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Abstract — Bayesian chemotaxis is an information-based target search problem inspired by bi-
ological chemotaxis. It is defined by a decision strategy coupled to the dynamic estimation of
targei position from detections of signaling molecules. We extend the case of a point-like agent
previously introduced (Vergassola et al., Nafure (2007)), which establishes concentration sensing
as the dominant contribution to information processing, to the case of a circle-shaped agent of
small finite size. We identify gradient sensing and a Laplacian correction to concentration sens-
ing as the two leading-order expansion terms in the expected entropy variation. Nurnerically, we
find that the impact of gradient sensing is most relevant because it provides direct directional
information to break symmetry in likelihood distributions, which are generally circle shaped by

concentration sensing.

Copyright (© 2022 EPLA

Introduction. — Bioclogical cells and organisms nav-
igate their environments, e.g., in search for nutrient
gources, guided by the detection of signaling molecules
[1-3]. Knowledge of the time and location of such detec-
tions, typically receptor-ligand binding events, provides
information sbout the target positidn if the target is a
source of ligands. More precisely, an agent can reduce
its uncertainty about target position if the binding events
time series is interpreted with respect to a medel of the
environment. In other words, a chemotactic agent should
know something about the relation between binding statis-
tics and target position in order to process the information
from binding events.

The estimation of a time-varying hidden state from
noisy measurements is the subject of stochastic filtering
theory [4-6]. The celebrated Kalman filter provides the
analytical form of the estimation update scheme for Gaus-
sian systems, and it was recently applied to biclogical ex-
amples such as concentration and direction sensing in the
linear regime [7-11]. Chemotaxis can be formalized as
stochastic filtering coupled to a decision-making problem,
namely the decision of where to move next.

Just knowing that the binding rate increases towards
the target is sufficient for a simple strategy of gradient as-
cent, where the agent only needs to repeatedly estimate
the local gradient from the binding asymmetry across its
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diameter {12], or across short-distance runs like in bacte-
rial run-and-tumble chemotaxis [13], referred to as spa-
tial or temporal comparison in the biclogical literature,
respectively.

However, if concentrations are dilute and therefore bind-
ing events are sparse, then the estimation of gradients be-
comes very slow and inefficient. Nevertheless, if an agent
is equipped with a model of the binding rate as a function
of the relative target position, then it can gain informa-
tion also by estimating the local binding rate. Indeed, the
signal-to-noise ratio in the estimation of a concentration
from binding events is typically much larger than that of
a gradient.

The chemo-sensory navigation of a point-like agent per-
forming stochastic filtering on a likelihood map was dis-
cussed in the pioneering work of Vergassola et al. {14,15],
where thé aiithois also introduced a decision strategy that
consists in maximizing the expected information gain lo-
cally in time, there named infotazis. Analytical expres-
sions for the information gain and decision making were
subsequently given in [16]. We would like to refer to this
and similar search problems as Bayesian chemotaxis.

Intuitively, a point-like agent can estimate the local gra-
dient, but only indirectly by movement and temporal com-
parison of estimated concentrations. On the contrary, an
agent with small finite size can also obtain direct infor-
mation on the local gradient, as the location of a single
binding event on its surface is itself a directional cue [9,17].
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Therefore, we interpret the case of point-like agent as pure
concentration sensing, while the small finite-size agent per-
forms simultaneously concentration and gradient sensing.

In this letter, we introduce gradient sensing from an in-
formation gain expansion with respect to agent size. The
zeroth-order terms are the motility noise, and the con-
centration sensing discussed in [14-16]. The second order
of the expansion gives the gradient sensing term, as well
as a Laplacian correction to concentration sensing which,
to the best of our knowledge, was not yet discussed in
the literature. We evaluate the relative importance of
these terms in a steady-state chemotactic search model in
two space dimensions. We discuss the increase on target
search efficiency deriving from a finite agent size. Finally,
we briefly discuss the decision process comparing infotaxis
to the simpler maximum-likelihood and minimum-distance
direction strategies.

