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A B S T R A C T

In this contribution, we applied a multi-stage machine learning (ML) framework to map daily values of nitrogen
dioxide (NO2) and particulate matter (PM10 and PM2.5) at a 1 km2 resolution over Great Britain for the period
2003–2021. The process combined ground monitoring observations, satellite-derived products, climate rean-
alyses and chemical transport model datasets, and traffic and land-use data. Each feature was harmonized to 1
km resolution and extracted at monitoring sites. Models used single and ensemble-based algorithms featuring
random forests (RF), extreme gradient boosting (XGB), light gradient boosting machine (LGBM), as well as lasso
and ridge regression. The various stages focused on augmenting PM2.5 using co-occurring PM10 values, gap-filling
aerosol optical depth and columnar NO2 data obtained from satellite instruments, and finally the training of an
ensemble model and the prediction of daily values across the whole geographical domain (2003–2021). Results
show a good ensemble model performance, calculated through a ten-fold monitor-based cross-validation pro-
cedure, with an average R2 of 0.690 (range 0.611–0.792) for NO2, 0.704 (0.609–0.786) for PM10, and 0.802
(0.746–0.888) for PM2.5. Reconstructed pollution levels decreased markedly within the study period, with a
stronger reduction in the latter eight years. The pollutants exhibited different spatial patterns, while NO2 rose in
close proximity to high-traffic areas, PM demonstrated variation at a larger scale. The resulting 1 km2 spatially
resolved daily datasets allow for linkage with health data across Great Britain over nearly two decades, thus
contributing to extensive, extended, and detailed research on the long-and short-term health effects of air
pollution.

1. Introduction

Air pollution presents a threat to human health, with acute or long-
term exposure to several pollutants linked to increased health risks
(WHO, 2016). For instance, particulate matter, both coarse (PM10) and
fine (PM2.5) components, as well as gaseous pollutants such as nitrogen

dioxide (NO2), are independently associated with increased mortality
andmorbidity (Huangfu and Atkinson, 2020; Liu et al., 2019; Mills et al.,
2015, 2016). Epidemiological analyses of health risks of these pollutants
necessitate accurate exposure measurements across large populations,
commonly reconstructed through air pollution models. Traditionally,
these are produced through various methods, such as land-use

Peer review under responsibility of Turkish National Committee for Air Pollution Research and Control.
* Corresponding author. London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, WC1H 9SH, London, United Kingdom.
E-mail address: Arturo.de-la-Cruz-Libardi@lshtm.ac.uk (A. de la Cruz Libardi).

Contents lists available at ScienceDirect

Atmospheric Pollution Research

journal homepage: www.elsevier.com/locate/apr

https://doi.org/10.1016/j.apr.2024.102284
Received 8 May 2024; Received in revised form 5 August 2024; Accepted 6 August 2024

Atmospheric Pollution Research 15 (2024) 102284 

Available online 8 August 2024 
1309-1042/© 2024 Turkish National Committee for Air Pollution Research and Control. Published by Elsevier B.V. This is an open access article under the CC BY 
license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:Arturo.de-la-Cruz-Libardi@lshtm.ac.uk
www.sciencedirect.com/science/journal/13091042
https://www.elsevier.com/locate/apr
https://doi.org/10.1016/j.apr.2024.102284
https://doi.org/10.1016/j.apr.2024.102284
https://doi.org/10.1016/j.apr.2024.102284
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apr.2024.102284&domain=pdf
http://creativecommons.org/licenses/by/4.0/


regression (LUR), emission-dispersion models (EDMs), atmospheric
reanalysis, or remote-sensing satellite measurements, with the choice
dependent on the study settings and aims, data geospatial coverage, and
the geographical and temporal domains of the analysis.

Traditional LUR methods combine land-use information with de-
mographic and ancillary data, offering good performance at reduced
geographic scales (Ryan and LeMasters, 2007). However, they are less
effective for modelling pollutant levels across large areas, or for
detecting short-term temporal patterns, due to sparse and spatially un-
balancedmonitoring points, as well as the limited resolution of predictor
data (Hoek et al., 2008). In contrast, emission-dispersion models (EDMs)
utilise high-powered computing to simulate the physical transport of
pollutants emitted from known sources and gathered in reliable in-
ventories (Johnson, 2022). They are suitable for modelling air pollution
on large geographical scales (Ge et al., 2021; Holmes and Morawska,
2006) and are commonly used in multi-city, regional, and global impact
evaluations (Anenberg et al., 2019; Orru et al., 2022; Rittner et al.,
2020). Alternatively, atmospheric composition reanalysis such as that
performed by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Inness et al., 2019), assimilate a large number of
sources to produce gap-less products covering very wide geographical
domains. However, the predictive ability of EDMs and reanalyses is
generally limited, and their resolution, particularly that of reanalysis
data, may not be fine enough for reconstructing high-quality exposure
data for epidemiological studies (Gulia et al., 2015; Lin et al., 2017).
Satellite data has been used to estimate ground pollution levels, either
indirectly through proxies like Aerosol Optical Depth(AOD) for PM2.5
and PM10 or directly by using tropospheric NO2 measurements (de
Hoogh et al., 2019; Stafoggia et al., 2017). Despite their ubiquity, sat-
ellite data alone cannot accurately capture ground-level concentrations
and are affected by large measurement gaps due to cloud cover and
sun-earth surface reflectance.

