sampling.

Gibbs sampling is a Markov chain Monte Carlo method that is widely used in
approximating the expected value of a (continuous) function. As a Monte Carlo
method, it uses repeated sampling as a means of deriving an estimate. Given a
distribution p(z) = p(z1, z2, zM) from which we want to sample, we approximate the
function by picking up an ideally infinite number of samples:

Ep(z)


f(z)] = lim

N→∞

1

N

N
t=1

f(zt)

Each sample zi is drawn from the probability distribution conditioned on the
values of other remaining variables: p(zi|z\i). Then, the sampling cycle is defined as
follows:
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z
(t+1)
i ∼ p(Zi|z(t+1)
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With respect to the problem of categorization, Gibbs sampling is supposed to
converge to the probability distribution over categories given a particular stimu-
lus set. In this setting the state space of the Markov chain corresponds to the set
of partitions and “transitions between states are produced by sampling the clus-
ter assignment of each stimulus from its conditional distribution, given the current
assignments of all other stimuli” [98, p.1152]. Note that even if Gibbs sampling
converges to the desired distribution, it is standard to discard the early iterations,
known as the burn-in samples, because they are not guaranteed to come from that
distribution as they are biased toward the initial values. Likewise, the nature of
thealgorithm means that there will be a strong dependency between adjacent sam-
ples. Thus in order to obtain (reasonably) independent samples the usual solution
is to keep every n th sample, rejecting the rest.

3.5.3 K-means

K-means is one of the most popular techniques in unsupervised learning problems.
In literature it is recognized as a partitional algorithm, that is as a procedure deter-
mining a partition of the items into k groups without providing a nested sequence
of clusters. In the k-means algorithm the number of clusters is fixed a priori and all
items are assigned to the cluster with the nearest mean. Given a set of observations
(x1, x2, ..., xn), where each observation corresponds to a d-dimensional vector, the
algorithm divides observations into k partitions (S1, S2, ..., Sk) minimizing the sum
of the within cluster distance:

k
i=1


xj∈Si

∥xj − µi∥

Where µi denotes the mean (or centroid) of the cluster i. Initially these means are
selected randomly and then at each iteration they are re-computed. K-means pro-
vides an efficient way for clustering, even if it suffers from some known drawbacks.
The first one is the fact that the number of partitions must be known in advance.
Secondly, the idea of generating spherical clusters of similar size is not always appro-
priate (consider for instance the case of elongated figures or clusters with different
size, etc.). For these reasons several alternative versions of the algorithm has been
developed (new implementations or integration with other methods), such as the
Fuzzy C-means. Ultimately, k-means became a family of algorithms that share the
same clustering principle and provides specific adaptations of an elementary tech-
nique.
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3.5.4 Dominant sets

Dominant sets is a similarity based technique which has elicited an increasing interest
in the last few years. It has been built on the assumption that a cluster is defined
by two complementary criteria: internal homogeneity (items in the same cluster
should be similar to each other) and external in-homogeneity (items in different
clusters should be dissimilar). Data to be clustered are represented in an undirected
weighted graphG(V,E,w), where V = {v1, v2, ..., vn} is the set of nodes, E ⊆ V xV is
the set of edges and w : V → R+ is a positive weight function. In this formal setting,
nodes stand for objects and edges express how much object are similar to each other.
The main goal of the algorithm is to find a dominant set, that is a coherent set of
objects. Intuitively the notion of dominant set can be defined as the largest set of
nodes with the highest internal weight. The latter is given by the sum of (relative)
pairwise similarities within cluster. In graph theory, this finding corresponds to the
notion of a clique, which is a subset of vertices where all nodes are mutually adjacent.
In the this context, the idea of dominant set generalizes the concept of a maximal
clique, that is a clique in an un-weighted undirected graph, which is not contained
in any larger one. Specifically, the technique of dominant sets extends the results
of the Motkzin-Strauss theorem, which establishes a correspondence between the
maximal/maximum cliques of an un-weighted graph and the local/global solutions
of the following quadratic program:

maximize f(x) = xTAx
subject to eTx = 1, x ∈ Rn

+

Not that A is the weighted adjacency (or similarity) matrix, where aij = w(i, j)
if (i, j) ∈ E otherwise aij = 0, and xis a n-dimensional vector whose components
express the participation of nodes in the cluster: “if a component has a small value,
then the corresponding node is weakly associated with the cluster, whereas if it
has a large value, the node is strongly associated with the cluster. Components
corresponding to nodes not participating in the cluster are zero” [69, p.168]. Hence,
roughly speaking, the solution of this quadratic program leads to the discovery of
a dominant set. Dominant sets solves this program by using replicator dynamics,
a family of continuous and discrete-time dynamical systems arising in evolutionary
game theory. In our experiments we used the following discrete version:

xi(t+ 1) = xi(t)
(Ax)i

x(t)TAx(t)

Note that algorithm discovers one cluster at time and to find more clusters several
solutions are possible. The easiest one is to repeat the algorithm removing objects
selected in previous iteration until all objects are assigned. Another one (i.e., the
hierarchical version), more successful, is introduced in [76].
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3.6 A basic test set

We tested the generalized context model and the rational model on two data sets
coming from the repository of the Speech and Image Processing Unit of the school
of computing 7. They consist in a shape data set, which is composed of 373 vectors
in 2 dimensions and with 2 clusters and in the well-known Iris data set, which is
based on 150 vectors, 4 dimensions and 3 clusters (50 items per groups). Note that
both data sets are accompanied by a target partition, that is a classification which
provides a term of comparison for algorithm predictions.

For the testing of k-means and dominant sets our starting point was recent work
by Pothos and colleagues which sought to compare a number of competing models
of spontaneous categorization across a carefully constructed test set of nine different
category structures, displayed in Figure [88]. Pothos et al.’s experimental investi-
gation was focused on general properties of categories that might be expected to
be relevant to spontaneous categorization, such as the proximity of clusters, num-
ber of clusters, relative size of clusters, and cluster spread. The main aim of their
investigation was to compare how well different models predicted perceptions of
“category intuitiveness”, where intuitiveness was operationalized by the extent to
which participants agreed on the best partitioning, as measured by the frequency
of the preferred classification. Note that, among others, they tested both the gen-
eralized context model and the rational model. Moreover the application of the
generalized context model, which has been actually thought for supervised catego-
rization, was justified on the theoretical hypotheses that there is no real distinction
between supervised and unsupervised classification [87, 2]. Hence, to deal with spon-
taneous categorization Pothos and colleagues proposed an unsupervised version of
that model.

