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A B S T R A C T

Background: Additive Bayesian Network (ABN) is a graphical model which extends Generalized Linear
Modelling (GLM) to multiple dependent variables. The present study compares results from GLM with those from
ABN analysis used to identify factors associated with Leptospira interrogans sv Pomona (Pomona) infection by
exploring the advantages and disadvantages of these two methodologies, to corroborate inferences informing
health and safety measures at abattoirs in New Zealand (NZ).
Methodology and findings: In a cohort study in four sheep slaughtering abattoirs in NZ, sera were collected twice
a year from 384 meat workers and tested by Microscopic Agglutination with a 91% sensitivity and 94% spe-
cificity for Pomona.

The study primarily addressed the effect of work position, personal protective equipment (PPE) and non-work
related exposures such as hunting on a new infection with Pomona. Significantly associated with Pomona were
“Work position” and two “Abattoirs” (GLM), and “Work position” (ABN). The odds of Pomona infection (OR,
[95% CI]) was highest at stunning and hide removal (ABN 41.0, [6.9–1044.2]; GLM 57.0, [6.9–473.3]), followed
by removal of intestines, bladder, and kidneys (ABN 30.7, [4.9–788.4]; GLM 33.8, [4.2–271.1]). Wearing a
facemask, glasses or gloves (PPE) did not result as a protective factor in GLM or ABN.
Conclusions/Significance: The odds of Pomona infection was highest at stunning and hide removal. PPE did not
show any indication of being protective in GLM or ABN. In ABN all relationships between variables are mod-
elled; hence it has an advantage over GLM due to its capacity to capture the natural complexity of data more
effectively.

1. Introduction

The present study compares results from Generalized Linear
Modelling (GLM) with those from Additive Bayesian Network (ABN)
analysis by exploring the advantages and disadvantages of these two
analytical methods while analysing risk factors for occupational lep-
tospirosis in New Zealand (NZ).

A primary objective of many epidemiological studies is to in-
vestigate hypothesized relationships between covariates of interest, and
one or more outcome variables. To date, a large variety of statistical
models is available to analyse epidemiological data (i.e. cross validation

criteria, ANOVA), and one of the most popular is GLM (McCulloch
et al., 2008). Typically, the biological and epidemiological processes,
which generated these data, are highly complex, resulting in multiple
correlations/dependencies between covariates and also between out-
come variables. Standard epidemiological and statistical approaches
have a limited ability to describe such inter-dependent multi-factorial
relationships. ABN is a form of probabilistic graphical model that ex-
tends the usual GLM to multiple dependent variables, through the re-
presentation of the joint probability distribution of random variables. It
is a statistical model that allows the analysis of complex data and de-
rives a directed acyclic graph (DAG) from empirical data, describing the

http://dx.doi.org/10.1016/j.actatropica.2017.04.034
Received 4 November 2016; Received in revised form 13 April 2017; Accepted 14 April 2017

⁎ Corresponding author. Department of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

1 Joint first authors.
2 Now at the International Agency for Research on Cancer, Lyon, France.

E-mail address: marta.pittavino@math.uzh.ch (M. Pittavino).

Acta Tropica 173 (2017) 191–199

Available online 06 May 2017
0001-706X/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

MARK

http://www.sciencedirect.com/science/journal/0001706X
http://www.elsevier.com/locate/actatropica
http://dx.doi.org/10.1016/j.actatropica.2017.04.034
http://dx.doi.org/10.1016/j.actatropica.2017.04.034
mailto:marta.pittavino@math.uzh.ch
http://dx.doi.org/10.1016/j.actatropica.2017.04.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actatropica.2017.04.034&domain=pdf


dependency structure between random variables as opposed to fixed
variables in GLM (Sivasundaram, 2012; Rijmen, 2008). ABN models
comprise two reciprocally dependent parts: a DAG and a set of para-
meters. A DAG is a graphical representation of the joint probability
distribution of all random variables in the data. Each node in the DAG is
the equivalent to the dependent variable in a GLM regression model. In
a graphical statistical model there is no distinction between covariates
and an outcome variable. Hence, while a standard GLM focuses on the
association between covariates and a single dependent or outcome
variable, an ABN is a multivariate (conditional) regression model,
analysing the associations between all covariates with all variables
being potentially dependent (Lewis and McCormick, 2012). Therefore,
in a multifactorial complex disease system, interdependencies between
risk factors may be revealed in ABN, that may or may not be discovered
in GLM, as the latter imposes a linear relationship between covariates
and the outcome (Lewis and McCormick, 2012). By comparing ABN
with GLM using identical data, we explore the likely impact of such an
analytical difference on the inferences from this study.

The ABN models described here, also if consisting of a DAG, are only
related with statistical dependency, and arcs present in such models do
not imply any causal relationship. While the identification of a statis-
tical dependency is often a step towards the conclusion of causal me-
chanisms, it is, however, more demanding to further claim that the
given dependency exists within a particular causal web.