More recently, machine-learning (ML) methods have been used for
exposure modelling, in many cases surpassing traditional techniques
and providing more accurate estimates of pollutant exposure, especially
at highly resolved spatial and temporal resolutions (Liu et al., 2022). ML
approaches excel in utilizing diverse data sources, including land fea-
tures, atmospheric variables, EDM outputs, and satellite data. By
combining these sources with powerful and highly predictive algo-
rithms, ML methods can offer a comprehensive reconstruction of
pollution patterns over time and space. Various ML algorithms, such as
random forest (Schneider et al., 2020; Stafoggia et al., 2020), neural
networks (Di et al., 2016) and gradient boosting (Gutiérrez-Avila et al.,
2022) have been used for this purpose. However, due to the recent
adoption of ML in exposure modelling, choosing the right technique for
a specific setting remains a significant challenge, with limited guidance
available (Rybarczyk and Zalakeviciute, 2018). Given the wealth of ML
algorithms available, recent developments in ML application to expo-
sure assessment have focused on stacking ensemble methods (Breiman,
1996; van der Laan et al., 2007) (also referred to as Super Learner),
combining outputs from different learners to further improve predictive
accuracy and reduce over-fitting (Di et al., 2020; Shtein et al., 2020).

In this study, we aim to apply advanced ML-ensemble methods to
reconstruct daily concentrations of NO2, PM10, and PM2.5 across Great
Britain within the period 2003–2021 over a grid of 1 × 1km resolution.

2. Data

Our analysis relied on a Super Learner model trained with station
measurements of the considered pollutants as the target, and a wealth of
land-use, atmospheric and demographic data as predictors. This model
was then used to predict the pollutant level across Great Britain.

This section summarises the geographical and temporal domain of
the data, the pollution monitoring data, and the spatio-temporal and
spatial predictors used in the analysis. A table with a list of data re-
sources and links for each dataset is available in the appendix (Table S1).

2.1. Target geographical and temporal domain

Great Britain is the biggest of the British Isles and includes the
countries of England, Scotland and Wales, with a total population of 67
million in 2021 (ONS, 2023a) and an area of 229,462 km2. According to
the Köppen-Geigen classification, the climate is defined as temperate
oceanic with warm summers and no dry seasons (Beck et al., 2018). The
proposed reconstruction targeted 1-km square cells following the ge-
ometry of the British National Grid (OS, 2023a), resulting in a total of
242,851 grid cells. The daily reconstruction spanned the years
2003–2021.

2.2. Observations from ground monitoring stations

Ground observations were retrieved from five UK monitoring net-
works: Automatic Urban and Rural Network (AURN), Air Quality En-
gland (AQE), King’s College London (KCL), Scotland Air Quality
Network (SAQN), and Wales Air Quality Network (WAQN) (DEFRA,
2024; ICL, 2024; RE&E, 2024; SG, 2024; WG, 2024). These measure-
ments were complemented with data from two European Environmental
Agency repositories, AirBase (EEA, 2014) and Air Quality-e-Reporting
(EEA, 2024). The raw hourly observations, in micrograms per cubic
metre (μg/m3), were processed by removing outlier measurements and
discarding days with less than 75% completion (less than 18 hourly
measures a day) to obtain representative daily averages. Additionally,
we removed monitors with less than nine measurements per month and
monitors with less than 270 recorded days per year. Finally, monitors
from different sources placed at the same locations and displaying
identical co-occurring observations were filtered-out, each time keeping
the monitor with most observations overall. In the most common case of
a full identical match, the AURN monitor was kept. Monitors were
classified as either hotspot (traffic and industrial) or background (rural
and suburban). Throughout the study period, 818 monitors provided 2,
874,994 daily observations for NO2, 1,737,318 for PM10, and 597,549
for PM2.5 (Table S2). Most monitors were clustered near cities and 682
had measurements of both NO2 and either PM.

2.3. Spatio-temporal predictors

Meteorological data was obtained from the ERA5 and ERA5-Land
reanalysis datasets, with respective spatial resolutions of approxi-
mately 30 km and 9 km. Each predictor was sampled at two time-points
(00:00 and 12:00) and all variables apart from boundary layer height
were converted to a single daily average (Hersbach et al., 2020;
Muñoz-Sabater et al., 2021). Relative humidity, wind speed, and wind
direction were derived from dewpoint temperature and pressure data,
and from wind-components, respectively. Formulas used to derive
relative humidity and wind predictors can be found in Section S1 of the
supplementary materials.

