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The Matérn Model:
A Journey through Statistics, Numerical
Analysis and Machine Learning
Emilio Porcu1, Moreno Bevilacqua, Robert Schaback and Chris J. Oates

Abstract. The Matérn model has been a cornerstone of spatial statistics for
more than half a century. More recently, the Matérn model has been ex-
ploited in disciplines as diverse as numerical analysis, approximation the-
ory, computational statistics, machine learning, and probability theory. In
this article we take a Matérn-based journey across these disciplines. First,
we reflect on the importance of the Matérn model for estimation and predic-
tion in spatial statistics, establishing also connections to other disciplines in
which the Matérn model has been influential. Then, we position the Matérn
model within the literature on big data and scalable computation: the SPDE
approach, the Vecchia likelihood approximation, and recent applications in
Bayesian computation are all discussed. Finally, we review recent devlop-
ments, including flexible alternatives to the Matérn model, whose perfor-
mance we compare in terms of estimation, prediction, screening effect, com-
putation, and Sobolev regularity properties.

Keywords: Approximation Theory, Compact Support, Covariance, Ker-
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1. INTRODUCTION

This paper serves two purposes: On the one hand, we1

provide a panoramic view, across several disciplines, of2

the Matérn model. On the other hand, the paper illustrates3

the role of the Matérn model in several disciplines, while4

discussing alternative or more general models and their5

relevance to many aspects of statistical modeling, estima-6

tion, prediction, computational statistics, numerical anal-7

ysis, and machine learning.8
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A historical account of the Matérn model is provided9

by Guttorp and Gneiting [69]. The Matérn model – also10

called the Matérn covariance function, or the Matérn ker-11

nel, depending on context – is commonly attributed to12

Matérn [109], but can be found under alternative names13

in different branches of the scientific literature. The use14

of the Matérn model is widespread, and it is impossible to15

cover all its diverse applications here; our review focuses16

on a selection of applications that are of especial interest17

and significance. Specifically, we aim to cover18

1. estimation and prediction using the Matérn model19

in statistics, with emphasis on maximum likelihood20

estimation, Kriging prediction, and the associated21

screening effect;22

2. applications of the Matérn model in23

a) computational statistics, including the stochas-24

tic differential equation (SDE) and stochas-25

tic partial differential equation (SPDE) ap-26

proaches, likelihood approximation, inference27

of partial differential equations (PDEs) and28

Charles Stein’s method;29

b) statistical modeling, including non-standard30

scenarios, for instance when isotropy and sta-31
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tionarity cannot be assumed, or to model di-32

rections and curves;33

c) approximation theory and numerical analysis,34

where the Matérn model is used to construct35

kernel-based interpolants;36

d) machine learning, where the Matérn model is37

central to the literature on Gaussian processes38

modelling; and39

e) probability theory, where the Matérn model40

has inspired several contributions based on41

properties of the sample paths of associated42

stochastic processes, in concert with the solu-43

tion of certain classes of stochastic differential44

equations;45

3. comparison with recent flexible alternatives to the46

Matérn model, with a focus on47

a) enhanced models with interesting features,48

such as compact support or polynomial decay;49

b) asymptotic estimation accuracy, misspecified50

prediction, and screening effects;51

c) the implications of using certain classes of52

compactly supported kernels within approx-53

imation theory, computational statistics, and54

machine learning.55

This article is novel, in being the first to take a broad view56

of the scientific literature through the lens of the Matérn57

model. In particular, we do not attempt a review of covari-58

ance functions in general. Recent reviews provide a quite59

exhaustive panorama of covariance models, from space60

to space-time [128], to multivariate covariance functions61

[58], and covariance-based modeling on spheres and man-62

ifolds [123]. In addition, while there are many fascinat-63

ing applications of the Matérn model across the scientific64

landscape, we cannot hope to do justice to them all. Our65

emphasis is therefore limited to methodological and the-66

oretical issues which we hope are of relevance across a67

wide range of disciplines in which the Matérn model is68

used.69

1.1 Setting and Notation70

Throughout, bold letters refer to vectors and matrices,
and the transpose operator is denoted ⊤. Let d ∈N and let
Z = {Z(x), x ∈ Rd} be a real-valued Gaussian random
field, having zero mean and and covariance function K :
Rd ×Rd →R defined via K(x,y) := Cov(Z(x),Z(y)).
Covariance functions are symmetric and positive definite,
where in this paper the term positive definite is understood
as

(1)
n∑

i=1

n∑
j=1

ciK(xi,xj)cj ≥ 0

for all ci ∈ R, all n ∈ N and all xi ∈ Rd. If the inequal-71

ity above is strict, then K will be called strictly positive72

definite.73

Each symmetric positive definite function K : Rd ×
Rd → R defines translate functions K(x, ·) on Rd, for
all x ∈ Rd. In addition, one can define an inner product
on two translates by

(2) ⟨K(x, ·),K(y, ·)⟩H(K) :=K(x,y), x, y ∈Rd,

in terms of K itself. This extends to all linear combina-
tions of translates and generates, by completion, a Hilbert
space H(K) of functions on Rd. This space is called the
native space for K . Notice that the Hilbert space allows
for continuous point evaluations δx : f 7→ f(x) via a re-
production formula

(3) f(x) = ⟨f,K(x, ·)⟩H(K), x ∈Rd, f ∈H(K)

that follows from (2). Then H(K) is called a reproducing
kernel Hilbert space (RKHS) with kernel K . In particular,
the translates K(x, ·) lie in H(K), forming its completion
and being the Riesz representers of delta functionals δx.
They are central to machine learning, numerical analysis
and approximation theory, since (2) allows inner products
in the abstract space H(K) to be explicitly computable
using the kernel - the so-called kernel trick. See Section
6.1 and [167] for more detail. For a positive definite and
stationary kernel K , its Fourier transform K̂ can be used
to recast the inner product (2) on the Hilbert space H(K)
by

(4) ⟨f, g⟩H(K) =

∫
Rd

f̂(ω)ĝ(ω)

K̂(ω)
dω, f, g ∈H(K),

up to a constant factor. Here, g denotes the complex con-74

jugate of a function g, and ĝ its Fourier transform. Note75

how the spectrum of K penalizes the spectrum of the76

functions in H(K). Roughly, the Hilbert space H(K)77

consists of functions f for which f̂/
√

K̂ is square in-78

tegrable over Rd. The subtle connections of the Hilbert79

space H(K) to sample paths of Gaussian processes with80

covariance function K will come up at many places in81

this paper, e.g. in Sections 2, 4.4, 6.3, and 7.1. In this82

sense, kernels are important links between deterministic83

and probabilistic models.84

A strictly positive definite kernel K is called stationary
if K(x,y)≡K(x−y). According to Bochner’s theorem
[27], K is the Fourier transform of a positive and bounded
measure F , that is

K(x− y) =
∫
Rd

ei(x−y ,ω)F (dω), x,y ∈Rd.

Here, (·, ·) is the inner product in Rd and i is the unit
complex number. Fourier inversion is possible when K
is absolutely integrable, in which case we call the Fourier
transform K̂ its spectral density. We note that K̂ is non-
negative and integrable. Furthermore, most of the paper
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assumes stationarity and isotropy for the covariance func-
tion, K , so that

(5) Cov(Z(x),Z(y)) =K(x− y) = σ2φ(∥x− y∥),

for x,y ∈ Rd and ∥ · ∥ denoting the Euclidean distance.
Here, we assume φ to be continuous with φ(0) = 1.
Throughout, we shall equivalently call φ a function or
a correlation function, the last as a shortcut to φ(∥ · ∥).
Hence, the parameter σ2 > 0 is the variance of Z(x), for
all x ∈ Rd. Let Φd denote the class of such functions
φ inducing a covariance function K through the iden-
tity (5) i.e. Φd is the class of continuous isotropic cor-
relation functions defined on Rd. Such functions have a
precise integral representation according to Schoenberg
[143], given by

(6) φ(x) =

∫ ∞

0
Ωd(rx)Fd(dr), x≥ 0,

with Fd being a probability measure and

(7) Ωd(x) = Γ(d/2)

(
2

x

)d/2−1

Jd/2−1(x), x≥ 0,

with Γ(·) the gamma function and Jν the Bessel function
of the first kind of order ν > 0 [119, formula 10.2.2]. For
a member φ of the class Φd, we can use that its d-variate
Fourier transform of φ(∥x − y∥) is isotropic again, and
therefore reducible to a scalar integral formula
(8)

φ̂(z) =
z1−d/2

(2π)d/2

∫ ∞

0
ud/2Jd/2−1(uz)φ(u)du, z ≥ 0,

defining its d-variate isotropic spectral density, and we85

assume this integral to exist. If the denominator (2π)d/286

is omitted, the same formula holds for the inverse ra-87

dial Fourier transform. Throughout, we write Φ∞ for88 ⋂
d≥1Φd, the class of functions φ inducing positive def-89

inite radial functions on every d-dimensional Euclidean90

space. Hence, φ ∈ Φd if and only if φ(∥ · ∥) is a correla-91

tion function in Rd.92

2. THE MATÉRN MODEL

The Matérn model, Mν,α, is defined as [149]

(9) Mν,α(x) =
21−ν

Γ(ν)

(x
α

)ν
Kν

(x
α

)
, x≥ 0,

with α> 0 the scale parameter, ν > 0 the smoothness pa-93

rameters, and Kν a modified Bessel function of the sec-94

ond kind of order ν [2, 9.6.22]. It can be verified that95

Mν,α(0) = 1, so that (9) is a correlation function. Argu-96

ments in Stein [149, p48] show that Mν,α belongs to the97

class Φ∞. The function σ2Mν,α will be termed Matérn98

covariance function, and σ2 > 0 will denote the variance99

of the associated Gaussian random field.100

The importance of the Matérn class stems from the pa-
rameter ν that controls the differentiability of the sam-
ple paths of the associated Gaussian field. Specifically,
for any positive integer k, the sample paths of a Gaus-
sian field Z on Rd with Matérn correlation function are
k-times mean square differentiable (in any direction) if
and only if ν > k. Also, a rescaled version of the Matérn
correlation function converges to the Gaussian or squared
exponential kernel as ν →∞, that is

(10) Mν,α/(2
√
ν)(x)−−−→ν→∞

exp(−x2/α2), x≥ 0,

with convergence being uniform on any compact set of101

Rd. For this reason, the parametrisation Mν,α/(2
√
ν) is102

sometimes also adopted [170].103

When ν = k + 1/2, for k a nonnegative integer, the
Matérn correlation function simplifies into the product of
a negative exponential correlation function with a polyno-
mial of order k. For instance, M1/2,1(x) = exp(−x) and
M3/2,1(x) = exp(−x)(1 + x). In general,
(11)

Mk+1/2,1(x) = exp(−x)

k∑
i=0

(k+ i)!

2k!