In the last decades, Bayesian Network (BN) modelling has been
widely used in biomedical science/systems biology (Lycett et al., 2009;
Poon et al., 2008; Poon et al., 2007a; Poon et al., 2007b; Dojer et al.,
2006; Hodges et al., 2010; Jansen et al., 2003; Needham et al., 2007;
Djebbari and Quackenbush, 2008) to analyse multi-dimensional data.
However, only in the last few years, it has been applied in the veter-
inary epidemiology field. A general introduction to BN modelling in
veterinary epidemiology is provided by Lewis et al. (2011). Further
applications of BN to veterinary studies were described by Ward and
Lewis (2013), Wilson et al. (2013), Sanchez-Vazquez et al. (2012).
Graphical modelling techniques used to analyse epidemiological data
were used by Firestone et al. (2013), Schemann et al. (2013), Lewis
et al. (2011), Ludwig et al. (2013) and McCormick et al. (2013). Some
of these do not compare results from ABN and GLM (Firestone et al.,
2013; Firestone et al., 2014; Schemann et al., 2013), whereas others do
(Sivasundaram, 2012; Ludwig et al., 2013; McCormick et al., 2013;
Lewis and Ward, 2013). In the literature, a detailed comparison of these
two methodologies can be found in Lewis and Ward (2013). However,
the aforementioned study was based on simulated (artificial) epide-
miological data and differences between results were mainly discussed
with graphical outputs (qualitatively), whereas this analysis also com-
pares ORs of parameters directly and indirectly linked to the outcome,
focusing on the contrast as well on a quantitative point of view. “Ad-
ditive” BN models have the advantage over the “classical” BN in al-
lowing a direct comparison between the reciprocal model parameters.
While BN parameters are based on contingency tables, the resulting
data counts ABN refers to regression parameters resulting from the
transformation through a link function (here logit) of the cell prob-
ability parameters. Hence, ABNs are more appropriate and suitable for
the aim of the presented work.

Leptospirosis is a zoonotic disease occurring in many mammals and
is caused by a bacterium of the genus Leptospira spp. Transmission oc-
curs from exposure to urine or aborted tissues of infected animals, ei-
ther directly or via contact with contaminated water or soil (Hartskeerl
et al., 2011). Pathogenic leptospires enter the body through mucous
membranes or skin abrasions. In humans, infection with Leptospira spp.
varies from being sub-clinical (asymptomatic), through a mild to a se-
vere acute disease. A mild form with fever and “influenza-like” symp-
toms appears to be more common in New Zealand (Dreyfus et al.,
2014a). The acute disease is characterized by jaundice, renal failure,
hepatic failure, myocarditis, uveitis and/or pulmonary haemorrhage
(Adler, 2010; Bharti et al., 2003).

Among temperate developed countries, New Zealand (NZ) has a
relatively high incidence of notified human leptospirosis cases with an
average annual incidence risk of 2–3 cases per 100,000 population
(Thornley et al., 2002; ESR, 2010). However, under-ascertainment is
common and estimated to be 15–65 fold in sheep abattoir workers
(Dreyfus et al., 2014a). The three most common serovars in humans are
Leptospira interrogans sv Pomona (Pomona) and Leptospira borgpetersenii
sv Hardjo (Hardjo) and Leptospira interrogans sv Ballum (Ballum) (ESR,
2010). The serovar Pomona is highly prevalent in cattle, deer and sheep
in NZ (Dreyfus, 2013; Marshall and Manktelow, 2002; Ayanegui-
Alcerreca et al., 2010). Therefore, livestock are a frequent source of
human leptospirosis in farmers and meat workers (Thornley et al.,
2002) who are most at risk with less than 10% of deer mobs, sheep
flocks or beef herds currently vaccinated against leptospirosis (Wilson
et al., 2008; Keenan, 2007). Dreyfus et al. (Dreyfus et al., 2014a) found
that in 2011 the annual cumulative Pomona incidence risk (%) in sheep
abattoir workers was on average 11.9% with a range for four different
abattoirs of 8.4-16.4%. The annual risk of confirmed clinical leptos-
pirosis was 0.78% (3/384, 95% CI 0.20-2.46%) and new infections with
Pomona increased the risk of illness with ‘influenza-like’ symptoms 2.1-
fold (Dreyfus et al., 2014a).

This study used the data of the study described above (Dreyfus et al.,
2014a) with the following two aims: the first aim was to identify factors
associated with Pomona infection in sheep abattoir workers in NZ, with
two different methodologies GLM and ABN, in order to untangle the
web of causality of human infection with Pomona with a real data set.
Specifically, we aimed to test the hypothesis of work position being a
strongly associated variable, to evaluate the role of personal protective
equipment (PPE) and non-work related exposures, such as hunting,
home slaughtering and farming. If PPE had a protective effect, it would
be a good measure to protect workers. If workers were mainly exposed
in their work place and not while hunting or home slaughtering, then it
becomes clear where the emphasis on their protection should be. The
second and equally important aim was to compare the results between
GLM and ABN and discuss advantages and disadvantages of the two
statistical analyses.

2. Materials and methods

2.1. Case study

A prospective cohort study amongst voluntarily participating meat
workers from four purposively selected sheep abattoirs in the North
Island of NZ was conducted. Study methods were described in detail by
Dreyfus et al. (2014a). Participants were blood sampled by certified
phlebotomists or nurses and interviewed at the same time by trained
researchers using a questionnaire (Supplementary Material). Serum
antibodies against Pomona were analysed by the microscopic aggluti-
nation test (MAT) at doubling dilutions from 1:24 to 1:1536 as de-
scribed previously (Faine et al., 1999). Blood samples and data were
collected twice at intervals ranging from 50 to 61 weeks in order to
estimate the incidence of new infections with Pomona. Study partici-
pants of “Abattoir 1” were sampled the first time between February and
April 2008 and the second time in April 2009. All other abattoirs were
sampled initially in November 2009 − March 2010, and again in No-
vember 2010 − May 2011. Hence, one abattoir (“Abattoir 1”) was
studied twice in two consecutive years and three abattoirs were studied
in the second year once. New infection occurred where a worker sero-
converted (a sero-negative worker had a MAT titre increase to equal or
higher than 1:48) or had an anamnestic response (a sero-positive
worker had a MAT titre increase by two or more dilutions) (Dreyfus
et al., 2014a).