Total atmospheric column modelled AOD at 0.47, 0.67, 0.86, and
1.24 μm wavelengths as well as tropospheric NO2 were obtained from
the EAC4-CAMS reanalysis database via the Copernicus Atmosphere
Monitoring Service (CAMS) (Inness et al., 2019) at a sub-daily (00:00
and 12:00) and 80-km resolution. These were used to gap-fill the cor-
responding satellite derived products MCD19A2 and L3-OMNO2d which
provide values of AOD and tropospheric cloud-screened NO2 at daily
level and with a 1 km and 0.25◦ × 0.25◦ spatial resolutions, respectively
(Krotkov et al., 2013; Lyapustin and Wang, 2018). As L3-OMNO2d data
was only available from October 2004, the EAC4-CAMS NO2 column
data was used in its place for the 2003 and 2004 models. Satellite data
were obtained from two of NASA’s earth observation data services; the
Land-Processes Distributed Active Archive Systems, and the Goddard
Earth Sciences Data and Information System Centre (NASA, 2021a,
2021b, 2021c).

The European Modelling and Emissions Programme chemical
transport model for the UK (EMEP4UK) was the source for modelled
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daily concentrations of PM2.5, PM10, NO2, nitrogen oxide (NO), sulphate
(SO4), sulphur dioxide (SO2), dust, and sea salt at a 3 km spatial reso-
lution (Scheffler and Vieno, 2022). Additionally, we used the 1-km
resolution gridded annual output of PM10, PM2.5 and NO2 from the
EDMs of the Department for Environment, Food& Rural Affairs (DEFRA,
2023).

The monthly and 1 km resolution normalized density vegetation
index (NDVI) data product MOD13A3v6.1 was retrieved from NASA’s
data services (Didan, 2021). Multi-year imperviousness data at 100m
resolution was obtained from the Copernicus land monitoring service
system (CLMS) library (CLMS, 2020).

2.4. Spatial predictors

Elevation data from the EU-DEM and land-cover type (100m) from
the Corine Land Cover inventory were sourced from the CLMS (CLMS,
2016, 2019). Elevation was obtained at 25m resolution and was
resampled to 1 km. We computed cell-by-cell standard deviation of the
elevation to use it as a distinct predictor. Land cover data was processed,
collapsing 44 distinct land classes into nine (Table S3), as in previous
work (Schneider et al., 2020). We processed the resulting data into nine
rasters, in which each cell value corresponded to the cell-fraction
covered by that raster’s land class. Night-light data was retrieved as a
2015 annual composite from the VIIRS instrument onboard the
SUOMI-NPP satellite, providing average radiance values at a spatial
resolution of 750m (Elvidge et al., 2017).

A population density raster at a 1 km resolution based on the 2011
UK census was obtained from the Environment Information Data Centre
(EIDC) (Reis et al., 2017). Road segment data was obtained from the
“OpenRoads” initiative as a vector shapefile (OS, 2023b). Road density
was calculated as the summed length of each road type (highway, sec-
ondary, local) within each 1-km cell. The annual average of daily traffic
flow for all motor vehicles was obtained from the Department for
Transport (DfT, 2023). We applied an ad-hoc linkage framework to
reconstruct traffic flow data on highway and secondary roads (Section
S2 of the supplementary materials).

Distance from each grid cell centroid to the sea, and to the ten major
airports by passenger count was computed with geographical boundary
data and airport locations sourced from the Civil Aviation Authority for
the years 2015–2019 (CAA, 2023).

2.5. Other predictors

Time and location information of each measurement were used as
predictors, including month, day of the week, day of the year, weekend
indicators, and projected coordinates.

Six additional spatial predictors based on monitor measures were
computed as detailed in previous work (Schneider et al., 2020). Four
predictors represented leave-one-out inverse-distance weighted surfaces
of annual averages computed independently for hotspot and background
monitors, with power weights of 1 and 2. The other two variables rep-
resented the distance from each point to the nearest hotspot and back-
ground monitor.

To account for the coronavirus pandemic during the years 2020 and
2021, we added the aggregated daily number of lab-confirmed cases by
country (England, Wales, Scotland) (ONS, 2023b), and the Stringency
Index, a measure representing the severity of lockdown implementa-
tions at the same spatio-temporal scale (Hale et al., 2021). All predictors
were harmonized prior to analysis as outlined in Section S3 (including
Tables S10 and S11) of the supplementary materials.

3. Methods

The analysis was conducted in different stages, each time using a
separate ML algorithm including shrinkage regression procedures, or
their combination in an ensemble model. Specifically, the selected ML

algorithms were random forest (RF) (Breiman, 2001), extreme gradient
boosting (XGB) (Chen and Guestrin, 2016), light gradient boosting
machine (LGBM) (Ke et al., 2017), while lasso and ridge were selected as
linear but time-efficient regression alternatives (Hoerl and Kennard,
1970; Tibshirani, 1996). The various stages are described below.