(
k

i

)
(2x)k−i

for k ∈ N0. This simple algebraic form for the Matérn104

correlation functions has undoubtedly contributed to the105

widespread popularity of the Matérn model.106

Now we are in a position to explore in detail the many107

faces of the Matérn model. Section 3 discusses maximum108

likelihood estimation, Kriging prediction, and the screen-109

ing effect, while Section 4 explores an SPDE characterisa-110

tion of the Matérn model. Section 5 discusses the Matérn111

model as a building block to more sophisticated models,112

while Section 6 views the scientific landscape through the113

lens of the Matérn model, with special emphasis on nu-114

merical analysis, probability theory and machine learn-115

ing. Section 7 introduces some recently developed alter-116

natives and generalisations of the Matérn model, while117

Section 8 compares these alternative models in terms of118

estimation, prediction, and the screening effect.119

3. ESTIMATION AND PREDICTION WITH THE
MATÉRN MODEL

Let D ⊂ Rd be a subset of Rd. Consider a set Xn =
{x1, . . . ,xn} of (distinct) locations in D, at which val-
ues Zn = (Z(x1), . . . ,Z(xn))

⊤ of the Gaussian random
field Z , defined in Section 1.1, are observed. An impor-
tant problem concerns the prediction of values Z(x0) at
an unobserved location x0 ∈D \Xn. Then an especially
natural predictor for Z(x0) is

(12) Ẑn = c⊤nR
−1
n Zn

with the vector [cn]i = K(x0,xi) and the kernel matrix120

[Rn]i,j =K(xi,xj). The predictor (12) can be motivated121
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from multiple directions. Classically, (12) is motivated122

as the best linear unbiased predictor (BLUP) for Z(x0),123

and is often referred to as the simple Kriging predictor of124

Z(x0) [42]. From a modern perspective, where the role125

of unbiased estimation is increasingly questioned, we can126

motivate this choice using alternative optimality proper-127

ties, including:128

1. it is the expectation of Z(x0) conditionally on the129

realisation Zn;130

2. it is the optimal estimate (i.e. the Bayes act) for131

Z(x0) based on the data-set Zn, under squared er-132

ror loss [117, Section 13.3];133

3. it yields the minimal RKHS norm interpolant of the134

data evaluated at x0, by Section 6.1;135

4. it is the algorithm for approximating Z(x0) from136

Zn that minimises the worst case error in the137

sense of information-based complexity [117, Sec-138

tion 10.2] and approximation theory (see Section139

6.1),140

to name but a few. The Matérn model provides a natu-141

ral setting to study the performance of (12) if we sup-142

pose Z to have a stationary isotropic covariance function143

σ2Mν,α. The crucial question of how to select suitable144

values for the parameters σ, α, ν will be considered first,145

in Section 3.1, and then the performance of (12) will be146

studied in Section 3.2. The possibility of a direct exten-147

sion of the Matérn model to more general domains, such148

as manifolds and graphs, is discussed in Section 3.3.149

3.1 Estimation Using Maximum Likelihood150

Maximum likelihood (ML) and similar estimation151

methods are popular in this setting due to the availabil-152

ity of practical (inc. gradient-based) numerical methods153

for computation and the classical theory that underpins154

ML. On the other hand, implicit in the use of ML is that155

the statistical model is well-specified, and this judgement156

must be made on a case-by-case basis. To limit scope,157

we focus on ML estimation in the sequel. Our aim is to158

understand when the parameters of the Matérn model can159

be consistently estimated from data, and to understand the160

asymptotic distribution of the ML estimator. To this end,161

recall that the Gaussian log-likelihood function is162

Ln(θ) =−1

2

(
log(|σ2Rn)|) +

1

σ2
Z⊤

nR
−1
n Zn

)
,(13)

up to an additive constant, with θ = (ν,α,σ2). The ML
estimator is defined as

(14) θ̂n = argmax
θ∈R3

+

Ln(θ).

The ML estimate for the variance parameter can be com-163

puted in closed-form as σ̂2
n = Z⊤

nR
−1
n Zn/n; plugging164

this expression into (13) reduces the numerical problem to165

optimisation of a so-called concentrated likelihood over166

R2
+. However, maximizing the log-(concentrated) like-167

lihood requires a nonlinear optimisation problem to be168

solved, for which numerical methods must be used; see169

Section 4.3.170

The performance of ML estimation has been studied171

principally in two different asymptotic limits. Under fixed172

domain asymptotics, the sampling domain D is bounded173

and the set of sampled locations Xn becomes increasingly174

dense in D. Under increasing domain asymptotics, the175

domain D grows with the number n of observed data,176

and the distance between any two sampled locations is177

bounded away from zero. Zhang and Zimmerman [181]178

note that the peformance of the ML estimator can be quite179

different under these two frameworks, as will now be dis-180

cussed.181

3.1.1 Increasing Domain Asymptotics. Mardia and
Marshall [108] make use of increasing domain asymp-
totics to establish, under mild regularity conditions, that
the ML estimator is strongly consistent, meaning that
θ̂n

a.s.−→ θ0 for the true parameter ψ0. Furthermore, they
establish that the ML estimator is asymptotically normal,
meaning that

(15) F 1/2(θ0)(θ̂n − θ0)
d−→N (0,I)

where F (θ) =−E[L′′

n(θ)] is the Fisher information ma-
trix, whose entries are

F (θ)i,j =
1

2
tr

(
dΣn

dθi
Σ−1

n

dΣn

dθj
Σ−1

n

)
,

and Σn = σ2Rn. Although our focus is on the Matérn182

model, we note that these kind of asymptotic results hold183

for any parametric correlation function obeying particu-184

lar regularity conditions that are stated in terms of eigen-185

value conditions on the correlation matrix and its deriva-186

tives [108], thought these may not be easy to verify in187

general (see for instance Shaby and Ruppert [145], for the188

exponential case). Generally speaking, as long as the spa-189

tial extent of the sampling region is large compared with190

the range of dependence of the random field, increasing-191

domain asymptotics provide a very accurate description192

of the behavior of the ML estimate [181, 145, 83].193

3.1.2 Fixed Domain Asymptotics. Zhang [180] consid-
ered ML estimation for the Matérn model under fixed do-
main asymptotics, proving that when the smoothness pa-
rameter ν is known and fixed, none of the parameters σ2

and α can be estimated consistently when d= 1,2,3. In-
stead, only the parameter

(16) microM = σ2/α2ν ,

sometimes called microergodic parameter [181, 149], can
be consistently estimated. This is a consequence of the
equivalence of the two corresponding Gaussian measures,



MATÉRN: A JOURNEY 5

that we denote with P (σ2
iMν,αi

), with i = 0,1. In par-
ticular, for any bounded infinite set D ⊂ Rd, d = 1,2,3,
P (σ2

0Mν,α0
) is equivalent to P (σ2

1Mν,α1
) on the paths

of Z(x),x ∈D, if and only if

(17) σ2
0/α

2ν
0 = σ2

1/α
2ν
1 .

In contrast, for d≥ 5, Anderes [7] proved the orthogonal-194

ity of two Gaussian measures with different Matérn co-195

variance functions and hence, in this case, all the param-196

eters can be consistently estimated under fixed-domain197

asymptotics. The case d= 4 has been recently studied in198

Bolin and Kirchner [30].199

Asymptotic results associated with ML estimation of
the microergodic parameter, again for a fixed known
smoothness parameter ν, can be found in Zhang [180],
and later on in Kaufman and Shaby [83]. In particular,
for a zero mean Gaussian field defined on a bounded in-
finite set D ⊂ Rd, d = 1,2,3, with a Matérn covariance
function σ2

0Mν,α0
the ML estimator σ̂2

n/α̂
2ν
n of the mi-

croergodic parameter is strongly consistent, i.e.,

σ̂2
n/α̂

2ν
n

a.s.−→ σ2
0/α

2ν
0 ,

and its asymptotic distribution is given by
√
n(σ̂2

n/α̂
2ν
n − σ2

0/α
2ν
0 )

d−→N (0,2(σ2
0/α

2ν
0 )2).

Generally speaking, when the range of dependence of the200

random field is large with respect to the spatial extent of201

the sampling region, fixed domain asymptotics provide a202

very accurate description of the behavior of the ML es-203

timate of the microergodic parameter [83]. Extensions of204

these results to the case where Z is observed with Gaus-205

sian errors can be found in Tang et al. [157], while re-206

sults for a space-time version of the Matérn model can be207

found in Ip and Li [76] and Faouzi et al. [53]. Finally we208

highlight that the efficient estimation of the microergodic209

parameter assuming the smoothness parameter unknown210

is still an open problem; some promising results in this211

direction can be found in Loh et al. [106].212

A recent article [105] relaxes the conditions imposed213

by [157] where the latter assumes that ν is known, in214

concert with some technical assumptions. Recent contri-215

butions deal with Bayesian fixed domain asymptotics for216

Matérn Gaussian random fields, and we mention [95] and217

more recently [96].218

3.2 Prediction and the Screening Effect219

The equivalence of Gaussian measures within the220

Matérn class has consequences for prediction of Z(x0) at221

an unobserved location x0 ∈D \Xn; these consequences222

will now be discussed. In what follows, ν is supposed223

known and fixed, and we consider the setting where σ224

and α are misspecified. That is, we suppose Z is a Gaus-225

sian field with Matérn covariance σ2
0Mν,α0

, and we con-226

sider the performance of the predictor (12) when a Matérn227

model σ2
1Mν,α1

is used. This situation is typical, since the228

true parameters σ0 and α0 of the data-generating process229

will be unknown in general. Our theoretical setting will230

be fixed domain asymptotics.231

Note, first, that (12) does not depend on the value of
σ1, but does depend on the value of the parameter α1 (and
the parameter ν, but this parameter is fixed). This depen-
dence will be emphasised using the notation cn(α1) and
Rn(α1). Under the Gaussian measure P (σ2

0Mν,α0
) asso-

ciated with the true model σ2
0Mν,α0

, the mean squared
error of the predictor Ẑn(α1) is given by

VARα0,σ2
0

[
Ẑn(α1)−Z(x0)

]
= σ2

0

(
1− 2cn(α1)

⊤Rn(α1)
−1cn(α0)

+ cn(α1)
⊤Rn(α1)

−1Rn(α0)Rn(α1)
−1cn(α1)

)
,

while if there is no misspecification then the previous ex-
pression reduces to

VARα0,σ2
0

[
Ẑn(α0)−Z(x0)

]
(18)

= σ2
0

(
1− cn(α0)

⊤R−1
n (α0)cn(α0)

)
.

Under regularity conditions, and for fixed domain asymp-
totics, Stein [147] shows that both asymptotically efficient
prediction and asymptotically correct estimation of pre-
diction variance hold when the two Gaussian measures
P (σ2

iMν,αi
), i = 0,1 are equivalent, i.e. (17). Specifi-

cally,

(19)
VARσ2

0 ,α0

[
Ẑn(α1)−Z(x0)

]
VARσ2

0 ,α0

[
Ẑn(α0)−Z(x0)

] a.s.−→ 1

and

(20)
VARσ2

1 ,α1

[
Ẑn(α1)−Z(x0)

]
VARσ2

0 ,α0

[
Ẑn(α1)−Z(x0)

] a.s.−→ 1.

The implication of (19) is that, under the true model, if232

the correct value of ν is used, any value of α1 will give233

asymptotic efficiency. The implication of (20) is stronger234

and guarantees that using the misspecified predictor un-235

der the correct and misspecified models is asymptotically236

equivalent from mean squared error point of view. Note237

that these kind of results does not consider the uncertainty238

associated with the covariance parameters of the misspec-239

ified model. Kaufman and Shaby [83] show that (20) still240

holds by considering the ML estimator of the variance241

σ̂2
n =Z⊤

nR
−1
n (α1)Zn/n in place σ2

1 .242

Conditions of equivalence of two Gaussian measures243

based on a space-time [76] and bivariate [13] version of244

the Matérn model have also been established. Next, we245

consider a practically important aspect of prediction; the246

co-called screening effect.247
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Screening Effect. The screening effect refers to the phe-248

nomenon where the predictor (12) depends almost ex-249

clusively on those observations that are located nearest250

to the predictand [150]. As such, the screening effect is251

an important tool that can be used to mitigate the com-252

putational burden of evaluating (12) in the presence of253

big datasets. This issue has traditionally been an impor-254

tant subject in geostatistics [110, 111, 112, 39]. Indeed,255

Matheron [110, 111], in the School of Geostatistics at256

the Ecole des Mines, developed a first formalisation of257

screening effect, referring to situations where the observa-258

tions located far from the predictand receive a zero krig-259

ing weight. Matheron’s definition has a direct connection260

with the Markov property on the real line, which happens261

when kriging is performed under the exponential model262

(indeed, M1/2,α).263

M. Stein [149, 150, 152, 153] adopts an alternative
definition of the screening effect that will now be de-
scribed. Let Z be a mean-square continuous, zero mean
and weakly stationary Gaussian random field on Rd. Let
e(Xn) be the error of the predictor (12) of Z(x0) based on
Zn. Two choices for the set Xn of observation locations
will be considered, and to this end we let Fϵ,Nϵ be sets,
indexed by ϵ > 0, such that Nϵ contains the nearest obser-
vations to the predictand, and Fϵ the furthest observations.
Then Stein [150] says that Nϵ asymptotically screens out
Fϵ when

(21) lim
ϵ↓0

E e(Nϵ ∪ Fϵ)
2

E e(Nϵ)2
= 1.

