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Abstract
Software engineers and security professionals rely on a variety
of sources of information, including known vulnerabilities, newly
identified weaknesses, and threats, as well as attack patterns and
currentmitigations. Such information, spread across different places,
results in an increased effort for developers in following all the cross-
referenced data and finding appropriate solutions to their security
issues in a timely manner. Software developers cannot have a good
knowledge of the breadth of the different issues and vulnerabili-
ties that are constantly increasing in time; the raising number of
security issues to tackle cannot be matched by software develop-
ers which need more help from intelligent tools. Therefore, in this
work, we present CyberGraph, a tool to automatically build and
update a single, easily queryable cybersecurity knowledge graph
by automatically linking heterogeneous data from different public
repositories. The resulting unique integrated dataset, thanks to its
magnitude, allows the execution of sophisticated queries that can
quickly provide new insights and valuable perspectives.
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1 Introduction
The last years have seen an increase in attacks against software
applications, both in number and severity [11–13]. The underlying
problems are existing flaws and vulnerabilities hidden in production
code or legacy systems that might be eventually exploited when the
software is deployed. In order to contrast this widespread problem,
security professionals relies on a variety of sources of information,
including known vulnerabilities, newly identified weaknesses and
threats, as well as attack patterns, and current mitigations or fixes.

Over the years some organizations and national agencies spear-
headed various initiatives focused on making this type of infor-
mation accessible in well-defined structured formats: the National

EnCyCriS/SVM ’24, April 15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0565-6/24/04.
https://doi.org/10.1145/3643662.3643962

Institute of Standards and Technology (NIST)1, the China Informa-
tion Technology Evaluation Center (CNITSEC)2 and the MITRE
Corporation3 are the more notable.

To that end, a number of standards have been established which
detail high-level schemas for cybersecurity information. Such infor-
mation are collected, published, maintained and reviewed by many
different parties including manufacturers, government agencies,
research institutions and industry experts.
The value of standardized formats for sharing these type of knowl-
edge has long been recognized. Not only do they enable easier, co-
herent and homogeneous knowledge sharing, but they also spurred
the creation of additional helping tools [20] and services [24] that
otherwise wouldn’t be possible. Furthermore, making these data
publicly available allows for greater transparency and accountabil-
ity around cyber security issues.
Despite all of that, the major drawback related to these well-curated
and valuable datasets is the fact that even up to these days they still
remain quite isolated and not easily searchable in one single place,
forcing the users to navigate to separate websites in order to get
the full picture of all the cross-referenced data related to a single
instance. As a result, this approach significantly increases both the
difficulty as well as the time needed to obtain an overview of the
data pertinent to the intended queries that the end-users want to
perform against these information.
The increasing number of cyber-incidents and overwhelming cy-
bersecurity skills shortage highlights the existing gaps between
industry needs and academic skills [5] but they also underline the
need of support with intelligent tools in tackling security incidents
and fixing security vulnerabilities . In this paper, we present Cyber-
Graph, an open-source software tool for building and updating a
cybersecurity knowledge graph by leveraging on all the standard-
ized data available from public repositories and integrate them into
a single easily queryable public endpoint. This will allow users to
perform meaningful and sophisticated queries across all of the data
collected in the system, providing potentially new insights and valu-
able perspectives that were not possible before and simultaneously
raising awareness of potential threats.

In order to construct the cybersecurity knowledge graph, we
based our work on MITRE4 and NIST5, and their freely available
datasets and metrics, namely: CVE6 (Common Vulnerabilities and
Exposures), CNA7 (CVE Numbering Authorities), CWE8 (Common
Weakness Enumeration), CAPEC9 (Common Attack Pattern Enu-
meration and Classification), CPE10 (Common Platform Enumera-
tion) and CVSS11 (Common Vulnerability Scoring System). The CNA

1https://www.nist.gov/
2https://www.cnnvd.org.cn/
3https://www.mitre.org/
4https://www.mitre.org/
5https://www.nist.gov/
6https://cve.mitre.org/ or equivalently https://nvd.nist.gov/vuln
7https://www.cve.org/PartnerInformation/ListofPartners
8https://cwe.mitre.org/
9https://capec.mitre.org/
10https://cpe.mitre.org/ or equivalently https://nvd.nist.gov/products/cpe
11https://www.first.org/cvss/
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dataset is not available for download, but CyberGraph employs web
scraping techniques to reconstruct it.