3.7 Some experimental results

In our experiments we used a classification error function measuring the number
of items incorrectly classified with respect to the target partition. With respect
to the stimulus sets of cognitive psychology we compared the behaviour of pattern
recognition algorithms against the results reported in [88] , repeating the test 20
times. So, the accuracy reported is based on the mean of all these runs.

The results on the test set designed by Pothos et al. are reproduced in the figure
3.3. Experiment results are obviously influenced by algorithm settings. Indeed they
do start from very different points (for instance, in k-means the number of classes is
a priori defined and in GCM we have one labelled item per group, etc.). But, despite
these differences we treated them as plausible models of spontaneous categorization.

What emerges from such tests is that none of the proposed methods is able to
predict correctly the ordinal properties of nine different category structures. Indeed

7This is the web site: http://cs.joensuu.fi/sipu/datasets/

http://cs.joensuu.fi/sipu/datasets/
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Figure 3.2: Pothos et al.s stimulus sets along with the preferred partitions. Repro-
duced from [88] with permission.

none really reproduce the same behaviour of human preferences, traced by the black
line. According to the empirical observations the “five-cluster stimulus set” is the
best predicted and such preference is well distinguished from the rest of stimulus
sets8. While dominant sets an the generalized context model, for instance, predict
well the “five-cluster stimulus set”, the “two-cluster stimulus set” and others with
no distinction.

To test the models of cognitive psychology on the shape and the Iris data sets
we used the same error measure. The numerical results are referred to the mean
error produced across 3 algorithms simulations. With rational model we set the
coupling parameter with the value which produced the best fit in the experimental
investigation presented in [88], i.e. c = 1/3. In our experiments we tested both the
original Anderson’s algorithm (Local MAP) and the more recent approximation by
Gibbs sampling presented in [98]. While for testing the generalized context model
on the pattern recognition data sets we employed a semi-supervised version since the
(unsupervised) implementation proposed in [88] had elevated computational cost in
dealing with hundreds of items. Then, the parameters were fixed as follows: the
weights of feature dimensions, wi = 1/d, with d = number of dimensions; the form
of distance metric r = 2 (Euclidean distance); the shape of the function f = 2
(gaussian); and sensitivity parameter c = 22 (for Iris data set) , 10 (for Jain data
set).

8Note, indeed, that the stimulus sets are ordered on the basis of the perceived intuitiveness.
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Figure 3.3: Behaviour of algorithms with respect to the human response on the nine
stimulus sets used in [88].

Table 3.1: Results with respect to pattern recognition data sets
Class. Error dominant sets k-means GCM rational model
Iris 0.0333 0.1743 0.1400 0.333(Local Map),0.2669(Gibbs)
Jain 0.3834 0.2172 0.0342 0.261(Local Map),0.4906(Gibbs)

Models’ performance are reported in the table 3.1 9. In some circumstances the
generalized context model predicted correctly all assignments (see, for instance, the
plot of semi-supervised GCM on the shape data set in figure 3.4). Note that this
result was not so influenced by the values of free parameters, but rather the choice
of labelled items. This could suggest that the optimization process used to calculate
the value of parameters [88] could be avoided if we found good exemplars, in the
sense that they better propagate similarity information. Also in the case of Iris data
set predictions are quite good, producing a mean error less than that produced by
k-means.

With respect to the rational model we found significant differences in predictions
produced by the local MAP and the Gibbs sampling algorithm. Specifically, if we
look at the Iris data set we will find that the Local MAP algorithm identifies correctly
the linearly separable cluster (Iris Setosa) and collects the other two groups (Iris
Versicolor and Iris Virginica) in one single class. On the other hand, Gibbs sampling
seems to provide a more articulated partition, where the rest of non linearly separable
classes (Iris Versicolor and Iris Virginica) is split in three clusters (see figure 3.5).
We observed a similar behaviour on the Jain data set as well. In this case, Local
Map included all objects in one group, while Gibbs sampling tended to divide the

9Note that with respect to Iris data set the best fit was obtained by using an hierarchical
implementation of dominant sets citePavPel03
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Figure 3.4: GCM on Iris (on the left) and Jain (on the right) data sets

Figure 3.5: Figure n. 7: Local Map (on the left) and Gibbs Sampling (on the right)

two main groups in smaller parts (see figure 3.6).

3.8 Discussion

During our excursus we encountered two distinct perspectives on categorization.
Both of them provide a certain view on the problem and somehow answer some fun-
damental questions such as those concerning the nature of objects to be categorized,
the structure of the process of categorization and the global characterization of the
issue. In section 3.4 we collected some partial statements around these points of
interactions by reasoning on descriptions of how pattern recognition and cognitive
psychology approach the theme. Now, we would like to extend the initial evaluation
even through the lens of our practical comparison.

• Object of categorization. As we saw before, in cognitive psychology catego-
rization is directed towards “plain” objects (with respect to the structure and
to the number of instances), the majority of which is built for experimental
purposes. Cognitive psychology, indeed, designs data sets and experiments
primarily to discover something about mind not about objects. This intention
leads the field to constrain the space of possible solutions not by introducing
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Figure 3.6: Figure n. 8: Local Map (on the left) and Gibbs Sampling (on the right)

special indications to the classifier (either human or automated) but by re-
ducing the complexity of data. In so doing, psychology can isolate the points
of interest for the inquiry (e.g.: proximity among clusters, tightness of clus-
ters, tec.) and leave aside those aspects which may affect the complexity of
clustering choices (e.g.: aspects involving multiple personal or cultural biases).
However, the employment of some pattern recognition data sets might have
several positive effects on cognitive psychology. First, it could enhance the crit-
ical evaluation of models increasing the opportunities for controlling theories
or experimental activities 10, in the sense implied by Poppers falsification-
ism [83]. This may hold, for instance, when psychologists put forward some
ideas which could make sense to some extent, but under another perspectives
might lose their feasibility or at least part of their strength. An example has
been shown in the section of experiments, where the unsupervised version of
the generalized context model has been revised in order to deal with pattern
recognition data sets. In that case we could not apply the method proposed
in [88] directly, since it was computationally expensive (to reach the target
partition, in fact, it may be forced to explore all possible assignments). There-
fore the supposed equivalence of unsupervised and supervised methods was
in a sense “falsified” by our tests. Indeed we realized that a direct employ-
ment of the generalized context model in unsupervised classification was not
feasible on large data sets and further alternatives should be considered. For
instance, in our case we chose the option of a semi-supervised implementation.
Another benefit that can be derived from interactions with machine learning
is the introduction of computational constraints. Bayesian approaches, like
rational model, are focused on defining the optimality of a cognitive process
without much interest in computational costs (in terms of running time). Re-
cently, Markman and Otto [63] noticed that the key limitation of “Bayesian