3.1. Stage 1: reconstruction of PM2.5 at the monitoring sites

Daily observations and monitors providing PM2.5 data were very
sparse compared to PM10. In the period 2003–2008, an average of
77,548 observations of PM10 were reported from 230monitors each year
in contrast with 5175 observations from 119 monitors for PM2.5
(Table S2). We therefore augmented the PM2.5 data by reconstructing
concentrations in the series for monitors with co-located PM10 values,
accounting for temporal indices (day of week/year, month of year, and
weekend indicator), spatial coordinates (easting/northing) and monitor
type (hotspot/background). We chose to train an LGBM(Ke et al., 2017)
model due to its increased efficiency and performance in internal trials
against other methods and in previous research (Liu et al., 2023). We
obtained optimal tuning parameters for each yearly model from a
random grid search of 100 parameter combinations (Table S4). The
model is represented by:

PMy
2.5(m,t) = f

(
PM10(m,t), typem, ydayt , dowt ,montht ,weekendt , xm, ym

)

3.2. Stage 2: reconstruction of MCD19A2 (AOD) and L3-OMNO2d
(NO2) satellite observations

Ground PM and NO2 concentrations may be estimated from AOD and
tropospheric column measurements of NO2 obtained from satellite data
products (He et al., 2023; Stafoggia et al., 2019). As missingness is a
pervasive issue with satellite data, reconstruction of these measure-
ments has become common practice in data-driven air pollution
modelling studies (Goldberg et al., 2019; Shtein et al., 2020).

We carried out yearly reconstructions of the daily product repre-
senting AOD at wavelengths of 0.47 and 0.55 μm (MCD19A2), and the
product representing tropospheric cloud-screened columnar NO2 (L3-
OMNO2d). In both cases, we used an RF algorithm, specified as follows:

Satellite.AOD(z,y)
i,t = f

(
CAMS.AODi,t,0.47,CAMS.AODi,t,0.55,CAMS.AODi,t,0.67

,CAMS.AODi,t,0.865CAMS.AODi,t,1.24, ydayt , xi, yi
)

Satellite.NO2(y)i,t = f
(
CAMS.NO2i,t ,BLHi,t ,MSLPi,t ,T2Mi,t ,ROADSi,ELEVi

,URBANi,VEGETi, ydayt , longi, lati
)

Satellite.AOD at time t and wavelengths 0.47 and 0.55 μm (z) were
modelled using the CAMS reanalysis data for AOD (CAMS.AOD) at the
five wavelengths (0.47, 0.55, 0.67, 0.865 and 1.24 μm). The predictors
for the Satellite.NO2 model were resampled to the resolution of the sat-
ellite data. These were mean daily boundary layer height (BLH), mean
sea level pressure (MSLP), temperature (T2M), major roads density
(ROADS), elevation (ELEV) and the percentage of urban and vegetation
land-cover (URBAN, VEGET). With i indicating a grid cell and t indi-
cating the Julian calendar day. Additionally, we included day of the year
(yday) and grid cell centroid coordinates (x,y) as predictors in both
models. Hyperparameter specification can be found in Section S4 of the
supplementary materials.

3.3. Stage 3: ensemble spatio-temporal ML model of NO2, PM10, and
PM2.5

We used a Super Learner method to estimate NO2, PM10, and PM2.5 in
separate yearly models. Yearly models are fitted for two reasons: i) using
the full range of predictors available each year given the difference in
availability in earlier years; ii) computational convenience given the
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sheer amount of data considered. Super-learner is an ensemble method
in which a meta-learner is used to optimally combine the predictions
made by multiple candidate or base-learners (van der Laan et al., 2007).

We selected the RF, XGB, and LGBM algorithms as flexible base
learners (Breiman, 2001; Chen and Guestrin, 2016; Ke et al., 2017, p.
20). The selection was based on practical reasons, whereby other
learners such as neural networks could not be applied due to the high
computational and time demand. Briefly, RF builds a large number of
independent decision trees and computes its output as the averaged
predictions from all trees. XGB and LGBM are both gradient-boosting
algorithms that can be configured to operate with decision trees. Un-
like RF, they construct the decision trees sequentially, aiming to improve
their performance at each iteration. The difference between XGB and
LGBM lies in the way the data to be fit is split within each tree. Technical
details are provided in the references cited above. Additionally, we
selected alternative regularized linear learners, lasso and ridge, for their
computational efficiency (Hoerl and Kennard, 1970; Tibshirani, 1996).

A generalized additive model (GAM) was initially chosen as the
meta-learner, following previous studies (Di et al., 2020; Shtein et al.,
2020). GAMs estimate a response variable as smooth functions of pre-
dictors, and in previous applications allowed assigning spatially varying
weights to different base-learners. However, we found that the GAM
models made incongruent and extreme predictions at a later stage, due
to the sparse and unbalanced monitor locations and the substantial
spatial extrapolation involved. For this reason, we opted for a less
flexible but more robust and established non-negative least squares
model (NNLS), which has also been used as a meta-learner in air
pollution mapping studies (Kianian et al., 2021; Yu et al., 2022, 2023).
The NNLS algorithm is defined by the following formula:

f̂ (x)=
∑m

i=1
wifi(x),wi ≥ 0

Differently from GAM, NNLS calculates the optimal coefficient or
weighting (wi) for each base learner (m) from their predictions (fi(x))
restricting the weight values to positive values and constant across the
domain, thus reducing artefacts due to spatial extrapolation.