CyberGraph can build a knowledge graph from public reposito-
ries that could be used to:

• Identify and analyze relationships between vulnerabilities,
software products, and security controls.

• Predict the impact of vulnerabilities on specific systems or
organizations.

• Develop automated tools for vulnerability assessment and
remediation.

• Generate insights into emerging trends in vulnerability ex-
ploitation.

The knowledge graph could also be used to predict the impact
of vulnerabilities on specific systems or organizations by analyz-
ing the historical data to identify patterns in the exploitation of
vulnerabilities: using machine learning techniques to predict the
likelihood of a particular vulnerability being exploited in a specific
context, and developing targeted mitigation strategies.

2 Related Works
A better use of existing cybersecurity knowledge can provide strong
support for cybersecurity operations, and the continuous increase
of cybersecurity knowledge have fostered different studies on how
to manage proficiently such huge amount of information. Different
cybersecurity data standards, terminologies, taxonomies, and on-
tologies have been developed by various industrial, academic and
government bodies [3, 9, 21, 22, 29] . Most of the related works ap-
pears to be restricted to a particular scope and/or mainly dedicated
to presenting modern methods in order to extrapolate additional
relationships between data entries. Xiang Li et al. [18] designed an
effective data mining algorithm to obtain the basic characteristics
of vulnerabilities based on the CVE and CWE databases. Zhuobing
Han et al. [10] designed a knowledge graph embedding method
that combined descriptions and structural knowledge. Hongbo Xiao
et al. [30] embedded the relationship information and descriptive
information of software security entities, using a CNN encoder
to predict the relationship of software security entities based on
the CVE, CWE, and CAPEC databases. Liu Yuan et al. [31] built
a cybersecurity knowledge graph based on the CVE, CWE, and
CAPEC databases and predicted the relationship between entities.

Our approach, on the other hand, is focused on constructing
a comprehensive solution cybersecurity knowledge graph, hence
intrinsically aiming at a broader scope, in order to cover all the
possible end-users needs.

Xiao et al. [30] have built a knowledge graph having CWEs
and CAPECs as core concept knowledge and CVEs as peripheral
instance knowledge. On top of that a new embedding approach
was developed to generate predictive embeddings of entities based
on existing descriptions and relationships: this work produced a
knowledge graph with a significantly limited number of entries.
Other studies (e.g. [15, 16, 23]) aimed at extrapolating additional re-
lationships upon given cybersecurity related descriptions, whether
starting from a structured dataset or not, and incorporating them
into a knowledge graph.

A different scope and approach has been proposed in [17], where
the focus was on building a Neo4j cybersecurity knowledge graph
specifically design to better reflect modern complex network attacks,
such as distributed denial-of-service (DDoS): in this case no publicly
available tool has been released.

A significant work was accomplished by Shen et al. [27] who
developed a cybersecurity knowledge graph specifically targeting
Industrial Control Systems (ICS) vulnerabilities starting from part
of the same dataset considered in our study. In addition, they also
employed advanced extrapolation description-features methods in
order to obtain more results.

Finally, the OWASP Dependency-Check [20] is a Software Com-
position Analysis tool specifically designed to scan and analyze
software components in order to identify potential security risks
due to the dependency on any known vulnerable libraries. In output
it will provide a minimal report containing any discovered vulnera-
ble dependencies along with the appropriate CVE descriptions and
general severity scores. Despite the similarities, the general usage
is quite different from our proposed approach, since one can use
OWASP Dependency-Check solely to list the current vulnerabilities
of software libraries included in a project, and the generated reports
are quite data-limited in comparison to what one can extract from
our knowledge graph.

In addition to using existing structured cybersecurity data, re-
searchers have extracted information from unstructured cyber-
threat intelligence documents.