10In this respect for cognitive psychology could be interesting to investigate different level of ab-
straction of objects. And, for instance, a possible question might be: to what extent an experiment
design should abstract object so as to not lose the applicability to some realistic categorization
scenario?
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fundamentalism” is that “it focuses selectively on optimality of information
processing rather than on the combination of information and time” [63, p.
207]. Sanborn, Navarro and Griffiths proposed a general strategy to overcome
the cost of Bayesian inference. However the approximation they proposed by
means of Gibbs sampling is time-consuming over Iris and Jain data sets. In
fact the process to generate samples from the desired probability distribution
becomes more and more onerous as the number of objects increases. Moreover
in the computation one should consider some waste samples, because of the
burn-in iterations (early samples not yet coming from the desired distribution)
and the space-sampling (due to the strong dependency that might be between
one iteration to the next one).

• Process of categorization. In the description of scientific practices we dis-
covered a fundamental distinction between cognitive psychology and pattern
recognition. From the side of cognitive psychology we draw the idea of a pro-
cess strictly related to the agent, while on the side of pattern recognition the
reference to the “actor” of categorization is much more shaded. This has sev-
eral consequences. The first one regards the possibility to create connections
with a wide psychological and philosophical literature, which has a long tradi-
tion in the theme. Cognitive psychology is much more used to take cues from
such tradition and most of its models might be seen as a technical extension
of what has been explored in other ways. In this context formalisms and algo-
rithms make sense just in relation to some theoretical hypothesis, and between
these two levels (practical - theoretical) there is a continuous exchange of in-
formation. Differently, pattern recognition does not necessarily need to bring
its methods back to a further level of explanation. It rather asks for reliable
solutions to practical problems of pattern discovery (e.g.: spam filtering, face
detection, topic spotting, customer segmentation, etc.) in greater accordance
with an engineering perspective. Another effect is visible in the possible ap-
proach to validation. In the field of pattern recognition there are multiple
options. Sometimes the ground truth is defined by expert people or derived
by some specific knowledge (e.g.: biology or physics). But there are other
situations in which it could make sense understanding algorithm output in the
light of psychological experiments. For example, when we test algorithms on
abstract data or without particular expectations (e.g.: we do not know the
application domain and we charge the algorithm to find some patterns or reg-
ularities) it may be interesting to compare predictions with human behaviour.
In some cases this happens but such experiences are mostly isolated initiatives.
In this way one could integrate independent measure of goodness (e.g. inner
quality score or “object-oriented” approaches) with human-dependent prefer-
ences, that is, with evidence gathered during specific lab tests. We know that
clustering validation is a relevant debate in the community of machine learning.
A recent critique supported the idea of an application-dependent evaluation
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(see [118]) since it seems impossible to abstract clustering problems from the
end-user intent. To this end a “taxonomy of clustering problems to identify
clustering applications” has been proposed. We think that in this taxonomy
there might be space for psychological intents as well considering the fact
that, like many engineering projects, they arise out of some specific problems
whose complexity lies in a different level of complexity. Indeed, as we saw so
far, cognitive psychology encounters complexity not really in solving a specific
clustering task (e.g.: grouping e-mails or costumers, etc.) but, rather, in the
modeling a clustering scenario (i.e., a more abstract and general experience).

• Theory of categorization. Let us to come back to some initial points: are cogni-
tive psychology and pattern recognition modelling just the same phenomenon?
or are they addressing different topics? A shallow judgment may consider these
two areas as facing the same space of problems, as they were almost exchange-
able. But a deeper insight shows that today’s research in pattern recognition
differ from cognitive psychology in several aspects. We have already suggested
that pattern recognition covers both scientific and engineering issues. This
point has been stressed also by some recent reflections on this research areas.
And for instance, Duin and Pekalska acknowledged that “automatic pattern
recognition is usually considered as an engineering area which focuses on the
development and evaluation of systems that imitate or assist humans in their
ability of recognizing patterns. It may, however, also be considered as a sci-
ence that studies the faculty of human beings (and possibly other biological
systems) to discover, distinguish, characterize patterns in their environment
and accordingly identify new observations” [31, p. ]. However it is undeniable
that, compared to cognitive psychology, the mainstream of today’s pattern
recognition gives a different emphasis to the engineering and the scientific as-
pects. Indeed it seems that the engineering factors are much more relevant
in pattern recognition whereas the attempts to “imitate” human behaviour
clearly prevail in the field of cognitive psychology. But as we discussed in the
chapter 1 the engineering activity is often continuous with ordinary science
so that a special engineering attitude in pattern recognition should not nec-
essarily mean a lack of scientific work. So, in what sense does the scientific
dimension of pattern recognition differ from the scientific activity of cognitive
psychology? Maybe the difference may be referred to the way in which the
relationship between a problem and its solution is addressed. In pattern recog-
nition, for instance, what seems to be less considered is the fact that the reason
of solving in science is ultimately the search for knowledge and explanations.
Indeed even Laudan who advocated that science is a problem-solving activity
admitted that such a type of activity starts from “anything about the natural
world which strikes us as odd, or otherwise in need of explanation” [60, p. 15].
This could mean that the success or the failure of a technique are included in
a wider research context which goes beyond the particular application. For
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instance, with respect to our experiments, for instance, we could be interested
to understand why two approximations (i.e., Local Map and Gibbs Sampling)
which ought to be in principle equivalent express such a divergence or what is
the (theoretical) meaning of a technical adaptation for a specific method (e.g.,
the hierarchical version of dominant set with respect to the original method).

3.9 Summary

We introduced how the problem of categorization is addressed by two similar but
distinct research areas, that is cognitive psychology and pattern recognition. We
pointed out their specific approaches focusing three main points: the object of cat-
egorization, the process of categorization and the theory of categorization. Our
investigation showed that there exist several differences both in the theoretical (e.g.:
how they design experiment, how they conceive the data to be clustered, or what
is the meaning of evaluation phase) and in the experimental evaluations (i.e. the
performance of methods). On the one hand, the field of pattern recognition seem
to prevail on the experimental test because no strong adjustments were required to
make its methods suitable for cognitive data sets. On the other hand, cognitive psy-
chology benefits from its ability to build model and to formulate explanation of what
is predicted allowing researchers to arrange the inquiry from the very beginning (i.e.
exploring issues which go beyond the technical results). Hence, in consideration of
some theoretical and experimental observations we outlined the two fields interact.
Future work might be directed toward a deeper investigation of such interdependen-
cies, focusing specific aspects, such as the design of experiments, or specific models,
such as the psychological plausibility of specific pattern recognition methods.
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4
How mature is the field of pattern

recognition?