The model. — A disk-shaped agent of radius ¢ mov-
ing in two-dimensional space is immersed in a concentra-
tion profile of signaling molecules released by a target.
These melecules are detected on the agent’s circumference
through binding events happening at a rate proportional
to the local concentration. Let us use a coordinate system
centered at and co-rotating with the agent {called “mate-
rial frame” 9]}, and let r(x) denote the binding rate at
the agent position 0 when the target is at position x. We
denote by p(x;) the smooth likelihood distribution formal-
izing the agent’s knowledge about target position at time
t, which is based on previous measurements and dynamics
up to time t. The agent moves with a velocity v; hav-
ing a constant speed v, and a direction angle 8;, which
is continuously decided based on the current likelihood.
The target further undergoes translational diffusion with
constant diffusion coeflicient D.

Stochastic filtering. — The likelihood p(x;) is contin-
uously updated in response to the binding events time
series and to account for the target stochastic dynam-
ics in a Bayesian inference scheme called stochastic fil-
tering. Please note that in this section all probabilities
are implicitly conditional to measurement information up
to t = 0 only, unless specified differently. Consider a time
interval [0, 7] with 7 > 0 sufliciently small so that vari-
ations of the binding rate due to movement within [0, 7]
are negligible. Let us further agsume that the agent’s ve-
locity in real space follows a smooth protocol decided at
t = 0. The evolution of the likelihood is then decom-
posed into a prediction step p(x,) = [ dxg p(x0)p(x-|%0),
which is driven by the transition density of the target
position p(x,|xo), and of an update step p(x;|m,) =
p{x. )p(m,|x;)/p(m,), which is driven by the measure-
ment m,, that here is a record of the number and loca-
tions on the agent’s circumference of the binding events
happened within the interval [0,7). The measurement
model p{m.|x,) formalizes the relation between binding
rate and target position, and such relation is known by the
agent in Bayesian chemotaxis. The current measurement

probability p(m,) = [ dx; p(x;)p{m,|x;) formalizes the
agent’s uncertainty at time 0 about the outcome of the
measurement m,, which is delivered to it at time 7. In
the limit 7 — 0, the Bayesian updating is integrated in the
non-anticipating Ito stochastic calculus scheme to obtain
a time-continuous inference and decision process, see Sup-
plementary Material Supplementarymaterial.pdf (SM).

Expansion in the agent’s size. — If we neglect the
effect of the agent body and movement on the sensing
field, the inference problem is equivalent to that made by
a density of point-like agents distributed on circumference
a{e¥}o_jo,2r), Where &l? is a unit vector in 2D with di-
rection defined by the angle & from a fixed axis in the
agent’s reference frame. Accordingly, the event probabil-
ity density per unit angle in a small time interval 7 is
p(m, = e|x) = Lr(x — ael’) + O(r?), where the nor-
malization is chosen s¢ that in the limit ¢ — 0 one re-
covers the case of a single point-like agent. Note that the
measurement m, is vector valued, assuming 0 (no events)
almost surely for 7 — 0, and e in the case of a binding
event at angle f. If the binding rate differences along the
agent’s body are small compared to the absolute binding
rate, then we can study the effect of the agent size on
stochastic filtering through a second-order Taylor expan-
sion of the binding rate. For an event at angle 8, we write

r(x —ael?) = r(x) — eel? Vr(x)

+%a2ei9 C(H(x) )+ 0@, (1)
where H(x) = V ® Vr{x) is the Hessian matrix of the
binding rate evaluated at x. Using the expansion eq. (1)
in the stochastic filtering problem, we obtain the corre-
sponding expansion of the likelihood stochastic evolution
equation, whose expression is given in the SM.

Entropy dynamies. — We quantify the agent’s current
uncertainty about target position by the Shannon entropy
S[p(x)] = — [ dxp(x) Inp(x). The expected entropy vari-
ation up to second order in ¢ reads

(de)" = —D(V?Inp)
(2o u(2))
% (II(V(:"))IF _ <1|V:Il2>) + 0@, (2)

where || - || denotes the Euclidean norm, the averaging
brackets are meant with respect to the current likelihood
p, and we dropped the explicit dependence on x. Equa-
tion (2), whose derivation is given in the SM text, is the
main result of this letter. Let us now discuss its physical
meaning.

The first zeroth-order term, —H{V2Inp) > 0, is the in-
formation erasure due to translational diffusion, and it is
always non-negative having the form of a Fisher informa-
tion [18]. The second zeroth-order term, {rln({r}/r)) <0,
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is the concentration sensing already discussed in [14,16],
and it is always non-positive by Jensen’s inequality.