T. Satyapanich et al. [26] proposed the CASIE model, which
can extract events from cybersecurity texts. Peipei Liu et al. [19]
designed semantic augmentation networks able to extract cyberse-
curity concepts from unstructured texts. All of the above studies
extract existing security knowledge from different perspectives,
and can provide important guidance for future network protection
measures: all the previous approaches, due to the limitations of
knowledge extraction, are usually incomplete.

By mining the existing information in knowledge graph, it is
usually possible to find unknown facts. This process can predict
whether there are missing relationship edges between entities in
the knowledge graph in order to expand the knowledge graph and
correct errors [25].

In the domain of software protection, Basile et al. [4] defined a
meta-model to construct a formal knowledge base of reverse engi-
neering attacks, while Ceccato et al. created a taxonomy of attacks
and protections with qualitative analysis reports of penetration
testers [6] and data from a public challenge [7]: these approaches
are time-consuming and not fully automated, and limited to a spe-
cific subset of attacks and protections.

3 Cybersecurity Knowledge Graph
The technologies used during the initial development phase had
to be carefully selected so that they could provide the necessary
features and functionality while being reliable and robust enough
to handle the expected complex data and workloads.
To that extent we decided to use a node-base database as Neo4j12.
Neo4j is one of the world’s leading graph database, offering an
efficient, highly scalable, reliable and secure way to store, manage
and query large amounts of interconnected data. The powerful
native graph storage and processing engine, combined with the
Cypher13 query language, makes it easy to quickly build, deploy
and maintain a graph database, no matter the size of the project.

The resulting cybersecurity knowledge graph vocabularies and
schema are based on pre-existing schemas and relative vocabular-
ies currently used to publish instance data. This design choice was
made with the primary goal of including all information from the

12https://neo4j.com/
13https://neo4j.com/developer/cypher/
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original data sources and making the knowledge graph as detailed
as possible to meet a wide range of user needs. By utilizing this
approach, our semantic resource is made more user-friendly for
those familiar with the original data resources. Additionally, our vo-
cabularies are able to refer back to the original documentation and
examples of the individual initial datasets, making it even easier for
users to understand and access the data. Altogether, this methodol-
ogy enabled us to create a knowledge graph that is both granular
and accessible, providing users with a high degree of accuracy and
usability.

We are going to only break down the developed CVE subgraph
schema14 due to space limitations. However, you can expect an
equivalent level of details and data for the other subgraphs as well.

Just for reference, in Figure 1 you can appreciate a simplified
version - i.e. without considering certain node labels, relationships
and any hierarchical CNA, CWE, CAPEC internal structure - of the
overall knowledge graph schema.

Figure 2: CVE subgraph data model.

In Figure 2 you can appreciate the overall CVE subschema. It is
composed by the following admissible labels:
• CVE: label used to identify a node as a CVE (Common Vulnera-
bilities and Exposures) entry. It admits four property keys:
– id: a string reporting the relative CVE ID;
– description: a string describing the overall vulnerability perti-
nent issues;

– publishedDate: a date format value (YYYY-MM-DD[timezone
hour]) identifying the publishing time of the relative CVE
entry;

– lastModifiedDate: a date format value (YYYY-MM-DD[timezone
hour]) identifying the last modification time made to the rela-
tive CVE entry information;

• Metric: label used to identify the possible related CVE severity
metrics. It is based out of theCVSS v3.115 scoring system. It admits
four property keys:

14Graph schema developed based on the Labeled Property Graphs (LPGs) model. For
more information, please refer to the Neo4j graph concepts introductory section.
15https://www.first.org/cvss/v3.1/specification-document

– baseScore: a numerical value, ranging from 0 up to 10, describ-
ing the severity of the related CVE (with higher score indicat-
ing higher severity). It is computed based on the values of the
scoring vector ;

– exploitabilityScore: a numerical value, ranging from 0.1 up to
3.9, describing how likely the related vulnerability will be
exploited. It is computed based on certain metrics of the scoring
vector and constitutes a sub-part of the overall base score value;