4.1 The theoretical perspective

According to Thomas Kuhn, the “acquisition of a paradigm and of the more esoteric
type of research it permits is a sign of maturity in the development of any given
scientific field” [53, p. 11]. In this paper, we propose to address the question
whether the fields of pattern recognition and machine learning have achieved the
level of maturity in the sense implied by the quotation above.1 Note that Kuhn’s
notion is quite different from (and indeed more profound than) the commonsensical
view which maintains that “mature scientific disciplines are expected to develop
experimental methodologies, comparative evaluation techniques, and theory that
is based on realistic assumptions” [47, p. 112]. Under this interpretation, one
would be tempted to respond with an emphatic “yes” to the question posed above.
Indeed, in the last 25 years or so researchers have dramatically changed their attitude
to the evaluation of new algorithms and techniques, and it seems that Langley’s
well-known incitement to make machine learning an “experimental science” [57]
has been taken seriously by the community. Since its birth in the late 1990’s, for
example, the UCI ML repository keeps growing at a fast pace and at the time
of writing it contains 244 different data sets on the most disparate problems and
applications. On the other hand, there is an increasing level of sophistication in the
way in which the performance of the algorithms are quantitatively evaluated, and we
saw an evolution from simple scalar performance measures such as the classification
accuracy to more elaborated ones such as ROC curves and statistical tests. However,
a deeper analysis reveals that the situation is more controversial than it appears,
as there is more to science than simply experimental analysis, and the equation
“scientific = experimental” is too naive to satisfactorily capture the multifaceted
nature of the “scientific method” (granted that there exists one [33]).

In this paper, however, we do not intend to enter into this discussion, but would

1A note on terminology: although throughout the paper we consistently use the term “pattern
recognition,” we in fact think that much of the discussion could be referred also to the field of
machine learning.
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like to attack the question from a purely Kuhnian perspective according to which,
as anticipated above, the notion of maturity in science is inextricably tied to the
concept of a “paradigm,” one of the cornerstones of twentieth-century philosophy
of science. In one sense, our motivating question can in fact be interpreted simply
as an excuse to analyze the current status of the pattern recognition and machine
learning fields using the conceptual tools provided by Kuhn. Note that under this
interpretation, there is no pretense of judging the “scientificity” of a given research
area or to provide a demarcation, à la Popper, between scientific and non-scientific
fields. Indeed, using Kuhn’s suggestion, Aristotelian physics, which dominated the
scene for over two millennia, has to be considered as mature as today’s physics
although of course, according to the modern interpretation of the term, we would
not dream of calling it a “science.” 2

The publication of Kuhn’s Structure of Scientific Revolutions in 1962 was a mo-
mentous event in the modern history of ideas. It provoked itself a revolution in
the way we think at science whose far-reaching effects are felt in virtually all aca-
demic as well as popular circles. What made Kuhn’s image particularly successful
in describing the nature of scientific progress is, no doubt, his notion of a paradigm.
Unfortunately, the reception of the term by the philosophical and scientific commu-
nities was controversial, and a number of difficulties persuaded Kuhn to clarify his
position in his famous 1969 Postscript [53]. Indeed, as he himself admitted, the term
was used in a vague and ambiguous way throughout the book but, besides minor
stylistic variations, he identified two very different usages of the term. On the one
hand, he aimed to describe some accepted examples which serve as a model for the
solution of new puzzles (the “narrow” sense), whereas, on the other hand, he meant
a more profound commitment to a set of beliefs and values (the “broad” sense).

In this chapter, we aim to approach the question posed in the title by exploiting
both interpretations of the concept, and the discussion will make it clear that the
answer depends on which sense one considers. Note that Cristianini [22] has recently
undertaken a study similar in spirit to ours, but he seems to have emphasized mostly
the first, narrow, sense of the term. In contrast, we shall focus more on the broad
interpretation. This will give us the opportunity to discuss the philosophical (often
tacit) assumptions underlying much of contemporary pattern recognition research
and to undertake a critical reflection of its current status. In particular, we will see
how deep is the bond with essentialism, one of the oldest and most powerful ideas in
the whole history of philosophy, and we shall maintain that the community is gently
moving away from it, a phenomenon which, we shall speculate, seems to parallel the
rejection of the essentialist hypothesis by modern science.

2See Kuhn’s autobiographical fragment contained in [54] for a rehabilitation of Aristotle as a
physicist.
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4.2 Kuhnian analysis in pattern recognition

Before undertaking our exploration we need to motivate the pertinence of Kuhn’s
contribution within the context of pattern recognition This is required by the fact
that Kuhn’s investigation is essentially directed towards well-established sciences
such as physics or chemistry. Thus, it would seem sensible to ask whether pattern
recognition is an appropriate subject of study under a Kuhnian approach.

We feel the question of particular relevance in view of the fact that the context in
which pattern recognition research has grown up is interdisciplinary in a profound
way. Such a distinct character of the evolution of the field has not always been
recognized by researchers so that the aspects involved are usually seen in isolation.
This resulted in the common reductionist tendency to conceive the fields of pattern
recognition machine learning as either engineering or science. Some scholars, indeed,
assume that, as well as providing technical solutions, the fields of pattern recognition
and machine learning deal with fundamental questions pertaining to categorization,
abstraction, generalization, induction, etc., and, in so doing, their contribution is
in fact scientific [31, 120]. In some cases, the approach of machine learning has
been associated even to the scientific practice of physics [105] or, more generally, to
experimental sciences [57]. Conversely, nowadays it prevails the idea that these ar-
eas are primarily engineering disciplines. For example, Pavlidis, one of the pioneers
of the field, recalling Hermann Hesse’s novel Das Glassperlenspiel claims that “the
prospects are bright if we approach pattern recognition as an engineering problem
and try to solve important special cases while staying away from the Glassperlen-
spiel. The prospects are grim if we keep looking for silver bullets that will solve
“wholesale” a large range of general problems, especially if we harbor the illusion
of doing things the way the human brain does.”[77, p. 7]. And this idea has been
more recently echoed by von Luxburg et al. [118].