A thorough discussion of the implications of this defini-264

tion can be found in Porcu et al. [130], where nontrivial265

differences between fixed domain and increasing domain266

asymptotics are reported.267

The spatial configuration of the sampling point Xn de-
termines whether the screening effect will hold. Porcu
et al. [130] refer to a regular scheme as one for which
Fϵ = {ϵ(x0 + j)}, for j ∈ Zd and Nϵ being the restric-
tion of Fϵ to some fixed region with x0 in its interior,
assuming x0 /∈ Zd. For regular schemes, Stein [150] es-
tablished (21) whenever the spectrum K̂ varies regularly
at infinity [26] in every direction with a common index of
variation [quoted from 130]. However, this condition may
not be useful for space-time processes, where differentia-
bility properties in the space and time coordinates are not
necessarily identical. To overcome such a problem, we in-
stead consider an irregular scheme: for x1, . . . ,xn being
distinct nonzero elements of Rd, y1, . . . ,yN distinct ele-
ments of Rd, x0 = 0 ∈Rd and y0 ∈Rd being nonzero, we
have Nϵ = {ϵx1, . . . , ϵxn} and Fϵ = {y0 + ϵy1, . . . ,y0 +
ϵyN}. The Stein hypothesis [termed in 130]

(22) ∀R> 0, lim
∥ω∥→∞

sup
∥τ∥<R

∣∣∣∣K̂(ω+ τ )

K̂(ω)
− 1

∣∣∣∣= 0,

provides a sufficient condition for the screening effect in
this setting (under some mild additional conditions on K̂
and Nϵ), which can be verified in dimensions d = 1 and
d = 2 for mean-square continuous but non-differentiable
random fields, for some specific designs Nϵ [152]. The
Matérn model with K = Mα,ν admits a simple expres-
sion for its spectrum [2, 11.4.44]:

(23) M̂ν,α(z) =
Γ(ν + d/2)

πd/2Γ(ν)

αd

(1 + α2z2)ν+d/2
, z ≥ 0,

from which (22) can be verified.268

The screening effect can thus be established for the269

Matérn model, under both regular and irregular schemes,270

justifying the use of “local” approximations to the predic-271

tor (12).272

3.3 Matérn on Manifolds and Graphs273

Let M be a general manifold. A pragmatic question is274

whether the Matérn correlation function (9) can be com-275

posed with a suitable metric g, defined on the manifold,276

to preserve positive definiteness over M . For the case277

of the sphere, a natural metric is the geodesic distance;278

the length of the arc connecting any pair of points lo-279

cated over the spherical shell. For this metric, (x, y) 7→280

Mν,α(g(x, y)) is a correlation function only for 0< ν ≤281

1/2 [61]. This limitation is emphasised in Alegría et al.282

[3], who propose the F family, a model that is valid on283

the sphere, and having the same properties as the Matérn284

function in terms of mean-square differentiability and285

fractal dimension. The Matérn function on other general286

manifolds has been studied by Li et al. [98]. Guinness and287

Fuentes [68] propose a spectral expansion to define a co-288

variance function that mimics the Matérn model, but this289

construction is criticised by Lindgren et al. [101] as being290

incorrect as the spectral expansion does not reproduce the291

same properties of the Matérn model.292

Unfortunately, it seems that the limited applicability of293

the Matérn model on any space that is not a flat surface294

extends to more abstract settings as well. An elegant iso-295

metric embedding argument in Anderes et al. [8] proves296

that the restriction 0 < ν ≤ 1/2 is required when the in-297

put space is a graph with Euclidean edges. A more general298

argument in Menegatto et al. [113] proves that the same299

restriction is inherited for a general quasi metric space en-300

dowed with a geodesic metric. The notable effort by Bolin301

and Kirchner [29] provides a model that is once differen-302

tiable over metric graphs. It is reasonable to conclude that303

some form of the SPDE approach, which we discuss next304

in Section 4.2, is needed in general to extend the Matérn305

model to a general manifold.306

4. THE MATÉRN MODEL IN COMPUTATIONAL
STATISTICS

This section explores the interaction of the Matérn307

model with computational statistics, starting with numer-308

ical methods for implementation of the Matérn model309
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(Sections 4.1, 4.2 and 4.3), and then turning to uses of310

the Matérn model to facilitate numerical computation it-311

self (Section 4.4).312

4.1 Implementation as an SDE313

The Matérn model admits a state space representation
as an SDE, which enables efficient computational tech-
niques from the signal processing literature to be em-
ployed for simulation, estimation and prediction. Indeed,
focusing on dimension d= 1, and letting

Z(x) = (Z,dZ/dx, . . . ,dkZ/dxk),

the Matérn model Mν,α with ν = k + 1/2 admits the
characterisation

dZ=


0 1

...
...
0 1

−a0 −a1 . . . −ak−1

Z dx+


0
...
0
1

dW

where ai = k+1Ci · α−k−1+i, the ·C· are binomial coef-314

ficients, and W(x) represents a zero-mean white noise315

process on x ∈ R [72]. The advantage of state space for-316

mulations is that both estimation and prediction can be317

performed in a single pass through the data, at linear318

O(n) cost, using familiar Kalman updating equations as319

described in Sarkka et al. [136] and in further detail in320

Chapter 6 of Hennig et al. [74]. Similar characterisations321

for higher dimensions, including spatio-temporal versions322

of the Matérn model, can be found in Sarkka et al. [136],323

though we note these retain linear complexity only in the324

number of time steps; complexity is cubic in the size of325

the spatial grid. The SPDE approach can offer a solution326

in this respect, and we discuss this next.327

4.2 Implementation as an SPDE328

A major reason for the continued popularity of the
Matérn model is the availability of efficient and scalable
numerical methods for simulation, due in large part to
Lindgren et al. [102]. These authors consider the SPDE

(24) (α−2 −∆)γ/2Z(x) =W(x), x ∈Rd,

where α > 0, ∆ is the Laplacian, and W is a Gaussian
white noise on Rd, so that Cov (W(A1),W(A2)) = |A1∩
A2|, where Ai are subsets of Rd, i= 1,2, and where | · |
is the volume integral. Whittle [168] and Whittle [169]
proved that the solution to (24) is a Gaussian field with
Matérn covariance σ2Mν,α with parameters α (as before)
and

σ2 =
Γ(ν)α2ν

Γ(ν + d/2)(4π)d/2
, ν = γ − d/2.

This perspective offers two insights; first, tools developed329

for the numerical approximation of SPDEs can be brought330

to bear on the Matérn model, and second, there is a clear331

path to generalise the definition of the Matérn model to332

any (planar or non planar) manifold on which the analo-333

gous SPDE may be defined. (For example, Jansson et al.334

[77] take this perspective to generalise the Matérn model335

to the sphere Sd.)336

To provide a computationally convenient approxima-337

tion to (24), Lindgren et al. [102] considered the weak338

solution to (24) and approximation of the weak solution339

using basis functions with compact support over a com-340

pact domain Ω⊂Rd (specifically, a Galerkin approxima-341

tion using finite element basis functions was used). As342

a result, the authors establish a formal route to approxi-343

mation of the random field Z with a Gauss–Markov ran-344

dom field having a sparse precision matrix. Sparse matrix345

algebra enables fast simulation of realisations from the346

Matérn random field, and fast evaluation of the likelihood347

(13) (albeit not fast evaluation of the gradient of the like-348

lihood).349

The choice of domain Ω introduces boundary effects350

which must be carefully mitigated. Khristenko et al. [86],351

Brown et al. [35] provide a solution for the case where γ is352

an integer; the non-integer case is considered in Bolin and353

Kirchner [29]. The extension of the Matérn field based on354

SPDEs to space-time is provided by Cameletti et al. [37]355

and subsequently by Bakka et al. [14], Clarotto et al. [40],356

while the multivariate Matérn case has been explored in357

Bolin and Wallin [32]. Alternative approximations based358

on Galerkin methods on manifolds have been provided359

by Lang and Pereira [90]. An interesting approach that360

allows working on manifolds with huge datasets is pro-361

posed by Pereira et al. [122]. The interest in this literature362

is dual. On the one hand, the technical aspects related to363

the finite dimensional representation of Gaussian random364

fields are extremely interesting per se. On the other hand,365

this group of authors is actually driven by providing tools366

for efficient computation. This is witnessed by the rele-367

vant existing R packages (R-INLA, inlabru, and rSPDE368

for instance) and we refer to the review of Lindgren et al.369

[101].370

Sanz-Alonso and Yang [134] attempt to explain the
trade-off between accuracy and scalability in numerical
approximation of the Matérn model. Recall that, in the
SPDE approach [102], Z in (24) is numerically approxi-
mated using a Gaussian process

(25) Zδ(x) =

nδ∑
k=1

ωkϵk(x), x ∈Ω,

where ϵk are finite element basis functions and the vec-371

torω = (ω1, . . . , ωnδ
)⊤ is multivariate Gaussian with zero372

mean and with a sparse precision matrix. The accuracy373

of the approximation Zδ is dependent on (a) the compact374

support of the finite elements basis functions, (b) bound-375

ary effects due to the domain Ω, and (c) by the mesh width376

δ that determines the cardinality nδ in (25). Most of the377



8

earlier literature has considered (25) with nδ proportional378

to the sample size n of the dataset being modelled. Sanz-379

Alonso and Yang [134] adopt a fixed domain asymptotic380

approach to explain when nδ ≪ n might be a legitimate381

strategy. To do so, they consider Gaussian process regres-382

sion and work under the framework of Bayesian contrac-383

tion rates. Their results provide justification for specific384

scalings of nδ with nδ = o(n), provided that the smooth-385

ness ν is sufficiently high.386

A different path to SPDE and Gauss–Markov random387

fields was recently taken in Sanz-Alonso and Yang [135],388

who adopt graph-based discretisations of SPDEs. This ap-389

proach can be well-suited to working with discrete and390

unstructured point clouds, such as in machine learning391

tasks where the data belong to an implicitly defined low-392

dimensional manifold. A second advantage of this ap-393

proach is that an explicit triangulation of the domain is394

not required.395

4.3 Approximate Likelihood and the Matérn Model396

In estimating the parameters of the Matérn model using397

ML (14), numerical optimisation is required. Although398

generic optimisation routines can be used, an often better399

approach is to first construct a cheap approximation to the400

likelihood, which can then be more readily maximised.401

Indeed, approximate likelihoods are essential when deal-402

ing with large datasets, since the evaluation of (13) re-403

quires computing the inverse and the determinant of the404

correlation matrix, usually via the Cholesky decomposi-405

tion at complexity O(n3) and storage cost O(n2).406

Perhaps the most successful approximation is Vecchia’s407

method [164], which has attracted a remarkable amount408

of attention in recent times [inc. 148, 46, 47, 66, 45]. The409

Vecchia approximation can be used with any correlation410

model and its basic idea is is to replace (13) with a prod-411

uct of Gaussian conditional distributions, in which each412

conditional distribution involves only a small subset of413

the data. This approximation requires that the data are or-414

dered and the number m of ‘previous’ data on which to415

condition is to be specified. Generally, larger m entails416

more accurate and computationally expensive approxima-417

tion, while the choice of ordering affects the accuracy of418

the approximation [66]. The Vecchia method provides a419

sparse approximation to the Cholesky factor of the pre-420

cision matrix, such that the approximate likelihood can421

be computed in O(nm3) time and with O(nm2) storage422

cost. See the recent review of Katzfuss and Guinness [82]423

for further detail. The Vecchia likelihood can be viewed424

as a specific instance of a more general class of estimation425

methods called quasi- or composite likelihood [103, 163]426

that have been widely used for the estimation of Gaussian427

fields with the Matérn model [50, 24, 12].428

An alternative method of mitigating the computational429

burden of ML estimation is covariance tapering [57]. The430

basic idea is to multiply the Matérn model with a com-431

pactly supported correlation function, resulting in a ‘mod-432

ified’ Matérn model with compact support. This induces433

sparseness in the associated covariance matrix, so that al-434

gorithms for sparse matrices can be exploited for a com-435

putationally efficient evaluation of the Cholesky decom-436

position [57]. However, some authors [23, 21] suggest437

that tapering might be an obsolete approach in view of438

the fact that flexible compactly supported models that in-439

clude the Matérn model as a special case have been re-440

cently proposed; see Section 8. A comprehensive review441

of the likelihood approximations is beyond the scopes of442

this paper, so we refer the reader to Sun et al. [155] and443

Heaton et al. [73] for further detail.444

4.4 The Matérn Model for Bayesian Computation445

In the last decade there has been increasing interest in
the use of kernel methods for solving PDEs. Consider a
system