We identily the second-order term |{Vr)||?/(r} —
{|Vr||?/r) < 0 as gradient sensing, and it is always non-
positive having the form of the expectation of a negative
square. Indeed, once a binding event has happened, the
expected information gain from further knowing its loca-
tion on the circumference can only be positive, being a
type of conditional mutual information. Note that for this
term, if we consider an agent who periodically erases all of
its current directional knowledge so that {Vr} = 0, then
we obtain simply --{||Vr||?/r}. Depending on whether ad-
ditionally distance information becomes erased, this ex-
pectation value is either taken with respect {0 a fixed prior
or and adaptive one [19].

The other second-order term {{VZr)In{{r}/r)} is inter-
preted as a Laplacian correction to concentration sensing.
This is due to the convexity of the binding rate field, which
is the leading-order correction in the total binding rate
on the agent’s circumference, foz "(d8/2m) r(x + ae'®) =
r(x) + (a®/4)V?r(x) + O(a*). The impact of the Lapla-
cian correction on the entropy variation can be positive or
negative depending on the particular likelihood configura-
tion and binding rate field shape.

From eq. {2), we can derive as limiting cases two known
examples of stochastic filtering in biology, which are math-
ematically analogous to the Kalman filter [6,7].

Limiting cases. — We start with pure gradient di-
rection sensing of [9]. Consider a target constrained at
a fixed position at distance R, which generates a conic
field r(x) = o — [[Vr| x|, with ||Vr|] < g2;. The
agent does not move but undergoes rotational diffusion
with coefficient Dy, defined as Brownian motion in the
polar variable & (denoted % in [9]). In the small noise
limit Dyt — 0, the angular likelihood distribution is
Gaussian with mean pg and variance ¢3. Concentration
sensing is irrelevant here because we can just substitute
r=r(R) > 0, so that only gradient sensing and rotational
diffusion contribute to the entropy variation. The entropy
variation due to rotational diffusion is a type of Fisher
information [18], and in the linear regime the correspond-
ing Cramer-Rao bound —(87Inp} > 1/03 is saturated,
as can be immediately seen by taking the z-axis along
the direction of the current estimate pp, and linearizing
y = RO+ O(6?). Similarly, the gradient sensing is found
by linearizing [[(V7}|? = {|Vr|?(1 — ¢2) + O(c3). Then
the angular variance which makes the expected entropy
variation vanish satisfies

2+/r(R
U§|<d5)=0: V- Dy )

" a[ Vel

(3)

We see that the average binding rate v(R) acts as Poisso-
nian noise for the signal 2a|[Vr|, which is the difference
of binding rate across the agent’s diameter. The angular
variance scales as the square root of the rotational noise
Do, reproducing the result of [9].

Similarly, we derive the pure concentration sensing case-
of [8] by considering eq. (2) in one-dimensional space,
for a point-like agent (¢ = 0) with translational diffu-
sion whose likelihood at ¢ = 0 is non-zero only on one
side, say for z > 0. We take again the linear binding rate
r(z) = rg — |Vr||z| for simplicity, and expand the concen-

tration sensing to obtain o2| g0 = VD il%lm’ which

also scales as the square root of motility noise.

Gradient sensing in steady-state Bayesian
chemotaxis. — To evaluate the relative importance of the
expansion terms of eq. (2} in the full Bayesian chemotaxis
model, we plot the histogram of their realized values over
the steady-state dynamics obtained with a binding rate
field r(x) = Allx||~?, with A > 0, whose particular form is
taken for numerical convenience. Here, we already employ
a decision strategy (infotaxis) detailed in the next sec-
tion. To ensure the existence of an ergodic steady-state
dynamics for the chemotaxis process, we impose reflect-
ing boundary conditions for the relative target distance
Rpin < ||%|| < Bmax- The lower bound Ry, which can
be interpreted as the target size, is taken for numerical
stability and to ensure that the second-order expansion
holds in the allowed region.