This sharp opposition between science and technology stems from an oversim-
plified view of their mutual relationship. However, in the light of some new achieve-
ments in the philosophy of technology (see, e.g., [34]), it turns out that, granted
that there are indeed important differences, at the conceptual level the boundary
between the two camps is more blurred than is commonly thought, and that they
stand to each other in a kind of circular, symbiotic relationship. Indeed, technology
can be considered as an activity producing new knowledge on a par with ordinary
science. The so called operative theories [16] in technology look like those of science
and their contribution goes beyond the mere application of scientific knowledge. On
the other hand, even science can be brought closer to technology when its progress
is expressed in terms of “immanent goals.” This idea lies at the heart of Laudan’s
problem-solving approach to science [59] and could well characterize much of the
work in the field of pattern recognition.

The profound interaction between scientific and technological components is a
key to understand the pattern recognition activity and other research areas within
artificial intelligence. The history of the field, in fact, counts numerous examples
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of this fecund relationship. The case of neural networks is particularly significant,
as their original formulation had a genuine scientific motivation, that is, the wish
of studying and imitating the brain but, in the phase of their renaissance, technical
matters prevailed. Indeed, with the (re)invention of the back-propagation algorithm
for multi-layer neural networks and, above all, thanks to the impressive results
obtained by these new models on practical problems such as zip code recognition and
speech synthesis, a new wave of excitement spread across the artificial intelligence
community. At that point, however, it was already clear that these models had no
pretense of being biologically plausible [21]. Pavlidis nicely summed up this state of
affairs by noting that “the neural networks that have been in vogue during the last
15 years may be interesting computational devices but they are not models of the
brain. (Except maybe of the brains of people who make that claim sincerely)”[77,
p. 2]. Bayesianism is another interesting example of the gate allowing pattern
recognition to move from theoretical issues to more practical aims. Introduced as
a theory which can characterize the strength of an agent’s belief, it provided many
inference algorithms with a practical machinery. On the other hand, recent advances
in density estimation techniques, such as nonparametric Bayesian methods, have
been successfully applied to approach a variety of cognitive processes [98].

To sum up, the recent contributions of philosophy of technology and of the
philosophy of science lead us to rethink the classical dichotomy between science
and technology, which is still holding in some subfields of artificial intelligence, as
they appear closer than we used to think. Historical examples suggest that machine
learning and pattern recognition work, indeed, as a bridge between the two and
many ideas from science result in technological innovation and vice versa [81]. In
reference to our discussion, this means that a contribution from philosophy of science
should not be considered irrelevant for these two fields since the scientific side is as
much important as the technological one. Accordingly, we do think that Kuhn’s
analysis is not only appropriate to the pattern recognition research but could also
contribute to get a deeper understanding of its nature.

4.3 Kuhn’s notion of a paradigm

In his Structure (as the book is known) [53], Kuhn provides an account of scien-
tific development that is dramatically different from the standard idea of a steady,
cumulative progress. According to him, a science traverses several discontinuities
alternating “normal” and “revolutionary” phases. During normal periods the de-
velopment of a science is driven by adherence to a “paradigm” whose function is to
support scientists in their “puzzle-solving” activity with a number of practical and
theoretical tools, including theories, values and metaphysical assumptions. When
some worrying puzzles remain unsolved (the so-called “anomalies”) and the current
approach loses progressively its original appeal, a discipline enters a period of crisis.
At this point, the activity is characterized by “a proliferation of competing artic-
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ulations, the willingness to try anything, the expression of explicit discontent, the
recourse to philosophy and to debate over fundamentals”[53, p. 91]. Finally, the
crisis is resolved by a scientific revolution leading to the replacement of the current
paradigm by a new one. The revolution results in a paradigm shift, after which a
discipline returns to a normal phase,based this time on a new accepted framework.

As we have seen before, there are two distinct uses of the notion of a paradigm. At
first, Kuhn uses the term “paradigm” to refer to some concrete achievements that can
work as models or examples and supply explicit rules for the solution of the remaining
puzzles. In the history of science examples of this notion abound and include, e.g.,
Newton’s mechanics and Franklin’s theory of electricity, which implicitly defined
the legitimate problems and methods of a research field for succeeding generations
of practitioners. A second way to apply the term “paradigm” refers to a more
global sense and includes, above all, concepts, theoretical principles, metaphysical
assumptions, worldviews, etc.

In his Postscript, Kuhn introduced the idea of a broad paradigm in terms of
a “disciplinary matrix”, which could be seen as a theoretical and methodological
framework wherein scientists conduct their research. This framework includes the
basic assumptions of a discipline providing a community with the practical and
theoretical indications, for instance, about how to lead investigations or what to
expect from experiments. Among the elements which compose this matrix, we aim
to focus on symbolic generalizations and metaphysical paradigms.

A research community could easily present formal expressions or codified terms
that could live in the acceptance of all members for several years. These are what
Kuhn calls “symbolic generalizations” and their function goes basically in two di-
rections. That is, they can work as laws of nature, such as F = ma, or “elements
combine in constant proportion by weight” [53, p. 183], but they can also serve to
settle some fundamental definitions assigning symbols to specific meanings. Note
that, according to Kuhn “all revolutions involve, among other things, the abandon-
ment of generalizations the force of which had previously been in some part that
tautologies”[53, p. 184].

A second type of component is given by the metaphysical parts of a paradigm.
Metaphysical elements can be beliefs or models and incorporate tacit or implicit
knowledge. In practice these components shape the general disposition and the
methodological attitude of a scientist suggesting particular metaphor or world-views.
The strength of such components is that of determining what will be accepted as as
an explanation and, above all, the importance of unsolved puzzles.
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4.4 Paradigms in pattern recognition: The broad

perspective

Forms of narrow paradigms can be easily found in pattern recognition research. The
evolution of the field, indeed, is a story of great achievements that were able to create
strong traditions around them. An obvious example is provided by neural networks
which played a key role in the early as well as later developments of the field. More
recent examples include, e.g., kernel methods and spectral clustering. Some of these
success stories are collected in [22], which nicely describes the transition from the
“knowledge-driven” to the“learning-driven” paradigm in artificial intelligence.