Both LGBM and XGB algorithms were fine-tuned for each yearly
model, selecting the best configuration from a random search of 100
hyperparameter combinations. To avoid the computationally
demanding fine-tuning of the RF algorithm we used sensible and con-
ventional defaults for the regression case (500 trees, a third of randomly
selected variables by split, and a minimum of 5 observations in each node)
(Probst et al., 2019). The predictors used in each yearly model were the
same for the PM2.5 and PM10 models but not for the NO2 models
(Table S5).

3.4. Performance assessment

We assessed the performance of all models by computing the coef-
ficient of determination (R2), root-mean-square-error (RMSE), and
intercept and slope values. These were obtained by fitting a simple linear
model between observations and cross-validated predictions. We
disambiguated the model performance statistics into three metrics rep-
resenting spatial, temporal and overall performance, as described in
previous work (Schneider et al., 2020).

For the reconstruction of PM2.5 and gap-filling of satellite data in
stages 1 and 2, the prediction errors were respectively obtained via a
monitor and cell-blocked 10-fold cross-validation procedure. After
splitting the data into 10 groups, each including the entire set of ob-
servations from a given monitor or cell, the model was trained on 9-folds
and used to predict on the 10th. After 10 iterations, the set of cross-
validated predictions was used to compute the performance metrics.

To obtain cross-validated base and Super Learner predictions in stage
3, we also used a 10-fold monitor-blocked cross-validation strategy. This
process, outlined in Section S5 of the supplementary materials,

minimizes information leakage, and reproduces the task of predicting in
locations not covered by monitors.

3.5. Stage 4: prediction of NO2, PM10 and PM2.5 over the full spatio-
temporal domain

To generate the final predictions, we first trained the base-learners
on the full observed data at monitoring sites, and then obtained out-
of-sample predictions from each of them to fit the meta-learner.
Finally, we used the fully fitted base and meta-learner models to pre-
dict over the entire study grid.

Variable importance measures were calculated from the fully fitted
models, averaged across years, and standardized to obtain proportional
contribution values. The contribution of each base learner to the
ensemble was investigated by extracting the coefficients assigned to
each input variable of the fitted NNLS models.

3.6. Software and R packages

All data processing and analysis were performed using the R statis-
tical software on the RStudio integrated development environment
(Posit Team, 2023; R Core Team, 2023). Monitoring data was down-
loaded via the openair (UK datasets) (Carslaw and Ropkins, 2012) and
saqgetr (EU datasets) (Grange, 2019) packages. The ensemble ML
framework was implemented using themlr3 package (Lang et al., 2019).
The algorithmic engines used for the base learners were from the ranger,
xgboost, lightgbm and glmnet R packages (Chen et al., 2023; Friedman
et al., 2010; Shi et al., 2023; Wright and Ziegler, 2017).

4. Results

4.1. Stage 1 and 2: PM2.5 and satellite data reconstruction

The reconstruction of PM2.5 at monitoring sites in Stage 1 was carried
out with yearly LGBM models. The R2 value ranged from 0.621 in 2006
to 0.926 in 2016 with an average of 0.801. Performance was lower in the
spatial (R2 = 0.619) than in the temporal (R2 = 0.852) domain. Yearly
detailed performance results can be found in the supplementary mate-
rials (Table S6).

The satellite data reconstruction through RF models in Stage 2 dis-
played very good performance overall. The NO2 reconstruction models
were the worst performing with R2 = 0.807. The products measuring
AOD wavelengths at 0.47 and 0.55 μm were reconstructed at a higher
accuracy (R2 = 0.958) (Table S7).

4.2. Stage 3: ensemble spatio-temporal ML model of NO2, PM10, and
PM2.5

The main results of Stage 3 are shown in Table 1 as three period
averages representing early (2003–2008), middle (2009–2014) and
recent (2015–2021) years which correspond to generally higher,
middling, and lower countrywide air pollution levels (Fig. S5). The total
average performance of the NNLS-ensemble given by R2 was good for
the NO2 (R2 = 0.690) and the PM10 (R2 = 0.704) models, and very good
in the case of the PM2.5 models (R2 = 0.820). As expected, the ensemble
performance was improved, albeit minimally, relative to all base
learners, and in some years the strongest base learner outperformed the
ensemble (Fig. S1). It is worth noting that the three tree-based base
learners (RF, XGB, and LGBM) show high and similar accuracy, while
the two alternative learners based on regularized regression (ridge and
lasso) have a much lower performance, possibly due to their strong
functional assumptions (linear relationships and lack of interactions)
(Table 1). Performance was highest across all pollutants and models in
the most recent period (2015–2021), presumably due to higher avail-
ability of pollutant measurements and/or improved predictor accuracy
(performance statistics by year are shown in Fig. S2). All pollutant
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models display a consistent and marked decrease in RMSE in the later
years, although with only a slight increase in R2, probably due to the
narrower concentration range in the training data owing to falling
polluting levels across the study period.