2.2. Data structure

Serological test results and questionnaire information were entered
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into an Access© database. The longitudinal data resulting from the
serological test results and interviews comprised 384 observations
across 13 variables, including the outcome variable (Table 1). There
were no missing data. Work positions were categorized in four binary
variables: “Work0” included workers with no or presumed low ex-
posure to organs of the urinary tract or to urine and they worked in the
office, “boning” room (where the carcass is cut into pieces), “chillers”,
“freezers” or “blood processing”; “Work1” included workers from areas
where organs were handled, such as the “offal”/“casing”/“pet food”,
hide processing positions, also including cleaners, renderers or en-
gineers; “Work2” included workers at the middle and end of the
slaughter board, where animals were opened, organs removed and

carcasses were inspected; in “Work3” were workers in the yards, where
animals were washed and waiting for slaughter and at the beginning of
the slaughter board, where animals were stunned, bled and hides were
removed.

Workers were asked about the PPE worn for every task in the
abattoir. PPE variables were “Facemasks” (mask with movable trans-
parent protective shield covering the whole face), “Safety (=goggles)
or normal glasses” and “Gloves on two hands” (made from latex, or
similar material or plastic). They were further asked about the fre-
quency PPE was worn. Frequency category 1 was “always or often” and
frequency category 0 “sometimes or never”. Further variables of in-
terest were number of months worked during the study and in the three

Table 1
Frequencies of potential determinants of new infection with Leptospira interrogans sv Pomona in sheep abattoir workers (n= 384) in New Zealand and odds ratios (OR), 95% confidence
intervals (95% CI) and p-value from univariable GLM analysis.

Variables and Categories in GLM and ABN (Node label) % Workers (n) % New infection (n) OR 95% CI P-value

Work position 0 (Omitteda)
0 Not working in boning, chillers, office
1 Working in boning, chillers, office 37 (142) 2.8 (1) – – –
Work position 1 (Work1)
0 Not working in offal removal, pet food
1 Working in offal removal, pet food 11.5 (44) 9.1 (4) 14.1 (2.0–280.0) 0.019
Work position 2 (Work2)
0 Not removing intestines or kidneys, not inspecting meat
1 Intestines or kidney removal, meat inspection 22.9 (88) 14.8 (12) 22.3 (4.3–409.5) 0.003
Work position 3 (Work3)
0 Not working in yards, not stunning or pelting
1 Working in yards, stunning or pelting 28.7 (110) 23.6 (19) 29.4 (6.0–533.5) 0.001
Abattoir 1 (A1) (Omitteda)
0 Not working in Abattoir 1 (A1)b

1 Working in Abattoir 1 (A1)b 35.2 (135) 16.7 (6) – – –
Abattoir 1 (A2) (Plant1)
0 Not working in Abattoir 1 (A2) b

1 Working in Abattoir 1 (A2) b 21.4 (82) 22.2 (8) 2.3 (0.8–7.3) 0.132
Abattoir 2 (Plant2)
0 Not working in Abattoir 2
1 Working in Abattoir 2 17.7 (68) 33.3 (12) 4.6 (1.7–13.8) 0.004
Abattoir 3 (Plant3)
0 Not working in Abattoir 3
1 Working in Abattoir 3 5.5 (21) 5.6 (2) 2.3 (0.3–10.7) 0.338
Abattoir 4 (Plant4)
0 Not working in Abattoir 4
1 Working in Abattoir 4 20.3 (78) 22.2 (8) 2.5 (0.8–7.7) 0.108
Gender (Gender)
0 Female 33.3 (128) 27.8 (10) Ref
1 Male 66.7 (256) 72.2 (26) 1.3 (0.6–3.0) 0.459
Hunter of goats, pigs & or deer (Hunt)
0 No 92.4 (355) 94.4 (34) Ref
1Yes 7.6 (29) 5.6 (2) 0.7 (0.1–2.5) 0.636
Slaughter of sheep, goats, pigs, beef & or deer at home

(Kill)
0 No 83.3 (320) 86.1 (31) Ref
1 Yes 16.7 (64) 13.9 (5) 0.8 (0.3–2.0) 0.639
Owning a farm with pigs, goats, sheep, beef cattle,

alpaca & or deer (Farm)
0 No 83.9 (322) 88.9 (32) Ref
1 Yes 16.1 (62) 11.1 (4) 0.6 (0.2–1.7) 0.392
Wearing normal or safety glasses (Glass)
0 Sometimes/never 43.2 (166) 27.8 (10) Ref
1 Always/often 56.8 (218) 72.7 (26) 2.1 (1.0–4.7) 0.053
Wearing gloves on both hands (Gloves)
0 Sometimes/never 34.9 (134) 22.2 (8) Ref
1 Always/often 65.1 (250) 77.8 (28) 2.0 (0.9–4.8) 0.099
Wearing a facemask (Mask)
0 Sometimes/never 83.3 (320) 80.6 (29) Ref
1 Always/often 16.7 (64) 19.4 (7) 1.2 (0.5–2.8) 0.639
Months worked in the meat industry (Time)
Continuous 216.6 (9–636)c 146.6c 1.0 (0.9–1.0) 0.279
Age (Age)
Continuous 48.1 (19–73) 11.9 1.0 (0.9–1.0) 0.794

a Omitted.
b Abattoir 1 (A1) took part in the study in two consecutive years Abattoir 1 (A2), with 57 of initial 135 participants being resampled.
c For continuous variables, mean, range and standard deviation are given.
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preceding seasons, years worked in an abattoir, whether workers went
hunting, were farming, home slaughtering in the study year and the
previous three years and personal data such as age and gender. Each of
the four participating abattoirs (one participated twice) was a binary
variable (“Plant0”, “Plant1”, “Plant2”, “Plant3”, and “Plant4”). All
variable names and their description are presented in Table 1.

Binary variables of possible multi-categorical ones (i.e. work posi-
tion or abattoir) have been created, in order to analyse the data with the
ABN methodology. The latter approach is implemented in the R
package “abn”, which so far has a limited functionality to handle ca-
tegorical variable. To address over parametrization, collinearity and
possible overlapping information the variables “Work0” and “Plant0”
were omitted from the GLM and ABN model.