– impactScore: a numerical value, ranging from 1.4 up to 6, de-
scribing the impact on the vulnerable component subsequently
a successful exploitation. It is computed based on certain met-
rics of the scoring vector and constitutes a sub-part of the
overall base score value;

– vector: a string reporting the relative CVSS v3.1 scoring base
metrics. Here’s an example of a scoring vector:

AV:L/AC:H/PR:L/UI:R/S:U/C:N/I:H/A:N
Its structure is composed by the following fields:
∗ Attack Vector (AV): metric that reflects the context of ex-
ploitation. It takes into account the number of potential
attackers by measuring the remoteness of an attack, with
more remote attacks resulting ultimately in a larger base
score. This is due to the assumption that remote attacks are
more likely to occur than those that require physical access
to a device. This field can assume the following admissible
values:
· Network (N): the vulnerable component is connected to
the network infrastructure, making it exposed to threats
from the entire Internet (broadest option);

· Adjacent (A): the vulnerable component is connected to
the network, however the attack is limited to a nearby
topology. This means that it must be launched from the
same shared physical or logical network (e.g. Bluetooth,
Wi-Fi, administrative VPN, etc.);

· Local (L): the vulnerable component is not network stack
bounded and is subject to an attack that involves read/write/
execute capabilities (e.g. accessing locally or remotely the
system through keyboard, console, SSH, etc.);

· Physical (P): the vulnerable component is subject to an at-
tack that involves physical contact or manipulation, which
may be brief or persistent;

∗ Attack Complexity (AC): metric that assesses the conditions
beyond the attacker’s control which are necessary in order
to exploit the vulnerability (this exclude any required user
interaction, which are instead captured under the User In-
teraction metric). Furthermore, assume that the vulnerable
component is in the required configuration (if any). The
easier the attack, the higher the base score. This field can
assume the following admissible values:
· Low (L): no particular conditions are required, thus an
attacker can expect to succeed each time they attempt an
attack;

· High (H): a successful attack is highly dependent on fac-
tors outside of the attacker’s control, thus requiring them
to invest effort into the preparation and execution of the
attack in order to obtain a successful outcome (e.g. re-
peated exploitation to win a race condition, environmental
knowledge gathering such as shared secrets or sequence
numbers, etc.);

∗ Privileges Required (PR): metric that indicates the level of
privileges required prior to exploit a vulnerability, with the
highest base score given when no privileges are required.
This field can assume the following admissible values:
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Figure 1: Simplified overall data model. To be noted that the nodes are color-coded according to their
cluster category: gray for CNA nodes, green for CVE nodes, purple for CAPEC nodes, and yellow for
CWE nodes. Moreover, the red outlined nodes indicate that these specific entities are usable across
the designated diverse cluster categories.

· None (N): no particular privileges required in order to
launch an attack;

· Low (L): only basic user capabilities needed that typically
allow for the manipulation of settings and files owned
by a user (or equivalently be able to access non-sensitive
resources);

· High (H): significant privileges required (e.g. administra-
tive) in order to launch an attack;

∗ User Interaction (UI): metric that measures the need for a
user, other than the attacker, to be involved in order for a
vulnerable component to be successfully exploited. The high-
est base score is given when no user interaction is required.
This field can assume the following admissible values:
· None (N): no external user interaction needed;
· Required (R): the exploitation requires an external user to
perform certain actions (e.g. only viable when a system
administrator is installing an application);

∗ Scope (S): metric that determines whether a vulnerability’s
impact breaches the security boundary of one security scope
and affects components that are outside of its jurisdiction.
It is formally defined in terms of security authorities, which
are mechanisms (e.g. OS, sandboxes, etc.) that regulate and
manage the access policies to restricted resources (e.g. CPU,
memory, etc.). All the entities regulated by a single security
authority are seen to be under one security scope. A scope

change occurs whenever a vulnerability impacts a compo-
nent outside of its scope, thus leading to higher base score.
This field can assume the following admissible values:
· Unchanged (U): the vulnerable components and the af-
fected ones are regulated by the same security authority
(no scope change occurred);