Au= f in Ω

Bu= g on ∂Ω

specified by a differential equation involving A and f ,446

and initial or boundary conditions specified by B and g.447

Dating back at least to Fasshauer [55] in the determinis-448

tic setting, and reinterpreted through a Bayesian lens by449

authors such as Cockayne et al. [41], one can seek an ap-450

proximation to the strong solution u : Ω → R by mod-451

elling u as a priori a Gaussian random field and condi-452

tioning that field to satisfy the differential equation at lo-453

cations {x1, . . . ,xm} ⊂ Ω and satisfy the boundary con-454

ditions at locations {xm+1, . . . ,xn} ⊂ ∂Ω. The condi-455

tional mean of this process coincides with the symmetric456

collocation method introduced by Fasshauer [55], which457

we return to in Section 6.1, while the conditional vari-458

ance provides probabilistic uncertainty quantification for459

the solution, expressing the uncertainty that remains as a460

result of using only a finite computational budget. To im-461

plement these methods, one requires a Gaussian process462

whose sample paths possess sufficient regularity for the463

operation of conditioning on the derivative Au to be well-464

defined. On the other hand, assuming excessive smooth-465

ness could lead to over-confident uncertainty quantifi-466

cation. One therefore requires a kernel with customis-467

able smoothness, which can be adapted to the differential468

equation at hand. The Matérn class satisfies this require-469

ment, but is not alone in doing so; we continue discussion470

of this point in Section 7.471

A specific PDE that has received considerable recent at-472

tention in the Bayesian statistical community is the Stein473

equation, for which Au = c + p−1∇ · (p∇u), where p474

is the probability density function of a posterior distribu-475

tion of interest, f is a function whose posterior expecta-476

tion we seek to compute, and c is a constant. If the Stein477
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equation has a solution, then c must be the value of the478

posterior expectation we seek. This has motivated sev-479

eral efforts to numerically solve the Stein equation, as a480

more direct alternative to first approximating p (for ex-481

ample using Markov chain Monte Carlo) and then using482

the approximation of p to approximate the expectation483

of interest. In this context kernel methods are typically484

used [118, 146] and in particular the kernel should have485

smoothness that is two orders higher than that of the func-486

tion f whose expectation is of interest, since the Stein487

equation is a second-order PDE. The generalisation of the488

Stein equation to Riemannian manifolds was considered489

in [18], who advocated for the use of kernels with cus-490

tomisable smoothness that reproduce Sobolev spaces of491

functions on the manifold, such as the (manifold gener-492

alisation of the) Matérn model. The connection between493

the Matérn model and Sobolev spaces is set out in Section494

6.1.495

5. FLEXIBLE MODELLING WITH MATÉRN

One might object that the Matérn model is insufficiently496

flexible for many statistical applications, being limited to497

scalar-valued random fields that are stationary, isotropic498

and Gaussian. However, the Matérn model is also an im-499

portant building block for many more sophisticated mod-500

els, some of which will now be described. This is a rich501

literature, and our discussion is necessarily succinct; an502

extended version of this section can be found in [125].503

5.1 Scalar Valued Random Fields504

Let us start by discussing models for scalar-valued ran-505

dom fields that build on the Matérn model. Note that one506

can trivially introduce non-zero mean functions into the507

Matérn model, or combine (additively or multiplicatively)508

kernels to obtain a potentially more expressive kernel; we509

will not dwell on either point.510

To relax the isotropy assumption of the Matérn model,511

[6] consider scale mixtures that take into account pref-512

erential directions in which spatial dependence develops.513

On the other hand, the case of space-time models re-514

quires special treatment, and non-separable versions of515

the Matérn kernel are described in Gneiting [60], Zas-516

tavnyi and Porcu [179].517

The stationarity assumption was relaxed in a paramet-518

ric manner in Paciorek and Schervish [120], and then519

in a nonparametric manner in Roininen et al. [133]. An520

attempt to strike a balance between the computational521

tractability of parametric models and the flexibility of522

nonparametric models was reported in Wilson et al. [171],523

who proposed input warping to transform the inputs to the524

Matérn model using a neural network.525

The Gaussian assumption can be relaxed through out-526

put warping, meaning transformation of the form Z̃(x) =527

w(Z(x)) where w(·) is a nonlinear map from Rd to Rd.528

The covariance function of Z̃ will not be Matérn in gen-529

eral, when the covariance function of Z is Matérn , but530

if w is sufficiently regular then the smoothness proper-531

ties of Z transfer to Z̃ . The question of whether there ex-532

ist non-Gaussian processes whose covariance function is533

nevertheless of Matérn class was answered positively in534

Åberg and Podgórski [1]. Yan and Genton [175] have pro-535

posed trans-Gaussian random fields with Matérn covari-536

ance function. Bolin [28] and subsequently Wallin and537

Bolin [165] provided SPDE-based constructions for non-538

Gaussian Matérn fields. General classes of non-Gaussian539

fields with covariance g(Mν,α), for g(·) a suitable func-540

tion that preserves the positive definiteness and smooth-541

ness properties of the Matérn model, have been provided542

for instance by Palacios and Steel [121], Xua and Gen-543

ton [174], Bevilacqua et al. [22], Morales-Navarrete et al.544

[114].545

An important extension of the Matérn model, which546

has received recent attention, is to random fields on547

spaces for which classical notions of smoothness are not548

well-defined. For example, Anderes et al. [8] consider549

graphs with Euclidean edges, equipped with either the550

geodesic distance over the graph, or the resistance metric.551

Menegatto et al. [113] provide a generalisation of this set-552

ting by considering quasi-metric spaces. Bolin et al. [31]553

adopt a different approach to build random fields with554

their covariance structure on metric graphs. Space-time555

version of the Matérn model, for graphs with Euclidean556

edges, have been considered by Tang and Zimmerman557

[156] and Porcu et al. [129]. These efforts considerably558

extend the applicability of the Matérn model.559

The Matérn covariance function decays exponentially560

with distance, which can be inappropriate for modelling561

processes that involve long memory. Several approaches562

have been developed to modify the tails of the Matérn cor-563

relation function while preserving many of its desirable564

characteristics; we describe these in Section 7.565

[67] considers Gaussian random fields defined for lat-566

tices Zd with a covariance function that is the restriction567

of the Matérn covariance to Zd. The resulting spectrum568

is smoothed version of the spectral density associated569

with the Matérn covariance. For this specific situation, the570

SPDE approximation can overestimate the scale, α. Yet,571

it is not clear how this message extends to Gaussian fields572

that are continuously indexed in Rd.573

5.2 Vector-Valued Random Fields574

There has been a plethora of approaches related to mul-
tivariate spatial modeling, and the reader is referred to
Genton and Kleiber [58]. Here, the isotropic covariance
function K : [0,∞) → Rp×p is matrix-valued. The ele-
ments on the diagonal, Kii, are called auto-covariance
functions, and the elements Kij , i ̸= j, are called cross-
covariance functions. Gneiting et al. [62] proposed a mul-
tivariate Matérn model

(26) Kij(x) = σiiσjjρijMνij ,αij
(x), x≥ 0,
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where σ2
ii is the variance of Zi, the ith component of a575

multivariate random field in Rp, and ρij is the collocated576

correlation coefficient. There are restrictions on the pa-577

rameters νij , αij and ρij required to ensure positive defi-578

niteness, and often the restrictions on the collocated cor-579

relations coefficients ρij are rather strict. This last remark580

has motivated alternative approaches, and the reader is re-581

ferred to Apanasovich et al. [10] and more recently to582

Emery et al. [52]. Extensions to multivariate space-time583

Matérn structures have been provided by Allard et al.584

[5] and through a technical approach by Porcu et al.585

[127]. Multivariate nonstationary Matérn functions have586

been proposed by Kleiber and Nychka [87]. Multivariate587

Matérn models with dimple effect have been studied by588

Alegría et al. [4]; a ‘dimple’ in a space-time covariance589

model refers to the case when Cov(Z(x, t),Z(x′, t′)) is590

bigger than Cov((Z(x, t),Z(x′, t)), which requires spe-591

cial mathematical treatment.592

Multivariate Matérn modeling on graphs has been re-593

cently investigated in Dey et al. [49], who propose a class594

of multivariate graphical Gaussian processes through595

stitching, a construction that gets multivariate covari-596

ance functions from the graph, and ensures process-level597

conditional independence between variables. When cou-598

pled with the Matérn model, stitching yields a multi-599

variate Gaussian process whose univariate components600

are Matérn Gaussian processes, and which agrees with601

process-level conditional independence as specified by602

the graphical model. Stitching can offer massive com-603

putational gains and parameter dimension reduction. An604

ingenious approach to Gaussian process construction in-605

volving the Matérn covariance function has been recently606

proposed by Li et al. [97], who considered a product space607

involving the d-dimensional Euclidean space cross an ab-608

stract set that allows to index group labels.609

5.3 Directions, Shapes and Curves610

The Matérn model has an important role in the study611

of directional processes, with Banerjee et al. [17] formal-612

ising the notions of directional finite difference processes613

and directional derivative processes with special empha-614

sis on the Matérn model. The Matérn model also has a role615

in shape analysis, where Banerjee and Gelfand [15] in-616

troduced Bayesian wombling to measure spatial gradients617

related to curves through ‘wombling’ boundaries, and ap-618

proach taken further in Halder et al. [70]. The smoothness619

properties of the Matérn model are ideally suited to such620

a framework. Modeling approaches to temporal gradients621

using the Matérn model have been proposed by Quick622

et al. [132]. Related to these approaches, the smoothness623

parameter ν of the Matérn model plays a central role in624

the recent paper by Halder et al. [70], who analyse ran-625

dom surfaces in order to explain latent dependence within626

a response variable of interest.627

This represents a short tour of statistical applications of628

the Matérn model, but its reach goes well beyond statis-629

tics, and we explore the importance of the Matérn model630

to related fields next.631

6. THE MATÉRN MODEL OUTSIDE STATISTICS

This section explores the impact of the Matérn model632

on numerical analysis and approximation theory (Section633

6.1), machine learning (Section 6.2), and probability the-634

ory (Section 6.3).635

6.1 Numerical Analysis and Approximation Theory636

The problem considered here is to reconstruct a real-
valued function f defined on a domain D ⊂ Rd from
given data values yi = f(xi) available at a set Xn =
{x1, . . . ,xn} of distinct data locations. In contrast to
the statistical exposition in Section 3.1, from a numeri-
cal analysis standpoint these data are not assumed to be
random in any way. Nevertheless, many of the mathe-
matical expressions that we previously motivated from a
statistical perspective appear also in the solution of this
numerical task. The data vector Zn is reinterpreted as
Zn = (f(x1), . . . , f(xn))

⊤ and the task is to approximate
the value f(x) of the unknown function f at an unsam-
pled location x ∈D\Xn. A natural solution is a minimal-
norm interpolant

sf,Xn,K = argmin
s∈H(K)

∥s∥H(K) s.t.
s(xi) = f(xi),

i= 1, . . . , n,

which we recall was the third optimality property re-
ferred in Section 3. Thus, using again the kernel matrix
Rn = [K(xi,xj)]

n
i,j=1, the system Rnb = Zn is solved

for a fixed coefficient vector b that determines a linear
combination

sf,Xn,K(x) =

n∑
i=1

biK(xi,x), x ∈D,

in the span of the translates K(xi, ·). This follows eas-637

ily from the reproduction formula (3) and (2). The above638

formula is identical to (12) when setting x= x0, and the639

resulting value sf,Xn,K(x) is interpreted as a numerical640

approximation to f(x). The log-likelihood function (13)641

can equivalently be viewed as penalising the norm of the642

interpolant, since ∥sf,Xn,K∥2H(K) =Z
⊤
nR

−1
n Zn.643

The fourth optimality principle in Section 3 corre-
sponds here to the fact that the norm of the error func-
tional ϵx : f 7→ f(x) − sf,Xn,K(x) in the dual space
H(K)∗ of H(K) is minimal under all linear reconstruc-
tion algorithms in H(K) that use the same data Zn. The
key tool is the power function PK,Xn

, defined for all
x ∈D by

PK,Xn
(x)

= sup
{
f(x) : f ∈H(K), f(Xn) = 0, ∥f∥H(K) ≤ 1

}
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It has the property PK,Xn
(x) = ∥ϵx∥H∗(K) and leads to

optimal error bounds of the form

|f(x)− sf,Xn,K(x)| ≤ PK,Xn
(x)∥f∥HK

.