4.4.1 The disciplinary matrix

Here we would like instead to focus on the broad sense of the notion of a paradigm
and see whether the contours of a disciplinary matrix come up through the concrete
practice of the discipline within the community. Hence, with Kuhn, we could ask:
“what do its members share that accounts for the relative fulness of their professional
communication and the relative unanimity of their professional judgments?”[53, p.
182]. To address this issue we will consider the components presented above: the
symbolic generalization and the metaphysical paradigm.

First, note that the majority of traditional pattern recognition techniques are
centered around the notion of “feature”[25, 12]. Indeed, within the field there is a
widespread tendency to describe objects in terms of numerical attributes and to map
them into a Euclidean (geometric) vector space so that the distances between the
points reflect the observed (dis)similarities between the respective objects. This kind
of representation is attractive because geometric spaces offer powerful analytical as
well as computational tools that are simply not available in other representations.
In fact, classical pattern recognition methods are tightly related to geometrical con-
cepts and numerous powerful tools have been developed during the last few decades,
starting from linear discriminant analysis in the 1920’s, to perceptrons in the 1960’s,
to kernel machines in the 1990’s.

In the light of Kuhn’s perspective we could think of such a representational atti-
tude in terms of a collection of symbolic generalizations which lead the community
to take some definitions or principles for granted. Indeed, the development of the
field has been accompanied by the deployment of codified terms such as “feature
extraction,” “feature vector,” “feature space,” etc., and even by a formal vocabu-
lary which is the basis of the subsequent mathematical manipulation. As a whole,
symbolic generalizations have contributed to the general acceptance of a clear idea
of what categories are and how they do form, that is the conviction that a classifier
groups a set of objects under the same label because of some common features.

But the content of such generalizations might be read also at the level of the
metaphysical paradigm. This brings us to discuss the philosophical assumptions
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behind pattern recognition and machine learning research. In fact, as pointed out
in [25], their very foundations can be traced back to Aristotle and his mentor Plato
who were among the firsts to distinguish between an “essential property” from an
“accidental property” of an object, so that the whole field can naturally be cast as the
problem of finding such essential properties of a category. As Watanabe put it [120,
p. 21]: “whether we like it or not, under all works of pattern recognition lies tacitly
the Aristotelian view that the world consists of a discrete number of self-identical
objects provided with, other than fleeting accidental properties, a number of fixed
or very slowly changing attributes. Some of these attributes, which may be called
“features”, determine the class to which the object belongs.” Accordingly, the goal
of a pattern recognition algorithm is to discern the essences of a category, or to “carve
the nature at its joints.” In philosophy, this view takes the name of essentialism and
has contributed to shape the puzzle-solving activity of pattern recognition research
in such a way that it seems legitimate to speak about an essentialist paradigm.

4.4.2 Essentialism and its discontents

Essentialism has profoundly influenced most of scientific practice until the nine-
teenth century, even though early criticisms came earlier with the dawn of modern
science and the new Galilean approach. Later, William James, deeply influenced by
Darwin, went so far as to argue that “[t]here is no property ABSOLUTELY essential
to any one thing. The same property which figures as the essence of a thing on one
occasion becomes a very inessential feature upon another” [48, p. 959]. Nowadays,
anti-essentialist positions are associated with various philosophical movements in-
cluding pragmatism, existentialism, decostructionism, etc., and is also maintained in
mathematics by the adherents of the structuralist movement, a view which goes back
to Dedekind, Hilbert and Poincaré, whose basic tenet is that “in mathematics the
primary subject-matter is not the individual mathematical objects but rather the
structures in which they are arranged” [92, p. 201]. Basically, for an anti-essentialist
what really matters is relations, not essences. The influential American philosopher
Richard Rorty nicely sums up this “panrelationalist” view with the suggestion that
there are “relations all the way down, all the way up, and all the way out in every
direction: you never reach something which is not just one more nexus of relations.”
[93, p. 54]

During the 19th and the 20th centuries, the essentialist position was also sub-
ject to a massive assault from several quarters outside philosophy, and it became
increasingly regarded as an impediment to scientific progress. Strikingly enough,
this conclusion was arrived at independently in at least three different disciplines,
namely physics, biology, and psychology.

In physics, anti-essentialist positions were held (among others) by Mach, Duhem,
Poincaré, and in the late 1920’s Bridgman, influenced by Einstein’s achievements,
put forcefully forward the notion of operational definitions precisely to avoid the
troubles associated with attempting to define things in terms of some intrinsic
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essence [14]. For example, the (special) theory of relativity can be viewed as the
introduction of operational definitions for simultaneity of events and of distance,
and in quantum mechanics the notion of operational definitions is closely related
to the idea of observables. This point was vigorously defended by Popper [85],
who developed his own form of anti-essentialism and argued that modern science
(and, in particular, physics) was able to make real progress only when it abandoned
altogether the pretension of making essentialist assertions, and turned away from
“what-is” questions of Aristotelian-scholastic flavour.

In biology, the publication of Darwin’s Origin of Species in 1859 had a devastat-
ing effect on the then dominating paradigm based on the static, Aristotelian view
of species, and shattered two thousand years of research which culminated in the
monumental Linnaean system of taxonomic classification. According to Mayr, es-
sentialism “dominated the thinking of the western world to a degree that is still not
yet fully appreciated by the historians of ideas. [...] It took more than two thousand
years for biology, under the influence of Darwin, to escape the paralyzing grip of
essentialism.”[65, p.87]

More recently, motivated by totally different considerations, cognitive scientists
have come to a similar discontent towards essentialist explanations. Indeed, since
Wittgenstein’s well-known family resemblance argument, it has become increasingly
clear that the classical essentialist, feature-based approach to categorization is too
restrictive to be able to characterize the intricacies and the multifaceted nature
of real-world categories. This culminated in the 1970’s in Rosch’s now classical
“protoype theory” which is generally recognized as having revolutionized the study
of categorization within experimental psychology; see [56] for an extensive account,
and [118] for a recent evocation in the pattern recognition literature.

The above discussion seems to support Popper’s claim that every scientific disci-
pline “as long as it used the Aristotelian method of definition, has remained arrested
in a state of empty verbiage and barren scholasticism, and that the degree to which
the various sciences have been able to make any progress depended on the degree
to which they have been able to get rid of this essentialist method” [84, p. 206].