· Changed (C): the vulnerable components and the affected
ones are regulated by separate security authorities (scope
change occurred);

∗ Confidentiality (C): metric that assesses the impact to the in-
formation confidentiality subsequently a successful exploit.
Higher loss of confidentiality will result in a higher base
score. This field can assume the following admissible values:
· None (N): no loss of confidentiality;
· Low (L): confidentiality breached, but the attacker have
gain access to a limited amount of information and/or it
doesn’t have control over what information have been
retrieved;

· High (H): total loss of confidentiality (by amount or due
to the secret retrieved, e.g. administrator password);

∗ Integrity (I): metric that assesses the impact to the infor-
mation integrity subsequently a successful exploit. Higher
integrity impact will result in a higher base score. This field
can assume the following admissible values:
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Rating Base Score
None 0.0

Low 0.1 - 3.9

Medium 4.0 - 6.9

High 7.0 - 8.9

Critical 9.0 - 10.0

Table 1: Mapping of the qualitative CVE severity
ratings to the corresponding base score value
ranges.

· None (N): no loss of integrity;
· Low (L): integrity breached, but the attacker have limited
range of modification and/or it doesn’t have control over
the result of a modification;

· High (H): total loss of integrity;
∗ Availability (A): metric that assesses the impact to the avail-
ability subsequently a successful exploit. Higher availability
impact will result in a higher base score. This field can assume
the following admissible values:
· None (N): no impact to availability;
· Low (L): availability affected through reduced performance,
but the attacker is not able to fully deny the access to the
service;

· High (H): total loss of availability;
• None/Low/Medium/High/Critical: additional labels that they
must be used combined with theMetric one representing qualita-
tively the severity expressed by the base score value property key.
All the available ratings are mapped to a particular base score
range, as reported in Table 1. These specializations are mutually
exclusive with each other and they have been developed to speed
up some possible future queries.

• Reference: label used to identify any possible useful external
reference linked to the relative CVE entry. It admits a single
property key:
– url: an external hyperlink pointing to the related resource
webpage;

• Product: label used to identify the product related to the CVE
entry. It admits two property keys:
– name: a string reporting the name of product;
– type: a string reporting the type of the related product. It can
either be “Hardware”, “Application” (i.e. software) or “Operating
System”;

• Vendor: label used to identify the vendor/organization that owns
the Product related to the CVE entry. It admits a single property
key:
– name: a string reporting the name of the vendor/organization;

Additionally, the following labels must be used combined with the
Reference one to further discern the type of external resource linked
to the related CVE entry. These specializations are not mutually
exclusive with each other and they have been developed to speed
up some possible future queries.
• Patch: the reference contains an update to the product that fixes
the related vulnerability;

• VendorAdvisory: the reference contains the related advisory
from the vendor/publisher of the product or the parent company
that owns the vendor;

• ThirdPartyAdvisory: the reference contains the related advi-
sory from an organization that is not the vulnerable product’s
vendor or publisher;

• Exploit: the reference contains an in-depth/detailed description
of steps on how to exploit the related vulnerability or any legiti-
mate PoC16 code or exploit kit;

• PermissionsRequired: the reference hyperlink provided is blocked
by a login page. Only users with valid credentials can consume
the information;

• ReleaseNotes: the reference is in the format of a vendor or open
source project’s release notes or change log;

• MailingList: the reference is from a mailing list;
• IssueTracking: the reference is a post from a bug tracking tool
such as MantisBT, Bugzilla or JIRA;

• BrokenLink: the reference hyperlink is returning 404 errors or
the site is no longer online;

• USGovernmentResource: the reference is from a U.S. Gov-
ernment agency or organization (typically from a .gov or .mil
top-level domain);

• NotApplicable: the reference hyperlink is not applicable to the
related vulnerability and was likely associated by the CVE Pro-
gram accidentally;

• Mitigation: the reference contains information on possible steps
to implement in order to mitigate the related vulnerability in the
event that a patch can’t be applied or is not yet available;