for all x ∈D and f ∈ H(K). It can be numerically cal-644

culated using the kernel matrix based on Xn ∪ {x}, but645

we omit the detail. Strikingly, the power function coin-646

cides with the square root of the kriging variance [142],647

giving the variance of the kriging error at x for given data648

locations Xn and kernel K .649

Analysis of the approximation error in this context thus
reduces to analysis of the power function, and in turn anal-
ysis of the space H(K). From (4) and (23), the RKHS
generated by the Matérn kernel Mν,1 has the inner prod-
uct

(27) ⟨f, g⟩H(Mν,1) =

∫
Rd

f̂(ω)ĝ(ω)

(1 + ∥ω∥2)ν+d/2
dω

up to constants, which we recognise as the inner prod-650

uct of the classical Sobolev space W
ν+d/2
2 (Rd). By the651

Sobolev embedding theorem, the elements of this space652

are well-defined continuous functions whenever ν > 0.653

This space is a canonical setting for mathematical anal-654

ysis of PDEs, a connection that we trailed in Section 4.4.655

Summarising, the use of Matérn kernels yields optimal656

recovery techniques for functions in Sobolev spaces from657

given sampled data. Generalised recoveries using deriva-658

tive data produce meshless numerical methods for solving659

PDEs in Sobolev spaces, including the symmetric colloca-660

tion method which uses derivative data for the PDE based661

on Wu [173], and shares similar Hilbert space optimality662

properties Schaback [138]. The use of the Matérn kernel663

is strongly motivated by the fact that PDE theory often664

implies that solutions lie in Sobolev spaces. On the other665

hand, there are also good arguments to replace Matérn666

kernels by polyharmonics [139, 48].667

Plenty of other results on deterministic recovery prob-668

lems using kernels can be found in Wendland [167], while669

applications are in Schaback and Wendland [140] and670

MATLAB programs combined with the essential theory671

are in Fasshauer and McCourt [56].672

In numerical analysis and approximation theory, Matérn673

and other kernels are normally used for rather large val-674

ues of their smoothness parameter, because they seek to675

solve an interpolation rather than a regression task. Nar-676

cowich et al. [115] proved that convergence rates then677

depend on the minimum of the smoothness of the func-678

tion f providing the data and the kernel; a misspecified679

Matérn kernel, for which the smoothness parameter ν is680

taken to be too large relative to the smoothness of f , pro-681

duces an error that converges at the same rate as we would682

have achieved had ν been correctly specified. On the other683

hand, Tuo and Wang [160] prove in the same setting that684

the prediction error becomes more sensitive to the space-685

filling property of the design points. In particular, optimal686

convergence rates require also that the quasi-uniformity687

of the experimental design is controlled.688

Of course, the use of kernels in numerical analysis and689

approximation theory requires estimation of kernel pa-690

rameters. The quantity σ does not arise in the correla-691

tion matrix Rn, but the scale parameter α has a strong692

influence on the error of the interpolant. There is a vast693

literature on scale estimation that partially builds on sta-694

tistical notions like ML (see references in Section 3). On695

the other hand, specific alternatives to the Matérn model,696

such as the polyharmonic kernels of Section 7.3, are able697

to bypass scale estimation due to the remarkable property698

that the interpolant is independent of the value of the scale699

parameter used. See Wendland [167] and Section 7.3.700

6.2 Machine Learning701

Kernel methods are a major strand of machine learning702

research, where kernels are routinely used to solve a vari-703

ety of supervised and unsupervised learning tasks. Com-704

pared to the interpolatory setting of Section 6.1, data in705

machine learning are usually observed with noise, neces-706

sitating either a likelihood or a loss function to be speci-707

fied.708

The Matérn model is often convenient for the analy-709

sis of kernel methods; for example, Tuo et al. [161] pro-710

vide sufficient conditions for the rates of convergence of711

the Matérn kernel ridge regression to exceed the standard712

minimax rates under both the L2 norm and the norm of713

the RKHS. However, the presence of noise in the data714

can pose a substantial challenge to selection of smooth-715

ness parameters such as ν in the Matérn model. Karvonen716

[80] proves that the ML estimate of ν cannot asymptot-717

ically undersmooth the truth under fixed domain asymp-718

totics; that is, if the true regression function has a Sobolev719

smoothness ν0+d/2, then the smoothness parameter esti-720

mate cannot be asymptotically less than ν0+d/2, but this721

in itself it not compelling motivation to use ML [81]. As a722

result of these additional challenges, standard practice is723

to keep the kernel general as far as possible when develop-724

ing methodology, and as far as possible to learn a suitable725

form for the kernel using the data and model selection cri-726

teria. However, recent machine learning methodology for727

non-Euclidean data hinges on the SPDE approach, and as728

a consequence the Matérn and related models are explic-729

itly being used.730

As the types of data that researchers seek to analyse be-
come more heterogeneous and structured, there has been a
demand for flexible Gaussian process models defined on
such non-Euclidean domains as manifolds and discrete,
graph-based domains. Under the framework of Gaussian
processes, Borovitskiy et al. [34] proposed to avoid nu-
merical solution of the SPDE (24) and instead to work
with a finite-rank approximation to the Gaussian process
model. Specifically, they consider the SPDE in (24) ap-
propriately adapted to a Riemannian manifold M , for
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which the corresponding Matérn model admits a series
expansion of the type

∞∑
n=0

(
2ν

α2
+ λn

)−ν−d/2

fn(x)fn(x
′), x,x′ ∈M

where {λn}∞n=0 and {fn}∞n=0 are, respectively, the se-731

quences of eigenvalues and eigenfunctions from the732

Laplace–Beltrami operator −∆M . The authors propose733

to first solve numerically for the leading eigenfunctions734

{fi}ni=0 of the Laplace–Beltrami operator, and then work-735

ing with a finite-rank Gaussian process whose realisations736

are linear combinations of the {fi}ni=0. Though solving737

the eigenproblem may be harder than numerically solving738

the SPDE, the authors argue that caching of the eigen-739

functions can lead to a cost saving in settings where mul-740

tiple tasks are to be solved on the same manifold. Such741

an approach is ingeniously extended to undirected graphs742

by Borovitskiy et al. [33], and has had a direct impact743

on Gaussian processes defined on neural networks [79],744

pathwise conditioning of Gaussian processes [172], sim-745

ulation intelligence in AI [91] and extension to kernel746

methods withing graphs cross time [116]. Other applica-747

tions include Thomson sampling in neural information748

systems [162], Bayesian optimisation in robotics [78],749

and Gaussian processes regression on metric spaces [89].750

6.3 Probability Theory and Stochastic Processes751

The Matérn model is well-studied from a probability752

theory and stochastic process viewpoint. From the per-753

spective of regularity, Scheuerer [141] summarises the754

properties of Gaussian random fields with Matérn covari-755

ance functions; sample paths are k-times differentiable in756

the mean-square sense if and only if ν > k. Under the757

same condition, the sample paths have (local) Sobolev758

space exponent being identically equal to k. Further, a759

Gaussian random field with Matérn covariance has frac-760

tal dimension that is identically equal to min(ν, d), for d761

being the dimension of the Euclidean space on which the762

random field is defined. For non-Gaussian random fields763

with Matérn covariance, continuity properties are studied764

by Kent [85].765

Several other properties of the Matérn model have been766

investigated. Kelbert et al. [84] study fractional random767

fields under the scenario of stochastic fractional heat768

equations under a Matérn model; see also Leonenko et al.769

[94]. Random fields defined on the unit ball embedded770

in Rd, with a covariance function that is the restriction771

of the Matérn model to a finite range, were studied in772

Leonenko et al. [93]. Tensor-valued random fields with773

an equivalent class of Matérn covariance functions were774

studied in Leonenko and Malyarenko [92]. Terdik [158]775

considers angular spectra for non-Gaussian random fields776

with Matérn covariance function. A recent contribution777

[159] provides interesting connection between the Matérn778

model and certain Laplacian ARMA representations of a779

class of stochastic processes. Lilly et al. [99] show that the780

Matérn process is a damped version of fractional Brown-781

ian motion. Lim and Teo [100] study random fields with782

a generalised Matérn covariance obtained as the solution783

to the fractional stochastic differential equation with two784

fractional orders, enabling the authors to deduce the sam-785

ple path properties of the associated random field. Space-786

time extensions of Matérn random fields through stochas-787

tic Helmholtz equations are provided by Angulo et al. [9].788

According to N. Leonenko1, a major contributor to this789

literature, the importance of Matérn model is based on790

the Duality theorem [71, Theorem 1] which provides an791

explicit relation between certain classes of characteris-792

tic functions of symmetric random vectors and their den-793

sity. Specifically, the spectral density associated with the794

Matérn model is by itself a covariance function, called the795

Cauchy or inverse multiquadric covariance function, that796

allows to parameterise the Hurst effect of the associated797

Gaussian random field.798

This completes our tour across the scientific landscape799

through the lens of the Matérn model. Our attention turns800

now to the future, and promising enhancements that can801

be made to the Matérn model.802

7. ENHANCEMENTS OF THE MATÉRN MODEL

This section described enhancements of the Matérn803

model; covariance functions that share (at least partially)804

the local properties of the Matérn model while providing805

additional features and functionality. Here we first intro-806

duces the models one at a time, with critical commentary807

on their features deferred to Section 8.808

7.1 Models with Compact Support809

Compactly supported covariance models have a long
history that can be traced back to Askey [11], who pro-
posed the kernel

(28) Aµ,β(x) =

(
1− x

β

)µ

+

, x≥ 0,

with β and µ being strictly positive, and where (x)+ =810

max(0, x) is the truncated power. It was shown in that811

work that Aµ,β belongs to Φd for all β > 0 if and only812

if µ ≥ (d + 1)/2. Clearly, the mapping x 7→ Aµ,β(∥x∥)813

is compactly supported over a ball with radius β embed-814

ded in Rd. As a result, covariance matrices contain exact815

zero entries whenever the associated states xi and xj sat-816

isfy ∥xi −xj∥ ≥ β; the computational advantages of this817

sparsity are discussed further in Section 8.5.818

Matheron’s montée and descente [111] approach was819

applied by Wendland [166] to the Askey functions, ob-820

taining compactly supported covariance functions with821

1Personal Communication, January 2023.



MATÉRN: A JOURNEY 13

higher-order smoothness that are truncated polynomials822

as functions of ∥x∥. This strategy was unable to generate823

integer-order Sobolev spaces in even space dimensions, a824

problem that was resolved in Schaback [137] who identi-825

fied the ‘missing’ Wendland functions. A unified view of826

Wendland functions was provided by Gneiting [60]. Zas-827

tavnyi [176] provided necessary and sufficient conditions828

for a general class encompassing both ordinary and miss-829

ing Wendland functions. Buhmann [36] provided a gener-830

alisation of Wendland functions, with sufficient paramet-831

ric conditions that allow the new class to belong to Φd832

for a given d. Those functions, termed Buhmann func-833

tions, were then studied by Zastavnyi [177] and subse-834

quently by Zastavnyi and Porcu [178], Porcu et al. [131]835

and Faouzi et al. [54]. Alternative representations and836

properties of the Wendland functions have been studied837

by Hubbert [75] and Chernih and Hubbert [38]. Exten-838

sions of the Wendland functions to multivariate [126, 44],839

spatio-temporal [124] and non-stationary processes [88]840

have also been developed.841

A more technical discussion follows, in which we in-842

troduce two further classes of correlation functions with843

compact support, each of which will be the subject of dis-844

cussion in Section 8.845

1. The generalized Wendland (GW) family [59, 177]
contains correlation functions with compact sup-
port that, as in the Matérn model, admit a contin-
uous parameterisation of smoothness of the under-
lying Gaussian random field. The GWκ,µ,β model
depends on parameters κ≥ 0 and µ,β > 0 through
the identity

(29) GWκ,µ,β(x)

=
Γ(κ)Γ(2κ+ µ+ 1)

Γ(2κ)Γ(κ+ µ+ 1)2µ+1
Aκ+µ,β2

(
x2
)

× 2F1

(
µ

2
,
µ+ 1

2
;κ+ µ+ 1;A1,β2

(
x2
))

,

where µ ≥ (d + 1)/2 + κ is needed for GWκ,µ,β846

to belong to the class Φd and 2F1(a, b, c, ·) is847

the Gaussian hypergeometric function [2]. Sam-848

ple paths of the GWκ,µ,β model are k times mean-849

square differentiable, in any direction, if and only850

if κ > k − 1/2 [59], so that κ plays the role of851

the smoothness parameter in this model. When852

κ = k ∈ N, GWk,µ,β factors into the product of853

the Askey function Aµ+k,β with a polynomial of854

degree k. This model includes the Wendland func-855

tions (κ = k, a positive integer), as well as the856

missing Wendland functions (κ = k + 1/2). The-857

orem 1(3) in Bevilacqua et al. [23] implies that858

the RKHS induced by GWκ/2−(d+1)/4,µ,β , with859

κ ≥ (d + 1/2), is norm-equivalent to the Sobolev860

space W κ
2 (Rd).861

2. The Gauss hypergeometric (GH) family [51] is de-
fined as

(30) GHκ,δ,γ,β(x)

=
Γ(δ− d/2)Γ(γ − d/2)

Γ(δ− κ+ γ − d/2)Γ(κ− d/2)

×Aδ−κ+γ−d/2+1,β2

(
x2
)
×

2F1

(
δ− κ;γ − κ; δ− κ+ γ − d/2;A1,β2(x2)

)
.