4.5 Signs of a transition?

It is now natural to ask: what is the current state of affairs in pattern recogni-
tion? As mentioned above, the field has been dominated since its inception by the
notion of “essential” properties (i.e., features) and traces of essentialism can also
be found, to varying degrees, in modern approaches which try to avoid the direct
use of features (e.g., kernel methods). This essentialist attitude has had two major
consequences which greatly contributed to shape the field in the past few decades.
On the one hand, it has led the community to focus mainly on feature-vector rep-
resentations. On the other hand, it has led researchers to maintain a reductionist
position, whereby objects are seen in isolation and which therefore tends to overlook



4.5. Signs of a transition? 59

the role of relational, or contextual, information.
However, despite the power of vector-based representations, there are numerous

application domains where either it is not possible to find satisfactory features or
they are inefficient for learning purposes. This modeling difficulty typically occurs
in cases when experts cannot define features in a straightforward way (e.g., protein
descriptors vs. alignments), when data are high dimensional (e.g., images), when
features consist of both numerical and categorical variables (e.g., person data, like
weight, sex, eye color, etc.), and in the presence of missing or inhomogeneous data.
But, probably, this situation arises most commonly when objects are described in
terms of structural properties, such as parts and relations between parts, as is the
case in shape recognition [11]. This led in 1960’s to the development of the struc-
tural pattern recognition approach, which uses symbolic data structures, such as
strings, trees, and graphs for the representation of individual patterns, thereby, re-
formulating the recognition problem as a pattern-matching problem.

Note that, from a technical standpoint, by departing from vector-space represen-
tations one is confronted with the challenging problem of dealing with (dis)similarities
that do not necessarily possess the Euclidean behavior if there exists a configura-
tion of points in some Euclidean space whose interpoint distances are given by D,
or not even obey the requirements of a metric. The lack of the Euclidean and/or
metric properties undermines the very foundations of traditional pattern recognition
theories and algorithms, and poses totally new theoretical/computational questions
and challenges. In fact, this situation arises frequently in practice. For example,
non-Euclidean or non-metric (dis)similarity measures are naturally derived when
images, shapes or sequences are aligned in a template matching process. In com-
puter vision, non-metric measures are preferred in the presence of partially occluded
objects [45]. As argued in [45], the violation of the triangle inequality is often not
an artifact of poor choice of features or algorithms, and it is inherent in the problem
of robust matching when different parts of objects (shapes) are matched to different
images. The same argument may hold for any type of local alignments. Corrections
or simplifications may therefore destroy essential information.

As for the reductionist position, in retrospect it is surprising that little attention
has typically been devoted to contextual information. Indeed, it is a common-sense
observation that in the real world objects do not live in a vacuum, and the impor-
tance of context in our everyday judgments and actions can hardly be exaggerated,
some having gone so far as to maintain that all attributions of knowledge are indeed
context-sensitive, a view commonly known as contextualism [90]. Admittedly, the
use of contextual constraints in pattern recognition dates back to the early days of
the field, especially in connection to optical character recognition problems and it
reached its climax within the computer vision community in the 1980’s with the de-
velopment of relaxation labeling processes and Markov random fields [44]. However,
all these efforts have soon fallen into oblivion, mainly due to the tremendous devel-
opment of statistical learning theory, which proved to be so elegant and powerful.
Recently, the computer vision community is paying again increasing attention to the
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role played by contextual information in visual perception, especially in high-level
problems such as object recognition (see, e.g., [74]), and neuroscientists have started
understanding how contextual processing takes actually place in the visual cortex.

It is clearly open to discussion to what extent the lesson learnt from the historical
development of other disciplines applies to machine learning and pattern recognition,
but it looks at least like that today’s research in these fields is showing an increas-
ing propensity towards anti-essentialist/relational approaches (see [78, 79] for recent
accounts). Indeed, in the last few years, interest around purely similarity-based
techniques has grown considerably. For example, within the supervised learning
paradigm (where expert-labeled training data is assumed to be available) the now
famous “kernel trick” shifts the focus from the choice of an appropriate set of fea-
tures to the choice of a suitable kernel, which is related to object similarities [106].
However, this shift of focus is only partial as the classical interpretation of the no-
tion of a kernel is that it provides an implicit transformation of the feature space
rather than a purely similarity-based representation. Similarly, in the unsupervised
domain, there has been an increasing interest around pairwise algorithms, such as
spectral and graph-theoretic clustering methods, which avoid the use of features
altogether [107, 69]. Other attempts include Balcan et al.’s theory of learning with
similarity functions [10], and the so-called collective classification approaches, which
are reminiscent of relaxation labeling and similar ideas developed in computer vision
back in the 1980’s (see, e.g., [104] and references therein).

Despite its potential, presently the similarity-based approach is far from seriously
challenging the traditional paradigm. This is due mainly to the sporadicity and
heterogeneity of the techniques proposed so far and the lack of a unifying perspective.
On the other hand, classical approaches are inherently unable to deal satisfactorily
with the complexity and richness arising in many real-world situations. This state
of affairs hinders the application of pattern recognition techniques to a whole variety
of real-world problems. Hence, progress in similarity-based approaches will surely
be beneficial for pattern recognition as a whole and, consequently, for the long-term
enterprise of building “intelligent” machines.

4.6 Summary

How are we to respond to the question which motivated the present study? Clearly
the answer depends on the scope of the notion of a paradigm chosen (narrow vs.
broad). If we stick to the narrow interpretation, we easily arrive at the conclusion,
with Cristianini [22], that the fields of machine learning and pattern recognition
are indeed mature ones, so much so that in their (short) history we have had a
whole succession of paradigms, intended as specific achievements which attracted
the attention of a large and enduring fraction of the community.

Our study, however, focused on the broad interpretation of the term and this
led us to discuss the philosophical underpinnings of much of contemporary pattern
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recognition research. Our analysis has shown that the community has traditionally
adhered, by and large, to an essentialist worldview, where objects are characterized
and represented in terms of intrinsic, essential features. This view has long been
abandoned by modern science and has been in fact considered an impediment to
its development. Mutatis mutandis, nowadays we are witnessing an increasing dis-
content towards essentialist representations in the pattern recognition community
[78, 79]. Hence, although using Kuhn’s view, we might say that the field has reached
a satisfactory level of maturity even using his broad interpretation, there are signs
which make us think that there is a need to bring to full maturation a paradigm
shift that is just emerging, where researchers are becoming increasingly aware of the
importance of similarity and relational information per se, as opposed to the clas-
sical feature-based (or vectorial) approach. Indeed, the notion of similarity (which
appears under different names such as proximity, resemblance, and psychological
distance) has long been recognized to lie at the very heart of human cognitive pro-
cesses and can be considered as a connection between perception and higher-level
knowledge, a crucial factor in the process of human recognition and categorization
[38].