We find that gradient sensing is of larger magnitude
compared to the Laplacian correction, see fig. 1. This can
be understood by looking at typical likelihood shapes, see
fig. 2 and the SM text. The main drivers of the likeli-
hood dynamics are the velocity-induced translation, the
diffusion-induced smoothing, and the concentration sens-
ing. In particular, concentration sensing gives rise to
circle-shaped distributions, because we consider a concen-
tration field, which is symmetric around the target and
the agent knows the relation between binding rate and dis-
tance. The likelihood is never an exact circle but rather
an annulus whose width is increased by motility noise (ef-
fective diffusion of the target). Such annuli are then trans-
formed into semicircles, bimodal, and single peak distribu-
tions as a result of the dynamics and measurements with
efficient decision strategies.

In particular, bimodal distributions can arise from an
annulus when the agent moves to a new position, where
a new measurement effectively amounts to an intersection
of the original annulus with a second annulus correspond-
ing to the new measurement, especially when the agent
moves perpendicular to the direction pointing towards the
target. The change of annular distributions into bimodal
and then unitmodal distributions can be rationalized in
terms of simple triangulation [20], see SM. More complex
likelihood shapes are possible, especially when the speed
of the agent is large and the binding rate low.

In this framework, we find that angular information
from gradient sensing helps in discriminating the correct
target direction from circle-shaped or bimodal likelihoods.
In terms of entropy variations, this effect results to be
greater than the Laplacian correction, which here helps
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Fig. 1: Distribution of the absolute values of the four terms
in the expected entropy variation equation, eq. (2), evaluated
in a steady-state dynamics with parameters ¢ = 0.01, A = 2,
v =001, D =25-10"% Rpin = 0.03, Rmax = 0.87. Note
that the contribution due to motility noise is positive, while
the three contributions from the measurement components are
all negative.

Decision incentive Likelihcod

~04 -02 00 02 0.2

-04 -0.2 0.0 02 04

Fig. 2. Typical likelihood configuration p, and correspond-
ing decigion incentive g, see eq. (4) and following discussion.
Dark blue regions in the decision incentive plot correspond
to g < 0, i.e., are repulsive. The orange arrow corresponds
to the maximum likelihood direction, while the green arrow
to the infotaxis direction. The particular configuration was
selected from a long steady-state realization with parameters
a =001 x=2 v=005L D=25 10"% Bu. = 0.03,

only slightly by increasing the effective variation of the
binding rate over spatial distances because of the convex-
ity V3 = Allx||® > 0.

Decision making. — We use the average distance from
the target at steady state, {{||x]|}}, as our metric to evalu-
ate the efficiency of chemotactic search. Then it is natural
to introduce an ezploitation strategy, which minimizes the
expected distance variation locally in time, see eq. (18) in
8M, that means to move in the direction of {x/||x||}. How-
ever, for a = 0, this strategy forces the likelihood shape to
be always symmetric around the cenire, and diffusion leads
effectively away from the target. Having a finite ¢ > 0
breaks the symmetry and improves search performance,
see the@upplementary movie animationl.mp4.

8 " Complete infarmation |
\ ‘—— infotaxis
7 = Maximum likelihood &
\ ‘—}— Minimum distance |
25 \u o]
= \Lﬁmh{\
x4 =1
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Fig. 3: Search performance increases with agent’s size a, in
a steady-state dynamics with parameters A = 2, v = 0.01,
D =25-10"%, Rumin = 0.03, Bmax = 0.87. Green is infotaxis,
orange is maximum likelihood decision, gray is minimum dis-
tance decision, and in gold is the lower bound corresponding to
the benchmark case of complete information, which here gives
b = (L06. Error bars denote standard error of the mean based
on 5 replicas.

A second exploitative strategy is to go for the maximum-
likelihood direction, which results to have a slightly larger
directional persistence, therefore enabling a more efficient
comparison of concentration measurements, see the @up—
plementary movie animation2.mp4. Also here, having a
finite @ > 0 improves the search performance because gra-
dient sensing helps in removing the angular degeneracy of
likelihood distributions.

The most efficient local strategy that we consider here,
see fig. 3, is the infotaxis strategy [14-16], which prescribes
to choose the movement direction by a maximization of
the information gain locally in time. Being based on ex-
pected entropy variations only, we regard it as a purely
explorative strategy. We see that the expected entropy
variation (eq. (2)) is independent of the velocity, there-
fore we need to compute and minimize the second entropy
variation with respect to the velocity direction, This gives
an optimal direction

q= <(V'r) In ((ﬁ’?» +a*fip, 7], (4)

whose precise expression of the decision correction func-
tional f[p,r] is given in the SM fext. A realization
of this dynamics is shown in the @upplementary movie
animation3.mp4. The impact of corrections on the in-
fotaxis decision making is locally small, but it may be
relevant and it will be investigated in future numerical
simulations.