Focussing on the 15 most predictive features on average across all
years (Table S8), we found day of the year and spatial lag variables to be
the most represented. Distance to nearest monitor was more important
in NO2 than PM models, where the annual inverse-distance-weighted
features were more predictive. Residential and work population den-
sity were highly predictive although only for NO2 models. The most
important predictors across all pollutants and ML algorithms were
pollutant-specific outputs from the EMEP4UK model, followed by at-
mospheric reanalysis features and spatial lag variables, in particular
precipitation and wind direction for the PMmodels and temperature and
total column NO2 for the NO2 models.

While the ensemble model improved on the predictive performance
of the base learners in the temporal dimension, the same was not true for
the spatial aspect (Table S9). Averaged across all years, the spatial
performance of the NNLS model was lower than that of the strongest
base-learner. This difference was very small but persistent across the
entire study period (Fig. S1) and can be due to the constraint of the NNLS
meta-learners to produce spatially constant weights for the base
learners.

The fitted NNLS models, which act as meta-learners, can be exam-
ined to identify which learner was considered to contribute most and
least to the ensemble model. In Fig. S3, we show that weak learner
predictions were rarely, if at all considered, while XGB predictions were
consistently the maximum contributors. Fig. S4 shows the comparison of
observations and cross-validated predictions for the year 2019. As

expected, the LASSO and RIDGE learner predictions exhibit the weakest
correlation to the observed values as well as some degree of bias, while
all NO2model predictions appear more distant from the bisector line due
to their higher error and lower R2. The meta-learner (NNLS) panels
exemplify the very strong performance of the ensemble model for the
three pollutants. In particular, we note its unbiasedness as indicated by
the intercept and slope of the fitted regression line.

4.3. Prediction of NO2 and PM2.5 over the full spatio-temporal domain

Daily mapping of a single pollutant for one year over the British
National Grid yielded 88,640,615 cell-values. Fig. S5 shows the average
trend for each pollutant over the study period. An overall decreasing
pattern can be observed. However, the decrease is not uniform, with the
strongest reduction occurring in the late 2000s.

This decreasing trend is also captured in Fig. 1, which shows annual
average maps for each pollutant for the years 2009, 2015 and 2019. As
expected, all three pollutants show strong spatial heterogeneity at the
national scale, with higher concentrations found in urban agglomera-
tions and areas of higher traffic intensity. In contrast to PM, NO2 displays
spatial heterogeneity at a smaller scale, with peaks in urban areas and
high-traffic roads. In the NO2 maps, we can recognise traffic arteries as
they cut through rural areas and create a high contrast gradient in NO2
levels. Differently, PM10 and PM2.5 are characterized by large-scale
variations and regional differences.

Fig. 2 shows nine daily time series comparing observation data at
three monitoring stations with the predicted concentrations in their
respective grid-cell, and their location within Great Britain. The graphs
indicate that the ensemble model predicts with high accuracy in the

Table 1
Three period-specific (2003–2008, 2009–2014, 2015–2021) means of overall R2, RMSE (μg/m3), slope (μg/m3), and intercept (μg/m3) for each base learner and the
ensemble learner. Higher R2 and lower RMSE values indicate increased power to explain the trends in the observed data and smaller errors when comparing pre-
dictions and observations, respectively.
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Fig. 1. Annual average maps.
Levels in micrograms per cubic metre of NO2, PM10, and PM2.5 in the years 2009, 2015, and 2019. Note each map uses a different range and colour-value corre-
spondence to magnify spatial and temporal differences for each pollutant.

A. de la Cruz Libardi et al. Atmospheric Pollution Research 15 (2024) 102284 

6 



temporal dimension, and this is visually apparent from how closely
predictions trace observations across an entire year. In this sample, the
NO2 and PM10 models show a lower performance at the traffic monitor.
This is likely due to the difficulty of models fitted using 1-km gridded
data to capture local differences in high-traffic areas, especially for NO2
which is characterised by higher spatial variation. Nonetheless, the
prediction is still fairly good, especially in capturing temporal
differences.

In Fig. 3, we show the degree of spatiotemporal variation predicted
at a sub-national scale by mapping pollutant levels for three consecutive
days starting from Friday 16th of March over the smallest region of
Great Britain. Temporal changes in pollutant levels are clearly visible,
with some being tied to human activity such as the elevated NO2 levels
decreasing during the week-end due to the change in traffic. Different
spatial heterogeneity for the two pollutant types can be appreciated at
this scale, with PM showing larger differences across wider areas, (the
subtle north-south difference on 2019-03-18), and NO2 displaying much
more localised and spatially stable concentration peaks.