We conclude by noticing that according to Kuhn’s picture, at any particular time
a scientific field is supposed to have only one paradigm guiding it. Applied to pat-
tern recognition, this interpretation seems too restrictive as none of the paradigms
mentioned above (either broad or narrow) has really guided the research of the whole
community. More recent developments of Kuhn’s thought, which allow for multiple
competing paradigms per time, can be found in Lakatos’ and Laudan’s work who
talked about “research programmes” or “research traditions,” respectively [55, 59].
It is therefore tempting to explore whether, in order to provide a more faithful pic-
ture of the status of the pattern recognition field, we need to resort to these more
sophisticated conceptual tools.
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Conclusions

In this thesis we have tried to investigate some philosophical issues arising in pattern
recognition research. The philosophical work has been done basically by a critical
examinations of some aspects of pattern recognition activity. First we addressed
the problem of the nature of pattern recognition pointing out in which sense this
research area could be considered as both science and engineering. This has been
done thanks to the recent contributions of the philosophy of science and the phi-
losophy of technology which provided our discussion with specific analytical tools
(respectively the notions of problem-solving approach and technological theories).
The second step was devoted to the traditional formulation of a pattern recognition
problem. Symbols and terminology were highlighted by the philosophical analysis
of induction which lies, indeed, at the very heart of pattern recognition problems.
Then some relationship between pattern recognition and other neighbouring areas
were examined (i.e. artificial intelligence and machine learning). Indeed it is not
always so clear how pattern recognition is related to artificial intelligence (is pat-
tern recognition a sub-field of artificial intelligence?) and to machine learning (do
they are the same?). In the chapter 3 we moved towards a concrete comparison
between pattern recognition and cognitive psychology. Indeed both pattern recogni-
tion and cognitive psychology may be considered thorough the lens of categorization.
But, even though pattern recognition and cognitive psychology share common prob-
lems (and often also common language and formalism) they carry on two different
problem-solving activities. At first sight, this might seem actually obvious but a
deeper evaluation, by contrast, has revealed that things are more intertwined than
what we could think (i.e., in several aspects the fields coincide and distinctions are
not always so trivial). Therefore discovering analogies and differences may really
matter when we want to consider in which way pattern recognition shapes its scien-
tific dimension. Finally we devoted our last contribution to discuss the philosophical
underpinnings of much of contemporary pattern recognition research. In the light of
Kuhn’s notion of a paradigm we discovered that pattern recognition is manifesting
signs of a paradigm shift (from a feature-based to a similarity-based approach).

We have briefly summarised our work. But what lesson we learnt from it? What
is the take-home message? At first, we learnt that pattern recognition can be gen-
uinely associated to both the practice of science and the practice of technology. In
particular we understood that the design of pattern recognition methods could stim-
ulate many philosophical questions (such as: “what is a pattern?” or “what is the
relationship between particulars and universals?”) as the same way as the research
activity does in more traditional scientific disciplines like physics. Then, the philo-
sophical reflection affects basically the implicit or tacit knowledge, what we have
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called, with Kuhn, “metaphysical paradigms”. Secondly we learnt that if we think
of categorization as a relationship between an agent and a set of objects we will be
probably inclined to consider pattern recognition and cognitive psychology as the
two sides of the same coin. Indeed, our experience suggested that while the field of
pattern recognition tends to emphasize “the side of objects” (the feature-based ap-
proach in this sense is paradigmatic), the field of cognitive psychology tends to focus
more on “the side of the agent objects” (think of, e.g., the employment of empirical
observations). In general the emerging points of our research suggest us some future
directions. Some of them could contribute to enrich our understanding of pattern
recognition and could be in principle developed in the light of some achievements
in the philosophy of science. Specifically it could make sense to investigate how
the methods built for pattern recognition can be analysed from the standpoints of
Lakatos’ “research programmes” and Laudan’s “research traditions,”[55, 59]. Or it
could be interesting to extend the examination of Laudan’s philosophy of science,
in particular to investigate how the notion of “theoretical problems” [59] affects the
research in pattern recognition and machine learning. Another interesting philosoph-
ical work could be the disambiguation of some general issues which entered quietly
the area of pattern recognition (such as the problem of realism). This activity could
be a “natural” continuation of the analysis of the tacit commitments influencing
much of pattern recognition research. Moreover we would be really interested also
in deepening the interactions between cognitive psychology and pattern recognition.
For example it might be interesting to take cue from psychology for the design of
experiments in pattern recognition or to study different models of object abstraction
even in consideration of the problem of object recognition.

As for the overall research experience we would like to conclude with some consid-
erations on interdisciplinary activity. For sure what emerged from our investigation
is that pattern recognition is a variegated research. Sometimes we found entering on
the problems of pattern recognition a bit frustrating and discouraging. There were
circumstances in which we supposed to understood something that turned out as
much interesting as hard to be conveyed. This held especially for philosophy where
the abundance of literature and the language of long-standing traditions posed sev-
eral challenges. And the reason is apparent since the problem underlying the field
of pattern recognition may be considered the philosophical problem par excellence.
The majority of philosophical debates (e.g., realism vs anti-realism, idealism vs em-
piricism, etc.), indeed, were built around it. On the other hand the the degree
of technicality spread across the field of pattern recognition is so impressive that
one might be seriously challenged in finding connections to other types of investiga-
tion (even to close discipline like cognitive sciences). Moreover the development of
sub-communities, built over the success of specific approaches or applications, and
accordingly of sub-languages increased the complexity of interdisciplinary projects
(for instance, even a work traversing similar areas like computer vision and machine
learning is nowadays considered interdisciplinary). Someone could rightly claim that
this is the process of over-specialization which, in the end, affected the development
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of several scientific disciplines. But there are problems which are universal per se
and pattern recognition is one of them. Hence, it is not by chance that the term
is used in many different disciplines and that, as we suggested in our work, several
researches within the field of pattern recognition have posed repeatedly many philo-
sophical concerns. But in such contrasting tendencies (the one towards particular
and the one towards universal) what could be most dangerous is the flattening of
research, that is thinking that we could easily raise specialized investigation up to
more general discussions and, vice versa, apply universal notions to specific domains.
This risk recall the Watanabe’s genuine proposal of maintaining the terminology
“neutral”, that is the idea of employing the term “pattern recognition” for both
human activities and mechanical simulations [120]. But considering the increasing
demand for interdisciplinarity and the acceleration of scientific specialization may
terminology be still “neutral”?
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