• TechnicalDescription: the reference contains in-depth techni-
cal information about the related vulnerability and its exploita-
tion process. It can be in the form of a presentation or whitepaper;

• PressMediaCoverage: the reference is from a public media out-
let/entity such as a newspaper, magazine, web log or social media
(not from individuals personal social media account though);

• ToolSignature: the reference contains data that can be used
directly by a scanning tool;

• Product: the reference contains information describing the re-
lated product for the purpose of CPE or SWID17;

• VDBEntry: the reference leads to a VDB entry18.
Moreover, the developed CVE subschema allows for the follow-

ing relationships:
• HAS_METRIC: relationship used uniquely to connect the CVE
and Metric nodes. It doesn’t allows for any additional property
key.

• HAS_LINK_TO: relationship used uniquely to connect the CVE
and Reference nodes. It doesn’t allows for any additional property
key.

• OWN: relationship used uniquely to connect the Vendor and
Product nodes. It doesn’t allows for any additional property key.

• AFFECTS: relationship used uniquely to connect the CVE and
Product nodes. It admits four property keys:
– versionStartIncluding: a string reporting from which version
number onwards the product is affected by the related CVE
entry vulnerability;

– versionEndExcluding: a string reporting up to which excluding
version number the product is affected by the related CVE
entry vulnerability. If it is not present, it means that even the
most currently released version is affected by the specified
vulnerability;

16PoC (or Proof of Concept) code, in the cyber security field, refers to code developed
to test security vulnerabilities and demonstrate the exploitability of a system.
17https://csrc.nist.gov/projects/Software-Identification-SWID
18VDBs (or Vulnerability Databases) are freely available public datasets that provide
broad cybersecurity vulnerability coverage (i.e. not limited to a single organization).
For more information visit https://www.first.org/global/sigs/vrdx/vdb-catalog.
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– vulnerable: a boolean value indicating if the related product is
vulnerable by the specified CVE or not (used to discern if the
product is actually vulnerable or it is just required in order to
leverage the CVE vulnerability);

– cpe23Uri: a string reporting the relative CPE v2.319 vector used
to identify unambiguously and in a standardize way the related
IT product classes. Here’s an example of a CPE URI string:

cpe:2.3:a:apple:icloud:6.1.1:beta1:*:*:*:macos:x86:*
Its colon-separated naming specification adheres to the follow-
ing ordered structure:
∗ Standard initial “cpe” string;
∗ CPE version (e.g. 2.3);
∗ Part: product type (a: application, o: operating system, h:
hardware);

∗ Vendor: vendor name;
∗ Product: product name;
∗ Version: release version of the product;
∗ Update: update, service pack or point release of the product;
∗ Edition: edition-related terms applied by the vendor to the
product (this attribute is considered deprecated in the current
v2.3 version, but kept for backward compatibility);

∗ Language: language of the product (in RFC 5646 format, e.g.
en-us, it-it, etc.);

∗ SW_Edition: terms to distinguish how the product is tai-
lored to a particular class of end users or market (e.g. online,
enterprise, etc.);

∗ Target_SW : target software of the product (e.g. macOS,
Windows, etc.);

∗ Target_HW : target hardware of the product (e.g. x86, arm,
etc.);

∗ Other: any other information not captured by the previous
attributes;

Be also aware that the symbol * is used as a wildcard in order
to not specify a particular attribute (either because it cannot be
applied to the related product or with the purpose of indicating
all the underlying admissible values, e.g. in case of Target_HW,
it means that all the instruction set architectures are involved).

Figure 3: Example of a CVE node instance from
the final cybersecurity knowledge graph.

19https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7697.pdf

• HAS_WEAKNESS: relationship used uniquely to connect CVE
and CWE nodes. It fundamentally shows which standardized
security flaws are related to the CVE entry. It doesn’t allows for
any additional property key.

Ultimately, to consolidate the presented knowledge, in Figure 3 you
can appreciate an example of a CVE node instance from the actual
final cybersecurity knowledge graph.