Exploratory data analysis (EDA) with correlation matrices (Fig. 1 in
Pittavino et al., 2017), captured using the Spearman's correlation
coefficients, and parallel coordinate plots evaluation was conducted on
the raw data to test the correlation between predictor variables.

2.3. Analysis with GLM

Data were analysed using the software R, with the version 3.1.2 (R
Development Core Team, 2015). Crude associations between the risk of
infection with Pomona and potential risk, protective or confounding
factors listed in Table 1 were calculated by univariable analysis. We

used multivariable logistic regression (MLR) to test the hypotheses that
work position, hunting, slaughtering at home and farming and working
in a specific abattoir were risk factors and PPE was a protective factor
for new infection with Pomona. We evaluated risk factors and con-
founding variables by a manual forward stepwise selection in the MLR
model, starting with a null model with only an intercept included and
then adding one risk factor at a time. A variable was retained if the
Likelihood Ratio Test (LRT) was statistically significant at a p-value<
0.05 or if its presence changed the OR of another statistically sig-
nificant variable in the model by more than 15% (=confounder)
(Dohoo et al., 2010). Interaction between risk factors was tested by
LRT. If the LRT was statistically significant (p < 0.05) and the inter-
action term statistically significantly associated with the outcome
(p < 0.05), the interaction term was retained in the model. All pos-
sible interactions between the variables “Glov”, “Glass”, “Mask” and
“Work” and between “Work” and “Plant” have been tested.

Given the hierarchical structure “abattoir-worker” with potential
clustering by abattoir and the fact that 57 workers from Abattoir 1
participated twice in the study, we fitted a multilevel mixed model
(GLMM) using abattoir as a random effect, in order to evaluate the
effect of clustering by abattoir on the model outcome. Results of GLMM
were compared to the ones of GLM and adjustment only kept if results
or precision were altered by GLMM in a fashion that conclusions would
change.

Fig. 1. Final globally optimal Additive Bayesian Network
(ABN) model, after adjustment for over-fitting, evaluating
factors linked with the odds of new infection with Leptospira
interrogans sv Pomona (“Pomona”) in sheep abattoir workers
(n = 384) in New Zealand. Directly dependent variables were
various work positions (“Work1”, “Work2”, and “Work3”).
Binary variables are shown as squares and continuous vari-
ables as ovals. Numbers represent odds ratios of significant
directly dependent variables in ABN model, as reported in
Table 2. Arc direction is omitted to not create confusion with
the usual epidemiological DAGs, which imply causality and
possible variables intervention, absent in ABN model where
only statistical dependency is relevant.
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The Hosmer-Lemeshow statistic was used to test the distributional
assumption and the Pseudo R-square was used to evaluate the overall
model fit. Influential covariate patterns and leverage were examined
using described methods (Hosmer and Lemeshow, 2000).

2.4. Analysis with ABN

All analyses were conducted using the software R, version 3.1.2 (R
Development Core Team, 2015) and specifically the R package “abn”
(Pittavino et al., 2016) which is maintained by one of the two principal
authors and is available from CRAN (cran.r-project.org) with additional
documentation and case studies at “http://www.r-bayesian-networks.
org”. The resulting networks were manually created with the pro-
gramme Xfig.

Prior distributions were defined: all DAG structures were equally
supported by a uniform prior in the absence of any data. A uniform
prior was used to guarantee that no structure was preferred over the
others, to allow a fully data-driven approach. While, uninformative
Gaussian priors were applied for the parameters at each node: specifi-
cally, independent Gaussian priors with mean zero and variance 1000
for the additive terms, equivalent to beta coefficients in a conventional
logistic regression, and a diffuse Gamma distribution with shape and
scale of 0.001 for the precision, i.e., the inverse of the variance para-
meter in the Gaussian nodes.

A three-step procedure was utilized to determine a robust model for
the case study data and to estimate the parameters. The first step was to
find an optimal model, represented by the DAG, which is a graphical
representation of the joint probability distribution of all the random
variables where no cycles exist. The best goodness of fit to the available
data was computed using the marginal likelihood method, which is the
standard goodness of fit metric in Bayesian modelling and includes an
implicit penalty for model complexity. This was estimated using the
Laplace approximation at each node (Tierney and Kadane, 1986). The
process of identifying an optimal DAG is referred to in the literature as
structure learning (Friedman et al., 1999; Heckerman et al., 1995). This
was found with an order based exact search method (Koivisto and Sood,
2004), which determines a DAG with goodness of fit being equal to the
best possible goodness of fit of any DAG. In order to find the best DAG,
the maximum number of parents allowed per node (=number of cov-
ariates in each regression model at each node) was increased until the
goodness of fit remained constant and thereby identified the same
globally optimal DAG. The model selection procedure started from
three possible parents per node and then the parent limit increased
gradually until ten possible parents per node (Fig. 3 in Pittavino et al.,
2017). A best fitting ABN was identified at the end of this first step, with
a maximum number of possible parents per node.