Since we are dealing with a binding rate field, which is
symmetric around the target, the integrand in the decision
integral of eq. (4) points always in the radial direction. We
can therefore interpret the magnitude of such integrand,
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namely g = —p||[Vr| In{{r}/r} + O(a?), as a density of
decision incentive, and simply plot it as a heatmap, see
fig. 2. In other words, we rewrite the decision integral as
q = [dxqe®®), where ™) is the unit vector in the
direction of x, Generally, ¢ < 0 for r £ {r). We see that
the infotaxis decision integral drives the agent towards re-
gions of high likelihood, high binding rate relative to the
expecied {r}, and high binding rate gradient.

As benchmark to compare the performance of the three
strategies considered, we study the optimal case of com-
plete target position information. The corresponding dy-
namics is simply dx = —uv(x/||x|}dt + v2D dW, where
W is a standard 2D Brownian motion. Having circu-
lar symmetry, we write the stochastic differential equa-
tion for the distance ||x|| using lic’s Lemma [21], namely
dx|| = (B/|Ix|| — v)dt + V2D dW, and from station-
arity {(d|x]|}} = 0 and Jensen’s inequality, we obtain
(x|} = D/v. A more accurate estimate of the bench-
mark lower bound b (which also considers the Rmin, Fmax
boundaries) is found numerically.

For all three decision strategies tested, the mean dis-
tance from the target at steady state decreases with agent
size, as expected, see fig. 3. For the infotaxis strategy,
which generally performs best, this distance {{||x||}) was
about two fold smaller for the largest agent size tested
(e = 773 compared to the case of a point-like agent
(@ = 0). In fact, {{||x|}}) == 2b for the parameters used, i.e.,
comparable to the benchmark b of complete information.

We did not test larger agent sizes because numerical
accuracy decreases with agent size, as the second-order
expansion will not be as accurate, and the space discretiza-
tion becomes too coarse.

Discussion. — In this letter, we derived the
information-processing properties of an agent performing
chemotaxis based on a likelihood map evolving with a
Bayesian updating scheme, which we like to call Bayesian
chemotaxis. In particular, we extend the point-like agent
model of [14] to a [inite-size agent, where the knowledge of
the angle of a binding event directly provides directional
information.

Like in [14], we made the strong assumption that the
measurement model is exact, meaning that the agent
knows the binding rate dependence on distance. While
this may be unrealistic for chemotaxis of bacteria, where
information-processing capabilities are limited, it is cer-
tainly feasible to implement in olfactory robots [22].

The leading-order expansion terms in the expected en-
tropy variation, which derive from having a circle of radius
a instead of a point-like agent, are interpreted as gradient
sensing and a Laplacian correction to concentration sens-
ing. With this expansion, we provide a theoretical frame-
work to predict a typical size of the agent above which the
contribution from gradient sensing becomes macroscopi-
cally relevant.

We do not attempt at a realistic model of biological
chemotaxis; in particular, single cells do not possess the

information-processing capabilities to perform stochastic
filtering based on likelihood maps. Instead, we estab-
lish a theoretical baseline of optimal stochastic filtering in
chemotaxis, and we analytically characterize the contribu-
tion of gradient sensing therein. Future work will explore
approximations of this optimal model, which will allow a
more direct comparison with modes of cellular chemotaxis.

In the original rel. [14] it was assumed that concentra-
tion sensing is the dominant contribution and effects due
to the finite size of the agent can be ignored; this pre-
vious assumption is consistent with the findings reported
here. Indeed, even a Laplacian correction to concentration
sensing is of the same expansion order as that of gradient
sensing.

However, we numerically establish that the impact of
gradient sensing is larger compared to that of the Lapla-
cian correction if averages are taken over a steady-state
chemotaxis dynamics. This is understood as gradient
sensing, which is in some way orthogonal to concentra-
tion sensing, can remove the degeneracy in the angular
marginal likelihood, even without movement.

Finally, we observe that also in our framework infotaxis
outperforms other greedy strategies.
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