This model has four parameters and it belongs to
the class Φd for every positive β provided κ > d/2
with

2(δ− κ)(γ − κ)≥ κ, and 2(δ+ γ)≥ 6κ+ 1.

Sample paths of the GHκ,δ,γ,β model are ⌈k/2⌉862

times mean-square differentiable, in any direction,863

if and only if κ > (k+ d)/2. The parameter κ thus864

also controls the smoothness of samples from this865

model.866

The importance of the GW and GH models is discussed867

in Section 8.868

7.2 Models with Polynomial Decay869

Correlation models with polynomial decay such as the
generalized Cauchy [63] or the Dagum models [20] can
be useful when modelling data with long-range depen-
dence. However, in using these correlation models one
loses control over the differentiability of the the sample
paths, a key property of the Matérn model. Ma and Bhadra
[107] recently proposed a modification of the Matérn
class that allows for polynomial decay, while maintain-
ing the local properties of the conventional Matérn model.
The correlation function associated to this model is given
by
(31)

CHν,η,β(x) =
Γ(ν + η)

Γ(ν)
U

(
η,1− ν, ν

(
x

β

)2
)
, x≥ 0,

where U is the confluent hypergeometric function of the870

second kind [2]. Here ν > 0 controls mean-square differ-871

entiability near the origin, as in the Matérn case, while872

η > 0 controls the heaviness of the tail. The construction873

(31) is based on a scale mixture of (a reparameterised ver-874

sion of) the Matérn model involving the inverse-gamma875

distribution. Ma and Bhadra [107] have shown that this876

class is particularly useful for extrapolation problems877

where large distances are predominant.878

7.3 Polyharmonic Kernels879

Our catalogue of enhancements of the Matérn model
finishes with polyharmonic kernels, defined as

(32) Hν,d(x) :=

{
x2ν−d logx for 2ν − d ∈ 2Z
x2ν−d else

}
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up to the sign (−1)⌊ν−d/2⌋+1. As a function of x= ∥x∥,880

x ∈ Rd, the Matérn kernel Mν−d/2,1 starts with even881

powers of x followed by Hν,d, and in this sense the two882

models are related. Up to a constant factor, the gener-883

alised Fourier transform of Hν,d(∥x∥) on Rd is ∥ω∥−2ν ,884

and then a scale parameter is just another constant factor.885

This makes kernel-based interpolation by polyharmonics886

scale-independent. Compare with (23) to see the connec-887

tion to Mν−d/2,α in Fourier space. Stein [151] provides888

a formal connection between polyharmonic kernels, for889

which the name power law covariance functions is also890

used, and the Matérn model. Polyharmonic kernels are891

conditionally positive definite of order ⌊ν − d/2⌋ + 1;892

for a technical definition see Wendland [167]. Instead of893

Hilbert Spaces, polyharmonic kernels generate Beppo–894

Levi spaces, which share similarities to Sobolev spaces895

modulo that an additional polynomial space has to be896

added to enable prediction (Section 3) and interpolation897

(Section 6.1); see Wendland [167]. In general, polyhar-898

monic kernels arise as covariances in fractional Gaussian899

fields, including forms of Brownian motion [104, Theo-900

rem 3.3].901

Next our attention turns to a critical discussion of902

whether such enhancements to the Matérn model are903

needed.904

8. OTHER MODELS

This final section provides critical commentary on the905

Matérn model and the enhanced versions of the model in-906

troduced in Section 7.907

8.1 Rigorous Generalisation of the Matérn Model908

The Matérn model does not allow for compact support,909

hole effects (oscillations between positive and negative910

values) at large distances, or slowly decaying tails suit-911

able for modeling long-range dependence. Most of the912

enhancements in Section 7 aim to resolve these kind of is-913

sues; here we describe how the GW , GH and CH models914

can be viewed as rigorous generalisations of the Matérn915

model.916

Bevilacqua et al. [21] have shown that the Matérn
model is a limit case of a rescaled version of the GW
model. In particular they have considered the model G̃W
defined as

G̃Wκ,µ,β(x) = GW
κ,µ,β

(
Γ(µ+2κ+1)

Γ(µ)

) 1
1+2κ

(x), x≥ 0,

and proved that

lim
µ→∞

G̃Wκ,µ,β(x) =Mκ+1/2,β(x), κ≥ 0,

with uniform convergence over the set x ∈ (0,∞). Figure917

1 (first row) depicts the convergence result for ν = 0,1,2918

(from left to right).919
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FIG 1. First row: the G̃Wκ,µ,β(x) model with µ = 3,5,15 and
µ→∞ (the Matérn model Mκ+1/2,β(x)) with β = 0.15,0.12,0.1

and κ = 0,1,2 (from left to right) respectively. Second row:
the CH

ν,η,2
√
ν(η+1)β

(x) model with η = 3,5,15 and η → ∞
(the Matérn model Mν,β(x)) with β = 0.15,0.12,0.1 and ν =
0.5,1.5,2.5 (from left to right) respectively.

The parameter µ thus allows for switching from com-
pactly supported to globally supported models, and can
either be fixed to ensure sparse correlation matrices,
or can be estimated based on the dataset. However,
this equivalence applies only to smoothness parameters
greater than or equal to 1/2 in the Matérn model, so the
full range of the smoothness parameter is not covered.
This is unfortunate, since the fractal dimension [a widely
used measure of roughness of the sample paths for time
series and spatial data; 64] is fully parameterised using
the Matérn model when the smoothness parameter lies
between 0 and 1. As a consequence, the GW (or G̃W)
model cannot fully parameterise the fractal dimension of
the random field. This kind of issue can be solved with
the GH model, which includes the GW model as a spe-
cial case [51]:

GH d+1

2
+ν, d+µ+1

2
+ν, d+µ

2
+1+ν,β(x) = GWν,µ,β(x)

Letting β, δ and γ tend to infinity in such a way that920

β/
√
4δγ tends to α > 0, the GH model (30) converges921

uniformly to the Matérn model Mκ−d/2,α(x), and in this922

case the full range of the smoothness parameter of the923

Matérn model is covered.924

The Matérn model also arises as a special limit case of
the CH model. Specifically, Ma and Bhadra [107] show
that

lim
η→∞

CH
ν,η,2

√
ν(η+1)β

(x) =Mν,β(x),

with convergence being uniform on any compact set. Fig-925

ure 1 (second row) depicts the convergence result for926

ν = 0.5,1.5,2.5 (from left to right).927
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The turning band operator of Matheron [110] can be928

applied to a correlation function to create hole effects929

while retaining positive definiteness of the kernel. An ar-930

gument in Schoenberg proves that, for an isotropic corre-931

lation in Rd, the correlation values cannot be smaller than932

−1/d [144]. Since the Matérn model is a valid model for933

all d, this implies that the application of turning bands to934

the Matérn model will not provide any hole effect. On the935

other hand, the GW and GH models allow for such an936

effect.937

8.2 Estimation of Enhanced Models938

ML estimation for the Matérn model are well-understood;939

here we discuss the extent to which similar results can be940

obtained for enhancements of the Matérn model.941

In the context of increasing domain asymptotics, pa-942

rameters of the GW and CH models can be estimated943

consistently using ML and the associated asymptotic dis-944

tribution is known; see Section 3.1.1.945

In the context of fixed domain asymptotics, similar to
the classical Matérn model, the parameters of the these
enhanced models cannot be consistently estimated. For
instance, Bevilacqua et al. [23] show that the microer-
godic parameter of the covariance model σ2GWκ,µ,β ,
assuming κ and µ known, is given by microGW =
σ2/β2κ+1. In addition they prove that for a zero mean
Gaussian field defined on a bounded infinite set D ⊂ Rd

(d= 1,2,3), with covariance model σ2
0GWκ,µ,β0

, the ML
estimator σ̂2

n/β̂
2κ+1
n of the microergodic parameter is

strongly consistent, i.e.,

σ̂2
n/β̂

2κ+1
n

a.s.−→ σ2
0/β

2κ+1
0 .

Additionally, for µ > (d + 1)/2 + κ + 3, its asymptotic
distribution is given by
√
n(σ̂2

n/β̂
2κ+1
n − σ2

0/β
2κ+1
0 )

d−→N (0,2(σ2
0/β

2κ+1
0 )2).

Analogous for the GH model proposed are not available946

at present.947

Similarly, Ma and Bhadra [107] show that the microer-
godic parameter of the covariance model σ2CHν,η,β , as-
suming ν known, is given by

microCH = (σ2Γ(ν + η))/(β2νΓ(η)).

In addition they prove that for a zero mean Gaussian field
defined on a bounded infinite set D ⊂ Rd (d = 1,2,3),
with covariance model σ2

0CHν,η0,β0
, the ML estimator

(σ̂2
n/β̂

2ν
n )(Γ(ν + η̂n)/Γ(η̂n)) of the microergodic param-

eter is strongly consistent, i.e.,

σ̂2
n(Γ(ν + η̂n)

β̂2ν
n Γ(η̂n)

a.s.−→ σ2
0Γ(ν + η0)

β2ν
0 Γ(η0)

and, if η0 > d/2, its asymptotic distribution is given by

σ̂2
n(Γ(ν + η̂n)

β̂2ν
n Γ(η̂n)

− σ2
0Γ(ν + η0)

β2ν
0 Γ(η0)

d−→N

(
0,2

(
σ2
0Γ(ν + η0)

β2ν
0 Γ(η0)

)2
)
.

These results broadly support the use of ML plug-in esti-948

mates for these enhanced versions of the Matérn model;949

the issue of predictive performance is discussed next.950

8.3 Prediction with Enhanced Models951

If two Gaussian measures are equivalent then the asso-
ciated predictions and mean squared errors are asymptot-
ically identical (c.f. Section 3.2). To this end, recent re-
sults have sought to establish equivalence between Gaus-
sian measures for the Matérn model and enhancements
of the Matérn model. Bevilacqua et al. [23] consider
the σ2

1GWκ,µ,β model and show that for given σ1 ≥ 0,
ν ≥ 1/2, and κ≥ 0, if ν = κ+1/2, µ > d+ κ+1/2 and

(33) σ2
0α

−2ν =

(
Γ(2κ+ µ+ 1)

Γ(µ)

)
σ2
1β

−(1+2κ),

then P (σ2
0Mν,α) is equivalent to P (σ2

1GWκ,µ,β), for d=
1,2,3, on the paths of Z(x) for x ∈D ⊂Rd. Thus predic-
tions made using the GW model with compact support are
asymptotically identical to those made using the Matérn
model. Likewise, Ma and Bhadra [107] show that for a
given η ≥ d/2 and ν ≥ 0, if

(34) σ2
0α

−2ν =

(
Γ(ν + η)

Γ(η)

)
σ2
1

(
β2

2

)−ν

,

then P (σ2
0Mν,α) is equivalent to P (σ2

1CHν,η,β), for d=952

1,2,3, on the paths of Z(x) for x ∈D ⊂ Rd. Thus pre-953

dictions made using the GW model with polynomial tail954

decay are asymptotically identical to those made using the955

Matérn model.956

If interest is in the predictor (12), but not the predictive957

uncertainty resulting from the associated Gaussian ran-958

dom field, then it is interesting to note that the stationar-959

ity assumption of the Matérn model may not be needed.960

Stein et al. [154] showed that, under suitable paramet-961

ric conditions, one can consider α = 0 in the Matérn962

model, and this is equivalent to prediction using the poly-963

harmonic kernels Hν,d in (32). Theorem 1 in that work964

shows that if d ≤ 3 and the parameter ν satisfies condi-965

tion (2) therein (or d= 1), then it is impossible to distin-966

guish α> 0 from α= 0 on a bounded domain. The above967

observation reflects the fact that prediction using polyhar-968

monic kernels, like in Section 6.1, is scale-independent.969

This follows from homogeneity of the Fourier transform970

and eliminates the need for scale estimation in this con-971

text.972
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8.4 Screening with Enhanced Models973