In the second step, the model was adjusted by checking it for over-
fitting (Babyak, 2004) using Markov chain Monte Carlo (MCMC) si-
mulation implemented in JAGS (‘just another Gibbs sampler’) (Babyak,
2004; Plummer, 2003). Before proceeding with this step, it is essential
to first visually check the marginal densities estimated from the initial
ABN model identified (Fig. 2 in Pittavino et al., 2017), and verify that
the area under the curve (posterior density) integrates to one (Fig. 4 in
Pittavino et al., 2017). Simulated datasets were generated with MCMC
as iterations of an identical size as the original one, from the optimal
model found in step one. An identical exact search for an optimal model
structure was then performed exactly as in the first step, but applied to
the bootstrapped data rather than original data. It was repeated 2560
times (Fig. 6 in Pittavino et al., 2017), a large enough number to get
robust results, using the same parent limit per node as the one found in
the initial search. Arcs present in less than 50% (dashed lines in Fig. 2 in
Pittavino et al., 2017) of the globally optimal DAGs – estimated from
the bootstrapped data – were considered not to be robust and removed
from the DAG generated in the first step. A threshold of 50% structural
support is the usual cut-off in ABN analysis (Lewis and McCormick,
2012). For sensitivity analysis, the arcs coverage after 640 and 1280

simulations were compared. A most robust ABN model fully adjusted
for over-fitting was identified at the end of this second step, equivalent
to a multivariate GLM. The R package coda (Plummer et al., 2006) was
used to evaluate the mixing of MCMC chain. Both visual and statistical
techniques have been used with the Gelman and Geweke diagnostics
(Cowles and Carlin, 1996).

In the third step of ABN analysis, the marginal posterior log odds
ratio and 95% credible intervals were estimated for each parameter
from the posterior distribution (Fig. 6 in Pittavino et al., 2017), ex-
pressed by the DAG identified at the second step. Being in a Bayesian
statistics framework, the parameters were the maximum likelihood
estimates (MLE) based on the joint posterior distribution. With ABN
methodology, it is possible to evaluate the association between all
variables, including the outcome and hence evaluate all relationships
present in the data. An arc between two variables in the final ABN
model is referred to as a “direct” relationship, whereas an “indirect”
relationship is defined as two arcs connecting two variables with an
intermediate variable. For example, Fig. 1 shows variables “Pomona”
(=Pomona infection) and “Mask” (=wearing a facemask) being “in-
directly” linked through the presence of work position (“Work1”,
“Work2” and “Work3”) variables that are all “directly” linked to “Po-
mona”.

In order to estimate the parameters of the linked variables, a specific
function (fitabn) of the R package “abn” was used. With the latter, it is
possible to compute the odds ratio at each node, connected with an arc
in the final model as reported in Fig. 1 on top of the link between the
variables of interest.

At the end of this third step, the marginal posterior odds ratio of the
main variables in the analysis and their 95% credibility intervals were
obtained. Data and R codes are available in (Pittavino et al., 2017).

3. Results

At the beginning of the study 567 workers were recruited and blood
sampled. The number of participating workers when resampled was
384, and ranged by abattoir from 21 to 135 (Table 1). The loss to follow
up in our cohort was hence 32%. The main reasons were fear of pain at
sampling, having already left work for the day, having left employment
at the abattoir or been laid off for the season.

The exploratory data analysis revealed the strongest correlation
between the continuous variables “Age” and “Time” (c = 0.61), the
variables “Work3” and “Gender” (c = 0.38) and “Work2” and “Mask”
(c = 0.33). The variable “Pomona”, with 36 positive cases, was mainly
linked with variable “Work3” (c = 0.2), for all the other variables there
was a correlation coefficient< 0.15. A similar pattern in the data was
reflected in the results from ABN analysis.

3.1. Risk factors for new infection with Pomona analysed by GLM

Statistically significant risk factors in the final GLM model were
“Work position” and working in a specific abattoir (Table 2). Workers in
the offal room (“Work1”) had 22.1 times (95% CI 2.3–209.8,
p = 0.001), workers removing the intestines and kidneys, and meat
inspectors (“Work2”) had 33.7 times (95% CI 4.2–271.1; p < 0.001),
and workers stunning, pelting and working in the yards (“Work3”) had
56.96 times (95% CI 6.8–473.3; p < 0.001) the odds of infection with
Pomona compared to the workers from the other work categories.
These associations were independent of working in a specific abattoir.
Persons working at abattoir 2 had 4.5 (95% CI 1.9–10.67; p < 0.01)
times and persons working at abattoir 4 had 3.4 times the odds of in-
fection (95% CI 1.3–8.9; p = 0.01) compared to workers working in all
the other abattoirs, irrespective of work position.

Even though the variable Gender (“Sex”) was not statistically sig-
nificant and did not improve the model fit, it was left in the model as a
potential confounder, as it changed the work position OR by ≥15%
(Table 2). None of the other potential risk or protective factors or
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confounders were significantly associated with new infection in GLM
and did not improve the model fit. None of the tested interactions were
statistically significantly associated with Pomona infection, however,
“Work2*Plant4” did improve the model fit in the likelihood ratio test
and increased the odds ratio of Work position 2 (handling kidneys) from
33.7 to 51.3.

The GLMM reduced the effect of the variables on the outcome (OR)
by less than 10% (see Table 3 in Pittavino et al., 2017). However, the
significance and the weighting, such as work position having the
strongest association with Pomona, remained the same. Therefore, the
GLM was retained as model formulation.

Model diagnostics indicated that the data fitted the logit-normal
distribution. One outlier was identified, but its removal and collapsing
work position categories zero and one did not change any of the sta-
tistical significant model coefficients by more than 8% and hence, did
not impact on the inferences.

3.2. Association between variables analysed by ABN

The resulting best fitting ABN comprised 30 arcs and a maximum
number of seven parents (Fig. 3 in Pittavino et al., 2017), for the
variable “Gender”. The MCMC revealed a good mixing of the chain,
with no evidence of non-convergence toward the stationary distribution
resulting from the Gelman and Geweke diagnostics. After the bootstrap
analysis, four of the arcs in the globally optimal DAG were only weakly
supported. Therefore the number of arcs was reduced from 30 to 26
(Fig. 2 in Pittavino et al., 2017). Identical results were obtained in the
sensitivity analysis, where we started with 2560 bootstraps (Fig. 5 in
Pittavino et al., 2017), which was a large enough number to generate
robust results, and then performed half (1280) and a quarter (640) of
the bootstrap analyses, suggesting a robust conclusion. The final glob-
ally optimal additive Bayesian network model after adjustment for
over-fitting is shown in Fig. 1. The ABN models considered here are
concerned only with statistical dependency, and arc direction in such

networks has no epidemiological interpretation. Therefore, the gra-
phical models are presented without arc direction.