5. Discussion and conclusion

This study combines state-of-the-art ML techniques with a compre-
hensive environmental feature dataset to map daily levels of air pol-
lutants in Great Britain from 2003 to 2021. Model performance across all
years is good for PM10 and NO2 and excellent for PM2.5, with better
performance observed in the later periods and in the temporal dimen-
sion. The output generated from the ML ensemble models consists of 5
billion data-points corresponding to 1kmx1km and daily resolved air
pollution values, and it is unique in its combination of spatio-temporal
resolution and coverage in the UK. This data may contribute substan-
tially to epidemiological research on the short- and long-term health
effects of air pollution as daily or annual-averaged exposure.

Three recent studies produced similar data on the same geographic
area and a subset of the period modelled here. Liu and colleagues (Liu
et al., 2023) trained a fine-tuned LGBM algorithm to predict daily and 1
km resolved PM2.5 levels from 1980 to 2019. The model’s performance
for daily prediction in the common years 2010–2019, as measured by an
R2 of 0.72, is lower than the present results. However, the model
developed is trained on multi-year data, employs a single powerful
learner for increased efficiency, and focuses on back-extrapolation,
which complicates the comparison with the present single-year
models. Wang and colleagues (Wang et al., 2022) developed very high
spatial resolution models for daily predictions of four pollutants in the
2011–2015 period. The models are underpinned by a two-stage GAM
dealing with time-varying and time-invariant dimensions separately and

produced predictions at far higher resolution (25 m). However, the
performances by R2 reported for the daily NO2, PM10 and PM2.5 models
are 0.63, 0.80, and 0.77, respectively, similar to those achieved at 1-km
resolution with our ensemble models in comparable years. A closer
comparison is possible with our previous work (Schneider et al., 2020),
where we used a simpler modelling framework which we developed
further with data and methodological improvements. Specifically, we
integrated an increased number of ground monitor observations,
updated environmental datasets, and applied an advanced ensemble
machine-learning method while extending temporal coverage by eight
years, as well as adding NO2 and PM10 to the pollutant set. As a result,
we achieve an improvement in performance in PM2.5 prediction, from an
average R2 of 0.77–0.83 for the common years 2008–2018 (Schneider
et al., 2020).

Within the ensemble framework, the stronger ML-based learners
exhibited similarly high and consistent performance (Fig. S2). For all the
base learners, satellite products like AOD and TCNO2 were considered,
but their importance was limited, in agreement with similar studies
(Tian et al., 2023; Yu et al., 2022). Despite their low predictive impor-
tance, we decided not to exclude them from the predictor set as they
provide data for sparsely monitored areas.

The study setting included an unequal temporal and geographical
distribution of ground monitor observations. Specifically, many more
observations were available in the second half of the study period, and
ground monitors show a clear spatial clustering in urban areas and low
coverage in remote regions (Fig. S6). We initially explored the use of a
GAM meta-learner, consistently with previous studies (Dimakopoulou
et al., 2022; He et al., 2023), but we found that the spline-based
extrapolation of the prediction in sparsely covered areas resulted in
unrealistically extreme values, especially at the boundaries. We advise
careful consideration when using such flexible methods. While the NNLS
regression model we ultimately chose for our ensemble modelling
showed very good performance, efficiency, and no abnormal pre-
dictions, it has the limitation that it cannot assign spatially-varying
weights to the different base learners. We encourage future research
to fill this gap in ML for exposure modelling. We validated our ensemble
with ten-fold cross-validation allowing for nearby observations to
inform each model. This strategy is a distant variant of spatial blocking,
where large areas are defined as cross-validation folds, and which has
been deemed to return overly pessimistic performance estimates
(Wadoux et al., 2021).

This study faces three primary limitations. First, the clustered dis-
tribution of monitoring stations, predominantly found in urban areas,
may introduce biases in the training dataset, limiting the generaliz-
ability of our models to rural regions. Extrapolation to areas with low

Fig. 2. Time series of observed and predicted NO2, PM10, and PM2.5 throughout 2018 for three specific monitors of different types. Levels are in micrograms per
cubic metre and shown at three different monitoring sites with the corresponding grid-cell locations in Great Britain.
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data availability due to sub-optimal spatial sampling is a central issue in
predictive mapping studies (Meyer and Pebesma, 2021; Wadoux et al.,
2021). Second, resolution-related challenges arise from transforming
and harmonizing covariates to different spatial resolutions, which im-
pacts the characterization of spatial variability. Furthermore, while the
1 km resolution suits epidemiological studies, it may not fully capture
the nuances in pollutant concentrations, especially in urban areas (Tadić
et al., 2015) or for rapidly decaying and spatially heterogeneous gaseous
pollutants like NO2. Third, our use of ensemble learning with a restricted
few powerful algorithms diverges from the original recommendation of
combining numerous, if less flexible learners (van der Laan et al., 2007).
However, our approach is the most commonly applied in the literature
(Danesh Yazdi et al., 2020; He et al., 2023) and, in this analysis, resulted
in a very small improvement of the ensemble over the base learners.