The screening effect extends also to enhanced versions974

of the Matérn model. For regular schemes, Theorem 1 in975

Porcu et al. [130] shows that the GW model allows for an976

asymptotic screening effect when µ > (d+1)/2+κ. This977

condition is not restrictive, since µ≥ (d+ 1)/2 + ν is al-978

ready required for GWκ,µ,β to belong to the class Φd. For979

irregular schemes the situations is more complicated. For980

example, for non-differentiable fields in d = 1, Theorem981

1 in Stein [152] in concert with Theorem 1 in Porcu et al.982

[130] explains that the Askey model GW0,µ,β allows for983

a screening effect provided µ > 1. For d = 2, Theorem984

2 in Stein [152] implies that the Askey model allows for985

screening provided that µ > 3/2. The GW model satisfies986

Stein’s condition in (1.3) of Porcu et al. [130], which in987

turn allows the Stein hypothesis (22) to be verified.988

The numerical experiments in Porcu et al. [130] sug-989

gest that the screening effect is even stronger under en-990

hanced models with compact support, compared to the991

standard Matérn model. This can deliver computational992

advantages, which we discuss next.993

8.5 Scalable Computation994

Scalable computation generally refers to the computa-995

tional complexity associated with the optimal predictor996

(12) and/or of the likelihood function (13) when increas-997

ing n the number of data.998

The eternal fight between statistical accuracy and com-999

putational scalability has produced methods that attempt1000

to deal with this notorious trade-off. The discussion that1001

follows focuses specifically on this trade-off in the con-1002

text of the Matérn model or its enhancements, in par-1003

ticular compactly supported models. General approaches,1004

such as those based on predictive processes [16] and those1005

based on fixed-rank kriging [43], will not be discussed;1006

the interested reader is referred to the review of Sun et al.1007

[155].1008

The computational complexity associated with the1009

Matérn model is broadly governed by the number of data1010

(n) and partially by the input space dimension (d), the1011

dimension, p of the (scalar or vector) random field. In the1012

case of scalar-valued random fields, we have p= 1.1013

These challenges will be considered in turn.1014

The flexibility of some enhanced models is lost in the1015

case of large domains; the condition µ ≥ (d + 1)/2 + κ1016

in the G̃Wκ,µ,β model forces the parameter µ to go to in-1017

finity with d, which in turn forces G̃Wκ,µ,β to approach1018

Mν,α. From this point of view the class GHκ,δ,γ,β seems1019

more promising to use for large d. An additional remark1020

is that, for d≥ 5, all Gaussian measures with Matérn co-1021

variance functions are orthogonal [7]. This has philosoph-1022

ical consequences for Gaussian process regression when1023

the Matérn model is viewed as a prior distribution en-1024

coding a priori belief, since a small change to the kernel1025

parameters results in the entire support of the prior being1026

changed.1027

In the case of a large number of variables p in a multi-1028

variate the model, a large number of parameters needs to1029

be estimated.1030

The multivariate Matérn model suffers from the fact, not1031

only does the number of parameters increase polynomi-1032

ally with p, but the conditions for validity of the model1033

imply severe restrictions on the collocated correlation co-1034

efficient ρij in (26). Emery et al. [52] show that such re-1035

strictions become extremely severe already with p = 3.1036

Similar comments apply to other multivariate covariance1037

functions, including the multivariate GW model in Daley1038

et al. [44].1039

Finally we consider the case where the number n of1040

data is large, entailing a O(n3) computational and O(n2)1041

storage cost associated with the predictor (12) or the like-1042

lihood function(13). Several approaches have been pro-1043

posed to reduce these costs, many of which take advan-1044

tage of the (approximate) sparsity of the covariance (Σn)1045

or precision (Σ−1
n ), or its Cholesky factor (ch(Σ−1

n )):1046

• Sparsity in the covariance matrix Σn can be di-1047

rectly exploited by using compactly supported1048

models such as the G̃Wκ,µ,β or the GHκ,δ,γ,β fam-1049

ilies. Such approaches can be useful when the (es-1050

timated) compact support is relatively small with1051

respect to the spatial extent of the sampling region,1052

so that approximations are extremely sparse; see1053

below for an empirical investigation of this point.1054

• The precision matrix Σ−1
n associated with the1055

Matérn model is in general non-sparse (except for1056

the case d= 1 and ν = 0.5) but it turns out that the1057

matrix values are in general relatively close to 0, i.e.1058

Σ−1
n is quasi-sparse. As a consequence, approxi-1059

mating Σ−1
n with a sparse matrix can be a good1060

strategy. A notable instance of this approach is the1061

SPDE approach from Section 4.2. This approach1062

can be also motivated from results in numerical lin-1063

ear algebra, which demonstrate that if the elements1064

of a matrix show a property of decay, then the ele-1065

ments of its inverse also show a similar (and faster)1066

behavior [19].1067

• Vecchia’s approximation [164] and its extensions1068

[e.g. 46, 66, 82, 45] imply a sparse approximation1069

of ch(Σ−1
n ) and are often applied to the Matérn1070

model, although they can be applied to any co-1071

variance model. One potential limitation of these1072

method is that they depend on an ordering of the1073

variables and the choice of conditioning sets which1074

determines the Cholesky sparsity pattern [see 66].1075

It is instructive to numerically investigate the sparseness
of matrices associated with enhancements of the Matérn
model, and for this we focus on the G̃Wκ,µ,β model,
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Sparsity (percentage of zero values in the upper triangular part) of the
covariance matrix Σn, and quasi-sparsity (defined in the main text)

in the precision matrix (Σ−1
n ) and its Cholesky factor (ch(Σ−1

n )) for
the G̃Wκ,µ,β model. The case G̃Wκ,∞,β corresponds to the Matérn
model Mν+1/2,β . The β parameters are chosen so that the practical

range of the Matérn model is equal to 0.15.
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As in Table 1, but with β chosen such that the practical range of the

Matérn model is equal to 0.4.

which allows us to switch from a model with compact
support of radius

C = β

(
Γ(µ+ 2κ+ 1)

Γ(µ)

) 1

1+2κ
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to the Matérn model by increasing the µ parameter. In1076