In the final ABN model shown in Fig. 1, the only variables directly
linked to Pomona infection were work positions. More specifically,
people working in stunning, pelting and yards had the highest odds of
infection, compared to those who were not working in this particular
category, as the odds of infection with Pomona was 41.0 (95% CI
6.9–1044.1) times higher than in workers not working in these posi-
tions. Workers removing the intestines and kidneys and meat inspectors
had 30.7 (95% CI 4.9–788.4) times the odds of infection with Pomona
compared to workers not working in these positions. Workers removing
offal and pet food had 18.3 (95% CI 2.2–506.7) times the odds of in-
fection with Pomona compared to workers not working in these posi-
tions (Table 2). As illustrated in the final DAG, work positions were
strongly inter-dependent with PPE.

4. Discussion

In the last four decades, four cross-sectional studies investigated
Leptospira sero-prevalence in meat workers in NZ (Blackmore et al.,
1979; Blackmore and Schollum, 1982; Benschop et al., 2009; Dreyfus
et al., 2014c) estimating sero-prevalences against Pomona, Hardjo,
and/or Leptospira borgpetersenii sv Tarassovi of being between 4.1% and
31%. One longitudinal study investigating risk factors for Leptospira
incidence risk in abattoirs has been conducted recently (Dreyfus et al.,
2014b). However, in the latter study, the Leptospira serovars con-
tributing to “new infection” were the two serovars Hardjo and Pomona
as a combined outcome. Since a study found that risk factors for Hardjo
and Pomona infection in livestock varied substantially (Dreyfus, 2013),
and since Pomona was associated with the majority of new infections in
workers in all abattoirs and with more signs of flu-like illness as op-
posed to Hardjo, we omitted Hardjo infection from our analysis out-
come in this analysis. The analysis of risk factors for new infection with
Pomona is therefore novel and has not been done in the former study
(Dreyfus et al., 2014b).

Had serovar Hardjo been associated with more than 13 new infec-
tions, we would have incorporated it in the analysis as a variable, as
ABN could have demonstrated the dependencies between Hardjo,
Pomona and all other variables, differentiating the roles of these two
serovars in the risk factor scenario at sheep abattoirs for leptospirosis.
However, given the few sero-positive cases, one third with respect to
Pomona new infection, it would have resulted in a poorer model fit.
Further, in GLM it would have been nonsensical to include Hardjo in-
fection as a risk factor for Pomona infection in the outcome. Hence, an
inclusion of Hardjo was not possible for comparing the two methods.

The objective of the presented analysis was to identify risk factors
for new infection with Pomona in sheep abattoir workers and to com-
pare results from GLM with those from ABN. GLM and ABN confirmed
the hypothesis that work position was the strongest risk factor for new
infection with Pomona in sheep abattoir workers (Table 2). Hence, both
methods appeared to be appropriate for identifying strong associations.
ABN models are multidimensional multivariate regression models and
analyse associations between all variables at the same time (Lewis and
McCormick, 2012). Therefore, ABN and GLM are likely to identify the
same risk factors when associations are strong and highly significant.

The work position variables (“Work1”, “Work2”, “Work3” in Fig. 1)
were all significantly related to Pomona infection (“Pomona”) in ABN
and in GLM. However, while showing the same trend (OR of
“Work3” > “Work2” > “Work1”) in ABN the odds ratios were gen-
erally lower. The lower value of the OR in ABN is due to the holistic
structure of the model, which is considering all the variables at the
same time while in GLM only a selection of them is considered. The
multivariate ABN can be viewed as a collection of multivariable models
(GLM) along the arcs of the DAG, hence the parameter estimates are
expected to be identical given the same explanatory variables. How-
ever, compared with the GLM, the ABN model is regarded as more

Table 2
Odds ratios (OR) and confidence intervals (CI) of significant covariates and confounders
in generalized linear modelling (GLM) (left) and DIRECTLYa dependent covariates in
Additive Bayesian Network (ABN) analysis (right) for new infection with Leptospira in-
terrogans sv Pomona in abattoir workers processing sheep (n= 384) in New Zealand.

Covariates with categories (Node label) GLMb ABN

OR 95% CI OR 95% CIc

Work position 1 (Work1)
0 Not working in offal removal, pet food
1 Working in offal removal, pet food 22.1 2.3–209.8 18.3 2.2–506.7
Work position 2 (Work2)
0 Not removing intestines or kidneys,

not inspecting meat
1 Intestines or kidney removal,

meat inspection
33.8 4.2–271.1 30.7 4.9–788.4

Work position 3 (Work3)
0 Not working in yards,

not stunning or pelting
1 Working in yards,

stunning or pelting
57.0 6.9–473.3 41.0 6.9–1044.2

Abattoir 2b (Plant2)
0 Not working in abattoir 2
1 Working in abattoir 2 4.5 1.9–10.7
Abattoir 4b (Plant4)
0 Not working in abattoir 4
1 Working in abattoir 4 3.4 1.3–8.9
Sexb,d (Gender)
Female
Male 0.5 0.2–1.4

a One arc between variables.
b Not directly associated with Pomona in ABN.
c ABN methodology does not generate p-values because of the joint mathematical

formulation.
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flexible since each level of a categorical variable can potentially have
different sets of dependencies to other variables, whereas GLM only
associates independent variables with a single outcome. This flexibility
was apparent with the variable ‘wearing gloves’ (“Gloves”), which was
only connected to the removal of intestines/kidneys/meat inspection
(“Work2”) in ABN, suggesting that the risk attribution to wearing the
PPE depended on work position. This hidden dynamic was not detected
while using GLM when interaction terms were considered. Hence, ABN
has an advantage over GLM because it can disentangle the complex
nature of the data, stratifying further the internal mechanisms present
between the variables.