4 Knowledge Graph Search Use Case
In order to provide a more exhaustive overview of the benefits
that the developed cybersecurity knowledge graph can offer, in
this section, we will present a typical search scenario in which the
knowledge graph database can be utilized.
Once the data are gathered, CyberGraph can recognize the named
entities and identify relationships between them.

A typical search scenario is the one in which a user seeks to
retrieve all the relative cybersecurity information - e.g. CNA, CVE,
CWE, CAPEC - starting from a specific vulnerability. Firstly, there
will be presented all the steps for obtaining such data without the
proposed knowledge graph, which actually closely represent what
a user must go through nowadays, and later it will be compared to
the process of obtaining the same information through the utiliza-
tion of the developed graph data source.

Let’s take for example the following vulnerability: CVE-2021-44201.
If a user wants to know everything related to that specific CVE entry
has to:
• Visit the NIST National Vulnerability Database website and search
for the corresponding CVE entry (e.g. https://nvd.nist.gov/vuln/
detail/CVE-2021-44201);

• From that, the user has to analyze the presented content and
extrapolate:
– Which are the related CWE weaknesses. Thankfully, for each
CWE entry the platform makes available an hyperlink to the
corresponding MITRE description web page;

– Who was the CVE ID assigner. In this case, there will be avail-
able only the CNA name without any hyperlink pointing to
the relative description web page;

• Then, the user has to visit a different website and manually
search for the related CNA authority in order to gain more infor-
mation about it (e.g. https://www.cve.org/PartnerInformation/
ListofPartners/partner/Acronis);

• Next, for each CWE weaknesses found, the user has to follow the
corresponding external hyperlink and identify the related CAPEC
attack pattern entries (e.g. https://cwe.mitre.org/data/definitions/
79.html);

• Finally, for each CAPEC entry found, the user has to follow the
corresponding external hyperlink;

As you can observe, the required steps for a user to go though in
order to get the full picture of all the cross-referenced data related
to a single vulnerability are quite time consuming and obligates to
visit multiple distinct websites.
Now, here’s instead the Neo4j Cypher query to retrieve the same
data using the proposed cybersecurity knowledge graph:
MATCH (cna:CNA)-[:ASSIGNED]->(cve:CVE {id:"CVE-2021-44201"})
OPTIONAL MATCH (cve)-[:HAS_WEAKNESS]->(cwe:CWE)
OPTIONAL MATCH (cwe)-[:HAS_RELATED_ATTACK_PATTERN]->(capec
:CAPEC)
RETURN cna,cve,cwe,capec

As depicted in Figure 4, the Neo4j Desktop application provides a
user-friendly visual - among other types - query output with only
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displayed the desired information. Hovering or single-clicking on a
node will show its relative property key values on the right-hand
side detail box. Furthermore, double-clicking on a node will instead
reveal additional related nodes, such as Reference, Metric, etc. ones.

Figure 4: Example of Neo4j Desktop visual query output.

As perceived, the method employing the cybersecurity knowledge
graph yields a superior overall user-experience defined in terms of
searchability, reduced execution time and data visualization com-
pared to the current required actions that a user must perform
in order to obtain the same information. Clearly, these presented
benefits are further accentuated in scenarios in which a user de-
sires to search for multiple distinct vulnerabilities/entities and even
more so when the tasks would be too tedious and time consuming
to manually execute them (e.g. ‘how many CVEs currently have a
published patch?’, ‘Which are the top 10 CNA authorities that have
assigned the most CVE entries? ’, etc.).

Given a vulnerability in a particular software product, the knowl-
edge graph could be used to identify other products that are also
vulnerable to the same or similar attacks; the graph could also be
used to identify security controls that could be implemented to
mitigate the risk of exploitation: this information could be used
to prioritize vulnerability remediation efforts and to develop more
effective security policies.

5 Conclusions and Future Work
CyberGraph offers a web interface , allowing the user to simply
query the cybersecurity knowledge graph for information without
writing Cipher queries.