our experiment, the sparseness of Σn and the quasi-1077

sparseness of Σ−1
n and ch(Σ−1

n ) are reported, the latter1078

being defined as the percentage of values in the upper tri-1079

angular matrix with absolute value lower than an arbitrary1080

small constant ϵ, and in our example we set ϵ= 1.e− 8.1081

The empirical assessment considers n = 1,156 and1082

n= 4,489 location sites over [0,1]2, where the points are1083

equally spaced by 0.03 and 0.015 respectively in a reg-1084

ular grid. For ν = 0,1,2, we set β such that the prac-1085

tical range of the Matérn model is equal to 0.15 (β =1086

0.050,0.0316,0.0253 respectively), and consider increas-1087

ing µ= 1.5+κ,4,8,16,32,120,∞ (with G̃Wκ,∞,β being1088

the Matérn model Mκ+1/2,β).1089

The results are reported in Table 1. For the low val-1090

ues µ = 1.5,2.5,3.5 and ν = 0,1,2, the covariance ma-1091

trix is highly sparse, while the sparseness decreases when1092

increasing µ, as expected. There is a clear trade-off be-1093

tween the sparseness of Σn and quasi-sparseness of Σ−1
n1094

and ch(Σ−1
n ) for each ν = 0,1,2. However, when increas-1095

ing µ, that is when Σn approaches the Matérn covariance1096

matrix, then Σ−1
n or ch(Σ−1

n ) tends to be highly quasi-1097

sparse.1098

We replicate the same experiment but with a practical1099

range of the Matérn model equal to 0.4. This leads to1100

β = 0.133,0.084,0.067 for ν = 0,1,2 respectively. The1101

results are reported in Table 2. The conclusions are the1102

same of the previous setting but in this case, we have1103

lower levels of sparseness for Σn and of quasi-sparseness1104

for Σ−1
n and ch(Σ−1

n ).1105

These numerical experiments highlight a clear trade-off1106

between the (quasi-)sparseness of Σ−1
n (or ch(Σ−1

n )) and1107

Σn when increasing µ for fixed β and ν i.e. when switch-1108

ing from a compactly supported to a globally supported1109

Matérn model. In particular, when µ → ∞ (the Matérn1110

model), then Σ−1
n is highly quasi-sparse and Σn is dense.1111

In contrast, when µ is small then Σ−1
n is not quasi-sparse1112

yet Σn is highly sparse. This seems to suggest that sparse1113

precision matrix approximation should work reasonably1114

well for the Matérn model, but could be problematic when1115

handling data exhibiting short compactly supported de-1116

pendence. In this case a better approach should be to ex-1117

ploit the sparsity of Σn, as enabled by enhanced versions1118

of the Matérn model.1119

As a final comment, the evaluation of the Matérn model1120

and its enhancements requires the computation of some1121

special functions such as the modified Bessel function of1122

the second kind, the Gaussian hypergeometric function1123

and the confluent hypergeometric function of the second1124

kind that can be found in different libraries such as the1125

GNU scientific library [65] and the most important sta-1126

tistical softwares including R, MATLAB and Python. For1127

instance, the R package GeoModels [25] implements the1128

computation of the Matérn model and its enhancements1129

for d= 1,2.1130

9. CONCLUSION

The impact of the Matérn model since its conception1131

has been substantial, and the model continues to be widely1132

used, across a broad range of scientific disciplines and be-1133

yond. While the original motivation for the Matérn model1134

came from its flexibility in context of spatial interpola-1135

tion, there is now also a rich literature of alternative and1136

enhanced versions of the model. In particular, the SPDE1137

and related approaches enable one to define analogues of1138

the Matérn model on quite general domains, admitting1139

sparse approximations to precision matrices, while recent1140

advances in enhanced models with compact support can1141

facilitate scalable computation through sparse approxima-1142

tion of covariance matrices, and are well-suited to pro-1143

cesses with short-scale dependence. The theoretical and1144

empirical properties of these enhanced models have been1145

recently and actively studied. On the other hand, there re-1146

main open theoretical issues of practical importance, such1147

as parameter estimation at finite sample sizes, and the im-1148

pact of parameter estimation on the performance of the1149

associated predictions.1150

Our current understanding of the Matérn model has1151

emerged as the result of engagement between scientists1152

and practitioners from different disciplines, and our hope1153

is that this multi-disciplinarity perspective will shine fur-1154

ther light onto the Matérn model.1155

ACKNOWLEDGMENTS

We thank the Associate Editor and three anonymous1156

Reviewers for their thorough reading and criticisms that1157

allowed for an improved version of the manuscript. We1158

are very grateful to Toni Karvonen for pointing out1159

an important technicality about Sobolev spaces associ-1160

ated with the Matérn kernel. Moreno Bevilacqua ac-1161

knowledges financial support from grant FONDECYT1162

1240308 and ANID/PIA/ANILLOS ACT210096 and1163

ANID project Data Observatory Foundation DO2100011164

from the Chilean government and project MATH-AMSUD1165

22-MATH-06 (AMSUD220041).1166

REFERENCES

[1] Åberg, S. and Podgórski, K. (2011). A class of non-Gaussian sec-1167

ond order random fields. Extremes, 14(2):187–222.1168

[2] Abramowitz, M. and Stegun, I. A., editors (1970). Handbook of1169

Mathematical Functions. Dover, New York.1170

[3] Alegría, A., Cuevas-Pacheco, F., Diggle, P., and Porcu, E. (2021a).1171

The F-family of covariance functions: A Matérn analogue for mod-1172

eling random fields on spheres. Spatial Statistics, 43:100512.1173

[4] Alegría, A., Emery, X., and Porcu, E. (2021b). Bivariate Matérn1174

covariances with cross-dimple for modeling coregionalized vari-1175

ables. Spatial Statistics, 41:100491.1176

[5] Allard, D., Clarotto, L., and Emery, X. (2022). Fully nonsepara-1177

ble Gneiting covariance functions for multivariate space-time data.1178

Spatial Statistics, 52:100706.1179



MATÉRN: A JOURNEY 19

[6] Allard, D., Senoussi, R., and Porcu, E. (2016). Anisotropy models1180

for spatial data. Mathematical Geosciences, 48(3):305–328.1181

[7] Anderes, E. (2010). On the consistent separation of scale and1182

variance for Gaussian random fields. The Annals of Statistics,1183

38(2):870–893.1184

[8] Anderes, E., Møller, J., and Rasmussen, J. G. (2020). Isotropic co-1185

variance functions on graphs and their edges. The Annals of Statis-1186

tics, 48(4):2478–2503.1187

[9] Angulo, J., Kelbert, M. Y., Leonenko, N., and Ruiz-Medina, M. D.1188

(2008). Spatiotemporal random fields associated with stochastic1189

fractional Helmholtz and heat equations. Stochastic Environmental1190

Research and Risk Assessment, 22(1):3–13.1191

[10] Apanasovich, T. V., Genton, M. G., and Sun, Y. (2012). A valid1192

Matérn class of cross-covariance functions for multivariate random1193

fields with any number of components. Journal of the American1194

Statistical Association, 107(497):180–193.1195

[11] Askey, R. (1973). Radial characteristic functions. Technical re-1196

port, Research Center, University of Wisconsin.1197

[12] Bachoc, F., Bevilacqua, M., and Velandia, D. (2019). Composite1198

likelihood estimation for a Gaussian process under fixed domain1199

asymptotics. Journal of Multivariate Analysis, 174:104534.1200

[13] Bachoc, F., Porcu, E., Bevilacqua, M., Furrer, R., and Faouzi, T.1201

(2022). Asymptotically equivalent prediction in multivariate geo-1202

statistics. Bernoulli, 28(4):2518 – 2545.1203

[14] Bakka, H., Krainski, E., Bolin, D., Rue, H., and Lindgren, F.1204

(2020). The diffusion-based extension of the Matérn field to space-1205

time. arXiv preprint arXiv:2006.04917.1206

[15] Banerjee, S. and Gelfand, A. E. (2006). Bayesian wombling:1207

Curvilinear gradient assessment under spatial process models.1208

Journal of the American Statistical Association, 101(476):1487–1209

1501.1210

[16] Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008).1211

Gaussian predictive process models for large spatial data sets. Jour-1212

nal of the Royal Statistical Society: Series B (Statistical Methodol-1213

ogy), 70(4):825–848.1214

[17] Banerjee, S., Gelfand, A. E., and Sirmans, C. F. (2003). Direc-1215

tional rates of change under spatial process models. Journal of the1216

American Statistical Association, 98(464):946–954.1217

[18] Barp, A., Oates, C. J., Porcu, E., and Girolami, M. (2022). A1218

Riemann–Stein kernel method. Bernoulli, 28(4):2181–2208.1219

[19] Benzi, M. (2016). Localization in matrix computations: The-1220

ory and applications. In Benzi, M. and Simoncini, V., editors, Ex-1221

ploiting Hidden Structure in Matrix Computations: Algorithms and1222

Applications : Cetraro, Italy 2015, pages 211–317. Springer Inter-1223

national Publishing.1224

[20] Berg, C., Mateu, J., and Porcu, E. (2008). The Dagum family of1225

isotropic correlation functions. Bernoulli, 14(4):1134–1149.1226

[21] Bevilacqua, M., Caamaño-Carrillo, C., and Porcu, E. (2022).1227

Unifying compactly supported and Matérn covariance functions in1228

spatial statistics. Journal of Multivariate Analysis, 189:104949.1229

[22] Bevilacqua, M., Caamaño-Carrillo, C., Arellano-Valle, R. B.,1230

and Morales-Oñate, V. (2021). Non-Gaussian geostatistical mod-1231

eling using (skew) t processes. Scandinavian Journal of Statistics,1232

48(1):212–245.1233

[23] Bevilacqua, M., Faouzi, T., Furrer, R., and Porcu, E. (2019). Esti-1234

mation and prediction using generalized Wendland functions under1235

fixed domain asymptotics. Annals of Statistics, 47(2):828–856.1236

[24] Bevilacqua, M. and Gaetan, C. (2015). Comparing compos-1237

ite likelihood methods based on pairs for spatial Gaussian random1238

fields. Statistics and Computing, 25(5):877–892.1239

[25] Bevilacqua, M., Morales-Oñate, V., and Caamaño-Carrillo, C.1240

(2023). GeoModels: Procedures for Gaussian and Non Gaussian1241

Geostatistical (Large) Data Analysis. R package version 1.1.5.1242

[26] Bingham, N. H., Goldie, C. M., and Teugels, J. (1987). Regu-1243

lar variation. Encyclopedia of Mathematics and its Applications,1244

27:145–156.1245

[27] Bochner, S. (1955). Harmonic Analysis and the Theory of Proba-1246

bility. California Monographs in mathematical sciences. University1247

of California Press.1248

[28] Bolin, D. (2014). Spatial Matérn fields driven by non-Gaussian1249

noise. Scandinavian Journal of Statistics, 41(3):557–579.1250

[29] Bolin, D. and Kirchner, K. (2020). The rational SPDE approach1251

for Gaussian random fields with general smoothness. Journal of1252

Computational and Graphical Statistics, 29(2):274–285.1253

[30] Bolin, D. and Kirchner, K. (2022). Equivalence of measures1254

and asymptotically optimal linear prediction for Gaussian random1255

fields with fractional-order covariance operators. arXiv preprint1256

arXiv:2101.07860v2.1257

[31] Bolin, D., Simas, A. B., and Wallin, J. (2022). Gaussian Whittle-1258

Matérn fields on metric graphs.1259

[32] Bolin, D. and Wallin, J. (2016). Multivariate type G Matérn1260

stochastic partial differential equation random fields. arXiv preprint1261

arXiv:1606.08298.1262

[33] Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P.,1263

Deisenroth, M., and Durrande, N. (2021). Matérn Gaussian pro-1264

cesses on graphs. In Banerjee, A. and Fukumizu, K., editors, Pro-1265

ceedings of The 24th International Conference on Artificial Intelli-1266

gence and Statistics, volume 130 of Proceedings of Machine Learn-1267

ing Research, pages 2593–2601. PMLR.1268

[34] Borovitskiy, V., Terenin, A., Mostowsky, P., et al. (2020). Matérn1269

Gaussian processes on Riemannian manifolds. Advances in Neural1270

Information Processing Systems, 33:12426–12437.1271

[35] Brown, R. D., Bardsley, J. M., and Cui, T. (2020). Semivari-1272

ogram methods for modeling Whittle–Matérn priors in Bayesian1273

inverse problems. Inverse Problems, 36(5):055006.1274

[36] Buhmann, M. (2001). A new class of radial basis functions with1275

compact support. Mathematics of Computation, 70(233):307–318.1276

[37] Cameletti, M., Lindgren, F., Simpson, D., and Rue, H. (2013).1277

Spatio-temporal modeling of particulate matter concentration1278

through the spde approach. AStA Advances in Statistical Analysis,1279

97(2):109–131.1280

[38] Chernih, A. and Hubbert, S. (2014). Closed form representations1281

and properties of the generalised Wendland functions. Journal of1282

Approximation Theory, 177:17–33.1283

[39] Chilès, J. and Delfiner, P. (2012). Geostatistics: Modeling Spatial1284

Uncertainty. Wiley, New York.1285

[40] Clarotto, L., Allard, D., Romary, T., and Desassis, N. (2022). The1286

spde approach for spatio-temporal datasets with advection and dif-1287

fusion: A matrix-free approach. In 15th International Conference1288

of the ERCIM WG on Com-putational and Methodological Statis-1289

tics (CMStatistics 2022).1290

[41] Cockayne, J., Oates, C. J., Sullivan, T. J., and Girolami, M.1291

(2019). Bayesian probabilistic numerical methods. SIAM review,1292

61(4):756–789.1293

[42] Cressie, N. (1990). The origins of Kriging. Mathematical geol-1294

ogy, 22(3):239–252.1295

[43] Cressie, N. and Johannesson, G. (2008). Fixed rank Kriging for1296

very large spatial data sets. Journal of the Royal Statistical Society:1297

Series B (Statistical Methodology), 70(1):209–226.1298

[44] Daley, D. J., Porcu, E., and Bevilacqua, M. (2015). Classes of1299

compactly supported covariance functions for multivariate random1300

fields. Stochastic Environmental Research and Risk Assessment,1301

29(4):1249–1263.1302

[45] Datta, A. (2022). Nearest-neighbor sparse Cholesky matrices in1303

spatial statistics. WIREs Computational Statistics, 14(5):e1574.1304

[46] Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016a).1305

Hierarchical nearest-neighbor Gaussian process models for large1306



20

geostatistical datasets. Journal of the American Statistical Associ-1307

ation, 111(514):800–812.1308

[47] Datta, A., Banerjee, S., Finley, A. O., Hamm, N. A., and Schaap,1309

M. (2016b). Nonseparable dynamic nearest neighbor Gaussian1310

process models for large spatio-temporal data with an application1311

to particulate matter analysis. The annals of applied statistics,1312

10(3):1286.1313

[48] Davydov, O. and Schaback, R. (2019). Optimal stencils in1314

Sobolev spaces. IMA Journal of Numerical Analysis, 39:398–422.1315

[49] Dey, D., Datta, A., and Banerjee, S. (2022). Graphical Gaussian1316

process models for highly multivariate spatial data. Biometrika,1317

109(4):993–1014.1318

[50] Eidsvik, J., Shaby, B., Reich, B., Wheeler, M., and Niemi, J.1319

(2013). Estimation and prediction in spatial models with block1320

composite likelihoods. Journal of Computational and Graphical1321

Statistics, to appear.1322

[51] Emery, X. and Alegría, A. (2022). The Gauss hypergeometric co-1323

variance kernel for modeling second-order stationary random fields1324

in euclidean spaces: its compact support, properties and spectral1325

representation. Stochastic Environmental Research and Risk As-1326

sessment, 36:2819—-2834.1327

[52] Emery, X., Porcu, E., and White, P. (2022). New validity con-1328

ditions for the multivariate Matérn Coregionalization model, with1329

an application to exploration geochemistry. Mathematical Geo-1330

sciences, pages 1–26.1331

[53] Faouzi, T., Porcu, E., and Bevilacqua, M. (2022). Space-time es-1332

timation and prediction under fixed-domain asymptotics with com-1333

pactly supported covariance functions. Statistica Sinica, 32:1–17.1334

[54] Faouzi, T., Porcu, E., Bevilacqua, M., and Kondrashuk, I. (2020).1335

Zastavnyi operators and positive definite radial functions. Statistics1336

& Probability Letters, 157:108620.1337

[55] Fasshauer, G. (1997). Solving partial differential equations by1338

collocation with radial basis functions. In LeMéhauté, A., Rabut,1339

C., and Schumaker, L., editors, Surface Fitting and Multiresolution1340

Methods, pages 131–138. Vanderbilt University Press, Nashville,1341

TN.1342

[56] Fasshauer, G. and McCourt, M. (2015). Kernel-based Approx-1343

imation Methods using MATLAB, volume 19 of Interdisciplinary1344

Mathematical Sciences. World Scientific, Singapore.1345

[57] Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance1346

tapering for interpolation of large spatial datasets. Journal of Com-1347

putational and Graphical Statistics, 15(3):502–523.1348

[58] Genton, M. G. and Kleiber, W. (2015). Cross-covariance func-1349

tions for multivariate geostatistics. Statistical Science, 30(2):147–1350

163.1351

[59] Gneiting, T. (2002a). Compactly supported correlation functions.1352

Journal of Multivariate Analysis, 83:493–508.1353

[60] Gneiting, T. (2002b). Nonseparable, Stationary Covariance1354

Functions for Space-Time Data. J. Am. Statist. Ass., 97:590–600.1355

[61] Gneiting, T. (2013). Strictly and non-strictly positive definite1356

functions on spheres. Bernoulli, 19(4):1327–1349.1357

[62] Gneiting, T., Kleiber, W., and Schlather, M. (2010). Matérn1358

Cross-Covariance functions for multivariate random fields. Jour-1359

nal of the American Statistical Association, 105:1167–1177.1360

[63] Gneiting, T. and Schlather, M. (2004). Stochastic models that1361

separate fractal dimension and the Hurst effect. SIAM Review,1362

46(2):269–282.1363
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