As discussed by Dreyfus et al. (2014b), the highest odds of infection
in workers at the beginning of the slaughter board may be explained by
contact with contaminated droplets due to frequent urination of
stunned sheep. The relatively high odds of infection during removal of
kidneys and at meat inspection may be attributable to direct exposure
of workers to Pomona residing in the genital-urinary system. Kidneys
pass through the offal room, possibly explaining the odds of infection in
that working area.

Wearing PPE at the work place (gloves, facemasks and glasses) were
not statistically significantly associated with Pomona in GLM analysis.
Hence, they did not result as protective factors in the GLM (Table 2).
Descriptive analysis supported the lack of protection of Pomona infec-
tion by PPE: of 12 workers infected with Pomona in “work position 3”
(stunning, hide removal) (Table 1), ten, four and 11 workers reported to
always or often have worn gloves, and/or facemasks and or safety or
normal glasses, respectively (Tables 1 and 2 in Pittavino et al., 2017).
This may be biologically plausible because workers wearing safety
goggles or facemasks reported they sweat and presumably wipe their
eyes with potentially contaminated hands, which eliminates the pro-
tective effect. We recommend research to clarify whether this is actu-
ally true (e.g. by detecting Leptospira DNA in facemasks and glasses by
PCR). Our findings about PPE should be interpreted with some caution,
as there is a possibility of differential misclassification bias. When re-
sponding to questions about wearing PPE, participants may have
overstated the use of PPE and not admitted non-compliance to the
employment policy enforcing the use of PPE, despite a clear statement
that interviews were confidential. This may have led to an over-
statement of wearing PPE by meat workers in exposed work positions,
reducing the chance of determining a protective effect of PPE in the
analysis. Nevertheless, we believe that such bias was small because
workers handling kidneys were, contrary to belief, less likely to sero-
convert than workers at stunning/pelting.

Hunting, farming or slaughter of animals at home were not asso-
ciated with Pomona infection in the GLM and only indirectly linked to
Pomona infection through three to four arcs in the ABN model. This is
an indication that in this study population exposure to Pomona was
more likely occurring in the abattoir than through contact with live-
stock at times off-work. This finding underlines the role of leptospirosis
as an occupational hazard in sheep abattoirs in NZ. These findings were
confirmed in the study on sero-prevalence/incidence and risk factors by
Dreyfus et al. (2014c) and Dreyfus et al. (2014b), but contrast with the
findings of Heuer et al. (2010), where home slaughter was found to be a
risk factor for sero-prevalence of Hardjo or Pomona, where Hardjo titres
were 5-fold more frequent than Pomona titres among workers of one
abattoir (A1).

An advantage of ABN is the illustration of the dependencies between
all variables by the graphical model (Fig. 1), compared with GLM which
only shows the dependencies between risk factors and outcome (Po-
mona infection). Hence, the GLM only identified variables that were
directly associated with Pomona infection, and was restricted to a
limited model space ignoring indirect relationships. Conversely, ABN
considered all variables jointly allowing arcs to be present between any
variables. The DAG illustrates that farming was dependent on slaughter
of animals at home, which was associated with working at the yards,
stunning and pelting (“Work1”). Hence, persons working in these

positions were more likely to slaughter at home and farm. Hunting was
associated with the variables “Age” and “Time”, meaning that older,
long time workers were more likely to go hunting.

The Yule-Simpson paradox (Hand et al., 1997) states that taking a
narrow univariate (single dependent variables/multivariable regres-
sion) approach to risk factor analysis will, in general, not give the same
result as a joint and truly multivariate approach (Lewis and McCormick,
2012). In this study, ABN and GLM methodology did not produce ex-
actly the same results: whereas work position was the only directly
dependent variable upon new infection with Pomona in both ABN and
GLM, the GLM found workers in Abattoir 2 and 4 to be at higher odds of
infection than workers from the other participating abattoirs. As shown
in Fig. 1, ABN suggested that the odds of infection in Abattoirs was
indirectly linked to the outcome “Pomona infection” through wearing
normal or safety glasses (“Plant1”, “Plant2” and “Plant3”) or wearing a
facemask (“Plant 4”) and all three work positions. The results from the
ABN method suggest that Pomona infection occurred more often in
abattoirs in association with the use of the above mentioned specific
PPE. GLM had not detected these associations. Hence, while GLM only
established a direct association between two abattoirs and Pomona
infection, ABN identified a network of inter-dependent factors linked to
the outcome. Here ABN was more informative about potential causal
pathways in the disease system than GLM (Lewis and McCormick,
2012). This potential advantage of the ABN method would specifically
be useful for observational studies with large number of variables,
where causal and time relationships are often unknown.