CyberGraph is able to build a cybersecurity knowledge graph
that takes around 550MB and it is composed by:

• More than 735000 nodes;
• More than 1.3 million relationships;

These data and statistics on the graph can be obtained by running
the Cypher code :sysinfo. Along with CyberGraph we developed
a series of corollary utility functions - written in Python - for auto-
matically managing all the aspects of the graph, such as handling
the data retrieval phase, the initial ingestion inside the knowledge
graph and a series of operations for incremental updating, all crucial
features to maintain the accuracy of theNeo4j database information.

The cybersecurity knowledge graph built by CyberGraph uni-
fies all the major freely available information on attack patterns,
weaknesses, vulnerabilities, numbering authorities and exposed
platforms from multiple and disparate sources into one single uni-
fied and coherent dataset.

We plan to further integrate information from the National Vul-
nerability Database (NVD), and vulnerability reports from security
researchers and software vendors.

All the comprehensive code implementation for the showcased
cybersecurity knowledge graph are openly accessible20.
In addition, to further enhance the capabilities of the entire ecosys-
tem, the future works should be focused on expanding the function-
alities and features offered. For instance, we suggest the integration
of the recently presented Exploit Prediction Scoring System21 (EPSS)
[14] into the graph schema for the purpose of enhancing the patch-
ing vulnerability prioritization, since this type of score estimates
the probability of observing any exploitation attempts against a
CVE entry in the following 30 days.

It is worth noticing that the EPSS and CVSS scores are com-
plementary with each other - and not mutually exclusive - since
the former estimates the probability that a vulnerability will be
exploited in the near future - in the next 30-day period window -
and it is fully based on on-field data-driven analysis, meanwhile
the latter express the overall “severity” of a vulnerability and it is
computed on the immutable values of the relative scoring vector.
Hence, the introduction of the EPSS score within the graph schema,
alongside with the already present CVSS metric, can serve as an
effective means for providing to the end-users a straightforward
decision support system for vulnerabilities patching prioritisation.

Moreover, an additional improvement could be focused on ex-
panding the CAPEC available graph information by supplementing
them with the ATT&CK22 (or Adversarial Tactics, Techniques and
Common Knowledge [28]) dataset, as already proven in the pub-
lished work accomplished by Ampel et al. [1] who successfully
interlinked these two knowledge bases. Similarly, it would be also
interesting to incorporate custom attack models for specific do-
mains [8, 32].

Finally, the application ofNatural Language Understanding (NLU )
techniques (a subset of the Natural Language Processing, NLP) - ei-
ther using pre-established SaaS tools, such as IBM Watson23, or
through open-source libraries, e.g. AMR24 [2] - can bring immense
benefits to the developed graph by enabling the analysis of the
contained unstructured raw data, such as those from the descrip-
tions of CVEs, to extract additional knowledge. For instance, an
application could be focused on semantic extraction in order to
tag the available CVE entries by their business categories, for the
purpose of creating sub-clusters of knowledge targeting specific
industries. An additional work could be the extraction of contexts,
hence relations, for the newly released CVEs. This could be use-
ful due to the fact that once a new vulnerability is released might
not contains all the necessary relationships with its corresponding
CWE entries, thus inferring them could compensate that up until
these information are added in the future. The knowledge graph
could also be used to develop automated tools for vulnerability
assessment and remediation. These tools could use the graph to:
scan systems for vulnerabilities, identify patches or workarounds
for known vulnerabilities, automate the deployment of patches
or workarounds. This could help to reduce the time it takes to fix
vulnerabilities and to improve the overall security of organizations.
Finally, the knowledge graph could be used to generate insights

20https://github.com/UniVE-SSV/CyberGraph
21https://www.first.org/epss/model
22https://attack.mitre.org/
23https://www.ibm.com/watson
24https://amr.isi.edu/language.html
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into emerging trends in vulnerability exploitation, by identifying
patterns in the types of vulnerabilities that are being exploited,
analysing the sources of vulnerabilities, tracking the evolution of
exploit techniques. Overall, Cybergraph is a valuable tool help-
ing to improve vulnerability management and reduce the risk of
exploitation.
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