To conclude, we present two potential research directions that would
benefit the advancement of data-driven air pollution modelling. The first
involves further developing of model and map validation strategies,

such as sampling-intensity weighted cross-validation (de Bruin et al.,
2022) and k-fold nearest neighbour distance matching-CV (Linnenbrink
et al., 2023). These approaches might facilitate performance comparison
between distinct models and provide more accurate estimates of model
performance. Second, we underscore the need for high performance and
very high-resolution models, aimed at providing pollutant exposure
predictions at point locations instead of within cells of a pre-determined
grid. This would enable increasingly accurate exposure predictions and
assessment, benefitting epidemiological research and public health by
an improved ability to estimate health risks attributable to environ-
mental factors.

This study employed cutting-edge spatial data science and machine
learning methods to map air pollution across Great Britain from 2003 to
2021, achieving notable accuracy across all pollutants. Building upon
and enhancing an existing approach, we integrated a larger set of data
and an improved machine learning framework, leading to a significant
improvement in PM2.5 prediction as well as new data on PM10 and NO2.

Fig. 3. Daily predicted concentrations of NO2, PM10, and PM2.5 over the region of Greater London. Levels are in micrograms per cubic metre and span from Friday
16th to Sunday 18th of March of 2018. Each map uses a different range and colour-value correspondence to magnify spatial and temporal differences for
each pollutant.
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With a high spatiotemporal resolution and performance, this framework
has the potential to generate reliable exposure values over a large
geographic and temporal domain and thus power a wide range of health
and environmental research.
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Páramo-Figueroa, V.H., Riojas-Rodríguez, H., Just, A.C., 2022. Prediction of daily
mean and one-hour maximum PM2.5 concentrations and applications in Central
Mexico using satellite-based machine-learning models. J. Expo. Sci. Environ.
Epidemiol. 32, 917–925. https://doi.org/10.1038/s41370-022-00471-4.

Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S.,
Cameron-Blake, E., Hallas, L., Majumdar, S., Tatlow, H., 2021. A global panel
database of pandemic policies (Oxford COVID-19 Government Response Tracker).
Nat. Hum. Behav. 5, 529–538. https://doi.org/10.1038/s41562-021-01079-8.

A. de la Cruz Libardi et al. Atmospheric Pollution Research 15 (2024) 102284 

9 

https://doi.org/10.1016/j.apr.2024.102284
https://doi.org/10.1016/j.apr.2024.102284
https://doi.org/10.1088/1748-9326/ab35fc
https://doi.org/10.1088/1748-9326/ab35fc
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1007/BF00117832
https://doi.org/10.1007/BF00117832
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.caa.co.uk/data-and-analysis/uk-aviation-market/airports/uk-airport-data/
https://www.caa.co.uk/data-and-analysis/uk-aviation-market/airports/uk-airport-data/
https://doi.org/10.1016/j.envsoft.2011.09.008
https://doi.org/10.1016/j.envsoft.2011.09.008
https://doi.org/10.1145/2939672.2939785
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref8
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref8
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref8
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref9
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref9
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref10
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref10
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref11
https://doi.org/10.3390/rs12060914
https://doi.org/10.1016/j.ecoinf.2022.101665
https://doi.org/10.1021/acs.est.9b03107
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref15
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref15
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref17
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref17
https://doi.org/10.1021/acs.est.9b03358
https://doi.org/10.1021/acs.est.5b06121
https://doi.org/10.1021/acs.est.5b06121
https://doi.org/10.5067/MODIS/MOD13A3.061
https://doi.org/10.3390/ijerph19095401
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref22
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref22
https://www.eea.europa.eu/en/datahub/datahubitem-view/3b390c9c-f321-490a-b25a-ae93b2ed80c1
https://www.eea.europa.eu/en/datahub/datahubitem-view/3b390c9c-f321-490a-b25a-ae93b2ed80c1
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref24
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref24
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.5194/gmd-14-7021-2021
https://doi.org/10.1016/j.atmosenv.2018.11.049
https://doi.org/10.1016/j.atmosenv.2018.11.049
http://refhub.elsevier.com/S1309-1042(24)00249-6/sref28
https://doi.org/10.1007/s12647-015-0149-x
https://doi.org/10.1038/s41370-022-00471-4
https://doi.org/10.1038/s41562-021-01079-8


He, M.Z., Yitshak-Sade, M., Just, A.C., Gutiérrez-Avila, I., Dorman, M., de Hoogh, K.,
Mijling, B., Wright, R.O., Kloog, I., 2023. Predicting fine-scale daily NO2 over
Mexico city using an ensemble modeling approach. Atmos. Pollut. Res. 14 https://
doi.org/10.1016/j.apr.2023.101763.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
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