The technical foundations of ABN modelling lie within the machine
learning and data mining literature (Friedman et al., 1999; Heckerman
et al., 1995; Buntine, 1991; Cooper and Herskovits, 1992; Friedman and
Koller, 2003). The main obstacle of using this methodology in practice
is that it can be computationally rather demanding: determining the
best model for a given data set has been shown to be NP-hard
(Chickering et al., 2004), the most difficult class of computational
problem. This means that finding an optimal model must be done using
heuristic search algorithms (Friedman et al., 1999; Heckerman et al.,
1995; Buntine, 1991; Cooper and Herskovits, 1992; Friedman and
Koller, 2003), rather than brute force computation. Hence, another
limitation of ABN modelling is the restriction of the number of vari-
ables. To date, exact structure discovery with bootstrapping is only
feasible for around 20 variables (Koivisto and Sood, 2004). Heuristic
searches (Heckerman et al., 1995) and inexact order-based searches
(Friedman and Koller, 2003) for globally optimal DAGs offer an alter-
native, however they are less ideal approaches, because they are local
techniques and not exact methods. In the future, advances in either
technology or statistical methods will make larger computationally
intensive analysis more feasible. An example could be that presented by
(Parviainen and Koivisto, 2009). Moreover, another drawback of the
current ABN methodology is the unfeasibility to take into account
possible interactions. However, we checked possible effect modifica-
tions for the GLM model, as clarified in the previous sections, but they
were revealed not be not significant. Therefore, although if this possible
limitation is present, it does not harm our analysis and the two meth-
odologies are still comparable due to absence of significant effect
modifications.

The credible intervals in both models were very high, due to the few
sero-positive cases and in particular the right-side intervals were wider
in the ABN than in the GLM results. This is due to the model nature,
where all the variables are considered due to the joint mathematical
model formulation, despite the use of GLM techniques in the estimation
process.

The stepwise algorithm used to select the best GLM model is not
always recognized as the standard procedure for model selection (Lewis
and Ward, 2013). Nevertheless, in this context, the stepwise approach
was appropriate, as the choice of the frequency of variables put into the
model was based on hypotheses, formulated with knowledge from
former studies (Benschop et al., 2009; Dreyfus et al., 2014b), with
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knowledge of infection pathways and the epidemiology of leptospirosis.
One abattoir (“Abattoir 1”) was studied twice in two consecutive

years and three abattoirs were studied in the second year once.
However, the data of one of the abattoirs studied twice were omitted in
the GLM and ABN analysis. Since only 14.8% of the study population
were sampled repeatedly in “Abattoir 1” and since sero-conversion and
anamnestic responses (=Pomona incidence) were measured, and not
sero-prevalence, clustering was expected to be at very low level. This
was confirmed when we conducted the GLMM model and the results
changed by less than 10%. Moreover, since only four abattoirs parti-
cipated, working in a specific abattoir was a hypothesized risk factor,
and interaction between work positions and abattoirs was regarded as
potentially important, we preferred keeping the simpler GLM over a
GLMM.

Although the abattoirs were not fully representative of the whole of
NZ, being solely located in the west and east of the North Island, the
animals originated from all areas of the North Island. Furthermore, as
demonstrated in Dreyfus et al. (2014c), the study population was re-
cruited from almost 20% of the total sheep abattoir worker population.

Since participation was voluntary, it was likely a sampling bias had
been introduced. A parallel analysis revealed that workers from highly
exposed work positions were more likely to participate (Dreyfus et al.,
2010). But this did not affect the results from the multivariable logistic
regression analysis where working area was included as a covariate.

The MAT titre cut-off of 1:48 is appropriate to determine exposure
to leptospires in humans, but is generally not recommended as a cut-off
for diagnosing clinical disease (Faine et al., 1999; Shivakumar and
Krishnakumar, 2006). Hence, a two-fold increase can determine new
infection due to exposure to leptospires, but is not necessarily appro-
priate to diagnose clinical disease. The latter requires, by WHO defi-
nition, a single MAT antibody titre ≥800 or a four-fold increase in the
convalescent blood sample. However, this definition has been chal-
lenged recently (Dreyfus, 2013; Goris, 2015), as infection with certain
serovars seem to lead to clinical disease with lower antibody responses.
Seroconverting meat workers in this study had a two-fold risk of in-
fluenza-like symptoms compared to workers not seroconverting
(Dreyfus et al., 2014a). Fang et al. (2009) modelled the association
between Leptospira sero-positivity and risk factors in meat workers of
one sheep abattoir for different MAT cut-offs. While the percentage of
sero-positive meat workers reduced by approximately 40%, when
choosing a MAT titre cut-off of 1:96 rather than 1:48, the conclusions
on risk factors did not change. In many countries a wide range of ser-
ologically related serovars is prevalent introducing the problem of cross
reactivity in the MAT. However, the prevalence of six endemic serovars
in NZ, which belong to different serogroups, should reduce the problem
of cross reactivity (Hathaway, 1981). The MAT in the NZ context is
therefore very specific and false positives should not represent a pro-
blem in this study context. In a study evaluating the MAT sensitivity
and specificity of acute (MAT cut-off 1:100) and convalescent (MAT
cut-off not mentioned) sera in an urban setting in Brazil (McBride et al.,
2007), the MAT testing of convalescent sera had a sensitivity of 91% to
100% and specificity of 94% to 100%. If we assumed that the MAT in
our study had a 91% sensitivity and 94% specificity, the tested in-
cidence in meat plants was likely under-estimated. However, since we
used a MAT titre cut-off of 1:48 and tested for the serovars Hardjobovis
and Pomona, which are less likely to be encountered in an urban set-
ting, where serovar Copenhageni is predominant (McBride et al., 2007),
it is possible that the sensitivity and specificity of the MAT in NZ are not
the same as in Brazil.

In conclusion, this study demonstrated that workers were at highest
odds of new infection when working at the beginning of the slaughter
(stunning and hide removal), followed by those removing intestines,
bladder and kidneys, and workers in the offal/pet food area. PPEs like
facemasks and safety glasses did not show any indication of being
protective in GLM and ABN and descriptive analysis supported the lack
of protection of Pomona infection by PPE. Further, other means of

protection might be considered, like vaccination of farmed livestock or
slaughter procedure changes. ABN has an advantage over GLM due to
its capacity to capture and illustrate graphically the natural complexity
of data more effectively. In ABN, all relationships between variables are
modelled, which appears to be more explanatory in view of the inter-
dependencies between study variables in complex disease systems.
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